Fix PR12616 - gdb does not implement DW_AT_data_bit_offset
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
618f726f 3 Copyright (C) 1994-2016 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270 55#include "typeprint.h"
ccefe4c4 56#include "psympriv.h"
53ce3c39 57#include <sys/stat.h>
96d19272 58#include "completer.h"
34eaf542 59#include "vec.h"
98bfdba5 60#include "c-lang.h"
a766d390 61#include "go-lang.h"
98bfdba5 62#include "valprint.h"
3019eac3 63#include "gdbcore.h" /* for gnutarget */
156942c7 64#include "gdb/gdb-index.h"
60d5a603 65#include <ctype.h>
cbb099e8 66#include "gdb_bfd.h"
4357ac6c 67#include "f-lang.h"
05cba821 68#include "source.h"
614c279d 69#include "filestuff.h"
dc294be5 70#include "build-id.h"
22cee43f 71#include "namespace.h"
4c2df51b 72
c906108c 73#include <fcntl.h>
c906108c 74#include <sys/types.h>
325fac50 75#include <algorithm>
d8151005 76
34eaf542
TT
77typedef struct symbol *symbolp;
78DEF_VEC_P (symbolp);
79
73be47f5
DE
80/* When == 1, print basic high level tracing messages.
81 When > 1, be more verbose.
b4f54984
DE
82 This is in contrast to the low level DIE reading of dwarf_die_debug. */
83static unsigned int dwarf_read_debug = 0;
45cfd468 84
d97bc12b 85/* When non-zero, dump DIEs after they are read in. */
b4f54984 86static unsigned int dwarf_die_debug = 0;
d97bc12b 87
27e0867f
DE
88/* When non-zero, dump line number entries as they are read in. */
89static unsigned int dwarf_line_debug = 0;
90
900e11f9
JK
91/* When non-zero, cross-check physname against demangler. */
92static int check_physname = 0;
93
481860b3 94/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 95static int use_deprecated_index_sections = 0;
481860b3 96
6502dd73
DJ
97static const struct objfile_data *dwarf2_objfile_data_key;
98
f1e6e072
TT
99/* The "aclass" indices for various kinds of computed DWARF symbols. */
100
101static int dwarf2_locexpr_index;
102static int dwarf2_loclist_index;
103static int dwarf2_locexpr_block_index;
104static int dwarf2_loclist_block_index;
105
73869dc2
DE
106/* A descriptor for dwarf sections.
107
108 S.ASECTION, SIZE are typically initialized when the objfile is first
109 scanned. BUFFER, READIN are filled in later when the section is read.
110 If the section contained compressed data then SIZE is updated to record
111 the uncompressed size of the section.
112
113 DWP file format V2 introduces a wrinkle that is easiest to handle by
114 creating the concept of virtual sections contained within a real section.
115 In DWP V2 the sections of the input DWO files are concatenated together
116 into one section, but section offsets are kept relative to the original
117 input section.
118 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
119 the real section this "virtual" section is contained in, and BUFFER,SIZE
120 describe the virtual section. */
121
dce234bc
PP
122struct dwarf2_section_info
123{
73869dc2
DE
124 union
125 {
e5aa3347 126 /* If this is a real section, the bfd section. */
049412e3 127 asection *section;
73869dc2 128 /* If this is a virtual section, pointer to the containing ("real")
e5aa3347 129 section. */
73869dc2
DE
130 struct dwarf2_section_info *containing_section;
131 } s;
19ac8c2e 132 /* Pointer to section data, only valid if readin. */
d521ce57 133 const gdb_byte *buffer;
73869dc2 134 /* The size of the section, real or virtual. */
dce234bc 135 bfd_size_type size;
73869dc2
DE
136 /* If this is a virtual section, the offset in the real section.
137 Only valid if is_virtual. */
138 bfd_size_type virtual_offset;
be391dca 139 /* True if we have tried to read this section. */
73869dc2
DE
140 char readin;
141 /* True if this is a virtual section, False otherwise.
049412e3 142 This specifies which of s.section and s.containing_section to use. */
73869dc2 143 char is_virtual;
dce234bc
PP
144};
145
8b70b953
TT
146typedef struct dwarf2_section_info dwarf2_section_info_def;
147DEF_VEC_O (dwarf2_section_info_def);
148
9291a0cd
TT
149/* All offsets in the index are of this type. It must be
150 architecture-independent. */
151typedef uint32_t offset_type;
152
153DEF_VEC_I (offset_type);
154
156942c7
DE
155/* Ensure only legit values are used. */
156#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
157 do { \
158 gdb_assert ((unsigned int) (value) <= 1); \
159 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
160 } while (0)
161
162/* Ensure only legit values are used. */
163#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
166 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
167 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170/* Ensure we don't use more than the alloted nuber of bits for the CU. */
171#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
174 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
9291a0cd
TT
177/* A description of the mapped index. The file format is described in
178 a comment by the code that writes the index. */
179struct mapped_index
180{
559a7a62
JK
181 /* Index data format version. */
182 int version;
183
9291a0cd
TT
184 /* The total length of the buffer. */
185 off_t total_size;
b11b1f88 186
9291a0cd
TT
187 /* A pointer to the address table data. */
188 const gdb_byte *address_table;
b11b1f88 189
9291a0cd
TT
190 /* Size of the address table data in bytes. */
191 offset_type address_table_size;
b11b1f88 192
3876f04e
DE
193 /* The symbol table, implemented as a hash table. */
194 const offset_type *symbol_table;
b11b1f88 195
9291a0cd 196 /* Size in slots, each slot is 2 offset_types. */
3876f04e 197 offset_type symbol_table_slots;
b11b1f88 198
9291a0cd
TT
199 /* A pointer to the constant pool. */
200 const char *constant_pool;
201};
202
95554aad
TT
203typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
204DEF_VEC_P (dwarf2_per_cu_ptr);
205
52059ffd
TT
206struct tu_stats
207{
208 int nr_uniq_abbrev_tables;
209 int nr_symtabs;
210 int nr_symtab_sharers;
211 int nr_stmt_less_type_units;
212 int nr_all_type_units_reallocs;
213};
214
9cdd5dbd
DE
215/* Collection of data recorded per objfile.
216 This hangs off of dwarf2_objfile_data_key. */
217
6502dd73
DJ
218struct dwarf2_per_objfile
219{
dce234bc
PP
220 struct dwarf2_section_info info;
221 struct dwarf2_section_info abbrev;
222 struct dwarf2_section_info line;
dce234bc
PP
223 struct dwarf2_section_info loc;
224 struct dwarf2_section_info macinfo;
cf2c3c16 225 struct dwarf2_section_info macro;
dce234bc
PP
226 struct dwarf2_section_info str;
227 struct dwarf2_section_info ranges;
3019eac3 228 struct dwarf2_section_info addr;
dce234bc
PP
229 struct dwarf2_section_info frame;
230 struct dwarf2_section_info eh_frame;
9291a0cd 231 struct dwarf2_section_info gdb_index;
ae038cb0 232
8b70b953
TT
233 VEC (dwarf2_section_info_def) *types;
234
be391dca
TT
235 /* Back link. */
236 struct objfile *objfile;
237
d467dd73 238 /* Table of all the compilation units. This is used to locate
10b3939b 239 the target compilation unit of a particular reference. */
ae038cb0
DJ
240 struct dwarf2_per_cu_data **all_comp_units;
241
242 /* The number of compilation units in ALL_COMP_UNITS. */
243 int n_comp_units;
244
1fd400ff 245 /* The number of .debug_types-related CUs. */
d467dd73 246 int n_type_units;
1fd400ff 247
6aa5f3a6
DE
248 /* The number of elements allocated in all_type_units.
249 If there are skeleton-less TUs, we add them to all_type_units lazily. */
250 int n_allocated_type_units;
251
a2ce51a0
DE
252 /* The .debug_types-related CUs (TUs).
253 This is stored in malloc space because we may realloc it. */
b4dd5633 254 struct signatured_type **all_type_units;
1fd400ff 255
f4dc4d17
DE
256 /* Table of struct type_unit_group objects.
257 The hash key is the DW_AT_stmt_list value. */
258 htab_t type_unit_groups;
72dca2f5 259
348e048f
DE
260 /* A table mapping .debug_types signatures to its signatured_type entry.
261 This is NULL if the .debug_types section hasn't been read in yet. */
262 htab_t signatured_types;
263
f4dc4d17
DE
264 /* Type unit statistics, to see how well the scaling improvements
265 are doing. */
52059ffd 266 struct tu_stats tu_stats;
f4dc4d17
DE
267
268 /* A chain of compilation units that are currently read in, so that
269 they can be freed later. */
270 struct dwarf2_per_cu_data *read_in_chain;
271
3019eac3
DE
272 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
273 This is NULL if the table hasn't been allocated yet. */
274 htab_t dwo_files;
275
80626a55
DE
276 /* Non-zero if we've check for whether there is a DWP file. */
277 int dwp_checked;
278
279 /* The DWP file if there is one, or NULL. */
280 struct dwp_file *dwp_file;
281
36586728
TT
282 /* The shared '.dwz' file, if one exists. This is used when the
283 original data was compressed using 'dwz -m'. */
284 struct dwz_file *dwz_file;
285
72dca2f5
FR
286 /* A flag indicating wether this objfile has a section loaded at a
287 VMA of 0. */
288 int has_section_at_zero;
9291a0cd 289
ae2de4f8
DE
290 /* True if we are using the mapped index,
291 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
292 unsigned char using_index;
293
ae2de4f8 294 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 295 struct mapped_index *index_table;
98bfdba5 296
7b9f3c50 297 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
298 TUs typically share line table entries with a CU, so we maintain a
299 separate table of all line table entries to support the sharing.
300 Note that while there can be way more TUs than CUs, we've already
301 sorted all the TUs into "type unit groups", grouped by their
302 DW_AT_stmt_list value. Therefore the only sharing done here is with a
303 CU and its associated TU group if there is one. */
7b9f3c50
DE
304 htab_t quick_file_names_table;
305
98bfdba5
PA
306 /* Set during partial symbol reading, to prevent queueing of full
307 symbols. */
308 int reading_partial_symbols;
673bfd45 309
dee91e82 310 /* Table mapping type DIEs to their struct type *.
673bfd45 311 This is NULL if not allocated yet.
02142a6c 312 The mapping is done via (CU/TU + DIE offset) -> type. */
dee91e82 313 htab_t die_type_hash;
95554aad
TT
314
315 /* The CUs we recently read. */
316 VEC (dwarf2_per_cu_ptr) *just_read_cus;
527f3840
JK
317
318 /* Table containing line_header indexed by offset and offset_in_dwz. */
319 htab_t line_header_hash;
6502dd73
DJ
320};
321
322static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 323
251d32d9 324/* Default names of the debugging sections. */
c906108c 325
233a11ab
CS
326/* Note that if the debugging section has been compressed, it might
327 have a name like .zdebug_info. */
328
9cdd5dbd
DE
329static const struct dwarf2_debug_sections dwarf2_elf_names =
330{
251d32d9
TG
331 { ".debug_info", ".zdebug_info" },
332 { ".debug_abbrev", ".zdebug_abbrev" },
333 { ".debug_line", ".zdebug_line" },
334 { ".debug_loc", ".zdebug_loc" },
335 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 336 { ".debug_macro", ".zdebug_macro" },
251d32d9
TG
337 { ".debug_str", ".zdebug_str" },
338 { ".debug_ranges", ".zdebug_ranges" },
339 { ".debug_types", ".zdebug_types" },
3019eac3 340 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
341 { ".debug_frame", ".zdebug_frame" },
342 { ".eh_frame", NULL },
24d3216f
TT
343 { ".gdb_index", ".zgdb_index" },
344 23
251d32d9 345};
c906108c 346
80626a55 347/* List of DWO/DWP sections. */
3019eac3 348
80626a55 349static const struct dwop_section_names
3019eac3
DE
350{
351 struct dwarf2_section_names abbrev_dwo;
352 struct dwarf2_section_names info_dwo;
353 struct dwarf2_section_names line_dwo;
354 struct dwarf2_section_names loc_dwo;
09262596
DE
355 struct dwarf2_section_names macinfo_dwo;
356 struct dwarf2_section_names macro_dwo;
3019eac3
DE
357 struct dwarf2_section_names str_dwo;
358 struct dwarf2_section_names str_offsets_dwo;
359 struct dwarf2_section_names types_dwo;
80626a55
DE
360 struct dwarf2_section_names cu_index;
361 struct dwarf2_section_names tu_index;
3019eac3 362}
80626a55 363dwop_section_names =
3019eac3
DE
364{
365 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
366 { ".debug_info.dwo", ".zdebug_info.dwo" },
367 { ".debug_line.dwo", ".zdebug_line.dwo" },
368 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
09262596
DE
369 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
370 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
371 { ".debug_str.dwo", ".zdebug_str.dwo" },
372 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
373 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
374 { ".debug_cu_index", ".zdebug_cu_index" },
375 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
376};
377
c906108c
SS
378/* local data types */
379
107d2387
AC
380/* The data in a compilation unit header, after target2host
381 translation, looks like this. */
c906108c 382struct comp_unit_head
a738430d 383{
c764a876 384 unsigned int length;
a738430d 385 short version;
a738430d
MK
386 unsigned char addr_size;
387 unsigned char signed_addr_p;
b64f50a1 388 sect_offset abbrev_offset;
57349743 389
a738430d
MK
390 /* Size of file offsets; either 4 or 8. */
391 unsigned int offset_size;
57349743 392
a738430d
MK
393 /* Size of the length field; either 4 or 12. */
394 unsigned int initial_length_size;
57349743 395
a738430d
MK
396 /* Offset to the first byte of this compilation unit header in the
397 .debug_info section, for resolving relative reference dies. */
b64f50a1 398 sect_offset offset;
57349743 399
d00adf39
DE
400 /* Offset to first die in this cu from the start of the cu.
401 This will be the first byte following the compilation unit header. */
b64f50a1 402 cu_offset first_die_offset;
a738430d 403};
c906108c 404
3da10d80
KS
405/* Type used for delaying computation of method physnames.
406 See comments for compute_delayed_physnames. */
407struct delayed_method_info
408{
409 /* The type to which the method is attached, i.e., its parent class. */
410 struct type *type;
411
412 /* The index of the method in the type's function fieldlists. */
413 int fnfield_index;
414
415 /* The index of the method in the fieldlist. */
416 int index;
417
418 /* The name of the DIE. */
419 const char *name;
420
421 /* The DIE associated with this method. */
422 struct die_info *die;
423};
424
425typedef struct delayed_method_info delayed_method_info;
426DEF_VEC_O (delayed_method_info);
427
e7c27a73
DJ
428/* Internal state when decoding a particular compilation unit. */
429struct dwarf2_cu
430{
431 /* The objfile containing this compilation unit. */
432 struct objfile *objfile;
433
d00adf39 434 /* The header of the compilation unit. */
e7c27a73 435 struct comp_unit_head header;
e142c38c 436
d00adf39
DE
437 /* Base address of this compilation unit. */
438 CORE_ADDR base_address;
439
440 /* Non-zero if base_address has been set. */
441 int base_known;
442
e142c38c
DJ
443 /* The language we are debugging. */
444 enum language language;
445 const struct language_defn *language_defn;
446
b0f35d58
DL
447 const char *producer;
448
e142c38c
DJ
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope;
459
433df2d4
DE
460 /* The abbrev table for this CU.
461 Normally this points to the abbrev table in the objfile.
462 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
463 struct abbrev_table *abbrev_table;
72bf9492 464
b64f50a1
JK
465 /* Hash table holding all the loaded partial DIEs
466 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
467 htab_t partial_dies;
468
469 /* Storage for things with the same lifetime as this read-in compilation
470 unit, including partial DIEs. */
471 struct obstack comp_unit_obstack;
472
ae038cb0
DJ
473 /* When multiple dwarf2_cu structures are living in memory, this field
474 chains them all together, so that they can be released efficiently.
475 We will probably also want a generation counter so that most-recently-used
476 compilation units are cached... */
477 struct dwarf2_per_cu_data *read_in_chain;
478
69d751e3 479 /* Backlink to our per_cu entry. */
ae038cb0
DJ
480 struct dwarf2_per_cu_data *per_cu;
481
482 /* How many compilation units ago was this CU last referenced? */
483 int last_used;
484
b64f50a1
JK
485 /* A hash table of DIE cu_offset for following references with
486 die_info->offset.sect_off as hash. */
51545339 487 htab_t die_hash;
10b3939b
DJ
488
489 /* Full DIEs if read in. */
490 struct die_info *dies;
491
492 /* A set of pointers to dwarf2_per_cu_data objects for compilation
493 units referenced by this one. Only set during full symbol processing;
494 partial symbol tables do not have dependencies. */
495 htab_t dependencies;
496
cb1df416
DJ
497 /* Header data from the line table, during full symbol processing. */
498 struct line_header *line_header;
499
3da10d80
KS
500 /* A list of methods which need to have physnames computed
501 after all type information has been read. */
502 VEC (delayed_method_info) *method_list;
503
96408a79
SA
504 /* To be copied to symtab->call_site_htab. */
505 htab_t call_site_htab;
506
034e5797
DE
507 /* Non-NULL if this CU came from a DWO file.
508 There is an invariant here that is important to remember:
509 Except for attributes copied from the top level DIE in the "main"
510 (or "stub") file in preparation for reading the DWO file
511 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
512 Either there isn't a DWO file (in which case this is NULL and the point
513 is moot), or there is and either we're not going to read it (in which
514 case this is NULL) or there is and we are reading it (in which case this
515 is non-NULL). */
3019eac3
DE
516 struct dwo_unit *dwo_unit;
517
518 /* The DW_AT_addr_base attribute if present, zero otherwise
519 (zero is a valid value though).
1dbab08b 520 Note this value comes from the Fission stub CU/TU's DIE. */
3019eac3
DE
521 ULONGEST addr_base;
522
2e3cf129
DE
523 /* The DW_AT_ranges_base attribute if present, zero otherwise
524 (zero is a valid value though).
1dbab08b 525 Note this value comes from the Fission stub CU/TU's DIE.
2e3cf129 526 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
527 be used without needing to know whether DWO files are in use or not.
528 N.B. This does not apply to DW_AT_ranges appearing in
529 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
530 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
531 DW_AT_ranges_base *would* have to be applied, and we'd have to care
532 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
533 ULONGEST ranges_base;
534
ae038cb0
DJ
535 /* Mark used when releasing cached dies. */
536 unsigned int mark : 1;
537
8be455d7
JK
538 /* This CU references .debug_loc. See the symtab->locations_valid field.
539 This test is imperfect as there may exist optimized debug code not using
540 any location list and still facing inlining issues if handled as
541 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 542 unsigned int has_loclist : 1;
ba919b58 543
1b80a9fa
JK
544 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
545 if all the producer_is_* fields are valid. This information is cached
546 because profiling CU expansion showed excessive time spent in
547 producer_is_gxx_lt_4_6. */
ba919b58
TT
548 unsigned int checked_producer : 1;
549 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 550 unsigned int producer_is_gcc_lt_4_3 : 1;
685b1105 551 unsigned int producer_is_icc : 1;
4d4ec4e5
TT
552
553 /* When set, the file that we're processing is known to have
554 debugging info for C++ namespaces. GCC 3.3.x did not produce
555 this information, but later versions do. */
556
557 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
558};
559
10b3939b
DJ
560/* Persistent data held for a compilation unit, even when not
561 processing it. We put a pointer to this structure in the
28dee7f5 562 read_symtab_private field of the psymtab. */
10b3939b 563
ae038cb0
DJ
564struct dwarf2_per_cu_data
565{
36586728 566 /* The start offset and length of this compilation unit.
45452591 567 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
568 initial_length_size.
569 If the DIE refers to a DWO file, this is always of the original die,
570 not the DWO file. */
b64f50a1 571 sect_offset offset;
36586728 572 unsigned int length;
ae038cb0
DJ
573
574 /* Flag indicating this compilation unit will be read in before
575 any of the current compilation units are processed. */
c764a876 576 unsigned int queued : 1;
ae038cb0 577
0d99eb77
DE
578 /* This flag will be set when reading partial DIEs if we need to load
579 absolutely all DIEs for this compilation unit, instead of just the ones
580 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
581 hash table and don't find it. */
582 unsigned int load_all_dies : 1;
583
0186c6a7
DE
584 /* Non-zero if this CU is from .debug_types.
585 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
586 this is non-zero. */
3019eac3
DE
587 unsigned int is_debug_types : 1;
588
36586728
TT
589 /* Non-zero if this CU is from the .dwz file. */
590 unsigned int is_dwz : 1;
591
a2ce51a0
DE
592 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
593 This flag is only valid if is_debug_types is true.
594 We can't read a CU directly from a DWO file: There are required
595 attributes in the stub. */
596 unsigned int reading_dwo_directly : 1;
597
7ee85ab1
DE
598 /* Non-zero if the TU has been read.
599 This is used to assist the "Stay in DWO Optimization" for Fission:
600 When reading a DWO, it's faster to read TUs from the DWO instead of
601 fetching them from random other DWOs (due to comdat folding).
602 If the TU has already been read, the optimization is unnecessary
603 (and unwise - we don't want to change where gdb thinks the TU lives
604 "midflight").
605 This flag is only valid if is_debug_types is true. */
606 unsigned int tu_read : 1;
607
3019eac3
DE
608 /* The section this CU/TU lives in.
609 If the DIE refers to a DWO file, this is always the original die,
610 not the DWO file. */
8a0459fd 611 struct dwarf2_section_info *section;
348e048f 612
17ea53c3 613 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
cc12ce38
DE
614 of the CU cache it gets reset to NULL again. This is left as NULL for
615 dummy CUs (a CU header, but nothing else). */
ae038cb0 616 struct dwarf2_cu *cu;
1c379e20 617
9cdd5dbd
DE
618 /* The corresponding objfile.
619 Normally we can get the objfile from dwarf2_per_objfile.
620 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
621 struct objfile *objfile;
622
fffbe6a8
YQ
623 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
624 is active. Otherwise, the 'psymtab' field is active. */
9291a0cd
TT
625 union
626 {
627 /* The partial symbol table associated with this compilation unit,
95554aad 628 or NULL for unread partial units. */
9291a0cd
TT
629 struct partial_symtab *psymtab;
630
631 /* Data needed by the "quick" functions. */
632 struct dwarf2_per_cu_quick_data *quick;
633 } v;
95554aad 634
796a7ff8
DE
635 /* The CUs we import using DW_TAG_imported_unit. This is filled in
636 while reading psymtabs, used to compute the psymtab dependencies,
637 and then cleared. Then it is filled in again while reading full
638 symbols, and only deleted when the objfile is destroyed.
639
640 This is also used to work around a difference between the way gold
641 generates .gdb_index version <=7 and the way gdb does. Arguably this
642 is a gold bug. For symbols coming from TUs, gold records in the index
643 the CU that includes the TU instead of the TU itself. This breaks
644 dw2_lookup_symbol: It assumes that if the index says symbol X lives
645 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
646 will find X. Alas TUs live in their own symtab, so after expanding CU Y
647 we need to look in TU Z to find X. Fortunately, this is akin to
648 DW_TAG_imported_unit, so we just use the same mechanism: For
649 .gdb_index version <=7 this also records the TUs that the CU referred
650 to. Concurrently with this change gdb was modified to emit version 8
69d751e3
DE
651 indices so we only pay a price for gold generated indices.
652 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
796a7ff8 653 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
654};
655
348e048f
DE
656/* Entry in the signatured_types hash table. */
657
658struct signatured_type
659{
42e7ad6c 660 /* The "per_cu" object of this type.
ac9ec31b 661 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
662 N.B.: This is the first member so that it's easy to convert pointers
663 between them. */
664 struct dwarf2_per_cu_data per_cu;
665
3019eac3 666 /* The type's signature. */
348e048f
DE
667 ULONGEST signature;
668
3019eac3 669 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
670 If this TU is a DWO stub and the definition lives in a DWO file
671 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
672 cu_offset type_offset_in_tu;
673
674 /* Offset in the section of the type's DIE.
675 If the definition lives in a DWO file, this is the offset in the
676 .debug_types.dwo section.
677 The value is zero until the actual value is known.
678 Zero is otherwise not a valid section offset. */
679 sect_offset type_offset_in_section;
0186c6a7
DE
680
681 /* Type units are grouped by their DW_AT_stmt_list entry so that they
682 can share them. This points to the containing symtab. */
683 struct type_unit_group *type_unit_group;
ac9ec31b
DE
684
685 /* The type.
686 The first time we encounter this type we fully read it in and install it
687 in the symbol tables. Subsequent times we only need the type. */
688 struct type *type;
a2ce51a0
DE
689
690 /* Containing DWO unit.
691 This field is valid iff per_cu.reading_dwo_directly. */
692 struct dwo_unit *dwo_unit;
348e048f
DE
693};
694
0186c6a7
DE
695typedef struct signatured_type *sig_type_ptr;
696DEF_VEC_P (sig_type_ptr);
697
094b34ac
DE
698/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
699 This includes type_unit_group and quick_file_names. */
700
701struct stmt_list_hash
702{
703 /* The DWO unit this table is from or NULL if there is none. */
704 struct dwo_unit *dwo_unit;
705
706 /* Offset in .debug_line or .debug_line.dwo. */
707 sect_offset line_offset;
708};
709
f4dc4d17
DE
710/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
711 an object of this type. */
712
713struct type_unit_group
714{
0186c6a7 715 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
716 To simplify things we create an artificial CU that "includes" all the
717 type units using this stmt_list so that the rest of the code still has
718 a "per_cu" handle on the symtab.
719 This PER_CU is recognized by having no section. */
8a0459fd 720#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
721 struct dwarf2_per_cu_data per_cu;
722
0186c6a7
DE
723 /* The TUs that share this DW_AT_stmt_list entry.
724 This is added to while parsing type units to build partial symtabs,
725 and is deleted afterwards and not used again. */
726 VEC (sig_type_ptr) *tus;
f4dc4d17 727
43f3e411 728 /* The compunit symtab.
094b34ac 729 Type units in a group needn't all be defined in the same source file,
43f3e411
DE
730 so we create an essentially anonymous symtab as the compunit symtab. */
731 struct compunit_symtab *compunit_symtab;
f4dc4d17 732
094b34ac
DE
733 /* The data used to construct the hash key. */
734 struct stmt_list_hash hash;
f4dc4d17
DE
735
736 /* The number of symtabs from the line header.
737 The value here must match line_header.num_file_names. */
738 unsigned int num_symtabs;
739
740 /* The symbol tables for this TU (obtained from the files listed in
741 DW_AT_stmt_list).
742 WARNING: The order of entries here must match the order of entries
743 in the line header. After the first TU using this type_unit_group, the
744 line header for the subsequent TUs is recreated from this. This is done
745 because we need to use the same symtabs for each TU using the same
746 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
747 there's no guarantee the line header doesn't have duplicate entries. */
748 struct symtab **symtabs;
749};
750
73869dc2 751/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
752
753struct dwo_sections
754{
755 struct dwarf2_section_info abbrev;
3019eac3
DE
756 struct dwarf2_section_info line;
757 struct dwarf2_section_info loc;
09262596
DE
758 struct dwarf2_section_info macinfo;
759 struct dwarf2_section_info macro;
3019eac3
DE
760 struct dwarf2_section_info str;
761 struct dwarf2_section_info str_offsets;
80626a55
DE
762 /* In the case of a virtual DWO file, these two are unused. */
763 struct dwarf2_section_info info;
3019eac3
DE
764 VEC (dwarf2_section_info_def) *types;
765};
766
c88ee1f0 767/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
768
769struct dwo_unit
770{
771 /* Backlink to the containing struct dwo_file. */
772 struct dwo_file *dwo_file;
773
774 /* The "id" that distinguishes this CU/TU.
775 .debug_info calls this "dwo_id", .debug_types calls this "signature".
776 Since signatures came first, we stick with it for consistency. */
777 ULONGEST signature;
778
779 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 780 struct dwarf2_section_info *section;
3019eac3 781
19ac8c2e 782 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
3019eac3
DE
783 sect_offset offset;
784 unsigned int length;
785
786 /* For types, offset in the type's DIE of the type defined by this TU. */
787 cu_offset type_offset_in_tu;
788};
789
73869dc2
DE
790/* include/dwarf2.h defines the DWP section codes.
791 It defines a max value but it doesn't define a min value, which we
792 use for error checking, so provide one. */
793
794enum dwp_v2_section_ids
795{
796 DW_SECT_MIN = 1
797};
798
80626a55 799/* Data for one DWO file.
57d63ce2
DE
800
801 This includes virtual DWO files (a virtual DWO file is a DWO file as it
802 appears in a DWP file). DWP files don't really have DWO files per se -
803 comdat folding of types "loses" the DWO file they came from, and from
804 a high level view DWP files appear to contain a mass of random types.
805 However, to maintain consistency with the non-DWP case we pretend DWP
806 files contain virtual DWO files, and we assign each TU with one virtual
807 DWO file (generally based on the line and abbrev section offsets -
808 a heuristic that seems to work in practice). */
3019eac3
DE
809
810struct dwo_file
811{
0ac5b59e 812 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
813 For virtual DWO files the name is constructed from the section offsets
814 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
815 from related CU+TUs. */
0ac5b59e
DE
816 const char *dwo_name;
817
818 /* The DW_AT_comp_dir attribute. */
819 const char *comp_dir;
3019eac3 820
80626a55
DE
821 /* The bfd, when the file is open. Otherwise this is NULL.
822 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
823 bfd *dbfd;
3019eac3 824
73869dc2
DE
825 /* The sections that make up this DWO file.
826 Remember that for virtual DWO files in DWP V2, these are virtual
827 sections (for lack of a better name). */
3019eac3
DE
828 struct dwo_sections sections;
829
19c3d4c9
DE
830 /* The CU in the file.
831 We only support one because having more than one requires hacking the
832 dwo_name of each to match, which is highly unlikely to happen.
833 Doing this means all TUs can share comp_dir: We also assume that
834 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
835 struct dwo_unit *cu;
3019eac3
DE
836
837 /* Table of TUs in the file.
838 Each element is a struct dwo_unit. */
839 htab_t tus;
840};
841
80626a55
DE
842/* These sections are what may appear in a DWP file. */
843
844struct dwp_sections
845{
73869dc2 846 /* These are used by both DWP version 1 and 2. */
80626a55
DE
847 struct dwarf2_section_info str;
848 struct dwarf2_section_info cu_index;
849 struct dwarf2_section_info tu_index;
73869dc2
DE
850
851 /* These are only used by DWP version 2 files.
852 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
853 sections are referenced by section number, and are not recorded here.
854 In DWP version 2 there is at most one copy of all these sections, each
855 section being (effectively) comprised of the concatenation of all of the
856 individual sections that exist in the version 1 format.
857 To keep the code simple we treat each of these concatenated pieces as a
858 section itself (a virtual section?). */
859 struct dwarf2_section_info abbrev;
860 struct dwarf2_section_info info;
861 struct dwarf2_section_info line;
862 struct dwarf2_section_info loc;
863 struct dwarf2_section_info macinfo;
864 struct dwarf2_section_info macro;
865 struct dwarf2_section_info str_offsets;
866 struct dwarf2_section_info types;
80626a55
DE
867};
868
73869dc2
DE
869/* These sections are what may appear in a virtual DWO file in DWP version 1.
870 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 871
73869dc2 872struct virtual_v1_dwo_sections
80626a55
DE
873{
874 struct dwarf2_section_info abbrev;
875 struct dwarf2_section_info line;
876 struct dwarf2_section_info loc;
877 struct dwarf2_section_info macinfo;
878 struct dwarf2_section_info macro;
879 struct dwarf2_section_info str_offsets;
880 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 881 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
882 struct dwarf2_section_info info_or_types;
883};
884
73869dc2
DE
885/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
886 In version 2, the sections of the DWO files are concatenated together
887 and stored in one section of that name. Thus each ELF section contains
888 several "virtual" sections. */
889
890struct virtual_v2_dwo_sections
891{
892 bfd_size_type abbrev_offset;
893 bfd_size_type abbrev_size;
894
895 bfd_size_type line_offset;
896 bfd_size_type line_size;
897
898 bfd_size_type loc_offset;
899 bfd_size_type loc_size;
900
901 bfd_size_type macinfo_offset;
902 bfd_size_type macinfo_size;
903
904 bfd_size_type macro_offset;
905 bfd_size_type macro_size;
906
907 bfd_size_type str_offsets_offset;
908 bfd_size_type str_offsets_size;
909
910 /* Each DWP hash table entry records one CU or one TU.
911 That is recorded here, and copied to dwo_unit.section. */
912 bfd_size_type info_or_types_offset;
913 bfd_size_type info_or_types_size;
914};
915
80626a55
DE
916/* Contents of DWP hash tables. */
917
918struct dwp_hash_table
919{
73869dc2 920 uint32_t version, nr_columns;
80626a55 921 uint32_t nr_units, nr_slots;
73869dc2
DE
922 const gdb_byte *hash_table, *unit_table;
923 union
924 {
925 struct
926 {
927 const gdb_byte *indices;
928 } v1;
929 struct
930 {
931 /* This is indexed by column number and gives the id of the section
932 in that column. */
933#define MAX_NR_V2_DWO_SECTIONS \
934 (1 /* .debug_info or .debug_types */ \
935 + 1 /* .debug_abbrev */ \
936 + 1 /* .debug_line */ \
937 + 1 /* .debug_loc */ \
938 + 1 /* .debug_str_offsets */ \
939 + 1 /* .debug_macro or .debug_macinfo */)
940 int section_ids[MAX_NR_V2_DWO_SECTIONS];
941 const gdb_byte *offsets;
942 const gdb_byte *sizes;
943 } v2;
944 } section_pool;
80626a55
DE
945};
946
947/* Data for one DWP file. */
948
949struct dwp_file
950{
951 /* Name of the file. */
952 const char *name;
953
73869dc2
DE
954 /* File format version. */
955 int version;
956
93417882 957 /* The bfd. */
80626a55
DE
958 bfd *dbfd;
959
960 /* Section info for this file. */
961 struct dwp_sections sections;
962
57d63ce2 963 /* Table of CUs in the file. */
80626a55
DE
964 const struct dwp_hash_table *cus;
965
966 /* Table of TUs in the file. */
967 const struct dwp_hash_table *tus;
968
19ac8c2e
DE
969 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
970 htab_t loaded_cus;
971 htab_t loaded_tus;
80626a55 972
73869dc2
DE
973 /* Table to map ELF section numbers to their sections.
974 This is only needed for the DWP V1 file format. */
80626a55
DE
975 unsigned int num_sections;
976 asection **elf_sections;
977};
978
36586728
TT
979/* This represents a '.dwz' file. */
980
981struct dwz_file
982{
983 /* A dwz file can only contain a few sections. */
984 struct dwarf2_section_info abbrev;
985 struct dwarf2_section_info info;
986 struct dwarf2_section_info str;
987 struct dwarf2_section_info line;
988 struct dwarf2_section_info macro;
2ec9a5e0 989 struct dwarf2_section_info gdb_index;
36586728
TT
990
991 /* The dwz's BFD. */
992 bfd *dwz_bfd;
993};
994
0963b4bd
MS
995/* Struct used to pass misc. parameters to read_die_and_children, et
996 al. which are used for both .debug_info and .debug_types dies.
997 All parameters here are unchanging for the life of the call. This
dee91e82 998 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
999
1000struct die_reader_specs
1001{
a32a8923 1002 /* The bfd of die_section. */
93311388
DE
1003 bfd* abfd;
1004
1005 /* The CU of the DIE we are parsing. */
1006 struct dwarf2_cu *cu;
1007
80626a55 1008 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
1009 struct dwo_file *dwo_file;
1010
dee91e82 1011 /* The section the die comes from.
3019eac3 1012 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
1013 struct dwarf2_section_info *die_section;
1014
1015 /* die_section->buffer. */
d521ce57 1016 const gdb_byte *buffer;
f664829e
DE
1017
1018 /* The end of the buffer. */
1019 const gdb_byte *buffer_end;
a2ce51a0
DE
1020
1021 /* The value of the DW_AT_comp_dir attribute. */
1022 const char *comp_dir;
93311388
DE
1023};
1024
fd820528 1025/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 1026typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 1027 const gdb_byte *info_ptr,
dee91e82
DE
1028 struct die_info *comp_unit_die,
1029 int has_children,
1030 void *data);
1031
52059ffd
TT
1032struct file_entry
1033{
1034 const char *name;
1035 unsigned int dir_index;
1036 unsigned int mod_time;
1037 unsigned int length;
83769d0b
DE
1038 /* Non-zero if referenced by the Line Number Program. */
1039 int included_p;
1040 /* The associated symbol table, if any. */
1041 struct symtab *symtab;
52059ffd
TT
1042};
1043
debd256d
JB
1044/* The line number information for a compilation unit (found in the
1045 .debug_line section) begins with a "statement program header",
1046 which contains the following information. */
1047struct line_header
1048{
527f3840
JK
1049 /* Offset of line number information in .debug_line section. */
1050 sect_offset offset;
1051
1052 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1053 unsigned offset_in_dwz : 1;
1054
debd256d
JB
1055 unsigned int total_length;
1056 unsigned short version;
1057 unsigned int header_length;
1058 unsigned char minimum_instruction_length;
2dc7f7b3 1059 unsigned char maximum_ops_per_instruction;
debd256d
JB
1060 unsigned char default_is_stmt;
1061 int line_base;
1062 unsigned char line_range;
1063 unsigned char opcode_base;
1064
1065 /* standard_opcode_lengths[i] is the number of operands for the
1066 standard opcode whose value is i. This means that
1067 standard_opcode_lengths[0] is unused, and the last meaningful
1068 element is standard_opcode_lengths[opcode_base - 1]. */
1069 unsigned char *standard_opcode_lengths;
1070
1071 /* The include_directories table. NOTE! These strings are not
1072 allocated with xmalloc; instead, they are pointers into
1073 debug_line_buffer. If you try to free them, `free' will get
1074 indigestion. */
1075 unsigned int num_include_dirs, include_dirs_size;
d521ce57 1076 const char **include_dirs;
debd256d
JB
1077
1078 /* The file_names table. NOTE! These strings are not allocated
1079 with xmalloc; instead, they are pointers into debug_line_buffer.
1080 Don't try to free them directly. */
1081 unsigned int num_file_names, file_names_size;
52059ffd 1082 struct file_entry *file_names;
debd256d
JB
1083
1084 /* The start and end of the statement program following this
6502dd73 1085 header. These point into dwarf2_per_objfile->line_buffer. */
d521ce57 1086 const gdb_byte *statement_program_start, *statement_program_end;
debd256d 1087};
c906108c
SS
1088
1089/* When we construct a partial symbol table entry we only
0963b4bd 1090 need this much information. */
c906108c
SS
1091struct partial_die_info
1092 {
72bf9492 1093 /* Offset of this DIE. */
b64f50a1 1094 sect_offset offset;
72bf9492
DJ
1095
1096 /* DWARF-2 tag for this DIE. */
1097 ENUM_BITFIELD(dwarf_tag) tag : 16;
1098
72bf9492
DJ
1099 /* Assorted flags describing the data found in this DIE. */
1100 unsigned int has_children : 1;
1101 unsigned int is_external : 1;
1102 unsigned int is_declaration : 1;
1103 unsigned int has_type : 1;
1104 unsigned int has_specification : 1;
1105 unsigned int has_pc_info : 1;
481860b3 1106 unsigned int may_be_inlined : 1;
72bf9492
DJ
1107
1108 /* Flag set if the SCOPE field of this structure has been
1109 computed. */
1110 unsigned int scope_set : 1;
1111
fa4028e9
JB
1112 /* Flag set if the DIE has a byte_size attribute. */
1113 unsigned int has_byte_size : 1;
1114
ff908ebf
AW
1115 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1116 unsigned int has_const_value : 1;
1117
98bfdba5
PA
1118 /* Flag set if any of the DIE's children are template arguments. */
1119 unsigned int has_template_arguments : 1;
1120
abc72ce4
DE
1121 /* Flag set if fixup_partial_die has been called on this die. */
1122 unsigned int fixup_called : 1;
1123
36586728
TT
1124 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1125 unsigned int is_dwz : 1;
1126
1127 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1128 unsigned int spec_is_dwz : 1;
1129
72bf9492 1130 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1131 sometimes a default name for unnamed DIEs. */
15d034d0 1132 const char *name;
72bf9492 1133
abc72ce4
DE
1134 /* The linkage name, if present. */
1135 const char *linkage_name;
1136
72bf9492
DJ
1137 /* The scope to prepend to our children. This is generally
1138 allocated on the comp_unit_obstack, so will disappear
1139 when this compilation unit leaves the cache. */
15d034d0 1140 const char *scope;
72bf9492 1141
95554aad
TT
1142 /* Some data associated with the partial DIE. The tag determines
1143 which field is live. */
1144 union
1145 {
1146 /* The location description associated with this DIE, if any. */
1147 struct dwarf_block *locdesc;
1148 /* The offset of an import, for DW_TAG_imported_unit. */
1149 sect_offset offset;
1150 } d;
72bf9492
DJ
1151
1152 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
1153 CORE_ADDR lowpc;
1154 CORE_ADDR highpc;
72bf9492 1155
93311388 1156 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1157 DW_AT_sibling, if any. */
abc72ce4
DE
1158 /* NOTE: This member isn't strictly necessary, read_partial_die could
1159 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1160 const gdb_byte *sibling;
72bf9492
DJ
1161
1162 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1163 DW_AT_specification (or DW_AT_abstract_origin or
1164 DW_AT_extension). */
b64f50a1 1165 sect_offset spec_offset;
72bf9492
DJ
1166
1167 /* Pointers to this DIE's parent, first child, and next sibling,
1168 if any. */
1169 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1170 };
1171
0963b4bd 1172/* This data structure holds the information of an abbrev. */
c906108c
SS
1173struct abbrev_info
1174 {
1175 unsigned int number; /* number identifying abbrev */
1176 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1177 unsigned short has_children; /* boolean */
1178 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1179 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1180 struct abbrev_info *next; /* next in chain */
1181 };
1182
1183struct attr_abbrev
1184 {
9d25dd43
DE
1185 ENUM_BITFIELD(dwarf_attribute) name : 16;
1186 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
1187 };
1188
433df2d4
DE
1189/* Size of abbrev_table.abbrev_hash_table. */
1190#define ABBREV_HASH_SIZE 121
1191
1192/* Top level data structure to contain an abbreviation table. */
1193
1194struct abbrev_table
1195{
f4dc4d17
DE
1196 /* Where the abbrev table came from.
1197 This is used as a sanity check when the table is used. */
433df2d4
DE
1198 sect_offset offset;
1199
1200 /* Storage for the abbrev table. */
1201 struct obstack abbrev_obstack;
1202
1203 /* Hash table of abbrevs.
1204 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1205 It could be statically allocated, but the previous code didn't so we
1206 don't either. */
1207 struct abbrev_info **abbrevs;
1208};
1209
0963b4bd 1210/* Attributes have a name and a value. */
b60c80d6
DJ
1211struct attribute
1212 {
9d25dd43 1213 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1214 ENUM_BITFIELD(dwarf_form) form : 15;
1215
1216 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1217 field should be in u.str (existing only for DW_STRING) but it is kept
1218 here for better struct attribute alignment. */
1219 unsigned int string_is_canonical : 1;
1220
b60c80d6
DJ
1221 union
1222 {
15d034d0 1223 const char *str;
b60c80d6 1224 struct dwarf_block *blk;
43bbcdc2
PH
1225 ULONGEST unsnd;
1226 LONGEST snd;
b60c80d6 1227 CORE_ADDR addr;
ac9ec31b 1228 ULONGEST signature;
b60c80d6
DJ
1229 }
1230 u;
1231 };
1232
0963b4bd 1233/* This data structure holds a complete die structure. */
c906108c
SS
1234struct die_info
1235 {
76815b17
DE
1236 /* DWARF-2 tag for this DIE. */
1237 ENUM_BITFIELD(dwarf_tag) tag : 16;
1238
1239 /* Number of attributes */
98bfdba5
PA
1240 unsigned char num_attrs;
1241
1242 /* True if we're presently building the full type name for the
1243 type derived from this DIE. */
1244 unsigned char building_fullname : 1;
76815b17 1245
adde2bff
DE
1246 /* True if this die is in process. PR 16581. */
1247 unsigned char in_process : 1;
1248
76815b17
DE
1249 /* Abbrev number */
1250 unsigned int abbrev;
1251
93311388 1252 /* Offset in .debug_info or .debug_types section. */
b64f50a1 1253 sect_offset offset;
78ba4af6
JB
1254
1255 /* The dies in a compilation unit form an n-ary tree. PARENT
1256 points to this die's parent; CHILD points to the first child of
1257 this node; and all the children of a given node are chained
4950bc1c 1258 together via their SIBLING fields. */
639d11d3
DC
1259 struct die_info *child; /* Its first child, if any. */
1260 struct die_info *sibling; /* Its next sibling, if any. */
1261 struct die_info *parent; /* Its parent, if any. */
c906108c 1262
b60c80d6
DJ
1263 /* An array of attributes, with NUM_ATTRS elements. There may be
1264 zero, but it's not common and zero-sized arrays are not
1265 sufficiently portable C. */
1266 struct attribute attrs[1];
c906108c
SS
1267 };
1268
0963b4bd 1269/* Get at parts of an attribute structure. */
c906108c
SS
1270
1271#define DW_STRING(attr) ((attr)->u.str)
8285870a 1272#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1273#define DW_UNSND(attr) ((attr)->u.unsnd)
1274#define DW_BLOCK(attr) ((attr)->u.blk)
1275#define DW_SND(attr) ((attr)->u.snd)
1276#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1277#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1278
0963b4bd 1279/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1280struct dwarf_block
1281 {
56eb65bd 1282 size_t size;
1d6edc3c
JK
1283
1284 /* Valid only if SIZE is not zero. */
d521ce57 1285 const gdb_byte *data;
c906108c
SS
1286 };
1287
c906108c
SS
1288#ifndef ATTR_ALLOC_CHUNK
1289#define ATTR_ALLOC_CHUNK 4
1290#endif
1291
c906108c
SS
1292/* Allocate fields for structs, unions and enums in this size. */
1293#ifndef DW_FIELD_ALLOC_CHUNK
1294#define DW_FIELD_ALLOC_CHUNK 4
1295#endif
1296
c906108c
SS
1297/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1298 but this would require a corresponding change in unpack_field_as_long
1299 and friends. */
1300static int bits_per_byte = 8;
1301
52059ffd
TT
1302struct nextfield
1303{
1304 struct nextfield *next;
1305 int accessibility;
1306 int virtuality;
1307 struct field field;
1308};
1309
1310struct nextfnfield
1311{
1312 struct nextfnfield *next;
1313 struct fn_field fnfield;
1314};
1315
1316struct fnfieldlist
1317{
1318 const char *name;
1319 int length;
1320 struct nextfnfield *head;
1321};
1322
1323struct typedef_field_list
1324{
1325 struct typedef_field field;
1326 struct typedef_field_list *next;
1327};
1328
c906108c
SS
1329/* The routines that read and process dies for a C struct or C++ class
1330 pass lists of data member fields and lists of member function fields
1331 in an instance of a field_info structure, as defined below. */
1332struct field_info
c5aa993b 1333 {
0963b4bd 1334 /* List of data member and baseclasses fields. */
52059ffd 1335 struct nextfield *fields, *baseclasses;
c906108c 1336
7d0ccb61 1337 /* Number of fields (including baseclasses). */
c5aa993b 1338 int nfields;
c906108c 1339
c5aa993b
JM
1340 /* Number of baseclasses. */
1341 int nbaseclasses;
c906108c 1342
c5aa993b
JM
1343 /* Set if the accesibility of one of the fields is not public. */
1344 int non_public_fields;
c906108c 1345
c5aa993b
JM
1346 /* Member function fields array, entries are allocated in the order they
1347 are encountered in the object file. */
52059ffd 1348 struct nextfnfield *fnfields;
c906108c 1349
c5aa993b
JM
1350 /* Member function fieldlist array, contains name of possibly overloaded
1351 member function, number of overloaded member functions and a pointer
1352 to the head of the member function field chain. */
52059ffd 1353 struct fnfieldlist *fnfieldlists;
c906108c 1354
c5aa993b
JM
1355 /* Number of entries in the fnfieldlists array. */
1356 int nfnfields;
98751a41
JK
1357
1358 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1359 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
52059ffd 1360 struct typedef_field_list *typedef_field_list;
98751a41 1361 unsigned typedef_field_list_count;
c5aa993b 1362 };
c906108c 1363
10b3939b
DJ
1364/* One item on the queue of compilation units to read in full symbols
1365 for. */
1366struct dwarf2_queue_item
1367{
1368 struct dwarf2_per_cu_data *per_cu;
95554aad 1369 enum language pretend_language;
10b3939b
DJ
1370 struct dwarf2_queue_item *next;
1371};
1372
1373/* The current queue. */
1374static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1375
ae038cb0
DJ
1376/* Loaded secondary compilation units are kept in memory until they
1377 have not been referenced for the processing of this many
1378 compilation units. Set this to zero to disable caching. Cache
1379 sizes of up to at least twenty will improve startup time for
1380 typical inter-CU-reference binaries, at an obvious memory cost. */
b4f54984 1381static int dwarf_max_cache_age = 5;
920d2a44 1382static void
b4f54984
DE
1383show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1384 struct cmd_list_element *c, const char *value)
920d2a44 1385{
3e43a32a 1386 fprintf_filtered (file, _("The upper bound on the age of cached "
b4f54984 1387 "DWARF compilation units is %s.\n"),
920d2a44
AC
1388 value);
1389}
4390d890 1390\f
c906108c
SS
1391/* local function prototypes */
1392
a32a8923
DE
1393static const char *get_section_name (const struct dwarf2_section_info *);
1394
1395static const char *get_section_file_name (const struct dwarf2_section_info *);
1396
4efb68b1 1397static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 1398
918dd910
JK
1399static void dwarf2_find_base_address (struct die_info *die,
1400 struct dwarf2_cu *cu);
1401
0018ea6f
DE
1402static struct partial_symtab *create_partial_symtab
1403 (struct dwarf2_per_cu_data *per_cu, const char *name);
1404
c67a9c90 1405static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1406
72bf9492
DJ
1407static void scan_partial_symbols (struct partial_die_info *,
1408 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1409 int, struct dwarf2_cu *);
c906108c 1410
72bf9492
DJ
1411static void add_partial_symbol (struct partial_die_info *,
1412 struct dwarf2_cu *);
63d06c5c 1413
72bf9492
DJ
1414static void add_partial_namespace (struct partial_die_info *pdi,
1415 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 1416 int set_addrmap, struct dwarf2_cu *cu);
63d06c5c 1417
5d7cb8df 1418static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 1419 CORE_ADDR *highpc, int set_addrmap,
5d7cb8df
JK
1420 struct dwarf2_cu *cu);
1421
72bf9492
DJ
1422static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1423 struct dwarf2_cu *cu);
91c24f0a 1424
bc30ff58
JB
1425static void add_partial_subprogram (struct partial_die_info *pdi,
1426 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1427 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1428
257e7a09
YQ
1429static void dwarf2_read_symtab (struct partial_symtab *,
1430 struct objfile *);
c906108c 1431
a14ed312 1432static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1433
433df2d4
DE
1434static struct abbrev_info *abbrev_table_lookup_abbrev
1435 (const struct abbrev_table *, unsigned int);
1436
1437static struct abbrev_table *abbrev_table_read_table
1438 (struct dwarf2_section_info *, sect_offset);
1439
1440static void abbrev_table_free (struct abbrev_table *);
1441
f4dc4d17
DE
1442static void abbrev_table_free_cleanup (void *);
1443
dee91e82
DE
1444static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1445 struct dwarf2_section_info *);
c906108c 1446
f3dd6933 1447static void dwarf2_free_abbrev_table (void *);
c906108c 1448
d521ce57 1449static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1450
dee91e82 1451static struct partial_die_info *load_partial_dies
d521ce57 1452 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1453
d521ce57
TT
1454static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1455 struct partial_die_info *,
1456 struct abbrev_info *,
1457 unsigned int,
1458 const gdb_byte *);
c906108c 1459
36586728 1460static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1461 struct dwarf2_cu *);
72bf9492
DJ
1462
1463static void fixup_partial_die (struct partial_die_info *,
1464 struct dwarf2_cu *);
1465
d521ce57
TT
1466static const gdb_byte *read_attribute (const struct die_reader_specs *,
1467 struct attribute *, struct attr_abbrev *,
1468 const gdb_byte *);
a8329558 1469
a1855c1d 1470static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1471
a1855c1d 1472static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1473
a1855c1d 1474static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1475
a1855c1d 1476static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1477
a1855c1d 1478static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1479
d521ce57 1480static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1481 unsigned int *);
c906108c 1482
d521ce57 1483static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1484
1485static LONGEST read_checked_initial_length_and_offset
d521ce57 1486 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1487 unsigned int *, unsigned int *);
613e1657 1488
d521ce57
TT
1489static LONGEST read_offset (bfd *, const gdb_byte *,
1490 const struct comp_unit_head *,
c764a876
DE
1491 unsigned int *);
1492
d521ce57 1493static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1494
f4dc4d17
DE
1495static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1496 sect_offset);
1497
d521ce57 1498static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1499
d521ce57 1500static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1501
d521ce57
TT
1502static const char *read_indirect_string (bfd *, const gdb_byte *,
1503 const struct comp_unit_head *,
1504 unsigned int *);
4bdf3d34 1505
d521ce57 1506static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
36586728 1507
d521ce57 1508static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1509
d521ce57 1510static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1511
d521ce57
TT
1512static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1513 const gdb_byte *,
3019eac3
DE
1514 unsigned int *);
1515
d521ce57 1516static const char *read_str_index (const struct die_reader_specs *reader,
342587c4 1517 ULONGEST str_index);
3019eac3 1518
e142c38c 1519static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1520
e142c38c
DJ
1521static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1522 struct dwarf2_cu *);
c906108c 1523
348e048f 1524static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1525 unsigned int);
348e048f 1526
7d45c7c3
KB
1527static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1528 struct dwarf2_cu *cu);
1529
05cf31d1
JB
1530static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1531 struct dwarf2_cu *cu);
1532
e142c38c 1533static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1534
e142c38c 1535static struct die_info *die_specification (struct die_info *die,
f2f0e013 1536 struct dwarf2_cu **);
63d06c5c 1537
debd256d
JB
1538static void free_line_header (struct line_header *lh);
1539
3019eac3
DE
1540static struct line_header *dwarf_decode_line_header (unsigned int offset,
1541 struct dwarf2_cu *cu);
debd256d 1542
f3f5162e 1543static void dwarf_decode_lines (struct line_header *, const char *,
c3b7b696 1544 struct dwarf2_cu *, struct partial_symtab *,
527f3840 1545 CORE_ADDR, int decode_mapping);
c906108c 1546
4d663531 1547static void dwarf2_start_subfile (const char *, const char *);
c906108c 1548
43f3e411
DE
1549static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1550 const char *, const char *,
1551 CORE_ADDR);
f4dc4d17 1552
a14ed312 1553static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1554 struct dwarf2_cu *);
c906108c 1555
34eaf542
TT
1556static struct symbol *new_symbol_full (struct die_info *, struct type *,
1557 struct dwarf2_cu *, struct symbol *);
1558
ff39bb5e 1559static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1560 struct dwarf2_cu *);
c906108c 1561
ff39bb5e 1562static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1563 struct type *type,
1564 const char *name,
1565 struct obstack *obstack,
12df843f 1566 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1567 const gdb_byte **bytes,
98bfdba5 1568 struct dwarf2_locexpr_baton **baton);
2df3850c 1569
e7c27a73 1570static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1571
b4ba55a1
JB
1572static int need_gnat_info (struct dwarf2_cu *);
1573
3e43a32a
MS
1574static struct type *die_descriptive_type (struct die_info *,
1575 struct dwarf2_cu *);
b4ba55a1
JB
1576
1577static void set_descriptive_type (struct type *, struct die_info *,
1578 struct dwarf2_cu *);
1579
e7c27a73
DJ
1580static struct type *die_containing_type (struct die_info *,
1581 struct dwarf2_cu *);
c906108c 1582
ff39bb5e 1583static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1584 struct dwarf2_cu *);
c906108c 1585
f792889a 1586static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1587
673bfd45
DE
1588static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1589
0d5cff50 1590static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1591
6e70227d 1592static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1593 const char *suffix, int physname,
1594 struct dwarf2_cu *cu);
63d06c5c 1595
e7c27a73 1596static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1597
348e048f
DE
1598static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1599
e7c27a73 1600static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1601
e7c27a73 1602static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1603
96408a79
SA
1604static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1605
ff013f42
JK
1606static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1607 struct dwarf2_cu *, struct partial_symtab *);
1608
3a2b436a 1609/* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
e385593e 1610 values. Keep the items ordered with increasing constraints compliance. */
3a2b436a
JK
1611enum pc_bounds_kind
1612{
e385593e 1613 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
3a2b436a
JK
1614 PC_BOUNDS_NOT_PRESENT,
1615
e385593e
JK
1616 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1617 were present but they do not form a valid range of PC addresses. */
1618 PC_BOUNDS_INVALID,
1619
3a2b436a
JK
1620 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1621 PC_BOUNDS_RANGES,
1622
1623 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1624 PC_BOUNDS_HIGH_LOW,
1625};
1626
1627static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1628 CORE_ADDR *, CORE_ADDR *,
1629 struct dwarf2_cu *,
1630 struct partial_symtab *);
c906108c 1631
fae299cd
DC
1632static void get_scope_pc_bounds (struct die_info *,
1633 CORE_ADDR *, CORE_ADDR *,
1634 struct dwarf2_cu *);
1635
801e3a5b
JB
1636static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1637 CORE_ADDR, struct dwarf2_cu *);
1638
a14ed312 1639static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1640 struct dwarf2_cu *);
c906108c 1641
a14ed312 1642static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1643 struct type *, struct dwarf2_cu *);
c906108c 1644
a14ed312 1645static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1646 struct die_info *, struct type *,
e7c27a73 1647 struct dwarf2_cu *);
c906108c 1648
a14ed312 1649static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1650 struct type *,
1651 struct dwarf2_cu *);
c906108c 1652
134d01f1 1653static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1654
e7c27a73 1655static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1656
e7c27a73 1657static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1658
5d7cb8df
JK
1659static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1660
22cee43f
PMR
1661static struct using_direct **using_directives (enum language);
1662
27aa8d6a
SW
1663static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1664
74921315
KS
1665static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1666
f55ee35c
JK
1667static struct type *read_module_type (struct die_info *die,
1668 struct dwarf2_cu *cu);
1669
38d518c9 1670static const char *namespace_name (struct die_info *die,
e142c38c 1671 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1672
134d01f1 1673static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1674
e7c27a73 1675static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1676
6e70227d 1677static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1678 struct dwarf2_cu *);
1679
bf6af496 1680static struct die_info *read_die_and_siblings_1
d521ce57 1681 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1682 struct die_info *);
639d11d3 1683
dee91e82 1684static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1685 const gdb_byte *info_ptr,
1686 const gdb_byte **new_info_ptr,
639d11d3
DC
1687 struct die_info *parent);
1688
d521ce57
TT
1689static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1690 struct die_info **, const gdb_byte *,
1691 int *, int);
3019eac3 1692
d521ce57
TT
1693static const gdb_byte *read_full_die (const struct die_reader_specs *,
1694 struct die_info **, const gdb_byte *,
1695 int *);
93311388 1696
e7c27a73 1697static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1698
15d034d0
TT
1699static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1700 struct obstack *);
71c25dea 1701
15d034d0 1702static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1703
15d034d0 1704static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1705 struct die_info *die,
1706 struct dwarf2_cu *cu);
1707
ca69b9e6
DE
1708static const char *dwarf2_physname (const char *name, struct die_info *die,
1709 struct dwarf2_cu *cu);
1710
e142c38c 1711static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1712 struct dwarf2_cu **);
9219021c 1713
f39c6ffd 1714static const char *dwarf_tag_name (unsigned int);
c906108c 1715
f39c6ffd 1716static const char *dwarf_attr_name (unsigned int);
c906108c 1717
f39c6ffd 1718static const char *dwarf_form_name (unsigned int);
c906108c 1719
a14ed312 1720static char *dwarf_bool_name (unsigned int);
c906108c 1721
f39c6ffd 1722static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1723
f9aca02d 1724static struct die_info *sibling_die (struct die_info *);
c906108c 1725
d97bc12b
DE
1726static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1727
1728static void dump_die_for_error (struct die_info *);
1729
1730static void dump_die_1 (struct ui_file *, int level, int max_level,
1731 struct die_info *);
c906108c 1732
d97bc12b 1733/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1734
51545339 1735static void store_in_ref_table (struct die_info *,
10b3939b 1736 struct dwarf2_cu *);
c906108c 1737
ff39bb5e 1738static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1739
ff39bb5e 1740static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1741
348e048f 1742static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1743 const struct attribute *,
348e048f
DE
1744 struct dwarf2_cu **);
1745
10b3939b 1746static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1747 const struct attribute *,
f2f0e013 1748 struct dwarf2_cu **);
c906108c 1749
348e048f 1750static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1751 const struct attribute *,
348e048f
DE
1752 struct dwarf2_cu **);
1753
ac9ec31b
DE
1754static struct type *get_signatured_type (struct die_info *, ULONGEST,
1755 struct dwarf2_cu *);
1756
1757static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1758 const struct attribute *,
ac9ec31b
DE
1759 struct dwarf2_cu *);
1760
e5fe5e75 1761static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1762
52dc124a 1763static void read_signatured_type (struct signatured_type *);
348e048f 1764
63e43d3a
PMR
1765static int attr_to_dynamic_prop (const struct attribute *attr,
1766 struct die_info *die, struct dwarf2_cu *cu,
1767 struct dynamic_prop *prop);
1768
c906108c
SS
1769/* memory allocation interface */
1770
7b5a2f43 1771static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1772
b60c80d6 1773static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1774
43f3e411 1775static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2e276125 1776
6e5a29e1 1777static int attr_form_is_block (const struct attribute *);
8e19ed76 1778
6e5a29e1 1779static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1780
6e5a29e1 1781static int attr_form_is_constant (const struct attribute *);
3690dd37 1782
6e5a29e1 1783static int attr_form_is_ref (const struct attribute *);
7771576e 1784
8cf6f0b1
TT
1785static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1786 struct dwarf2_loclist_baton *baton,
ff39bb5e 1787 const struct attribute *attr);
8cf6f0b1 1788
ff39bb5e 1789static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1790 struct symbol *sym,
f1e6e072
TT
1791 struct dwarf2_cu *cu,
1792 int is_block);
4c2df51b 1793
d521ce57
TT
1794static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1795 const gdb_byte *info_ptr,
1796 struct abbrev_info *abbrev);
4bb7a0a7 1797
72bf9492
DJ
1798static void free_stack_comp_unit (void *);
1799
72bf9492
DJ
1800static hashval_t partial_die_hash (const void *item);
1801
1802static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1803
ae038cb0 1804static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
36586728 1805 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1806
9816fde3 1807static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1808 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1809
1810static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1811 struct die_info *comp_unit_die,
1812 enum language pretend_language);
93311388 1813
68dc6402 1814static void free_heap_comp_unit (void *);
ae038cb0
DJ
1815
1816static void free_cached_comp_units (void *);
1817
1818static void age_cached_comp_units (void);
1819
dee91e82 1820static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1821
f792889a
DJ
1822static struct type *set_die_type (struct die_info *, struct type *,
1823 struct dwarf2_cu *);
1c379e20 1824
ae038cb0
DJ
1825static void create_all_comp_units (struct objfile *);
1826
0e50663e 1827static int create_all_type_units (struct objfile *);
1fd400ff 1828
95554aad
TT
1829static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1830 enum language);
10b3939b 1831
95554aad
TT
1832static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1833 enum language);
10b3939b 1834
f4dc4d17
DE
1835static void process_full_type_unit (struct dwarf2_per_cu_data *,
1836 enum language);
1837
10b3939b
DJ
1838static void dwarf2_add_dependence (struct dwarf2_cu *,
1839 struct dwarf2_per_cu_data *);
1840
ae038cb0
DJ
1841static void dwarf2_mark (struct dwarf2_cu *);
1842
1843static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1844
b64f50a1 1845static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1846 struct dwarf2_per_cu_data *);
673bfd45 1847
f792889a 1848static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1849
9291a0cd
TT
1850static void dwarf2_release_queue (void *dummy);
1851
95554aad
TT
1852static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1853 enum language pretend_language);
1854
a0f42c21 1855static void process_queue (void);
9291a0cd
TT
1856
1857static void find_file_and_directory (struct die_info *die,
1858 struct dwarf2_cu *cu,
15d034d0 1859 const char **name, const char **comp_dir);
9291a0cd
TT
1860
1861static char *file_full_name (int file, struct line_header *lh,
1862 const char *comp_dir);
1863
d521ce57 1864static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
1865 (struct comp_unit_head *header,
1866 struct dwarf2_section_info *section,
d521ce57 1867 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
36586728
TT
1868 int is_debug_types_section);
1869
fd820528 1870static void init_cutu_and_read_dies
f4dc4d17
DE
1871 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1872 int use_existing_cu, int keep,
3019eac3
DE
1873 die_reader_func_ftype *die_reader_func, void *data);
1874
dee91e82
DE
1875static void init_cutu_and_read_dies_simple
1876 (struct dwarf2_per_cu_data *this_cu,
1877 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1878
673bfd45 1879static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1880
3019eac3
DE
1881static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1882
57d63ce2
DE
1883static struct dwo_unit *lookup_dwo_unit_in_dwp
1884 (struct dwp_file *dwp_file, const char *comp_dir,
1885 ULONGEST signature, int is_debug_types);
a2ce51a0
DE
1886
1887static struct dwp_file *get_dwp_file (void);
1888
3019eac3 1889static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1890 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1891
1892static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1893 (struct signatured_type *, const char *, const char *);
3019eac3 1894
89e63ee4
DE
1895static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1896
3019eac3
DE
1897static void free_dwo_file_cleanup (void *);
1898
95554aad
TT
1899static void process_cu_includes (void);
1900
1b80a9fa 1901static void check_producer (struct dwarf2_cu *cu);
527f3840
JK
1902
1903static void free_line_header_voidp (void *arg);
4390d890
DE
1904\f
1905/* Various complaints about symbol reading that don't abort the process. */
1906
1907static void
1908dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1909{
1910 complaint (&symfile_complaints,
1911 _("statement list doesn't fit in .debug_line section"));
1912}
1913
1914static void
1915dwarf2_debug_line_missing_file_complaint (void)
1916{
1917 complaint (&symfile_complaints,
1918 _(".debug_line section has line data without a file"));
1919}
1920
1921static void
1922dwarf2_debug_line_missing_end_sequence_complaint (void)
1923{
1924 complaint (&symfile_complaints,
1925 _(".debug_line section has line "
1926 "program sequence without an end"));
1927}
1928
1929static void
1930dwarf2_complex_location_expr_complaint (void)
1931{
1932 complaint (&symfile_complaints, _("location expression too complex"));
1933}
1934
1935static void
1936dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1937 int arg3)
1938{
1939 complaint (&symfile_complaints,
1940 _("const value length mismatch for '%s', got %d, expected %d"),
1941 arg1, arg2, arg3);
1942}
1943
1944static void
1945dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1946{
1947 complaint (&symfile_complaints,
1948 _("debug info runs off end of %s section"
1949 " [in module %s]"),
a32a8923
DE
1950 get_section_name (section),
1951 get_section_file_name (section));
4390d890 1952}
1b80a9fa 1953
4390d890
DE
1954static void
1955dwarf2_macro_malformed_definition_complaint (const char *arg1)
1956{
1957 complaint (&symfile_complaints,
1958 _("macro debug info contains a "
1959 "malformed macro definition:\n`%s'"),
1960 arg1);
1961}
1962
1963static void
1964dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1965{
1966 complaint (&symfile_complaints,
1967 _("invalid attribute class or form for '%s' in '%s'"),
1968 arg1, arg2);
1969}
527f3840
JK
1970
1971/* Hash function for line_header_hash. */
1972
1973static hashval_t
1974line_header_hash (const struct line_header *ofs)
1975{
1976 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1977}
1978
1979/* Hash function for htab_create_alloc_ex for line_header_hash. */
1980
1981static hashval_t
1982line_header_hash_voidp (const void *item)
1983{
9a3c8263 1984 const struct line_header *ofs = (const struct line_header *) item;
527f3840
JK
1985
1986 return line_header_hash (ofs);
1987}
1988
1989/* Equality function for line_header_hash. */
1990
1991static int
1992line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1993{
9a3c8263
SM
1994 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1995 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
527f3840
JK
1996
1997 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1998 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1999}
2000
4390d890 2001\f
9291a0cd
TT
2002#if WORDS_BIGENDIAN
2003
2004/* Convert VALUE between big- and little-endian. */
2005static offset_type
2006byte_swap (offset_type value)
2007{
2008 offset_type result;
2009
2010 result = (value & 0xff) << 24;
2011 result |= (value & 0xff00) << 8;
2012 result |= (value & 0xff0000) >> 8;
2013 result |= (value & 0xff000000) >> 24;
2014 return result;
2015}
2016
2017#define MAYBE_SWAP(V) byte_swap (V)
2018
2019#else
2020#define MAYBE_SWAP(V) (V)
2021#endif /* WORDS_BIGENDIAN */
2022
31aa7e4e
JB
2023/* Read the given attribute value as an address, taking the attribute's
2024 form into account. */
2025
2026static CORE_ADDR
2027attr_value_as_address (struct attribute *attr)
2028{
2029 CORE_ADDR addr;
2030
2031 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2032 {
2033 /* Aside from a few clearly defined exceptions, attributes that
2034 contain an address must always be in DW_FORM_addr form.
2035 Unfortunately, some compilers happen to be violating this
2036 requirement by encoding addresses using other forms, such
2037 as DW_FORM_data4 for example. For those broken compilers,
2038 we try to do our best, without any guarantee of success,
2039 to interpret the address correctly. It would also be nice
2040 to generate a complaint, but that would require us to maintain
2041 a list of legitimate cases where a non-address form is allowed,
2042 as well as update callers to pass in at least the CU's DWARF
2043 version. This is more overhead than what we're willing to
2044 expand for a pretty rare case. */
2045 addr = DW_UNSND (attr);
2046 }
2047 else
2048 addr = DW_ADDR (attr);
2049
2050 return addr;
2051}
2052
9291a0cd
TT
2053/* The suffix for an index file. */
2054#define INDEX_SUFFIX ".gdb-index"
2055
c906108c 2056/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
2057 information and return true if we have enough to do something.
2058 NAMES points to the dwarf2 section names, or is NULL if the standard
2059 ELF names are used. */
c906108c
SS
2060
2061int
251d32d9
TG
2062dwarf2_has_info (struct objfile *objfile,
2063 const struct dwarf2_debug_sections *names)
c906108c 2064{
9a3c8263
SM
2065 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2066 objfile_data (objfile, dwarf2_objfile_data_key));
be391dca
TT
2067 if (!dwarf2_per_objfile)
2068 {
2069 /* Initialize per-objfile state. */
2070 struct dwarf2_per_objfile *data
8d749320 2071 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
9a619af0 2072
be391dca
TT
2073 memset (data, 0, sizeof (*data));
2074 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2075 dwarf2_per_objfile = data;
6502dd73 2076
251d32d9
TG
2077 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2078 (void *) names);
be391dca
TT
2079 dwarf2_per_objfile->objfile = objfile;
2080 }
73869dc2 2081 return (!dwarf2_per_objfile->info.is_virtual
049412e3 2082 && dwarf2_per_objfile->info.s.section != NULL
73869dc2 2083 && !dwarf2_per_objfile->abbrev.is_virtual
049412e3 2084 && dwarf2_per_objfile->abbrev.s.section != NULL);
73869dc2
DE
2085}
2086
2087/* Return the containing section of virtual section SECTION. */
2088
2089static struct dwarf2_section_info *
2090get_containing_section (const struct dwarf2_section_info *section)
2091{
2092 gdb_assert (section->is_virtual);
2093 return section->s.containing_section;
c906108c
SS
2094}
2095
a32a8923
DE
2096/* Return the bfd owner of SECTION. */
2097
2098static struct bfd *
2099get_section_bfd_owner (const struct dwarf2_section_info *section)
2100{
73869dc2
DE
2101 if (section->is_virtual)
2102 {
2103 section = get_containing_section (section);
2104 gdb_assert (!section->is_virtual);
2105 }
049412e3 2106 return section->s.section->owner;
a32a8923
DE
2107}
2108
2109/* Return the bfd section of SECTION.
2110 Returns NULL if the section is not present. */
2111
2112static asection *
2113get_section_bfd_section (const struct dwarf2_section_info *section)
2114{
73869dc2
DE
2115 if (section->is_virtual)
2116 {
2117 section = get_containing_section (section);
2118 gdb_assert (!section->is_virtual);
2119 }
049412e3 2120 return section->s.section;
a32a8923
DE
2121}
2122
2123/* Return the name of SECTION. */
2124
2125static const char *
2126get_section_name (const struct dwarf2_section_info *section)
2127{
2128 asection *sectp = get_section_bfd_section (section);
2129
2130 gdb_assert (sectp != NULL);
2131 return bfd_section_name (get_section_bfd_owner (section), sectp);
2132}
2133
2134/* Return the name of the file SECTION is in. */
2135
2136static const char *
2137get_section_file_name (const struct dwarf2_section_info *section)
2138{
2139 bfd *abfd = get_section_bfd_owner (section);
2140
2141 return bfd_get_filename (abfd);
2142}
2143
2144/* Return the id of SECTION.
2145 Returns 0 if SECTION doesn't exist. */
2146
2147static int
2148get_section_id (const struct dwarf2_section_info *section)
2149{
2150 asection *sectp = get_section_bfd_section (section);
2151
2152 if (sectp == NULL)
2153 return 0;
2154 return sectp->id;
2155}
2156
2157/* Return the flags of SECTION.
73869dc2 2158 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2159
2160static int
2161get_section_flags (const struct dwarf2_section_info *section)
2162{
2163 asection *sectp = get_section_bfd_section (section);
2164
2165 gdb_assert (sectp != NULL);
2166 return bfd_get_section_flags (sectp->owner, sectp);
2167}
2168
251d32d9
TG
2169/* When loading sections, we look either for uncompressed section or for
2170 compressed section names. */
233a11ab
CS
2171
2172static int
251d32d9
TG
2173section_is_p (const char *section_name,
2174 const struct dwarf2_section_names *names)
233a11ab 2175{
251d32d9
TG
2176 if (names->normal != NULL
2177 && strcmp (section_name, names->normal) == 0)
2178 return 1;
2179 if (names->compressed != NULL
2180 && strcmp (section_name, names->compressed) == 0)
2181 return 1;
2182 return 0;
233a11ab
CS
2183}
2184
c906108c
SS
2185/* This function is mapped across the sections and remembers the
2186 offset and size of each of the debugging sections we are interested
2187 in. */
2188
2189static void
251d32d9 2190dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
c906108c 2191{
251d32d9 2192 const struct dwarf2_debug_sections *names;
dc7650b8 2193 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9
TG
2194
2195 if (vnames == NULL)
2196 names = &dwarf2_elf_names;
2197 else
2198 names = (const struct dwarf2_debug_sections *) vnames;
2199
dc7650b8
JK
2200 if ((aflag & SEC_HAS_CONTENTS) == 0)
2201 {
2202 }
2203 else if (section_is_p (sectp->name, &names->info))
c906108c 2204 {
049412e3 2205 dwarf2_per_objfile->info.s.section = sectp;
dce234bc 2206 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 2207 }
251d32d9 2208 else if (section_is_p (sectp->name, &names->abbrev))
c906108c 2209 {
049412e3 2210 dwarf2_per_objfile->abbrev.s.section = sectp;
dce234bc 2211 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 2212 }
251d32d9 2213 else if (section_is_p (sectp->name, &names->line))
c906108c 2214 {
049412e3 2215 dwarf2_per_objfile->line.s.section = sectp;
dce234bc 2216 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 2217 }
251d32d9 2218 else if (section_is_p (sectp->name, &names->loc))
c906108c 2219 {
049412e3 2220 dwarf2_per_objfile->loc.s.section = sectp;
dce234bc 2221 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 2222 }
251d32d9 2223 else if (section_is_p (sectp->name, &names->macinfo))
c906108c 2224 {
049412e3 2225 dwarf2_per_objfile->macinfo.s.section = sectp;
dce234bc 2226 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 2227 }
cf2c3c16
TT
2228 else if (section_is_p (sectp->name, &names->macro))
2229 {
049412e3 2230 dwarf2_per_objfile->macro.s.section = sectp;
cf2c3c16
TT
2231 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2232 }
251d32d9 2233 else if (section_is_p (sectp->name, &names->str))
c906108c 2234 {
049412e3 2235 dwarf2_per_objfile->str.s.section = sectp;
dce234bc 2236 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 2237 }
3019eac3
DE
2238 else if (section_is_p (sectp->name, &names->addr))
2239 {
049412e3 2240 dwarf2_per_objfile->addr.s.section = sectp;
3019eac3
DE
2241 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2242 }
251d32d9 2243 else if (section_is_p (sectp->name, &names->frame))
b6af0555 2244 {
049412e3 2245 dwarf2_per_objfile->frame.s.section = sectp;
dce234bc 2246 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 2247 }
251d32d9 2248 else if (section_is_p (sectp->name, &names->eh_frame))
b6af0555 2249 {
049412e3 2250 dwarf2_per_objfile->eh_frame.s.section = sectp;
dc7650b8 2251 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2252 }
251d32d9 2253 else if (section_is_p (sectp->name, &names->ranges))
af34e669 2254 {
049412e3 2255 dwarf2_per_objfile->ranges.s.section = sectp;
dce234bc 2256 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 2257 }
251d32d9 2258 else if (section_is_p (sectp->name, &names->types))
348e048f 2259 {
8b70b953
TT
2260 struct dwarf2_section_info type_section;
2261
2262 memset (&type_section, 0, sizeof (type_section));
049412e3 2263 type_section.s.section = sectp;
8b70b953
TT
2264 type_section.size = bfd_get_section_size (sectp);
2265
2266 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2267 &type_section);
348e048f 2268 }
251d32d9 2269 else if (section_is_p (sectp->name, &names->gdb_index))
9291a0cd 2270 {
049412e3 2271 dwarf2_per_objfile->gdb_index.s.section = sectp;
9291a0cd
TT
2272 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2273 }
dce234bc 2274
b4e1fd61 2275 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
72dca2f5
FR
2276 && bfd_section_vma (abfd, sectp) == 0)
2277 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
2278}
2279
fceca515
DE
2280/* A helper function that decides whether a section is empty,
2281 or not present. */
9e0ac564
TT
2282
2283static int
19ac8c2e 2284dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2285{
73869dc2
DE
2286 if (section->is_virtual)
2287 return section->size == 0;
049412e3 2288 return section->s.section == NULL || section->size == 0;
9e0ac564
TT
2289}
2290
3019eac3
DE
2291/* Read the contents of the section INFO.
2292 OBJFILE is the main object file, but not necessarily the file where
a32a8923
DE
2293 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2294 of the DWO file.
dce234bc 2295 If the section is compressed, uncompress it before returning. */
c906108c 2296
dce234bc
PP
2297static void
2298dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 2299{
a32a8923 2300 asection *sectp;
3019eac3 2301 bfd *abfd;
dce234bc 2302 gdb_byte *buf, *retbuf;
c906108c 2303
be391dca
TT
2304 if (info->readin)
2305 return;
dce234bc 2306 info->buffer = NULL;
be391dca 2307 info->readin = 1;
188dd5d6 2308
9e0ac564 2309 if (dwarf2_section_empty_p (info))
dce234bc 2310 return;
c906108c 2311
a32a8923 2312 sectp = get_section_bfd_section (info);
3019eac3 2313
73869dc2
DE
2314 /* If this is a virtual section we need to read in the real one first. */
2315 if (info->is_virtual)
2316 {
2317 struct dwarf2_section_info *containing_section =
2318 get_containing_section (info);
2319
2320 gdb_assert (sectp != NULL);
2321 if ((sectp->flags & SEC_RELOC) != 0)
2322 {
2323 error (_("Dwarf Error: DWP format V2 with relocations is not"
2324 " supported in section %s [in module %s]"),
2325 get_section_name (info), get_section_file_name (info));
2326 }
2327 dwarf2_read_section (objfile, containing_section);
2328 /* Other code should have already caught virtual sections that don't
2329 fit. */
2330 gdb_assert (info->virtual_offset + info->size
2331 <= containing_section->size);
2332 /* If the real section is empty or there was a problem reading the
2333 section we shouldn't get here. */
2334 gdb_assert (containing_section->buffer != NULL);
2335 info->buffer = containing_section->buffer + info->virtual_offset;
2336 return;
2337 }
2338
4bf44c1c
TT
2339 /* If the section has relocations, we must read it ourselves.
2340 Otherwise we attach it to the BFD. */
2341 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2342 {
d521ce57 2343 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2344 return;
dce234bc 2345 }
dce234bc 2346
224c3ddb 2347 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
4bf44c1c 2348 info->buffer = buf;
dce234bc
PP
2349
2350 /* When debugging .o files, we may need to apply relocations; see
2351 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2352 We never compress sections in .o files, so we only need to
2353 try this when the section is not compressed. */
ac8035ab 2354 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2355 if (retbuf != NULL)
2356 {
2357 info->buffer = retbuf;
2358 return;
2359 }
2360
a32a8923
DE
2361 abfd = get_section_bfd_owner (info);
2362 gdb_assert (abfd != NULL);
2363
dce234bc
PP
2364 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2365 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2366 {
2367 error (_("Dwarf Error: Can't read DWARF data"
2368 " in section %s [in module %s]"),
2369 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2370 }
dce234bc
PP
2371}
2372
9e0ac564
TT
2373/* A helper function that returns the size of a section in a safe way.
2374 If you are positive that the section has been read before using the
2375 size, then it is safe to refer to the dwarf2_section_info object's
2376 "size" field directly. In other cases, you must call this
2377 function, because for compressed sections the size field is not set
2378 correctly until the section has been read. */
2379
2380static bfd_size_type
2381dwarf2_section_size (struct objfile *objfile,
2382 struct dwarf2_section_info *info)
2383{
2384 if (!info->readin)
2385 dwarf2_read_section (objfile, info);
2386 return info->size;
2387}
2388
dce234bc 2389/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2390 SECTION_NAME. */
af34e669 2391
dce234bc 2392void
3017a003
TG
2393dwarf2_get_section_info (struct objfile *objfile,
2394 enum dwarf2_section_enum sect,
d521ce57 2395 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2396 bfd_size_type *sizep)
2397{
2398 struct dwarf2_per_objfile *data
9a3c8263
SM
2399 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2400 dwarf2_objfile_data_key);
dce234bc 2401 struct dwarf2_section_info *info;
a3b2a86b
TT
2402
2403 /* We may see an objfile without any DWARF, in which case we just
2404 return nothing. */
2405 if (data == NULL)
2406 {
2407 *sectp = NULL;
2408 *bufp = NULL;
2409 *sizep = 0;
2410 return;
2411 }
3017a003
TG
2412 switch (sect)
2413 {
2414 case DWARF2_DEBUG_FRAME:
2415 info = &data->frame;
2416 break;
2417 case DWARF2_EH_FRAME:
2418 info = &data->eh_frame;
2419 break;
2420 default:
2421 gdb_assert_not_reached ("unexpected section");
2422 }
dce234bc 2423
9e0ac564 2424 dwarf2_read_section (objfile, info);
dce234bc 2425
a32a8923 2426 *sectp = get_section_bfd_section (info);
dce234bc
PP
2427 *bufp = info->buffer;
2428 *sizep = info->size;
2429}
2430
36586728
TT
2431/* A helper function to find the sections for a .dwz file. */
2432
2433static void
2434locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2435{
9a3c8263 2436 struct dwz_file *dwz_file = (struct dwz_file *) arg;
36586728
TT
2437
2438 /* Note that we only support the standard ELF names, because .dwz
2439 is ELF-only (at the time of writing). */
2440 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2441 {
049412e3 2442 dwz_file->abbrev.s.section = sectp;
36586728
TT
2443 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2444 }
2445 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2446 {
049412e3 2447 dwz_file->info.s.section = sectp;
36586728
TT
2448 dwz_file->info.size = bfd_get_section_size (sectp);
2449 }
2450 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2451 {
049412e3 2452 dwz_file->str.s.section = sectp;
36586728
TT
2453 dwz_file->str.size = bfd_get_section_size (sectp);
2454 }
2455 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2456 {
049412e3 2457 dwz_file->line.s.section = sectp;
36586728
TT
2458 dwz_file->line.size = bfd_get_section_size (sectp);
2459 }
2460 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2461 {
049412e3 2462 dwz_file->macro.s.section = sectp;
36586728
TT
2463 dwz_file->macro.size = bfd_get_section_size (sectp);
2464 }
2ec9a5e0
TT
2465 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2466 {
049412e3 2467 dwz_file->gdb_index.s.section = sectp;
2ec9a5e0
TT
2468 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2469 }
36586728
TT
2470}
2471
4db1a1dc
TT
2472/* Open the separate '.dwz' debug file, if needed. Return NULL if
2473 there is no .gnu_debugaltlink section in the file. Error if there
2474 is such a section but the file cannot be found. */
36586728
TT
2475
2476static struct dwz_file *
2477dwarf2_get_dwz_file (void)
2478{
4db1a1dc
TT
2479 bfd *dwz_bfd;
2480 char *data;
36586728
TT
2481 struct cleanup *cleanup;
2482 const char *filename;
2483 struct dwz_file *result;
acd13123 2484 bfd_size_type buildid_len_arg;
dc294be5
TT
2485 size_t buildid_len;
2486 bfd_byte *buildid;
36586728
TT
2487
2488 if (dwarf2_per_objfile->dwz_file != NULL)
2489 return dwarf2_per_objfile->dwz_file;
2490
4db1a1dc
TT
2491 bfd_set_error (bfd_error_no_error);
2492 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
acd13123 2493 &buildid_len_arg, &buildid);
4db1a1dc
TT
2494 if (data == NULL)
2495 {
2496 if (bfd_get_error () == bfd_error_no_error)
2497 return NULL;
2498 error (_("could not read '.gnu_debugaltlink' section: %s"),
2499 bfd_errmsg (bfd_get_error ()));
2500 }
36586728 2501 cleanup = make_cleanup (xfree, data);
dc294be5 2502 make_cleanup (xfree, buildid);
36586728 2503
acd13123
TT
2504 buildid_len = (size_t) buildid_len_arg;
2505
f9d83a0b 2506 filename = (const char *) data;
36586728
TT
2507 if (!IS_ABSOLUTE_PATH (filename))
2508 {
4262abfb 2509 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728
TT
2510 char *rel;
2511
2512 make_cleanup (xfree, abs);
2513 abs = ldirname (abs);
2514 make_cleanup (xfree, abs);
2515
2516 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2517 make_cleanup (xfree, rel);
2518 filename = rel;
2519 }
2520
dc294be5
TT
2521 /* First try the file name given in the section. If that doesn't
2522 work, try to use the build-id instead. */
36586728 2523 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
dc294be5 2524 if (dwz_bfd != NULL)
36586728 2525 {
dc294be5
TT
2526 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2527 {
2528 gdb_bfd_unref (dwz_bfd);
2529 dwz_bfd = NULL;
2530 }
36586728
TT
2531 }
2532
dc294be5
TT
2533 if (dwz_bfd == NULL)
2534 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2535
2536 if (dwz_bfd == NULL)
2537 error (_("could not find '.gnu_debugaltlink' file for %s"),
2538 objfile_name (dwarf2_per_objfile->objfile));
2539
36586728
TT
2540 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2541 struct dwz_file);
2542 result->dwz_bfd = dwz_bfd;
2543
2544 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2545
2546 do_cleanups (cleanup);
2547
13aaf454 2548 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
8d2cc612 2549 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2550 return result;
2551}
9291a0cd 2552\f
7b9f3c50
DE
2553/* DWARF quick_symbols_functions support. */
2554
2555/* TUs can share .debug_line entries, and there can be a lot more TUs than
2556 unique line tables, so we maintain a separate table of all .debug_line
2557 derived entries to support the sharing.
2558 All the quick functions need is the list of file names. We discard the
2559 line_header when we're done and don't need to record it here. */
2560struct quick_file_names
2561{
094b34ac
DE
2562 /* The data used to construct the hash key. */
2563 struct stmt_list_hash hash;
7b9f3c50
DE
2564
2565 /* The number of entries in file_names, real_names. */
2566 unsigned int num_file_names;
2567
2568 /* The file names from the line table, after being run through
2569 file_full_name. */
2570 const char **file_names;
2571
2572 /* The file names from the line table after being run through
2573 gdb_realpath. These are computed lazily. */
2574 const char **real_names;
2575};
2576
2577/* When using the index (and thus not using psymtabs), each CU has an
2578 object of this type. This is used to hold information needed by
2579 the various "quick" methods. */
2580struct dwarf2_per_cu_quick_data
2581{
2582 /* The file table. This can be NULL if there was no file table
2583 or it's currently not read in.
2584 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2585 struct quick_file_names *file_names;
2586
2587 /* The corresponding symbol table. This is NULL if symbols for this
2588 CU have not yet been read. */
43f3e411 2589 struct compunit_symtab *compunit_symtab;
7b9f3c50
DE
2590
2591 /* A temporary mark bit used when iterating over all CUs in
2592 expand_symtabs_matching. */
2593 unsigned int mark : 1;
2594
2595 /* True if we've tried to read the file table and found there isn't one.
2596 There will be no point in trying to read it again next time. */
2597 unsigned int no_file_data : 1;
2598};
2599
094b34ac
DE
2600/* Utility hash function for a stmt_list_hash. */
2601
2602static hashval_t
2603hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2604{
2605 hashval_t v = 0;
2606
2607 if (stmt_list_hash->dwo_unit != NULL)
2608 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2609 v += stmt_list_hash->line_offset.sect_off;
2610 return v;
2611}
2612
2613/* Utility equality function for a stmt_list_hash. */
2614
2615static int
2616eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2617 const struct stmt_list_hash *rhs)
2618{
2619 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2620 return 0;
2621 if (lhs->dwo_unit != NULL
2622 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2623 return 0;
2624
2625 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2626}
2627
7b9f3c50
DE
2628/* Hash function for a quick_file_names. */
2629
2630static hashval_t
2631hash_file_name_entry (const void *e)
2632{
9a3c8263
SM
2633 const struct quick_file_names *file_data
2634 = (const struct quick_file_names *) e;
7b9f3c50 2635
094b34ac 2636 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2637}
2638
2639/* Equality function for a quick_file_names. */
2640
2641static int
2642eq_file_name_entry (const void *a, const void *b)
2643{
9a3c8263
SM
2644 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2645 const struct quick_file_names *eb = (const struct quick_file_names *) b;
7b9f3c50 2646
094b34ac 2647 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2648}
2649
2650/* Delete function for a quick_file_names. */
2651
2652static void
2653delete_file_name_entry (void *e)
2654{
9a3c8263 2655 struct quick_file_names *file_data = (struct quick_file_names *) e;
7b9f3c50
DE
2656 int i;
2657
2658 for (i = 0; i < file_data->num_file_names; ++i)
2659 {
2660 xfree ((void*) file_data->file_names[i]);
2661 if (file_data->real_names)
2662 xfree ((void*) file_data->real_names[i]);
2663 }
2664
2665 /* The space for the struct itself lives on objfile_obstack,
2666 so we don't free it here. */
2667}
2668
2669/* Create a quick_file_names hash table. */
2670
2671static htab_t
2672create_quick_file_names_table (unsigned int nr_initial_entries)
2673{
2674 return htab_create_alloc (nr_initial_entries,
2675 hash_file_name_entry, eq_file_name_entry,
2676 delete_file_name_entry, xcalloc, xfree);
2677}
9291a0cd 2678
918dd910
JK
2679/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2680 have to be created afterwards. You should call age_cached_comp_units after
2681 processing PER_CU->CU. dw2_setup must have been already called. */
2682
2683static void
2684load_cu (struct dwarf2_per_cu_data *per_cu)
2685{
3019eac3 2686 if (per_cu->is_debug_types)
e5fe5e75 2687 load_full_type_unit (per_cu);
918dd910 2688 else
95554aad 2689 load_full_comp_unit (per_cu, language_minimal);
918dd910 2690
cc12ce38
DE
2691 if (per_cu->cu == NULL)
2692 return; /* Dummy CU. */
2dc860c0
DE
2693
2694 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2695}
2696
a0f42c21 2697/* Read in the symbols for PER_CU. */
2fdf6df6 2698
9291a0cd 2699static void
a0f42c21 2700dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2701{
2702 struct cleanup *back_to;
2703
f4dc4d17
DE
2704 /* Skip type_unit_groups, reading the type units they contain
2705 is handled elsewhere. */
2706 if (IS_TYPE_UNIT_GROUP (per_cu))
2707 return;
2708
9291a0cd
TT
2709 back_to = make_cleanup (dwarf2_release_queue, NULL);
2710
95554aad 2711 if (dwarf2_per_objfile->using_index
43f3e411 2712 ? per_cu->v.quick->compunit_symtab == NULL
95554aad
TT
2713 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2714 {
2715 queue_comp_unit (per_cu, language_minimal);
2716 load_cu (per_cu);
89e63ee4
DE
2717
2718 /* If we just loaded a CU from a DWO, and we're working with an index
2719 that may badly handle TUs, load all the TUs in that DWO as well.
2720 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2721 if (!per_cu->is_debug_types
cc12ce38 2722 && per_cu->cu != NULL
89e63ee4
DE
2723 && per_cu->cu->dwo_unit != NULL
2724 && dwarf2_per_objfile->index_table != NULL
2725 && dwarf2_per_objfile->index_table->version <= 7
2726 /* DWP files aren't supported yet. */
2727 && get_dwp_file () == NULL)
2728 queue_and_load_all_dwo_tus (per_cu);
95554aad 2729 }
9291a0cd 2730
a0f42c21 2731 process_queue ();
9291a0cd
TT
2732
2733 /* Age the cache, releasing compilation units that have not
2734 been used recently. */
2735 age_cached_comp_units ();
2736
2737 do_cleanups (back_to);
2738}
2739
2740/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2741 the objfile from which this CU came. Returns the resulting symbol
2742 table. */
2fdf6df6 2743
43f3e411 2744static struct compunit_symtab *
a0f42c21 2745dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2746{
95554aad 2747 gdb_assert (dwarf2_per_objfile->using_index);
43f3e411 2748 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
2749 {
2750 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2751 increment_reading_symtab ();
a0f42c21 2752 dw2_do_instantiate_symtab (per_cu);
95554aad 2753 process_cu_includes ();
9291a0cd
TT
2754 do_cleanups (back_to);
2755 }
f194fefb 2756
43f3e411 2757 return per_cu->v.quick->compunit_symtab;
9291a0cd
TT
2758}
2759
8832e7e3 2760/* Return the CU/TU given its index.
f4dc4d17
DE
2761
2762 This is intended for loops like:
2763
2764 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2765 + dwarf2_per_objfile->n_type_units); ++i)
2766 {
8832e7e3 2767 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
f4dc4d17
DE
2768
2769 ...;
2770 }
2771*/
2fdf6df6 2772
1fd400ff 2773static struct dwarf2_per_cu_data *
8832e7e3 2774dw2_get_cutu (int index)
1fd400ff
TT
2775{
2776 if (index >= dwarf2_per_objfile->n_comp_units)
2777 {
f4dc4d17 2778 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2779 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2780 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2781 }
2782
2783 return dwarf2_per_objfile->all_comp_units[index];
2784}
2785
8832e7e3
DE
2786/* Return the CU given its index.
2787 This differs from dw2_get_cutu in that it's for when you know INDEX
2788 refers to a CU. */
f4dc4d17
DE
2789
2790static struct dwarf2_per_cu_data *
8832e7e3 2791dw2_get_cu (int index)
f4dc4d17 2792{
8832e7e3 2793 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
f4dc4d17 2794
1fd400ff
TT
2795 return dwarf2_per_objfile->all_comp_units[index];
2796}
2797
2ec9a5e0
TT
2798/* A helper for create_cus_from_index that handles a given list of
2799 CUs. */
2fdf6df6 2800
74a0d9f6 2801static void
2ec9a5e0
TT
2802create_cus_from_index_list (struct objfile *objfile,
2803 const gdb_byte *cu_list, offset_type n_elements,
2804 struct dwarf2_section_info *section,
2805 int is_dwz,
2806 int base_offset)
9291a0cd
TT
2807{
2808 offset_type i;
9291a0cd 2809
2ec9a5e0 2810 for (i = 0; i < n_elements; i += 2)
9291a0cd
TT
2811 {
2812 struct dwarf2_per_cu_data *the_cu;
2813 ULONGEST offset, length;
2814
74a0d9f6
JK
2815 gdb_static_assert (sizeof (ULONGEST) >= 8);
2816 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2817 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
2818 cu_list += 2 * 8;
2819
2820 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2821 struct dwarf2_per_cu_data);
b64f50a1 2822 the_cu->offset.sect_off = offset;
9291a0cd
TT
2823 the_cu->length = length;
2824 the_cu->objfile = objfile;
8a0459fd 2825 the_cu->section = section;
9291a0cd
TT
2826 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2827 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
2828 the_cu->is_dwz = is_dwz;
2829 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 2830 }
9291a0cd
TT
2831}
2832
2ec9a5e0 2833/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 2834 the CU objects for this objfile. */
2ec9a5e0 2835
74a0d9f6 2836static void
2ec9a5e0
TT
2837create_cus_from_index (struct objfile *objfile,
2838 const gdb_byte *cu_list, offset_type cu_list_elements,
2839 const gdb_byte *dwz_list, offset_type dwz_elements)
2840{
2841 struct dwz_file *dwz;
2842
2843 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
8d749320
SM
2844 dwarf2_per_objfile->all_comp_units =
2845 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
2846 dwarf2_per_objfile->n_comp_units);
2ec9a5e0 2847
74a0d9f6
JK
2848 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2849 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
2850
2851 if (dwz_elements == 0)
74a0d9f6 2852 return;
2ec9a5e0
TT
2853
2854 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
2855 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2856 cu_list_elements / 2);
2ec9a5e0
TT
2857}
2858
1fd400ff 2859/* Create the signatured type hash table from the index. */
673bfd45 2860
74a0d9f6 2861static void
673bfd45 2862create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 2863 struct dwarf2_section_info *section,
673bfd45
DE
2864 const gdb_byte *bytes,
2865 offset_type elements)
1fd400ff
TT
2866{
2867 offset_type i;
673bfd45 2868 htab_t sig_types_hash;
1fd400ff 2869
6aa5f3a6
DE
2870 dwarf2_per_objfile->n_type_units
2871 = dwarf2_per_objfile->n_allocated_type_units
2872 = elements / 3;
8d749320
SM
2873 dwarf2_per_objfile->all_type_units =
2874 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
1fd400ff 2875
673bfd45 2876 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
2877
2878 for (i = 0; i < elements; i += 3)
2879 {
52dc124a
DE
2880 struct signatured_type *sig_type;
2881 ULONGEST offset, type_offset_in_tu, signature;
1fd400ff
TT
2882 void **slot;
2883
74a0d9f6
JK
2884 gdb_static_assert (sizeof (ULONGEST) >= 8);
2885 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2886 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2887 BFD_ENDIAN_LITTLE);
1fd400ff
TT
2888 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2889 bytes += 3 * 8;
2890
52dc124a 2891 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 2892 struct signatured_type);
52dc124a 2893 sig_type->signature = signature;
3019eac3
DE
2894 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2895 sig_type->per_cu.is_debug_types = 1;
8a0459fd 2896 sig_type->per_cu.section = section;
52dc124a
DE
2897 sig_type->per_cu.offset.sect_off = offset;
2898 sig_type->per_cu.objfile = objfile;
2899 sig_type->per_cu.v.quick
1fd400ff
TT
2900 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2901 struct dwarf2_per_cu_quick_data);
2902
52dc124a
DE
2903 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2904 *slot = sig_type;
1fd400ff 2905
b4dd5633 2906 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
2907 }
2908
673bfd45 2909 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
2910}
2911
9291a0cd
TT
2912/* Read the address map data from the mapped index, and use it to
2913 populate the objfile's psymtabs_addrmap. */
2fdf6df6 2914
9291a0cd
TT
2915static void
2916create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2917{
3e29f34a 2918 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9291a0cd
TT
2919 const gdb_byte *iter, *end;
2920 struct obstack temp_obstack;
2921 struct addrmap *mutable_map;
2922 struct cleanup *cleanup;
2923 CORE_ADDR baseaddr;
2924
2925 obstack_init (&temp_obstack);
2926 cleanup = make_cleanup_obstack_free (&temp_obstack);
2927 mutable_map = addrmap_create_mutable (&temp_obstack);
2928
2929 iter = index->address_table;
2930 end = iter + index->address_table_size;
2931
2932 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2933
2934 while (iter < end)
2935 {
2936 ULONGEST hi, lo, cu_index;
2937 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2938 iter += 8;
2939 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2940 iter += 8;
2941 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2942 iter += 4;
f652bce2 2943
24a55014 2944 if (lo > hi)
f652bce2 2945 {
24a55014
DE
2946 complaint (&symfile_complaints,
2947 _(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 2948 hex_string (lo), hex_string (hi));
24a55014 2949 continue;
f652bce2 2950 }
24a55014
DE
2951
2952 if (cu_index >= dwarf2_per_objfile->n_comp_units)
f652bce2
DE
2953 {
2954 complaint (&symfile_complaints,
2955 _(".gdb_index address table has invalid CU number %u"),
2956 (unsigned) cu_index);
24a55014 2957 continue;
f652bce2 2958 }
24a55014 2959
3e29f34a
MR
2960 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2961 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2962 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
9291a0cd
TT
2963 }
2964
2965 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2966 &objfile->objfile_obstack);
2967 do_cleanups (cleanup);
2968}
2969
59d7bcaf
JK
2970/* The hash function for strings in the mapped index. This is the same as
2971 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2972 implementation. This is necessary because the hash function is tied to the
2973 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
2974 SYMBOL_HASH_NEXT.
2975
2976 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 2977
9291a0cd 2978static hashval_t
559a7a62 2979mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
2980{
2981 const unsigned char *str = (const unsigned char *) p;
2982 hashval_t r = 0;
2983 unsigned char c;
2984
2985 while ((c = *str++) != 0)
559a7a62
JK
2986 {
2987 if (index_version >= 5)
2988 c = tolower (c);
2989 r = r * 67 + c - 113;
2990 }
9291a0cd
TT
2991
2992 return r;
2993}
2994
2995/* Find a slot in the mapped index INDEX for the object named NAME.
2996 If NAME is found, set *VEC_OUT to point to the CU vector in the
2997 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 2998
9291a0cd
TT
2999static int
3000find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3001 offset_type **vec_out)
3002{
0cf03b49
JK
3003 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3004 offset_type hash;
9291a0cd 3005 offset_type slot, step;
559a7a62 3006 int (*cmp) (const char *, const char *);
9291a0cd 3007
0cf03b49 3008 if (current_language->la_language == language_cplus
45280282
IB
3009 || current_language->la_language == language_fortran
3010 || current_language->la_language == language_d)
0cf03b49
JK
3011 {
3012 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3013 not contain any. */
a8719064 3014
72998fb3 3015 if (strchr (name, '(') != NULL)
0cf03b49 3016 {
72998fb3 3017 char *without_params = cp_remove_params (name);
0cf03b49 3018
72998fb3
DE
3019 if (without_params != NULL)
3020 {
3021 make_cleanup (xfree, without_params);
3022 name = without_params;
3023 }
0cf03b49
JK
3024 }
3025 }
3026
559a7a62 3027 /* Index version 4 did not support case insensitive searches. But the
feea76c2 3028 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
3029 simulate our NAME being searched is also lowercased. */
3030 hash = mapped_index_string_hash ((index->version == 4
3031 && case_sensitivity == case_sensitive_off
3032 ? 5 : index->version),
3033 name);
3034
3876f04e
DE
3035 slot = hash & (index->symbol_table_slots - 1);
3036 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 3037 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
3038
3039 for (;;)
3040 {
3041 /* Convert a slot number to an offset into the table. */
3042 offset_type i = 2 * slot;
3043 const char *str;
3876f04e 3044 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
3045 {
3046 do_cleanups (back_to);
3047 return 0;
3048 }
9291a0cd 3049
3876f04e 3050 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 3051 if (!cmp (name, str))
9291a0cd
TT
3052 {
3053 *vec_out = (offset_type *) (index->constant_pool
3876f04e 3054 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 3055 do_cleanups (back_to);
9291a0cd
TT
3056 return 1;
3057 }
3058
3876f04e 3059 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
3060 }
3061}
3062
2ec9a5e0
TT
3063/* A helper function that reads the .gdb_index from SECTION and fills
3064 in MAP. FILENAME is the name of the file containing the section;
3065 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3066 ok to use deprecated sections.
3067
3068 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3069 out parameters that are filled in with information about the CU and
3070 TU lists in the section.
3071
3072 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 3073
9291a0cd 3074static int
2ec9a5e0
TT
3075read_index_from_section (struct objfile *objfile,
3076 const char *filename,
3077 int deprecated_ok,
3078 struct dwarf2_section_info *section,
3079 struct mapped_index *map,
3080 const gdb_byte **cu_list,
3081 offset_type *cu_list_elements,
3082 const gdb_byte **types_list,
3083 offset_type *types_list_elements)
9291a0cd 3084{
948f8e3d 3085 const gdb_byte *addr;
2ec9a5e0 3086 offset_type version;
b3b272e1 3087 offset_type *metadata;
1fd400ff 3088 int i;
9291a0cd 3089
2ec9a5e0 3090 if (dwarf2_section_empty_p (section))
9291a0cd 3091 return 0;
82430852
JK
3092
3093 /* Older elfutils strip versions could keep the section in the main
3094 executable while splitting it for the separate debug info file. */
a32a8923 3095 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
82430852
JK
3096 return 0;
3097
2ec9a5e0 3098 dwarf2_read_section (objfile, section);
9291a0cd 3099
2ec9a5e0 3100 addr = section->buffer;
9291a0cd 3101 /* Version check. */
1fd400ff 3102 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3103 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3104 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3105 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3106 indices. */
831adc1f 3107 if (version < 4)
481860b3
GB
3108 {
3109 static int warning_printed = 0;
3110 if (!warning_printed)
3111 {
3112 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3113 filename);
481860b3
GB
3114 warning_printed = 1;
3115 }
3116 return 0;
3117 }
3118 /* Index version 4 uses a different hash function than index version
3119 5 and later.
3120
3121 Versions earlier than 6 did not emit psymbols for inlined
3122 functions. Using these files will cause GDB not to be able to
3123 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3124 indices unless the user has done
3125 "set use-deprecated-index-sections on". */
2ec9a5e0 3126 if (version < 6 && !deprecated_ok)
481860b3
GB
3127 {
3128 static int warning_printed = 0;
3129 if (!warning_printed)
3130 {
e615022a
DE
3131 warning (_("\
3132Skipping deprecated .gdb_index section in %s.\n\
3133Do \"set use-deprecated-index-sections on\" before the file is read\n\
3134to use the section anyway."),
2ec9a5e0 3135 filename);
481860b3
GB
3136 warning_printed = 1;
3137 }
3138 return 0;
3139 }
796a7ff8 3140 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3141 of the TU (for symbols coming from TUs),
3142 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3143 Plus gold-generated indices can have duplicate entries for global symbols,
3144 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3145 These are just performance bugs, and we can't distinguish gdb-generated
3146 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3147
481860b3 3148 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3149 longer backward compatible. */
796a7ff8 3150 if (version > 8)
594e8718 3151 return 0;
9291a0cd 3152
559a7a62 3153 map->version = version;
2ec9a5e0 3154 map->total_size = section->size;
9291a0cd
TT
3155
3156 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
3157
3158 i = 0;
2ec9a5e0
TT
3159 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3160 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3161 / 8);
1fd400ff
TT
3162 ++i;
3163
2ec9a5e0
TT
3164 *types_list = addr + MAYBE_SWAP (metadata[i]);
3165 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3166 - MAYBE_SWAP (metadata[i]))
3167 / 8);
987d643c 3168 ++i;
1fd400ff
TT
3169
3170 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3171 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3172 - MAYBE_SWAP (metadata[i]));
3173 ++i;
3174
3876f04e
DE
3175 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3176 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3177 - MAYBE_SWAP (metadata[i]))
3178 / (2 * sizeof (offset_type)));
1fd400ff 3179 ++i;
9291a0cd 3180
f9d83a0b 3181 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3182
2ec9a5e0
TT
3183 return 1;
3184}
3185
3186
3187/* Read the index file. If everything went ok, initialize the "quick"
3188 elements of all the CUs and return 1. Otherwise, return 0. */
3189
3190static int
3191dwarf2_read_index (struct objfile *objfile)
3192{
3193 struct mapped_index local_map, *map;
3194 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3195 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3196 struct dwz_file *dwz;
2ec9a5e0 3197
4262abfb 3198 if (!read_index_from_section (objfile, objfile_name (objfile),
2ec9a5e0
TT
3199 use_deprecated_index_sections,
3200 &dwarf2_per_objfile->gdb_index, &local_map,
3201 &cu_list, &cu_list_elements,
3202 &types_list, &types_list_elements))
3203 return 0;
3204
0fefef59 3205 /* Don't use the index if it's empty. */
2ec9a5e0 3206 if (local_map.symbol_table_slots == 0)
0fefef59
DE
3207 return 0;
3208
2ec9a5e0
TT
3209 /* If there is a .dwz file, read it so we can get its CU list as
3210 well. */
4db1a1dc
TT
3211 dwz = dwarf2_get_dwz_file ();
3212 if (dwz != NULL)
2ec9a5e0 3213 {
2ec9a5e0
TT
3214 struct mapped_index dwz_map;
3215 const gdb_byte *dwz_types_ignore;
3216 offset_type dwz_types_elements_ignore;
3217
3218 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3219 1,
3220 &dwz->gdb_index, &dwz_map,
3221 &dwz_list, &dwz_list_elements,
3222 &dwz_types_ignore,
3223 &dwz_types_elements_ignore))
3224 {
3225 warning (_("could not read '.gdb_index' section from %s; skipping"),
3226 bfd_get_filename (dwz->dwz_bfd));
3227 return 0;
3228 }
3229 }
3230
74a0d9f6
JK
3231 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3232 dwz_list_elements);
1fd400ff 3233
8b70b953
TT
3234 if (types_list_elements)
3235 {
3236 struct dwarf2_section_info *section;
3237
3238 /* We can only handle a single .debug_types when we have an
3239 index. */
3240 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3241 return 0;
3242
3243 section = VEC_index (dwarf2_section_info_def,
3244 dwarf2_per_objfile->types, 0);
3245
74a0d9f6
JK
3246 create_signatured_type_table_from_index (objfile, section, types_list,
3247 types_list_elements);
8b70b953 3248 }
9291a0cd 3249
2ec9a5e0
TT
3250 create_addrmap_from_index (objfile, &local_map);
3251
8d749320 3252 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
2ec9a5e0 3253 *map = local_map;
9291a0cd
TT
3254
3255 dwarf2_per_objfile->index_table = map;
3256 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
3257 dwarf2_per_objfile->quick_file_names_table =
3258 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
3259
3260 return 1;
3261}
3262
3263/* A helper for the "quick" functions which sets the global
3264 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 3265
9291a0cd
TT
3266static void
3267dw2_setup (struct objfile *objfile)
3268{
9a3c8263
SM
3269 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3270 objfile_data (objfile, dwarf2_objfile_data_key));
9291a0cd
TT
3271 gdb_assert (dwarf2_per_objfile);
3272}
3273
dee91e82 3274/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3275
dee91e82
DE
3276static void
3277dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3278 const gdb_byte *info_ptr,
dee91e82
DE
3279 struct die_info *comp_unit_die,
3280 int has_children,
3281 void *data)
9291a0cd 3282{
dee91e82
DE
3283 struct dwarf2_cu *cu = reader->cu;
3284 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3285 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3286 struct dwarf2_per_cu_data *lh_cu;
7b9f3c50 3287 struct line_header *lh;
9291a0cd 3288 struct attribute *attr;
dee91e82 3289 int i;
15d034d0 3290 const char *name, *comp_dir;
7b9f3c50
DE
3291 void **slot;
3292 struct quick_file_names *qfn;
3293 unsigned int line_offset;
9291a0cd 3294
0186c6a7
DE
3295 gdb_assert (! this_cu->is_debug_types);
3296
07261596
TT
3297 /* Our callers never want to match partial units -- instead they
3298 will match the enclosing full CU. */
3299 if (comp_unit_die->tag == DW_TAG_partial_unit)
3300 {
3301 this_cu->v.quick->no_file_data = 1;
3302 return;
3303 }
3304
0186c6a7 3305 lh_cu = this_cu;
7b9f3c50
DE
3306 lh = NULL;
3307 slot = NULL;
3308 line_offset = 0;
dee91e82
DE
3309
3310 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3311 if (attr)
3312 {
7b9f3c50
DE
3313 struct quick_file_names find_entry;
3314
3315 line_offset = DW_UNSND (attr);
3316
3317 /* We may have already read in this line header (TU line header sharing).
3318 If we have we're done. */
094b34ac
DE
3319 find_entry.hash.dwo_unit = cu->dwo_unit;
3320 find_entry.hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3321 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3322 &find_entry, INSERT);
3323 if (*slot != NULL)
3324 {
9a3c8263 3325 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
dee91e82 3326 return;
7b9f3c50
DE
3327 }
3328
3019eac3 3329 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3330 }
3331 if (lh == NULL)
3332 {
094b34ac 3333 lh_cu->v.quick->no_file_data = 1;
dee91e82 3334 return;
9291a0cd
TT
3335 }
3336
8d749320 3337 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
094b34ac
DE
3338 qfn->hash.dwo_unit = cu->dwo_unit;
3339 qfn->hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3340 gdb_assert (slot != NULL);
3341 *slot = qfn;
9291a0cd 3342
dee91e82 3343 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
9291a0cd 3344
7b9f3c50 3345 qfn->num_file_names = lh->num_file_names;
8d749320
SM
3346 qfn->file_names =
3347 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->num_file_names);
9291a0cd 3348 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
3349 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3350 qfn->real_names = NULL;
9291a0cd 3351
7b9f3c50 3352 free_line_header (lh);
7b9f3c50 3353
094b34ac 3354 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3355}
3356
3357/* A helper for the "quick" functions which attempts to read the line
3358 table for THIS_CU. */
3359
3360static struct quick_file_names *
e4a48d9d 3361dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3362{
0186c6a7
DE
3363 /* This should never be called for TUs. */
3364 gdb_assert (! this_cu->is_debug_types);
3365 /* Nor type unit groups. */
3366 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3367
dee91e82
DE
3368 if (this_cu->v.quick->file_names != NULL)
3369 return this_cu->v.quick->file_names;
3370 /* If we know there is no line data, no point in looking again. */
3371 if (this_cu->v.quick->no_file_data)
3372 return NULL;
3373
0186c6a7 3374 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3375
3376 if (this_cu->v.quick->no_file_data)
3377 return NULL;
3378 return this_cu->v.quick->file_names;
9291a0cd
TT
3379}
3380
3381/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3382 real path for a given file name from the line table. */
2fdf6df6 3383
9291a0cd 3384static const char *
7b9f3c50
DE
3385dw2_get_real_path (struct objfile *objfile,
3386 struct quick_file_names *qfn, int index)
9291a0cd 3387{
7b9f3c50
DE
3388 if (qfn->real_names == NULL)
3389 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
26f2dc30 3390 qfn->num_file_names, const char *);
9291a0cd 3391
7b9f3c50
DE
3392 if (qfn->real_names[index] == NULL)
3393 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 3394
7b9f3c50 3395 return qfn->real_names[index];
9291a0cd
TT
3396}
3397
3398static struct symtab *
3399dw2_find_last_source_symtab (struct objfile *objfile)
3400{
43f3e411 3401 struct compunit_symtab *cust;
9291a0cd 3402 int index;
ae2de4f8 3403
9291a0cd
TT
3404 dw2_setup (objfile);
3405 index = dwarf2_per_objfile->n_comp_units - 1;
43f3e411
DE
3406 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3407 if (cust == NULL)
3408 return NULL;
3409 return compunit_primary_filetab (cust);
9291a0cd
TT
3410}
3411
7b9f3c50
DE
3412/* Traversal function for dw2_forget_cached_source_info. */
3413
3414static int
3415dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3416{
7b9f3c50 3417 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3418
7b9f3c50 3419 if (file_data->real_names)
9291a0cd 3420 {
7b9f3c50 3421 int i;
9291a0cd 3422
7b9f3c50 3423 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3424 {
7b9f3c50
DE
3425 xfree ((void*) file_data->real_names[i]);
3426 file_data->real_names[i] = NULL;
9291a0cd
TT
3427 }
3428 }
7b9f3c50
DE
3429
3430 return 1;
3431}
3432
3433static void
3434dw2_forget_cached_source_info (struct objfile *objfile)
3435{
3436 dw2_setup (objfile);
3437
3438 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3439 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3440}
3441
f8eba3c6
TT
3442/* Helper function for dw2_map_symtabs_matching_filename that expands
3443 the symtabs and calls the iterator. */
3444
3445static int
3446dw2_map_expand_apply (struct objfile *objfile,
3447 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3448 const char *name, const char *real_path,
f8eba3c6
TT
3449 int (*callback) (struct symtab *, void *),
3450 void *data)
3451{
43f3e411 3452 struct compunit_symtab *last_made = objfile->compunit_symtabs;
f8eba3c6
TT
3453
3454 /* Don't visit already-expanded CUs. */
43f3e411 3455 if (per_cu->v.quick->compunit_symtab)
f8eba3c6
TT
3456 return 0;
3457
3458 /* This may expand more than one symtab, and we want to iterate over
3459 all of them. */
a0f42c21 3460 dw2_instantiate_symtab (per_cu);
f8eba3c6 3461
f5b95b50 3462 return iterate_over_some_symtabs (name, real_path, callback, data,
43f3e411 3463 objfile->compunit_symtabs, last_made);
f8eba3c6
TT
3464}
3465
3466/* Implementation of the map_symtabs_matching_filename method. */
3467
9291a0cd 3468static int
f8eba3c6 3469dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
f5b95b50 3470 const char *real_path,
f8eba3c6
TT
3471 int (*callback) (struct symtab *, void *),
3472 void *data)
9291a0cd
TT
3473{
3474 int i;
c011a4f4 3475 const char *name_basename = lbasename (name);
9291a0cd
TT
3476
3477 dw2_setup (objfile);
ae2de4f8 3478
848e3e78
DE
3479 /* The rule is CUs specify all the files, including those used by
3480 any TU, so there's no need to scan TUs here. */
f4dc4d17 3481
848e3e78 3482 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3483 {
3484 int j;
8832e7e3 3485 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3486 struct quick_file_names *file_data;
9291a0cd 3487
3d7bb9d9 3488 /* We only need to look at symtabs not already expanded. */
43f3e411 3489 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3490 continue;
3491
e4a48d9d 3492 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3493 if (file_data == NULL)
9291a0cd
TT
3494 continue;
3495
7b9f3c50 3496 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3497 {
7b9f3c50 3498 const char *this_name = file_data->file_names[j];
da235a7c 3499 const char *this_real_name;
9291a0cd 3500
af529f8f 3501 if (compare_filenames_for_search (this_name, name))
9291a0cd 3502 {
f5b95b50 3503 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3504 callback, data))
3505 return 1;
288e77a7 3506 continue;
4aac40c8 3507 }
9291a0cd 3508
c011a4f4
DE
3509 /* Before we invoke realpath, which can get expensive when many
3510 files are involved, do a quick comparison of the basenames. */
3511 if (! basenames_may_differ
3512 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3513 continue;
3514
da235a7c
JK
3515 this_real_name = dw2_get_real_path (objfile, file_data, j);
3516 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3517 {
da235a7c
JK
3518 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3519 callback, data))
3520 return 1;
288e77a7 3521 continue;
da235a7c 3522 }
9291a0cd 3523
da235a7c
JK
3524 if (real_path != NULL)
3525 {
af529f8f
JK
3526 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3527 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3528 if (this_real_name != NULL
af529f8f 3529 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3530 {
f5b95b50 3531 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3532 callback, data))
3533 return 1;
288e77a7 3534 continue;
9291a0cd
TT
3535 }
3536 }
3537 }
3538 }
3539
9291a0cd
TT
3540 return 0;
3541}
3542
da51c347
DE
3543/* Struct used to manage iterating over all CUs looking for a symbol. */
3544
3545struct dw2_symtab_iterator
9291a0cd 3546{
da51c347
DE
3547 /* The internalized form of .gdb_index. */
3548 struct mapped_index *index;
3549 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3550 int want_specific_block;
3551 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3552 Unused if !WANT_SPECIFIC_BLOCK. */
3553 int block_index;
3554 /* The kind of symbol we're looking for. */
3555 domain_enum domain;
3556 /* The list of CUs from the index entry of the symbol,
3557 or NULL if not found. */
3558 offset_type *vec;
3559 /* The next element in VEC to look at. */
3560 int next;
3561 /* The number of elements in VEC, or zero if there is no match. */
3562 int length;
8943b874
DE
3563 /* Have we seen a global version of the symbol?
3564 If so we can ignore all further global instances.
3565 This is to work around gold/15646, inefficient gold-generated
3566 indices. */
3567 int global_seen;
da51c347 3568};
9291a0cd 3569
da51c347
DE
3570/* Initialize the index symtab iterator ITER.
3571 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3572 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3573
9291a0cd 3574static void
da51c347
DE
3575dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3576 struct mapped_index *index,
3577 int want_specific_block,
3578 int block_index,
3579 domain_enum domain,
3580 const char *name)
3581{
3582 iter->index = index;
3583 iter->want_specific_block = want_specific_block;
3584 iter->block_index = block_index;
3585 iter->domain = domain;
3586 iter->next = 0;
8943b874 3587 iter->global_seen = 0;
da51c347
DE
3588
3589 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3590 iter->length = MAYBE_SWAP (*iter->vec);
3591 else
3592 {
3593 iter->vec = NULL;
3594 iter->length = 0;
3595 }
3596}
3597
3598/* Return the next matching CU or NULL if there are no more. */
3599
3600static struct dwarf2_per_cu_data *
3601dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3602{
3603 for ( ; iter->next < iter->length; ++iter->next)
3604 {
3605 offset_type cu_index_and_attrs =
3606 MAYBE_SWAP (iter->vec[iter->next + 1]);
3607 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6 3608 struct dwarf2_per_cu_data *per_cu;
da51c347
DE
3609 int want_static = iter->block_index != GLOBAL_BLOCK;
3610 /* This value is only valid for index versions >= 7. */
3611 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3612 gdb_index_symbol_kind symbol_kind =
3613 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3614 /* Only check the symbol attributes if they're present.
3615 Indices prior to version 7 don't record them,
3616 and indices >= 7 may elide them for certain symbols
3617 (gold does this). */
3618 int attrs_valid =
3619 (iter->index->version >= 7
3620 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3621
3190f0c6
DE
3622 /* Don't crash on bad data. */
3623 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3624 + dwarf2_per_objfile->n_type_units))
3625 {
3626 complaint (&symfile_complaints,
3627 _(".gdb_index entry has bad CU index"
4262abfb
JK
3628 " [in module %s]"),
3629 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3630 continue;
3631 }
3632
8832e7e3 3633 per_cu = dw2_get_cutu (cu_index);
3190f0c6 3634
da51c347 3635 /* Skip if already read in. */
43f3e411 3636 if (per_cu->v.quick->compunit_symtab)
da51c347
DE
3637 continue;
3638
8943b874
DE
3639 /* Check static vs global. */
3640 if (attrs_valid)
3641 {
3642 if (iter->want_specific_block
3643 && want_static != is_static)
3644 continue;
3645 /* Work around gold/15646. */
3646 if (!is_static && iter->global_seen)
3647 continue;
3648 if (!is_static)
3649 iter->global_seen = 1;
3650 }
da51c347
DE
3651
3652 /* Only check the symbol's kind if it has one. */
3653 if (attrs_valid)
3654 {
3655 switch (iter->domain)
3656 {
3657 case VAR_DOMAIN:
3658 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3659 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3660 /* Some types are also in VAR_DOMAIN. */
3661 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3662 continue;
3663 break;
3664 case STRUCT_DOMAIN:
3665 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3666 continue;
3667 break;
3668 case LABEL_DOMAIN:
3669 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3670 continue;
3671 break;
3672 default:
3673 break;
3674 }
3675 }
3676
3677 ++iter->next;
3678 return per_cu;
3679 }
3680
3681 return NULL;
3682}
3683
43f3e411 3684static struct compunit_symtab *
da51c347
DE
3685dw2_lookup_symbol (struct objfile *objfile, int block_index,
3686 const char *name, domain_enum domain)
9291a0cd 3687{
43f3e411 3688 struct compunit_symtab *stab_best = NULL;
156942c7
DE
3689 struct mapped_index *index;
3690
9291a0cd
TT
3691 dw2_setup (objfile);
3692
156942c7
DE
3693 index = dwarf2_per_objfile->index_table;
3694
da51c347 3695 /* index is NULL if OBJF_READNOW. */
156942c7 3696 if (index)
9291a0cd 3697 {
da51c347
DE
3698 struct dw2_symtab_iterator iter;
3699 struct dwarf2_per_cu_data *per_cu;
3700
3701 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3702
da51c347 3703 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3704 {
b2e2f908 3705 struct symbol *sym, *with_opaque = NULL;
43f3e411
DE
3706 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3707 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
f194fefb 3708 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
da51c347 3709
b2e2f908
DE
3710 sym = block_find_symbol (block, name, domain,
3711 block_find_non_opaque_type_preferred,
3712 &with_opaque);
3713
da51c347
DE
3714 /* Some caution must be observed with overloaded functions
3715 and methods, since the index will not contain any overload
3716 information (but NAME might contain it). */
da51c347 3717
b2e2f908
DE
3718 if (sym != NULL
3719 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3720 return stab;
3721 if (with_opaque != NULL
3722 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3723 stab_best = stab;
da51c347
DE
3724
3725 /* Keep looking through other CUs. */
9291a0cd
TT
3726 }
3727 }
9291a0cd 3728
da51c347 3729 return stab_best;
9291a0cd
TT
3730}
3731
3732static void
3733dw2_print_stats (struct objfile *objfile)
3734{
e4a48d9d 3735 int i, total, count;
9291a0cd
TT
3736
3737 dw2_setup (objfile);
e4a48d9d 3738 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3739 count = 0;
e4a48d9d 3740 for (i = 0; i < total; ++i)
9291a0cd 3741 {
8832e7e3 3742 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3743
43f3e411 3744 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3745 ++count;
3746 }
e4a48d9d 3747 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3748 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3749}
3750
779bd270
DE
3751/* This dumps minimal information about the index.
3752 It is called via "mt print objfiles".
3753 One use is to verify .gdb_index has been loaded by the
3754 gdb.dwarf2/gdb-index.exp testcase. */
3755
9291a0cd
TT
3756static void
3757dw2_dump (struct objfile *objfile)
3758{
779bd270
DE
3759 dw2_setup (objfile);
3760 gdb_assert (dwarf2_per_objfile->using_index);
3761 printf_filtered (".gdb_index:");
3762 if (dwarf2_per_objfile->index_table != NULL)
3763 {
3764 printf_filtered (" version %d\n",
3765 dwarf2_per_objfile->index_table->version);
3766 }
3767 else
3768 printf_filtered (" faked for \"readnow\"\n");
3769 printf_filtered ("\n");
9291a0cd
TT
3770}
3771
3772static void
3189cb12
DE
3773dw2_relocate (struct objfile *objfile,
3774 const struct section_offsets *new_offsets,
3775 const struct section_offsets *delta)
9291a0cd
TT
3776{
3777 /* There's nothing to relocate here. */
3778}
3779
3780static void
3781dw2_expand_symtabs_for_function (struct objfile *objfile,
3782 const char *func_name)
3783{
da51c347
DE
3784 struct mapped_index *index;
3785
3786 dw2_setup (objfile);
3787
3788 index = dwarf2_per_objfile->index_table;
3789
3790 /* index is NULL if OBJF_READNOW. */
3791 if (index)
3792 {
3793 struct dw2_symtab_iterator iter;
3794 struct dwarf2_per_cu_data *per_cu;
3795
3796 /* Note: It doesn't matter what we pass for block_index here. */
3797 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3798 func_name);
3799
3800 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3801 dw2_instantiate_symtab (per_cu);
3802 }
9291a0cd
TT
3803}
3804
3805static void
3806dw2_expand_all_symtabs (struct objfile *objfile)
3807{
3808 int i;
3809
3810 dw2_setup (objfile);
1fd400ff
TT
3811
3812 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3813 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3814 {
8832e7e3 3815 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3816
a0f42c21 3817 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3818 }
3819}
3820
3821static void
652a8996
JK
3822dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3823 const char *fullname)
9291a0cd
TT
3824{
3825 int i;
3826
3827 dw2_setup (objfile);
d4637a04
DE
3828
3829 /* We don't need to consider type units here.
3830 This is only called for examining code, e.g. expand_line_sal.
3831 There can be an order of magnitude (or more) more type units
3832 than comp units, and we avoid them if we can. */
3833
3834 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3835 {
3836 int j;
8832e7e3 3837 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7b9f3c50 3838 struct quick_file_names *file_data;
9291a0cd 3839
3d7bb9d9 3840 /* We only need to look at symtabs not already expanded. */
43f3e411 3841 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3842 continue;
3843
e4a48d9d 3844 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3845 if (file_data == NULL)
9291a0cd
TT
3846 continue;
3847
7b9f3c50 3848 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3849 {
652a8996
JK
3850 const char *this_fullname = file_data->file_names[j];
3851
3852 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 3853 {
a0f42c21 3854 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3855 break;
3856 }
3857 }
3858 }
3859}
3860
9291a0cd 3861static void
ade7ed9e 3862dw2_map_matching_symbols (struct objfile *objfile,
fe978cb0 3863 const char * name, domain_enum domain,
ade7ed9e 3864 int global,
40658b94
PH
3865 int (*callback) (struct block *,
3866 struct symbol *, void *),
2edb89d3
JK
3867 void *data, symbol_compare_ftype *match,
3868 symbol_compare_ftype *ordered_compare)
9291a0cd 3869{
40658b94 3870 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
3871 current language is Ada for a non-Ada objfile using GNU index. As Ada
3872 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
3873}
3874
3875static void
f8eba3c6
TT
3876dw2_expand_symtabs_matching
3877 (struct objfile *objfile,
206f2a57
DE
3878 expand_symtabs_file_matcher_ftype *file_matcher,
3879 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
276d885b 3880 expand_symtabs_exp_notify_ftype *expansion_notify,
f8eba3c6
TT
3881 enum search_domain kind,
3882 void *data)
9291a0cd
TT
3883{
3884 int i;
3885 offset_type iter;
4b5246aa 3886 struct mapped_index *index;
9291a0cd
TT
3887
3888 dw2_setup (objfile);
ae2de4f8
DE
3889
3890 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
3891 if (!dwarf2_per_objfile->index_table)
3892 return;
4b5246aa 3893 index = dwarf2_per_objfile->index_table;
9291a0cd 3894
7b08b9eb 3895 if (file_matcher != NULL)
24c79950
TT
3896 {
3897 struct cleanup *cleanup;
3898 htab_t visited_found, visited_not_found;
3899
3900 visited_found = htab_create_alloc (10,
3901 htab_hash_pointer, htab_eq_pointer,
3902 NULL, xcalloc, xfree);
3903 cleanup = make_cleanup_htab_delete (visited_found);
3904 visited_not_found = htab_create_alloc (10,
3905 htab_hash_pointer, htab_eq_pointer,
3906 NULL, xcalloc, xfree);
3907 make_cleanup_htab_delete (visited_not_found);
3908
848e3e78
DE
3909 /* The rule is CUs specify all the files, including those used by
3910 any TU, so there's no need to scan TUs here. */
3911
3912 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3913 {
3914 int j;
8832e7e3 3915 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
24c79950
TT
3916 struct quick_file_names *file_data;
3917 void **slot;
7b08b9eb 3918
61d96d7e
DE
3919 QUIT;
3920
24c79950 3921 per_cu->v.quick->mark = 0;
3d7bb9d9 3922
24c79950 3923 /* We only need to look at symtabs not already expanded. */
43f3e411 3924 if (per_cu->v.quick->compunit_symtab)
24c79950 3925 continue;
7b08b9eb 3926
e4a48d9d 3927 file_data = dw2_get_file_names (per_cu);
24c79950
TT
3928 if (file_data == NULL)
3929 continue;
7b08b9eb 3930
24c79950
TT
3931 if (htab_find (visited_not_found, file_data) != NULL)
3932 continue;
3933 else if (htab_find (visited_found, file_data) != NULL)
3934 {
3935 per_cu->v.quick->mark = 1;
3936 continue;
3937 }
3938
3939 for (j = 0; j < file_data->num_file_names; ++j)
3940 {
da235a7c
JK
3941 const char *this_real_name;
3942
fbd9ab74 3943 if (file_matcher (file_data->file_names[j], data, 0))
24c79950
TT
3944 {
3945 per_cu->v.quick->mark = 1;
3946 break;
3947 }
da235a7c
JK
3948
3949 /* Before we invoke realpath, which can get expensive when many
3950 files are involved, do a quick comparison of the basenames. */
3951 if (!basenames_may_differ
3952 && !file_matcher (lbasename (file_data->file_names[j]),
3953 data, 1))
3954 continue;
3955
3956 this_real_name = dw2_get_real_path (objfile, file_data, j);
3957 if (file_matcher (this_real_name, data, 0))
3958 {
3959 per_cu->v.quick->mark = 1;
3960 break;
3961 }
24c79950
TT
3962 }
3963
3964 slot = htab_find_slot (per_cu->v.quick->mark
3965 ? visited_found
3966 : visited_not_found,
3967 file_data, INSERT);
3968 *slot = file_data;
3969 }
3970
3971 do_cleanups (cleanup);
3972 }
9291a0cd 3973
3876f04e 3974 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
3975 {
3976 offset_type idx = 2 * iter;
3977 const char *name;
3978 offset_type *vec, vec_len, vec_idx;
8943b874 3979 int global_seen = 0;
9291a0cd 3980
61d96d7e
DE
3981 QUIT;
3982
3876f04e 3983 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
3984 continue;
3985
3876f04e 3986 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 3987
206f2a57 3988 if (! (*symbol_matcher) (name, data))
9291a0cd
TT
3989 continue;
3990
3991 /* The name was matched, now expand corresponding CUs that were
3992 marked. */
4b5246aa 3993 vec = (offset_type *) (index->constant_pool
3876f04e 3994 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
3995 vec_len = MAYBE_SWAP (vec[0]);
3996 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3997 {
e254ef6a 3998 struct dwarf2_per_cu_data *per_cu;
156942c7 3999 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
8943b874
DE
4000 /* This value is only valid for index versions >= 7. */
4001 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
156942c7
DE
4002 gdb_index_symbol_kind symbol_kind =
4003 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4004 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6
DE
4005 /* Only check the symbol attributes if they're present.
4006 Indices prior to version 7 don't record them,
4007 and indices >= 7 may elide them for certain symbols
4008 (gold does this). */
4009 int attrs_valid =
4010 (index->version >= 7
4011 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4012
8943b874
DE
4013 /* Work around gold/15646. */
4014 if (attrs_valid)
4015 {
4016 if (!is_static && global_seen)
4017 continue;
4018 if (!is_static)
4019 global_seen = 1;
4020 }
4021
3190f0c6
DE
4022 /* Only check the symbol's kind if it has one. */
4023 if (attrs_valid)
156942c7
DE
4024 {
4025 switch (kind)
4026 {
4027 case VARIABLES_DOMAIN:
4028 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4029 continue;
4030 break;
4031 case FUNCTIONS_DOMAIN:
4032 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4033 continue;
4034 break;
4035 case TYPES_DOMAIN:
4036 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4037 continue;
4038 break;
4039 default:
4040 break;
4041 }
4042 }
4043
3190f0c6
DE
4044 /* Don't crash on bad data. */
4045 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4046 + dwarf2_per_objfile->n_type_units))
4047 {
4048 complaint (&symfile_complaints,
4049 _(".gdb_index entry has bad CU index"
4262abfb 4050 " [in module %s]"), objfile_name (objfile));
3190f0c6
DE
4051 continue;
4052 }
4053
8832e7e3 4054 per_cu = dw2_get_cutu (cu_index);
7b08b9eb 4055 if (file_matcher == NULL || per_cu->v.quick->mark)
276d885b
GB
4056 {
4057 int symtab_was_null =
4058 (per_cu->v.quick->compunit_symtab == NULL);
4059
4060 dw2_instantiate_symtab (per_cu);
4061
4062 if (expansion_notify != NULL
4063 && symtab_was_null
4064 && per_cu->v.quick->compunit_symtab != NULL)
4065 {
4066 expansion_notify (per_cu->v.quick->compunit_symtab,
4067 data);
4068 }
4069 }
9291a0cd
TT
4070 }
4071 }
4072}
4073
43f3e411 4074/* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
9703b513
TT
4075 symtab. */
4076
43f3e411
DE
4077static struct compunit_symtab *
4078recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4079 CORE_ADDR pc)
9703b513
TT
4080{
4081 int i;
4082
43f3e411
DE
4083 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4084 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4085 return cust;
9703b513 4086
43f3e411 4087 if (cust->includes == NULL)
a3ec0bb1
DE
4088 return NULL;
4089
43f3e411 4090 for (i = 0; cust->includes[i]; ++i)
9703b513 4091 {
43f3e411 4092 struct compunit_symtab *s = cust->includes[i];
9703b513 4093
43f3e411 4094 s = recursively_find_pc_sect_compunit_symtab (s, pc);
9703b513
TT
4095 if (s != NULL)
4096 return s;
4097 }
4098
4099 return NULL;
4100}
4101
43f3e411
DE
4102static struct compunit_symtab *
4103dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4104 struct bound_minimal_symbol msymbol,
4105 CORE_ADDR pc,
4106 struct obj_section *section,
4107 int warn_if_readin)
9291a0cd
TT
4108{
4109 struct dwarf2_per_cu_data *data;
43f3e411 4110 struct compunit_symtab *result;
9291a0cd
TT
4111
4112 dw2_setup (objfile);
4113
4114 if (!objfile->psymtabs_addrmap)
4115 return NULL;
4116
9a3c8263
SM
4117 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4118 pc);
9291a0cd
TT
4119 if (!data)
4120 return NULL;
4121
43f3e411 4122 if (warn_if_readin && data->v.quick->compunit_symtab)
abebb8b0 4123 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
4124 paddress (get_objfile_arch (objfile), pc));
4125
43f3e411
DE
4126 result
4127 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4128 pc);
9703b513
TT
4129 gdb_assert (result != NULL);
4130 return result;
9291a0cd
TT
4131}
4132
9291a0cd 4133static void
44b13c5a 4134dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 4135 void *data, int need_fullname)
9291a0cd
TT
4136{
4137 int i;
24c79950
TT
4138 struct cleanup *cleanup;
4139 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4140 NULL, xcalloc, xfree);
9291a0cd 4141
24c79950 4142 cleanup = make_cleanup_htab_delete (visited);
9291a0cd 4143 dw2_setup (objfile);
ae2de4f8 4144
848e3e78
DE
4145 /* The rule is CUs specify all the files, including those used by
4146 any TU, so there's no need to scan TUs here.
4147 We can ignore file names coming from already-expanded CUs. */
f4dc4d17 4148
848e3e78 4149 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950 4150 {
8832e7e3 4151 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
24c79950 4152
43f3e411 4153 if (per_cu->v.quick->compunit_symtab)
24c79950
TT
4154 {
4155 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4156 INSERT);
4157
4158 *slot = per_cu->v.quick->file_names;
4159 }
4160 }
4161
848e3e78 4162 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
4163 {
4164 int j;
8832e7e3 4165 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 4166 struct quick_file_names *file_data;
24c79950 4167 void **slot;
9291a0cd 4168
3d7bb9d9 4169 /* We only need to look at symtabs not already expanded. */
43f3e411 4170 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
4171 continue;
4172
e4a48d9d 4173 file_data = dw2_get_file_names (per_cu);
7b9f3c50 4174 if (file_data == NULL)
9291a0cd
TT
4175 continue;
4176
24c79950
TT
4177 slot = htab_find_slot (visited, file_data, INSERT);
4178 if (*slot)
4179 {
4180 /* Already visited. */
4181 continue;
4182 }
4183 *slot = file_data;
4184
7b9f3c50 4185 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4186 {
74e2f255
DE
4187 const char *this_real_name;
4188
4189 if (need_fullname)
4190 this_real_name = dw2_get_real_path (objfile, file_data, j);
4191 else
4192 this_real_name = NULL;
7b9f3c50 4193 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
4194 }
4195 }
24c79950
TT
4196
4197 do_cleanups (cleanup);
9291a0cd
TT
4198}
4199
4200static int
4201dw2_has_symbols (struct objfile *objfile)
4202{
4203 return 1;
4204}
4205
4206const struct quick_symbol_functions dwarf2_gdb_index_functions =
4207{
4208 dw2_has_symbols,
4209 dw2_find_last_source_symtab,
4210 dw2_forget_cached_source_info,
f8eba3c6 4211 dw2_map_symtabs_matching_filename,
9291a0cd 4212 dw2_lookup_symbol,
9291a0cd
TT
4213 dw2_print_stats,
4214 dw2_dump,
4215 dw2_relocate,
4216 dw2_expand_symtabs_for_function,
4217 dw2_expand_all_symtabs,
652a8996 4218 dw2_expand_symtabs_with_fullname,
40658b94 4219 dw2_map_matching_symbols,
9291a0cd 4220 dw2_expand_symtabs_matching,
43f3e411 4221 dw2_find_pc_sect_compunit_symtab,
9291a0cd
TT
4222 dw2_map_symbol_filenames
4223};
4224
4225/* Initialize for reading DWARF for this objfile. Return 0 if this
4226 file will use psymtabs, or 1 if using the GNU index. */
4227
4228int
4229dwarf2_initialize_objfile (struct objfile *objfile)
4230{
4231 /* If we're about to read full symbols, don't bother with the
4232 indices. In this case we also don't care if some other debug
4233 format is making psymtabs, because they are all about to be
4234 expanded anyway. */
4235 if ((objfile->flags & OBJF_READNOW))
4236 {
4237 int i;
4238
4239 dwarf2_per_objfile->using_index = 1;
4240 create_all_comp_units (objfile);
0e50663e 4241 create_all_type_units (objfile);
7b9f3c50
DE
4242 dwarf2_per_objfile->quick_file_names_table =
4243 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 4244
1fd400ff 4245 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4246 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4247 {
8832e7e3 4248 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4249
e254ef6a
DE
4250 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4251 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
4252 }
4253
4254 /* Return 1 so that gdb sees the "quick" functions. However,
4255 these functions will be no-ops because we will have expanded
4256 all symtabs. */
4257 return 1;
4258 }
4259
4260 if (dwarf2_read_index (objfile))
4261 return 1;
4262
9291a0cd
TT
4263 return 0;
4264}
4265
4266\f
4267
dce234bc
PP
4268/* Build a partial symbol table. */
4269
4270void
f29dff0a 4271dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 4272{
c9bf0622 4273
f29dff0a 4274 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
4275 {
4276 init_psymbol_list (objfile, 1024);
4277 }
4278
492d29ea 4279 TRY
c9bf0622
TT
4280 {
4281 /* This isn't really ideal: all the data we allocate on the
4282 objfile's obstack is still uselessly kept around. However,
4283 freeing it seems unsafe. */
4284 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4285
4286 dwarf2_build_psymtabs_hard (objfile);
4287 discard_cleanups (cleanups);
4288 }
492d29ea
PA
4289 CATCH (except, RETURN_MASK_ERROR)
4290 {
4291 exception_print (gdb_stderr, except);
4292 }
4293 END_CATCH
c906108c 4294}
c906108c 4295
1ce1cefd
DE
4296/* Return the total length of the CU described by HEADER. */
4297
4298static unsigned int
4299get_cu_length (const struct comp_unit_head *header)
4300{
4301 return header->initial_length_size + header->length;
4302}
4303
45452591
DE
4304/* Return TRUE if OFFSET is within CU_HEADER. */
4305
4306static inline int
b64f50a1 4307offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
45452591 4308{
b64f50a1 4309 sect_offset bottom = { cu_header->offset.sect_off };
1ce1cefd 4310 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
9a619af0 4311
b64f50a1 4312 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
45452591
DE
4313}
4314
3b80fe9b
DE
4315/* Find the base address of the compilation unit for range lists and
4316 location lists. It will normally be specified by DW_AT_low_pc.
4317 In DWARF-3 draft 4, the base address could be overridden by
4318 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4319 compilation units with discontinuous ranges. */
4320
4321static void
4322dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4323{
4324 struct attribute *attr;
4325
4326 cu->base_known = 0;
4327 cu->base_address = 0;
4328
4329 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4330 if (attr)
4331 {
31aa7e4e 4332 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4333 cu->base_known = 1;
4334 }
4335 else
4336 {
4337 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4338 if (attr)
4339 {
31aa7e4e 4340 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4341 cu->base_known = 1;
4342 }
4343 }
4344}
4345
93311388
DE
4346/* Read in the comp unit header information from the debug_info at info_ptr.
4347 NOTE: This leaves members offset, first_die_offset to be filled in
4348 by the caller. */
107d2387 4349
d521ce57 4350static const gdb_byte *
107d2387 4351read_comp_unit_head (struct comp_unit_head *cu_header,
d521ce57 4352 const gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
4353{
4354 int signed_addr;
891d2f0b 4355 unsigned int bytes_read;
c764a876
DE
4356
4357 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4358 cu_header->initial_length_size = bytes_read;
4359 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 4360 info_ptr += bytes_read;
107d2387
AC
4361 cu_header->version = read_2_bytes (abfd, info_ptr);
4362 info_ptr += 2;
b64f50a1
JK
4363 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4364 &bytes_read);
613e1657 4365 info_ptr += bytes_read;
107d2387
AC
4366 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4367 info_ptr += 1;
4368 signed_addr = bfd_get_sign_extend_vma (abfd);
4369 if (signed_addr < 0)
8e65ff28 4370 internal_error (__FILE__, __LINE__,
e2e0b3e5 4371 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 4372 cu_header->signed_addr_p = signed_addr;
c764a876 4373
107d2387
AC
4374 return info_ptr;
4375}
4376
36586728
TT
4377/* Helper function that returns the proper abbrev section for
4378 THIS_CU. */
4379
4380static struct dwarf2_section_info *
4381get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4382{
4383 struct dwarf2_section_info *abbrev;
4384
4385 if (this_cu->is_dwz)
4386 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4387 else
4388 abbrev = &dwarf2_per_objfile->abbrev;
4389
4390 return abbrev;
4391}
4392
9ff913ba
DE
4393/* Subroutine of read_and_check_comp_unit_head and
4394 read_and_check_type_unit_head to simplify them.
4395 Perform various error checking on the header. */
4396
4397static void
4398error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
4399 struct dwarf2_section_info *section,
4400 struct dwarf2_section_info *abbrev_section)
9ff913ba 4401{
a32a8923 4402 const char *filename = get_section_file_name (section);
9ff913ba
DE
4403
4404 if (header->version != 2 && header->version != 3 && header->version != 4)
4405 error (_("Dwarf Error: wrong version in compilation unit header "
4406 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4407 filename);
4408
b64f50a1 4409 if (header->abbrev_offset.sect_off
36586728 4410 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9ff913ba
DE
4411 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4412 "(offset 0x%lx + 6) [in module %s]"),
b64f50a1 4413 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
9ff913ba
DE
4414 filename);
4415
4416 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4417 avoid potential 32-bit overflow. */
1ce1cefd 4418 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
9ff913ba
DE
4419 > section->size)
4420 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4421 "(offset 0x%lx + 0) [in module %s]"),
b64f50a1 4422 (long) header->length, (long) header->offset.sect_off,
9ff913ba
DE
4423 filename);
4424}
4425
4426/* Read in a CU/TU header and perform some basic error checking.
4427 The contents of the header are stored in HEADER.
4428 The result is a pointer to the start of the first DIE. */
adabb602 4429
d521ce57 4430static const gdb_byte *
9ff913ba
DE
4431read_and_check_comp_unit_head (struct comp_unit_head *header,
4432 struct dwarf2_section_info *section,
4bdcc0c1 4433 struct dwarf2_section_info *abbrev_section,
d521ce57 4434 const gdb_byte *info_ptr,
9ff913ba 4435 int is_debug_types_section)
72bf9492 4436{
d521ce57 4437 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4438 bfd *abfd = get_section_bfd_owner (section);
72bf9492 4439
b64f50a1 4440 header->offset.sect_off = beg_of_comp_unit - section->buffer;
adabb602 4441
72bf9492
DJ
4442 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4443
460c1c54
CC
4444 /* If we're reading a type unit, skip over the signature and
4445 type_offset fields. */
b0df02fd 4446 if (is_debug_types_section)
460c1c54
CC
4447 info_ptr += 8 /*signature*/ + header->offset_size;
4448
b64f50a1 4449 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
adabb602 4450
4bdcc0c1 4451 error_check_comp_unit_head (header, section, abbrev_section);
72bf9492
DJ
4452
4453 return info_ptr;
4454}
4455
348e048f
DE
4456/* Read in the types comp unit header information from .debug_types entry at
4457 types_ptr. The result is a pointer to one past the end of the header. */
4458
d521ce57 4459static const gdb_byte *
9ff913ba
DE
4460read_and_check_type_unit_head (struct comp_unit_head *header,
4461 struct dwarf2_section_info *section,
4bdcc0c1 4462 struct dwarf2_section_info *abbrev_section,
d521ce57 4463 const gdb_byte *info_ptr,
dee91e82
DE
4464 ULONGEST *signature,
4465 cu_offset *type_offset_in_tu)
348e048f 4466{
d521ce57 4467 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4468 bfd *abfd = get_section_bfd_owner (section);
348e048f 4469
b64f50a1 4470 header->offset.sect_off = beg_of_comp_unit - section->buffer;
348e048f 4471
9ff913ba 4472 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
348e048f 4473
9ff913ba
DE
4474 /* If we're reading a type unit, skip over the signature and
4475 type_offset fields. */
4476 if (signature != NULL)
4477 *signature = read_8_bytes (abfd, info_ptr);
4478 info_ptr += 8;
dee91e82
DE
4479 if (type_offset_in_tu != NULL)
4480 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4481 header->offset_size);
9ff913ba
DE
4482 info_ptr += header->offset_size;
4483
b64f50a1 4484 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
348e048f 4485
4bdcc0c1 4486 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4487
4488 return info_ptr;
348e048f
DE
4489}
4490
f4dc4d17
DE
4491/* Fetch the abbreviation table offset from a comp or type unit header. */
4492
4493static sect_offset
4494read_abbrev_offset (struct dwarf2_section_info *section,
4495 sect_offset offset)
4496{
a32a8923 4497 bfd *abfd = get_section_bfd_owner (section);
d521ce57 4498 const gdb_byte *info_ptr;
ac298888 4499 unsigned int initial_length_size, offset_size;
f4dc4d17
DE
4500 sect_offset abbrev_offset;
4501
4502 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4503 info_ptr = section->buffer + offset.sect_off;
ac298888 4504 read_initial_length (abfd, info_ptr, &initial_length_size);
f4dc4d17
DE
4505 offset_size = initial_length_size == 4 ? 4 : 8;
4506 info_ptr += initial_length_size + 2 /*version*/;
4507 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4508 return abbrev_offset;
4509}
4510
aaa75496
JB
4511/* Allocate a new partial symtab for file named NAME and mark this new
4512 partial symtab as being an include of PST. */
4513
4514static void
d521ce57 4515dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4516 struct objfile *objfile)
4517{
4518 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4519
fbd9ab74
JK
4520 if (!IS_ABSOLUTE_PATH (subpst->filename))
4521 {
4522 /* It shares objfile->objfile_obstack. */
4523 subpst->dirname = pst->dirname;
4524 }
4525
aaa75496
JB
4526 subpst->textlow = 0;
4527 subpst->texthigh = 0;
4528
8d749320
SM
4529 subpst->dependencies
4530 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
aaa75496
JB
4531 subpst->dependencies[0] = pst;
4532 subpst->number_of_dependencies = 1;
4533
4534 subpst->globals_offset = 0;
4535 subpst->n_global_syms = 0;
4536 subpst->statics_offset = 0;
4537 subpst->n_static_syms = 0;
43f3e411 4538 subpst->compunit_symtab = NULL;
aaa75496
JB
4539 subpst->read_symtab = pst->read_symtab;
4540 subpst->readin = 0;
4541
4542 /* No private part is necessary for include psymtabs. This property
4543 can be used to differentiate between such include psymtabs and
10b3939b 4544 the regular ones. */
58a9656e 4545 subpst->read_symtab_private = NULL;
aaa75496
JB
4546}
4547
4548/* Read the Line Number Program data and extract the list of files
4549 included by the source file represented by PST. Build an include
d85a05f0 4550 partial symtab for each of these included files. */
aaa75496
JB
4551
4552static void
4553dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4554 struct die_info *die,
4555 struct partial_symtab *pst)
aaa75496 4556{
d85a05f0
DJ
4557 struct line_header *lh = NULL;
4558 struct attribute *attr;
aaa75496 4559
d85a05f0
DJ
4560 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4561 if (attr)
3019eac3 4562 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
aaa75496
JB
4563 if (lh == NULL)
4564 return; /* No linetable, so no includes. */
4565
c6da4cef 4566 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
527f3840 4567 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
aaa75496
JB
4568
4569 free_line_header (lh);
4570}
4571
348e048f 4572static hashval_t
52dc124a 4573hash_signatured_type (const void *item)
348e048f 4574{
9a3c8263
SM
4575 const struct signatured_type *sig_type
4576 = (const struct signatured_type *) item;
9a619af0 4577
348e048f 4578 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4579 return sig_type->signature;
348e048f
DE
4580}
4581
4582static int
52dc124a 4583eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f 4584{
9a3c8263
SM
4585 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4586 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
9a619af0 4587
348e048f
DE
4588 return lhs->signature == rhs->signature;
4589}
4590
1fd400ff
TT
4591/* Allocate a hash table for signatured types. */
4592
4593static htab_t
673bfd45 4594allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4595{
4596 return htab_create_alloc_ex (41,
52dc124a
DE
4597 hash_signatured_type,
4598 eq_signatured_type,
1fd400ff
TT
4599 NULL,
4600 &objfile->objfile_obstack,
4601 hashtab_obstack_allocate,
4602 dummy_obstack_deallocate);
4603}
4604
d467dd73 4605/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4606
4607static int
d467dd73 4608add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff 4609{
9a3c8263
SM
4610 struct signatured_type *sigt = (struct signatured_type *) *slot;
4611 struct signatured_type ***datap = (struct signatured_type ***) datum;
1fd400ff 4612
b4dd5633 4613 **datap = sigt;
1fd400ff
TT
4614 ++*datap;
4615
4616 return 1;
4617}
4618
c88ee1f0
DE
4619/* Create the hash table of all entries in the .debug_types
4620 (or .debug_types.dwo) section(s).
4621 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4622 otherwise it is NULL.
4623
4624 The result is a pointer to the hash table or NULL if there are no types.
4625
4626 Note: This function processes DWO files only, not DWP files. */
348e048f 4627
3019eac3
DE
4628static htab_t
4629create_debug_types_hash_table (struct dwo_file *dwo_file,
4630 VEC (dwarf2_section_info_def) *types)
348e048f 4631{
3019eac3 4632 struct objfile *objfile = dwarf2_per_objfile->objfile;
8b70b953 4633 htab_t types_htab = NULL;
8b70b953
TT
4634 int ix;
4635 struct dwarf2_section_info *section;
4bdcc0c1 4636 struct dwarf2_section_info *abbrev_section;
348e048f 4637
3019eac3
DE
4638 if (VEC_empty (dwarf2_section_info_def, types))
4639 return NULL;
348e048f 4640
4bdcc0c1
DE
4641 abbrev_section = (dwo_file != NULL
4642 ? &dwo_file->sections.abbrev
4643 : &dwarf2_per_objfile->abbrev);
4644
b4f54984 4645 if (dwarf_read_debug)
09406207
DE
4646 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4647 dwo_file ? ".dwo" : "",
a32a8923 4648 get_section_file_name (abbrev_section));
09406207 4649
8b70b953 4650 for (ix = 0;
3019eac3 4651 VEC_iterate (dwarf2_section_info_def, types, ix, section);
8b70b953
TT
4652 ++ix)
4653 {
3019eac3 4654 bfd *abfd;
d521ce57 4655 const gdb_byte *info_ptr, *end_ptr;
348e048f 4656
8b70b953
TT
4657 dwarf2_read_section (objfile, section);
4658 info_ptr = section->buffer;
348e048f 4659
8b70b953
TT
4660 if (info_ptr == NULL)
4661 continue;
348e048f 4662
3019eac3 4663 /* We can't set abfd until now because the section may be empty or
a32a8923
DE
4664 not present, in which case the bfd is unknown. */
4665 abfd = get_section_bfd_owner (section);
3019eac3 4666
dee91e82
DE
4667 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4668 because we don't need to read any dies: the signature is in the
4669 header. */
8b70b953
TT
4670
4671 end_ptr = info_ptr + section->size;
4672 while (info_ptr < end_ptr)
4673 {
b64f50a1 4674 sect_offset offset;
3019eac3 4675 cu_offset type_offset_in_tu;
8b70b953 4676 ULONGEST signature;
52dc124a 4677 struct signatured_type *sig_type;
3019eac3 4678 struct dwo_unit *dwo_tu;
8b70b953 4679 void **slot;
d521ce57 4680 const gdb_byte *ptr = info_ptr;
9ff913ba 4681 struct comp_unit_head header;
dee91e82 4682 unsigned int length;
348e048f 4683
b64f50a1 4684 offset.sect_off = ptr - section->buffer;
348e048f 4685
8b70b953 4686 /* We need to read the type's signature in order to build the hash
9ff913ba 4687 table, but we don't need anything else just yet. */
348e048f 4688
4bdcc0c1
DE
4689 ptr = read_and_check_type_unit_head (&header, section,
4690 abbrev_section, ptr,
3019eac3 4691 &signature, &type_offset_in_tu);
6caca83c 4692
1ce1cefd 4693 length = get_cu_length (&header);
dee91e82 4694
6caca83c 4695 /* Skip dummy type units. */
dee91e82
DE
4696 if (ptr >= info_ptr + length
4697 || peek_abbrev_code (abfd, ptr) == 0)
6caca83c 4698 {
1ce1cefd 4699 info_ptr += length;
6caca83c
CC
4700 continue;
4701 }
8b70b953 4702
0349ea22
DE
4703 if (types_htab == NULL)
4704 {
4705 if (dwo_file)
4706 types_htab = allocate_dwo_unit_table (objfile);
4707 else
4708 types_htab = allocate_signatured_type_table (objfile);
4709 }
4710
3019eac3
DE
4711 if (dwo_file)
4712 {
4713 sig_type = NULL;
4714 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4715 struct dwo_unit);
4716 dwo_tu->dwo_file = dwo_file;
4717 dwo_tu->signature = signature;
4718 dwo_tu->type_offset_in_tu = type_offset_in_tu;
8a0459fd 4719 dwo_tu->section = section;
3019eac3
DE
4720 dwo_tu->offset = offset;
4721 dwo_tu->length = length;
4722 }
4723 else
4724 {
4725 /* N.B.: type_offset is not usable if this type uses a DWO file.
4726 The real type_offset is in the DWO file. */
4727 dwo_tu = NULL;
4728 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4729 struct signatured_type);
4730 sig_type->signature = signature;
4731 sig_type->type_offset_in_tu = type_offset_in_tu;
4732 sig_type->per_cu.objfile = objfile;
4733 sig_type->per_cu.is_debug_types = 1;
8a0459fd 4734 sig_type->per_cu.section = section;
3019eac3
DE
4735 sig_type->per_cu.offset = offset;
4736 sig_type->per_cu.length = length;
4737 }
8b70b953 4738
3019eac3
DE
4739 slot = htab_find_slot (types_htab,
4740 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4741 INSERT);
8b70b953
TT
4742 gdb_assert (slot != NULL);
4743 if (*slot != NULL)
4744 {
3019eac3
DE
4745 sect_offset dup_offset;
4746
4747 if (dwo_file)
4748 {
9a3c8263
SM
4749 const struct dwo_unit *dup_tu
4750 = (const struct dwo_unit *) *slot;
3019eac3
DE
4751
4752 dup_offset = dup_tu->offset;
4753 }
4754 else
4755 {
9a3c8263
SM
4756 const struct signatured_type *dup_tu
4757 = (const struct signatured_type *) *slot;
3019eac3
DE
4758
4759 dup_offset = dup_tu->per_cu.offset;
4760 }
b3c8eb43 4761
8b70b953 4762 complaint (&symfile_complaints,
c88ee1f0 4763 _("debug type entry at offset 0x%x is duplicate to"
4031ecc5 4764 " the entry at offset 0x%x, signature %s"),
3019eac3 4765 offset.sect_off, dup_offset.sect_off,
4031ecc5 4766 hex_string (signature));
8b70b953 4767 }
3019eac3 4768 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
348e048f 4769
b4f54984 4770 if (dwarf_read_debug > 1)
4031ecc5 4771 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
b64f50a1 4772 offset.sect_off,
4031ecc5 4773 hex_string (signature));
348e048f 4774
dee91e82 4775 info_ptr += length;
8b70b953 4776 }
348e048f
DE
4777 }
4778
3019eac3
DE
4779 return types_htab;
4780}
4781
4782/* Create the hash table of all entries in the .debug_types section,
4783 and initialize all_type_units.
4784 The result is zero if there is an error (e.g. missing .debug_types section),
4785 otherwise non-zero. */
4786
4787static int
4788create_all_type_units (struct objfile *objfile)
4789{
4790 htab_t types_htab;
b4dd5633 4791 struct signatured_type **iter;
3019eac3
DE
4792
4793 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4794 if (types_htab == NULL)
4795 {
4796 dwarf2_per_objfile->signatured_types = NULL;
4797 return 0;
4798 }
4799
348e048f
DE
4800 dwarf2_per_objfile->signatured_types = types_htab;
4801
6aa5f3a6
DE
4802 dwarf2_per_objfile->n_type_units
4803 = dwarf2_per_objfile->n_allocated_type_units
4804 = htab_elements (types_htab);
8d749320
SM
4805 dwarf2_per_objfile->all_type_units =
4806 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
d467dd73
DE
4807 iter = &dwarf2_per_objfile->all_type_units[0];
4808 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4809 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4810 == dwarf2_per_objfile->n_type_units);
1fd400ff 4811
348e048f
DE
4812 return 1;
4813}
4814
6aa5f3a6
DE
4815/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4816 If SLOT is non-NULL, it is the entry to use in the hash table.
4817 Otherwise we find one. */
4818
4819static struct signatured_type *
4820add_type_unit (ULONGEST sig, void **slot)
4821{
4822 struct objfile *objfile = dwarf2_per_objfile->objfile;
4823 int n_type_units = dwarf2_per_objfile->n_type_units;
4824 struct signatured_type *sig_type;
4825
4826 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4827 ++n_type_units;
4828 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4829 {
4830 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4831 dwarf2_per_objfile->n_allocated_type_units = 1;
4832 dwarf2_per_objfile->n_allocated_type_units *= 2;
4833 dwarf2_per_objfile->all_type_units
224c3ddb
SM
4834 = XRESIZEVEC (struct signatured_type *,
4835 dwarf2_per_objfile->all_type_units,
4836 dwarf2_per_objfile->n_allocated_type_units);
6aa5f3a6
DE
4837 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4838 }
4839 dwarf2_per_objfile->n_type_units = n_type_units;
4840
4841 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4842 struct signatured_type);
4843 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4844 sig_type->signature = sig;
4845 sig_type->per_cu.is_debug_types = 1;
4846 if (dwarf2_per_objfile->using_index)
4847 {
4848 sig_type->per_cu.v.quick =
4849 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4850 struct dwarf2_per_cu_quick_data);
4851 }
4852
4853 if (slot == NULL)
4854 {
4855 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4856 sig_type, INSERT);
4857 }
4858 gdb_assert (*slot == NULL);
4859 *slot = sig_type;
4860 /* The rest of sig_type must be filled in by the caller. */
4861 return sig_type;
4862}
4863
a2ce51a0
DE
4864/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4865 Fill in SIG_ENTRY with DWO_ENTRY. */
4866
4867static void
4868fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4869 struct signatured_type *sig_entry,
4870 struct dwo_unit *dwo_entry)
4871{
7ee85ab1 4872 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
4873 gdb_assert (! sig_entry->per_cu.queued);
4874 gdb_assert (sig_entry->per_cu.cu == NULL);
6aa5f3a6
DE
4875 if (dwarf2_per_objfile->using_index)
4876 {
4877 gdb_assert (sig_entry->per_cu.v.quick != NULL);
43f3e411 4878 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6aa5f3a6
DE
4879 }
4880 else
4881 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
a2ce51a0
DE
4882 gdb_assert (sig_entry->signature == dwo_entry->signature);
4883 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4884 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
4885 gdb_assert (sig_entry->dwo_unit == NULL);
4886
4887 sig_entry->per_cu.section = dwo_entry->section;
4888 sig_entry->per_cu.offset = dwo_entry->offset;
4889 sig_entry->per_cu.length = dwo_entry->length;
4890 sig_entry->per_cu.reading_dwo_directly = 1;
4891 sig_entry->per_cu.objfile = objfile;
a2ce51a0
DE
4892 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4893 sig_entry->dwo_unit = dwo_entry;
4894}
4895
4896/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
4897 If we haven't read the TU yet, create the signatured_type data structure
4898 for a TU to be read in directly from a DWO file, bypassing the stub.
4899 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4900 using .gdb_index, then when reading a CU we want to stay in the DWO file
4901 containing that CU. Otherwise we could end up reading several other DWO
4902 files (due to comdat folding) to process the transitive closure of all the
4903 mentioned TUs, and that can be slow. The current DWO file will have every
4904 type signature that it needs.
a2ce51a0
DE
4905 We only do this for .gdb_index because in the psymtab case we already have
4906 to read all the DWOs to build the type unit groups. */
4907
4908static struct signatured_type *
4909lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4910{
4911 struct objfile *objfile = dwarf2_per_objfile->objfile;
4912 struct dwo_file *dwo_file;
4913 struct dwo_unit find_dwo_entry, *dwo_entry;
4914 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4915 void **slot;
a2ce51a0
DE
4916
4917 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4918
6aa5f3a6
DE
4919 /* If TU skeletons have been removed then we may not have read in any
4920 TUs yet. */
4921 if (dwarf2_per_objfile->signatured_types == NULL)
4922 {
4923 dwarf2_per_objfile->signatured_types
4924 = allocate_signatured_type_table (objfile);
4925 }
a2ce51a0
DE
4926
4927 /* We only ever need to read in one copy of a signatured type.
6aa5f3a6
DE
4928 Use the global signatured_types array to do our own comdat-folding
4929 of types. If this is the first time we're reading this TU, and
4930 the TU has an entry in .gdb_index, replace the recorded data from
4931 .gdb_index with this TU. */
a2ce51a0 4932
a2ce51a0 4933 find_sig_entry.signature = sig;
6aa5f3a6
DE
4934 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4935 &find_sig_entry, INSERT);
9a3c8263 4936 sig_entry = (struct signatured_type *) *slot;
7ee85ab1
DE
4937
4938 /* We can get here with the TU already read, *or* in the process of being
6aa5f3a6
DE
4939 read. Don't reassign the global entry to point to this DWO if that's
4940 the case. Also note that if the TU is already being read, it may not
4941 have come from a DWO, the program may be a mix of Fission-compiled
4942 code and non-Fission-compiled code. */
4943
4944 /* Have we already tried to read this TU?
4945 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4946 needn't exist in the global table yet). */
4947 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
a2ce51a0
DE
4948 return sig_entry;
4949
6aa5f3a6
DE
4950 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4951 dwo_unit of the TU itself. */
4952 dwo_file = cu->dwo_unit->dwo_file;
4953
a2ce51a0
DE
4954 /* Ok, this is the first time we're reading this TU. */
4955 if (dwo_file->tus == NULL)
4956 return NULL;
4957 find_dwo_entry.signature = sig;
9a3c8263 4958 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
a2ce51a0
DE
4959 if (dwo_entry == NULL)
4960 return NULL;
4961
6aa5f3a6
DE
4962 /* If the global table doesn't have an entry for this TU, add one. */
4963 if (sig_entry == NULL)
4964 sig_entry = add_type_unit (sig, slot);
4965
a2ce51a0 4966 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
89e63ee4 4967 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
4968 return sig_entry;
4969}
4970
a2ce51a0
DE
4971/* Subroutine of lookup_signatured_type.
4972 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6aa5f3a6
DE
4973 then try the DWP file. If the TU stub (skeleton) has been removed then
4974 it won't be in .gdb_index. */
a2ce51a0
DE
4975
4976static struct signatured_type *
4977lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4978{
4979 struct objfile *objfile = dwarf2_per_objfile->objfile;
4980 struct dwp_file *dwp_file = get_dwp_file ();
4981 struct dwo_unit *dwo_entry;
4982 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4983 void **slot;
a2ce51a0
DE
4984
4985 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4986 gdb_assert (dwp_file != NULL);
4987
6aa5f3a6
DE
4988 /* If TU skeletons have been removed then we may not have read in any
4989 TUs yet. */
4990 if (dwarf2_per_objfile->signatured_types == NULL)
a2ce51a0 4991 {
6aa5f3a6
DE
4992 dwarf2_per_objfile->signatured_types
4993 = allocate_signatured_type_table (objfile);
a2ce51a0
DE
4994 }
4995
6aa5f3a6
DE
4996 find_sig_entry.signature = sig;
4997 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4998 &find_sig_entry, INSERT);
9a3c8263 4999 sig_entry = (struct signatured_type *) *slot;
6aa5f3a6
DE
5000
5001 /* Have we already tried to read this TU?
5002 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5003 needn't exist in the global table yet). */
5004 if (sig_entry != NULL)
5005 return sig_entry;
5006
a2ce51a0
DE
5007 if (dwp_file->tus == NULL)
5008 return NULL;
57d63ce2
DE
5009 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5010 sig, 1 /* is_debug_types */);
a2ce51a0
DE
5011 if (dwo_entry == NULL)
5012 return NULL;
5013
6aa5f3a6 5014 sig_entry = add_type_unit (sig, slot);
a2ce51a0
DE
5015 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5016
a2ce51a0
DE
5017 return sig_entry;
5018}
5019
380bca97 5020/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
5021 Returns NULL if signature SIG is not present in the table.
5022 It is up to the caller to complain about this. */
348e048f
DE
5023
5024static struct signatured_type *
a2ce51a0 5025lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 5026{
a2ce51a0
DE
5027 if (cu->dwo_unit
5028 && dwarf2_per_objfile->using_index)
5029 {
5030 /* We're in a DWO/DWP file, and we're using .gdb_index.
5031 These cases require special processing. */
5032 if (get_dwp_file () == NULL)
5033 return lookup_dwo_signatured_type (cu, sig);
5034 else
5035 return lookup_dwp_signatured_type (cu, sig);
5036 }
5037 else
5038 {
5039 struct signatured_type find_entry, *entry;
348e048f 5040
a2ce51a0
DE
5041 if (dwarf2_per_objfile->signatured_types == NULL)
5042 return NULL;
5043 find_entry.signature = sig;
9a3c8263
SM
5044 entry = ((struct signatured_type *)
5045 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
a2ce51a0
DE
5046 return entry;
5047 }
348e048f 5048}
42e7ad6c
DE
5049\f
5050/* Low level DIE reading support. */
348e048f 5051
d85a05f0
DJ
5052/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5053
5054static void
5055init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 5056 struct dwarf2_cu *cu,
3019eac3
DE
5057 struct dwarf2_section_info *section,
5058 struct dwo_file *dwo_file)
d85a05f0 5059{
fceca515 5060 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 5061 reader->abfd = get_section_bfd_owner (section);
d85a05f0 5062 reader->cu = cu;
3019eac3 5063 reader->dwo_file = dwo_file;
dee91e82
DE
5064 reader->die_section = section;
5065 reader->buffer = section->buffer;
f664829e 5066 reader->buffer_end = section->buffer + section->size;
a2ce51a0 5067 reader->comp_dir = NULL;
d85a05f0
DJ
5068}
5069
b0c7bfa9
DE
5070/* Subroutine of init_cutu_and_read_dies to simplify it.
5071 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5072 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5073 already.
5074
5075 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5076 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
5077 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5078 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
c54a1dd8
DE
5079 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5080 STUB_COMP_DIR may be non-NULL.
b0c7bfa9
DE
5081 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5082 are filled in with the info of the DIE from the DWO file.
5083 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5084 provided an abbrev table to use.
5085 The result is non-zero if a valid (non-dummy) DIE was found. */
5086
5087static int
5088read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5089 struct dwo_unit *dwo_unit,
5090 int abbrev_table_provided,
5091 struct die_info *stub_comp_unit_die,
a2ce51a0 5092 const char *stub_comp_dir,
b0c7bfa9 5093 struct die_reader_specs *result_reader,
d521ce57 5094 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
5095 struct die_info **result_comp_unit_die,
5096 int *result_has_children)
5097{
5098 struct objfile *objfile = dwarf2_per_objfile->objfile;
5099 struct dwarf2_cu *cu = this_cu->cu;
5100 struct dwarf2_section_info *section;
5101 bfd *abfd;
d521ce57 5102 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
5103 ULONGEST signature; /* Or dwo_id. */
5104 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5105 int i,num_extra_attrs;
5106 struct dwarf2_section_info *dwo_abbrev_section;
5107 struct attribute *attr;
5108 struct die_info *comp_unit_die;
5109
b0aeadb3
DE
5110 /* At most one of these may be provided. */
5111 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
a2ce51a0 5112
b0c7bfa9
DE
5113 /* These attributes aren't processed until later:
5114 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
0d60c288
DE
5115 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5116 referenced later. However, these attributes are found in the stub
5117 which we won't have later. In order to not impose this complication
5118 on the rest of the code, we read them here and copy them to the
5119 DWO CU/TU die. */
b0c7bfa9
DE
5120
5121 stmt_list = NULL;
5122 low_pc = NULL;
5123 high_pc = NULL;
5124 ranges = NULL;
5125 comp_dir = NULL;
5126
5127 if (stub_comp_unit_die != NULL)
5128 {
5129 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5130 DWO file. */
5131 if (! this_cu->is_debug_types)
5132 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5133 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5134 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5135 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5136 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5137
5138 /* There should be a DW_AT_addr_base attribute here (if needed).
5139 We need the value before we can process DW_FORM_GNU_addr_index. */
5140 cu->addr_base = 0;
5141 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5142 if (attr)
5143 cu->addr_base = DW_UNSND (attr);
5144
5145 /* There should be a DW_AT_ranges_base attribute here (if needed).
5146 We need the value before we can process DW_AT_ranges. */
5147 cu->ranges_base = 0;
5148 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5149 if (attr)
5150 cu->ranges_base = DW_UNSND (attr);
5151 }
a2ce51a0
DE
5152 else if (stub_comp_dir != NULL)
5153 {
5154 /* Reconstruct the comp_dir attribute to simplify the code below. */
8d749320 5155 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
a2ce51a0
DE
5156 comp_dir->name = DW_AT_comp_dir;
5157 comp_dir->form = DW_FORM_string;
5158 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5159 DW_STRING (comp_dir) = stub_comp_dir;
5160 }
b0c7bfa9
DE
5161
5162 /* Set up for reading the DWO CU/TU. */
5163 cu->dwo_unit = dwo_unit;
5164 section = dwo_unit->section;
5165 dwarf2_read_section (objfile, section);
a32a8923 5166 abfd = get_section_bfd_owner (section);
b0c7bfa9
DE
5167 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5168 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5169 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5170
5171 if (this_cu->is_debug_types)
5172 {
5173 ULONGEST header_signature;
5174 cu_offset type_offset_in_tu;
5175 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5176
5177 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5178 dwo_abbrev_section,
5179 info_ptr,
5180 &header_signature,
5181 &type_offset_in_tu);
a2ce51a0
DE
5182 /* This is not an assert because it can be caused by bad debug info. */
5183 if (sig_type->signature != header_signature)
5184 {
5185 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5186 " TU at offset 0x%x [in module %s]"),
5187 hex_string (sig_type->signature),
5188 hex_string (header_signature),
5189 dwo_unit->offset.sect_off,
5190 bfd_get_filename (abfd));
5191 }
b0c7bfa9
DE
5192 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5193 /* For DWOs coming from DWP files, we don't know the CU length
5194 nor the type's offset in the TU until now. */
5195 dwo_unit->length = get_cu_length (&cu->header);
5196 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5197
5198 /* Establish the type offset that can be used to lookup the type.
5199 For DWO files, we don't know it until now. */
5200 sig_type->type_offset_in_section.sect_off =
5201 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5202 }
5203 else
5204 {
5205 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5206 dwo_abbrev_section,
5207 info_ptr, 0);
5208 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5209 /* For DWOs coming from DWP files, we don't know the CU length
5210 until now. */
5211 dwo_unit->length = get_cu_length (&cu->header);
5212 }
5213
02142a6c
DE
5214 /* Replace the CU's original abbrev table with the DWO's.
5215 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
5216 if (abbrev_table_provided)
5217 {
5218 /* Don't free the provided abbrev table, the caller of
5219 init_cutu_and_read_dies owns it. */
5220 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5221 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
5222 make_cleanup (dwarf2_free_abbrev_table, cu);
5223 }
5224 else
5225 {
5226 dwarf2_free_abbrev_table (cu);
5227 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5228 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
5229 }
5230
5231 /* Read in the die, but leave space to copy over the attributes
5232 from the stub. This has the benefit of simplifying the rest of
5233 the code - all the work to maintain the illusion of a single
5234 DW_TAG_{compile,type}_unit DIE is done here. */
5235 num_extra_attrs = ((stmt_list != NULL)
5236 + (low_pc != NULL)
5237 + (high_pc != NULL)
5238 + (ranges != NULL)
5239 + (comp_dir != NULL));
5240 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5241 result_has_children, num_extra_attrs);
5242
5243 /* Copy over the attributes from the stub to the DIE we just read in. */
5244 comp_unit_die = *result_comp_unit_die;
5245 i = comp_unit_die->num_attrs;
5246 if (stmt_list != NULL)
5247 comp_unit_die->attrs[i++] = *stmt_list;
5248 if (low_pc != NULL)
5249 comp_unit_die->attrs[i++] = *low_pc;
5250 if (high_pc != NULL)
5251 comp_unit_die->attrs[i++] = *high_pc;
5252 if (ranges != NULL)
5253 comp_unit_die->attrs[i++] = *ranges;
5254 if (comp_dir != NULL)
5255 comp_unit_die->attrs[i++] = *comp_dir;
5256 comp_unit_die->num_attrs += num_extra_attrs;
5257
b4f54984 5258 if (dwarf_die_debug)
bf6af496
DE
5259 {
5260 fprintf_unfiltered (gdb_stdlog,
5261 "Read die from %s@0x%x of %s:\n",
a32a8923 5262 get_section_name (section),
bf6af496
DE
5263 (unsigned) (begin_info_ptr - section->buffer),
5264 bfd_get_filename (abfd));
b4f54984 5265 dump_die (comp_unit_die, dwarf_die_debug);
bf6af496
DE
5266 }
5267
a2ce51a0
DE
5268 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5269 TUs by skipping the stub and going directly to the entry in the DWO file.
5270 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5271 to get it via circuitous means. Blech. */
5272 if (comp_dir != NULL)
5273 result_reader->comp_dir = DW_STRING (comp_dir);
5274
b0c7bfa9
DE
5275 /* Skip dummy compilation units. */
5276 if (info_ptr >= begin_info_ptr + dwo_unit->length
5277 || peek_abbrev_code (abfd, info_ptr) == 0)
5278 return 0;
5279
5280 *result_info_ptr = info_ptr;
5281 return 1;
5282}
5283
5284/* Subroutine of init_cutu_and_read_dies to simplify it.
5285 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 5286 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
5287
5288static struct dwo_unit *
5289lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5290 struct die_info *comp_unit_die)
5291{
5292 struct dwarf2_cu *cu = this_cu->cu;
5293 struct attribute *attr;
5294 ULONGEST signature;
5295 struct dwo_unit *dwo_unit;
5296 const char *comp_dir, *dwo_name;
5297
a2ce51a0
DE
5298 gdb_assert (cu != NULL);
5299
b0c7bfa9 5300 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7d45c7c3
KB
5301 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5302 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
b0c7bfa9
DE
5303
5304 if (this_cu->is_debug_types)
5305 {
5306 struct signatured_type *sig_type;
5307
5308 /* Since this_cu is the first member of struct signatured_type,
5309 we can go from a pointer to one to a pointer to the other. */
5310 sig_type = (struct signatured_type *) this_cu;
5311 signature = sig_type->signature;
5312 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5313 }
5314 else
5315 {
5316 struct attribute *attr;
5317
5318 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5319 if (! attr)
5320 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5321 " [in module %s]"),
4262abfb 5322 dwo_name, objfile_name (this_cu->objfile));
b0c7bfa9
DE
5323 signature = DW_UNSND (attr);
5324 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5325 signature);
5326 }
5327
b0c7bfa9
DE
5328 return dwo_unit;
5329}
5330
a2ce51a0 5331/* Subroutine of init_cutu_and_read_dies to simplify it.
6aa5f3a6
DE
5332 See it for a description of the parameters.
5333 Read a TU directly from a DWO file, bypassing the stub.
5334
5335 Note: This function could be a little bit simpler if we shared cleanups
5336 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5337 to do, so we keep this function self-contained. Or we could move this
5338 into our caller, but it's complex enough already. */
a2ce51a0
DE
5339
5340static void
6aa5f3a6
DE
5341init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5342 int use_existing_cu, int keep,
a2ce51a0
DE
5343 die_reader_func_ftype *die_reader_func,
5344 void *data)
5345{
5346 struct dwarf2_cu *cu;
5347 struct signatured_type *sig_type;
6aa5f3a6 5348 struct cleanup *cleanups, *free_cu_cleanup = NULL;
a2ce51a0
DE
5349 struct die_reader_specs reader;
5350 const gdb_byte *info_ptr;
5351 struct die_info *comp_unit_die;
5352 int has_children;
5353
5354 /* Verify we can do the following downcast, and that we have the
5355 data we need. */
5356 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5357 sig_type = (struct signatured_type *) this_cu;
5358 gdb_assert (sig_type->dwo_unit != NULL);
5359
5360 cleanups = make_cleanup (null_cleanup, NULL);
5361
6aa5f3a6
DE
5362 if (use_existing_cu && this_cu->cu != NULL)
5363 {
5364 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5365 cu = this_cu->cu;
5366 /* There's no need to do the rereading_dwo_cu handling that
5367 init_cutu_and_read_dies does since we don't read the stub. */
5368 }
5369 else
5370 {
5371 /* If !use_existing_cu, this_cu->cu must be NULL. */
5372 gdb_assert (this_cu->cu == NULL);
8d749320 5373 cu = XNEW (struct dwarf2_cu);
6aa5f3a6
DE
5374 init_one_comp_unit (cu, this_cu);
5375 /* If an error occurs while loading, release our storage. */
5376 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5377 }
5378
5379 /* A future optimization, if needed, would be to use an existing
5380 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5381 could share abbrev tables. */
a2ce51a0
DE
5382
5383 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5384 0 /* abbrev_table_provided */,
5385 NULL /* stub_comp_unit_die */,
5386 sig_type->dwo_unit->dwo_file->comp_dir,
5387 &reader, &info_ptr,
5388 &comp_unit_die, &has_children) == 0)
5389 {
5390 /* Dummy die. */
5391 do_cleanups (cleanups);
5392 return;
5393 }
5394
5395 /* All the "real" work is done here. */
5396 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5397
6aa5f3a6 5398 /* This duplicates the code in init_cutu_and_read_dies,
a2ce51a0
DE
5399 but the alternative is making the latter more complex.
5400 This function is only for the special case of using DWO files directly:
5401 no point in overly complicating the general case just to handle this. */
6aa5f3a6 5402 if (free_cu_cleanup != NULL)
a2ce51a0 5403 {
6aa5f3a6
DE
5404 if (keep)
5405 {
5406 /* We've successfully allocated this compilation unit. Let our
5407 caller clean it up when finished with it. */
5408 discard_cleanups (free_cu_cleanup);
a2ce51a0 5409
6aa5f3a6
DE
5410 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5411 So we have to manually free the abbrev table. */
5412 dwarf2_free_abbrev_table (cu);
a2ce51a0 5413
6aa5f3a6
DE
5414 /* Link this CU into read_in_chain. */
5415 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5416 dwarf2_per_objfile->read_in_chain = this_cu;
5417 }
5418 else
5419 do_cleanups (free_cu_cleanup);
a2ce51a0 5420 }
a2ce51a0
DE
5421
5422 do_cleanups (cleanups);
5423}
5424
fd820528 5425/* Initialize a CU (or TU) and read its DIEs.
3019eac3 5426 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 5427
f4dc4d17
DE
5428 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5429 Otherwise the table specified in the comp unit header is read in and used.
5430 This is an optimization for when we already have the abbrev table.
5431
dee91e82
DE
5432 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5433 Otherwise, a new CU is allocated with xmalloc.
5434
5435 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5436 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5437
5438 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 5439 linker) then DIE_READER_FUNC will not get called. */
aaa75496 5440
70221824 5441static void
fd820528 5442init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 5443 struct abbrev_table *abbrev_table,
fd820528
DE
5444 int use_existing_cu, int keep,
5445 die_reader_func_ftype *die_reader_func,
5446 void *data)
c906108c 5447{
dee91e82 5448 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5449 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5450 bfd *abfd = get_section_bfd_owner (section);
dee91e82 5451 struct dwarf2_cu *cu;
d521ce57 5452 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 5453 struct die_reader_specs reader;
d85a05f0 5454 struct die_info *comp_unit_die;
dee91e82 5455 int has_children;
d85a05f0 5456 struct attribute *attr;
365156ad 5457 struct cleanup *cleanups, *free_cu_cleanup = NULL;
dee91e82 5458 struct signatured_type *sig_type = NULL;
4bdcc0c1 5459 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
5460 /* Non-zero if CU currently points to a DWO file and we need to
5461 reread it. When this happens we need to reread the skeleton die
a2ce51a0 5462 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 5463 int rereading_dwo_cu = 0;
c906108c 5464
b4f54984 5465 if (dwarf_die_debug)
09406207
DE
5466 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5467 this_cu->is_debug_types ? "type" : "comp",
5468 this_cu->offset.sect_off);
5469
dee91e82
DE
5470 if (use_existing_cu)
5471 gdb_assert (keep);
23745b47 5472
a2ce51a0
DE
5473 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5474 file (instead of going through the stub), short-circuit all of this. */
5475 if (this_cu->reading_dwo_directly)
5476 {
5477 /* Narrow down the scope of possibilities to have to understand. */
5478 gdb_assert (this_cu->is_debug_types);
5479 gdb_assert (abbrev_table == NULL);
6aa5f3a6
DE
5480 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5481 die_reader_func, data);
a2ce51a0
DE
5482 return;
5483 }
5484
dee91e82
DE
5485 cleanups = make_cleanup (null_cleanup, NULL);
5486
5487 /* This is cheap if the section is already read in. */
5488 dwarf2_read_section (objfile, section);
5489
5490 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
36586728
TT
5491
5492 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5493
5494 if (use_existing_cu && this_cu->cu != NULL)
5495 {
5496 cu = this_cu->cu;
42e7ad6c
DE
5497 /* If this CU is from a DWO file we need to start over, we need to
5498 refetch the attributes from the skeleton CU.
5499 This could be optimized by retrieving those attributes from when we
5500 were here the first time: the previous comp_unit_die was stored in
5501 comp_unit_obstack. But there's no data yet that we need this
5502 optimization. */
5503 if (cu->dwo_unit != NULL)
5504 rereading_dwo_cu = 1;
dee91e82
DE
5505 }
5506 else
5507 {
5508 /* If !use_existing_cu, this_cu->cu must be NULL. */
5509 gdb_assert (this_cu->cu == NULL);
8d749320 5510 cu = XNEW (struct dwarf2_cu);
dee91e82 5511 init_one_comp_unit (cu, this_cu);
dee91e82 5512 /* If an error occurs while loading, release our storage. */
365156ad 5513 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5514 }
dee91e82 5515
b0c7bfa9 5516 /* Get the header. */
42e7ad6c
DE
5517 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5518 {
5519 /* We already have the header, there's no need to read it in again. */
5520 info_ptr += cu->header.first_die_offset.cu_off;
5521 }
5522 else
5523 {
3019eac3 5524 if (this_cu->is_debug_types)
dee91e82
DE
5525 {
5526 ULONGEST signature;
42e7ad6c 5527 cu_offset type_offset_in_tu;
dee91e82 5528
4bdcc0c1
DE
5529 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5530 abbrev_section, info_ptr,
42e7ad6c
DE
5531 &signature,
5532 &type_offset_in_tu);
dee91e82 5533
42e7ad6c
DE
5534 /* Since per_cu is the first member of struct signatured_type,
5535 we can go from a pointer to one to a pointer to the other. */
5536 sig_type = (struct signatured_type *) this_cu;
5537 gdb_assert (sig_type->signature == signature);
5538 gdb_assert (sig_type->type_offset_in_tu.cu_off
5539 == type_offset_in_tu.cu_off);
dee91e82
DE
5540 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5541
42e7ad6c
DE
5542 /* LENGTH has not been set yet for type units if we're
5543 using .gdb_index. */
1ce1cefd 5544 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5545
5546 /* Establish the type offset that can be used to lookup the type. */
5547 sig_type->type_offset_in_section.sect_off =
5548 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
dee91e82
DE
5549 }
5550 else
5551 {
4bdcc0c1
DE
5552 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5553 abbrev_section,
5554 info_ptr, 0);
dee91e82
DE
5555
5556 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
1ce1cefd 5557 gdb_assert (this_cu->length == get_cu_length (&cu->header));
dee91e82
DE
5558 }
5559 }
10b3939b 5560
6caca83c 5561 /* Skip dummy compilation units. */
dee91e82 5562 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5563 || peek_abbrev_code (abfd, info_ptr) == 0)
5564 {
dee91e82 5565 do_cleanups (cleanups);
21b2bd31 5566 return;
6caca83c
CC
5567 }
5568
433df2d4
DE
5569 /* If we don't have them yet, read the abbrevs for this compilation unit.
5570 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5571 done. Note that it's important that if the CU had an abbrev table
5572 on entry we don't free it when we're done: Somewhere up the call stack
5573 it may be in use. */
f4dc4d17
DE
5574 if (abbrev_table != NULL)
5575 {
5576 gdb_assert (cu->abbrev_table == NULL);
5577 gdb_assert (cu->header.abbrev_offset.sect_off
5578 == abbrev_table->offset.sect_off);
5579 cu->abbrev_table = abbrev_table;
5580 }
5581 else if (cu->abbrev_table == NULL)
dee91e82 5582 {
4bdcc0c1 5583 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5584 make_cleanup (dwarf2_free_abbrev_table, cu);
5585 }
42e7ad6c
DE
5586 else if (rereading_dwo_cu)
5587 {
5588 dwarf2_free_abbrev_table (cu);
5589 dwarf2_read_abbrevs (cu, abbrev_section);
5590 }
af703f96 5591
dee91e82 5592 /* Read the top level CU/TU die. */
3019eac3 5593 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5594 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5595
b0c7bfa9
DE
5596 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5597 from the DWO file.
5598 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5599 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5600 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5601 if (attr)
5602 {
3019eac3 5603 struct dwo_unit *dwo_unit;
b0c7bfa9 5604 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5605
5606 if (has_children)
6a506a2d
DE
5607 {
5608 complaint (&symfile_complaints,
5609 _("compilation unit with DW_AT_GNU_dwo_name"
5610 " has children (offset 0x%x) [in module %s]"),
5611 this_cu->offset.sect_off, bfd_get_filename (abfd));
5612 }
b0c7bfa9 5613 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5614 if (dwo_unit != NULL)
3019eac3 5615 {
6a506a2d
DE
5616 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5617 abbrev_table != NULL,
a2ce51a0 5618 comp_unit_die, NULL,
6a506a2d
DE
5619 &reader, &info_ptr,
5620 &dwo_comp_unit_die, &has_children) == 0)
5621 {
5622 /* Dummy die. */
5623 do_cleanups (cleanups);
5624 return;
5625 }
5626 comp_unit_die = dwo_comp_unit_die;
5627 }
5628 else
5629 {
5630 /* Yikes, we couldn't find the rest of the DIE, we only have
5631 the stub. A complaint has already been logged. There's
5632 not much more we can do except pass on the stub DIE to
5633 die_reader_func. We don't want to throw an error on bad
5634 debug info. */
3019eac3
DE
5635 }
5636 }
5637
b0c7bfa9 5638 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5639 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5640
b0c7bfa9 5641 /* Done, clean up. */
365156ad 5642 if (free_cu_cleanup != NULL)
348e048f 5643 {
365156ad
TT
5644 if (keep)
5645 {
5646 /* We've successfully allocated this compilation unit. Let our
5647 caller clean it up when finished with it. */
5648 discard_cleanups (free_cu_cleanup);
dee91e82 5649
365156ad
TT
5650 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5651 So we have to manually free the abbrev table. */
5652 dwarf2_free_abbrev_table (cu);
dee91e82 5653
365156ad
TT
5654 /* Link this CU into read_in_chain. */
5655 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5656 dwarf2_per_objfile->read_in_chain = this_cu;
5657 }
5658 else
5659 do_cleanups (free_cu_cleanup);
348e048f 5660 }
365156ad
TT
5661
5662 do_cleanups (cleanups);
dee91e82
DE
5663}
5664
33e80786
DE
5665/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5666 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5667 to have already done the lookup to find the DWO file).
dee91e82
DE
5668
5669 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5670 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5671
5672 We fill in THIS_CU->length.
5673
5674 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5675 linker) then DIE_READER_FUNC will not get called.
5676
5677 THIS_CU->cu is always freed when done.
3019eac3
DE
5678 This is done in order to not leave THIS_CU->cu in a state where we have
5679 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5680
5681static void
5682init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
3019eac3 5683 struct dwo_file *dwo_file,
dee91e82
DE
5684 die_reader_func_ftype *die_reader_func,
5685 void *data)
5686{
5687 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5688 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5689 bfd *abfd = get_section_bfd_owner (section);
33e80786 5690 struct dwarf2_section_info *abbrev_section;
dee91e82 5691 struct dwarf2_cu cu;
d521ce57 5692 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5693 struct die_reader_specs reader;
5694 struct cleanup *cleanups;
5695 struct die_info *comp_unit_die;
5696 int has_children;
5697
b4f54984 5698 if (dwarf_die_debug)
09406207
DE
5699 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5700 this_cu->is_debug_types ? "type" : "comp",
5701 this_cu->offset.sect_off);
5702
dee91e82
DE
5703 gdb_assert (this_cu->cu == NULL);
5704
33e80786
DE
5705 abbrev_section = (dwo_file != NULL
5706 ? &dwo_file->sections.abbrev
5707 : get_abbrev_section_for_cu (this_cu));
5708
dee91e82
DE
5709 /* This is cheap if the section is already read in. */
5710 dwarf2_read_section (objfile, section);
5711
5712 init_one_comp_unit (&cu, this_cu);
5713
5714 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5715
5716 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4bdcc0c1
DE
5717 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5718 abbrev_section, info_ptr,
3019eac3 5719 this_cu->is_debug_types);
dee91e82 5720
1ce1cefd 5721 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5722
5723 /* Skip dummy compilation units. */
5724 if (info_ptr >= begin_info_ptr + this_cu->length
5725 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5726 {
dee91e82 5727 do_cleanups (cleanups);
21b2bd31 5728 return;
93311388 5729 }
72bf9492 5730
dee91e82
DE
5731 dwarf2_read_abbrevs (&cu, abbrev_section);
5732 make_cleanup (dwarf2_free_abbrev_table, &cu);
5733
3019eac3 5734 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5735 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5736
5737 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5738
5739 do_cleanups (cleanups);
5740}
5741
3019eac3
DE
5742/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5743 does not lookup the specified DWO file.
5744 This cannot be used to read DWO files.
dee91e82
DE
5745
5746 THIS_CU->cu is always freed when done.
3019eac3
DE
5747 This is done in order to not leave THIS_CU->cu in a state where we have
5748 to care whether it refers to the "main" CU or the DWO CU.
5749 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5750
5751static void
5752init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5753 die_reader_func_ftype *die_reader_func,
5754 void *data)
5755{
33e80786 5756 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
dee91e82 5757}
0018ea6f
DE
5758\f
5759/* Type Unit Groups.
dee91e82 5760
0018ea6f
DE
5761 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5762 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5763 so that all types coming from the same compilation (.o file) are grouped
5764 together. A future step could be to put the types in the same symtab as
5765 the CU the types ultimately came from. */
ff013f42 5766
f4dc4d17
DE
5767static hashval_t
5768hash_type_unit_group (const void *item)
5769{
9a3c8263
SM
5770 const struct type_unit_group *tu_group
5771 = (const struct type_unit_group *) item;
f4dc4d17 5772
094b34ac 5773 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 5774}
348e048f
DE
5775
5776static int
f4dc4d17 5777eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 5778{
9a3c8263
SM
5779 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
5780 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
348e048f 5781
094b34ac 5782 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 5783}
348e048f 5784
f4dc4d17
DE
5785/* Allocate a hash table for type unit groups. */
5786
5787static htab_t
5788allocate_type_unit_groups_table (void)
5789{
5790 return htab_create_alloc_ex (3,
5791 hash_type_unit_group,
5792 eq_type_unit_group,
5793 NULL,
5794 &dwarf2_per_objfile->objfile->objfile_obstack,
5795 hashtab_obstack_allocate,
5796 dummy_obstack_deallocate);
5797}
dee91e82 5798
f4dc4d17
DE
5799/* Type units that don't have DW_AT_stmt_list are grouped into their own
5800 partial symtabs. We combine several TUs per psymtab to not let the size
5801 of any one psymtab grow too big. */
5802#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5803#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 5804
094b34ac 5805/* Helper routine for get_type_unit_group.
f4dc4d17
DE
5806 Create the type_unit_group object used to hold one or more TUs. */
5807
5808static struct type_unit_group *
094b34ac 5809create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
5810{
5811 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 5812 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 5813 struct type_unit_group *tu_group;
f4dc4d17
DE
5814
5815 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5816 struct type_unit_group);
094b34ac 5817 per_cu = &tu_group->per_cu;
f4dc4d17 5818 per_cu->objfile = objfile;
f4dc4d17 5819
094b34ac
DE
5820 if (dwarf2_per_objfile->using_index)
5821 {
5822 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5823 struct dwarf2_per_cu_quick_data);
094b34ac
DE
5824 }
5825 else
5826 {
5827 unsigned int line_offset = line_offset_struct.sect_off;
5828 struct partial_symtab *pst;
5829 char *name;
5830
5831 /* Give the symtab a useful name for debug purposes. */
5832 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5833 name = xstrprintf ("<type_units_%d>",
5834 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5835 else
5836 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5837
5838 pst = create_partial_symtab (per_cu, name);
5839 pst->anonymous = 1;
f4dc4d17 5840
094b34ac
DE
5841 xfree (name);
5842 }
f4dc4d17 5843
094b34ac
DE
5844 tu_group->hash.dwo_unit = cu->dwo_unit;
5845 tu_group->hash.line_offset = line_offset_struct;
f4dc4d17
DE
5846
5847 return tu_group;
5848}
5849
094b34ac
DE
5850/* Look up the type_unit_group for type unit CU, and create it if necessary.
5851 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
5852
5853static struct type_unit_group *
ff39bb5e 5854get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17
DE
5855{
5856 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5857 struct type_unit_group *tu_group;
5858 void **slot;
5859 unsigned int line_offset;
5860 struct type_unit_group type_unit_group_for_lookup;
5861
5862 if (dwarf2_per_objfile->type_unit_groups == NULL)
5863 {
5864 dwarf2_per_objfile->type_unit_groups =
5865 allocate_type_unit_groups_table ();
5866 }
5867
5868 /* Do we need to create a new group, or can we use an existing one? */
5869
5870 if (stmt_list)
5871 {
5872 line_offset = DW_UNSND (stmt_list);
5873 ++tu_stats->nr_symtab_sharers;
5874 }
5875 else
5876 {
5877 /* Ugh, no stmt_list. Rare, but we have to handle it.
5878 We can do various things here like create one group per TU or
5879 spread them over multiple groups to split up the expansion work.
5880 To avoid worst case scenarios (too many groups or too large groups)
5881 we, umm, group them in bunches. */
5882 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5883 | (tu_stats->nr_stmt_less_type_units
5884 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5885 ++tu_stats->nr_stmt_less_type_units;
5886 }
5887
094b34ac
DE
5888 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5889 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
f4dc4d17
DE
5890 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5891 &type_unit_group_for_lookup, INSERT);
5892 if (*slot != NULL)
5893 {
9a3c8263 5894 tu_group = (struct type_unit_group *) *slot;
f4dc4d17
DE
5895 gdb_assert (tu_group != NULL);
5896 }
5897 else
5898 {
5899 sect_offset line_offset_struct;
5900
5901 line_offset_struct.sect_off = line_offset;
094b34ac 5902 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
5903 *slot = tu_group;
5904 ++tu_stats->nr_symtabs;
5905 }
5906
5907 return tu_group;
5908}
0018ea6f
DE
5909\f
5910/* Partial symbol tables. */
5911
5912/* Create a psymtab named NAME and assign it to PER_CU.
5913
5914 The caller must fill in the following details:
5915 dirname, textlow, texthigh. */
5916
5917static struct partial_symtab *
5918create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5919{
5920 struct objfile *objfile = per_cu->objfile;
5921 struct partial_symtab *pst;
5922
18a94d75 5923 pst = start_psymtab_common (objfile, name, 0,
0018ea6f
DE
5924 objfile->global_psymbols.next,
5925 objfile->static_psymbols.next);
5926
5927 pst->psymtabs_addrmap_supported = 1;
5928
5929 /* This is the glue that links PST into GDB's symbol API. */
5930 pst->read_symtab_private = per_cu;
5931 pst->read_symtab = dwarf2_read_symtab;
5932 per_cu->v.psymtab = pst;
5933
5934 return pst;
5935}
5936
b93601f3
TT
5937/* The DATA object passed to process_psymtab_comp_unit_reader has this
5938 type. */
5939
5940struct process_psymtab_comp_unit_data
5941{
5942 /* True if we are reading a DW_TAG_partial_unit. */
5943
5944 int want_partial_unit;
5945
5946 /* The "pretend" language that is used if the CU doesn't declare a
5947 language. */
5948
5949 enum language pretend_language;
5950};
5951
0018ea6f
DE
5952/* die_reader_func for process_psymtab_comp_unit. */
5953
5954static void
5955process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 5956 const gdb_byte *info_ptr,
0018ea6f
DE
5957 struct die_info *comp_unit_die,
5958 int has_children,
5959 void *data)
5960{
5961 struct dwarf2_cu *cu = reader->cu;
5962 struct objfile *objfile = cu->objfile;
3e29f34a 5963 struct gdbarch *gdbarch = get_objfile_arch (objfile);
0018ea6f 5964 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0018ea6f
DE
5965 CORE_ADDR baseaddr;
5966 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5967 struct partial_symtab *pst;
3a2b436a 5968 enum pc_bounds_kind cu_bounds_kind;
0018ea6f 5969 const char *filename;
9a3c8263
SM
5970 struct process_psymtab_comp_unit_data *info
5971 = (struct process_psymtab_comp_unit_data *) data;
0018ea6f 5972
b93601f3 5973 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
5974 return;
5975
5976 gdb_assert (! per_cu->is_debug_types);
5977
b93601f3 5978 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f
DE
5979
5980 cu->list_in_scope = &file_symbols;
5981
5982 /* Allocate a new partial symbol table structure. */
7d45c7c3
KB
5983 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
5984 if (filename == NULL)
0018ea6f 5985 filename = "";
0018ea6f
DE
5986
5987 pst = create_partial_symtab (per_cu, filename);
5988
5989 /* This must be done before calling dwarf2_build_include_psymtabs. */
7d45c7c3 5990 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
0018ea6f
DE
5991
5992 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5993
5994 dwarf2_find_base_address (comp_unit_die, cu);
5995
5996 /* Possibly set the default values of LOWPC and HIGHPC from
5997 `DW_AT_ranges'. */
3a2b436a
JK
5998 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5999 &best_highpc, cu, pst);
6000 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
0018ea6f
DE
6001 /* Store the contiguous range if it is not empty; it can be empty for
6002 CUs with no code. */
6003 addrmap_set_empty (objfile->psymtabs_addrmap,
3e29f34a
MR
6004 gdbarch_adjust_dwarf2_addr (gdbarch,
6005 best_lowpc + baseaddr),
6006 gdbarch_adjust_dwarf2_addr (gdbarch,
6007 best_highpc + baseaddr) - 1,
6008 pst);
0018ea6f
DE
6009
6010 /* Check if comp unit has_children.
6011 If so, read the rest of the partial symbols from this comp unit.
6012 If not, there's no more debug_info for this comp unit. */
6013 if (has_children)
6014 {
6015 struct partial_die_info *first_die;
6016 CORE_ADDR lowpc, highpc;
6017
6018 lowpc = ((CORE_ADDR) -1);
6019 highpc = ((CORE_ADDR) 0);
6020
6021 first_die = load_partial_dies (reader, info_ptr, 1);
6022
6023 scan_partial_symbols (first_die, &lowpc, &highpc,
e385593e 6024 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
0018ea6f
DE
6025
6026 /* If we didn't find a lowpc, set it to highpc to avoid
6027 complaints from `maint check'. */
6028 if (lowpc == ((CORE_ADDR) -1))
6029 lowpc = highpc;
6030
6031 /* If the compilation unit didn't have an explicit address range,
6032 then use the information extracted from its child dies. */
e385593e 6033 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
0018ea6f
DE
6034 {
6035 best_lowpc = lowpc;
6036 best_highpc = highpc;
6037 }
6038 }
3e29f34a
MR
6039 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6040 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
0018ea6f 6041
8763cede 6042 end_psymtab_common (objfile, pst);
0018ea6f
DE
6043
6044 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6045 {
6046 int i;
6047 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6048 struct dwarf2_per_cu_data *iter;
6049
6050 /* Fill in 'dependencies' here; we fill in 'users' in a
6051 post-pass. */
6052 pst->number_of_dependencies = len;
8d749320
SM
6053 pst->dependencies =
6054 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
0018ea6f
DE
6055 for (i = 0;
6056 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6057 i, iter);
6058 ++i)
6059 pst->dependencies[i] = iter->v.psymtab;
6060
6061 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6062 }
6063
6064 /* Get the list of files included in the current compilation unit,
6065 and build a psymtab for each of them. */
6066 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6067
b4f54984 6068 if (dwarf_read_debug)
0018ea6f
DE
6069 {
6070 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6071
6072 fprintf_unfiltered (gdb_stdlog,
6073 "Psymtab for %s unit @0x%x: %s - %s"
6074 ", %d global, %d static syms\n",
6075 per_cu->is_debug_types ? "type" : "comp",
6076 per_cu->offset.sect_off,
6077 paddress (gdbarch, pst->textlow),
6078 paddress (gdbarch, pst->texthigh),
6079 pst->n_global_syms, pst->n_static_syms);
6080 }
6081}
6082
6083/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6084 Process compilation unit THIS_CU for a psymtab. */
6085
6086static void
6087process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
6088 int want_partial_unit,
6089 enum language pretend_language)
0018ea6f 6090{
b93601f3
TT
6091 struct process_psymtab_comp_unit_data info;
6092
0018ea6f
DE
6093 /* If this compilation unit was already read in, free the
6094 cached copy in order to read it in again. This is
6095 necessary because we skipped some symbols when we first
6096 read in the compilation unit (see load_partial_dies).
6097 This problem could be avoided, but the benefit is unclear. */
6098 if (this_cu->cu != NULL)
6099 free_one_cached_comp_unit (this_cu);
6100
6101 gdb_assert (! this_cu->is_debug_types);
b93601f3
TT
6102 info.want_partial_unit = want_partial_unit;
6103 info.pretend_language = pretend_language;
0018ea6f
DE
6104 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6105 process_psymtab_comp_unit_reader,
b93601f3 6106 &info);
0018ea6f
DE
6107
6108 /* Age out any secondary CUs. */
6109 age_cached_comp_units ();
6110}
f4dc4d17
DE
6111
6112/* Reader function for build_type_psymtabs. */
6113
6114static void
6115build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 6116 const gdb_byte *info_ptr,
f4dc4d17
DE
6117 struct die_info *type_unit_die,
6118 int has_children,
6119 void *data)
6120{
6121 struct objfile *objfile = dwarf2_per_objfile->objfile;
6122 struct dwarf2_cu *cu = reader->cu;
6123 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 6124 struct signatured_type *sig_type;
f4dc4d17
DE
6125 struct type_unit_group *tu_group;
6126 struct attribute *attr;
6127 struct partial_die_info *first_die;
6128 CORE_ADDR lowpc, highpc;
6129 struct partial_symtab *pst;
6130
6131 gdb_assert (data == NULL);
0186c6a7
DE
6132 gdb_assert (per_cu->is_debug_types);
6133 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
6134
6135 if (! has_children)
6136 return;
6137
6138 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 6139 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 6140
0186c6a7 6141 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
6142
6143 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6144 cu->list_in_scope = &file_symbols;
6145 pst = create_partial_symtab (per_cu, "");
6146 pst->anonymous = 1;
6147
6148 first_die = load_partial_dies (reader, info_ptr, 1);
6149
6150 lowpc = (CORE_ADDR) -1;
6151 highpc = (CORE_ADDR) 0;
6152 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6153
8763cede 6154 end_psymtab_common (objfile, pst);
f4dc4d17
DE
6155}
6156
73051182
DE
6157/* Struct used to sort TUs by their abbreviation table offset. */
6158
6159struct tu_abbrev_offset
6160{
6161 struct signatured_type *sig_type;
6162 sect_offset abbrev_offset;
6163};
6164
6165/* Helper routine for build_type_psymtabs_1, passed to qsort. */
6166
6167static int
6168sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6169{
9a3c8263
SM
6170 const struct tu_abbrev_offset * const *a
6171 = (const struct tu_abbrev_offset * const*) ap;
6172 const struct tu_abbrev_offset * const *b
6173 = (const struct tu_abbrev_offset * const*) bp;
73051182
DE
6174 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6175 unsigned int boff = (*b)->abbrev_offset.sect_off;
6176
6177 return (aoff > boff) - (aoff < boff);
6178}
6179
6180/* Efficiently read all the type units.
6181 This does the bulk of the work for build_type_psymtabs.
6182
6183 The efficiency is because we sort TUs by the abbrev table they use and
6184 only read each abbrev table once. In one program there are 200K TUs
6185 sharing 8K abbrev tables.
6186
6187 The main purpose of this function is to support building the
6188 dwarf2_per_objfile->type_unit_groups table.
6189 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6190 can collapse the search space by grouping them by stmt_list.
6191 The savings can be significant, in the same program from above the 200K TUs
6192 share 8K stmt_list tables.
6193
6194 FUNC is expected to call get_type_unit_group, which will create the
6195 struct type_unit_group if necessary and add it to
6196 dwarf2_per_objfile->type_unit_groups. */
6197
6198static void
6199build_type_psymtabs_1 (void)
6200{
73051182
DE
6201 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6202 struct cleanup *cleanups;
6203 struct abbrev_table *abbrev_table;
6204 sect_offset abbrev_offset;
6205 struct tu_abbrev_offset *sorted_by_abbrev;
73051182
DE
6206 int i;
6207
6208 /* It's up to the caller to not call us multiple times. */
6209 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6210
6211 if (dwarf2_per_objfile->n_type_units == 0)
6212 return;
6213
6214 /* TUs typically share abbrev tables, and there can be way more TUs than
6215 abbrev tables. Sort by abbrev table to reduce the number of times we
6216 read each abbrev table in.
6217 Alternatives are to punt or to maintain a cache of abbrev tables.
6218 This is simpler and efficient enough for now.
6219
6220 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6221 symtab to use). Typically TUs with the same abbrev offset have the same
6222 stmt_list value too so in practice this should work well.
6223
6224 The basic algorithm here is:
6225
6226 sort TUs by abbrev table
6227 for each TU with same abbrev table:
6228 read abbrev table if first user
6229 read TU top level DIE
6230 [IWBN if DWO skeletons had DW_AT_stmt_list]
6231 call FUNC */
6232
b4f54984 6233 if (dwarf_read_debug)
73051182
DE
6234 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6235
6236 /* Sort in a separate table to maintain the order of all_type_units
6237 for .gdb_index: TU indices directly index all_type_units. */
6238 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6239 dwarf2_per_objfile->n_type_units);
6240 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6241 {
6242 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6243
6244 sorted_by_abbrev[i].sig_type = sig_type;
6245 sorted_by_abbrev[i].abbrev_offset =
6246 read_abbrev_offset (sig_type->per_cu.section,
6247 sig_type->per_cu.offset);
6248 }
6249 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6250 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6251 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6252
6253 abbrev_offset.sect_off = ~(unsigned) 0;
6254 abbrev_table = NULL;
6255 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6256
6257 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6258 {
6259 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6260
6261 /* Switch to the next abbrev table if necessary. */
6262 if (abbrev_table == NULL
6263 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6264 {
6265 if (abbrev_table != NULL)
6266 {
6267 abbrev_table_free (abbrev_table);
6268 /* Reset to NULL in case abbrev_table_read_table throws
6269 an error: abbrev_table_free_cleanup will get called. */
6270 abbrev_table = NULL;
6271 }
6272 abbrev_offset = tu->abbrev_offset;
6273 abbrev_table =
6274 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6275 abbrev_offset);
6276 ++tu_stats->nr_uniq_abbrev_tables;
6277 }
6278
6279 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6280 build_type_psymtabs_reader, NULL);
6281 }
6282
73051182 6283 do_cleanups (cleanups);
6aa5f3a6 6284}
73051182 6285
6aa5f3a6
DE
6286/* Print collected type unit statistics. */
6287
6288static void
6289print_tu_stats (void)
6290{
6291 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6292
6293 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6294 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6295 dwarf2_per_objfile->n_type_units);
6296 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6297 tu_stats->nr_uniq_abbrev_tables);
6298 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6299 tu_stats->nr_symtabs);
6300 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6301 tu_stats->nr_symtab_sharers);
6302 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6303 tu_stats->nr_stmt_less_type_units);
6304 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6305 tu_stats->nr_all_type_units_reallocs);
73051182
DE
6306}
6307
f4dc4d17
DE
6308/* Traversal function for build_type_psymtabs. */
6309
6310static int
6311build_type_psymtab_dependencies (void **slot, void *info)
6312{
6313 struct objfile *objfile = dwarf2_per_objfile->objfile;
6314 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 6315 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 6316 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
6317 int len = VEC_length (sig_type_ptr, tu_group->tus);
6318 struct signatured_type *iter;
f4dc4d17
DE
6319 int i;
6320
6321 gdb_assert (len > 0);
0186c6a7 6322 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
6323
6324 pst->number_of_dependencies = len;
8d749320
SM
6325 pst->dependencies =
6326 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
f4dc4d17 6327 for (i = 0;
0186c6a7 6328 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
6329 ++i)
6330 {
0186c6a7
DE
6331 gdb_assert (iter->per_cu.is_debug_types);
6332 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 6333 iter->type_unit_group = tu_group;
f4dc4d17
DE
6334 }
6335
0186c6a7 6336 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
6337
6338 return 1;
6339}
6340
6341/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6342 Build partial symbol tables for the .debug_types comp-units. */
6343
6344static void
6345build_type_psymtabs (struct objfile *objfile)
6346{
0e50663e 6347 if (! create_all_type_units (objfile))
348e048f
DE
6348 return;
6349
73051182 6350 build_type_psymtabs_1 ();
6aa5f3a6 6351}
f4dc4d17 6352
6aa5f3a6
DE
6353/* Traversal function for process_skeletonless_type_unit.
6354 Read a TU in a DWO file and build partial symbols for it. */
6355
6356static int
6357process_skeletonless_type_unit (void **slot, void *info)
6358{
6359 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
9a3c8263 6360 struct objfile *objfile = (struct objfile *) info;
6aa5f3a6
DE
6361 struct signatured_type find_entry, *entry;
6362
6363 /* If this TU doesn't exist in the global table, add it and read it in. */
6364
6365 if (dwarf2_per_objfile->signatured_types == NULL)
6366 {
6367 dwarf2_per_objfile->signatured_types
6368 = allocate_signatured_type_table (objfile);
6369 }
6370
6371 find_entry.signature = dwo_unit->signature;
6372 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6373 INSERT);
6374 /* If we've already seen this type there's nothing to do. What's happening
6375 is we're doing our own version of comdat-folding here. */
6376 if (*slot != NULL)
6377 return 1;
6378
6379 /* This does the job that create_all_type_units would have done for
6380 this TU. */
6381 entry = add_type_unit (dwo_unit->signature, slot);
6382 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6383 *slot = entry;
6384
6385 /* This does the job that build_type_psymtabs_1 would have done. */
6386 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6387 build_type_psymtabs_reader, NULL);
6388
6389 return 1;
6390}
6391
6392/* Traversal function for process_skeletonless_type_units. */
6393
6394static int
6395process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6396{
6397 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6398
6399 if (dwo_file->tus != NULL)
6400 {
6401 htab_traverse_noresize (dwo_file->tus,
6402 process_skeletonless_type_unit, info);
6403 }
6404
6405 return 1;
6406}
6407
6408/* Scan all TUs of DWO files, verifying we've processed them.
6409 This is needed in case a TU was emitted without its skeleton.
6410 Note: This can't be done until we know what all the DWO files are. */
6411
6412static void
6413process_skeletonless_type_units (struct objfile *objfile)
6414{
6415 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6416 if (get_dwp_file () == NULL
6417 && dwarf2_per_objfile->dwo_files != NULL)
6418 {
6419 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6420 process_dwo_file_for_skeletonless_type_units,
6421 objfile);
6422 }
348e048f
DE
6423}
6424
60606b2c
TT
6425/* A cleanup function that clears objfile's psymtabs_addrmap field. */
6426
6427static void
6428psymtabs_addrmap_cleanup (void *o)
6429{
9a3c8263 6430 struct objfile *objfile = (struct objfile *) o;
ec61707d 6431
60606b2c
TT
6432 objfile->psymtabs_addrmap = NULL;
6433}
6434
95554aad
TT
6435/* Compute the 'user' field for each psymtab in OBJFILE. */
6436
6437static void
6438set_partial_user (struct objfile *objfile)
6439{
6440 int i;
6441
6442 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6443 {
8832e7e3 6444 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
95554aad
TT
6445 struct partial_symtab *pst = per_cu->v.psymtab;
6446 int j;
6447
36586728
TT
6448 if (pst == NULL)
6449 continue;
6450
95554aad
TT
6451 for (j = 0; j < pst->number_of_dependencies; ++j)
6452 {
6453 /* Set the 'user' field only if it is not already set. */
6454 if (pst->dependencies[j]->user == NULL)
6455 pst->dependencies[j]->user = pst;
6456 }
6457 }
6458}
6459
93311388
DE
6460/* Build the partial symbol table by doing a quick pass through the
6461 .debug_info and .debug_abbrev sections. */
72bf9492 6462
93311388 6463static void
c67a9c90 6464dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 6465{
60606b2c
TT
6466 struct cleanup *back_to, *addrmap_cleanup;
6467 struct obstack temp_obstack;
21b2bd31 6468 int i;
93311388 6469
b4f54984 6470 if (dwarf_read_debug)
45cfd468
DE
6471 {
6472 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 6473 objfile_name (objfile));
45cfd468
DE
6474 }
6475
98bfdba5
PA
6476 dwarf2_per_objfile->reading_partial_symbols = 1;
6477
be391dca 6478 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 6479
93311388
DE
6480 /* Any cached compilation units will be linked by the per-objfile
6481 read_in_chain. Make sure to free them when we're done. */
6482 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 6483
348e048f
DE
6484 build_type_psymtabs (objfile);
6485
93311388 6486 create_all_comp_units (objfile);
c906108c 6487
60606b2c
TT
6488 /* Create a temporary address map on a temporary obstack. We later
6489 copy this to the final obstack. */
6490 obstack_init (&temp_obstack);
6491 make_cleanup_obstack_free (&temp_obstack);
6492 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6493 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 6494
21b2bd31 6495 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 6496 {
8832e7e3 6497 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
aaa75496 6498
b93601f3 6499 process_psymtab_comp_unit (per_cu, 0, language_minimal);
c906108c 6500 }
ff013f42 6501
6aa5f3a6
DE
6502 /* This has to wait until we read the CUs, we need the list of DWOs. */
6503 process_skeletonless_type_units (objfile);
6504
6505 /* Now that all TUs have been processed we can fill in the dependencies. */
6506 if (dwarf2_per_objfile->type_unit_groups != NULL)
6507 {
6508 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6509 build_type_psymtab_dependencies, NULL);
6510 }
6511
b4f54984 6512 if (dwarf_read_debug)
6aa5f3a6
DE
6513 print_tu_stats ();
6514
95554aad
TT
6515 set_partial_user (objfile);
6516
ff013f42
JK
6517 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6518 &objfile->objfile_obstack);
60606b2c 6519 discard_cleanups (addrmap_cleanup);
ff013f42 6520
ae038cb0 6521 do_cleanups (back_to);
45cfd468 6522
b4f54984 6523 if (dwarf_read_debug)
45cfd468 6524 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 6525 objfile_name (objfile));
ae038cb0
DJ
6526}
6527
3019eac3 6528/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6529
6530static void
dee91e82 6531load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6532 const gdb_byte *info_ptr,
dee91e82
DE
6533 struct die_info *comp_unit_die,
6534 int has_children,
6535 void *data)
ae038cb0 6536{
dee91e82 6537 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6538
95554aad 6539 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6540
ae038cb0
DJ
6541 /* Check if comp unit has_children.
6542 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6543 If not, there's no more debug_info for this comp unit. */
d85a05f0 6544 if (has_children)
dee91e82
DE
6545 load_partial_dies (reader, info_ptr, 0);
6546}
98bfdba5 6547
dee91e82
DE
6548/* Load the partial DIEs for a secondary CU into memory.
6549 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6550
dee91e82
DE
6551static void
6552load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6553{
f4dc4d17
DE
6554 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6555 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6556}
6557
ae038cb0 6558static void
36586728
TT
6559read_comp_units_from_section (struct objfile *objfile,
6560 struct dwarf2_section_info *section,
6561 unsigned int is_dwz,
6562 int *n_allocated,
6563 int *n_comp_units,
6564 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6565{
d521ce57 6566 const gdb_byte *info_ptr;
a32a8923 6567 bfd *abfd = get_section_bfd_owner (section);
be391dca 6568
b4f54984 6569 if (dwarf_read_debug)
bf6af496 6570 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
6571 get_section_name (section),
6572 get_section_file_name (section));
bf6af496 6573
36586728 6574 dwarf2_read_section (objfile, section);
ae038cb0 6575
36586728 6576 info_ptr = section->buffer;
6e70227d 6577
36586728 6578 while (info_ptr < section->buffer + section->size)
ae038cb0 6579 {
c764a876 6580 unsigned int length, initial_length_size;
ae038cb0 6581 struct dwarf2_per_cu_data *this_cu;
b64f50a1 6582 sect_offset offset;
ae038cb0 6583
36586728 6584 offset.sect_off = info_ptr - section->buffer;
ae038cb0
DJ
6585
6586 /* Read just enough information to find out where the next
6587 compilation unit is. */
36586728 6588 length = read_initial_length (abfd, info_ptr, &initial_length_size);
ae038cb0
DJ
6589
6590 /* Save the compilation unit for later lookup. */
8d749320 6591 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
ae038cb0
DJ
6592 memset (this_cu, 0, sizeof (*this_cu));
6593 this_cu->offset = offset;
c764a876 6594 this_cu->length = length + initial_length_size;
36586728 6595 this_cu->is_dwz = is_dwz;
9291a0cd 6596 this_cu->objfile = objfile;
8a0459fd 6597 this_cu->section = section;
ae038cb0 6598
36586728 6599 if (*n_comp_units == *n_allocated)
ae038cb0 6600 {
36586728 6601 *n_allocated *= 2;
224c3ddb
SM
6602 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6603 *all_comp_units, *n_allocated);
ae038cb0 6604 }
36586728
TT
6605 (*all_comp_units)[*n_comp_units] = this_cu;
6606 ++*n_comp_units;
ae038cb0
DJ
6607
6608 info_ptr = info_ptr + this_cu->length;
6609 }
36586728
TT
6610}
6611
6612/* Create a list of all compilation units in OBJFILE.
6613 This is only done for -readnow and building partial symtabs. */
6614
6615static void
6616create_all_comp_units (struct objfile *objfile)
6617{
6618 int n_allocated;
6619 int n_comp_units;
6620 struct dwarf2_per_cu_data **all_comp_units;
4db1a1dc 6621 struct dwz_file *dwz;
36586728
TT
6622
6623 n_comp_units = 0;
6624 n_allocated = 10;
8d749320 6625 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
36586728
TT
6626
6627 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6628 &n_allocated, &n_comp_units, &all_comp_units);
6629
4db1a1dc
TT
6630 dwz = dwarf2_get_dwz_file ();
6631 if (dwz != NULL)
6632 read_comp_units_from_section (objfile, &dwz->info, 1,
6633 &n_allocated, &n_comp_units,
6634 &all_comp_units);
ae038cb0 6635
8d749320
SM
6636 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6637 struct dwarf2_per_cu_data *,
6638 n_comp_units);
ae038cb0
DJ
6639 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6640 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6641 xfree (all_comp_units);
6642 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6643}
6644
5734ee8b 6645/* Process all loaded DIEs for compilation unit CU, starting at
cdc07690 6646 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
5734ee8b 6647 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
cdc07690
YQ
6648 DW_AT_ranges). See the comments of add_partial_subprogram on how
6649 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
c906108c 6650
72bf9492
DJ
6651static void
6652scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
cdc07690
YQ
6653 CORE_ADDR *highpc, int set_addrmap,
6654 struct dwarf2_cu *cu)
c906108c 6655{
72bf9492 6656 struct partial_die_info *pdi;
c906108c 6657
91c24f0a
DC
6658 /* Now, march along the PDI's, descending into ones which have
6659 interesting children but skipping the children of the other ones,
6660 until we reach the end of the compilation unit. */
c906108c 6661
72bf9492 6662 pdi = first_die;
91c24f0a 6663
72bf9492
DJ
6664 while (pdi != NULL)
6665 {
6666 fixup_partial_die (pdi, cu);
c906108c 6667
f55ee35c 6668 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6669 children, so we need to look at them. Ditto for anonymous
6670 enums. */
933c6fe4 6671
72bf9492 6672 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6673 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6674 || pdi->tag == DW_TAG_imported_unit)
c906108c 6675 {
72bf9492 6676 switch (pdi->tag)
c906108c
SS
6677 {
6678 case DW_TAG_subprogram:
cdc07690 6679 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
c906108c 6680 break;
72929c62 6681 case DW_TAG_constant:
c906108c
SS
6682 case DW_TAG_variable:
6683 case DW_TAG_typedef:
91c24f0a 6684 case DW_TAG_union_type:
72bf9492 6685 if (!pdi->is_declaration)
63d06c5c 6686 {
72bf9492 6687 add_partial_symbol (pdi, cu);
63d06c5c
DC
6688 }
6689 break;
c906108c 6690 case DW_TAG_class_type:
680b30c7 6691 case DW_TAG_interface_type:
c906108c 6692 case DW_TAG_structure_type:
72bf9492 6693 if (!pdi->is_declaration)
c906108c 6694 {
72bf9492 6695 add_partial_symbol (pdi, cu);
c906108c 6696 }
e98c9e7c
TT
6697 if (cu->language == language_rust && pdi->has_children)
6698 scan_partial_symbols (pdi->die_child, lowpc, highpc,
6699 set_addrmap, cu);
c906108c 6700 break;
91c24f0a 6701 case DW_TAG_enumeration_type:
72bf9492
DJ
6702 if (!pdi->is_declaration)
6703 add_partial_enumeration (pdi, cu);
c906108c
SS
6704 break;
6705 case DW_TAG_base_type:
a02abb62 6706 case DW_TAG_subrange_type:
c906108c 6707 /* File scope base type definitions are added to the partial
c5aa993b 6708 symbol table. */
72bf9492 6709 add_partial_symbol (pdi, cu);
c906108c 6710 break;
d9fa45fe 6711 case DW_TAG_namespace:
cdc07690 6712 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
91c24f0a 6713 break;
5d7cb8df 6714 case DW_TAG_module:
cdc07690 6715 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
5d7cb8df 6716 break;
95554aad
TT
6717 case DW_TAG_imported_unit:
6718 {
6719 struct dwarf2_per_cu_data *per_cu;
6720
f4dc4d17
DE
6721 /* For now we don't handle imported units in type units. */
6722 if (cu->per_cu->is_debug_types)
6723 {
6724 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6725 " supported in type units [in module %s]"),
4262abfb 6726 objfile_name (cu->objfile));
f4dc4d17
DE
6727 }
6728
95554aad 6729 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
36586728 6730 pdi->is_dwz,
95554aad
TT
6731 cu->objfile);
6732
6733 /* Go read the partial unit, if needed. */
6734 if (per_cu->v.psymtab == NULL)
b93601f3 6735 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 6736
f4dc4d17 6737 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6738 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6739 }
6740 break;
74921315
KS
6741 case DW_TAG_imported_declaration:
6742 add_partial_symbol (pdi, cu);
6743 break;
c906108c
SS
6744 default:
6745 break;
6746 }
6747 }
6748
72bf9492
DJ
6749 /* If the die has a sibling, skip to the sibling. */
6750
6751 pdi = pdi->die_sibling;
6752 }
6753}
6754
6755/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 6756
72bf9492 6757 Normally, this is simple. For C++, the parent DIE's fully scoped
9c37b5ae 6758 name is concatenated with "::" and the partial DIE's name.
72bf9492
DJ
6759 Enumerators are an exception; they use the scope of their parent
6760 enumeration type, i.e. the name of the enumeration type is not
6761 prepended to the enumerator.
91c24f0a 6762
72bf9492
DJ
6763 There are two complexities. One is DW_AT_specification; in this
6764 case "parent" means the parent of the target of the specification,
6765 instead of the direct parent of the DIE. The other is compilers
6766 which do not emit DW_TAG_namespace; in this case we try to guess
6767 the fully qualified name of structure types from their members'
6768 linkage names. This must be done using the DIE's children rather
6769 than the children of any DW_AT_specification target. We only need
6770 to do this for structures at the top level, i.e. if the target of
6771 any DW_AT_specification (if any; otherwise the DIE itself) does not
6772 have a parent. */
6773
6774/* Compute the scope prefix associated with PDI's parent, in
6775 compilation unit CU. The result will be allocated on CU's
6776 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6777 field. NULL is returned if no prefix is necessary. */
15d034d0 6778static const char *
72bf9492
DJ
6779partial_die_parent_scope (struct partial_die_info *pdi,
6780 struct dwarf2_cu *cu)
6781{
15d034d0 6782 const char *grandparent_scope;
72bf9492 6783 struct partial_die_info *parent, *real_pdi;
91c24f0a 6784
72bf9492
DJ
6785 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6786 then this means the parent of the specification DIE. */
6787
6788 real_pdi = pdi;
72bf9492 6789 while (real_pdi->has_specification)
36586728
TT
6790 real_pdi = find_partial_die (real_pdi->spec_offset,
6791 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
6792
6793 parent = real_pdi->die_parent;
6794 if (parent == NULL)
6795 return NULL;
6796
6797 if (parent->scope_set)
6798 return parent->scope;
6799
6800 fixup_partial_die (parent, cu);
6801
10b3939b 6802 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 6803
acebe513
UW
6804 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6805 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6806 Work around this problem here. */
6807 if (cu->language == language_cplus
6e70227d 6808 && parent->tag == DW_TAG_namespace
acebe513
UW
6809 && strcmp (parent->name, "::") == 0
6810 && grandparent_scope == NULL)
6811 {
6812 parent->scope = NULL;
6813 parent->scope_set = 1;
6814 return NULL;
6815 }
6816
9c6c53f7
SA
6817 if (pdi->tag == DW_TAG_enumerator)
6818 /* Enumerators should not get the name of the enumeration as a prefix. */
6819 parent->scope = grandparent_scope;
6820 else if (parent->tag == DW_TAG_namespace
f55ee35c 6821 || parent->tag == DW_TAG_module
72bf9492
DJ
6822 || parent->tag == DW_TAG_structure_type
6823 || parent->tag == DW_TAG_class_type
680b30c7 6824 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
6825 || parent->tag == DW_TAG_union_type
6826 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
6827 {
6828 if (grandparent_scope == NULL)
6829 parent->scope = parent->name;
6830 else
3e43a32a
MS
6831 parent->scope = typename_concat (&cu->comp_unit_obstack,
6832 grandparent_scope,
f55ee35c 6833 parent->name, 0, cu);
72bf9492 6834 }
72bf9492
DJ
6835 else
6836 {
6837 /* FIXME drow/2004-04-01: What should we be doing with
6838 function-local names? For partial symbols, we should probably be
6839 ignoring them. */
6840 complaint (&symfile_complaints,
e2e0b3e5 6841 _("unhandled containing DIE tag %d for DIE at %d"),
b64f50a1 6842 parent->tag, pdi->offset.sect_off);
72bf9492 6843 parent->scope = grandparent_scope;
c906108c
SS
6844 }
6845
72bf9492
DJ
6846 parent->scope_set = 1;
6847 return parent->scope;
6848}
6849
6850/* Return the fully scoped name associated with PDI, from compilation unit
6851 CU. The result will be allocated with malloc. */
4568ecf9 6852
72bf9492
DJ
6853static char *
6854partial_die_full_name (struct partial_die_info *pdi,
6855 struct dwarf2_cu *cu)
6856{
15d034d0 6857 const char *parent_scope;
72bf9492 6858
98bfdba5
PA
6859 /* If this is a template instantiation, we can not work out the
6860 template arguments from partial DIEs. So, unfortunately, we have
6861 to go through the full DIEs. At least any work we do building
6862 types here will be reused if full symbols are loaded later. */
6863 if (pdi->has_template_arguments)
6864 {
6865 fixup_partial_die (pdi, cu);
6866
6867 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6868 {
6869 struct die_info *die;
6870 struct attribute attr;
6871 struct dwarf2_cu *ref_cu = cu;
6872
b64f50a1 6873 /* DW_FORM_ref_addr is using section offset. */
b4069958 6874 attr.name = (enum dwarf_attribute) 0;
98bfdba5 6875 attr.form = DW_FORM_ref_addr;
4568ecf9 6876 attr.u.unsnd = pdi->offset.sect_off;
98bfdba5
PA
6877 die = follow_die_ref (NULL, &attr, &ref_cu);
6878
6879 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6880 }
6881 }
6882
72bf9492
DJ
6883 parent_scope = partial_die_parent_scope (pdi, cu);
6884 if (parent_scope == NULL)
6885 return NULL;
6886 else
f55ee35c 6887 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
6888}
6889
6890static void
72bf9492 6891add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 6892{
e7c27a73 6893 struct objfile *objfile = cu->objfile;
3e29f34a 6894 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 6895 CORE_ADDR addr = 0;
15d034d0 6896 const char *actual_name = NULL;
e142c38c 6897 CORE_ADDR baseaddr;
15d034d0 6898 char *built_actual_name;
e142c38c
DJ
6899
6900 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6901
15d034d0
TT
6902 built_actual_name = partial_die_full_name (pdi, cu);
6903 if (built_actual_name != NULL)
6904 actual_name = built_actual_name;
63d06c5c 6905
72bf9492
DJ
6906 if (actual_name == NULL)
6907 actual_name = pdi->name;
6908
c906108c
SS
6909 switch (pdi->tag)
6910 {
6911 case DW_TAG_subprogram:
3e29f34a 6912 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
2cfa0c8d 6913 if (pdi->is_external || cu->language == language_ada)
c906108c 6914 {
2cfa0c8d
JB
6915 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6916 of the global scope. But in Ada, we want to be able to access
6917 nested procedures globally. So all Ada subprograms are stored
6918 in the global scope. */
f47fb265 6919 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6920 built_actual_name != NULL,
f47fb265
MS
6921 VAR_DOMAIN, LOC_BLOCK,
6922 &objfile->global_psymbols,
1762568f 6923 addr, cu->language, objfile);
c906108c
SS
6924 }
6925 else
6926 {
f47fb265 6927 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6928 built_actual_name != NULL,
f47fb265
MS
6929 VAR_DOMAIN, LOC_BLOCK,
6930 &objfile->static_psymbols,
1762568f 6931 addr, cu->language, objfile);
c906108c
SS
6932 }
6933 break;
72929c62
JB
6934 case DW_TAG_constant:
6935 {
6936 struct psymbol_allocation_list *list;
6937
6938 if (pdi->is_external)
6939 list = &objfile->global_psymbols;
6940 else
6941 list = &objfile->static_psymbols;
f47fb265 6942 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6943 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
1762568f 6944 list, 0, cu->language, objfile);
72929c62
JB
6945 }
6946 break;
c906108c 6947 case DW_TAG_variable:
95554aad
TT
6948 if (pdi->d.locdesc)
6949 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 6950
95554aad 6951 if (pdi->d.locdesc
caac4577
JG
6952 && addr == 0
6953 && !dwarf2_per_objfile->has_section_at_zero)
6954 {
6955 /* A global or static variable may also have been stripped
6956 out by the linker if unused, in which case its address
6957 will be nullified; do not add such variables into partial
6958 symbol table then. */
6959 }
6960 else if (pdi->is_external)
c906108c
SS
6961 {
6962 /* Global Variable.
6963 Don't enter into the minimal symbol tables as there is
6964 a minimal symbol table entry from the ELF symbols already.
6965 Enter into partial symbol table if it has a location
6966 descriptor or a type.
6967 If the location descriptor is missing, new_symbol will create
6968 a LOC_UNRESOLVED symbol, the address of the variable will then
6969 be determined from the minimal symbol table whenever the variable
6970 is referenced.
6971 The address for the partial symbol table entry is not
6972 used by GDB, but it comes in handy for debugging partial symbol
6973 table building. */
6974
95554aad 6975 if (pdi->d.locdesc || pdi->has_type)
f47fb265 6976 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6977 built_actual_name != NULL,
f47fb265
MS
6978 VAR_DOMAIN, LOC_STATIC,
6979 &objfile->global_psymbols,
1762568f 6980 addr + baseaddr,
f47fb265 6981 cu->language, objfile);
c906108c
SS
6982 }
6983 else
6984 {
ff908ebf
AW
6985 int has_loc = pdi->d.locdesc != NULL;
6986
6987 /* Static Variable. Skip symbols whose value we cannot know (those
6988 without location descriptors or constant values). */
6989 if (!has_loc && !pdi->has_const_value)
decbce07 6990 {
15d034d0 6991 xfree (built_actual_name);
decbce07
MS
6992 return;
6993 }
ff908ebf 6994
f47fb265 6995 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6996 built_actual_name != NULL,
f47fb265
MS
6997 VAR_DOMAIN, LOC_STATIC,
6998 &objfile->static_psymbols,
ff908ebf 6999 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
f47fb265 7000 cu->language, objfile);
c906108c
SS
7001 }
7002 break;
7003 case DW_TAG_typedef:
7004 case DW_TAG_base_type:
a02abb62 7005 case DW_TAG_subrange_type:
38d518c9 7006 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7007 built_actual_name != NULL,
176620f1 7008 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 7009 &objfile->static_psymbols,
1762568f 7010 0, cu->language, objfile);
c906108c 7011 break;
74921315 7012 case DW_TAG_imported_declaration:
72bf9492
DJ
7013 case DW_TAG_namespace:
7014 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7015 built_actual_name != NULL,
72bf9492
DJ
7016 VAR_DOMAIN, LOC_TYPEDEF,
7017 &objfile->global_psymbols,
1762568f 7018 0, cu->language, objfile);
72bf9492 7019 break;
530e8392
KB
7020 case DW_TAG_module:
7021 add_psymbol_to_list (actual_name, strlen (actual_name),
7022 built_actual_name != NULL,
7023 MODULE_DOMAIN, LOC_TYPEDEF,
7024 &objfile->global_psymbols,
1762568f 7025 0, cu->language, objfile);
530e8392 7026 break;
c906108c 7027 case DW_TAG_class_type:
680b30c7 7028 case DW_TAG_interface_type:
c906108c
SS
7029 case DW_TAG_structure_type:
7030 case DW_TAG_union_type:
7031 case DW_TAG_enumeration_type:
fa4028e9
JB
7032 /* Skip external references. The DWARF standard says in the section
7033 about "Structure, Union, and Class Type Entries": "An incomplete
7034 structure, union or class type is represented by a structure,
7035 union or class entry that does not have a byte size attribute
7036 and that has a DW_AT_declaration attribute." */
7037 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 7038 {
15d034d0 7039 xfree (built_actual_name);
decbce07
MS
7040 return;
7041 }
fa4028e9 7042
63d06c5c
DC
7043 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7044 static vs. global. */
38d518c9 7045 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7046 built_actual_name != NULL,
176620f1 7047 STRUCT_DOMAIN, LOC_TYPEDEF,
9c37b5ae 7048 cu->language == language_cplus
63d06c5c
DC
7049 ? &objfile->global_psymbols
7050 : &objfile->static_psymbols,
1762568f 7051 0, cu->language, objfile);
c906108c 7052
c906108c
SS
7053 break;
7054 case DW_TAG_enumerator:
38d518c9 7055 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7056 built_actual_name != NULL,
176620f1 7057 VAR_DOMAIN, LOC_CONST,
9c37b5ae 7058 cu->language == language_cplus
f6fe98ef
DJ
7059 ? &objfile->global_psymbols
7060 : &objfile->static_psymbols,
1762568f 7061 0, cu->language, objfile);
c906108c
SS
7062 break;
7063 default:
7064 break;
7065 }
5c4e30ca 7066
15d034d0 7067 xfree (built_actual_name);
c906108c
SS
7068}
7069
5c4e30ca
DC
7070/* Read a partial die corresponding to a namespace; also, add a symbol
7071 corresponding to that namespace to the symbol table. NAMESPACE is
7072 the name of the enclosing namespace. */
91c24f0a 7073
72bf9492
DJ
7074static void
7075add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 7076 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7077 int set_addrmap, struct dwarf2_cu *cu)
91c24f0a 7078{
72bf9492 7079 /* Add a symbol for the namespace. */
e7c27a73 7080
72bf9492 7081 add_partial_symbol (pdi, cu);
5c4e30ca
DC
7082
7083 /* Now scan partial symbols in that namespace. */
7084
91c24f0a 7085 if (pdi->has_children)
cdc07690 7086 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
91c24f0a
DC
7087}
7088
5d7cb8df
JK
7089/* Read a partial die corresponding to a Fortran module. */
7090
7091static void
7092add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 7093 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
5d7cb8df 7094{
530e8392
KB
7095 /* Add a symbol for the namespace. */
7096
7097 add_partial_symbol (pdi, cu);
7098
f55ee35c 7099 /* Now scan partial symbols in that module. */
5d7cb8df
JK
7100
7101 if (pdi->has_children)
cdc07690 7102 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
5d7cb8df
JK
7103}
7104
bc30ff58
JB
7105/* Read a partial die corresponding to a subprogram and create a partial
7106 symbol for that subprogram. When the CU language allows it, this
7107 routine also defines a partial symbol for each nested subprogram
cdc07690 7108 that this subprogram contains. If SET_ADDRMAP is true, record the
428fc5fc
YQ
7109 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7110 and highest PC values found in PDI.
6e70227d 7111
cdc07690
YQ
7112 PDI may also be a lexical block, in which case we simply search
7113 recursively for subprograms defined inside that lexical block.
bc30ff58
JB
7114 Again, this is only performed when the CU language allows this
7115 type of definitions. */
7116
7117static void
7118add_partial_subprogram (struct partial_die_info *pdi,
7119 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7120 int set_addrmap, struct dwarf2_cu *cu)
bc30ff58
JB
7121{
7122 if (pdi->tag == DW_TAG_subprogram)
7123 {
7124 if (pdi->has_pc_info)
7125 {
7126 if (pdi->lowpc < *lowpc)
7127 *lowpc = pdi->lowpc;
7128 if (pdi->highpc > *highpc)
7129 *highpc = pdi->highpc;
cdc07690 7130 if (set_addrmap)
5734ee8b 7131 {
5734ee8b 7132 struct objfile *objfile = cu->objfile;
3e29f34a
MR
7133 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7134 CORE_ADDR baseaddr;
7135 CORE_ADDR highpc;
7136 CORE_ADDR lowpc;
5734ee8b
DJ
7137
7138 baseaddr = ANOFFSET (objfile->section_offsets,
7139 SECT_OFF_TEXT (objfile));
3e29f34a
MR
7140 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7141 pdi->lowpc + baseaddr);
7142 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7143 pdi->highpc + baseaddr);
7144 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9291a0cd 7145 cu->per_cu->v.psymtab);
5734ee8b 7146 }
481860b3
GB
7147 }
7148
7149 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7150 {
bc30ff58 7151 if (!pdi->is_declaration)
e8d05480
JB
7152 /* Ignore subprogram DIEs that do not have a name, they are
7153 illegal. Do not emit a complaint at this point, we will
7154 do so when we convert this psymtab into a symtab. */
7155 if (pdi->name)
7156 add_partial_symbol (pdi, cu);
bc30ff58
JB
7157 }
7158 }
6e70227d 7159
bc30ff58
JB
7160 if (! pdi->has_children)
7161 return;
7162
7163 if (cu->language == language_ada)
7164 {
7165 pdi = pdi->die_child;
7166 while (pdi != NULL)
7167 {
7168 fixup_partial_die (pdi, cu);
7169 if (pdi->tag == DW_TAG_subprogram
7170 || pdi->tag == DW_TAG_lexical_block)
cdc07690 7171 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
bc30ff58
JB
7172 pdi = pdi->die_sibling;
7173 }
7174 }
7175}
7176
91c24f0a
DC
7177/* Read a partial die corresponding to an enumeration type. */
7178
72bf9492
DJ
7179static void
7180add_partial_enumeration (struct partial_die_info *enum_pdi,
7181 struct dwarf2_cu *cu)
91c24f0a 7182{
72bf9492 7183 struct partial_die_info *pdi;
91c24f0a
DC
7184
7185 if (enum_pdi->name != NULL)
72bf9492
DJ
7186 add_partial_symbol (enum_pdi, cu);
7187
7188 pdi = enum_pdi->die_child;
7189 while (pdi)
91c24f0a 7190 {
72bf9492 7191 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 7192 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 7193 else
72bf9492
DJ
7194 add_partial_symbol (pdi, cu);
7195 pdi = pdi->die_sibling;
91c24f0a 7196 }
91c24f0a
DC
7197}
7198
6caca83c
CC
7199/* Return the initial uleb128 in the die at INFO_PTR. */
7200
7201static unsigned int
d521ce57 7202peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
7203{
7204 unsigned int bytes_read;
7205
7206 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7207}
7208
4bb7a0a7
DJ
7209/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7210 Return the corresponding abbrev, or NULL if the number is zero (indicating
7211 an empty DIE). In either case *BYTES_READ will be set to the length of
7212 the initial number. */
7213
7214static struct abbrev_info *
d521ce57 7215peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 7216 struct dwarf2_cu *cu)
4bb7a0a7
DJ
7217{
7218 bfd *abfd = cu->objfile->obfd;
7219 unsigned int abbrev_number;
7220 struct abbrev_info *abbrev;
7221
7222 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7223
7224 if (abbrev_number == 0)
7225 return NULL;
7226
433df2d4 7227 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
7228 if (!abbrev)
7229 {
422b9917
DE
7230 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7231 " at offset 0x%x [in module %s]"),
7232 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7233 cu->header.offset.sect_off, bfd_get_filename (abfd));
4bb7a0a7
DJ
7234 }
7235
7236 return abbrev;
7237}
7238
93311388
DE
7239/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7240 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
7241 DIE. Any children of the skipped DIEs will also be skipped. */
7242
d521ce57
TT
7243static const gdb_byte *
7244skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 7245{
dee91e82 7246 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
7247 struct abbrev_info *abbrev;
7248 unsigned int bytes_read;
7249
7250 while (1)
7251 {
7252 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7253 if (abbrev == NULL)
7254 return info_ptr + bytes_read;
7255 else
dee91e82 7256 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
7257 }
7258}
7259
93311388
DE
7260/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7261 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
7262 abbrev corresponding to that skipped uleb128 should be passed in
7263 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7264 children. */
7265
d521ce57
TT
7266static const gdb_byte *
7267skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 7268 struct abbrev_info *abbrev)
4bb7a0a7
DJ
7269{
7270 unsigned int bytes_read;
7271 struct attribute attr;
dee91e82
DE
7272 bfd *abfd = reader->abfd;
7273 struct dwarf2_cu *cu = reader->cu;
d521ce57 7274 const gdb_byte *buffer = reader->buffer;
f664829e 7275 const gdb_byte *buffer_end = reader->buffer_end;
4bb7a0a7
DJ
7276 unsigned int form, i;
7277
7278 for (i = 0; i < abbrev->num_attrs; i++)
7279 {
7280 /* The only abbrev we care about is DW_AT_sibling. */
7281 if (abbrev->attrs[i].name == DW_AT_sibling)
7282 {
dee91e82 7283 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 7284 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
7285 complaint (&symfile_complaints,
7286 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 7287 else
b9502d3f
WN
7288 {
7289 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7290 const gdb_byte *sibling_ptr = buffer + off;
7291
7292 if (sibling_ptr < info_ptr)
7293 complaint (&symfile_complaints,
7294 _("DW_AT_sibling points backwards"));
22869d73
KS
7295 else if (sibling_ptr > reader->buffer_end)
7296 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
7297 else
7298 return sibling_ptr;
7299 }
4bb7a0a7
DJ
7300 }
7301
7302 /* If it isn't DW_AT_sibling, skip this attribute. */
7303 form = abbrev->attrs[i].form;
7304 skip_attribute:
7305 switch (form)
7306 {
4bb7a0a7 7307 case DW_FORM_ref_addr:
ae411497
TT
7308 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7309 and later it is offset sized. */
7310 if (cu->header.version == 2)
7311 info_ptr += cu->header.addr_size;
7312 else
7313 info_ptr += cu->header.offset_size;
7314 break;
36586728
TT
7315 case DW_FORM_GNU_ref_alt:
7316 info_ptr += cu->header.offset_size;
7317 break;
ae411497 7318 case DW_FORM_addr:
4bb7a0a7
DJ
7319 info_ptr += cu->header.addr_size;
7320 break;
7321 case DW_FORM_data1:
7322 case DW_FORM_ref1:
7323 case DW_FORM_flag:
7324 info_ptr += 1;
7325 break;
2dc7f7b3
TT
7326 case DW_FORM_flag_present:
7327 break;
4bb7a0a7
DJ
7328 case DW_FORM_data2:
7329 case DW_FORM_ref2:
7330 info_ptr += 2;
7331 break;
7332 case DW_FORM_data4:
7333 case DW_FORM_ref4:
7334 info_ptr += 4;
7335 break;
7336 case DW_FORM_data8:
7337 case DW_FORM_ref8:
55f1336d 7338 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
7339 info_ptr += 8;
7340 break;
7341 case DW_FORM_string:
9b1c24c8 7342 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
7343 info_ptr += bytes_read;
7344 break;
2dc7f7b3 7345 case DW_FORM_sec_offset:
4bb7a0a7 7346 case DW_FORM_strp:
36586728 7347 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
7348 info_ptr += cu->header.offset_size;
7349 break;
2dc7f7b3 7350 case DW_FORM_exprloc:
4bb7a0a7
DJ
7351 case DW_FORM_block:
7352 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7353 info_ptr += bytes_read;
7354 break;
7355 case DW_FORM_block1:
7356 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7357 break;
7358 case DW_FORM_block2:
7359 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7360 break;
7361 case DW_FORM_block4:
7362 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7363 break;
7364 case DW_FORM_sdata:
7365 case DW_FORM_udata:
7366 case DW_FORM_ref_udata:
3019eac3
DE
7367 case DW_FORM_GNU_addr_index:
7368 case DW_FORM_GNU_str_index:
d521ce57 7369 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
7370 break;
7371 case DW_FORM_indirect:
7372 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7373 info_ptr += bytes_read;
7374 /* We need to continue parsing from here, so just go back to
7375 the top. */
7376 goto skip_attribute;
7377
7378 default:
3e43a32a
MS
7379 error (_("Dwarf Error: Cannot handle %s "
7380 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
7381 dwarf_form_name (form),
7382 bfd_get_filename (abfd));
7383 }
7384 }
7385
7386 if (abbrev->has_children)
dee91e82 7387 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
7388 else
7389 return info_ptr;
7390}
7391
93311388 7392/* Locate ORIG_PDI's sibling.
dee91e82 7393 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 7394
d521ce57 7395static const gdb_byte *
dee91e82
DE
7396locate_pdi_sibling (const struct die_reader_specs *reader,
7397 struct partial_die_info *orig_pdi,
d521ce57 7398 const gdb_byte *info_ptr)
91c24f0a
DC
7399{
7400 /* Do we know the sibling already? */
72bf9492 7401
91c24f0a
DC
7402 if (orig_pdi->sibling)
7403 return orig_pdi->sibling;
7404
7405 /* Are there any children to deal with? */
7406
7407 if (!orig_pdi->has_children)
7408 return info_ptr;
7409
4bb7a0a7 7410 /* Skip the children the long way. */
91c24f0a 7411
dee91e82 7412 return skip_children (reader, info_ptr);
91c24f0a
DC
7413}
7414
257e7a09 7415/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 7416 not NULL. */
c906108c
SS
7417
7418static void
257e7a09
YQ
7419dwarf2_read_symtab (struct partial_symtab *self,
7420 struct objfile *objfile)
c906108c 7421{
257e7a09 7422 if (self->readin)
c906108c 7423 {
442e4d9c 7424 warning (_("bug: psymtab for %s is already read in."),
257e7a09 7425 self->filename);
442e4d9c
YQ
7426 }
7427 else
7428 {
7429 if (info_verbose)
c906108c 7430 {
442e4d9c 7431 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 7432 self->filename);
442e4d9c 7433 gdb_flush (gdb_stdout);
c906108c 7434 }
c906108c 7435
442e4d9c 7436 /* Restore our global data. */
9a3c8263
SM
7437 dwarf2_per_objfile
7438 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7439 dwarf2_objfile_data_key);
10b3939b 7440
442e4d9c
YQ
7441 /* If this psymtab is constructed from a debug-only objfile, the
7442 has_section_at_zero flag will not necessarily be correct. We
7443 can get the correct value for this flag by looking at the data
7444 associated with the (presumably stripped) associated objfile. */
7445 if (objfile->separate_debug_objfile_backlink)
7446 {
7447 struct dwarf2_per_objfile *dpo_backlink
9a3c8263
SM
7448 = ((struct dwarf2_per_objfile *)
7449 objfile_data (objfile->separate_debug_objfile_backlink,
7450 dwarf2_objfile_data_key));
9a619af0 7451
442e4d9c
YQ
7452 dwarf2_per_objfile->has_section_at_zero
7453 = dpo_backlink->has_section_at_zero;
7454 }
b2ab525c 7455
442e4d9c 7456 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 7457
257e7a09 7458 psymtab_to_symtab_1 (self);
c906108c 7459
442e4d9c
YQ
7460 /* Finish up the debug error message. */
7461 if (info_verbose)
7462 printf_filtered (_("done.\n"));
c906108c 7463 }
95554aad
TT
7464
7465 process_cu_includes ();
c906108c 7466}
9cdd5dbd
DE
7467\f
7468/* Reading in full CUs. */
c906108c 7469
10b3939b
DJ
7470/* Add PER_CU to the queue. */
7471
7472static void
95554aad
TT
7473queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7474 enum language pretend_language)
10b3939b
DJ
7475{
7476 struct dwarf2_queue_item *item;
7477
7478 per_cu->queued = 1;
8d749320 7479 item = XNEW (struct dwarf2_queue_item);
10b3939b 7480 item->per_cu = per_cu;
95554aad 7481 item->pretend_language = pretend_language;
10b3939b
DJ
7482 item->next = NULL;
7483
7484 if (dwarf2_queue == NULL)
7485 dwarf2_queue = item;
7486 else
7487 dwarf2_queue_tail->next = item;
7488
7489 dwarf2_queue_tail = item;
7490}
7491
89e63ee4
DE
7492/* If PER_CU is not yet queued, add it to the queue.
7493 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7494 dependency.
0907af0c 7495 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
7496 meaning either PER_CU is already queued or it is already loaded.
7497
7498 N.B. There is an invariant here that if a CU is queued then it is loaded.
7499 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
7500
7501static int
89e63ee4 7502maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
7503 struct dwarf2_per_cu_data *per_cu,
7504 enum language pretend_language)
7505{
7506 /* We may arrive here during partial symbol reading, if we need full
7507 DIEs to process an unusual case (e.g. template arguments). Do
7508 not queue PER_CU, just tell our caller to load its DIEs. */
7509 if (dwarf2_per_objfile->reading_partial_symbols)
7510 {
7511 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7512 return 1;
7513 return 0;
7514 }
7515
7516 /* Mark the dependence relation so that we don't flush PER_CU
7517 too early. */
89e63ee4
DE
7518 if (dependent_cu != NULL)
7519 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
7520
7521 /* If it's already on the queue, we have nothing to do. */
7522 if (per_cu->queued)
7523 return 0;
7524
7525 /* If the compilation unit is already loaded, just mark it as
7526 used. */
7527 if (per_cu->cu != NULL)
7528 {
7529 per_cu->cu->last_used = 0;
7530 return 0;
7531 }
7532
7533 /* Add it to the queue. */
7534 queue_comp_unit (per_cu, pretend_language);
7535
7536 return 1;
7537}
7538
10b3939b
DJ
7539/* Process the queue. */
7540
7541static void
a0f42c21 7542process_queue (void)
10b3939b
DJ
7543{
7544 struct dwarf2_queue_item *item, *next_item;
7545
b4f54984 7546 if (dwarf_read_debug)
45cfd468
DE
7547 {
7548 fprintf_unfiltered (gdb_stdlog,
7549 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 7550 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
7551 }
7552
03dd20cc
DJ
7553 /* The queue starts out with one item, but following a DIE reference
7554 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
7555 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7556 {
cc12ce38
DE
7557 if ((dwarf2_per_objfile->using_index
7558 ? !item->per_cu->v.quick->compunit_symtab
7559 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7560 /* Skip dummy CUs. */
7561 && item->per_cu->cu != NULL)
f4dc4d17
DE
7562 {
7563 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 7564 unsigned int debug_print_threshold;
247f5c4f 7565 char buf[100];
f4dc4d17 7566
247f5c4f 7567 if (per_cu->is_debug_types)
f4dc4d17 7568 {
247f5c4f
DE
7569 struct signatured_type *sig_type =
7570 (struct signatured_type *) per_cu;
7571
7572 sprintf (buf, "TU %s at offset 0x%x",
73be47f5
DE
7573 hex_string (sig_type->signature),
7574 per_cu->offset.sect_off);
7575 /* There can be 100s of TUs.
7576 Only print them in verbose mode. */
7577 debug_print_threshold = 2;
f4dc4d17 7578 }
247f5c4f 7579 else
73be47f5
DE
7580 {
7581 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7582 debug_print_threshold = 1;
7583 }
247f5c4f 7584
b4f54984 7585 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7586 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
7587
7588 if (per_cu->is_debug_types)
7589 process_full_type_unit (per_cu, item->pretend_language);
7590 else
7591 process_full_comp_unit (per_cu, item->pretend_language);
7592
b4f54984 7593 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7594 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 7595 }
10b3939b
DJ
7596
7597 item->per_cu->queued = 0;
7598 next_item = item->next;
7599 xfree (item);
7600 }
7601
7602 dwarf2_queue_tail = NULL;
45cfd468 7603
b4f54984 7604 if (dwarf_read_debug)
45cfd468
DE
7605 {
7606 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 7607 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 7608 }
10b3939b
DJ
7609}
7610
7611/* Free all allocated queue entries. This function only releases anything if
7612 an error was thrown; if the queue was processed then it would have been
7613 freed as we went along. */
7614
7615static void
7616dwarf2_release_queue (void *dummy)
7617{
7618 struct dwarf2_queue_item *item, *last;
7619
7620 item = dwarf2_queue;
7621 while (item)
7622 {
7623 /* Anything still marked queued is likely to be in an
7624 inconsistent state, so discard it. */
7625 if (item->per_cu->queued)
7626 {
7627 if (item->per_cu->cu != NULL)
dee91e82 7628 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7629 item->per_cu->queued = 0;
7630 }
7631
7632 last = item;
7633 item = item->next;
7634 xfree (last);
7635 }
7636
7637 dwarf2_queue = dwarf2_queue_tail = NULL;
7638}
7639
7640/* Read in full symbols for PST, and anything it depends on. */
7641
c906108c 7642static void
fba45db2 7643psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7644{
10b3939b 7645 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7646 int i;
7647
95554aad
TT
7648 if (pst->readin)
7649 return;
7650
aaa75496 7651 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7652 if (!pst->dependencies[i]->readin
7653 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7654 {
7655 /* Inform about additional files that need to be read in. */
7656 if (info_verbose)
7657 {
a3f17187 7658 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7659 fputs_filtered (" ", gdb_stdout);
7660 wrap_here ("");
7661 fputs_filtered ("and ", gdb_stdout);
7662 wrap_here ("");
7663 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7664 wrap_here (""); /* Flush output. */
aaa75496
JB
7665 gdb_flush (gdb_stdout);
7666 }
7667 psymtab_to_symtab_1 (pst->dependencies[i]);
7668 }
7669
9a3c8263 7670 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
10b3939b
DJ
7671
7672 if (per_cu == NULL)
aaa75496
JB
7673 {
7674 /* It's an include file, no symbols to read for it.
7675 Everything is in the parent symtab. */
7676 pst->readin = 1;
7677 return;
7678 }
c906108c 7679
a0f42c21 7680 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7681}
7682
dee91e82
DE
7683/* Trivial hash function for die_info: the hash value of a DIE
7684 is its offset in .debug_info for this objfile. */
10b3939b 7685
dee91e82
DE
7686static hashval_t
7687die_hash (const void *item)
10b3939b 7688{
9a3c8263 7689 const struct die_info *die = (const struct die_info *) item;
6502dd73 7690
dee91e82
DE
7691 return die->offset.sect_off;
7692}
63d06c5c 7693
dee91e82
DE
7694/* Trivial comparison function for die_info structures: two DIEs
7695 are equal if they have the same offset. */
98bfdba5 7696
dee91e82
DE
7697static int
7698die_eq (const void *item_lhs, const void *item_rhs)
7699{
9a3c8263
SM
7700 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7701 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
c906108c 7702
dee91e82
DE
7703 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7704}
c906108c 7705
dee91e82
DE
7706/* die_reader_func for load_full_comp_unit.
7707 This is identical to read_signatured_type_reader,
7708 but is kept separate for now. */
c906108c 7709
dee91e82
DE
7710static void
7711load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7712 const gdb_byte *info_ptr,
dee91e82
DE
7713 struct die_info *comp_unit_die,
7714 int has_children,
7715 void *data)
7716{
7717 struct dwarf2_cu *cu = reader->cu;
9a3c8263 7718 enum language *language_ptr = (enum language *) data;
6caca83c 7719
dee91e82
DE
7720 gdb_assert (cu->die_hash == NULL);
7721 cu->die_hash =
7722 htab_create_alloc_ex (cu->header.length / 12,
7723 die_hash,
7724 die_eq,
7725 NULL,
7726 &cu->comp_unit_obstack,
7727 hashtab_obstack_allocate,
7728 dummy_obstack_deallocate);
e142c38c 7729
dee91e82
DE
7730 if (has_children)
7731 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7732 &info_ptr, comp_unit_die);
7733 cu->dies = comp_unit_die;
7734 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7735
7736 /* We try not to read any attributes in this function, because not
9cdd5dbd 7737 all CUs needed for references have been loaded yet, and symbol
10b3939b 7738 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7739 or we won't be able to build types correctly.
7740 Similarly, if we do not read the producer, we can not apply
7741 producer-specific interpretation. */
95554aad 7742 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 7743}
10b3939b 7744
dee91e82 7745/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 7746
dee91e82 7747static void
95554aad
TT
7748load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7749 enum language pretend_language)
dee91e82 7750{
3019eac3 7751 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 7752
f4dc4d17
DE
7753 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7754 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
7755}
7756
3da10d80
KS
7757/* Add a DIE to the delayed physname list. */
7758
7759static void
7760add_to_method_list (struct type *type, int fnfield_index, int index,
7761 const char *name, struct die_info *die,
7762 struct dwarf2_cu *cu)
7763{
7764 struct delayed_method_info mi;
7765 mi.type = type;
7766 mi.fnfield_index = fnfield_index;
7767 mi.index = index;
7768 mi.name = name;
7769 mi.die = die;
7770 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7771}
7772
7773/* A cleanup for freeing the delayed method list. */
7774
7775static void
7776free_delayed_list (void *ptr)
7777{
7778 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7779 if (cu->method_list != NULL)
7780 {
7781 VEC_free (delayed_method_info, cu->method_list);
7782 cu->method_list = NULL;
7783 }
7784}
7785
7786/* Compute the physnames of any methods on the CU's method list.
7787
7788 The computation of method physnames is delayed in order to avoid the
7789 (bad) condition that one of the method's formal parameters is of an as yet
7790 incomplete type. */
7791
7792static void
7793compute_delayed_physnames (struct dwarf2_cu *cu)
7794{
7795 int i;
7796 struct delayed_method_info *mi;
7797 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7798 {
1d06ead6 7799 const char *physname;
3da10d80
KS
7800 struct fn_fieldlist *fn_flp
7801 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 7802 physname = dwarf2_physname (mi->name, mi->die, cu);
005e54bb
DE
7803 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7804 = physname ? physname : "";
3da10d80
KS
7805 }
7806}
7807
a766d390
DE
7808/* Go objects should be embedded in a DW_TAG_module DIE,
7809 and it's not clear if/how imported objects will appear.
7810 To keep Go support simple until that's worked out,
7811 go back through what we've read and create something usable.
7812 We could do this while processing each DIE, and feels kinda cleaner,
7813 but that way is more invasive.
7814 This is to, for example, allow the user to type "p var" or "b main"
7815 without having to specify the package name, and allow lookups
7816 of module.object to work in contexts that use the expression
7817 parser. */
7818
7819static void
7820fixup_go_packaging (struct dwarf2_cu *cu)
7821{
7822 char *package_name = NULL;
7823 struct pending *list;
7824 int i;
7825
7826 for (list = global_symbols; list != NULL; list = list->next)
7827 {
7828 for (i = 0; i < list->nsyms; ++i)
7829 {
7830 struct symbol *sym = list->symbol[i];
7831
7832 if (SYMBOL_LANGUAGE (sym) == language_go
7833 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7834 {
7835 char *this_package_name = go_symbol_package_name (sym);
7836
7837 if (this_package_name == NULL)
7838 continue;
7839 if (package_name == NULL)
7840 package_name = this_package_name;
7841 else
7842 {
7843 if (strcmp (package_name, this_package_name) != 0)
7844 complaint (&symfile_complaints,
7845 _("Symtab %s has objects from two different Go packages: %s and %s"),
08be3fe3
DE
7846 (symbol_symtab (sym) != NULL
7847 ? symtab_to_filename_for_display
7848 (symbol_symtab (sym))
4262abfb 7849 : objfile_name (cu->objfile)),
a766d390
DE
7850 this_package_name, package_name);
7851 xfree (this_package_name);
7852 }
7853 }
7854 }
7855 }
7856
7857 if (package_name != NULL)
7858 {
7859 struct objfile *objfile = cu->objfile;
34a68019 7860 const char *saved_package_name
224c3ddb
SM
7861 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
7862 package_name,
7863 strlen (package_name));
19f392bc
UW
7864 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
7865 saved_package_name);
a766d390
DE
7866 struct symbol *sym;
7867
7868 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7869
e623cf5d 7870 sym = allocate_symbol (objfile);
f85f34ed 7871 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
7872 SYMBOL_SET_NAMES (sym, saved_package_name,
7873 strlen (saved_package_name), 0, objfile);
a766d390
DE
7874 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7875 e.g., "main" finds the "main" module and not C's main(). */
7876 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 7877 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
7878 SYMBOL_TYPE (sym) = type;
7879
7880 add_symbol_to_list (sym, &global_symbols);
7881
7882 xfree (package_name);
7883 }
7884}
7885
95554aad
TT
7886/* Return the symtab for PER_CU. This works properly regardless of
7887 whether we're using the index or psymtabs. */
7888
43f3e411
DE
7889static struct compunit_symtab *
7890get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
95554aad
TT
7891{
7892 return (dwarf2_per_objfile->using_index
43f3e411
DE
7893 ? per_cu->v.quick->compunit_symtab
7894 : per_cu->v.psymtab->compunit_symtab);
95554aad
TT
7895}
7896
7897/* A helper function for computing the list of all symbol tables
7898 included by PER_CU. */
7899
7900static void
43f3e411 7901recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
ec94af83 7902 htab_t all_children, htab_t all_type_symtabs,
f9125b6c 7903 struct dwarf2_per_cu_data *per_cu,
43f3e411 7904 struct compunit_symtab *immediate_parent)
95554aad
TT
7905{
7906 void **slot;
7907 int ix;
43f3e411 7908 struct compunit_symtab *cust;
95554aad
TT
7909 struct dwarf2_per_cu_data *iter;
7910
7911 slot = htab_find_slot (all_children, per_cu, INSERT);
7912 if (*slot != NULL)
7913 {
7914 /* This inclusion and its children have been processed. */
7915 return;
7916 }
7917
7918 *slot = per_cu;
7919 /* Only add a CU if it has a symbol table. */
43f3e411
DE
7920 cust = get_compunit_symtab (per_cu);
7921 if (cust != NULL)
ec94af83
DE
7922 {
7923 /* If this is a type unit only add its symbol table if we haven't
7924 seen it yet (type unit per_cu's can share symtabs). */
7925 if (per_cu->is_debug_types)
7926 {
43f3e411 7927 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
ec94af83
DE
7928 if (*slot == NULL)
7929 {
43f3e411
DE
7930 *slot = cust;
7931 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7932 if (cust->user == NULL)
7933 cust->user = immediate_parent;
ec94af83
DE
7934 }
7935 }
7936 else
f9125b6c 7937 {
43f3e411
DE
7938 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7939 if (cust->user == NULL)
7940 cust->user = immediate_parent;
f9125b6c 7941 }
ec94af83 7942 }
95554aad
TT
7943
7944 for (ix = 0;
796a7ff8 7945 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 7946 ++ix)
ec94af83
DE
7947 {
7948 recursively_compute_inclusions (result, all_children,
43f3e411 7949 all_type_symtabs, iter, cust);
ec94af83 7950 }
95554aad
TT
7951}
7952
43f3e411 7953/* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
95554aad
TT
7954 PER_CU. */
7955
7956static void
43f3e411 7957compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
95554aad 7958{
f4dc4d17
DE
7959 gdb_assert (! per_cu->is_debug_types);
7960
796a7ff8 7961 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
7962 {
7963 int ix, len;
ec94af83 7964 struct dwarf2_per_cu_data *per_cu_iter;
43f3e411
DE
7965 struct compunit_symtab *compunit_symtab_iter;
7966 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
ec94af83 7967 htab_t all_children, all_type_symtabs;
43f3e411 7968 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
95554aad
TT
7969
7970 /* If we don't have a symtab, we can just skip this case. */
43f3e411 7971 if (cust == NULL)
95554aad
TT
7972 return;
7973
7974 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7975 NULL, xcalloc, xfree);
ec94af83
DE
7976 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7977 NULL, xcalloc, xfree);
95554aad
TT
7978
7979 for (ix = 0;
796a7ff8 7980 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 7981 ix, per_cu_iter);
95554aad 7982 ++ix)
ec94af83
DE
7983 {
7984 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c 7985 all_type_symtabs, per_cu_iter,
43f3e411 7986 cust);
ec94af83 7987 }
95554aad 7988
ec94af83 7989 /* Now we have a transitive closure of all the included symtabs. */
43f3e411
DE
7990 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7991 cust->includes
8d749320
SM
7992 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
7993 struct compunit_symtab *, len + 1);
95554aad 7994 for (ix = 0;
43f3e411
DE
7995 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7996 compunit_symtab_iter);
95554aad 7997 ++ix)
43f3e411
DE
7998 cust->includes[ix] = compunit_symtab_iter;
7999 cust->includes[len] = NULL;
95554aad 8000
43f3e411 8001 VEC_free (compunit_symtab_ptr, result_symtabs);
95554aad 8002 htab_delete (all_children);
ec94af83 8003 htab_delete (all_type_symtabs);
95554aad
TT
8004 }
8005}
8006
8007/* Compute the 'includes' field for the symtabs of all the CUs we just
8008 read. */
8009
8010static void
8011process_cu_includes (void)
8012{
8013 int ix;
8014 struct dwarf2_per_cu_data *iter;
8015
8016 for (ix = 0;
8017 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8018 ix, iter);
8019 ++ix)
f4dc4d17
DE
8020 {
8021 if (! iter->is_debug_types)
43f3e411 8022 compute_compunit_symtab_includes (iter);
f4dc4d17 8023 }
95554aad
TT
8024
8025 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8026}
8027
9cdd5dbd 8028/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
8029 already been loaded into memory. */
8030
8031static void
95554aad
TT
8032process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8033 enum language pretend_language)
10b3939b 8034{
10b3939b 8035 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 8036 struct objfile *objfile = per_cu->objfile;
3e29f34a 8037 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10b3939b 8038 CORE_ADDR lowpc, highpc;
43f3e411 8039 struct compunit_symtab *cust;
3da10d80 8040 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 8041 CORE_ADDR baseaddr;
4359dff1 8042 struct block *static_block;
3e29f34a 8043 CORE_ADDR addr;
10b3939b
DJ
8044
8045 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8046
10b3939b
DJ
8047 buildsym_init ();
8048 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 8049 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
8050
8051 cu->list_in_scope = &file_symbols;
c906108c 8052
95554aad
TT
8053 cu->language = pretend_language;
8054 cu->language_defn = language_def (cu->language);
8055
c906108c 8056 /* Do line number decoding in read_file_scope () */
10b3939b 8057 process_die (cu->dies, cu);
c906108c 8058
a766d390
DE
8059 /* For now fudge the Go package. */
8060 if (cu->language == language_go)
8061 fixup_go_packaging (cu);
8062
3da10d80
KS
8063 /* Now that we have processed all the DIEs in the CU, all the types
8064 should be complete, and it should now be safe to compute all of the
8065 physnames. */
8066 compute_delayed_physnames (cu);
8067 do_cleanups (delayed_list_cleanup);
8068
fae299cd
DC
8069 /* Some compilers don't define a DW_AT_high_pc attribute for the
8070 compilation unit. If the DW_AT_high_pc is missing, synthesize
8071 it, by scanning the DIE's below the compilation unit. */
10b3939b 8072 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 8073
3e29f34a
MR
8074 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8075 static_block = end_symtab_get_static_block (addr, 0, 1);
4359dff1
JK
8076
8077 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8078 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8079 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8080 addrmap to help ensure it has an accurate map of pc values belonging to
8081 this comp unit. */
8082 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8083
43f3e411
DE
8084 cust = end_symtab_from_static_block (static_block,
8085 SECT_OFF_TEXT (objfile), 0);
c906108c 8086
43f3e411 8087 if (cust != NULL)
c906108c 8088 {
df15bd07 8089 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 8090
8be455d7
JK
8091 /* Set symtab language to language from DW_AT_language. If the
8092 compilation is from a C file generated by language preprocessors, do
8093 not set the language if it was already deduced by start_subfile. */
43f3e411 8094 if (!(cu->language == language_c
40e3ad0e 8095 && COMPUNIT_FILETABS (cust)->language != language_unknown))
43f3e411 8096 COMPUNIT_FILETABS (cust)->language = cu->language;
8be455d7
JK
8097
8098 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8099 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
8100 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8101 there were bugs in prologue debug info, fixed later in GCC-4.5
8102 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
8103
8104 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8105 needed, it would be wrong due to missing DW_AT_producer there.
8106
8107 Still one can confuse GDB by using non-standard GCC compilation
8108 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8109 */
ab260dad 8110 if (cu->has_loclist && gcc_4_minor >= 5)
43f3e411 8111 cust->locations_valid = 1;
e0d00bc7
JK
8112
8113 if (gcc_4_minor >= 5)
43f3e411 8114 cust->epilogue_unwind_valid = 1;
96408a79 8115
43f3e411 8116 cust->call_site_htab = cu->call_site_htab;
c906108c 8117 }
9291a0cd
TT
8118
8119 if (dwarf2_per_objfile->using_index)
43f3e411 8120 per_cu->v.quick->compunit_symtab = cust;
9291a0cd
TT
8121 else
8122 {
8123 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8124 pst->compunit_symtab = cust;
9291a0cd
TT
8125 pst->readin = 1;
8126 }
c906108c 8127
95554aad
TT
8128 /* Push it for inclusion processing later. */
8129 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8130
c906108c 8131 do_cleanups (back_to);
f4dc4d17 8132}
45cfd468 8133
f4dc4d17
DE
8134/* Generate full symbol information for type unit PER_CU, whose DIEs have
8135 already been loaded into memory. */
8136
8137static void
8138process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8139 enum language pretend_language)
8140{
8141 struct dwarf2_cu *cu = per_cu->cu;
8142 struct objfile *objfile = per_cu->objfile;
43f3e411 8143 struct compunit_symtab *cust;
f4dc4d17 8144 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
8145 struct signatured_type *sig_type;
8146
8147 gdb_assert (per_cu->is_debug_types);
8148 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
8149
8150 buildsym_init ();
8151 back_to = make_cleanup (really_free_pendings, NULL);
8152 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8153
8154 cu->list_in_scope = &file_symbols;
8155
8156 cu->language = pretend_language;
8157 cu->language_defn = language_def (cu->language);
8158
8159 /* The symbol tables are set up in read_type_unit_scope. */
8160 process_die (cu->dies, cu);
8161
8162 /* For now fudge the Go package. */
8163 if (cu->language == language_go)
8164 fixup_go_packaging (cu);
8165
8166 /* Now that we have processed all the DIEs in the CU, all the types
8167 should be complete, and it should now be safe to compute all of the
8168 physnames. */
8169 compute_delayed_physnames (cu);
8170 do_cleanups (delayed_list_cleanup);
8171
8172 /* TUs share symbol tables.
8173 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
8174 of it with end_expandable_symtab. Otherwise, complete the addition of
8175 this TU's symbols to the existing symtab. */
43f3e411 8176 if (sig_type->type_unit_group->compunit_symtab == NULL)
45cfd468 8177 {
43f3e411
DE
8178 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8179 sig_type->type_unit_group->compunit_symtab = cust;
f4dc4d17 8180
43f3e411 8181 if (cust != NULL)
f4dc4d17
DE
8182 {
8183 /* Set symtab language to language from DW_AT_language. If the
8184 compilation is from a C file generated by language preprocessors,
8185 do not set the language if it was already deduced by
8186 start_subfile. */
43f3e411
DE
8187 if (!(cu->language == language_c
8188 && COMPUNIT_FILETABS (cust)->language != language_c))
8189 COMPUNIT_FILETABS (cust)->language = cu->language;
f4dc4d17
DE
8190 }
8191 }
8192 else
8193 {
0ab9ce85 8194 augment_type_symtab ();
43f3e411 8195 cust = sig_type->type_unit_group->compunit_symtab;
f4dc4d17
DE
8196 }
8197
8198 if (dwarf2_per_objfile->using_index)
43f3e411 8199 per_cu->v.quick->compunit_symtab = cust;
f4dc4d17
DE
8200 else
8201 {
8202 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8203 pst->compunit_symtab = cust;
f4dc4d17 8204 pst->readin = 1;
45cfd468 8205 }
f4dc4d17
DE
8206
8207 do_cleanups (back_to);
c906108c
SS
8208}
8209
95554aad
TT
8210/* Process an imported unit DIE. */
8211
8212static void
8213process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8214{
8215 struct attribute *attr;
8216
f4dc4d17
DE
8217 /* For now we don't handle imported units in type units. */
8218 if (cu->per_cu->is_debug_types)
8219 {
8220 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8221 " supported in type units [in module %s]"),
4262abfb 8222 objfile_name (cu->objfile));
f4dc4d17
DE
8223 }
8224
95554aad
TT
8225 attr = dwarf2_attr (die, DW_AT_import, cu);
8226 if (attr != NULL)
8227 {
8228 struct dwarf2_per_cu_data *per_cu;
95554aad 8229 sect_offset offset;
36586728 8230 int is_dwz;
95554aad
TT
8231
8232 offset = dwarf2_get_ref_die_offset (attr);
36586728
TT
8233 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8234 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
95554aad 8235
69d751e3 8236 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
8237 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8238 load_full_comp_unit (per_cu, cu->language);
8239
796a7ff8 8240 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
8241 per_cu);
8242 }
8243}
8244
adde2bff
DE
8245/* Reset the in_process bit of a die. */
8246
8247static void
8248reset_die_in_process (void *arg)
8249{
9a3c8263 8250 struct die_info *die = (struct die_info *) arg;
8c3cb9fa 8251
adde2bff
DE
8252 die->in_process = 0;
8253}
8254
c906108c
SS
8255/* Process a die and its children. */
8256
8257static void
e7c27a73 8258process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8259{
adde2bff
DE
8260 struct cleanup *in_process;
8261
8262 /* We should only be processing those not already in process. */
8263 gdb_assert (!die->in_process);
8264
8265 die->in_process = 1;
8266 in_process = make_cleanup (reset_die_in_process,die);
8267
c906108c
SS
8268 switch (die->tag)
8269 {
8270 case DW_TAG_padding:
8271 break;
8272 case DW_TAG_compile_unit:
95554aad 8273 case DW_TAG_partial_unit:
e7c27a73 8274 read_file_scope (die, cu);
c906108c 8275 break;
348e048f
DE
8276 case DW_TAG_type_unit:
8277 read_type_unit_scope (die, cu);
8278 break;
c906108c 8279 case DW_TAG_subprogram:
c906108c 8280 case DW_TAG_inlined_subroutine:
edb3359d 8281 read_func_scope (die, cu);
c906108c
SS
8282 break;
8283 case DW_TAG_lexical_block:
14898363
L
8284 case DW_TAG_try_block:
8285 case DW_TAG_catch_block:
e7c27a73 8286 read_lexical_block_scope (die, cu);
c906108c 8287 break;
96408a79
SA
8288 case DW_TAG_GNU_call_site:
8289 read_call_site_scope (die, cu);
8290 break;
c906108c 8291 case DW_TAG_class_type:
680b30c7 8292 case DW_TAG_interface_type:
c906108c
SS
8293 case DW_TAG_structure_type:
8294 case DW_TAG_union_type:
134d01f1 8295 process_structure_scope (die, cu);
c906108c
SS
8296 break;
8297 case DW_TAG_enumeration_type:
134d01f1 8298 process_enumeration_scope (die, cu);
c906108c 8299 break;
134d01f1 8300
f792889a
DJ
8301 /* These dies have a type, but processing them does not create
8302 a symbol or recurse to process the children. Therefore we can
8303 read them on-demand through read_type_die. */
c906108c 8304 case DW_TAG_subroutine_type:
72019c9c 8305 case DW_TAG_set_type:
c906108c 8306 case DW_TAG_array_type:
c906108c 8307 case DW_TAG_pointer_type:
c906108c 8308 case DW_TAG_ptr_to_member_type:
c906108c 8309 case DW_TAG_reference_type:
c906108c 8310 case DW_TAG_string_type:
c906108c 8311 break;
134d01f1 8312
c906108c 8313 case DW_TAG_base_type:
a02abb62 8314 case DW_TAG_subrange_type:
cb249c71 8315 case DW_TAG_typedef:
134d01f1
DJ
8316 /* Add a typedef symbol for the type definition, if it has a
8317 DW_AT_name. */
f792889a 8318 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 8319 break;
c906108c 8320 case DW_TAG_common_block:
e7c27a73 8321 read_common_block (die, cu);
c906108c
SS
8322 break;
8323 case DW_TAG_common_inclusion:
8324 break;
d9fa45fe 8325 case DW_TAG_namespace:
4d4ec4e5 8326 cu->processing_has_namespace_info = 1;
e7c27a73 8327 read_namespace (die, cu);
d9fa45fe 8328 break;
5d7cb8df 8329 case DW_TAG_module:
4d4ec4e5 8330 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
8331 read_module (die, cu);
8332 break;
d9fa45fe 8333 case DW_TAG_imported_declaration:
74921315
KS
8334 cu->processing_has_namespace_info = 1;
8335 if (read_namespace_alias (die, cu))
8336 break;
8337 /* The declaration is not a global namespace alias: fall through. */
d9fa45fe 8338 case DW_TAG_imported_module:
4d4ec4e5 8339 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
8340 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8341 || cu->language != language_fortran))
8342 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8343 dwarf_tag_name (die->tag));
8344 read_import_statement (die, cu);
d9fa45fe 8345 break;
95554aad
TT
8346
8347 case DW_TAG_imported_unit:
8348 process_imported_unit_die (die, cu);
8349 break;
8350
c906108c 8351 default:
e7c27a73 8352 new_symbol (die, NULL, cu);
c906108c
SS
8353 break;
8354 }
adde2bff
DE
8355
8356 do_cleanups (in_process);
c906108c 8357}
ca69b9e6
DE
8358\f
8359/* DWARF name computation. */
c906108c 8360
94af9270
KS
8361/* A helper function for dwarf2_compute_name which determines whether DIE
8362 needs to have the name of the scope prepended to the name listed in the
8363 die. */
8364
8365static int
8366die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8367{
1c809c68
TT
8368 struct attribute *attr;
8369
94af9270
KS
8370 switch (die->tag)
8371 {
8372 case DW_TAG_namespace:
8373 case DW_TAG_typedef:
8374 case DW_TAG_class_type:
8375 case DW_TAG_interface_type:
8376 case DW_TAG_structure_type:
8377 case DW_TAG_union_type:
8378 case DW_TAG_enumeration_type:
8379 case DW_TAG_enumerator:
8380 case DW_TAG_subprogram:
08a76f8a 8381 case DW_TAG_inlined_subroutine:
94af9270 8382 case DW_TAG_member:
74921315 8383 case DW_TAG_imported_declaration:
94af9270
KS
8384 return 1;
8385
8386 case DW_TAG_variable:
c2b0a229 8387 case DW_TAG_constant:
94af9270
KS
8388 /* We only need to prefix "globally" visible variables. These include
8389 any variable marked with DW_AT_external or any variable that
8390 lives in a namespace. [Variables in anonymous namespaces
8391 require prefixing, but they are not DW_AT_external.] */
8392
8393 if (dwarf2_attr (die, DW_AT_specification, cu))
8394 {
8395 struct dwarf2_cu *spec_cu = cu;
9a619af0 8396
94af9270
KS
8397 return die_needs_namespace (die_specification (die, &spec_cu),
8398 spec_cu);
8399 }
8400
1c809c68 8401 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
8402 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8403 && die->parent->tag != DW_TAG_module)
1c809c68
TT
8404 return 0;
8405 /* A variable in a lexical block of some kind does not need a
8406 namespace, even though in C++ such variables may be external
8407 and have a mangled name. */
8408 if (die->parent->tag == DW_TAG_lexical_block
8409 || die->parent->tag == DW_TAG_try_block
1054b214
TT
8410 || die->parent->tag == DW_TAG_catch_block
8411 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
8412 return 0;
8413 return 1;
94af9270
KS
8414
8415 default:
8416 return 0;
8417 }
8418}
8419
98bfdba5
PA
8420/* Retrieve the last character from a mem_file. */
8421
8422static void
8423do_ui_file_peek_last (void *object, const char *buffer, long length)
8424{
8425 char *last_char_p = (char *) object;
8426
8427 if (length > 0)
8428 *last_char_p = buffer[length - 1];
8429}
8430
94af9270 8431/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390 8432 compute the physname for the object, which include a method's:
9c37b5ae 8433 - formal parameters (C++),
a766d390 8434 - receiver type (Go),
a766d390
DE
8435
8436 The term "physname" is a bit confusing.
8437 For C++, for example, it is the demangled name.
8438 For Go, for example, it's the mangled name.
94af9270 8439
af6b7be1
JB
8440 For Ada, return the DIE's linkage name rather than the fully qualified
8441 name. PHYSNAME is ignored..
8442
94af9270
KS
8443 The result is allocated on the objfile_obstack and canonicalized. */
8444
8445static const char *
15d034d0
TT
8446dwarf2_compute_name (const char *name,
8447 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
8448 int physname)
8449{
bb5ed363
DE
8450 struct objfile *objfile = cu->objfile;
8451
94af9270
KS
8452 if (name == NULL)
8453 name = dwarf2_name (die, cu);
8454
2ee7123e
DE
8455 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8456 but otherwise compute it by typename_concat inside GDB.
8457 FIXME: Actually this is not really true, or at least not always true.
8458 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8459 Fortran names because there is no mangling standard. So new_symbol_full
8460 will set the demangled name to the result of dwarf2_full_name, and it is
8461 the demangled name that GDB uses if it exists. */
f55ee35c
JK
8462 if (cu->language == language_ada
8463 || (cu->language == language_fortran && physname))
8464 {
8465 /* For Ada unit, we prefer the linkage name over the name, as
8466 the former contains the exported name, which the user expects
8467 to be able to reference. Ideally, we want the user to be able
8468 to reference this entity using either natural or linkage name,
8469 but we haven't started looking at this enhancement yet. */
2ee7123e 8470 const char *linkage_name;
f55ee35c 8471
2ee7123e
DE
8472 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8473 if (linkage_name == NULL)
8474 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8475 if (linkage_name != NULL)
8476 return linkage_name;
f55ee35c
JK
8477 }
8478
94af9270
KS
8479 /* These are the only languages we know how to qualify names in. */
8480 if (name != NULL
9c37b5ae 8481 && (cu->language == language_cplus
c44af4eb
TT
8482 || cu->language == language_fortran || cu->language == language_d
8483 || cu->language == language_rust))
94af9270
KS
8484 {
8485 if (die_needs_namespace (die, cu))
8486 {
8487 long length;
0d5cff50 8488 const char *prefix;
94af9270 8489 struct ui_file *buf;
34a68019 8490 const char *canonical_name = NULL;
94af9270
KS
8491
8492 prefix = determine_prefix (die, cu);
8493 buf = mem_fileopen ();
8494 if (*prefix != '\0')
8495 {
f55ee35c
JK
8496 char *prefixed_name = typename_concat (NULL, prefix, name,
8497 physname, cu);
9a619af0 8498
94af9270
KS
8499 fputs_unfiltered (prefixed_name, buf);
8500 xfree (prefixed_name);
8501 }
8502 else
62d5b8da 8503 fputs_unfiltered (name, buf);
94af9270 8504
98bfdba5
PA
8505 /* Template parameters may be specified in the DIE's DW_AT_name, or
8506 as children with DW_TAG_template_type_param or
8507 DW_TAG_value_type_param. If the latter, add them to the name
8508 here. If the name already has template parameters, then
8509 skip this step; some versions of GCC emit both, and
8510 it is more efficient to use the pre-computed name.
8511
8512 Something to keep in mind about this process: it is very
8513 unlikely, or in some cases downright impossible, to produce
8514 something that will match the mangled name of a function.
8515 If the definition of the function has the same debug info,
8516 we should be able to match up with it anyway. But fallbacks
8517 using the minimal symbol, for instance to find a method
8518 implemented in a stripped copy of libstdc++, will not work.
8519 If we do not have debug info for the definition, we will have to
8520 match them up some other way.
8521
8522 When we do name matching there is a related problem with function
8523 templates; two instantiated function templates are allowed to
8524 differ only by their return types, which we do not add here. */
8525
8526 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8527 {
8528 struct attribute *attr;
8529 struct die_info *child;
8530 int first = 1;
8531
8532 die->building_fullname = 1;
8533
8534 for (child = die->child; child != NULL; child = child->sibling)
8535 {
8536 struct type *type;
12df843f 8537 LONGEST value;
d521ce57 8538 const gdb_byte *bytes;
98bfdba5
PA
8539 struct dwarf2_locexpr_baton *baton;
8540 struct value *v;
8541
8542 if (child->tag != DW_TAG_template_type_param
8543 && child->tag != DW_TAG_template_value_param)
8544 continue;
8545
8546 if (first)
8547 {
8548 fputs_unfiltered ("<", buf);
8549 first = 0;
8550 }
8551 else
8552 fputs_unfiltered (", ", buf);
8553
8554 attr = dwarf2_attr (child, DW_AT_type, cu);
8555 if (attr == NULL)
8556 {
8557 complaint (&symfile_complaints,
8558 _("template parameter missing DW_AT_type"));
8559 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8560 continue;
8561 }
8562 type = die_type (child, cu);
8563
8564 if (child->tag == DW_TAG_template_type_param)
8565 {
79d43c61 8566 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
8567 continue;
8568 }
8569
8570 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8571 if (attr == NULL)
8572 {
8573 complaint (&symfile_complaints,
3e43a32a
MS
8574 _("template parameter missing "
8575 "DW_AT_const_value"));
98bfdba5
PA
8576 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8577 continue;
8578 }
8579
8580 dwarf2_const_value_attr (attr, type, name,
8581 &cu->comp_unit_obstack, cu,
8582 &value, &bytes, &baton);
8583
8584 if (TYPE_NOSIGN (type))
8585 /* GDB prints characters as NUMBER 'CHAR'. If that's
8586 changed, this can use value_print instead. */
8587 c_printchar (value, type, buf);
8588 else
8589 {
8590 struct value_print_options opts;
8591
8592 if (baton != NULL)
8593 v = dwarf2_evaluate_loc_desc (type, NULL,
8594 baton->data,
8595 baton->size,
8596 baton->per_cu);
8597 else if (bytes != NULL)
8598 {
8599 v = allocate_value (type);
8600 memcpy (value_contents_writeable (v), bytes,
8601 TYPE_LENGTH (type));
8602 }
8603 else
8604 v = value_from_longest (type, value);
8605
3e43a32a
MS
8606 /* Specify decimal so that we do not depend on
8607 the radix. */
98bfdba5
PA
8608 get_formatted_print_options (&opts, 'd');
8609 opts.raw = 1;
8610 value_print (v, buf, &opts);
8611 release_value (v);
8612 value_free (v);
8613 }
8614 }
8615
8616 die->building_fullname = 0;
8617
8618 if (!first)
8619 {
8620 /* Close the argument list, with a space if necessary
8621 (nested templates). */
8622 char last_char = '\0';
8623 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8624 if (last_char == '>')
8625 fputs_unfiltered (" >", buf);
8626 else
8627 fputs_unfiltered (">", buf);
8628 }
8629 }
8630
9c37b5ae 8631 /* For C++ methods, append formal parameter type
94af9270 8632 information, if PHYSNAME. */
6e70227d 8633
94af9270 8634 if (physname && die->tag == DW_TAG_subprogram
9c37b5ae 8635 && cu->language == language_cplus)
94af9270
KS
8636 {
8637 struct type *type = read_type_die (die, cu);
8638
79d43c61
TT
8639 c_type_print_args (type, buf, 1, cu->language,
8640 &type_print_raw_options);
94af9270 8641
9c37b5ae 8642 if (cu->language == language_cplus)
94af9270 8643 {
60430eff
DJ
8644 /* Assume that an artificial first parameter is
8645 "this", but do not crash if it is not. RealView
8646 marks unnamed (and thus unused) parameters as
8647 artificial; there is no way to differentiate
8648 the two cases. */
94af9270
KS
8649 if (TYPE_NFIELDS (type) > 0
8650 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8651 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8652 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8653 0))))
94af9270
KS
8654 fputs_unfiltered (" const", buf);
8655 }
8656 }
8657
322a8516 8658 std::string intermediate_name = ui_file_as_string (buf);
94af9270
KS
8659 ui_file_delete (buf);
8660
8661 if (cu->language == language_cplus)
34a68019 8662 canonical_name
322a8516 8663 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
34a68019
TT
8664 &objfile->per_bfd->storage_obstack);
8665
8666 /* If we only computed INTERMEDIATE_NAME, or if
8667 INTERMEDIATE_NAME is already canonical, then we need to
8668 copy it to the appropriate obstack. */
322a8516 8669 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
224c3ddb
SM
8670 name = ((const char *)
8671 obstack_copy0 (&objfile->per_bfd->storage_obstack,
322a8516
PA
8672 intermediate_name.c_str (),
8673 intermediate_name.length ()));
34a68019
TT
8674 else
8675 name = canonical_name;
94af9270
KS
8676 }
8677 }
8678
8679 return name;
8680}
8681
0114d602
DJ
8682/* Return the fully qualified name of DIE, based on its DW_AT_name.
8683 If scope qualifiers are appropriate they will be added. The result
34a68019 8684 will be allocated on the storage_obstack, or NULL if the DIE does
94af9270
KS
8685 not have a name. NAME may either be from a previous call to
8686 dwarf2_name or NULL.
8687
9c37b5ae 8688 The output string will be canonicalized (if C++). */
0114d602
DJ
8689
8690static const char *
15d034d0 8691dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 8692{
94af9270
KS
8693 return dwarf2_compute_name (name, die, cu, 0);
8694}
0114d602 8695
94af9270
KS
8696/* Construct a physname for the given DIE in CU. NAME may either be
8697 from a previous call to dwarf2_name or NULL. The result will be
8698 allocated on the objfile_objstack or NULL if the DIE does not have a
8699 name.
0114d602 8700
9c37b5ae 8701 The output string will be canonicalized (if C++). */
0114d602 8702
94af9270 8703static const char *
15d034d0 8704dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 8705{
bb5ed363 8706 struct objfile *objfile = cu->objfile;
900e11f9
JK
8707 const char *retval, *mangled = NULL, *canon = NULL;
8708 struct cleanup *back_to;
8709 int need_copy = 1;
8710
8711 /* In this case dwarf2_compute_name is just a shortcut not building anything
8712 on its own. */
8713 if (!die_needs_namespace (die, cu))
8714 return dwarf2_compute_name (name, die, cu, 1);
8715
8716 back_to = make_cleanup (null_cleanup, NULL);
8717
7d45c7c3
KB
8718 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8719 if (mangled == NULL)
8720 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
900e11f9 8721
e98c9e7c
TT
8722 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
8723 See https://github.com/rust-lang/rust/issues/32925. */
8724 if (cu->language == language_rust && mangled != NULL
8725 && strchr (mangled, '{') != NULL)
8726 mangled = NULL;
8727
900e11f9
JK
8728 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8729 has computed. */
7d45c7c3 8730 if (mangled != NULL)
900e11f9
JK
8731 {
8732 char *demangled;
8733
900e11f9
JK
8734 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8735 type. It is easier for GDB users to search for such functions as
8736 `name(params)' than `long name(params)'. In such case the minimal
8737 symbol names do not match the full symbol names but for template
8738 functions there is never a need to look up their definition from their
8739 declaration so the only disadvantage remains the minimal symbol
8740 variant `long name(params)' does not have the proper inferior type.
8741 */
8742
a766d390
DE
8743 if (cu->language == language_go)
8744 {
8745 /* This is a lie, but we already lie to the caller new_symbol_full.
8746 new_symbol_full assumes we return the mangled name.
8747 This just undoes that lie until things are cleaned up. */
8748 demangled = NULL;
8749 }
8750 else
8751 {
8de20a37 8752 demangled = gdb_demangle (mangled,
9c37b5ae 8753 (DMGL_PARAMS | DMGL_ANSI | DMGL_RET_DROP));
a766d390 8754 }
900e11f9
JK
8755 if (demangled)
8756 {
8757 make_cleanup (xfree, demangled);
8758 canon = demangled;
8759 }
8760 else
8761 {
8762 canon = mangled;
8763 need_copy = 0;
8764 }
8765 }
8766
8767 if (canon == NULL || check_physname)
8768 {
8769 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8770
8771 if (canon != NULL && strcmp (physname, canon) != 0)
8772 {
8773 /* It may not mean a bug in GDB. The compiler could also
8774 compute DW_AT_linkage_name incorrectly. But in such case
8775 GDB would need to be bug-to-bug compatible. */
8776
8777 complaint (&symfile_complaints,
8778 _("Computed physname <%s> does not match demangled <%s> "
8779 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
4262abfb
JK
8780 physname, canon, mangled, die->offset.sect_off,
8781 objfile_name (objfile));
900e11f9
JK
8782
8783 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8784 is available here - over computed PHYSNAME. It is safer
8785 against both buggy GDB and buggy compilers. */
8786
8787 retval = canon;
8788 }
8789 else
8790 {
8791 retval = physname;
8792 need_copy = 0;
8793 }
8794 }
8795 else
8796 retval = canon;
8797
8798 if (need_copy)
224c3ddb
SM
8799 retval = ((const char *)
8800 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8801 retval, strlen (retval)));
900e11f9
JK
8802
8803 do_cleanups (back_to);
8804 return retval;
0114d602
DJ
8805}
8806
74921315
KS
8807/* Inspect DIE in CU for a namespace alias. If one exists, record
8808 a new symbol for it.
8809
8810 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8811
8812static int
8813read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8814{
8815 struct attribute *attr;
8816
8817 /* If the die does not have a name, this is not a namespace
8818 alias. */
8819 attr = dwarf2_attr (die, DW_AT_name, cu);
8820 if (attr != NULL)
8821 {
8822 int num;
8823 struct die_info *d = die;
8824 struct dwarf2_cu *imported_cu = cu;
8825
8826 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8827 keep inspecting DIEs until we hit the underlying import. */
8828#define MAX_NESTED_IMPORTED_DECLARATIONS 100
8829 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8830 {
8831 attr = dwarf2_attr (d, DW_AT_import, cu);
8832 if (attr == NULL)
8833 break;
8834
8835 d = follow_die_ref (d, attr, &imported_cu);
8836 if (d->tag != DW_TAG_imported_declaration)
8837 break;
8838 }
8839
8840 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8841 {
8842 complaint (&symfile_complaints,
8843 _("DIE at 0x%x has too many recursively imported "
8844 "declarations"), d->offset.sect_off);
8845 return 0;
8846 }
8847
8848 if (attr != NULL)
8849 {
8850 struct type *type;
8851 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8852
8853 type = get_die_type_at_offset (offset, cu->per_cu);
8854 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8855 {
8856 /* This declaration is a global namespace alias. Add
8857 a symbol for it whose type is the aliased namespace. */
8858 new_symbol (die, type, cu);
8859 return 1;
8860 }
8861 }
8862 }
8863
8864 return 0;
8865}
8866
22cee43f
PMR
8867/* Return the using directives repository (global or local?) to use in the
8868 current context for LANGUAGE.
8869
8870 For Ada, imported declarations can materialize renamings, which *may* be
8871 global. However it is impossible (for now?) in DWARF to distinguish
8872 "external" imported declarations and "static" ones. As all imported
8873 declarations seem to be static in all other languages, make them all CU-wide
8874 global only in Ada. */
8875
8876static struct using_direct **
8877using_directives (enum language language)
8878{
8879 if (language == language_ada && context_stack_depth == 0)
8880 return &global_using_directives;
8881 else
8882 return &local_using_directives;
8883}
8884
27aa8d6a
SW
8885/* Read the import statement specified by the given die and record it. */
8886
8887static void
8888read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8889{
bb5ed363 8890 struct objfile *objfile = cu->objfile;
27aa8d6a 8891 struct attribute *import_attr;
32019081 8892 struct die_info *imported_die, *child_die;
de4affc9 8893 struct dwarf2_cu *imported_cu;
27aa8d6a 8894 const char *imported_name;
794684b6 8895 const char *imported_name_prefix;
13387711
SW
8896 const char *canonical_name;
8897 const char *import_alias;
8898 const char *imported_declaration = NULL;
794684b6 8899 const char *import_prefix;
32019081
JK
8900 VEC (const_char_ptr) *excludes = NULL;
8901 struct cleanup *cleanups;
13387711 8902
27aa8d6a
SW
8903 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8904 if (import_attr == NULL)
8905 {
8906 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8907 dwarf_tag_name (die->tag));
8908 return;
8909 }
8910
de4affc9
CC
8911 imported_cu = cu;
8912 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8913 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
8914 if (imported_name == NULL)
8915 {
8916 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8917
8918 The import in the following code:
8919 namespace A
8920 {
8921 typedef int B;
8922 }
8923
8924 int main ()
8925 {
8926 using A::B;
8927 B b;
8928 return b;
8929 }
8930
8931 ...
8932 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8933 <52> DW_AT_decl_file : 1
8934 <53> DW_AT_decl_line : 6
8935 <54> DW_AT_import : <0x75>
8936 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8937 <59> DW_AT_name : B
8938 <5b> DW_AT_decl_file : 1
8939 <5c> DW_AT_decl_line : 2
8940 <5d> DW_AT_type : <0x6e>
8941 ...
8942 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8943 <76> DW_AT_byte_size : 4
8944 <77> DW_AT_encoding : 5 (signed)
8945
8946 imports the wrong die ( 0x75 instead of 0x58 ).
8947 This case will be ignored until the gcc bug is fixed. */
8948 return;
8949 }
8950
82856980
SW
8951 /* Figure out the local name after import. */
8952 import_alias = dwarf2_name (die, cu);
27aa8d6a 8953
794684b6
SW
8954 /* Figure out where the statement is being imported to. */
8955 import_prefix = determine_prefix (die, cu);
8956
8957 /* Figure out what the scope of the imported die is and prepend it
8958 to the name of the imported die. */
de4affc9 8959 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 8960
f55ee35c
JK
8961 if (imported_die->tag != DW_TAG_namespace
8962 && imported_die->tag != DW_TAG_module)
794684b6 8963 {
13387711
SW
8964 imported_declaration = imported_name;
8965 canonical_name = imported_name_prefix;
794684b6 8966 }
13387711 8967 else if (strlen (imported_name_prefix) > 0)
12aaed36 8968 canonical_name = obconcat (&objfile->objfile_obstack,
45280282
IB
8969 imported_name_prefix,
8970 (cu->language == language_d ? "." : "::"),
8971 imported_name, (char *) NULL);
13387711
SW
8972 else
8973 canonical_name = imported_name;
794684b6 8974
32019081
JK
8975 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8976
8977 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8978 for (child_die = die->child; child_die && child_die->tag;
8979 child_die = sibling_die (child_die))
8980 {
8981 /* DWARF-4: A Fortran use statement with a “rename list” may be
8982 represented by an imported module entry with an import attribute
8983 referring to the module and owned entries corresponding to those
8984 entities that are renamed as part of being imported. */
8985
8986 if (child_die->tag != DW_TAG_imported_declaration)
8987 {
8988 complaint (&symfile_complaints,
8989 _("child DW_TAG_imported_declaration expected "
8990 "- DIE at 0x%x [in module %s]"),
4262abfb 8991 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8992 continue;
8993 }
8994
8995 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8996 if (import_attr == NULL)
8997 {
8998 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8999 dwarf_tag_name (child_die->tag));
9000 continue;
9001 }
9002
9003 imported_cu = cu;
9004 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9005 &imported_cu);
9006 imported_name = dwarf2_name (imported_die, imported_cu);
9007 if (imported_name == NULL)
9008 {
9009 complaint (&symfile_complaints,
9010 _("child DW_TAG_imported_declaration has unknown "
9011 "imported name - DIE at 0x%x [in module %s]"),
4262abfb 9012 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
9013 continue;
9014 }
9015
9016 VEC_safe_push (const_char_ptr, excludes, imported_name);
9017
9018 process_die (child_die, cu);
9019 }
9020
22cee43f
PMR
9021 add_using_directive (using_directives (cu->language),
9022 import_prefix,
9023 canonical_name,
9024 import_alias,
9025 imported_declaration,
9026 excludes,
9027 0,
9028 &objfile->objfile_obstack);
32019081
JK
9029
9030 do_cleanups (cleanups);
27aa8d6a
SW
9031}
9032
f4dc4d17 9033/* Cleanup function for handle_DW_AT_stmt_list. */
ae2de4f8 9034
cb1df416
DJ
9035static void
9036free_cu_line_header (void *arg)
9037{
9a3c8263 9038 struct dwarf2_cu *cu = (struct dwarf2_cu *) arg;
cb1df416
DJ
9039
9040 free_line_header (cu->line_header);
9041 cu->line_header = NULL;
9042}
9043
1b80a9fa
JK
9044/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9045 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9046 this, it was first present in GCC release 4.3.0. */
9047
9048static int
9049producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9050{
9051 if (!cu->checked_producer)
9052 check_producer (cu);
9053
9054 return cu->producer_is_gcc_lt_4_3;
9055}
9056
9291a0cd
TT
9057static void
9058find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
15d034d0 9059 const char **name, const char **comp_dir)
9291a0cd 9060{
9291a0cd
TT
9061 /* Find the filename. Do not use dwarf2_name here, since the filename
9062 is not a source language identifier. */
7d45c7c3
KB
9063 *name = dwarf2_string_attr (die, DW_AT_name, cu);
9064 *comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9291a0cd 9065
7d45c7c3
KB
9066 if (*comp_dir == NULL
9067 && producer_is_gcc_lt_4_3 (cu) && *name != NULL
9068 && IS_ABSOLUTE_PATH (*name))
9291a0cd 9069 {
15d034d0
TT
9070 char *d = ldirname (*name);
9071
9072 *comp_dir = d;
9073 if (d != NULL)
9074 make_cleanup (xfree, d);
9291a0cd
TT
9075 }
9076 if (*comp_dir != NULL)
9077 {
9078 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9079 directory, get rid of it. */
e6a959d6 9080 const char *cp = strchr (*comp_dir, ':');
9291a0cd
TT
9081
9082 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9083 *comp_dir = cp + 1;
9084 }
9085
9086 if (*name == NULL)
9087 *name = "<unknown>";
9088}
9089
f4dc4d17
DE
9090/* Handle DW_AT_stmt_list for a compilation unit.
9091 DIE is the DW_TAG_compile_unit die for CU.
c3b7b696
YQ
9092 COMP_DIR is the compilation directory. LOWPC is passed to
9093 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
2ab95328
TT
9094
9095static void
9096handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
c3b7b696 9097 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
2ab95328 9098{
527f3840 9099 struct objfile *objfile = dwarf2_per_objfile->objfile;
2ab95328 9100 struct attribute *attr;
527f3840
JK
9101 unsigned int line_offset;
9102 struct line_header line_header_local;
9103 hashval_t line_header_local_hash;
9104 unsigned u;
9105 void **slot;
9106 int decode_mapping;
2ab95328 9107
f4dc4d17
DE
9108 gdb_assert (! cu->per_cu->is_debug_types);
9109
2ab95328 9110 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
527f3840
JK
9111 if (attr == NULL)
9112 return;
9113
9114 line_offset = DW_UNSND (attr);
9115
9116 /* The line header hash table is only created if needed (it exists to
9117 prevent redundant reading of the line table for partial_units).
9118 If we're given a partial_unit, we'll need it. If we're given a
9119 compile_unit, then use the line header hash table if it's already
9120 created, but don't create one just yet. */
9121
9122 if (dwarf2_per_objfile->line_header_hash == NULL
9123 && die->tag == DW_TAG_partial_unit)
2ab95328 9124 {
527f3840
JK
9125 dwarf2_per_objfile->line_header_hash
9126 = htab_create_alloc_ex (127, line_header_hash_voidp,
9127 line_header_eq_voidp,
9128 free_line_header_voidp,
9129 &objfile->objfile_obstack,
9130 hashtab_obstack_allocate,
9131 dummy_obstack_deallocate);
9132 }
2ab95328 9133
527f3840
JK
9134 line_header_local.offset.sect_off = line_offset;
9135 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9136 line_header_local_hash = line_header_hash (&line_header_local);
9137 if (dwarf2_per_objfile->line_header_hash != NULL)
9138 {
9139 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9140 &line_header_local,
9141 line_header_local_hash, NO_INSERT);
9142
9143 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9144 is not present in *SLOT (since if there is something in *SLOT then
9145 it will be for a partial_unit). */
9146 if (die->tag == DW_TAG_partial_unit && slot != NULL)
dee91e82 9147 {
527f3840 9148 gdb_assert (*slot != NULL);
9a3c8263 9149 cu->line_header = (struct line_header *) *slot;
527f3840 9150 return;
dee91e82 9151 }
2ab95328 9152 }
527f3840
JK
9153
9154 /* dwarf_decode_line_header does not yet provide sufficient information.
9155 We always have to call also dwarf_decode_lines for it. */
9156 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9157 if (cu->line_header == NULL)
9158 return;
9159
9160 if (dwarf2_per_objfile->line_header_hash == NULL)
9161 slot = NULL;
9162 else
9163 {
9164 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9165 &line_header_local,
9166 line_header_local_hash, INSERT);
9167 gdb_assert (slot != NULL);
9168 }
9169 if (slot != NULL && *slot == NULL)
9170 {
9171 /* This newly decoded line number information unit will be owned
9172 by line_header_hash hash table. */
9173 *slot = cu->line_header;
9174 }
9175 else
9176 {
9177 /* We cannot free any current entry in (*slot) as that struct line_header
9178 may be already used by multiple CUs. Create only temporary decoded
9179 line_header for this CU - it may happen at most once for each line
9180 number information unit. And if we're not using line_header_hash
9181 then this is what we want as well. */
9182 gdb_assert (die->tag != DW_TAG_partial_unit);
9183 make_cleanup (free_cu_line_header, cu);
9184 }
9185 decode_mapping = (die->tag != DW_TAG_partial_unit);
9186 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9187 decode_mapping);
2ab95328
TT
9188}
9189
95554aad 9190/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 9191
c906108c 9192static void
e7c27a73 9193read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9194{
dee91e82 9195 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 9196 struct gdbarch *gdbarch = get_objfile_arch (objfile);
debd256d 9197 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 9198 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
9199 CORE_ADDR highpc = ((CORE_ADDR) 0);
9200 struct attribute *attr;
15d034d0
TT
9201 const char *name = NULL;
9202 const char *comp_dir = NULL;
c906108c 9203 struct die_info *child_die;
e142c38c 9204 CORE_ADDR baseaddr;
6e70227d 9205
e142c38c 9206 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 9207
fae299cd 9208 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
9209
9210 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9211 from finish_block. */
2acceee2 9212 if (lowpc == ((CORE_ADDR) -1))
c906108c 9213 lowpc = highpc;
3e29f34a 9214 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
c906108c 9215
9291a0cd 9216 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 9217
95554aad 9218 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 9219
f4b8a18d
KW
9220 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9221 standardised yet. As a workaround for the language detection we fall
9222 back to the DW_AT_producer string. */
9223 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9224 cu->language = language_opencl;
9225
3019eac3
DE
9226 /* Similar hack for Go. */
9227 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9228 set_cu_language (DW_LANG_Go, cu);
9229
f4dc4d17 9230 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
3019eac3
DE
9231
9232 /* Decode line number information if present. We do this before
9233 processing child DIEs, so that the line header table is available
9234 for DW_AT_decl_file. */
c3b7b696 9235 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
3019eac3
DE
9236
9237 /* Process all dies in compilation unit. */
9238 if (die->child != NULL)
9239 {
9240 child_die = die->child;
9241 while (child_die && child_die->tag)
9242 {
9243 process_die (child_die, cu);
9244 child_die = sibling_die (child_die);
9245 }
9246 }
9247
9248 /* Decode macro information, if present. Dwarf 2 macro information
9249 refers to information in the line number info statement program
9250 header, so we can only read it if we've read the header
9251 successfully. */
9252 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9253 if (attr && cu->line_header)
9254 {
9255 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9256 complaint (&symfile_complaints,
9257 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9258
43f3e411 9259 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
3019eac3
DE
9260 }
9261 else
9262 {
9263 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9264 if (attr && cu->line_header)
9265 {
9266 unsigned int macro_offset = DW_UNSND (attr);
9267
43f3e411 9268 dwarf_decode_macros (cu, macro_offset, 0);
3019eac3
DE
9269 }
9270 }
9271
9272 do_cleanups (back_to);
9273}
9274
f4dc4d17
DE
9275/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9276 Create the set of symtabs used by this TU, or if this TU is sharing
9277 symtabs with another TU and the symtabs have already been created
9278 then restore those symtabs in the line header.
9279 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
9280
9281static void
f4dc4d17 9282setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 9283{
f4dc4d17
DE
9284 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9285 struct type_unit_group *tu_group;
9286 int first_time;
9287 struct line_header *lh;
3019eac3 9288 struct attribute *attr;
f4dc4d17 9289 unsigned int i, line_offset;
0186c6a7 9290 struct signatured_type *sig_type;
3019eac3 9291
f4dc4d17 9292 gdb_assert (per_cu->is_debug_types);
0186c6a7 9293 sig_type = (struct signatured_type *) per_cu;
3019eac3 9294
f4dc4d17 9295 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 9296
f4dc4d17 9297 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 9298 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
9299 if (sig_type->type_unit_group == NULL)
9300 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9301 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
9302
9303 /* If we've already processed this stmt_list there's no real need to
9304 do it again, we could fake it and just recreate the part we need
9305 (file name,index -> symtab mapping). If data shows this optimization
9306 is useful we can do it then. */
43f3e411 9307 first_time = tu_group->compunit_symtab == NULL;
f4dc4d17
DE
9308
9309 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9310 debug info. */
9311 lh = NULL;
9312 if (attr != NULL)
3019eac3 9313 {
f4dc4d17
DE
9314 line_offset = DW_UNSND (attr);
9315 lh = dwarf_decode_line_header (line_offset, cu);
9316 }
9317 if (lh == NULL)
9318 {
9319 if (first_time)
9320 dwarf2_start_symtab (cu, "", NULL, 0);
9321 else
9322 {
9323 gdb_assert (tu_group->symtabs == NULL);
0ab9ce85 9324 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17 9325 }
f4dc4d17 9326 return;
3019eac3
DE
9327 }
9328
f4dc4d17
DE
9329 cu->line_header = lh;
9330 make_cleanup (free_cu_line_header, cu);
3019eac3 9331
f4dc4d17
DE
9332 if (first_time)
9333 {
43f3e411 9334 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 9335
1fd60fc0
DE
9336 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9337 still initializing it, and our caller (a few levels up)
9338 process_full_type_unit still needs to know if this is the first
9339 time. */
9340
f4dc4d17
DE
9341 tu_group->num_symtabs = lh->num_file_names;
9342 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
3019eac3 9343
f4dc4d17
DE
9344 for (i = 0; i < lh->num_file_names; ++i)
9345 {
d521ce57 9346 const char *dir = NULL;
f4dc4d17 9347 struct file_entry *fe = &lh->file_names[i];
3019eac3 9348
afa6c9ab 9349 if (fe->dir_index && lh->include_dirs != NULL)
f4dc4d17 9350 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 9351 dwarf2_start_subfile (fe->name, dir);
3019eac3 9352
f4dc4d17
DE
9353 if (current_subfile->symtab == NULL)
9354 {
9355 /* NOTE: start_subfile will recognize when it's been passed
9356 a file it has already seen. So we can't assume there's a
43f3e411 9357 simple mapping from lh->file_names to subfiles, plus
f4dc4d17 9358 lh->file_names may contain dups. */
43f3e411
DE
9359 current_subfile->symtab
9360 = allocate_symtab (cust, current_subfile->name);
f4dc4d17
DE
9361 }
9362
9363 fe->symtab = current_subfile->symtab;
9364 tu_group->symtabs[i] = fe->symtab;
9365 }
9366 }
9367 else
3019eac3 9368 {
0ab9ce85 9369 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17
DE
9370
9371 for (i = 0; i < lh->num_file_names; ++i)
9372 {
9373 struct file_entry *fe = &lh->file_names[i];
9374
9375 fe->symtab = tu_group->symtabs[i];
9376 }
3019eac3
DE
9377 }
9378
f4dc4d17
DE
9379 /* The main symtab is allocated last. Type units don't have DW_AT_name
9380 so they don't have a "real" (so to speak) symtab anyway.
9381 There is later code that will assign the main symtab to all symbols
9382 that don't have one. We need to handle the case of a symbol with a
9383 missing symtab (DW_AT_decl_file) anyway. */
9384}
3019eac3 9385
f4dc4d17
DE
9386/* Process DW_TAG_type_unit.
9387 For TUs we want to skip the first top level sibling if it's not the
9388 actual type being defined by this TU. In this case the first top
9389 level sibling is there to provide context only. */
3019eac3 9390
f4dc4d17
DE
9391static void
9392read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9393{
9394 struct die_info *child_die;
3019eac3 9395
f4dc4d17
DE
9396 prepare_one_comp_unit (cu, die, language_minimal);
9397
9398 /* Initialize (or reinitialize) the machinery for building symtabs.
9399 We do this before processing child DIEs, so that the line header table
9400 is available for DW_AT_decl_file. */
9401 setup_type_unit_groups (die, cu);
9402
9403 if (die->child != NULL)
9404 {
9405 child_die = die->child;
9406 while (child_die && child_die->tag)
9407 {
9408 process_die (child_die, cu);
9409 child_die = sibling_die (child_die);
9410 }
9411 }
3019eac3
DE
9412}
9413\f
80626a55
DE
9414/* DWO/DWP files.
9415
9416 http://gcc.gnu.org/wiki/DebugFission
9417 http://gcc.gnu.org/wiki/DebugFissionDWP
9418
9419 To simplify handling of both DWO files ("object" files with the DWARF info)
9420 and DWP files (a file with the DWOs packaged up into one file), we treat
9421 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
9422
9423static hashval_t
9424hash_dwo_file (const void *item)
9425{
9a3c8263 9426 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
a2ce51a0 9427 hashval_t hash;
3019eac3 9428
a2ce51a0
DE
9429 hash = htab_hash_string (dwo_file->dwo_name);
9430 if (dwo_file->comp_dir != NULL)
9431 hash += htab_hash_string (dwo_file->comp_dir);
9432 return hash;
3019eac3
DE
9433}
9434
9435static int
9436eq_dwo_file (const void *item_lhs, const void *item_rhs)
9437{
9a3c8263
SM
9438 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9439 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
3019eac3 9440
a2ce51a0
DE
9441 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9442 return 0;
9443 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9444 return lhs->comp_dir == rhs->comp_dir;
9445 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
9446}
9447
9448/* Allocate a hash table for DWO files. */
9449
9450static htab_t
9451allocate_dwo_file_hash_table (void)
9452{
9453 struct objfile *objfile = dwarf2_per_objfile->objfile;
9454
9455 return htab_create_alloc_ex (41,
9456 hash_dwo_file,
9457 eq_dwo_file,
9458 NULL,
9459 &objfile->objfile_obstack,
9460 hashtab_obstack_allocate,
9461 dummy_obstack_deallocate);
9462}
9463
80626a55
DE
9464/* Lookup DWO file DWO_NAME. */
9465
9466static void **
0ac5b59e 9467lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
9468{
9469 struct dwo_file find_entry;
9470 void **slot;
9471
9472 if (dwarf2_per_objfile->dwo_files == NULL)
9473 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9474
9475 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
9476 find_entry.dwo_name = dwo_name;
9477 find_entry.comp_dir = comp_dir;
80626a55
DE
9478 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9479
9480 return slot;
9481}
9482
3019eac3
DE
9483static hashval_t
9484hash_dwo_unit (const void *item)
9485{
9a3c8263 9486 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3
DE
9487
9488 /* This drops the top 32 bits of the id, but is ok for a hash. */
9489 return dwo_unit->signature;
9490}
9491
9492static int
9493eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9494{
9a3c8263
SM
9495 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9496 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
3019eac3
DE
9497
9498 /* The signature is assumed to be unique within the DWO file.
9499 So while object file CU dwo_id's always have the value zero,
9500 that's OK, assuming each object file DWO file has only one CU,
9501 and that's the rule for now. */
9502 return lhs->signature == rhs->signature;
9503}
9504
9505/* Allocate a hash table for DWO CUs,TUs.
9506 There is one of these tables for each of CUs,TUs for each DWO file. */
9507
9508static htab_t
9509allocate_dwo_unit_table (struct objfile *objfile)
9510{
9511 /* Start out with a pretty small number.
9512 Generally DWO files contain only one CU and maybe some TUs. */
9513 return htab_create_alloc_ex (3,
9514 hash_dwo_unit,
9515 eq_dwo_unit,
9516 NULL,
9517 &objfile->objfile_obstack,
9518 hashtab_obstack_allocate,
9519 dummy_obstack_deallocate);
9520}
9521
80626a55 9522/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 9523
19c3d4c9 9524struct create_dwo_cu_data
3019eac3
DE
9525{
9526 struct dwo_file *dwo_file;
19c3d4c9 9527 struct dwo_unit dwo_unit;
3019eac3
DE
9528};
9529
19c3d4c9 9530/* die_reader_func for create_dwo_cu. */
3019eac3
DE
9531
9532static void
19c3d4c9
DE
9533create_dwo_cu_reader (const struct die_reader_specs *reader,
9534 const gdb_byte *info_ptr,
9535 struct die_info *comp_unit_die,
9536 int has_children,
9537 void *datap)
3019eac3
DE
9538{
9539 struct dwarf2_cu *cu = reader->cu;
3019eac3 9540 sect_offset offset = cu->per_cu->offset;
8a0459fd 9541 struct dwarf2_section_info *section = cu->per_cu->section;
9a3c8263 9542 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
3019eac3 9543 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 9544 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 9545 struct attribute *attr;
3019eac3
DE
9546
9547 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9548 if (attr == NULL)
9549 {
19c3d4c9
DE
9550 complaint (&symfile_complaints,
9551 _("Dwarf Error: debug entry at offset 0x%x is missing"
9552 " its dwo_id [in module %s]"),
9553 offset.sect_off, dwo_file->dwo_name);
3019eac3
DE
9554 return;
9555 }
9556
3019eac3
DE
9557 dwo_unit->dwo_file = dwo_file;
9558 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 9559 dwo_unit->section = section;
3019eac3
DE
9560 dwo_unit->offset = offset;
9561 dwo_unit->length = cu->per_cu->length;
9562
b4f54984 9563 if (dwarf_read_debug)
4031ecc5
DE
9564 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9565 offset.sect_off, hex_string (dwo_unit->signature));
3019eac3
DE
9566}
9567
19c3d4c9
DE
9568/* Create the dwo_unit for the lone CU in DWO_FILE.
9569 Note: This function processes DWO files only, not DWP files. */
3019eac3 9570
19c3d4c9
DE
9571static struct dwo_unit *
9572create_dwo_cu (struct dwo_file *dwo_file)
3019eac3
DE
9573{
9574 struct objfile *objfile = dwarf2_per_objfile->objfile;
9575 struct dwarf2_section_info *section = &dwo_file->sections.info;
d521ce57 9576 const gdb_byte *info_ptr, *end_ptr;
19c3d4c9
DE
9577 struct create_dwo_cu_data create_dwo_cu_data;
9578 struct dwo_unit *dwo_unit;
3019eac3
DE
9579
9580 dwarf2_read_section (objfile, section);
9581 info_ptr = section->buffer;
9582
9583 if (info_ptr == NULL)
9584 return NULL;
9585
b4f54984 9586 if (dwarf_read_debug)
19c3d4c9
DE
9587 {
9588 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
a32a8923
DE
9589 get_section_name (section),
9590 get_section_file_name (section));
19c3d4c9 9591 }
3019eac3 9592
19c3d4c9
DE
9593 create_dwo_cu_data.dwo_file = dwo_file;
9594 dwo_unit = NULL;
3019eac3
DE
9595
9596 end_ptr = info_ptr + section->size;
9597 while (info_ptr < end_ptr)
9598 {
9599 struct dwarf2_per_cu_data per_cu;
9600
19c3d4c9
DE
9601 memset (&create_dwo_cu_data.dwo_unit, 0,
9602 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
9603 memset (&per_cu, 0, sizeof (per_cu));
9604 per_cu.objfile = objfile;
9605 per_cu.is_debug_types = 0;
9606 per_cu.offset.sect_off = info_ptr - section->buffer;
8a0459fd 9607 per_cu.section = section;
3019eac3 9608
33e80786 9609 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
19c3d4c9
DE
9610 create_dwo_cu_reader,
9611 &create_dwo_cu_data);
9612
9613 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9614 {
9615 /* If we've already found one, complain. We only support one
9616 because having more than one requires hacking the dwo_name of
9617 each to match, which is highly unlikely to happen. */
9618 if (dwo_unit != NULL)
9619 {
9620 complaint (&symfile_complaints,
9621 _("Multiple CUs in DWO file %s [in module %s]"),
4262abfb 9622 dwo_file->dwo_name, objfile_name (objfile));
19c3d4c9
DE
9623 break;
9624 }
9625
9626 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9627 *dwo_unit = create_dwo_cu_data.dwo_unit;
9628 }
3019eac3
DE
9629
9630 info_ptr += per_cu.length;
9631 }
9632
19c3d4c9 9633 return dwo_unit;
3019eac3
DE
9634}
9635
80626a55
DE
9636/* DWP file .debug_{cu,tu}_index section format:
9637 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9638
d2415c6c
DE
9639 DWP Version 1:
9640
80626a55
DE
9641 Both index sections have the same format, and serve to map a 64-bit
9642 signature to a set of section numbers. Each section begins with a header,
9643 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9644 indexes, and a pool of 32-bit section numbers. The index sections will be
9645 aligned at 8-byte boundaries in the file.
9646
d2415c6c
DE
9647 The index section header consists of:
9648
9649 V, 32 bit version number
9650 -, 32 bits unused
9651 N, 32 bit number of compilation units or type units in the index
9652 M, 32 bit number of slots in the hash table
80626a55 9653
d2415c6c 9654 Numbers are recorded using the byte order of the application binary.
80626a55 9655
d2415c6c
DE
9656 The hash table begins at offset 16 in the section, and consists of an array
9657 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9658 order of the application binary). Unused slots in the hash table are 0.
9659 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 9660
d2415c6c
DE
9661 The parallel table begins immediately after the hash table
9662 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9663 array of 32-bit indexes (using the byte order of the application binary),
9664 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9665 table contains a 32-bit index into the pool of section numbers. For unused
9666 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 9667
73869dc2
DE
9668 The pool of section numbers begins immediately following the hash table
9669 (at offset 16 + 12 * M from the beginning of the section). The pool of
9670 section numbers consists of an array of 32-bit words (using the byte order
9671 of the application binary). Each item in the array is indexed starting
9672 from 0. The hash table entry provides the index of the first section
9673 number in the set. Additional section numbers in the set follow, and the
9674 set is terminated by a 0 entry (section number 0 is not used in ELF).
9675
9676 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9677 section must be the first entry in the set, and the .debug_abbrev.dwo must
9678 be the second entry. Other members of the set may follow in any order.
9679
9680 ---
9681
9682 DWP Version 2:
9683
9684 DWP Version 2 combines all the .debug_info, etc. sections into one,
9685 and the entries in the index tables are now offsets into these sections.
9686 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9687 section.
9688
9689 Index Section Contents:
9690 Header
9691 Hash Table of Signatures dwp_hash_table.hash_table
9692 Parallel Table of Indices dwp_hash_table.unit_table
9693 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9694 Table of Section Sizes dwp_hash_table.v2.sizes
9695
9696 The index section header consists of:
9697
9698 V, 32 bit version number
9699 L, 32 bit number of columns in the table of section offsets
9700 N, 32 bit number of compilation units or type units in the index
9701 M, 32 bit number of slots in the hash table
9702
9703 Numbers are recorded using the byte order of the application binary.
9704
9705 The hash table has the same format as version 1.
9706 The parallel table of indices has the same format as version 1,
9707 except that the entries are origin-1 indices into the table of sections
9708 offsets and the table of section sizes.
9709
9710 The table of offsets begins immediately following the parallel table
9711 (at offset 16 + 12 * M from the beginning of the section). The table is
9712 a two-dimensional array of 32-bit words (using the byte order of the
9713 application binary), with L columns and N+1 rows, in row-major order.
9714 Each row in the array is indexed starting from 0. The first row provides
9715 a key to the remaining rows: each column in this row provides an identifier
9716 for a debug section, and the offsets in the same column of subsequent rows
9717 refer to that section. The section identifiers are:
9718
9719 DW_SECT_INFO 1 .debug_info.dwo
9720 DW_SECT_TYPES 2 .debug_types.dwo
9721 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9722 DW_SECT_LINE 4 .debug_line.dwo
9723 DW_SECT_LOC 5 .debug_loc.dwo
9724 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9725 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9726 DW_SECT_MACRO 8 .debug_macro.dwo
9727
9728 The offsets provided by the CU and TU index sections are the base offsets
9729 for the contributions made by each CU or TU to the corresponding section
9730 in the package file. Each CU and TU header contains an abbrev_offset
9731 field, used to find the abbreviations table for that CU or TU within the
9732 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9733 be interpreted as relative to the base offset given in the index section.
9734 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9735 should be interpreted as relative to the base offset for .debug_line.dwo,
9736 and offsets into other debug sections obtained from DWARF attributes should
9737 also be interpreted as relative to the corresponding base offset.
9738
9739 The table of sizes begins immediately following the table of offsets.
9740 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9741 with L columns and N rows, in row-major order. Each row in the array is
9742 indexed starting from 1 (row 0 is shared by the two tables).
9743
9744 ---
9745
9746 Hash table lookup is handled the same in version 1 and 2:
9747
9748 We assume that N and M will not exceed 2^32 - 1.
9749 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9750
d2415c6c
DE
9751 Given a 64-bit compilation unit signature or a type signature S, an entry
9752 in the hash table is located as follows:
80626a55 9753
d2415c6c
DE
9754 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9755 the low-order k bits all set to 1.
80626a55 9756
d2415c6c 9757 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 9758
d2415c6c
DE
9759 3) If the hash table entry at index H matches the signature, use that
9760 entry. If the hash table entry at index H is unused (all zeroes),
9761 terminate the search: the signature is not present in the table.
80626a55 9762
d2415c6c 9763 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 9764
d2415c6c 9765 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 9766 to stop at an unused slot or find the match. */
80626a55
DE
9767
9768/* Create a hash table to map DWO IDs to their CU/TU entry in
9769 .debug_{info,types}.dwo in DWP_FILE.
9770 Returns NULL if there isn't one.
9771 Note: This function processes DWP files only, not DWO files. */
9772
9773static struct dwp_hash_table *
9774create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9775{
9776 struct objfile *objfile = dwarf2_per_objfile->objfile;
9777 bfd *dbfd = dwp_file->dbfd;
948f8e3d 9778 const gdb_byte *index_ptr, *index_end;
80626a55 9779 struct dwarf2_section_info *index;
73869dc2 9780 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
9781 struct dwp_hash_table *htab;
9782
9783 if (is_debug_types)
9784 index = &dwp_file->sections.tu_index;
9785 else
9786 index = &dwp_file->sections.cu_index;
9787
9788 if (dwarf2_section_empty_p (index))
9789 return NULL;
9790 dwarf2_read_section (objfile, index);
9791
9792 index_ptr = index->buffer;
9793 index_end = index_ptr + index->size;
9794
9795 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
9796 index_ptr += 4;
9797 if (version == 2)
9798 nr_columns = read_4_bytes (dbfd, index_ptr);
9799 else
9800 nr_columns = 0;
9801 index_ptr += 4;
80626a55
DE
9802 nr_units = read_4_bytes (dbfd, index_ptr);
9803 index_ptr += 4;
9804 nr_slots = read_4_bytes (dbfd, index_ptr);
9805 index_ptr += 4;
9806
73869dc2 9807 if (version != 1 && version != 2)
80626a55 9808 {
21aa081e 9809 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 9810 " [in module %s]"),
21aa081e 9811 pulongest (version), dwp_file->name);
80626a55
DE
9812 }
9813 if (nr_slots != (nr_slots & -nr_slots))
9814 {
21aa081e 9815 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 9816 " is not power of 2 [in module %s]"),
21aa081e 9817 pulongest (nr_slots), dwp_file->name);
80626a55
DE
9818 }
9819
9820 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
9821 htab->version = version;
9822 htab->nr_columns = nr_columns;
80626a55
DE
9823 htab->nr_units = nr_units;
9824 htab->nr_slots = nr_slots;
9825 htab->hash_table = index_ptr;
9826 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
9827
9828 /* Exit early if the table is empty. */
9829 if (nr_slots == 0 || nr_units == 0
9830 || (version == 2 && nr_columns == 0))
9831 {
9832 /* All must be zero. */
9833 if (nr_slots != 0 || nr_units != 0
9834 || (version == 2 && nr_columns != 0))
9835 {
9836 complaint (&symfile_complaints,
9837 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9838 " all zero [in modules %s]"),
9839 dwp_file->name);
9840 }
9841 return htab;
9842 }
9843
9844 if (version == 1)
9845 {
9846 htab->section_pool.v1.indices =
9847 htab->unit_table + sizeof (uint32_t) * nr_slots;
9848 /* It's harder to decide whether the section is too small in v1.
9849 V1 is deprecated anyway so we punt. */
9850 }
9851 else
9852 {
9853 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9854 int *ids = htab->section_pool.v2.section_ids;
9855 /* Reverse map for error checking. */
9856 int ids_seen[DW_SECT_MAX + 1];
9857 int i;
9858
9859 if (nr_columns < 2)
9860 {
9861 error (_("Dwarf Error: bad DWP hash table, too few columns"
9862 " in section table [in module %s]"),
9863 dwp_file->name);
9864 }
9865 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9866 {
9867 error (_("Dwarf Error: bad DWP hash table, too many columns"
9868 " in section table [in module %s]"),
9869 dwp_file->name);
9870 }
9871 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9872 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9873 for (i = 0; i < nr_columns; ++i)
9874 {
9875 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9876
9877 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9878 {
9879 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9880 " in section table [in module %s]"),
9881 id, dwp_file->name);
9882 }
9883 if (ids_seen[id] != -1)
9884 {
9885 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9886 " id %d in section table [in module %s]"),
9887 id, dwp_file->name);
9888 }
9889 ids_seen[id] = i;
9890 ids[i] = id;
9891 }
9892 /* Must have exactly one info or types section. */
9893 if (((ids_seen[DW_SECT_INFO] != -1)
9894 + (ids_seen[DW_SECT_TYPES] != -1))
9895 != 1)
9896 {
9897 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9898 " DWO info/types section [in module %s]"),
9899 dwp_file->name);
9900 }
9901 /* Must have an abbrev section. */
9902 if (ids_seen[DW_SECT_ABBREV] == -1)
9903 {
9904 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9905 " section [in module %s]"),
9906 dwp_file->name);
9907 }
9908 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9909 htab->section_pool.v2.sizes =
9910 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9911 * nr_units * nr_columns);
9912 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9913 * nr_units * nr_columns))
9914 > index_end)
9915 {
9916 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9917 " [in module %s]"),
9918 dwp_file->name);
9919 }
9920 }
80626a55
DE
9921
9922 return htab;
9923}
9924
9925/* Update SECTIONS with the data from SECTP.
9926
9927 This function is like the other "locate" section routines that are
9928 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 9929 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
9930
9931 The result is non-zero for success, or zero if an error was found. */
9932
9933static int
73869dc2
DE
9934locate_v1_virtual_dwo_sections (asection *sectp,
9935 struct virtual_v1_dwo_sections *sections)
80626a55
DE
9936{
9937 const struct dwop_section_names *names = &dwop_section_names;
9938
9939 if (section_is_p (sectp->name, &names->abbrev_dwo))
9940 {
9941 /* There can be only one. */
049412e3 9942 if (sections->abbrev.s.section != NULL)
80626a55 9943 return 0;
049412e3 9944 sections->abbrev.s.section = sectp;
80626a55
DE
9945 sections->abbrev.size = bfd_get_section_size (sectp);
9946 }
9947 else if (section_is_p (sectp->name, &names->info_dwo)
9948 || section_is_p (sectp->name, &names->types_dwo))
9949 {
9950 /* There can be only one. */
049412e3 9951 if (sections->info_or_types.s.section != NULL)
80626a55 9952 return 0;
049412e3 9953 sections->info_or_types.s.section = sectp;
80626a55
DE
9954 sections->info_or_types.size = bfd_get_section_size (sectp);
9955 }
9956 else if (section_is_p (sectp->name, &names->line_dwo))
9957 {
9958 /* There can be only one. */
049412e3 9959 if (sections->line.s.section != NULL)
80626a55 9960 return 0;
049412e3 9961 sections->line.s.section = sectp;
80626a55
DE
9962 sections->line.size = bfd_get_section_size (sectp);
9963 }
9964 else if (section_is_p (sectp->name, &names->loc_dwo))
9965 {
9966 /* There can be only one. */
049412e3 9967 if (sections->loc.s.section != NULL)
80626a55 9968 return 0;
049412e3 9969 sections->loc.s.section = sectp;
80626a55
DE
9970 sections->loc.size = bfd_get_section_size (sectp);
9971 }
9972 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9973 {
9974 /* There can be only one. */
049412e3 9975 if (sections->macinfo.s.section != NULL)
80626a55 9976 return 0;
049412e3 9977 sections->macinfo.s.section = sectp;
80626a55
DE
9978 sections->macinfo.size = bfd_get_section_size (sectp);
9979 }
9980 else if (section_is_p (sectp->name, &names->macro_dwo))
9981 {
9982 /* There can be only one. */
049412e3 9983 if (sections->macro.s.section != NULL)
80626a55 9984 return 0;
049412e3 9985 sections->macro.s.section = sectp;
80626a55
DE
9986 sections->macro.size = bfd_get_section_size (sectp);
9987 }
9988 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9989 {
9990 /* There can be only one. */
049412e3 9991 if (sections->str_offsets.s.section != NULL)
80626a55 9992 return 0;
049412e3 9993 sections->str_offsets.s.section = sectp;
80626a55
DE
9994 sections->str_offsets.size = bfd_get_section_size (sectp);
9995 }
9996 else
9997 {
9998 /* No other kind of section is valid. */
9999 return 0;
10000 }
10001
10002 return 1;
10003}
10004
73869dc2
DE
10005/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10006 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10007 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10008 This is for DWP version 1 files. */
80626a55
DE
10009
10010static struct dwo_unit *
73869dc2
DE
10011create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10012 uint32_t unit_index,
10013 const char *comp_dir,
10014 ULONGEST signature, int is_debug_types)
80626a55
DE
10015{
10016 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
10017 const struct dwp_hash_table *dwp_htab =
10018 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55
DE
10019 bfd *dbfd = dwp_file->dbfd;
10020 const char *kind = is_debug_types ? "TU" : "CU";
10021 struct dwo_file *dwo_file;
10022 struct dwo_unit *dwo_unit;
73869dc2 10023 struct virtual_v1_dwo_sections sections;
80626a55
DE
10024 void **dwo_file_slot;
10025 char *virtual_dwo_name;
80626a55
DE
10026 struct cleanup *cleanups;
10027 int i;
10028
73869dc2
DE
10029 gdb_assert (dwp_file->version == 1);
10030
b4f54984 10031 if (dwarf_read_debug)
80626a55 10032 {
73869dc2 10033 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 10034 kind,
73869dc2 10035 pulongest (unit_index), hex_string (signature),
80626a55
DE
10036 dwp_file->name);
10037 }
10038
19ac8c2e 10039 /* Fetch the sections of this DWO unit.
80626a55
DE
10040 Put a limit on the number of sections we look for so that bad data
10041 doesn't cause us to loop forever. */
10042
73869dc2 10043#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
10044 (1 /* .debug_info or .debug_types */ \
10045 + 1 /* .debug_abbrev */ \
10046 + 1 /* .debug_line */ \
10047 + 1 /* .debug_loc */ \
10048 + 1 /* .debug_str_offsets */ \
19ac8c2e 10049 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
10050 + 1 /* trailing zero */)
10051
10052 memset (&sections, 0, sizeof (sections));
10053 cleanups = make_cleanup (null_cleanup, 0);
10054
73869dc2 10055 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
10056 {
10057 asection *sectp;
10058 uint32_t section_nr =
10059 read_4_bytes (dbfd,
73869dc2
DE
10060 dwp_htab->section_pool.v1.indices
10061 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
10062
10063 if (section_nr == 0)
10064 break;
10065 if (section_nr >= dwp_file->num_sections)
10066 {
10067 error (_("Dwarf Error: bad DWP hash table, section number too large"
10068 " [in module %s]"),
10069 dwp_file->name);
10070 }
10071
10072 sectp = dwp_file->elf_sections[section_nr];
73869dc2 10073 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
10074 {
10075 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10076 " [in module %s]"),
10077 dwp_file->name);
10078 }
10079 }
10080
10081 if (i < 2
a32a8923
DE
10082 || dwarf2_section_empty_p (&sections.info_or_types)
10083 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
10084 {
10085 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10086 " [in module %s]"),
10087 dwp_file->name);
10088 }
73869dc2 10089 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
10090 {
10091 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10092 " [in module %s]"),
10093 dwp_file->name);
10094 }
10095
10096 /* It's easier for the rest of the code if we fake a struct dwo_file and
10097 have dwo_unit "live" in that. At least for now.
10098
10099 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 10100 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
10101 file, we can combine them back into a virtual DWO file to save space
10102 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
10103 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10104
2792b94d
PM
10105 virtual_dwo_name =
10106 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
a32a8923
DE
10107 get_section_id (&sections.abbrev),
10108 get_section_id (&sections.line),
10109 get_section_id (&sections.loc),
10110 get_section_id (&sections.str_offsets));
80626a55
DE
10111 make_cleanup (xfree, virtual_dwo_name);
10112 /* Can we use an existing virtual DWO file? */
0ac5b59e 10113 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
80626a55
DE
10114 /* Create one if necessary. */
10115 if (*dwo_file_slot == NULL)
10116 {
b4f54984 10117 if (dwarf_read_debug)
80626a55
DE
10118 {
10119 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10120 virtual_dwo_name);
10121 }
10122 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
10123 dwo_file->dwo_name
10124 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10125 virtual_dwo_name,
10126 strlen (virtual_dwo_name));
0ac5b59e 10127 dwo_file->comp_dir = comp_dir;
80626a55
DE
10128 dwo_file->sections.abbrev = sections.abbrev;
10129 dwo_file->sections.line = sections.line;
10130 dwo_file->sections.loc = sections.loc;
10131 dwo_file->sections.macinfo = sections.macinfo;
10132 dwo_file->sections.macro = sections.macro;
10133 dwo_file->sections.str_offsets = sections.str_offsets;
10134 /* The "str" section is global to the entire DWP file. */
10135 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 10136 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
10137 there's no need to record it in dwo_file.
10138 Also, we can't simply record type sections in dwo_file because
10139 we record a pointer into the vector in dwo_unit. As we collect more
10140 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
10141 for it, invalidating all copies of pointers into the previous
10142 contents. */
80626a55
DE
10143 *dwo_file_slot = dwo_file;
10144 }
10145 else
10146 {
b4f54984 10147 if (dwarf_read_debug)
80626a55
DE
10148 {
10149 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10150 virtual_dwo_name);
10151 }
9a3c8263 10152 dwo_file = (struct dwo_file *) *dwo_file_slot;
80626a55
DE
10153 }
10154 do_cleanups (cleanups);
10155
10156 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10157 dwo_unit->dwo_file = dwo_file;
10158 dwo_unit->signature = signature;
8d749320
SM
10159 dwo_unit->section =
10160 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
8a0459fd 10161 *dwo_unit->section = sections.info_or_types;
57d63ce2 10162 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
10163
10164 return dwo_unit;
10165}
10166
73869dc2
DE
10167/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10168 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10169 piece within that section used by a TU/CU, return a virtual section
10170 of just that piece. */
10171
10172static struct dwarf2_section_info
10173create_dwp_v2_section (struct dwarf2_section_info *section,
10174 bfd_size_type offset, bfd_size_type size)
10175{
10176 struct dwarf2_section_info result;
10177 asection *sectp;
10178
10179 gdb_assert (section != NULL);
10180 gdb_assert (!section->is_virtual);
10181
10182 memset (&result, 0, sizeof (result));
10183 result.s.containing_section = section;
10184 result.is_virtual = 1;
10185
10186 if (size == 0)
10187 return result;
10188
10189 sectp = get_section_bfd_section (section);
10190
10191 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10192 bounds of the real section. This is a pretty-rare event, so just
10193 flag an error (easier) instead of a warning and trying to cope. */
10194 if (sectp == NULL
10195 || offset + size > bfd_get_section_size (sectp))
10196 {
10197 bfd *abfd = sectp->owner;
10198
10199 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10200 " in section %s [in module %s]"),
10201 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10202 objfile_name (dwarf2_per_objfile->objfile));
10203 }
10204
10205 result.virtual_offset = offset;
10206 result.size = size;
10207 return result;
10208}
10209
10210/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10211 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10212 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10213 This is for DWP version 2 files. */
10214
10215static struct dwo_unit *
10216create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10217 uint32_t unit_index,
10218 const char *comp_dir,
10219 ULONGEST signature, int is_debug_types)
10220{
10221 struct objfile *objfile = dwarf2_per_objfile->objfile;
10222 const struct dwp_hash_table *dwp_htab =
10223 is_debug_types ? dwp_file->tus : dwp_file->cus;
10224 bfd *dbfd = dwp_file->dbfd;
10225 const char *kind = is_debug_types ? "TU" : "CU";
10226 struct dwo_file *dwo_file;
10227 struct dwo_unit *dwo_unit;
10228 struct virtual_v2_dwo_sections sections;
10229 void **dwo_file_slot;
10230 char *virtual_dwo_name;
73869dc2
DE
10231 struct cleanup *cleanups;
10232 int i;
10233
10234 gdb_assert (dwp_file->version == 2);
10235
b4f54984 10236 if (dwarf_read_debug)
73869dc2
DE
10237 {
10238 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10239 kind,
10240 pulongest (unit_index), hex_string (signature),
10241 dwp_file->name);
10242 }
10243
10244 /* Fetch the section offsets of this DWO unit. */
10245
10246 memset (&sections, 0, sizeof (sections));
10247 cleanups = make_cleanup (null_cleanup, 0);
10248
10249 for (i = 0; i < dwp_htab->nr_columns; ++i)
10250 {
10251 uint32_t offset = read_4_bytes (dbfd,
10252 dwp_htab->section_pool.v2.offsets
10253 + (((unit_index - 1) * dwp_htab->nr_columns
10254 + i)
10255 * sizeof (uint32_t)));
10256 uint32_t size = read_4_bytes (dbfd,
10257 dwp_htab->section_pool.v2.sizes
10258 + (((unit_index - 1) * dwp_htab->nr_columns
10259 + i)
10260 * sizeof (uint32_t)));
10261
10262 switch (dwp_htab->section_pool.v2.section_ids[i])
10263 {
10264 case DW_SECT_INFO:
10265 case DW_SECT_TYPES:
10266 sections.info_or_types_offset = offset;
10267 sections.info_or_types_size = size;
10268 break;
10269 case DW_SECT_ABBREV:
10270 sections.abbrev_offset = offset;
10271 sections.abbrev_size = size;
10272 break;
10273 case DW_SECT_LINE:
10274 sections.line_offset = offset;
10275 sections.line_size = size;
10276 break;
10277 case DW_SECT_LOC:
10278 sections.loc_offset = offset;
10279 sections.loc_size = size;
10280 break;
10281 case DW_SECT_STR_OFFSETS:
10282 sections.str_offsets_offset = offset;
10283 sections.str_offsets_size = size;
10284 break;
10285 case DW_SECT_MACINFO:
10286 sections.macinfo_offset = offset;
10287 sections.macinfo_size = size;
10288 break;
10289 case DW_SECT_MACRO:
10290 sections.macro_offset = offset;
10291 sections.macro_size = size;
10292 break;
10293 }
10294 }
10295
10296 /* It's easier for the rest of the code if we fake a struct dwo_file and
10297 have dwo_unit "live" in that. At least for now.
10298
10299 The DWP file can be made up of a random collection of CUs and TUs.
10300 However, for each CU + set of TUs that came from the same original DWO
10301 file, we can combine them back into a virtual DWO file to save space
10302 (fewer struct dwo_file objects to allocate). Remember that for really
10303 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10304
10305 virtual_dwo_name =
10306 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10307 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10308 (long) (sections.line_size ? sections.line_offset : 0),
10309 (long) (sections.loc_size ? sections.loc_offset : 0),
10310 (long) (sections.str_offsets_size
10311 ? sections.str_offsets_offset : 0));
10312 make_cleanup (xfree, virtual_dwo_name);
10313 /* Can we use an existing virtual DWO file? */
10314 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10315 /* Create one if necessary. */
10316 if (*dwo_file_slot == NULL)
10317 {
b4f54984 10318 if (dwarf_read_debug)
73869dc2
DE
10319 {
10320 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10321 virtual_dwo_name);
10322 }
10323 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
10324 dwo_file->dwo_name
10325 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10326 virtual_dwo_name,
10327 strlen (virtual_dwo_name));
73869dc2
DE
10328 dwo_file->comp_dir = comp_dir;
10329 dwo_file->sections.abbrev =
10330 create_dwp_v2_section (&dwp_file->sections.abbrev,
10331 sections.abbrev_offset, sections.abbrev_size);
10332 dwo_file->sections.line =
10333 create_dwp_v2_section (&dwp_file->sections.line,
10334 sections.line_offset, sections.line_size);
10335 dwo_file->sections.loc =
10336 create_dwp_v2_section (&dwp_file->sections.loc,
10337 sections.loc_offset, sections.loc_size);
10338 dwo_file->sections.macinfo =
10339 create_dwp_v2_section (&dwp_file->sections.macinfo,
10340 sections.macinfo_offset, sections.macinfo_size);
10341 dwo_file->sections.macro =
10342 create_dwp_v2_section (&dwp_file->sections.macro,
10343 sections.macro_offset, sections.macro_size);
10344 dwo_file->sections.str_offsets =
10345 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10346 sections.str_offsets_offset,
10347 sections.str_offsets_size);
10348 /* The "str" section is global to the entire DWP file. */
10349 dwo_file->sections.str = dwp_file->sections.str;
10350 /* The info or types section is assigned below to dwo_unit,
10351 there's no need to record it in dwo_file.
10352 Also, we can't simply record type sections in dwo_file because
10353 we record a pointer into the vector in dwo_unit. As we collect more
10354 types we'll grow the vector and eventually have to reallocate space
10355 for it, invalidating all copies of pointers into the previous
10356 contents. */
10357 *dwo_file_slot = dwo_file;
10358 }
10359 else
10360 {
b4f54984 10361 if (dwarf_read_debug)
73869dc2
DE
10362 {
10363 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10364 virtual_dwo_name);
10365 }
9a3c8263 10366 dwo_file = (struct dwo_file *) *dwo_file_slot;
73869dc2
DE
10367 }
10368 do_cleanups (cleanups);
10369
10370 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10371 dwo_unit->dwo_file = dwo_file;
10372 dwo_unit->signature = signature;
8d749320
SM
10373 dwo_unit->section =
10374 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
73869dc2
DE
10375 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10376 ? &dwp_file->sections.types
10377 : &dwp_file->sections.info,
10378 sections.info_or_types_offset,
10379 sections.info_or_types_size);
10380 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10381
10382 return dwo_unit;
10383}
10384
57d63ce2
DE
10385/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10386 Returns NULL if the signature isn't found. */
80626a55
DE
10387
10388static struct dwo_unit *
57d63ce2
DE
10389lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10390 ULONGEST signature, int is_debug_types)
80626a55 10391{
57d63ce2
DE
10392 const struct dwp_hash_table *dwp_htab =
10393 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55 10394 bfd *dbfd = dwp_file->dbfd;
57d63ce2 10395 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
10396 uint32_t hash = signature & mask;
10397 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10398 unsigned int i;
10399 void **slot;
870f88f7 10400 struct dwo_unit find_dwo_cu;
80626a55
DE
10401
10402 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10403 find_dwo_cu.signature = signature;
19ac8c2e
DE
10404 slot = htab_find_slot (is_debug_types
10405 ? dwp_file->loaded_tus
10406 : dwp_file->loaded_cus,
10407 &find_dwo_cu, INSERT);
80626a55
DE
10408
10409 if (*slot != NULL)
9a3c8263 10410 return (struct dwo_unit *) *slot;
80626a55
DE
10411
10412 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 10413 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
10414 {
10415 ULONGEST signature_in_table;
10416
10417 signature_in_table =
57d63ce2 10418 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
10419 if (signature_in_table == signature)
10420 {
57d63ce2
DE
10421 uint32_t unit_index =
10422 read_4_bytes (dbfd,
10423 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 10424
73869dc2
DE
10425 if (dwp_file->version == 1)
10426 {
10427 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10428 comp_dir, signature,
10429 is_debug_types);
10430 }
10431 else
10432 {
10433 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10434 comp_dir, signature,
10435 is_debug_types);
10436 }
9a3c8263 10437 return (struct dwo_unit *) *slot;
80626a55
DE
10438 }
10439 if (signature_in_table == 0)
10440 return NULL;
10441 hash = (hash + hash2) & mask;
10442 }
10443
10444 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10445 " [in module %s]"),
10446 dwp_file->name);
10447}
10448
ab5088bf 10449/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
10450 Open the file specified by FILE_NAME and hand it off to BFD for
10451 preliminary analysis. Return a newly initialized bfd *, which
10452 includes a canonicalized copy of FILE_NAME.
80626a55 10453 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
10454 SEARCH_CWD is true if the current directory is to be searched.
10455 It will be searched before debug-file-directory.
13aaf454
DE
10456 If successful, the file is added to the bfd include table of the
10457 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 10458 If unable to find/open the file, return NULL.
3019eac3
DE
10459 NOTE: This function is derived from symfile_bfd_open. */
10460
10461static bfd *
6ac97d4c 10462try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
3019eac3
DE
10463{
10464 bfd *sym_bfd;
80626a55 10465 int desc, flags;
3019eac3 10466 char *absolute_name;
9c02c129
DE
10467 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10468 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10469 to debug_file_directory. */
10470 char *search_path;
10471 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10472
6ac97d4c
DE
10473 if (search_cwd)
10474 {
10475 if (*debug_file_directory != '\0')
10476 search_path = concat (".", dirname_separator_string,
b36cec19 10477 debug_file_directory, (char *) NULL);
6ac97d4c
DE
10478 else
10479 search_path = xstrdup (".");
10480 }
9c02c129 10481 else
6ac97d4c 10482 search_path = xstrdup (debug_file_directory);
3019eac3 10483
492c0ab7 10484 flags = OPF_RETURN_REALPATH;
80626a55
DE
10485 if (is_dwp)
10486 flags |= OPF_SEARCH_IN_PATH;
9c02c129 10487 desc = openp (search_path, flags, file_name,
3019eac3 10488 O_RDONLY | O_BINARY, &absolute_name);
9c02c129 10489 xfree (search_path);
3019eac3
DE
10490 if (desc < 0)
10491 return NULL;
10492
bb397797 10493 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
a4453b7e 10494 xfree (absolute_name);
9c02c129
DE
10495 if (sym_bfd == NULL)
10496 return NULL;
3019eac3
DE
10497 bfd_set_cacheable (sym_bfd, 1);
10498
10499 if (!bfd_check_format (sym_bfd, bfd_object))
10500 {
cbb099e8 10501 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
3019eac3
DE
10502 return NULL;
10503 }
10504
13aaf454
DE
10505 /* Success. Record the bfd as having been included by the objfile's bfd.
10506 This is important because things like demangled_names_hash lives in the
10507 objfile's per_bfd space and may have references to things like symbol
10508 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10509 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10510
3019eac3
DE
10511 return sym_bfd;
10512}
10513
ab5088bf 10514/* Try to open DWO file FILE_NAME.
3019eac3
DE
10515 COMP_DIR is the DW_AT_comp_dir attribute.
10516 The result is the bfd handle of the file.
10517 If there is a problem finding or opening the file, return NULL.
10518 Upon success, the canonicalized path of the file is stored in the bfd,
10519 same as symfile_bfd_open. */
10520
10521static bfd *
ab5088bf 10522open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3
DE
10523{
10524 bfd *abfd;
3019eac3 10525
80626a55 10526 if (IS_ABSOLUTE_PATH (file_name))
6ac97d4c 10527 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
10528
10529 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10530
10531 if (comp_dir != NULL)
10532 {
b36cec19
PA
10533 char *path_to_try = concat (comp_dir, SLASH_STRING,
10534 file_name, (char *) NULL);
3019eac3
DE
10535
10536 /* NOTE: If comp_dir is a relative path, this will also try the
10537 search path, which seems useful. */
6ac97d4c 10538 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10539 xfree (path_to_try);
10540 if (abfd != NULL)
10541 return abfd;
10542 }
10543
10544 /* That didn't work, try debug-file-directory, which, despite its name,
10545 is a list of paths. */
10546
10547 if (*debug_file_directory == '\0')
10548 return NULL;
10549
6ac97d4c 10550 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10551}
10552
80626a55
DE
10553/* This function is mapped across the sections and remembers the offset and
10554 size of each of the DWO debugging sections we are interested in. */
10555
10556static void
10557dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10558{
9a3c8263 10559 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
80626a55
DE
10560 const struct dwop_section_names *names = &dwop_section_names;
10561
10562 if (section_is_p (sectp->name, &names->abbrev_dwo))
10563 {
049412e3 10564 dwo_sections->abbrev.s.section = sectp;
80626a55
DE
10565 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10566 }
10567 else if (section_is_p (sectp->name, &names->info_dwo))
10568 {
049412e3 10569 dwo_sections->info.s.section = sectp;
80626a55
DE
10570 dwo_sections->info.size = bfd_get_section_size (sectp);
10571 }
10572 else if (section_is_p (sectp->name, &names->line_dwo))
10573 {
049412e3 10574 dwo_sections->line.s.section = sectp;
80626a55
DE
10575 dwo_sections->line.size = bfd_get_section_size (sectp);
10576 }
10577 else if (section_is_p (sectp->name, &names->loc_dwo))
10578 {
049412e3 10579 dwo_sections->loc.s.section = sectp;
80626a55
DE
10580 dwo_sections->loc.size = bfd_get_section_size (sectp);
10581 }
10582 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10583 {
049412e3 10584 dwo_sections->macinfo.s.section = sectp;
80626a55
DE
10585 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10586 }
10587 else if (section_is_p (sectp->name, &names->macro_dwo))
10588 {
049412e3 10589 dwo_sections->macro.s.section = sectp;
80626a55
DE
10590 dwo_sections->macro.size = bfd_get_section_size (sectp);
10591 }
10592 else if (section_is_p (sectp->name, &names->str_dwo))
10593 {
049412e3 10594 dwo_sections->str.s.section = sectp;
80626a55
DE
10595 dwo_sections->str.size = bfd_get_section_size (sectp);
10596 }
10597 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10598 {
049412e3 10599 dwo_sections->str_offsets.s.section = sectp;
80626a55
DE
10600 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10601 }
10602 else if (section_is_p (sectp->name, &names->types_dwo))
10603 {
10604 struct dwarf2_section_info type_section;
10605
10606 memset (&type_section, 0, sizeof (type_section));
049412e3 10607 type_section.s.section = sectp;
80626a55
DE
10608 type_section.size = bfd_get_section_size (sectp);
10609 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10610 &type_section);
10611 }
10612}
10613
ab5088bf 10614/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 10615 by PER_CU. This is for the non-DWP case.
80626a55 10616 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
10617
10618static struct dwo_file *
0ac5b59e
DE
10619open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10620 const char *dwo_name, const char *comp_dir)
3019eac3
DE
10621{
10622 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10623 struct dwo_file *dwo_file;
10624 bfd *dbfd;
3019eac3
DE
10625 struct cleanup *cleanups;
10626
ab5088bf 10627 dbfd = open_dwo_file (dwo_name, comp_dir);
80626a55
DE
10628 if (dbfd == NULL)
10629 {
b4f54984 10630 if (dwarf_read_debug)
80626a55
DE
10631 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10632 return NULL;
10633 }
10634 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10635 dwo_file->dwo_name = dwo_name;
10636 dwo_file->comp_dir = comp_dir;
80626a55 10637 dwo_file->dbfd = dbfd;
3019eac3
DE
10638
10639 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10640
80626a55 10641 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
3019eac3 10642
19c3d4c9 10643 dwo_file->cu = create_dwo_cu (dwo_file);
3019eac3
DE
10644
10645 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10646 dwo_file->sections.types);
10647
10648 discard_cleanups (cleanups);
10649
b4f54984 10650 if (dwarf_read_debug)
80626a55
DE
10651 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10652
3019eac3
DE
10653 return dwo_file;
10654}
10655
80626a55 10656/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
10657 size of each of the DWP debugging sections common to version 1 and 2 that
10658 we are interested in. */
3019eac3 10659
80626a55 10660static void
73869dc2
DE
10661dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10662 void *dwp_file_ptr)
3019eac3 10663{
9a3c8263 10664 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
80626a55
DE
10665 const struct dwop_section_names *names = &dwop_section_names;
10666 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 10667
80626a55 10668 /* Record the ELF section number for later lookup: this is what the
73869dc2 10669 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
10670 gdb_assert (elf_section_nr < dwp_file->num_sections);
10671 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 10672
80626a55
DE
10673 /* Look for specific sections that we need. */
10674 if (section_is_p (sectp->name, &names->str_dwo))
10675 {
049412e3 10676 dwp_file->sections.str.s.section = sectp;
80626a55
DE
10677 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10678 }
10679 else if (section_is_p (sectp->name, &names->cu_index))
10680 {
049412e3 10681 dwp_file->sections.cu_index.s.section = sectp;
80626a55
DE
10682 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10683 }
10684 else if (section_is_p (sectp->name, &names->tu_index))
10685 {
049412e3 10686 dwp_file->sections.tu_index.s.section = sectp;
80626a55
DE
10687 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10688 }
10689}
3019eac3 10690
73869dc2
DE
10691/* This function is mapped across the sections and remembers the offset and
10692 size of each of the DWP version 2 debugging sections that we are interested
10693 in. This is split into a separate function because we don't know if we
10694 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10695
10696static void
10697dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10698{
9a3c8263 10699 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
73869dc2
DE
10700 const struct dwop_section_names *names = &dwop_section_names;
10701 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10702
10703 /* Record the ELF section number for later lookup: this is what the
10704 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10705 gdb_assert (elf_section_nr < dwp_file->num_sections);
10706 dwp_file->elf_sections[elf_section_nr] = sectp;
10707
10708 /* Look for specific sections that we need. */
10709 if (section_is_p (sectp->name, &names->abbrev_dwo))
10710 {
049412e3 10711 dwp_file->sections.abbrev.s.section = sectp;
73869dc2
DE
10712 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10713 }
10714 else if (section_is_p (sectp->name, &names->info_dwo))
10715 {
049412e3 10716 dwp_file->sections.info.s.section = sectp;
73869dc2
DE
10717 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10718 }
10719 else if (section_is_p (sectp->name, &names->line_dwo))
10720 {
049412e3 10721 dwp_file->sections.line.s.section = sectp;
73869dc2
DE
10722 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10723 }
10724 else if (section_is_p (sectp->name, &names->loc_dwo))
10725 {
049412e3 10726 dwp_file->sections.loc.s.section = sectp;
73869dc2
DE
10727 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10728 }
10729 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10730 {
049412e3 10731 dwp_file->sections.macinfo.s.section = sectp;
73869dc2
DE
10732 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10733 }
10734 else if (section_is_p (sectp->name, &names->macro_dwo))
10735 {
049412e3 10736 dwp_file->sections.macro.s.section = sectp;
73869dc2
DE
10737 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10738 }
10739 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10740 {
049412e3 10741 dwp_file->sections.str_offsets.s.section = sectp;
73869dc2
DE
10742 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10743 }
10744 else if (section_is_p (sectp->name, &names->types_dwo))
10745 {
049412e3 10746 dwp_file->sections.types.s.section = sectp;
73869dc2
DE
10747 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10748 }
10749}
10750
80626a55 10751/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 10752
80626a55
DE
10753static hashval_t
10754hash_dwp_loaded_cutus (const void *item)
10755{
9a3c8263 10756 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3 10757
80626a55
DE
10758 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10759 return dwo_unit->signature;
3019eac3
DE
10760}
10761
80626a55 10762/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 10763
80626a55
DE
10764static int
10765eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 10766{
9a3c8263
SM
10767 const struct dwo_unit *dua = (const struct dwo_unit *) a;
10768 const struct dwo_unit *dub = (const struct dwo_unit *) b;
3019eac3 10769
80626a55
DE
10770 return dua->signature == dub->signature;
10771}
3019eac3 10772
80626a55 10773/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 10774
80626a55
DE
10775static htab_t
10776allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10777{
10778 return htab_create_alloc_ex (3,
10779 hash_dwp_loaded_cutus,
10780 eq_dwp_loaded_cutus,
10781 NULL,
10782 &objfile->objfile_obstack,
10783 hashtab_obstack_allocate,
10784 dummy_obstack_deallocate);
10785}
3019eac3 10786
ab5088bf
DE
10787/* Try to open DWP file FILE_NAME.
10788 The result is the bfd handle of the file.
10789 If there is a problem finding or opening the file, return NULL.
10790 Upon success, the canonicalized path of the file is stored in the bfd,
10791 same as symfile_bfd_open. */
10792
10793static bfd *
10794open_dwp_file (const char *file_name)
10795{
6ac97d4c
DE
10796 bfd *abfd;
10797
10798 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10799 if (abfd != NULL)
10800 return abfd;
10801
10802 /* Work around upstream bug 15652.
10803 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10804 [Whether that's a "bug" is debatable, but it is getting in our way.]
10805 We have no real idea where the dwp file is, because gdb's realpath-ing
10806 of the executable's path may have discarded the needed info.
10807 [IWBN if the dwp file name was recorded in the executable, akin to
10808 .gnu_debuglink, but that doesn't exist yet.]
10809 Strip the directory from FILE_NAME and search again. */
10810 if (*debug_file_directory != '\0')
10811 {
10812 /* Don't implicitly search the current directory here.
10813 If the user wants to search "." to handle this case,
10814 it must be added to debug-file-directory. */
10815 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10816 0 /*search_cwd*/);
10817 }
10818
10819 return NULL;
ab5088bf
DE
10820}
10821
80626a55
DE
10822/* Initialize the use of the DWP file for the current objfile.
10823 By convention the name of the DWP file is ${objfile}.dwp.
10824 The result is NULL if it can't be found. */
a766d390 10825
80626a55 10826static struct dwp_file *
ab5088bf 10827open_and_init_dwp_file (void)
80626a55
DE
10828{
10829 struct objfile *objfile = dwarf2_per_objfile->objfile;
10830 struct dwp_file *dwp_file;
10831 char *dwp_name;
10832 bfd *dbfd;
6c447423 10833 struct cleanup *cleanups = make_cleanup (null_cleanup, 0);
80626a55 10834
82bf32bc
JK
10835 /* Try to find first .dwp for the binary file before any symbolic links
10836 resolving. */
6c447423
DE
10837
10838 /* If the objfile is a debug file, find the name of the real binary
10839 file and get the name of dwp file from there. */
10840 if (objfile->separate_debug_objfile_backlink != NULL)
10841 {
10842 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
10843 const char *backlink_basename = lbasename (backlink->original_name);
10844 char *debug_dirname = ldirname (objfile->original_name);
10845
10846 make_cleanup (xfree, debug_dirname);
10847 dwp_name = xstrprintf ("%s%s%s.dwp", debug_dirname,
10848 SLASH_STRING, backlink_basename);
10849 }
10850 else
10851 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10852 make_cleanup (xfree, dwp_name);
80626a55 10853
ab5088bf 10854 dbfd = open_dwp_file (dwp_name);
82bf32bc
JK
10855 if (dbfd == NULL
10856 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10857 {
10858 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10859 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10860 make_cleanup (xfree, dwp_name);
10861 dbfd = open_dwp_file (dwp_name);
10862 }
10863
80626a55
DE
10864 if (dbfd == NULL)
10865 {
b4f54984 10866 if (dwarf_read_debug)
80626a55
DE
10867 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10868 do_cleanups (cleanups);
10869 return NULL;
3019eac3 10870 }
80626a55 10871 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
93417882 10872 dwp_file->name = bfd_get_filename (dbfd);
80626a55
DE
10873 dwp_file->dbfd = dbfd;
10874 do_cleanups (cleanups);
c906108c 10875
80626a55
DE
10876 /* +1: section 0 is unused */
10877 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10878 dwp_file->elf_sections =
10879 OBSTACK_CALLOC (&objfile->objfile_obstack,
10880 dwp_file->num_sections, asection *);
10881
73869dc2 10882 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
80626a55
DE
10883
10884 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10885
10886 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10887
73869dc2
DE
10888 /* The DWP file version is stored in the hash table. Oh well. */
10889 if (dwp_file->cus->version != dwp_file->tus->version)
10890 {
10891 /* Technically speaking, we should try to limp along, but this is
fbcbc3fd 10892 pretty bizarre. We use pulongest here because that's the established
4d65956b 10893 portability solution (e.g, we cannot use %u for uint32_t). */
fbcbc3fd
DE
10894 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10895 " TU version %s [in DWP file %s]"),
10896 pulongest (dwp_file->cus->version),
10897 pulongest (dwp_file->tus->version), dwp_name);
73869dc2
DE
10898 }
10899 dwp_file->version = dwp_file->cus->version;
10900
10901 if (dwp_file->version == 2)
10902 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10903
19ac8c2e
DE
10904 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10905 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 10906
b4f54984 10907 if (dwarf_read_debug)
80626a55
DE
10908 {
10909 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10910 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
10911 " %s CUs, %s TUs\n",
10912 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10913 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
10914 }
10915
10916 return dwp_file;
3019eac3 10917}
c906108c 10918
ab5088bf
DE
10919/* Wrapper around open_and_init_dwp_file, only open it once. */
10920
10921static struct dwp_file *
10922get_dwp_file (void)
10923{
10924 if (! dwarf2_per_objfile->dwp_checked)
10925 {
10926 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10927 dwarf2_per_objfile->dwp_checked = 1;
10928 }
10929 return dwarf2_per_objfile->dwp_file;
10930}
10931
80626a55
DE
10932/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10933 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10934 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 10935 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
10936 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10937
10938 This is called, for example, when wanting to read a variable with a
10939 complex location. Therefore we don't want to do file i/o for every call.
10940 Therefore we don't want to look for a DWO file on every call.
10941 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10942 then we check if we've already seen DWO_NAME, and only THEN do we check
10943 for a DWO file.
10944
1c658ad5 10945 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 10946 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 10947
3019eac3 10948static struct dwo_unit *
80626a55
DE
10949lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10950 const char *dwo_name, const char *comp_dir,
10951 ULONGEST signature, int is_debug_types)
3019eac3
DE
10952{
10953 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10954 const char *kind = is_debug_types ? "TU" : "CU";
10955 void **dwo_file_slot;
3019eac3 10956 struct dwo_file *dwo_file;
80626a55 10957 struct dwp_file *dwp_file;
cb1df416 10958
6a506a2d
DE
10959 /* First see if there's a DWP file.
10960 If we have a DWP file but didn't find the DWO inside it, don't
10961 look for the original DWO file. It makes gdb behave differently
10962 depending on whether one is debugging in the build tree. */
cf2c3c16 10963
ab5088bf 10964 dwp_file = get_dwp_file ();
80626a55 10965 if (dwp_file != NULL)
cf2c3c16 10966 {
80626a55
DE
10967 const struct dwp_hash_table *dwp_htab =
10968 is_debug_types ? dwp_file->tus : dwp_file->cus;
10969
10970 if (dwp_htab != NULL)
10971 {
10972 struct dwo_unit *dwo_cutu =
57d63ce2
DE
10973 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10974 signature, is_debug_types);
80626a55
DE
10975
10976 if (dwo_cutu != NULL)
10977 {
b4f54984 10978 if (dwarf_read_debug)
80626a55
DE
10979 {
10980 fprintf_unfiltered (gdb_stdlog,
10981 "Virtual DWO %s %s found: @%s\n",
10982 kind, hex_string (signature),
10983 host_address_to_string (dwo_cutu));
10984 }
10985 return dwo_cutu;
10986 }
10987 }
10988 }
6a506a2d 10989 else
80626a55 10990 {
6a506a2d 10991 /* No DWP file, look for the DWO file. */
80626a55 10992
6a506a2d
DE
10993 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10994 if (*dwo_file_slot == NULL)
80626a55 10995 {
6a506a2d
DE
10996 /* Read in the file and build a table of the CUs/TUs it contains. */
10997 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 10998 }
6a506a2d 10999 /* NOTE: This will be NULL if unable to open the file. */
9a3c8263 11000 dwo_file = (struct dwo_file *) *dwo_file_slot;
3019eac3 11001
6a506a2d 11002 if (dwo_file != NULL)
19c3d4c9 11003 {
6a506a2d
DE
11004 struct dwo_unit *dwo_cutu = NULL;
11005
11006 if (is_debug_types && dwo_file->tus)
11007 {
11008 struct dwo_unit find_dwo_cutu;
11009
11010 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11011 find_dwo_cutu.signature = signature;
9a3c8263
SM
11012 dwo_cutu
11013 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
6a506a2d
DE
11014 }
11015 else if (!is_debug_types && dwo_file->cu)
80626a55 11016 {
6a506a2d
DE
11017 if (signature == dwo_file->cu->signature)
11018 dwo_cutu = dwo_file->cu;
11019 }
11020
11021 if (dwo_cutu != NULL)
11022 {
b4f54984 11023 if (dwarf_read_debug)
6a506a2d
DE
11024 {
11025 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11026 kind, dwo_name, hex_string (signature),
11027 host_address_to_string (dwo_cutu));
11028 }
11029 return dwo_cutu;
80626a55
DE
11030 }
11031 }
2e276125 11032 }
9cdd5dbd 11033
80626a55
DE
11034 /* We didn't find it. This could mean a dwo_id mismatch, or
11035 someone deleted the DWO/DWP file, or the search path isn't set up
11036 correctly to find the file. */
11037
b4f54984 11038 if (dwarf_read_debug)
80626a55
DE
11039 {
11040 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11041 kind, dwo_name, hex_string (signature));
11042 }
3019eac3 11043
6656a72d
DE
11044 /* This is a warning and not a complaint because it can be caused by
11045 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
11046 {
11047 /* Print the name of the DWP file if we looked there, helps the user
11048 better diagnose the problem. */
11049 char *dwp_text = NULL;
11050 struct cleanup *cleanups;
11051
11052 if (dwp_file != NULL)
11053 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11054 cleanups = make_cleanup (xfree, dwp_text);
11055
11056 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11057 " [in module %s]"),
11058 kind, dwo_name, hex_string (signature),
11059 dwp_text != NULL ? dwp_text : "",
11060 this_unit->is_debug_types ? "TU" : "CU",
11061 this_unit->offset.sect_off, objfile_name (objfile));
11062
11063 do_cleanups (cleanups);
11064 }
3019eac3 11065 return NULL;
5fb290d7
DJ
11066}
11067
80626a55
DE
11068/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11069 See lookup_dwo_cutu_unit for details. */
11070
11071static struct dwo_unit *
11072lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11073 const char *dwo_name, const char *comp_dir,
11074 ULONGEST signature)
11075{
11076 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11077}
11078
11079/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11080 See lookup_dwo_cutu_unit for details. */
11081
11082static struct dwo_unit *
11083lookup_dwo_type_unit (struct signatured_type *this_tu,
11084 const char *dwo_name, const char *comp_dir)
11085{
11086 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11087}
11088
89e63ee4
DE
11089/* Traversal function for queue_and_load_all_dwo_tus. */
11090
11091static int
11092queue_and_load_dwo_tu (void **slot, void *info)
11093{
11094 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11095 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11096 ULONGEST signature = dwo_unit->signature;
11097 struct signatured_type *sig_type =
11098 lookup_dwo_signatured_type (per_cu->cu, signature);
11099
11100 if (sig_type != NULL)
11101 {
11102 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11103
11104 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11105 a real dependency of PER_CU on SIG_TYPE. That is detected later
11106 while processing PER_CU. */
11107 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11108 load_full_type_unit (sig_cu);
11109 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11110 }
11111
11112 return 1;
11113}
11114
11115/* Queue all TUs contained in the DWO of PER_CU to be read in.
11116 The DWO may have the only definition of the type, though it may not be
11117 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11118 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11119
11120static void
11121queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11122{
11123 struct dwo_unit *dwo_unit;
11124 struct dwo_file *dwo_file;
11125
11126 gdb_assert (!per_cu->is_debug_types);
11127 gdb_assert (get_dwp_file () == NULL);
11128 gdb_assert (per_cu->cu != NULL);
11129
11130 dwo_unit = per_cu->cu->dwo_unit;
11131 gdb_assert (dwo_unit != NULL);
11132
11133 dwo_file = dwo_unit->dwo_file;
11134 if (dwo_file->tus != NULL)
11135 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11136}
11137
3019eac3
DE
11138/* Free all resources associated with DWO_FILE.
11139 Close the DWO file and munmap the sections.
11140 All memory should be on the objfile obstack. */
348e048f
DE
11141
11142static void
3019eac3 11143free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 11144{
348e048f 11145
5c6fa7ab 11146 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 11147 gdb_bfd_unref (dwo_file->dbfd);
348e048f 11148
3019eac3
DE
11149 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11150}
348e048f 11151
3019eac3 11152/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 11153
3019eac3
DE
11154static void
11155free_dwo_file_cleanup (void *arg)
11156{
11157 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11158 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 11159
3019eac3
DE
11160 free_dwo_file (dwo_file, objfile);
11161}
348e048f 11162
3019eac3 11163/* Traversal function for free_dwo_files. */
2ab95328 11164
3019eac3
DE
11165static int
11166free_dwo_file_from_slot (void **slot, void *info)
11167{
11168 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11169 struct objfile *objfile = (struct objfile *) info;
348e048f 11170
3019eac3 11171 free_dwo_file (dwo_file, objfile);
348e048f 11172
3019eac3
DE
11173 return 1;
11174}
348e048f 11175
3019eac3 11176/* Free all resources associated with DWO_FILES. */
348e048f 11177
3019eac3
DE
11178static void
11179free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11180{
11181 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 11182}
3019eac3
DE
11183\f
11184/* Read in various DIEs. */
348e048f 11185
d389af10
JK
11186/* qsort helper for inherit_abstract_dies. */
11187
11188static int
11189unsigned_int_compar (const void *ap, const void *bp)
11190{
11191 unsigned int a = *(unsigned int *) ap;
11192 unsigned int b = *(unsigned int *) bp;
11193
11194 return (a > b) - (b > a);
11195}
11196
11197/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
11198 Inherit only the children of the DW_AT_abstract_origin DIE not being
11199 already referenced by DW_AT_abstract_origin from the children of the
11200 current DIE. */
d389af10
JK
11201
11202static void
11203inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11204{
11205 struct die_info *child_die;
11206 unsigned die_children_count;
11207 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
11208 sect_offset *offsets;
11209 sect_offset *offsets_end, *offsetp;
d389af10
JK
11210 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11211 struct die_info *origin_die;
11212 /* Iterator of the ORIGIN_DIE children. */
11213 struct die_info *origin_child_die;
11214 struct cleanup *cleanups;
11215 struct attribute *attr;
cd02d79d
PA
11216 struct dwarf2_cu *origin_cu;
11217 struct pending **origin_previous_list_in_scope;
d389af10
JK
11218
11219 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11220 if (!attr)
11221 return;
11222
cd02d79d
PA
11223 /* Note that following die references may follow to a die in a
11224 different cu. */
11225
11226 origin_cu = cu;
11227 origin_die = follow_die_ref (die, attr, &origin_cu);
11228
11229 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11230 symbols in. */
11231 origin_previous_list_in_scope = origin_cu->list_in_scope;
11232 origin_cu->list_in_scope = cu->list_in_scope;
11233
edb3359d
DJ
11234 if (die->tag != origin_die->tag
11235 && !(die->tag == DW_TAG_inlined_subroutine
11236 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11237 complaint (&symfile_complaints,
11238 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
b64f50a1 11239 die->offset.sect_off, origin_die->offset.sect_off);
d389af10
JK
11240
11241 child_die = die->child;
11242 die_children_count = 0;
11243 while (child_die && child_die->tag)
11244 {
11245 child_die = sibling_die (child_die);
11246 die_children_count++;
11247 }
8d749320 11248 offsets = XNEWVEC (sect_offset, die_children_count);
d389af10
JK
11249 cleanups = make_cleanup (xfree, offsets);
11250
11251 offsets_end = offsets;
3ea89b92
PMR
11252 for (child_die = die->child;
11253 child_die && child_die->tag;
11254 child_die = sibling_die (child_die))
11255 {
11256 struct die_info *child_origin_die;
11257 struct dwarf2_cu *child_origin_cu;
11258
11259 /* We are trying to process concrete instance entries:
11260 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11261 it's not relevant to our analysis here. i.e. detecting DIEs that are
11262 present in the abstract instance but not referenced in the concrete
11263 one. */
11264 if (child_die->tag == DW_TAG_GNU_call_site)
11265 continue;
11266
c38f313d
DJ
11267 /* For each CHILD_DIE, find the corresponding child of
11268 ORIGIN_DIE. If there is more than one layer of
11269 DW_AT_abstract_origin, follow them all; there shouldn't be,
11270 but GCC versions at least through 4.4 generate this (GCC PR
11271 40573). */
3ea89b92
PMR
11272 child_origin_die = child_die;
11273 child_origin_cu = cu;
c38f313d
DJ
11274 while (1)
11275 {
cd02d79d
PA
11276 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11277 child_origin_cu);
c38f313d
DJ
11278 if (attr == NULL)
11279 break;
cd02d79d
PA
11280 child_origin_die = follow_die_ref (child_origin_die, attr,
11281 &child_origin_cu);
c38f313d
DJ
11282 }
11283
d389af10
JK
11284 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11285 counterpart may exist. */
c38f313d 11286 if (child_origin_die != child_die)
d389af10 11287 {
edb3359d
DJ
11288 if (child_die->tag != child_origin_die->tag
11289 && !(child_die->tag == DW_TAG_inlined_subroutine
11290 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11291 complaint (&symfile_complaints,
11292 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11293 "different tags"), child_die->offset.sect_off,
11294 child_origin_die->offset.sect_off);
c38f313d
DJ
11295 if (child_origin_die->parent != origin_die)
11296 complaint (&symfile_complaints,
11297 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11298 "different parents"), child_die->offset.sect_off,
11299 child_origin_die->offset.sect_off);
c38f313d
DJ
11300 else
11301 *offsets_end++ = child_origin_die->offset;
d389af10 11302 }
d389af10
JK
11303 }
11304 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11305 unsigned_int_compar);
11306 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
b64f50a1 11307 if (offsetp[-1].sect_off == offsetp->sect_off)
3e43a32a
MS
11308 complaint (&symfile_complaints,
11309 _("Multiple children of DIE 0x%x refer "
11310 "to DIE 0x%x as their abstract origin"),
b64f50a1 11311 die->offset.sect_off, offsetp->sect_off);
d389af10
JK
11312
11313 offsetp = offsets;
11314 origin_child_die = origin_die->child;
11315 while (origin_child_die && origin_child_die->tag)
11316 {
11317 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1
JK
11318 while (offsetp < offsets_end
11319 && offsetp->sect_off < origin_child_die->offset.sect_off)
d389af10 11320 offsetp++;
b64f50a1
JK
11321 if (offsetp >= offsets_end
11322 || offsetp->sect_off > origin_child_die->offset.sect_off)
d389af10 11323 {
adde2bff
DE
11324 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11325 Check whether we're already processing ORIGIN_CHILD_DIE.
11326 This can happen with mutually referenced abstract_origins.
11327 PR 16581. */
11328 if (!origin_child_die->in_process)
11329 process_die (origin_child_die, origin_cu);
d389af10
JK
11330 }
11331 origin_child_die = sibling_die (origin_child_die);
11332 }
cd02d79d 11333 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
11334
11335 do_cleanups (cleanups);
11336}
11337
c906108c 11338static void
e7c27a73 11339read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11340{
e7c27a73 11341 struct objfile *objfile = cu->objfile;
3e29f34a 11342 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11343 struct context_stack *newobj;
c906108c
SS
11344 CORE_ADDR lowpc;
11345 CORE_ADDR highpc;
11346 struct die_info *child_die;
edb3359d 11347 struct attribute *attr, *call_line, *call_file;
15d034d0 11348 const char *name;
e142c38c 11349 CORE_ADDR baseaddr;
801e3a5b 11350 struct block *block;
edb3359d 11351 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
11352 VEC (symbolp) *template_args = NULL;
11353 struct template_symbol *templ_func = NULL;
edb3359d
DJ
11354
11355 if (inlined_func)
11356 {
11357 /* If we do not have call site information, we can't show the
11358 caller of this inlined function. That's too confusing, so
11359 only use the scope for local variables. */
11360 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11361 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11362 if (call_line == NULL || call_file == NULL)
11363 {
11364 read_lexical_block_scope (die, cu);
11365 return;
11366 }
11367 }
c906108c 11368
e142c38c
DJ
11369 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11370
94af9270 11371 name = dwarf2_name (die, cu);
c906108c 11372
e8d05480
JB
11373 /* Ignore functions with missing or empty names. These are actually
11374 illegal according to the DWARF standard. */
11375 if (name == NULL)
11376 {
11377 complaint (&symfile_complaints,
b64f50a1
JK
11378 _("missing name for subprogram DIE at %d"),
11379 die->offset.sect_off);
e8d05480
JB
11380 return;
11381 }
11382
11383 /* Ignore functions with missing or invalid low and high pc attributes. */
3a2b436a 11384 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
e385593e 11385 <= PC_BOUNDS_INVALID)
e8d05480 11386 {
ae4d0c03
PM
11387 attr = dwarf2_attr (die, DW_AT_external, cu);
11388 if (!attr || !DW_UNSND (attr))
11389 complaint (&symfile_complaints,
3e43a32a
MS
11390 _("cannot get low and high bounds "
11391 "for subprogram DIE at %d"),
b64f50a1 11392 die->offset.sect_off);
e8d05480
JB
11393 return;
11394 }
c906108c 11395
3e29f34a
MR
11396 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11397 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c 11398
34eaf542
TT
11399 /* If we have any template arguments, then we must allocate a
11400 different sort of symbol. */
11401 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11402 {
11403 if (child_die->tag == DW_TAG_template_type_param
11404 || child_die->tag == DW_TAG_template_value_param)
11405 {
e623cf5d 11406 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
11407 templ_func->base.is_cplus_template_function = 1;
11408 break;
11409 }
11410 }
11411
fe978cb0
PA
11412 newobj = push_context (0, lowpc);
11413 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
34eaf542 11414 (struct symbol *) templ_func);
4c2df51b 11415
4cecd739
DJ
11416 /* If there is a location expression for DW_AT_frame_base, record
11417 it. */
e142c38c 11418 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 11419 if (attr)
fe978cb0 11420 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
4c2df51b 11421
63e43d3a
PMR
11422 /* If there is a location for the static link, record it. */
11423 newobj->static_link = NULL;
11424 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11425 if (attr)
11426 {
224c3ddb
SM
11427 newobj->static_link
11428 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
63e43d3a
PMR
11429 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11430 }
11431
e142c38c 11432 cu->list_in_scope = &local_symbols;
c906108c 11433
639d11d3 11434 if (die->child != NULL)
c906108c 11435 {
639d11d3 11436 child_die = die->child;
c906108c
SS
11437 while (child_die && child_die->tag)
11438 {
34eaf542
TT
11439 if (child_die->tag == DW_TAG_template_type_param
11440 || child_die->tag == DW_TAG_template_value_param)
11441 {
11442 struct symbol *arg = new_symbol (child_die, NULL, cu);
11443
f1078f66
DJ
11444 if (arg != NULL)
11445 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11446 }
11447 else
11448 process_die (child_die, cu);
c906108c
SS
11449 child_die = sibling_die (child_die);
11450 }
11451 }
11452
d389af10
JK
11453 inherit_abstract_dies (die, cu);
11454
4a811a97
UW
11455 /* If we have a DW_AT_specification, we might need to import using
11456 directives from the context of the specification DIE. See the
11457 comment in determine_prefix. */
11458 if (cu->language == language_cplus
11459 && dwarf2_attr (die, DW_AT_specification, cu))
11460 {
11461 struct dwarf2_cu *spec_cu = cu;
11462 struct die_info *spec_die = die_specification (die, &spec_cu);
11463
11464 while (spec_die)
11465 {
11466 child_die = spec_die->child;
11467 while (child_die && child_die->tag)
11468 {
11469 if (child_die->tag == DW_TAG_imported_module)
11470 process_die (child_die, spec_cu);
11471 child_die = sibling_die (child_die);
11472 }
11473
11474 /* In some cases, GCC generates specification DIEs that
11475 themselves contain DW_AT_specification attributes. */
11476 spec_die = die_specification (spec_die, &spec_cu);
11477 }
11478 }
11479
fe978cb0 11480 newobj = pop_context ();
c906108c 11481 /* Make a block for the local symbols within. */
fe978cb0 11482 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
63e43d3a 11483 newobj->static_link, lowpc, highpc);
801e3a5b 11484
df8a16a1 11485 /* For C++, set the block's scope. */
45280282
IB
11486 if ((cu->language == language_cplus
11487 || cu->language == language_fortran
c44af4eb
TT
11488 || cu->language == language_d
11489 || cu->language == language_rust)
4d4ec4e5 11490 && cu->processing_has_namespace_info)
195a3f6c
TT
11491 block_set_scope (block, determine_prefix (die, cu),
11492 &objfile->objfile_obstack);
df8a16a1 11493
801e3a5b
JB
11494 /* If we have address ranges, record them. */
11495 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 11496
fe978cb0 11497 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
3e29f34a 11498
34eaf542
TT
11499 /* Attach template arguments to function. */
11500 if (! VEC_empty (symbolp, template_args))
11501 {
11502 gdb_assert (templ_func != NULL);
11503
11504 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11505 templ_func->template_arguments
8d749320
SM
11506 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11507 templ_func->n_template_arguments);
34eaf542
TT
11508 memcpy (templ_func->template_arguments,
11509 VEC_address (symbolp, template_args),
11510 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11511 VEC_free (symbolp, template_args);
11512 }
11513
208d8187
JB
11514 /* In C++, we can have functions nested inside functions (e.g., when
11515 a function declares a class that has methods). This means that
11516 when we finish processing a function scope, we may need to go
11517 back to building a containing block's symbol lists. */
fe978cb0 11518 local_symbols = newobj->locals;
22cee43f 11519 local_using_directives = newobj->local_using_directives;
208d8187 11520
921e78cf
JB
11521 /* If we've finished processing a top-level function, subsequent
11522 symbols go in the file symbol list. */
11523 if (outermost_context_p ())
e142c38c 11524 cu->list_in_scope = &file_symbols;
c906108c
SS
11525}
11526
11527/* Process all the DIES contained within a lexical block scope. Start
11528 a new scope, process the dies, and then close the scope. */
11529
11530static void
e7c27a73 11531read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11532{
e7c27a73 11533 struct objfile *objfile = cu->objfile;
3e29f34a 11534 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11535 struct context_stack *newobj;
c906108c
SS
11536 CORE_ADDR lowpc, highpc;
11537 struct die_info *child_die;
e142c38c
DJ
11538 CORE_ADDR baseaddr;
11539
11540 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
11541
11542 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
11543 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11544 as multiple lexical blocks? Handling children in a sane way would
6e70227d 11545 be nasty. Might be easier to properly extend generic blocks to
af34e669 11546 describe ranges. */
e385593e
JK
11547 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11548 {
11549 case PC_BOUNDS_NOT_PRESENT:
11550 /* DW_TAG_lexical_block has no attributes, process its children as if
11551 there was no wrapping by that DW_TAG_lexical_block.
11552 GCC does no longer produces such DWARF since GCC r224161. */
11553 for (child_die = die->child;
11554 child_die != NULL && child_die->tag;
11555 child_die = sibling_die (child_die))
11556 process_die (child_die, cu);
11557 return;
11558 case PC_BOUNDS_INVALID:
11559 return;
11560 }
3e29f34a
MR
11561 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11562 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c
SS
11563
11564 push_context (0, lowpc);
639d11d3 11565 if (die->child != NULL)
c906108c 11566 {
639d11d3 11567 child_die = die->child;
c906108c
SS
11568 while (child_die && child_die->tag)
11569 {
e7c27a73 11570 process_die (child_die, cu);
c906108c
SS
11571 child_die = sibling_die (child_die);
11572 }
11573 }
3ea89b92 11574 inherit_abstract_dies (die, cu);
fe978cb0 11575 newobj = pop_context ();
c906108c 11576
22cee43f 11577 if (local_symbols != NULL || local_using_directives != NULL)
c906108c 11578 {
801e3a5b 11579 struct block *block
63e43d3a 11580 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
fe978cb0 11581 newobj->start_addr, highpc);
801e3a5b
JB
11582
11583 /* Note that recording ranges after traversing children, as we
11584 do here, means that recording a parent's ranges entails
11585 walking across all its children's ranges as they appear in
11586 the address map, which is quadratic behavior.
11587
11588 It would be nicer to record the parent's ranges before
11589 traversing its children, simply overriding whatever you find
11590 there. But since we don't even decide whether to create a
11591 block until after we've traversed its children, that's hard
11592 to do. */
11593 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c 11594 }
fe978cb0 11595 local_symbols = newobj->locals;
22cee43f 11596 local_using_directives = newobj->local_using_directives;
c906108c
SS
11597}
11598
96408a79
SA
11599/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11600
11601static void
11602read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11603{
11604 struct objfile *objfile = cu->objfile;
11605 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11606 CORE_ADDR pc, baseaddr;
11607 struct attribute *attr;
11608 struct call_site *call_site, call_site_local;
11609 void **slot;
11610 int nparams;
11611 struct die_info *child_die;
11612
11613 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11614
11615 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11616 if (!attr)
11617 {
11618 complaint (&symfile_complaints,
11619 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11620 "DIE 0x%x [in module %s]"),
4262abfb 11621 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11622 return;
11623 }
31aa7e4e 11624 pc = attr_value_as_address (attr) + baseaddr;
3e29f34a 11625 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
96408a79
SA
11626
11627 if (cu->call_site_htab == NULL)
11628 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11629 NULL, &objfile->objfile_obstack,
11630 hashtab_obstack_allocate, NULL);
11631 call_site_local.pc = pc;
11632 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11633 if (*slot != NULL)
11634 {
11635 complaint (&symfile_complaints,
11636 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11637 "DIE 0x%x [in module %s]"),
4262abfb
JK
11638 paddress (gdbarch, pc), die->offset.sect_off,
11639 objfile_name (objfile));
96408a79
SA
11640 return;
11641 }
11642
11643 /* Count parameters at the caller. */
11644
11645 nparams = 0;
11646 for (child_die = die->child; child_die && child_die->tag;
11647 child_die = sibling_die (child_die))
11648 {
11649 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11650 {
11651 complaint (&symfile_complaints,
11652 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11653 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb
JK
11654 child_die->tag, child_die->offset.sect_off,
11655 objfile_name (objfile));
96408a79
SA
11656 continue;
11657 }
11658
11659 nparams++;
11660 }
11661
224c3ddb
SM
11662 call_site
11663 = ((struct call_site *)
11664 obstack_alloc (&objfile->objfile_obstack,
11665 sizeof (*call_site)
11666 + (sizeof (*call_site->parameter) * (nparams - 1))));
96408a79
SA
11667 *slot = call_site;
11668 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11669 call_site->pc = pc;
11670
11671 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11672 {
11673 struct die_info *func_die;
11674
11675 /* Skip also over DW_TAG_inlined_subroutine. */
11676 for (func_die = die->parent;
11677 func_die && func_die->tag != DW_TAG_subprogram
11678 && func_die->tag != DW_TAG_subroutine_type;
11679 func_die = func_die->parent);
11680
11681 /* DW_AT_GNU_all_call_sites is a superset
11682 of DW_AT_GNU_all_tail_call_sites. */
11683 if (func_die
11684 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11685 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11686 {
11687 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11688 not complete. But keep CALL_SITE for look ups via call_site_htab,
11689 both the initial caller containing the real return address PC and
11690 the final callee containing the current PC of a chain of tail
11691 calls do not need to have the tail call list complete. But any
11692 function candidate for a virtual tail call frame searched via
11693 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11694 determined unambiguously. */
11695 }
11696 else
11697 {
11698 struct type *func_type = NULL;
11699
11700 if (func_die)
11701 func_type = get_die_type (func_die, cu);
11702 if (func_type != NULL)
11703 {
11704 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11705
11706 /* Enlist this call site to the function. */
11707 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11708 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11709 }
11710 else
11711 complaint (&symfile_complaints,
11712 _("Cannot find function owning DW_TAG_GNU_call_site "
11713 "DIE 0x%x [in module %s]"),
4262abfb 11714 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11715 }
11716 }
11717
11718 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11719 if (attr == NULL)
11720 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11721 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11722 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11723 /* Keep NULL DWARF_BLOCK. */;
11724 else if (attr_form_is_block (attr))
11725 {
11726 struct dwarf2_locexpr_baton *dlbaton;
11727
8d749320 11728 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
96408a79
SA
11729 dlbaton->data = DW_BLOCK (attr)->data;
11730 dlbaton->size = DW_BLOCK (attr)->size;
11731 dlbaton->per_cu = cu->per_cu;
11732
11733 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11734 }
7771576e 11735 else if (attr_form_is_ref (attr))
96408a79 11736 {
96408a79
SA
11737 struct dwarf2_cu *target_cu = cu;
11738 struct die_info *target_die;
11739
ac9ec31b 11740 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
11741 gdb_assert (target_cu->objfile == objfile);
11742 if (die_is_declaration (target_die, target_cu))
11743 {
7d45c7c3 11744 const char *target_physname;
9112db09
JK
11745
11746 /* Prefer the mangled name; otherwise compute the demangled one. */
7d45c7c3
KB
11747 target_physname = dwarf2_string_attr (target_die,
11748 DW_AT_linkage_name,
11749 target_cu);
11750 if (target_physname == NULL)
11751 target_physname = dwarf2_string_attr (target_die,
11752 DW_AT_MIPS_linkage_name,
11753 target_cu);
11754 if (target_physname == NULL)
9112db09 11755 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
11756 if (target_physname == NULL)
11757 complaint (&symfile_complaints,
11758 _("DW_AT_GNU_call_site_target target DIE has invalid "
11759 "physname, for referencing DIE 0x%x [in module %s]"),
4262abfb 11760 die->offset.sect_off, objfile_name (objfile));
96408a79 11761 else
7d455152 11762 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
11763 }
11764 else
11765 {
11766 CORE_ADDR lowpc;
11767
11768 /* DW_AT_entry_pc should be preferred. */
3a2b436a 11769 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
e385593e 11770 <= PC_BOUNDS_INVALID)
96408a79
SA
11771 complaint (&symfile_complaints,
11772 _("DW_AT_GNU_call_site_target target DIE has invalid "
11773 "low pc, for referencing DIE 0x%x [in module %s]"),
4262abfb 11774 die->offset.sect_off, objfile_name (objfile));
96408a79 11775 else
3e29f34a
MR
11776 {
11777 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11778 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11779 }
96408a79
SA
11780 }
11781 }
11782 else
11783 complaint (&symfile_complaints,
11784 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11785 "block nor reference, for DIE 0x%x [in module %s]"),
4262abfb 11786 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11787
11788 call_site->per_cu = cu->per_cu;
11789
11790 for (child_die = die->child;
11791 child_die && child_die->tag;
11792 child_die = sibling_die (child_die))
11793 {
96408a79 11794 struct call_site_parameter *parameter;
1788b2d3 11795 struct attribute *loc, *origin;
96408a79
SA
11796
11797 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11798 {
11799 /* Already printed the complaint above. */
11800 continue;
11801 }
11802
11803 gdb_assert (call_site->parameter_count < nparams);
11804 parameter = &call_site->parameter[call_site->parameter_count];
11805
1788b2d3
JK
11806 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11807 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11808 register is contained in DW_AT_GNU_call_site_value. */
96408a79 11809
24c5c679 11810 loc = dwarf2_attr (child_die, DW_AT_location, cu);
1788b2d3 11811 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
7771576e 11812 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3
JK
11813 {
11814 sect_offset offset;
11815
11816 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11817 offset = dwarf2_get_ref_die_offset (origin);
d76b7dbc
JK
11818 if (!offset_in_cu_p (&cu->header, offset))
11819 {
11820 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11821 binding can be done only inside one CU. Such referenced DIE
11822 therefore cannot be even moved to DW_TAG_partial_unit. */
11823 complaint (&symfile_complaints,
11824 _("DW_AT_abstract_origin offset is not in CU for "
11825 "DW_TAG_GNU_call_site child DIE 0x%x "
11826 "[in module %s]"),
4262abfb 11827 child_die->offset.sect_off, objfile_name (objfile));
d76b7dbc
JK
11828 continue;
11829 }
1788b2d3
JK
11830 parameter->u.param_offset.cu_off = (offset.sect_off
11831 - cu->header.offset.sect_off);
11832 }
11833 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
11834 {
11835 complaint (&symfile_complaints,
11836 _("No DW_FORM_block* DW_AT_location for "
11837 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11838 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11839 continue;
11840 }
24c5c679 11841 else
96408a79 11842 {
24c5c679
JK
11843 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11844 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11845 if (parameter->u.dwarf_reg != -1)
11846 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11847 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11848 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11849 &parameter->u.fb_offset))
11850 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11851 else
11852 {
11853 complaint (&symfile_complaints,
11854 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11855 "for DW_FORM_block* DW_AT_location is supported for "
11856 "DW_TAG_GNU_call_site child DIE 0x%x "
11857 "[in module %s]"),
4262abfb 11858 child_die->offset.sect_off, objfile_name (objfile));
24c5c679
JK
11859 continue;
11860 }
96408a79
SA
11861 }
11862
11863 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11864 if (!attr_form_is_block (attr))
11865 {
11866 complaint (&symfile_complaints,
11867 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11868 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11869 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11870 continue;
11871 }
11872 parameter->value = DW_BLOCK (attr)->data;
11873 parameter->value_size = DW_BLOCK (attr)->size;
11874
11875 /* Parameters are not pre-cleared by memset above. */
11876 parameter->data_value = NULL;
11877 parameter->data_value_size = 0;
11878 call_site->parameter_count++;
11879
11880 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11881 if (attr)
11882 {
11883 if (!attr_form_is_block (attr))
11884 complaint (&symfile_complaints,
11885 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11886 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11887 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11888 else
11889 {
11890 parameter->data_value = DW_BLOCK (attr)->data;
11891 parameter->data_value_size = DW_BLOCK (attr)->size;
11892 }
11893 }
11894 }
11895}
11896
43039443 11897/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
11898 Return 1 if the attributes are present and valid, otherwise, return 0.
11899 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
11900
11901static int
11902dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
11903 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11904 struct partial_symtab *ranges_pst)
43039443
JK
11905{
11906 struct objfile *objfile = cu->objfile;
3e29f34a 11907 struct gdbarch *gdbarch = get_objfile_arch (objfile);
43039443
JK
11908 struct comp_unit_head *cu_header = &cu->header;
11909 bfd *obfd = objfile->obfd;
11910 unsigned int addr_size = cu_header->addr_size;
11911 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11912 /* Base address selection entry. */
11913 CORE_ADDR base;
11914 int found_base;
11915 unsigned int dummy;
d521ce57 11916 const gdb_byte *buffer;
43039443
JK
11917 int low_set;
11918 CORE_ADDR low = 0;
11919 CORE_ADDR high = 0;
ff013f42 11920 CORE_ADDR baseaddr;
43039443 11921
d00adf39
DE
11922 found_base = cu->base_known;
11923 base = cu->base_address;
43039443 11924
be391dca 11925 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 11926 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
11927 {
11928 complaint (&symfile_complaints,
11929 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11930 offset);
11931 return 0;
11932 }
dce234bc 11933 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443 11934
43039443
JK
11935 low_set = 0;
11936
e7030f15 11937 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 11938
43039443
JK
11939 while (1)
11940 {
11941 CORE_ADDR range_beginning, range_end;
11942
11943 range_beginning = read_address (obfd, buffer, cu, &dummy);
11944 buffer += addr_size;
11945 range_end = read_address (obfd, buffer, cu, &dummy);
11946 buffer += addr_size;
11947 offset += 2 * addr_size;
11948
11949 /* An end of list marker is a pair of zero addresses. */
11950 if (range_beginning == 0 && range_end == 0)
11951 /* Found the end of list entry. */
11952 break;
11953
11954 /* Each base address selection entry is a pair of 2 values.
11955 The first is the largest possible address, the second is
11956 the base address. Check for a base address here. */
11957 if ((range_beginning & mask) == mask)
11958 {
28d2bfb9
AB
11959 /* If we found the largest possible address, then we already
11960 have the base address in range_end. */
11961 base = range_end;
43039443
JK
11962 found_base = 1;
11963 continue;
11964 }
11965
11966 if (!found_base)
11967 {
11968 /* We have no valid base address for the ranges
11969 data. */
11970 complaint (&symfile_complaints,
11971 _("Invalid .debug_ranges data (no base address)"));
11972 return 0;
11973 }
11974
9277c30c
UW
11975 if (range_beginning > range_end)
11976 {
11977 /* Inverted range entries are invalid. */
11978 complaint (&symfile_complaints,
11979 _("Invalid .debug_ranges data (inverted range)"));
11980 return 0;
11981 }
11982
11983 /* Empty range entries have no effect. */
11984 if (range_beginning == range_end)
11985 continue;
11986
43039443
JK
11987 range_beginning += base;
11988 range_end += base;
11989
01093045
DE
11990 /* A not-uncommon case of bad debug info.
11991 Don't pollute the addrmap with bad data. */
11992 if (range_beginning + baseaddr == 0
11993 && !dwarf2_per_objfile->has_section_at_zero)
11994 {
11995 complaint (&symfile_complaints,
11996 _(".debug_ranges entry has start address of zero"
4262abfb 11997 " [in module %s]"), objfile_name (objfile));
01093045
DE
11998 continue;
11999 }
12000
9277c30c 12001 if (ranges_pst != NULL)
3e29f34a
MR
12002 {
12003 CORE_ADDR lowpc;
12004 CORE_ADDR highpc;
12005
12006 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12007 range_beginning + baseaddr);
12008 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12009 range_end + baseaddr);
12010 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12011 ranges_pst);
12012 }
ff013f42 12013
43039443
JK
12014 /* FIXME: This is recording everything as a low-high
12015 segment of consecutive addresses. We should have a
12016 data structure for discontiguous block ranges
12017 instead. */
12018 if (! low_set)
12019 {
12020 low = range_beginning;
12021 high = range_end;
12022 low_set = 1;
12023 }
12024 else
12025 {
12026 if (range_beginning < low)
12027 low = range_beginning;
12028 if (range_end > high)
12029 high = range_end;
12030 }
12031 }
12032
12033 if (! low_set)
12034 /* If the first entry is an end-of-list marker, the range
12035 describes an empty scope, i.e. no instructions. */
12036 return 0;
12037
12038 if (low_return)
12039 *low_return = low;
12040 if (high_return)
12041 *high_return = high;
12042 return 1;
12043}
12044
3a2b436a
JK
12045/* Get low and high pc attributes from a die. See enum pc_bounds_kind
12046 definition for the return value. *LOWPC and *HIGHPC are set iff
e385593e 12047 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
380bca97 12048
3a2b436a 12049static enum pc_bounds_kind
af34e669 12050dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
12051 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12052 struct partial_symtab *pst)
c906108c
SS
12053{
12054 struct attribute *attr;
91da1414 12055 struct attribute *attr_high;
af34e669
DJ
12056 CORE_ADDR low = 0;
12057 CORE_ADDR high = 0;
e385593e 12058 enum pc_bounds_kind ret;
c906108c 12059
91da1414
MW
12060 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12061 if (attr_high)
af34e669 12062 {
e142c38c 12063 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 12064 if (attr)
91da1414 12065 {
31aa7e4e
JB
12066 low = attr_value_as_address (attr);
12067 high = attr_value_as_address (attr_high);
12068 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12069 high += low;
91da1414 12070 }
af34e669
DJ
12071 else
12072 /* Found high w/o low attribute. */
e385593e 12073 return PC_BOUNDS_INVALID;
af34e669
DJ
12074
12075 /* Found consecutive range of addresses. */
3a2b436a 12076 ret = PC_BOUNDS_HIGH_LOW;
af34e669 12077 }
c906108c 12078 else
af34e669 12079 {
e142c38c 12080 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
12081 if (attr != NULL)
12082 {
ab435259
DE
12083 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12084 We take advantage of the fact that DW_AT_ranges does not appear
12085 in DW_TAG_compile_unit of DWO files. */
12086 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12087 unsigned int ranges_offset = (DW_UNSND (attr)
12088 + (need_ranges_base
12089 ? cu->ranges_base
12090 : 0));
2e3cf129 12091
af34e669 12092 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 12093 .debug_ranges section. */
2e3cf129 12094 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
e385593e 12095 return PC_BOUNDS_INVALID;
43039443 12096 /* Found discontinuous range of addresses. */
3a2b436a 12097 ret = PC_BOUNDS_RANGES;
af34e669 12098 }
e385593e
JK
12099 else
12100 return PC_BOUNDS_NOT_PRESENT;
af34e669 12101 }
c906108c 12102
9373cf26
JK
12103 /* read_partial_die has also the strict LOW < HIGH requirement. */
12104 if (high <= low)
e385593e 12105 return PC_BOUNDS_INVALID;
c906108c
SS
12106
12107 /* When using the GNU linker, .gnu.linkonce. sections are used to
12108 eliminate duplicate copies of functions and vtables and such.
12109 The linker will arbitrarily choose one and discard the others.
12110 The AT_*_pc values for such functions refer to local labels in
12111 these sections. If the section from that file was discarded, the
12112 labels are not in the output, so the relocs get a value of 0.
12113 If this is a discarded function, mark the pc bounds as invalid,
12114 so that GDB will ignore it. */
72dca2f5 12115 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
e385593e 12116 return PC_BOUNDS_INVALID;
c906108c
SS
12117
12118 *lowpc = low;
96408a79
SA
12119 if (highpc)
12120 *highpc = high;
af34e669 12121 return ret;
c906108c
SS
12122}
12123
b084d499
JB
12124/* Assuming that DIE represents a subprogram DIE or a lexical block, get
12125 its low and high PC addresses. Do nothing if these addresses could not
12126 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12127 and HIGHPC to the high address if greater than HIGHPC. */
12128
12129static void
12130dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12131 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12132 struct dwarf2_cu *cu)
12133{
12134 CORE_ADDR low, high;
12135 struct die_info *child = die->child;
12136
e385593e 12137 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
b084d499 12138 {
325fac50
PA
12139 *lowpc = std::min (*lowpc, low);
12140 *highpc = std::max (*highpc, high);
b084d499
JB
12141 }
12142
12143 /* If the language does not allow nested subprograms (either inside
12144 subprograms or lexical blocks), we're done. */
12145 if (cu->language != language_ada)
12146 return;
6e70227d 12147
b084d499
JB
12148 /* Check all the children of the given DIE. If it contains nested
12149 subprograms, then check their pc bounds. Likewise, we need to
12150 check lexical blocks as well, as they may also contain subprogram
12151 definitions. */
12152 while (child && child->tag)
12153 {
12154 if (child->tag == DW_TAG_subprogram
12155 || child->tag == DW_TAG_lexical_block)
12156 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12157 child = sibling_die (child);
12158 }
12159}
12160
fae299cd
DC
12161/* Get the low and high pc's represented by the scope DIE, and store
12162 them in *LOWPC and *HIGHPC. If the correct values can't be
12163 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12164
12165static void
12166get_scope_pc_bounds (struct die_info *die,
12167 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12168 struct dwarf2_cu *cu)
12169{
12170 CORE_ADDR best_low = (CORE_ADDR) -1;
12171 CORE_ADDR best_high = (CORE_ADDR) 0;
12172 CORE_ADDR current_low, current_high;
12173
3a2b436a 12174 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
e385593e 12175 >= PC_BOUNDS_RANGES)
fae299cd
DC
12176 {
12177 best_low = current_low;
12178 best_high = current_high;
12179 }
12180 else
12181 {
12182 struct die_info *child = die->child;
12183
12184 while (child && child->tag)
12185 {
12186 switch (child->tag) {
12187 case DW_TAG_subprogram:
b084d499 12188 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
12189 break;
12190 case DW_TAG_namespace:
f55ee35c 12191 case DW_TAG_module:
fae299cd
DC
12192 /* FIXME: carlton/2004-01-16: Should we do this for
12193 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12194 that current GCC's always emit the DIEs corresponding
12195 to definitions of methods of classes as children of a
12196 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12197 the DIEs giving the declarations, which could be
12198 anywhere). But I don't see any reason why the
12199 standards says that they have to be there. */
12200 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12201
12202 if (current_low != ((CORE_ADDR) -1))
12203 {
325fac50
PA
12204 best_low = std::min (best_low, current_low);
12205 best_high = std::max (best_high, current_high);
fae299cd
DC
12206 }
12207 break;
12208 default:
0963b4bd 12209 /* Ignore. */
fae299cd
DC
12210 break;
12211 }
12212
12213 child = sibling_die (child);
12214 }
12215 }
12216
12217 *lowpc = best_low;
12218 *highpc = best_high;
12219}
12220
801e3a5b
JB
12221/* Record the address ranges for BLOCK, offset by BASEADDR, as given
12222 in DIE. */
380bca97 12223
801e3a5b
JB
12224static void
12225dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12226 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12227{
bb5ed363 12228 struct objfile *objfile = cu->objfile;
3e29f34a 12229 struct gdbarch *gdbarch = get_objfile_arch (objfile);
801e3a5b 12230 struct attribute *attr;
91da1414 12231 struct attribute *attr_high;
801e3a5b 12232
91da1414
MW
12233 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12234 if (attr_high)
801e3a5b 12235 {
801e3a5b
JB
12236 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12237 if (attr)
12238 {
31aa7e4e
JB
12239 CORE_ADDR low = attr_value_as_address (attr);
12240 CORE_ADDR high = attr_value_as_address (attr_high);
12241
12242 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12243 high += low;
9a619af0 12244
3e29f34a
MR
12245 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12246 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12247 record_block_range (block, low, high - 1);
801e3a5b
JB
12248 }
12249 }
12250
12251 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12252 if (attr)
12253 {
bb5ed363 12254 bfd *obfd = objfile->obfd;
ab435259
DE
12255 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12256 We take advantage of the fact that DW_AT_ranges does not appear
12257 in DW_TAG_compile_unit of DWO files. */
12258 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
12259
12260 /* The value of the DW_AT_ranges attribute is the offset of the
12261 address range list in the .debug_ranges section. */
ab435259
DE
12262 unsigned long offset = (DW_UNSND (attr)
12263 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 12264 const gdb_byte *buffer;
801e3a5b
JB
12265
12266 /* For some target architectures, but not others, the
12267 read_address function sign-extends the addresses it returns.
12268 To recognize base address selection entries, we need a
12269 mask. */
12270 unsigned int addr_size = cu->header.addr_size;
12271 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12272
12273 /* The base address, to which the next pair is relative. Note
12274 that this 'base' is a DWARF concept: most entries in a range
12275 list are relative, to reduce the number of relocs against the
12276 debugging information. This is separate from this function's
12277 'baseaddr' argument, which GDB uses to relocate debugging
12278 information from a shared library based on the address at
12279 which the library was loaded. */
d00adf39
DE
12280 CORE_ADDR base = cu->base_address;
12281 int base_known = cu->base_known;
801e3a5b 12282
d62bfeaf 12283 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 12284 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
12285 {
12286 complaint (&symfile_complaints,
12287 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12288 offset);
12289 return;
12290 }
d62bfeaf 12291 buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
12292
12293 for (;;)
12294 {
12295 unsigned int bytes_read;
12296 CORE_ADDR start, end;
12297
12298 start = read_address (obfd, buffer, cu, &bytes_read);
12299 buffer += bytes_read;
12300 end = read_address (obfd, buffer, cu, &bytes_read);
12301 buffer += bytes_read;
12302
12303 /* Did we find the end of the range list? */
12304 if (start == 0 && end == 0)
12305 break;
12306
12307 /* Did we find a base address selection entry? */
12308 else if ((start & base_select_mask) == base_select_mask)
12309 {
12310 base = end;
12311 base_known = 1;
12312 }
12313
12314 /* We found an ordinary address range. */
12315 else
12316 {
12317 if (!base_known)
12318 {
12319 complaint (&symfile_complaints,
3e43a32a
MS
12320 _("Invalid .debug_ranges data "
12321 "(no base address)"));
801e3a5b
JB
12322 return;
12323 }
12324
9277c30c
UW
12325 if (start > end)
12326 {
12327 /* Inverted range entries are invalid. */
12328 complaint (&symfile_complaints,
12329 _("Invalid .debug_ranges data "
12330 "(inverted range)"));
12331 return;
12332 }
12333
12334 /* Empty range entries have no effect. */
12335 if (start == end)
12336 continue;
12337
01093045
DE
12338 start += base + baseaddr;
12339 end += base + baseaddr;
12340
12341 /* A not-uncommon case of bad debug info.
12342 Don't pollute the addrmap with bad data. */
12343 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12344 {
12345 complaint (&symfile_complaints,
12346 _(".debug_ranges entry has start address of zero"
4262abfb 12347 " [in module %s]"), objfile_name (objfile));
01093045
DE
12348 continue;
12349 }
12350
3e29f34a
MR
12351 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12352 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
01093045 12353 record_block_range (block, start, end - 1);
801e3a5b
JB
12354 }
12355 }
12356 }
12357}
12358
685b1105
JK
12359/* Check whether the producer field indicates either of GCC < 4.6, or the
12360 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 12361
685b1105
JK
12362static void
12363check_producer (struct dwarf2_cu *cu)
60d5a603 12364{
38360086 12365 int major, minor;
60d5a603
JK
12366
12367 if (cu->producer == NULL)
12368 {
12369 /* For unknown compilers expect their behavior is DWARF version
12370 compliant.
12371
12372 GCC started to support .debug_types sections by -gdwarf-4 since
12373 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12374 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12375 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12376 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 12377 }
b1ffba5a 12378 else if (producer_is_gcc (cu->producer, &major, &minor))
60d5a603 12379 {
38360086
MW
12380 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12381 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
685b1105 12382 }
61012eef 12383 else if (startswith (cu->producer, "Intel(R) C"))
685b1105
JK
12384 cu->producer_is_icc = 1;
12385 else
12386 {
12387 /* For other non-GCC compilers, expect their behavior is DWARF version
12388 compliant. */
60d5a603
JK
12389 }
12390
ba919b58 12391 cu->checked_producer = 1;
685b1105 12392}
ba919b58 12393
685b1105
JK
12394/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12395 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12396 during 4.6.0 experimental. */
12397
12398static int
12399producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12400{
12401 if (!cu->checked_producer)
12402 check_producer (cu);
12403
12404 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
12405}
12406
12407/* Return the default accessibility type if it is not overriden by
12408 DW_AT_accessibility. */
12409
12410static enum dwarf_access_attribute
12411dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12412{
12413 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12414 {
12415 /* The default DWARF 2 accessibility for members is public, the default
12416 accessibility for inheritance is private. */
12417
12418 if (die->tag != DW_TAG_inheritance)
12419 return DW_ACCESS_public;
12420 else
12421 return DW_ACCESS_private;
12422 }
12423 else
12424 {
12425 /* DWARF 3+ defines the default accessibility a different way. The same
12426 rules apply now for DW_TAG_inheritance as for the members and it only
12427 depends on the container kind. */
12428
12429 if (die->parent->tag == DW_TAG_class_type)
12430 return DW_ACCESS_private;
12431 else
12432 return DW_ACCESS_public;
12433 }
12434}
12435
74ac6d43
TT
12436/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12437 offset. If the attribute was not found return 0, otherwise return
12438 1. If it was found but could not properly be handled, set *OFFSET
12439 to 0. */
12440
12441static int
12442handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12443 LONGEST *offset)
12444{
12445 struct attribute *attr;
12446
12447 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12448 if (attr != NULL)
12449 {
12450 *offset = 0;
12451
12452 /* Note that we do not check for a section offset first here.
12453 This is because DW_AT_data_member_location is new in DWARF 4,
12454 so if we see it, we can assume that a constant form is really
12455 a constant and not a section offset. */
12456 if (attr_form_is_constant (attr))
12457 *offset = dwarf2_get_attr_constant_value (attr, 0);
12458 else if (attr_form_is_section_offset (attr))
12459 dwarf2_complex_location_expr_complaint ();
12460 else if (attr_form_is_block (attr))
12461 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12462 else
12463 dwarf2_complex_location_expr_complaint ();
12464
12465 return 1;
12466 }
12467
12468 return 0;
12469}
12470
c906108c
SS
12471/* Add an aggregate field to the field list. */
12472
12473static void
107d2387 12474dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 12475 struct dwarf2_cu *cu)
6e70227d 12476{
e7c27a73 12477 struct objfile *objfile = cu->objfile;
5e2b427d 12478 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12479 struct nextfield *new_field;
12480 struct attribute *attr;
12481 struct field *fp;
15d034d0 12482 const char *fieldname = "";
c906108c
SS
12483
12484 /* Allocate a new field list entry and link it in. */
8d749320 12485 new_field = XNEW (struct nextfield);
b8c9b27d 12486 make_cleanup (xfree, new_field);
c906108c 12487 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
12488
12489 if (die->tag == DW_TAG_inheritance)
12490 {
12491 new_field->next = fip->baseclasses;
12492 fip->baseclasses = new_field;
12493 }
12494 else
12495 {
12496 new_field->next = fip->fields;
12497 fip->fields = new_field;
12498 }
c906108c
SS
12499 fip->nfields++;
12500
e142c38c 12501 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
12502 if (attr)
12503 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
12504 else
12505 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
12506 if (new_field->accessibility != DW_ACCESS_public)
12507 fip->non_public_fields = 1;
60d5a603 12508
e142c38c 12509 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
12510 if (attr)
12511 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
12512 else
12513 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
12514
12515 fp = &new_field->field;
a9a9bd0f 12516
e142c38c 12517 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 12518 {
74ac6d43
TT
12519 LONGEST offset;
12520
a9a9bd0f 12521 /* Data member other than a C++ static data member. */
6e70227d 12522
c906108c 12523 /* Get type of field. */
e7c27a73 12524 fp->type = die_type (die, cu);
c906108c 12525
d6a843b5 12526 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 12527
c906108c 12528 /* Get bit size of field (zero if none). */
e142c38c 12529 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
12530 if (attr)
12531 {
12532 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12533 }
12534 else
12535 {
12536 FIELD_BITSIZE (*fp) = 0;
12537 }
12538
12539 /* Get bit offset of field. */
74ac6d43
TT
12540 if (handle_data_member_location (die, cu, &offset))
12541 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 12542 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
12543 if (attr)
12544 {
5e2b427d 12545 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
12546 {
12547 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
12548 additional bit offset from the MSB of the containing
12549 anonymous object to the MSB of the field. We don't
12550 have to do anything special since we don't need to
12551 know the size of the anonymous object. */
f41f5e61 12552 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
12553 }
12554 else
12555 {
12556 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
12557 MSB of the anonymous object, subtract off the number of
12558 bits from the MSB of the field to the MSB of the
12559 object, and then subtract off the number of bits of
12560 the field itself. The result is the bit offset of
12561 the LSB of the field. */
c906108c
SS
12562 int anonymous_size;
12563 int bit_offset = DW_UNSND (attr);
12564
e142c38c 12565 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12566 if (attr)
12567 {
12568 /* The size of the anonymous object containing
12569 the bit field is explicit, so use the
12570 indicated size (in bytes). */
12571 anonymous_size = DW_UNSND (attr);
12572 }
12573 else
12574 {
12575 /* The size of the anonymous object containing
12576 the bit field must be inferred from the type
12577 attribute of the data member containing the
12578 bit field. */
12579 anonymous_size = TYPE_LENGTH (fp->type);
12580 }
f41f5e61
PA
12581 SET_FIELD_BITPOS (*fp,
12582 (FIELD_BITPOS (*fp)
12583 + anonymous_size * bits_per_byte
12584 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
12585 }
12586 }
da5b30da
AA
12587 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
12588 if (attr != NULL)
12589 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
12590 + dwarf2_get_attr_constant_value (attr, 0)));
c906108c
SS
12591
12592 /* Get name of field. */
39cbfefa
DJ
12593 fieldname = dwarf2_name (die, cu);
12594 if (fieldname == NULL)
12595 fieldname = "";
d8151005
DJ
12596
12597 /* The name is already allocated along with this objfile, so we don't
12598 need to duplicate it for the type. */
12599 fp->name = fieldname;
c906108c
SS
12600
12601 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 12602 pointer or virtual base class pointer) to private. */
e142c38c 12603 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 12604 {
d48cc9dd 12605 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
12606 new_field->accessibility = DW_ACCESS_private;
12607 fip->non_public_fields = 1;
12608 }
12609 }
a9a9bd0f 12610 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 12611 {
a9a9bd0f
DC
12612 /* C++ static member. */
12613
12614 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12615 is a declaration, but all versions of G++ as of this writing
12616 (so through at least 3.2.1) incorrectly generate
12617 DW_TAG_variable tags. */
6e70227d 12618
ff355380 12619 const char *physname;
c906108c 12620
a9a9bd0f 12621 /* Get name of field. */
39cbfefa
DJ
12622 fieldname = dwarf2_name (die, cu);
12623 if (fieldname == NULL)
c906108c
SS
12624 return;
12625
254e6b9e 12626 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
12627 if (attr
12628 /* Only create a symbol if this is an external value.
12629 new_symbol checks this and puts the value in the global symbol
12630 table, which we want. If it is not external, new_symbol
12631 will try to put the value in cu->list_in_scope which is wrong. */
12632 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
12633 {
12634 /* A static const member, not much different than an enum as far as
12635 we're concerned, except that we can support more types. */
12636 new_symbol (die, NULL, cu);
12637 }
12638
2df3850c 12639 /* Get physical name. */
ff355380 12640 physname = dwarf2_physname (fieldname, die, cu);
c906108c 12641
d8151005
DJ
12642 /* The name is already allocated along with this objfile, so we don't
12643 need to duplicate it for the type. */
12644 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 12645 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 12646 FIELD_NAME (*fp) = fieldname;
c906108c
SS
12647 }
12648 else if (die->tag == DW_TAG_inheritance)
12649 {
74ac6d43 12650 LONGEST offset;
d4b96c9a 12651
74ac6d43
TT
12652 /* C++ base class field. */
12653 if (handle_data_member_location (die, cu, &offset))
12654 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 12655 FIELD_BITSIZE (*fp) = 0;
e7c27a73 12656 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
12657 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12658 fip->nbaseclasses++;
12659 }
12660}
12661
98751a41
JK
12662/* Add a typedef defined in the scope of the FIP's class. */
12663
12664static void
12665dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12666 struct dwarf2_cu *cu)
6e70227d 12667{
98751a41 12668 struct typedef_field_list *new_field;
98751a41 12669 struct typedef_field *fp;
98751a41
JK
12670
12671 /* Allocate a new field list entry and link it in. */
8d749320 12672 new_field = XCNEW (struct typedef_field_list);
98751a41
JK
12673 make_cleanup (xfree, new_field);
12674
12675 gdb_assert (die->tag == DW_TAG_typedef);
12676
12677 fp = &new_field->field;
12678
12679 /* Get name of field. */
12680 fp->name = dwarf2_name (die, cu);
12681 if (fp->name == NULL)
12682 return;
12683
12684 fp->type = read_type_die (die, cu);
12685
12686 new_field->next = fip->typedef_field_list;
12687 fip->typedef_field_list = new_field;
12688 fip->typedef_field_list_count++;
12689}
12690
c906108c
SS
12691/* Create the vector of fields, and attach it to the type. */
12692
12693static void
fba45db2 12694dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12695 struct dwarf2_cu *cu)
c906108c
SS
12696{
12697 int nfields = fip->nfields;
12698
12699 /* Record the field count, allocate space for the array of fields,
12700 and create blank accessibility bitfields if necessary. */
12701 TYPE_NFIELDS (type) = nfields;
12702 TYPE_FIELDS (type) = (struct field *)
12703 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12704 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12705
b4ba55a1 12706 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
12707 {
12708 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12709
12710 TYPE_FIELD_PRIVATE_BITS (type) =
12711 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12712 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12713
12714 TYPE_FIELD_PROTECTED_BITS (type) =
12715 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12716 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12717
774b6a14
TT
12718 TYPE_FIELD_IGNORE_BITS (type) =
12719 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12720 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
12721 }
12722
12723 /* If the type has baseclasses, allocate and clear a bit vector for
12724 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 12725 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
12726 {
12727 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 12728 unsigned char *pointer;
c906108c
SS
12729
12730 ALLOCATE_CPLUS_STRUCT_TYPE (type);
224c3ddb 12731 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
fe1b8b76 12732 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
12733 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12734 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12735 }
12736
3e43a32a
MS
12737 /* Copy the saved-up fields into the field vector. Start from the head of
12738 the list, adding to the tail of the field array, so that they end up in
12739 the same order in the array in which they were added to the list. */
c906108c
SS
12740 while (nfields-- > 0)
12741 {
7d0ccb61
DJ
12742 struct nextfield *fieldp;
12743
12744 if (fip->fields)
12745 {
12746 fieldp = fip->fields;
12747 fip->fields = fieldp->next;
12748 }
12749 else
12750 {
12751 fieldp = fip->baseclasses;
12752 fip->baseclasses = fieldp->next;
12753 }
12754
12755 TYPE_FIELD (type, nfields) = fieldp->field;
12756 switch (fieldp->accessibility)
c906108c 12757 {
c5aa993b 12758 case DW_ACCESS_private:
b4ba55a1
JB
12759 if (cu->language != language_ada)
12760 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 12761 break;
c906108c 12762
c5aa993b 12763 case DW_ACCESS_protected:
b4ba55a1
JB
12764 if (cu->language != language_ada)
12765 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 12766 break;
c906108c 12767
c5aa993b
JM
12768 case DW_ACCESS_public:
12769 break;
c906108c 12770
c5aa993b
JM
12771 default:
12772 /* Unknown accessibility. Complain and treat it as public. */
12773 {
e2e0b3e5 12774 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 12775 fieldp->accessibility);
c5aa993b
JM
12776 }
12777 break;
c906108c
SS
12778 }
12779 if (nfields < fip->nbaseclasses)
12780 {
7d0ccb61 12781 switch (fieldp->virtuality)
c906108c 12782 {
c5aa993b
JM
12783 case DW_VIRTUALITY_virtual:
12784 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 12785 if (cu->language == language_ada)
a73c6dcd 12786 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
12787 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12788 break;
c906108c
SS
12789 }
12790 }
c906108c
SS
12791 }
12792}
12793
7d27a96d
TT
12794/* Return true if this member function is a constructor, false
12795 otherwise. */
12796
12797static int
12798dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12799{
12800 const char *fieldname;
fe978cb0 12801 const char *type_name;
7d27a96d
TT
12802 int len;
12803
12804 if (die->parent == NULL)
12805 return 0;
12806
12807 if (die->parent->tag != DW_TAG_structure_type
12808 && die->parent->tag != DW_TAG_union_type
12809 && die->parent->tag != DW_TAG_class_type)
12810 return 0;
12811
12812 fieldname = dwarf2_name (die, cu);
fe978cb0
PA
12813 type_name = dwarf2_name (die->parent, cu);
12814 if (fieldname == NULL || type_name == NULL)
7d27a96d
TT
12815 return 0;
12816
12817 len = strlen (fieldname);
fe978cb0
PA
12818 return (strncmp (fieldname, type_name, len) == 0
12819 && (type_name[len] == '\0' || type_name[len] == '<'));
7d27a96d
TT
12820}
12821
c906108c
SS
12822/* Add a member function to the proper fieldlist. */
12823
12824static void
107d2387 12825dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 12826 struct type *type, struct dwarf2_cu *cu)
c906108c 12827{
e7c27a73 12828 struct objfile *objfile = cu->objfile;
c906108c
SS
12829 struct attribute *attr;
12830 struct fnfieldlist *flp;
12831 int i;
12832 struct fn_field *fnp;
15d034d0 12833 const char *fieldname;
c906108c 12834 struct nextfnfield *new_fnfield;
f792889a 12835 struct type *this_type;
60d5a603 12836 enum dwarf_access_attribute accessibility;
c906108c 12837
b4ba55a1 12838 if (cu->language == language_ada)
a73c6dcd 12839 error (_("unexpected member function in Ada type"));
b4ba55a1 12840
2df3850c 12841 /* Get name of member function. */
39cbfefa
DJ
12842 fieldname = dwarf2_name (die, cu);
12843 if (fieldname == NULL)
2df3850c 12844 return;
c906108c 12845
c906108c
SS
12846 /* Look up member function name in fieldlist. */
12847 for (i = 0; i < fip->nfnfields; i++)
12848 {
27bfe10e 12849 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
12850 break;
12851 }
12852
12853 /* Create new list element if necessary. */
12854 if (i < fip->nfnfields)
12855 flp = &fip->fnfieldlists[i];
12856 else
12857 {
12858 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12859 {
12860 fip->fnfieldlists = (struct fnfieldlist *)
12861 xrealloc (fip->fnfieldlists,
12862 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 12863 * sizeof (struct fnfieldlist));
c906108c 12864 if (fip->nfnfields == 0)
c13c43fd 12865 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
12866 }
12867 flp = &fip->fnfieldlists[fip->nfnfields];
12868 flp->name = fieldname;
12869 flp->length = 0;
12870 flp->head = NULL;
3da10d80 12871 i = fip->nfnfields++;
c906108c
SS
12872 }
12873
12874 /* Create a new member function field and chain it to the field list
0963b4bd 12875 entry. */
8d749320 12876 new_fnfield = XNEW (struct nextfnfield);
b8c9b27d 12877 make_cleanup (xfree, new_fnfield);
c906108c
SS
12878 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12879 new_fnfield->next = flp->head;
12880 flp->head = new_fnfield;
12881 flp->length++;
12882
12883 /* Fill in the member function field info. */
12884 fnp = &new_fnfield->fnfield;
3da10d80
KS
12885
12886 /* Delay processing of the physname until later. */
9c37b5ae 12887 if (cu->language == language_cplus)
3da10d80
KS
12888 {
12889 add_to_method_list (type, i, flp->length - 1, fieldname,
12890 die, cu);
12891 }
12892 else
12893 {
1d06ead6 12894 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
12895 fnp->physname = physname ? physname : "";
12896 }
12897
c906108c 12898 fnp->type = alloc_type (objfile);
f792889a
DJ
12899 this_type = read_type_die (die, cu);
12900 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 12901 {
f792889a 12902 int nparams = TYPE_NFIELDS (this_type);
c906108c 12903
f792889a 12904 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
12905 of the method itself (TYPE_CODE_METHOD). */
12906 smash_to_method_type (fnp->type, type,
f792889a
DJ
12907 TYPE_TARGET_TYPE (this_type),
12908 TYPE_FIELDS (this_type),
12909 TYPE_NFIELDS (this_type),
12910 TYPE_VARARGS (this_type));
c906108c
SS
12911
12912 /* Handle static member functions.
c5aa993b 12913 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
12914 member functions. G++ helps GDB by marking the first
12915 parameter for non-static member functions (which is the this
12916 pointer) as artificial. We obtain this information from
12917 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 12918 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
12919 fnp->voffset = VOFFSET_STATIC;
12920 }
12921 else
e2e0b3e5 12922 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 12923 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
12924
12925 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 12926 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 12927 fnp->fcontext = die_containing_type (die, cu);
c906108c 12928
3e43a32a
MS
12929 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12930 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
12931
12932 /* Get accessibility. */
e142c38c 12933 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 12934 if (attr)
aead7601 12935 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
60d5a603
JK
12936 else
12937 accessibility = dwarf2_default_access_attribute (die, cu);
12938 switch (accessibility)
c906108c 12939 {
60d5a603
JK
12940 case DW_ACCESS_private:
12941 fnp->is_private = 1;
12942 break;
12943 case DW_ACCESS_protected:
12944 fnp->is_protected = 1;
12945 break;
c906108c
SS
12946 }
12947
b02dede2 12948 /* Check for artificial methods. */
e142c38c 12949 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
12950 if (attr && DW_UNSND (attr) != 0)
12951 fnp->is_artificial = 1;
12952
7d27a96d
TT
12953 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12954
0d564a31 12955 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
12956 function. For older versions of GCC, this is an offset in the
12957 appropriate virtual table, as specified by DW_AT_containing_type.
12958 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
12959 to the object address. */
12960
e142c38c 12961 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 12962 if (attr)
8e19ed76 12963 {
aec5aa8b 12964 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 12965 {
aec5aa8b
TT
12966 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12967 {
12968 /* Old-style GCC. */
12969 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12970 }
12971 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12972 || (DW_BLOCK (attr)->size > 1
12973 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12974 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12975 {
aec5aa8b
TT
12976 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12977 if ((fnp->voffset % cu->header.addr_size) != 0)
12978 dwarf2_complex_location_expr_complaint ();
12979 else
12980 fnp->voffset /= cu->header.addr_size;
12981 fnp->voffset += 2;
12982 }
12983 else
12984 dwarf2_complex_location_expr_complaint ();
12985
12986 if (!fnp->fcontext)
7e993ebf
KS
12987 {
12988 /* If there is no `this' field and no DW_AT_containing_type,
12989 we cannot actually find a base class context for the
12990 vtable! */
12991 if (TYPE_NFIELDS (this_type) == 0
12992 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12993 {
12994 complaint (&symfile_complaints,
12995 _("cannot determine context for virtual member "
12996 "function \"%s\" (offset %d)"),
12997 fieldname, die->offset.sect_off);
12998 }
12999 else
13000 {
13001 fnp->fcontext
13002 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
13003 }
13004 }
aec5aa8b 13005 }
3690dd37 13006 else if (attr_form_is_section_offset (attr))
8e19ed76 13007 {
4d3c2250 13008 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
13009 }
13010 else
13011 {
4d3c2250
KB
13012 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13013 fieldname);
8e19ed76 13014 }
0d564a31 13015 }
d48cc9dd
DJ
13016 else
13017 {
13018 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13019 if (attr && DW_UNSND (attr))
13020 {
13021 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13022 complaint (&symfile_complaints,
3e43a32a
MS
13023 _("Member function \"%s\" (offset %d) is virtual "
13024 "but the vtable offset is not specified"),
b64f50a1 13025 fieldname, die->offset.sect_off);
9655fd1a 13026 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
13027 TYPE_CPLUS_DYNAMIC (type) = 1;
13028 }
13029 }
c906108c
SS
13030}
13031
13032/* Create the vector of member function fields, and attach it to the type. */
13033
13034static void
fba45db2 13035dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 13036 struct dwarf2_cu *cu)
c906108c
SS
13037{
13038 struct fnfieldlist *flp;
c906108c
SS
13039 int i;
13040
b4ba55a1 13041 if (cu->language == language_ada)
a73c6dcd 13042 error (_("unexpected member functions in Ada type"));
b4ba55a1 13043
c906108c
SS
13044 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13045 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13046 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13047
13048 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13049 {
13050 struct nextfnfield *nfp = flp->head;
13051 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13052 int k;
13053
13054 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13055 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13056 fn_flp->fn_fields = (struct fn_field *)
13057 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13058 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 13059 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
13060 }
13061
13062 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
13063}
13064
1168df01
JB
13065/* Returns non-zero if NAME is the name of a vtable member in CU's
13066 language, zero otherwise. */
13067static int
13068is_vtable_name (const char *name, struct dwarf2_cu *cu)
13069{
13070 static const char vptr[] = "_vptr";
987504bb 13071 static const char vtable[] = "vtable";
1168df01 13072
9c37b5ae
TT
13073 /* Look for the C++ form of the vtable. */
13074 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
1168df01
JB
13075 return 1;
13076
13077 return 0;
13078}
13079
c0dd20ea 13080/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
13081 functions, with the ABI-specified layout. If TYPE describes
13082 such a structure, smash it into a member function type.
61049d3b
DJ
13083
13084 GCC shouldn't do this; it should just output pointer to member DIEs.
13085 This is GCC PR debug/28767. */
c0dd20ea 13086
0b92b5bb
TT
13087static void
13088quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 13089{
09e2d7c7 13090 struct type *pfn_type, *self_type, *new_type;
c0dd20ea
DJ
13091
13092 /* Check for a structure with no name and two children. */
0b92b5bb
TT
13093 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13094 return;
c0dd20ea
DJ
13095
13096 /* Check for __pfn and __delta members. */
0b92b5bb
TT
13097 if (TYPE_FIELD_NAME (type, 0) == NULL
13098 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13099 || TYPE_FIELD_NAME (type, 1) == NULL
13100 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13101 return;
c0dd20ea
DJ
13102
13103 /* Find the type of the method. */
0b92b5bb 13104 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
13105 if (pfn_type == NULL
13106 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13107 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 13108 return;
c0dd20ea
DJ
13109
13110 /* Look for the "this" argument. */
13111 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13112 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 13113 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 13114 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 13115 return;
c0dd20ea 13116
09e2d7c7 13117 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb 13118 new_type = alloc_type (objfile);
09e2d7c7 13119 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
13120 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13121 TYPE_VARARGS (pfn_type));
0b92b5bb 13122 smash_to_methodptr_type (type, new_type);
c0dd20ea 13123}
1168df01 13124
685b1105
JK
13125/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13126 (icc). */
13127
13128static int
13129producer_is_icc (struct dwarf2_cu *cu)
13130{
13131 if (!cu->checked_producer)
13132 check_producer (cu);
13133
13134 return cu->producer_is_icc;
13135}
13136
c906108c 13137/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
13138 (definition) to create a type for the structure or union. Fill in
13139 the type's name and general properties; the members will not be
83655187
DE
13140 processed until process_structure_scope. A symbol table entry for
13141 the type will also not be done until process_structure_scope (assuming
13142 the type has a name).
c906108c 13143
c767944b
DJ
13144 NOTE: we need to call these functions regardless of whether or not the
13145 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c 13146 structure or union. This gets the type entered into our set of
83655187 13147 user defined types. */
c906108c 13148
f792889a 13149static struct type *
134d01f1 13150read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13151{
e7c27a73 13152 struct objfile *objfile = cu->objfile;
c906108c
SS
13153 struct type *type;
13154 struct attribute *attr;
15d034d0 13155 const char *name;
c906108c 13156
348e048f
DE
13157 /* If the definition of this type lives in .debug_types, read that type.
13158 Don't follow DW_AT_specification though, that will take us back up
13159 the chain and we want to go down. */
45e58e77 13160 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13161 if (attr)
13162 {
ac9ec31b 13163 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13164
ac9ec31b 13165 /* The type's CU may not be the same as CU.
02142a6c 13166 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13167 return set_die_type (die, type, cu);
13168 }
13169
c0dd20ea 13170 type = alloc_type (objfile);
c906108c 13171 INIT_CPLUS_SPECIFIC (type);
93311388 13172
39cbfefa
DJ
13173 name = dwarf2_name (die, cu);
13174 if (name != NULL)
c906108c 13175 {
987504bb 13176 if (cu->language == language_cplus
c44af4eb
TT
13177 || cu->language == language_d
13178 || cu->language == language_rust)
63d06c5c 13179 {
15d034d0 13180 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
13181
13182 /* dwarf2_full_name might have already finished building the DIE's
13183 type. If so, there is no need to continue. */
13184 if (get_die_type (die, cu) != NULL)
13185 return get_die_type (die, cu);
13186
13187 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
13188 if (die->tag == DW_TAG_structure_type
13189 || die->tag == DW_TAG_class_type)
13190 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
13191 }
13192 else
13193 {
d8151005
DJ
13194 /* The name is already allocated along with this objfile, so
13195 we don't need to duplicate it for the type. */
7d455152 13196 TYPE_TAG_NAME (type) = name;
94af9270
KS
13197 if (die->tag == DW_TAG_class_type)
13198 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 13199 }
c906108c
SS
13200 }
13201
13202 if (die->tag == DW_TAG_structure_type)
13203 {
13204 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13205 }
13206 else if (die->tag == DW_TAG_union_type)
13207 {
13208 TYPE_CODE (type) = TYPE_CODE_UNION;
13209 }
13210 else
13211 {
4753d33b 13212 TYPE_CODE (type) = TYPE_CODE_STRUCT;
c906108c
SS
13213 }
13214
0cc2414c
TT
13215 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13216 TYPE_DECLARED_CLASS (type) = 1;
13217
e142c38c 13218 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13219 if (attr)
13220 {
155bfbd3
JB
13221 if (attr_form_is_constant (attr))
13222 TYPE_LENGTH (type) = DW_UNSND (attr);
13223 else
13224 {
13225 /* For the moment, dynamic type sizes are not supported
13226 by GDB's struct type. The actual size is determined
13227 on-demand when resolving the type of a given object,
13228 so set the type's length to zero for now. Otherwise,
13229 we record an expression as the length, and that expression
13230 could lead to a very large value, which could eventually
13231 lead to us trying to allocate that much memory when creating
13232 a value of that type. */
13233 TYPE_LENGTH (type) = 0;
13234 }
c906108c
SS
13235 }
13236 else
13237 {
13238 TYPE_LENGTH (type) = 0;
13239 }
13240
422b1cb0 13241 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
685b1105
JK
13242 {
13243 /* ICC does not output the required DW_AT_declaration
13244 on incomplete types, but gives them a size of zero. */
422b1cb0 13245 TYPE_STUB (type) = 1;
685b1105
JK
13246 }
13247 else
13248 TYPE_STUB_SUPPORTED (type) = 1;
13249
dc718098 13250 if (die_is_declaration (die, cu))
876cecd0 13251 TYPE_STUB (type) = 1;
a6c727b2
DJ
13252 else if (attr == NULL && die->child == NULL
13253 && producer_is_realview (cu->producer))
13254 /* RealView does not output the required DW_AT_declaration
13255 on incomplete types. */
13256 TYPE_STUB (type) = 1;
dc718098 13257
c906108c
SS
13258 /* We need to add the type field to the die immediately so we don't
13259 infinitely recurse when dealing with pointers to the structure
0963b4bd 13260 type within the structure itself. */
1c379e20 13261 set_die_type (die, type, cu);
c906108c 13262
7e314c57
JK
13263 /* set_die_type should be already done. */
13264 set_descriptive_type (type, die, cu);
13265
c767944b
DJ
13266 return type;
13267}
13268
13269/* Finish creating a structure or union type, including filling in
13270 its members and creating a symbol for it. */
13271
13272static void
13273process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13274{
13275 struct objfile *objfile = cu->objfile;
ca040673 13276 struct die_info *child_die;
c767944b
DJ
13277 struct type *type;
13278
13279 type = get_die_type (die, cu);
13280 if (type == NULL)
13281 type = read_structure_type (die, cu);
13282
e142c38c 13283 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
13284 {
13285 struct field_info fi;
34eaf542 13286 VEC (symbolp) *template_args = NULL;
c767944b 13287 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
13288
13289 memset (&fi, 0, sizeof (struct field_info));
13290
639d11d3 13291 child_die = die->child;
c906108c
SS
13292
13293 while (child_die && child_die->tag)
13294 {
a9a9bd0f
DC
13295 if (child_die->tag == DW_TAG_member
13296 || child_die->tag == DW_TAG_variable)
c906108c 13297 {
a9a9bd0f
DC
13298 /* NOTE: carlton/2002-11-05: A C++ static data member
13299 should be a DW_TAG_member that is a declaration, but
13300 all versions of G++ as of this writing (so through at
13301 least 3.2.1) incorrectly generate DW_TAG_variable
13302 tags for them instead. */
e7c27a73 13303 dwarf2_add_field (&fi, child_die, cu);
c906108c 13304 }
8713b1b1 13305 else if (child_die->tag == DW_TAG_subprogram)
c906108c 13306 {
e98c9e7c
TT
13307 /* Rust doesn't have member functions in the C++ sense.
13308 However, it does emit ordinary functions as children
13309 of a struct DIE. */
13310 if (cu->language == language_rust)
13311 read_func_scope (child_die, cu);
13312 else
13313 {
13314 /* C++ member function. */
13315 dwarf2_add_member_fn (&fi, child_die, type, cu);
13316 }
c906108c
SS
13317 }
13318 else if (child_die->tag == DW_TAG_inheritance)
13319 {
13320 /* C++ base class field. */
e7c27a73 13321 dwarf2_add_field (&fi, child_die, cu);
c906108c 13322 }
98751a41
JK
13323 else if (child_die->tag == DW_TAG_typedef)
13324 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
13325 else if (child_die->tag == DW_TAG_template_type_param
13326 || child_die->tag == DW_TAG_template_value_param)
13327 {
13328 struct symbol *arg = new_symbol (child_die, NULL, cu);
13329
f1078f66
DJ
13330 if (arg != NULL)
13331 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
13332 }
13333
c906108c
SS
13334 child_die = sibling_die (child_die);
13335 }
13336
34eaf542
TT
13337 /* Attach template arguments to type. */
13338 if (! VEC_empty (symbolp, template_args))
13339 {
13340 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13341 TYPE_N_TEMPLATE_ARGUMENTS (type)
13342 = VEC_length (symbolp, template_args);
13343 TYPE_TEMPLATE_ARGUMENTS (type)
8d749320
SM
13344 = XOBNEWVEC (&objfile->objfile_obstack,
13345 struct symbol *,
13346 TYPE_N_TEMPLATE_ARGUMENTS (type));
34eaf542
TT
13347 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13348 VEC_address (symbolp, template_args),
13349 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13350 * sizeof (struct symbol *)));
13351 VEC_free (symbolp, template_args);
13352 }
13353
c906108c
SS
13354 /* Attach fields and member functions to the type. */
13355 if (fi.nfields)
e7c27a73 13356 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
13357 if (fi.nfnfields)
13358 {
e7c27a73 13359 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 13360
c5aa993b 13361 /* Get the type which refers to the base class (possibly this
c906108c 13362 class itself) which contains the vtable pointer for the current
0d564a31
DJ
13363 class from the DW_AT_containing_type attribute. This use of
13364 DW_AT_containing_type is a GNU extension. */
c906108c 13365
e142c38c 13366 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 13367 {
e7c27a73 13368 struct type *t = die_containing_type (die, cu);
c906108c 13369
ae6ae975 13370 set_type_vptr_basetype (type, t);
c906108c
SS
13371 if (type == t)
13372 {
c906108c
SS
13373 int i;
13374
13375 /* Our own class provides vtbl ptr. */
13376 for (i = TYPE_NFIELDS (t) - 1;
13377 i >= TYPE_N_BASECLASSES (t);
13378 --i)
13379 {
0d5cff50 13380 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 13381
1168df01 13382 if (is_vtable_name (fieldname, cu))
c906108c 13383 {
ae6ae975 13384 set_type_vptr_fieldno (type, i);
c906108c
SS
13385 break;
13386 }
13387 }
13388
13389 /* Complain if virtual function table field not found. */
13390 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 13391 complaint (&symfile_complaints,
3e43a32a
MS
13392 _("virtual function table pointer "
13393 "not found when defining class '%s'"),
4d3c2250
KB
13394 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13395 "");
c906108c
SS
13396 }
13397 else
13398 {
ae6ae975 13399 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
c906108c
SS
13400 }
13401 }
f6235d4c 13402 else if (cu->producer
61012eef 13403 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
f6235d4c
EZ
13404 {
13405 /* The IBM XLC compiler does not provide direct indication
13406 of the containing type, but the vtable pointer is
13407 always named __vfp. */
13408
13409 int i;
13410
13411 for (i = TYPE_NFIELDS (type) - 1;
13412 i >= TYPE_N_BASECLASSES (type);
13413 --i)
13414 {
13415 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13416 {
ae6ae975
DE
13417 set_type_vptr_fieldno (type, i);
13418 set_type_vptr_basetype (type, type);
f6235d4c
EZ
13419 break;
13420 }
13421 }
13422 }
c906108c 13423 }
98751a41
JK
13424
13425 /* Copy fi.typedef_field_list linked list elements content into the
13426 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13427 if (fi.typedef_field_list)
13428 {
13429 int i = fi.typedef_field_list_count;
13430
a0d7a4ff 13431 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41 13432 TYPE_TYPEDEF_FIELD_ARRAY (type)
224c3ddb
SM
13433 = ((struct typedef_field *)
13434 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
98751a41
JK
13435 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13436
13437 /* Reverse the list order to keep the debug info elements order. */
13438 while (--i >= 0)
13439 {
13440 struct typedef_field *dest, *src;
6e70227d 13441
98751a41
JK
13442 dest = &TYPE_TYPEDEF_FIELD (type, i);
13443 src = &fi.typedef_field_list->field;
13444 fi.typedef_field_list = fi.typedef_field_list->next;
13445 *dest = *src;
13446 }
13447 }
c767944b
DJ
13448
13449 do_cleanups (back_to);
c906108c 13450 }
63d06c5c 13451
bb5ed363 13452 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 13453
90aeadfc
DC
13454 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13455 snapshots) has been known to create a die giving a declaration
13456 for a class that has, as a child, a die giving a definition for a
13457 nested class. So we have to process our children even if the
13458 current die is a declaration. Normally, of course, a declaration
13459 won't have any children at all. */
134d01f1 13460
ca040673
DE
13461 child_die = die->child;
13462
90aeadfc
DC
13463 while (child_die != NULL && child_die->tag)
13464 {
13465 if (child_die->tag == DW_TAG_member
13466 || child_die->tag == DW_TAG_variable
34eaf542
TT
13467 || child_die->tag == DW_TAG_inheritance
13468 || child_die->tag == DW_TAG_template_value_param
13469 || child_die->tag == DW_TAG_template_type_param)
134d01f1 13470 {
90aeadfc 13471 /* Do nothing. */
134d01f1 13472 }
90aeadfc
DC
13473 else
13474 process_die (child_die, cu);
134d01f1 13475
90aeadfc 13476 child_die = sibling_die (child_die);
134d01f1
DJ
13477 }
13478
fa4028e9
JB
13479 /* Do not consider external references. According to the DWARF standard,
13480 these DIEs are identified by the fact that they have no byte_size
13481 attribute, and a declaration attribute. */
13482 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13483 || !die_is_declaration (die, cu))
c767944b 13484 new_symbol (die, type, cu);
134d01f1
DJ
13485}
13486
55426c9d
JB
13487/* Assuming DIE is an enumeration type, and TYPE is its associated type,
13488 update TYPE using some information only available in DIE's children. */
13489
13490static void
13491update_enumeration_type_from_children (struct die_info *die,
13492 struct type *type,
13493 struct dwarf2_cu *cu)
13494{
13495 struct obstack obstack;
60f7655a 13496 struct die_info *child_die;
55426c9d
JB
13497 int unsigned_enum = 1;
13498 int flag_enum = 1;
13499 ULONGEST mask = 0;
13500 struct cleanup *old_chain;
13501
13502 obstack_init (&obstack);
13503 old_chain = make_cleanup_obstack_free (&obstack);
13504
60f7655a
DE
13505 for (child_die = die->child;
13506 child_die != NULL && child_die->tag;
13507 child_die = sibling_die (child_die))
55426c9d
JB
13508 {
13509 struct attribute *attr;
13510 LONGEST value;
13511 const gdb_byte *bytes;
13512 struct dwarf2_locexpr_baton *baton;
13513 const char *name;
60f7655a 13514
55426c9d
JB
13515 if (child_die->tag != DW_TAG_enumerator)
13516 continue;
13517
13518 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13519 if (attr == NULL)
13520 continue;
13521
13522 name = dwarf2_name (child_die, cu);
13523 if (name == NULL)
13524 name = "<anonymous enumerator>";
13525
13526 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13527 &value, &bytes, &baton);
13528 if (value < 0)
13529 {
13530 unsigned_enum = 0;
13531 flag_enum = 0;
13532 }
13533 else if ((mask & value) != 0)
13534 flag_enum = 0;
13535 else
13536 mask |= value;
13537
13538 /* If we already know that the enum type is neither unsigned, nor
13539 a flag type, no need to look at the rest of the enumerates. */
13540 if (!unsigned_enum && !flag_enum)
13541 break;
55426c9d
JB
13542 }
13543
13544 if (unsigned_enum)
13545 TYPE_UNSIGNED (type) = 1;
13546 if (flag_enum)
13547 TYPE_FLAG_ENUM (type) = 1;
13548
13549 do_cleanups (old_chain);
13550}
13551
134d01f1
DJ
13552/* Given a DW_AT_enumeration_type die, set its type. We do not
13553 complete the type's fields yet, or create any symbols. */
c906108c 13554
f792889a 13555static struct type *
134d01f1 13556read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13557{
e7c27a73 13558 struct objfile *objfile = cu->objfile;
c906108c 13559 struct type *type;
c906108c 13560 struct attribute *attr;
0114d602 13561 const char *name;
134d01f1 13562
348e048f
DE
13563 /* If the definition of this type lives in .debug_types, read that type.
13564 Don't follow DW_AT_specification though, that will take us back up
13565 the chain and we want to go down. */
45e58e77 13566 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13567 if (attr)
13568 {
ac9ec31b 13569 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13570
ac9ec31b 13571 /* The type's CU may not be the same as CU.
02142a6c 13572 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13573 return set_die_type (die, type, cu);
13574 }
13575
c906108c
SS
13576 type = alloc_type (objfile);
13577
13578 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 13579 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 13580 if (name != NULL)
7d455152 13581 TYPE_TAG_NAME (type) = name;
c906108c 13582
0626fc76
TT
13583 attr = dwarf2_attr (die, DW_AT_type, cu);
13584 if (attr != NULL)
13585 {
13586 struct type *underlying_type = die_type (die, cu);
13587
13588 TYPE_TARGET_TYPE (type) = underlying_type;
13589 }
13590
e142c38c 13591 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13592 if (attr)
13593 {
13594 TYPE_LENGTH (type) = DW_UNSND (attr);
13595 }
13596 else
13597 {
13598 TYPE_LENGTH (type) = 0;
13599 }
13600
137033e9
JB
13601 /* The enumeration DIE can be incomplete. In Ada, any type can be
13602 declared as private in the package spec, and then defined only
13603 inside the package body. Such types are known as Taft Amendment
13604 Types. When another package uses such a type, an incomplete DIE
13605 may be generated by the compiler. */
02eb380e 13606 if (die_is_declaration (die, cu))
876cecd0 13607 TYPE_STUB (type) = 1;
02eb380e 13608
0626fc76
TT
13609 /* Finish the creation of this type by using the enum's children.
13610 We must call this even when the underlying type has been provided
13611 so that we can determine if we're looking at a "flag" enum. */
55426c9d
JB
13612 update_enumeration_type_from_children (die, type, cu);
13613
0626fc76
TT
13614 /* If this type has an underlying type that is not a stub, then we
13615 may use its attributes. We always use the "unsigned" attribute
13616 in this situation, because ordinarily we guess whether the type
13617 is unsigned -- but the guess can be wrong and the underlying type
13618 can tell us the reality. However, we defer to a local size
13619 attribute if one exists, because this lets the compiler override
13620 the underlying type if needed. */
13621 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13622 {
13623 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13624 if (TYPE_LENGTH (type) == 0)
13625 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13626 }
13627
3d567982
TT
13628 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13629
f792889a 13630 return set_die_type (die, type, cu);
134d01f1
DJ
13631}
13632
13633/* Given a pointer to a die which begins an enumeration, process all
13634 the dies that define the members of the enumeration, and create the
13635 symbol for the enumeration type.
13636
13637 NOTE: We reverse the order of the element list. */
13638
13639static void
13640process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13641{
f792889a 13642 struct type *this_type;
134d01f1 13643
f792889a
DJ
13644 this_type = get_die_type (die, cu);
13645 if (this_type == NULL)
13646 this_type = read_enumeration_type (die, cu);
9dc481d3 13647
639d11d3 13648 if (die->child != NULL)
c906108c 13649 {
9dc481d3
DE
13650 struct die_info *child_die;
13651 struct symbol *sym;
13652 struct field *fields = NULL;
13653 int num_fields = 0;
15d034d0 13654 const char *name;
9dc481d3 13655
639d11d3 13656 child_die = die->child;
c906108c
SS
13657 while (child_die && child_die->tag)
13658 {
13659 if (child_die->tag != DW_TAG_enumerator)
13660 {
e7c27a73 13661 process_die (child_die, cu);
c906108c
SS
13662 }
13663 else
13664 {
39cbfefa
DJ
13665 name = dwarf2_name (child_die, cu);
13666 if (name)
c906108c 13667 {
f792889a 13668 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
13669
13670 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13671 {
13672 fields = (struct field *)
13673 xrealloc (fields,
13674 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 13675 * sizeof (struct field));
c906108c
SS
13676 }
13677
3567439c 13678 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 13679 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 13680 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
13681 FIELD_BITSIZE (fields[num_fields]) = 0;
13682
13683 num_fields++;
13684 }
13685 }
13686
13687 child_die = sibling_die (child_die);
13688 }
13689
13690 if (num_fields)
13691 {
f792889a
DJ
13692 TYPE_NFIELDS (this_type) = num_fields;
13693 TYPE_FIELDS (this_type) = (struct field *)
13694 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13695 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 13696 sizeof (struct field) * num_fields);
b8c9b27d 13697 xfree (fields);
c906108c 13698 }
c906108c 13699 }
134d01f1 13700
6c83ed52
TT
13701 /* If we are reading an enum from a .debug_types unit, and the enum
13702 is a declaration, and the enum is not the signatured type in the
13703 unit, then we do not want to add a symbol for it. Adding a
13704 symbol would in some cases obscure the true definition of the
13705 enum, giving users an incomplete type when the definition is
13706 actually available. Note that we do not want to do this for all
13707 enums which are just declarations, because C++0x allows forward
13708 enum declarations. */
3019eac3 13709 if (cu->per_cu->is_debug_types
6c83ed52
TT
13710 && die_is_declaration (die, cu))
13711 {
52dc124a 13712 struct signatured_type *sig_type;
6c83ed52 13713
c0f78cd4 13714 sig_type = (struct signatured_type *) cu->per_cu;
3019eac3
DE
13715 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13716 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
6c83ed52
TT
13717 return;
13718 }
13719
f792889a 13720 new_symbol (die, this_type, cu);
c906108c
SS
13721}
13722
13723/* Extract all information from a DW_TAG_array_type DIE and put it in
13724 the DIE's type field. For now, this only handles one dimensional
13725 arrays. */
13726
f792889a 13727static struct type *
e7c27a73 13728read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13729{
e7c27a73 13730 struct objfile *objfile = cu->objfile;
c906108c 13731 struct die_info *child_die;
7e314c57 13732 struct type *type;
c906108c
SS
13733 struct type *element_type, *range_type, *index_type;
13734 struct type **range_types = NULL;
13735 struct attribute *attr;
13736 int ndim = 0;
13737 struct cleanup *back_to;
15d034d0 13738 const char *name;
dc53a7ad 13739 unsigned int bit_stride = 0;
c906108c 13740
e7c27a73 13741 element_type = die_type (die, cu);
c906108c 13742
7e314c57
JK
13743 /* The die_type call above may have already set the type for this DIE. */
13744 type = get_die_type (die, cu);
13745 if (type)
13746 return type;
13747
dc53a7ad
JB
13748 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13749 if (attr != NULL)
13750 bit_stride = DW_UNSND (attr) * 8;
13751
13752 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13753 if (attr != NULL)
13754 bit_stride = DW_UNSND (attr);
13755
c906108c
SS
13756 /* Irix 6.2 native cc creates array types without children for
13757 arrays with unspecified length. */
639d11d3 13758 if (die->child == NULL)
c906108c 13759 {
46bf5051 13760 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 13761 range_type = create_static_range_type (NULL, index_type, 0, -1);
dc53a7ad
JB
13762 type = create_array_type_with_stride (NULL, element_type, range_type,
13763 bit_stride);
f792889a 13764 return set_die_type (die, type, cu);
c906108c
SS
13765 }
13766
13767 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 13768 child_die = die->child;
c906108c
SS
13769 while (child_die && child_die->tag)
13770 {
13771 if (child_die->tag == DW_TAG_subrange_type)
13772 {
f792889a 13773 struct type *child_type = read_type_die (child_die, cu);
9a619af0 13774
f792889a 13775 if (child_type != NULL)
a02abb62 13776 {
0963b4bd
MS
13777 /* The range type was succesfully read. Save it for the
13778 array type creation. */
a02abb62
JB
13779 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13780 {
13781 range_types = (struct type **)
13782 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13783 * sizeof (struct type *));
13784 if (ndim == 0)
13785 make_cleanup (free_current_contents, &range_types);
13786 }
f792889a 13787 range_types[ndim++] = child_type;
a02abb62 13788 }
c906108c
SS
13789 }
13790 child_die = sibling_die (child_die);
13791 }
13792
13793 /* Dwarf2 dimensions are output from left to right, create the
13794 necessary array types in backwards order. */
7ca2d3a3 13795
c906108c 13796 type = element_type;
7ca2d3a3
DL
13797
13798 if (read_array_order (die, cu) == DW_ORD_col_major)
13799 {
13800 int i = 0;
9a619af0 13801
7ca2d3a3 13802 while (i < ndim)
dc53a7ad
JB
13803 type = create_array_type_with_stride (NULL, type, range_types[i++],
13804 bit_stride);
7ca2d3a3
DL
13805 }
13806 else
13807 {
13808 while (ndim-- > 0)
dc53a7ad
JB
13809 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13810 bit_stride);
7ca2d3a3 13811 }
c906108c 13812
f5f8a009
EZ
13813 /* Understand Dwarf2 support for vector types (like they occur on
13814 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13815 array type. This is not part of the Dwarf2/3 standard yet, but a
13816 custom vendor extension. The main difference between a regular
13817 array and the vector variant is that vectors are passed by value
13818 to functions. */
e142c38c 13819 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 13820 if (attr)
ea37ba09 13821 make_vector_type (type);
f5f8a009 13822
dbc98a8b
KW
13823 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13824 implementation may choose to implement triple vectors using this
13825 attribute. */
13826 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13827 if (attr)
13828 {
13829 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13830 TYPE_LENGTH (type) = DW_UNSND (attr);
13831 else
3e43a32a
MS
13832 complaint (&symfile_complaints,
13833 _("DW_AT_byte_size for array type smaller "
13834 "than the total size of elements"));
dbc98a8b
KW
13835 }
13836
39cbfefa
DJ
13837 name = dwarf2_name (die, cu);
13838 if (name)
13839 TYPE_NAME (type) = name;
6e70227d 13840
0963b4bd 13841 /* Install the type in the die. */
7e314c57
JK
13842 set_die_type (die, type, cu);
13843
13844 /* set_die_type should be already done. */
b4ba55a1
JB
13845 set_descriptive_type (type, die, cu);
13846
c906108c
SS
13847 do_cleanups (back_to);
13848
7e314c57 13849 return type;
c906108c
SS
13850}
13851
7ca2d3a3 13852static enum dwarf_array_dim_ordering
6e70227d 13853read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
13854{
13855 struct attribute *attr;
13856
13857 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13858
aead7601
SM
13859 if (attr)
13860 return (enum dwarf_array_dim_ordering) DW_SND (attr);
7ca2d3a3 13861
0963b4bd
MS
13862 /* GNU F77 is a special case, as at 08/2004 array type info is the
13863 opposite order to the dwarf2 specification, but data is still
13864 laid out as per normal fortran.
7ca2d3a3 13865
0963b4bd
MS
13866 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13867 version checking. */
7ca2d3a3 13868
905e0470
PM
13869 if (cu->language == language_fortran
13870 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
13871 {
13872 return DW_ORD_row_major;
13873 }
13874
6e70227d 13875 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
13876 {
13877 case array_column_major:
13878 return DW_ORD_col_major;
13879 case array_row_major:
13880 default:
13881 return DW_ORD_row_major;
13882 };
13883}
13884
72019c9c 13885/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 13886 the DIE's type field. */
72019c9c 13887
f792889a 13888static struct type *
72019c9c
GM
13889read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13890{
7e314c57
JK
13891 struct type *domain_type, *set_type;
13892 struct attribute *attr;
f792889a 13893
7e314c57
JK
13894 domain_type = die_type (die, cu);
13895
13896 /* The die_type call above may have already set the type for this DIE. */
13897 set_type = get_die_type (die, cu);
13898 if (set_type)
13899 return set_type;
13900
13901 set_type = create_set_type (NULL, domain_type);
13902
13903 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
13904 if (attr)
13905 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 13906
f792889a 13907 return set_die_type (die, set_type, cu);
72019c9c 13908}
7ca2d3a3 13909
0971de02
TT
13910/* A helper for read_common_block that creates a locexpr baton.
13911 SYM is the symbol which we are marking as computed.
13912 COMMON_DIE is the DIE for the common block.
13913 COMMON_LOC is the location expression attribute for the common
13914 block itself.
13915 MEMBER_LOC is the location expression attribute for the particular
13916 member of the common block that we are processing.
13917 CU is the CU from which the above come. */
13918
13919static void
13920mark_common_block_symbol_computed (struct symbol *sym,
13921 struct die_info *common_die,
13922 struct attribute *common_loc,
13923 struct attribute *member_loc,
13924 struct dwarf2_cu *cu)
13925{
13926 struct objfile *objfile = dwarf2_per_objfile->objfile;
13927 struct dwarf2_locexpr_baton *baton;
13928 gdb_byte *ptr;
13929 unsigned int cu_off;
13930 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13931 LONGEST offset = 0;
13932
13933 gdb_assert (common_loc && member_loc);
13934 gdb_assert (attr_form_is_block (common_loc));
13935 gdb_assert (attr_form_is_block (member_loc)
13936 || attr_form_is_constant (member_loc));
13937
8d749320 13938 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
0971de02
TT
13939 baton->per_cu = cu->per_cu;
13940 gdb_assert (baton->per_cu);
13941
13942 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13943
13944 if (attr_form_is_constant (member_loc))
13945 {
13946 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13947 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13948 }
13949 else
13950 baton->size += DW_BLOCK (member_loc)->size;
13951
224c3ddb 13952 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
0971de02
TT
13953 baton->data = ptr;
13954
13955 *ptr++ = DW_OP_call4;
13956 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13957 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13958 ptr += 4;
13959
13960 if (attr_form_is_constant (member_loc))
13961 {
13962 *ptr++ = DW_OP_addr;
13963 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13964 ptr += cu->header.addr_size;
13965 }
13966 else
13967 {
13968 /* We have to copy the data here, because DW_OP_call4 will only
13969 use a DW_AT_location attribute. */
13970 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13971 ptr += DW_BLOCK (member_loc)->size;
13972 }
13973
13974 *ptr++ = DW_OP_plus;
13975 gdb_assert (ptr - baton->data == baton->size);
13976
0971de02 13977 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 13978 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
13979}
13980
4357ac6c
TT
13981/* Create appropriate locally-scoped variables for all the
13982 DW_TAG_common_block entries. Also create a struct common_block
13983 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13984 is used to sepate the common blocks name namespace from regular
13985 variable names. */
c906108c
SS
13986
13987static void
e7c27a73 13988read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13989{
0971de02
TT
13990 struct attribute *attr;
13991
13992 attr = dwarf2_attr (die, DW_AT_location, cu);
13993 if (attr)
13994 {
13995 /* Support the .debug_loc offsets. */
13996 if (attr_form_is_block (attr))
13997 {
13998 /* Ok. */
13999 }
14000 else if (attr_form_is_section_offset (attr))
14001 {
14002 dwarf2_complex_location_expr_complaint ();
14003 attr = NULL;
14004 }
14005 else
14006 {
14007 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14008 "common block member");
14009 attr = NULL;
14010 }
14011 }
14012
639d11d3 14013 if (die->child != NULL)
c906108c 14014 {
4357ac6c
TT
14015 struct objfile *objfile = cu->objfile;
14016 struct die_info *child_die;
14017 size_t n_entries = 0, size;
14018 struct common_block *common_block;
14019 struct symbol *sym;
74ac6d43 14020
4357ac6c
TT
14021 for (child_die = die->child;
14022 child_die && child_die->tag;
14023 child_die = sibling_die (child_die))
14024 ++n_entries;
14025
14026 size = (sizeof (struct common_block)
14027 + (n_entries - 1) * sizeof (struct symbol *));
224c3ddb
SM
14028 common_block
14029 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14030 size);
4357ac6c
TT
14031 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14032 common_block->n_entries = 0;
14033
14034 for (child_die = die->child;
14035 child_die && child_die->tag;
14036 child_die = sibling_die (child_die))
14037 {
14038 /* Create the symbol in the DW_TAG_common_block block in the current
14039 symbol scope. */
e7c27a73 14040 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
14041 if (sym != NULL)
14042 {
14043 struct attribute *member_loc;
14044
14045 common_block->contents[common_block->n_entries++] = sym;
14046
14047 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14048 cu);
14049 if (member_loc)
14050 {
14051 /* GDB has handled this for a long time, but it is
14052 not specified by DWARF. It seems to have been
14053 emitted by gfortran at least as recently as:
14054 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14055 complaint (&symfile_complaints,
14056 _("Variable in common block has "
14057 "DW_AT_data_member_location "
14058 "- DIE at 0x%x [in module %s]"),
4262abfb
JK
14059 child_die->offset.sect_off,
14060 objfile_name (cu->objfile));
0971de02
TT
14061
14062 if (attr_form_is_section_offset (member_loc))
14063 dwarf2_complex_location_expr_complaint ();
14064 else if (attr_form_is_constant (member_loc)
14065 || attr_form_is_block (member_loc))
14066 {
14067 if (attr)
14068 mark_common_block_symbol_computed (sym, die, attr,
14069 member_loc, cu);
14070 }
14071 else
14072 dwarf2_complex_location_expr_complaint ();
14073 }
14074 }
c906108c 14075 }
4357ac6c
TT
14076
14077 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14078 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
14079 }
14080}
14081
0114d602 14082/* Create a type for a C++ namespace. */
d9fa45fe 14083
0114d602
DJ
14084static struct type *
14085read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 14086{
e7c27a73 14087 struct objfile *objfile = cu->objfile;
0114d602 14088 const char *previous_prefix, *name;
9219021c 14089 int is_anonymous;
0114d602
DJ
14090 struct type *type;
14091
14092 /* For extensions, reuse the type of the original namespace. */
14093 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14094 {
14095 struct die_info *ext_die;
14096 struct dwarf2_cu *ext_cu = cu;
9a619af0 14097
0114d602
DJ
14098 ext_die = dwarf2_extension (die, &ext_cu);
14099 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
14100
14101 /* EXT_CU may not be the same as CU.
02142a6c 14102 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
14103 return set_die_type (die, type, cu);
14104 }
9219021c 14105
e142c38c 14106 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
14107
14108 /* Now build the name of the current namespace. */
14109
0114d602
DJ
14110 previous_prefix = determine_prefix (die, cu);
14111 if (previous_prefix[0] != '\0')
14112 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 14113 previous_prefix, name, 0, cu);
0114d602
DJ
14114
14115 /* Create the type. */
19f392bc 14116 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
0114d602
DJ
14117 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14118
60531b24 14119 return set_die_type (die, type, cu);
0114d602
DJ
14120}
14121
22cee43f 14122/* Read a namespace scope. */
0114d602
DJ
14123
14124static void
14125read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14126{
14127 struct objfile *objfile = cu->objfile;
0114d602 14128 int is_anonymous;
9219021c 14129
5c4e30ca
DC
14130 /* Add a symbol associated to this if we haven't seen the namespace
14131 before. Also, add a using directive if it's an anonymous
14132 namespace. */
9219021c 14133
f2f0e013 14134 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
14135 {
14136 struct type *type;
14137
0114d602 14138 type = read_type_die (die, cu);
e7c27a73 14139 new_symbol (die, type, cu);
5c4e30ca 14140
e8e80198 14141 namespace_name (die, &is_anonymous, cu);
5c4e30ca 14142 if (is_anonymous)
0114d602
DJ
14143 {
14144 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 14145
22cee43f
PMR
14146 add_using_directive (using_directives (cu->language),
14147 previous_prefix, TYPE_NAME (type), NULL,
14148 NULL, NULL, 0, &objfile->objfile_obstack);
0114d602 14149 }
5c4e30ca 14150 }
9219021c 14151
639d11d3 14152 if (die->child != NULL)
d9fa45fe 14153 {
639d11d3 14154 struct die_info *child_die = die->child;
6e70227d 14155
d9fa45fe
DC
14156 while (child_die && child_die->tag)
14157 {
e7c27a73 14158 process_die (child_die, cu);
d9fa45fe
DC
14159 child_die = sibling_die (child_die);
14160 }
14161 }
38d518c9
EZ
14162}
14163
f55ee35c
JK
14164/* Read a Fortran module as type. This DIE can be only a declaration used for
14165 imported module. Still we need that type as local Fortran "use ... only"
14166 declaration imports depend on the created type in determine_prefix. */
14167
14168static struct type *
14169read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14170{
14171 struct objfile *objfile = cu->objfile;
15d034d0 14172 const char *module_name;
f55ee35c
JK
14173 struct type *type;
14174
14175 module_name = dwarf2_name (die, cu);
14176 if (!module_name)
3e43a32a
MS
14177 complaint (&symfile_complaints,
14178 _("DW_TAG_module has no name, offset 0x%x"),
b64f50a1 14179 die->offset.sect_off);
19f392bc 14180 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
f55ee35c
JK
14181
14182 /* determine_prefix uses TYPE_TAG_NAME. */
14183 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14184
14185 return set_die_type (die, type, cu);
14186}
14187
5d7cb8df
JK
14188/* Read a Fortran module. */
14189
14190static void
14191read_module (struct die_info *die, struct dwarf2_cu *cu)
14192{
14193 struct die_info *child_die = die->child;
530e8392
KB
14194 struct type *type;
14195
14196 type = read_type_die (die, cu);
14197 new_symbol (die, type, cu);
5d7cb8df 14198
5d7cb8df
JK
14199 while (child_die && child_die->tag)
14200 {
14201 process_die (child_die, cu);
14202 child_die = sibling_die (child_die);
14203 }
14204}
14205
38d518c9
EZ
14206/* Return the name of the namespace represented by DIE. Set
14207 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14208 namespace. */
14209
14210static const char *
e142c38c 14211namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
14212{
14213 struct die_info *current_die;
14214 const char *name = NULL;
14215
14216 /* Loop through the extensions until we find a name. */
14217
14218 for (current_die = die;
14219 current_die != NULL;
f2f0e013 14220 current_die = dwarf2_extension (die, &cu))
38d518c9 14221 {
96553a0c
DE
14222 /* We don't use dwarf2_name here so that we can detect the absence
14223 of a name -> anonymous namespace. */
7d45c7c3 14224 name = dwarf2_string_attr (die, DW_AT_name, cu);
96553a0c 14225
38d518c9
EZ
14226 if (name != NULL)
14227 break;
14228 }
14229
14230 /* Is it an anonymous namespace? */
14231
14232 *is_anonymous = (name == NULL);
14233 if (*is_anonymous)
2b1dbab0 14234 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
14235
14236 return name;
d9fa45fe
DC
14237}
14238
c906108c
SS
14239/* Extract all information from a DW_TAG_pointer_type DIE and add to
14240 the user defined type vector. */
14241
f792889a 14242static struct type *
e7c27a73 14243read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14244{
5e2b427d 14245 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 14246 struct comp_unit_head *cu_header = &cu->header;
c906108c 14247 struct type *type;
8b2dbe47
KB
14248 struct attribute *attr_byte_size;
14249 struct attribute *attr_address_class;
14250 int byte_size, addr_class;
7e314c57
JK
14251 struct type *target_type;
14252
14253 target_type = die_type (die, cu);
c906108c 14254
7e314c57
JK
14255 /* The die_type call above may have already set the type for this DIE. */
14256 type = get_die_type (die, cu);
14257 if (type)
14258 return type;
14259
14260 type = lookup_pointer_type (target_type);
8b2dbe47 14261
e142c38c 14262 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
14263 if (attr_byte_size)
14264 byte_size = DW_UNSND (attr_byte_size);
c906108c 14265 else
8b2dbe47
KB
14266 byte_size = cu_header->addr_size;
14267
e142c38c 14268 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
14269 if (attr_address_class)
14270 addr_class = DW_UNSND (attr_address_class);
14271 else
14272 addr_class = DW_ADDR_none;
14273
14274 /* If the pointer size or address class is different than the
14275 default, create a type variant marked as such and set the
14276 length accordingly. */
14277 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 14278 {
5e2b427d 14279 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
14280 {
14281 int type_flags;
14282
849957d9 14283 type_flags = gdbarch_address_class_type_flags
5e2b427d 14284 (gdbarch, byte_size, addr_class);
876cecd0
TT
14285 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14286 == 0);
8b2dbe47
KB
14287 type = make_type_with_address_space (type, type_flags);
14288 }
14289 else if (TYPE_LENGTH (type) != byte_size)
14290 {
3e43a32a
MS
14291 complaint (&symfile_complaints,
14292 _("invalid pointer size %d"), byte_size);
8b2dbe47 14293 }
6e70227d 14294 else
9a619af0
MS
14295 {
14296 /* Should we also complain about unhandled address classes? */
14297 }
c906108c 14298 }
8b2dbe47
KB
14299
14300 TYPE_LENGTH (type) = byte_size;
f792889a 14301 return set_die_type (die, type, cu);
c906108c
SS
14302}
14303
14304/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14305 the user defined type vector. */
14306
f792889a 14307static struct type *
e7c27a73 14308read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
14309{
14310 struct type *type;
14311 struct type *to_type;
14312 struct type *domain;
14313
e7c27a73
DJ
14314 to_type = die_type (die, cu);
14315 domain = die_containing_type (die, cu);
0d5de010 14316
7e314c57
JK
14317 /* The calls above may have already set the type for this DIE. */
14318 type = get_die_type (die, cu);
14319 if (type)
14320 return type;
14321
0d5de010
DJ
14322 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14323 type = lookup_methodptr_type (to_type);
7078baeb
TT
14324 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14325 {
14326 struct type *new_type = alloc_type (cu->objfile);
14327
14328 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14329 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14330 TYPE_VARARGS (to_type));
14331 type = lookup_methodptr_type (new_type);
14332 }
0d5de010
DJ
14333 else
14334 type = lookup_memberptr_type (to_type, domain);
c906108c 14335
f792889a 14336 return set_die_type (die, type, cu);
c906108c
SS
14337}
14338
14339/* Extract all information from a DW_TAG_reference_type DIE and add to
14340 the user defined type vector. */
14341
f792889a 14342static struct type *
e7c27a73 14343read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14344{
e7c27a73 14345 struct comp_unit_head *cu_header = &cu->header;
7e314c57 14346 struct type *type, *target_type;
c906108c
SS
14347 struct attribute *attr;
14348
7e314c57
JK
14349 target_type = die_type (die, cu);
14350
14351 /* The die_type call above may have already set the type for this DIE. */
14352 type = get_die_type (die, cu);
14353 if (type)
14354 return type;
14355
14356 type = lookup_reference_type (target_type);
e142c38c 14357 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14358 if (attr)
14359 {
14360 TYPE_LENGTH (type) = DW_UNSND (attr);
14361 }
14362 else
14363 {
107d2387 14364 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 14365 }
f792889a 14366 return set_die_type (die, type, cu);
c906108c
SS
14367}
14368
cf363f18
MW
14369/* Add the given cv-qualifiers to the element type of the array. GCC
14370 outputs DWARF type qualifiers that apply to an array, not the
14371 element type. But GDB relies on the array element type to carry
14372 the cv-qualifiers. This mimics section 6.7.3 of the C99
14373 specification. */
14374
14375static struct type *
14376add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14377 struct type *base_type, int cnst, int voltl)
14378{
14379 struct type *el_type, *inner_array;
14380
14381 base_type = copy_type (base_type);
14382 inner_array = base_type;
14383
14384 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14385 {
14386 TYPE_TARGET_TYPE (inner_array) =
14387 copy_type (TYPE_TARGET_TYPE (inner_array));
14388 inner_array = TYPE_TARGET_TYPE (inner_array);
14389 }
14390
14391 el_type = TYPE_TARGET_TYPE (inner_array);
14392 cnst |= TYPE_CONST (el_type);
14393 voltl |= TYPE_VOLATILE (el_type);
14394 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14395
14396 return set_die_type (die, base_type, cu);
14397}
14398
f792889a 14399static struct type *
e7c27a73 14400read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14401{
f792889a 14402 struct type *base_type, *cv_type;
c906108c 14403
e7c27a73 14404 base_type = die_type (die, cu);
7e314c57
JK
14405
14406 /* The die_type call above may have already set the type for this DIE. */
14407 cv_type = get_die_type (die, cu);
14408 if (cv_type)
14409 return cv_type;
14410
2f608a3a
KW
14411 /* In case the const qualifier is applied to an array type, the element type
14412 is so qualified, not the array type (section 6.7.3 of C99). */
14413 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
cf363f18 14414 return add_array_cv_type (die, cu, base_type, 1, 0);
2f608a3a 14415
f792889a
DJ
14416 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14417 return set_die_type (die, cv_type, cu);
c906108c
SS
14418}
14419
f792889a 14420static struct type *
e7c27a73 14421read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14422{
f792889a 14423 struct type *base_type, *cv_type;
c906108c 14424
e7c27a73 14425 base_type = die_type (die, cu);
7e314c57
JK
14426
14427 /* The die_type call above may have already set the type for this DIE. */
14428 cv_type = get_die_type (die, cu);
14429 if (cv_type)
14430 return cv_type;
14431
cf363f18
MW
14432 /* In case the volatile qualifier is applied to an array type, the
14433 element type is so qualified, not the array type (section 6.7.3
14434 of C99). */
14435 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14436 return add_array_cv_type (die, cu, base_type, 0, 1);
14437
f792889a
DJ
14438 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14439 return set_die_type (die, cv_type, cu);
c906108c
SS
14440}
14441
06d66ee9
TT
14442/* Handle DW_TAG_restrict_type. */
14443
14444static struct type *
14445read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14446{
14447 struct type *base_type, *cv_type;
14448
14449 base_type = die_type (die, cu);
14450
14451 /* The die_type call above may have already set the type for this DIE. */
14452 cv_type = get_die_type (die, cu);
14453 if (cv_type)
14454 return cv_type;
14455
14456 cv_type = make_restrict_type (base_type);
14457 return set_die_type (die, cv_type, cu);
14458}
14459
a2c2acaf
MW
14460/* Handle DW_TAG_atomic_type. */
14461
14462static struct type *
14463read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14464{
14465 struct type *base_type, *cv_type;
14466
14467 base_type = die_type (die, cu);
14468
14469 /* The die_type call above may have already set the type for this DIE. */
14470 cv_type = get_die_type (die, cu);
14471 if (cv_type)
14472 return cv_type;
14473
14474 cv_type = make_atomic_type (base_type);
14475 return set_die_type (die, cv_type, cu);
14476}
14477
c906108c
SS
14478/* Extract all information from a DW_TAG_string_type DIE and add to
14479 the user defined type vector. It isn't really a user defined type,
14480 but it behaves like one, with other DIE's using an AT_user_def_type
14481 attribute to reference it. */
14482
f792889a 14483static struct type *
e7c27a73 14484read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14485{
e7c27a73 14486 struct objfile *objfile = cu->objfile;
3b7538c0 14487 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
14488 struct type *type, *range_type, *index_type, *char_type;
14489 struct attribute *attr;
14490 unsigned int length;
14491
e142c38c 14492 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
14493 if (attr)
14494 {
14495 length = DW_UNSND (attr);
14496 }
14497 else
14498 {
0963b4bd 14499 /* Check for the DW_AT_byte_size attribute. */
e142c38c 14500 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
14501 if (attr)
14502 {
14503 length = DW_UNSND (attr);
14504 }
14505 else
14506 {
14507 length = 1;
14508 }
c906108c 14509 }
6ccb9162 14510
46bf5051 14511 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 14512 range_type = create_static_range_type (NULL, index_type, 1, length);
3b7538c0
UW
14513 char_type = language_string_char_type (cu->language_defn, gdbarch);
14514 type = create_string_type (NULL, char_type, range_type);
6ccb9162 14515
f792889a 14516 return set_die_type (die, type, cu);
c906108c
SS
14517}
14518
4d804846
JB
14519/* Assuming that DIE corresponds to a function, returns nonzero
14520 if the function is prototyped. */
14521
14522static int
14523prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14524{
14525 struct attribute *attr;
14526
14527 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14528 if (attr && (DW_UNSND (attr) != 0))
14529 return 1;
14530
14531 /* The DWARF standard implies that the DW_AT_prototyped attribute
14532 is only meaninful for C, but the concept also extends to other
14533 languages that allow unprototyped functions (Eg: Objective C).
14534 For all other languages, assume that functions are always
14535 prototyped. */
14536 if (cu->language != language_c
14537 && cu->language != language_objc
14538 && cu->language != language_opencl)
14539 return 1;
14540
14541 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14542 prototyped and unprototyped functions; default to prototyped,
14543 since that is more common in modern code (and RealView warns
14544 about unprototyped functions). */
14545 if (producer_is_realview (cu->producer))
14546 return 1;
14547
14548 return 0;
14549}
14550
c906108c
SS
14551/* Handle DIES due to C code like:
14552
14553 struct foo
c5aa993b
JM
14554 {
14555 int (*funcp)(int a, long l);
14556 int b;
14557 };
c906108c 14558
0963b4bd 14559 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 14560
f792889a 14561static struct type *
e7c27a73 14562read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14563{
bb5ed363 14564 struct objfile *objfile = cu->objfile;
0963b4bd
MS
14565 struct type *type; /* Type that this function returns. */
14566 struct type *ftype; /* Function that returns above type. */
c906108c
SS
14567 struct attribute *attr;
14568
e7c27a73 14569 type = die_type (die, cu);
7e314c57
JK
14570
14571 /* The die_type call above may have already set the type for this DIE. */
14572 ftype = get_die_type (die, cu);
14573 if (ftype)
14574 return ftype;
14575
0c8b41f1 14576 ftype = lookup_function_type (type);
c906108c 14577
4d804846 14578 if (prototyped_function_p (die, cu))
a6c727b2 14579 TYPE_PROTOTYPED (ftype) = 1;
c906108c 14580
c055b101
CV
14581 /* Store the calling convention in the type if it's available in
14582 the subroutine die. Otherwise set the calling convention to
14583 the default value DW_CC_normal. */
14584 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
14585 if (attr)
14586 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14587 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14588 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14589 else
14590 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2 14591
743649fd
MW
14592 /* Record whether the function returns normally to its caller or not
14593 if the DWARF producer set that information. */
14594 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14595 if (attr && (DW_UNSND (attr) != 0))
14596 TYPE_NO_RETURN (ftype) = 1;
14597
76c10ea2
GM
14598 /* We need to add the subroutine type to the die immediately so
14599 we don't infinitely recurse when dealing with parameters
0963b4bd 14600 declared as the same subroutine type. */
76c10ea2 14601 set_die_type (die, ftype, cu);
6e70227d 14602
639d11d3 14603 if (die->child != NULL)
c906108c 14604 {
bb5ed363 14605 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 14606 struct die_info *child_die;
8072405b 14607 int nparams, iparams;
c906108c
SS
14608
14609 /* Count the number of parameters.
14610 FIXME: GDB currently ignores vararg functions, but knows about
14611 vararg member functions. */
8072405b 14612 nparams = 0;
639d11d3 14613 child_die = die->child;
c906108c
SS
14614 while (child_die && child_die->tag)
14615 {
14616 if (child_die->tag == DW_TAG_formal_parameter)
14617 nparams++;
14618 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 14619 TYPE_VARARGS (ftype) = 1;
c906108c
SS
14620 child_die = sibling_die (child_die);
14621 }
14622
14623 /* Allocate storage for parameters and fill them in. */
14624 TYPE_NFIELDS (ftype) = nparams;
14625 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 14626 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 14627
8072405b
JK
14628 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14629 even if we error out during the parameters reading below. */
14630 for (iparams = 0; iparams < nparams; iparams++)
14631 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14632
14633 iparams = 0;
639d11d3 14634 child_die = die->child;
c906108c
SS
14635 while (child_die && child_die->tag)
14636 {
14637 if (child_die->tag == DW_TAG_formal_parameter)
14638 {
3ce3b1ba
PA
14639 struct type *arg_type;
14640
14641 /* DWARF version 2 has no clean way to discern C++
14642 static and non-static member functions. G++ helps
14643 GDB by marking the first parameter for non-static
14644 member functions (which is the this pointer) as
14645 artificial. We pass this information to
14646 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14647
14648 DWARF version 3 added DW_AT_object_pointer, which GCC
14649 4.5 does not yet generate. */
e142c38c 14650 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
14651 if (attr)
14652 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14653 else
9c37b5ae 14654 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
3ce3b1ba
PA
14655 arg_type = die_type (child_die, cu);
14656
14657 /* RealView does not mark THIS as const, which the testsuite
14658 expects. GCC marks THIS as const in method definitions,
14659 but not in the class specifications (GCC PR 43053). */
14660 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14661 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14662 {
14663 int is_this = 0;
14664 struct dwarf2_cu *arg_cu = cu;
14665 const char *name = dwarf2_name (child_die, cu);
14666
14667 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14668 if (attr)
14669 {
14670 /* If the compiler emits this, use it. */
14671 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14672 is_this = 1;
14673 }
14674 else if (name && strcmp (name, "this") == 0)
14675 /* Function definitions will have the argument names. */
14676 is_this = 1;
14677 else if (name == NULL && iparams == 0)
14678 /* Declarations may not have the names, so like
14679 elsewhere in GDB, assume an artificial first
14680 argument is "this". */
14681 is_this = 1;
14682
14683 if (is_this)
14684 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14685 arg_type, 0);
14686 }
14687
14688 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
14689 iparams++;
14690 }
14691 child_die = sibling_die (child_die);
14692 }
14693 }
14694
76c10ea2 14695 return ftype;
c906108c
SS
14696}
14697
f792889a 14698static struct type *
e7c27a73 14699read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14700{
e7c27a73 14701 struct objfile *objfile = cu->objfile;
0114d602 14702 const char *name = NULL;
3c8e0968 14703 struct type *this_type, *target_type;
c906108c 14704
94af9270 14705 name = dwarf2_full_name (NULL, die, cu);
19f392bc
UW
14706 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
14707 TYPE_TARGET_STUB (this_type) = 1;
f792889a 14708 set_die_type (die, this_type, cu);
3c8e0968
DE
14709 target_type = die_type (die, cu);
14710 if (target_type != this_type)
14711 TYPE_TARGET_TYPE (this_type) = target_type;
14712 else
14713 {
14714 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14715 spec and cause infinite loops in GDB. */
14716 complaint (&symfile_complaints,
14717 _("Self-referential DW_TAG_typedef "
14718 "- DIE at 0x%x [in module %s]"),
4262abfb 14719 die->offset.sect_off, objfile_name (objfile));
3c8e0968
DE
14720 TYPE_TARGET_TYPE (this_type) = NULL;
14721 }
f792889a 14722 return this_type;
c906108c
SS
14723}
14724
9b790ce7
UW
14725/* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
14726 (which may be different from NAME) to the architecture back-end to allow
14727 it to guess the correct format if necessary. */
14728
14729static struct type *
14730dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
14731 const char *name_hint)
14732{
14733 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14734 const struct floatformat **format;
14735 struct type *type;
14736
14737 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
14738 if (format)
14739 type = init_float_type (objfile, bits, name, format);
14740 else
14741 type = init_type (objfile, TYPE_CODE_ERROR, bits / TARGET_CHAR_BIT, name);
14742
14743 return type;
14744}
14745
c906108c
SS
14746/* Find a representation of a given base type and install
14747 it in the TYPE field of the die. */
14748
f792889a 14749static struct type *
e7c27a73 14750read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14751{
e7c27a73 14752 struct objfile *objfile = cu->objfile;
c906108c
SS
14753 struct type *type;
14754 struct attribute *attr;
19f392bc 14755 int encoding = 0, bits = 0;
15d034d0 14756 const char *name;
c906108c 14757
e142c38c 14758 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
14759 if (attr)
14760 {
14761 encoding = DW_UNSND (attr);
14762 }
e142c38c 14763 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14764 if (attr)
14765 {
19f392bc 14766 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
c906108c 14767 }
39cbfefa 14768 name = dwarf2_name (die, cu);
6ccb9162 14769 if (!name)
c906108c 14770 {
6ccb9162
UW
14771 complaint (&symfile_complaints,
14772 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 14773 }
6ccb9162
UW
14774
14775 switch (encoding)
c906108c 14776 {
6ccb9162
UW
14777 case DW_ATE_address:
14778 /* Turn DW_ATE_address into a void * pointer. */
19f392bc
UW
14779 type = init_type (objfile, TYPE_CODE_VOID, 1, NULL);
14780 type = init_pointer_type (objfile, bits, name, type);
6ccb9162
UW
14781 break;
14782 case DW_ATE_boolean:
19f392bc 14783 type = init_boolean_type (objfile, bits, 1, name);
6ccb9162
UW
14784 break;
14785 case DW_ATE_complex_float:
9b790ce7 14786 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
19f392bc 14787 type = init_complex_type (objfile, name, type);
6ccb9162
UW
14788 break;
14789 case DW_ATE_decimal_float:
19f392bc 14790 type = init_decfloat_type (objfile, bits, name);
6ccb9162
UW
14791 break;
14792 case DW_ATE_float:
9b790ce7 14793 type = dwarf2_init_float_type (objfile, bits, name, name);
6ccb9162
UW
14794 break;
14795 case DW_ATE_signed:
19f392bc 14796 type = init_integer_type (objfile, bits, 0, name);
6ccb9162
UW
14797 break;
14798 case DW_ATE_unsigned:
3b2b8fea
TT
14799 if (cu->language == language_fortran
14800 && name
61012eef 14801 && startswith (name, "character("))
19f392bc
UW
14802 type = init_character_type (objfile, bits, 1, name);
14803 else
14804 type = init_integer_type (objfile, bits, 1, name);
6ccb9162
UW
14805 break;
14806 case DW_ATE_signed_char:
6e70227d 14807 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14808 || cu->language == language_pascal
14809 || cu->language == language_fortran)
19f392bc
UW
14810 type = init_character_type (objfile, bits, 0, name);
14811 else
14812 type = init_integer_type (objfile, bits, 0, name);
6ccb9162
UW
14813 break;
14814 case DW_ATE_unsigned_char:
868a0084 14815 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea 14816 || cu->language == language_pascal
c44af4eb
TT
14817 || cu->language == language_fortran
14818 || cu->language == language_rust)
19f392bc
UW
14819 type = init_character_type (objfile, bits, 1, name);
14820 else
14821 type = init_integer_type (objfile, bits, 1, name);
6ccb9162 14822 break;
75079b2b
TT
14823 case DW_ATE_UTF:
14824 /* We just treat this as an integer and then recognize the
14825 type by name elsewhere. */
19f392bc 14826 type = init_integer_type (objfile, bits, 0, name);
75079b2b
TT
14827 break;
14828
6ccb9162
UW
14829 default:
14830 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14831 dwarf_type_encoding_name (encoding));
19f392bc
UW
14832 type = init_type (objfile, TYPE_CODE_ERROR,
14833 bits / TARGET_CHAR_BIT, name);
6ccb9162 14834 break;
c906108c 14835 }
6ccb9162 14836
0114d602 14837 if (name && strcmp (name, "char") == 0)
876cecd0 14838 TYPE_NOSIGN (type) = 1;
0114d602 14839
f792889a 14840 return set_die_type (die, type, cu);
c906108c
SS
14841}
14842
80180f79
SA
14843/* Parse dwarf attribute if it's a block, reference or constant and put the
14844 resulting value of the attribute into struct bound_prop.
14845 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14846
14847static int
14848attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14849 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14850{
14851 struct dwarf2_property_baton *baton;
14852 struct obstack *obstack = &cu->objfile->objfile_obstack;
14853
14854 if (attr == NULL || prop == NULL)
14855 return 0;
14856
14857 if (attr_form_is_block (attr))
14858 {
8d749320 14859 baton = XOBNEW (obstack, struct dwarf2_property_baton);
80180f79
SA
14860 baton->referenced_type = NULL;
14861 baton->locexpr.per_cu = cu->per_cu;
14862 baton->locexpr.size = DW_BLOCK (attr)->size;
14863 baton->locexpr.data = DW_BLOCK (attr)->data;
14864 prop->data.baton = baton;
14865 prop->kind = PROP_LOCEXPR;
14866 gdb_assert (prop->data.baton != NULL);
14867 }
14868 else if (attr_form_is_ref (attr))
14869 {
14870 struct dwarf2_cu *target_cu = cu;
14871 struct die_info *target_die;
14872 struct attribute *target_attr;
14873
14874 target_die = follow_die_ref (die, attr, &target_cu);
14875 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
df25ebbd
JB
14876 if (target_attr == NULL)
14877 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14878 target_cu);
80180f79
SA
14879 if (target_attr == NULL)
14880 return 0;
14881
df25ebbd 14882 switch (target_attr->name)
80180f79 14883 {
df25ebbd
JB
14884 case DW_AT_location:
14885 if (attr_form_is_section_offset (target_attr))
14886 {
8d749320 14887 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
14888 baton->referenced_type = die_type (target_die, target_cu);
14889 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14890 prop->data.baton = baton;
14891 prop->kind = PROP_LOCLIST;
14892 gdb_assert (prop->data.baton != NULL);
14893 }
14894 else if (attr_form_is_block (target_attr))
14895 {
8d749320 14896 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
14897 baton->referenced_type = die_type (target_die, target_cu);
14898 baton->locexpr.per_cu = cu->per_cu;
14899 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14900 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14901 prop->data.baton = baton;
14902 prop->kind = PROP_LOCEXPR;
14903 gdb_assert (prop->data.baton != NULL);
14904 }
14905 else
14906 {
14907 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14908 "dynamic property");
14909 return 0;
14910 }
14911 break;
14912 case DW_AT_data_member_location:
14913 {
14914 LONGEST offset;
14915
14916 if (!handle_data_member_location (target_die, target_cu,
14917 &offset))
14918 return 0;
14919
8d749320 14920 baton = XOBNEW (obstack, struct dwarf2_property_baton);
6ad395a7
JB
14921 baton->referenced_type = read_type_die (target_die->parent,
14922 target_cu);
df25ebbd
JB
14923 baton->offset_info.offset = offset;
14924 baton->offset_info.type = die_type (target_die, target_cu);
14925 prop->data.baton = baton;
14926 prop->kind = PROP_ADDR_OFFSET;
14927 break;
14928 }
80180f79
SA
14929 }
14930 }
14931 else if (attr_form_is_constant (attr))
14932 {
14933 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14934 prop->kind = PROP_CONST;
14935 }
14936 else
14937 {
14938 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14939 dwarf2_name (die, cu));
14940 return 0;
14941 }
14942
14943 return 1;
14944}
14945
a02abb62
JB
14946/* Read the given DW_AT_subrange DIE. */
14947
f792889a 14948static struct type *
a02abb62
JB
14949read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14950{
4c9ad8c2 14951 struct type *base_type, *orig_base_type;
a02abb62
JB
14952 struct type *range_type;
14953 struct attribute *attr;
729efb13 14954 struct dynamic_prop low, high;
4fae6e18 14955 int low_default_is_valid;
c451ebe5 14956 int high_bound_is_count = 0;
15d034d0 14957 const char *name;
43bbcdc2 14958 LONGEST negative_mask;
e77813c8 14959
4c9ad8c2
TT
14960 orig_base_type = die_type (die, cu);
14961 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14962 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14963 creating the range type, but we use the result of check_typedef
14964 when examining properties of the type. */
14965 base_type = check_typedef (orig_base_type);
a02abb62 14966
7e314c57
JK
14967 /* The die_type call above may have already set the type for this DIE. */
14968 range_type = get_die_type (die, cu);
14969 if (range_type)
14970 return range_type;
14971
729efb13
SA
14972 low.kind = PROP_CONST;
14973 high.kind = PROP_CONST;
14974 high.data.const_val = 0;
14975
4fae6e18
JK
14976 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14977 omitting DW_AT_lower_bound. */
14978 switch (cu->language)
6e70227d 14979 {
4fae6e18
JK
14980 case language_c:
14981 case language_cplus:
729efb13 14982 low.data.const_val = 0;
4fae6e18
JK
14983 low_default_is_valid = 1;
14984 break;
14985 case language_fortran:
729efb13 14986 low.data.const_val = 1;
4fae6e18
JK
14987 low_default_is_valid = 1;
14988 break;
14989 case language_d:
4fae6e18 14990 case language_objc:
c44af4eb 14991 case language_rust:
729efb13 14992 low.data.const_val = 0;
4fae6e18
JK
14993 low_default_is_valid = (cu->header.version >= 4);
14994 break;
14995 case language_ada:
14996 case language_m2:
14997 case language_pascal:
729efb13 14998 low.data.const_val = 1;
4fae6e18
JK
14999 low_default_is_valid = (cu->header.version >= 4);
15000 break;
15001 default:
729efb13 15002 low.data.const_val = 0;
4fae6e18
JK
15003 low_default_is_valid = 0;
15004 break;
a02abb62
JB
15005 }
15006
e142c38c 15007 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 15008 if (attr)
11c1ba78 15009 attr_to_dynamic_prop (attr, die, cu, &low);
4fae6e18
JK
15010 else if (!low_default_is_valid)
15011 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
15012 "- DIE at 0x%x [in module %s]"),
4262abfb 15013 die->offset.sect_off, objfile_name (cu->objfile));
a02abb62 15014
e142c38c 15015 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
80180f79 15016 if (!attr_to_dynamic_prop (attr, die, cu, &high))
e77813c8
PM
15017 {
15018 attr = dwarf2_attr (die, DW_AT_count, cu);
c451ebe5 15019 if (attr_to_dynamic_prop (attr, die, cu, &high))
6b662e19 15020 {
c451ebe5
SA
15021 /* If bounds are constant do the final calculation here. */
15022 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15023 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15024 else
15025 high_bound_is_count = 1;
c2ff108b 15026 }
e77813c8
PM
15027 }
15028
15029 /* Dwarf-2 specifications explicitly allows to create subrange types
15030 without specifying a base type.
15031 In that case, the base type must be set to the type of
15032 the lower bound, upper bound or count, in that order, if any of these
15033 three attributes references an object that has a type.
15034 If no base type is found, the Dwarf-2 specifications say that
15035 a signed integer type of size equal to the size of an address should
15036 be used.
15037 For the following C code: `extern char gdb_int [];'
15038 GCC produces an empty range DIE.
15039 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 15040 high bound or count are not yet handled by this code. */
e77813c8
PM
15041 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15042 {
15043 struct objfile *objfile = cu->objfile;
15044 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15045 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15046 struct type *int_type = objfile_type (objfile)->builtin_int;
15047
15048 /* Test "int", "long int", and "long long int" objfile types,
15049 and select the first one having a size above or equal to the
15050 architecture address size. */
15051 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15052 base_type = int_type;
15053 else
15054 {
15055 int_type = objfile_type (objfile)->builtin_long;
15056 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15057 base_type = int_type;
15058 else
15059 {
15060 int_type = objfile_type (objfile)->builtin_long_long;
15061 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15062 base_type = int_type;
15063 }
15064 }
15065 }
a02abb62 15066
dbb9c2b1
JB
15067 /* Normally, the DWARF producers are expected to use a signed
15068 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15069 But this is unfortunately not always the case, as witnessed
15070 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15071 is used instead. To work around that ambiguity, we treat
15072 the bounds as signed, and thus sign-extend their values, when
15073 the base type is signed. */
6e70227d 15074 negative_mask =
66c6502d 15075 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
729efb13
SA
15076 if (low.kind == PROP_CONST
15077 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15078 low.data.const_val |= negative_mask;
15079 if (high.kind == PROP_CONST
15080 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15081 high.data.const_val |= negative_mask;
43bbcdc2 15082
729efb13 15083 range_type = create_range_type (NULL, orig_base_type, &low, &high);
a02abb62 15084
c451ebe5
SA
15085 if (high_bound_is_count)
15086 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15087
c2ff108b
JK
15088 /* Ada expects an empty array on no boundary attributes. */
15089 if (attr == NULL && cu->language != language_ada)
729efb13 15090 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
c2ff108b 15091
39cbfefa
DJ
15092 name = dwarf2_name (die, cu);
15093 if (name)
15094 TYPE_NAME (range_type) = name;
6e70227d 15095
e142c38c 15096 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
15097 if (attr)
15098 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15099
7e314c57
JK
15100 set_die_type (die, range_type, cu);
15101
15102 /* set_die_type should be already done. */
b4ba55a1
JB
15103 set_descriptive_type (range_type, die, cu);
15104
7e314c57 15105 return range_type;
a02abb62 15106}
6e70227d 15107
f792889a 15108static struct type *
81a17f79
JB
15109read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15110{
15111 struct type *type;
81a17f79 15112
81a17f79
JB
15113 /* For now, we only support the C meaning of an unspecified type: void. */
15114
19f392bc 15115 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
0114d602 15116 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 15117
f792889a 15118 return set_die_type (die, type, cu);
81a17f79 15119}
a02abb62 15120
639d11d3
DC
15121/* Read a single die and all its descendents. Set the die's sibling
15122 field to NULL; set other fields in the die correctly, and set all
15123 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15124 location of the info_ptr after reading all of those dies. PARENT
15125 is the parent of the die in question. */
15126
15127static struct die_info *
dee91e82 15128read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
15129 const gdb_byte *info_ptr,
15130 const gdb_byte **new_info_ptr,
dee91e82 15131 struct die_info *parent)
639d11d3
DC
15132{
15133 struct die_info *die;
d521ce57 15134 const gdb_byte *cur_ptr;
639d11d3
DC
15135 int has_children;
15136
bf6af496 15137 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
15138 if (die == NULL)
15139 {
15140 *new_info_ptr = cur_ptr;
15141 return NULL;
15142 }
93311388 15143 store_in_ref_table (die, reader->cu);
639d11d3
DC
15144
15145 if (has_children)
bf6af496 15146 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
15147 else
15148 {
15149 die->child = NULL;
15150 *new_info_ptr = cur_ptr;
15151 }
15152
15153 die->sibling = NULL;
15154 die->parent = parent;
15155 return die;
15156}
15157
15158/* Read a die, all of its descendents, and all of its siblings; set
15159 all of the fields of all of the dies correctly. Arguments are as
15160 in read_die_and_children. */
15161
15162static struct die_info *
bf6af496 15163read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
15164 const gdb_byte *info_ptr,
15165 const gdb_byte **new_info_ptr,
bf6af496 15166 struct die_info *parent)
639d11d3
DC
15167{
15168 struct die_info *first_die, *last_sibling;
d521ce57 15169 const gdb_byte *cur_ptr;
639d11d3 15170
c906108c 15171 cur_ptr = info_ptr;
639d11d3
DC
15172 first_die = last_sibling = NULL;
15173
15174 while (1)
c906108c 15175 {
639d11d3 15176 struct die_info *die
dee91e82 15177 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 15178
1d325ec1 15179 if (die == NULL)
c906108c 15180 {
639d11d3
DC
15181 *new_info_ptr = cur_ptr;
15182 return first_die;
c906108c 15183 }
1d325ec1
DJ
15184
15185 if (!first_die)
15186 first_die = die;
c906108c 15187 else
1d325ec1
DJ
15188 last_sibling->sibling = die;
15189
15190 last_sibling = die;
c906108c 15191 }
c906108c
SS
15192}
15193
bf6af496
DE
15194/* Read a die, all of its descendents, and all of its siblings; set
15195 all of the fields of all of the dies correctly. Arguments are as
15196 in read_die_and_children.
15197 This the main entry point for reading a DIE and all its children. */
15198
15199static struct die_info *
15200read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
15201 const gdb_byte *info_ptr,
15202 const gdb_byte **new_info_ptr,
bf6af496
DE
15203 struct die_info *parent)
15204{
15205 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15206 new_info_ptr, parent);
15207
b4f54984 15208 if (dwarf_die_debug)
bf6af496
DE
15209 {
15210 fprintf_unfiltered (gdb_stdlog,
15211 "Read die from %s@0x%x of %s:\n",
a32a8923 15212 get_section_name (reader->die_section),
bf6af496
DE
15213 (unsigned) (info_ptr - reader->die_section->buffer),
15214 bfd_get_filename (reader->abfd));
b4f54984 15215 dump_die (die, dwarf_die_debug);
bf6af496
DE
15216 }
15217
15218 return die;
15219}
15220
3019eac3
DE
15221/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15222 attributes.
15223 The caller is responsible for filling in the extra attributes
15224 and updating (*DIEP)->num_attrs.
15225 Set DIEP to point to a newly allocated die with its information,
15226 except for its child, sibling, and parent fields.
15227 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 15228
d521ce57 15229static const gdb_byte *
3019eac3 15230read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 15231 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 15232 int *has_children, int num_extra_attrs)
93311388 15233{
b64f50a1
JK
15234 unsigned int abbrev_number, bytes_read, i;
15235 sect_offset offset;
93311388
DE
15236 struct abbrev_info *abbrev;
15237 struct die_info *die;
15238 struct dwarf2_cu *cu = reader->cu;
15239 bfd *abfd = reader->abfd;
15240
b64f50a1 15241 offset.sect_off = info_ptr - reader->buffer;
93311388
DE
15242 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15243 info_ptr += bytes_read;
15244 if (!abbrev_number)
15245 {
15246 *diep = NULL;
15247 *has_children = 0;
15248 return info_ptr;
15249 }
15250
433df2d4 15251 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 15252 if (!abbrev)
348e048f
DE
15253 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15254 abbrev_number,
15255 bfd_get_filename (abfd));
15256
3019eac3 15257 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
93311388
DE
15258 die->offset = offset;
15259 die->tag = abbrev->tag;
15260 die->abbrev = abbrev_number;
15261
3019eac3
DE
15262 /* Make the result usable.
15263 The caller needs to update num_attrs after adding the extra
15264 attributes. */
93311388
DE
15265 die->num_attrs = abbrev->num_attrs;
15266
15267 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
15268 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15269 info_ptr);
93311388
DE
15270
15271 *diep = die;
15272 *has_children = abbrev->has_children;
15273 return info_ptr;
15274}
15275
3019eac3
DE
15276/* Read a die and all its attributes.
15277 Set DIEP to point to a newly allocated die with its information,
15278 except for its child, sibling, and parent fields.
15279 Set HAS_CHILDREN to tell whether the die has children or not. */
15280
d521ce57 15281static const gdb_byte *
3019eac3 15282read_full_die (const struct die_reader_specs *reader,
d521ce57 15283 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
15284 int *has_children)
15285{
d521ce57 15286 const gdb_byte *result;
bf6af496
DE
15287
15288 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15289
b4f54984 15290 if (dwarf_die_debug)
bf6af496
DE
15291 {
15292 fprintf_unfiltered (gdb_stdlog,
15293 "Read die from %s@0x%x of %s:\n",
a32a8923 15294 get_section_name (reader->die_section),
bf6af496
DE
15295 (unsigned) (info_ptr - reader->die_section->buffer),
15296 bfd_get_filename (reader->abfd));
b4f54984 15297 dump_die (*diep, dwarf_die_debug);
bf6af496
DE
15298 }
15299
15300 return result;
3019eac3 15301}
433df2d4
DE
15302\f
15303/* Abbreviation tables.
3019eac3 15304
433df2d4 15305 In DWARF version 2, the description of the debugging information is
c906108c
SS
15306 stored in a separate .debug_abbrev section. Before we read any
15307 dies from a section we read in all abbreviations and install them
433df2d4
DE
15308 in a hash table. */
15309
15310/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15311
15312static struct abbrev_info *
15313abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15314{
15315 struct abbrev_info *abbrev;
15316
8d749320 15317 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
433df2d4 15318 memset (abbrev, 0, sizeof (struct abbrev_info));
8d749320 15319
433df2d4
DE
15320 return abbrev;
15321}
15322
15323/* Add an abbreviation to the table. */
c906108c
SS
15324
15325static void
433df2d4
DE
15326abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15327 unsigned int abbrev_number,
15328 struct abbrev_info *abbrev)
15329{
15330 unsigned int hash_number;
15331
15332 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15333 abbrev->next = abbrev_table->abbrevs[hash_number];
15334 abbrev_table->abbrevs[hash_number] = abbrev;
15335}
dee91e82 15336
433df2d4
DE
15337/* Look up an abbrev in the table.
15338 Returns NULL if the abbrev is not found. */
15339
15340static struct abbrev_info *
15341abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15342 unsigned int abbrev_number)
c906108c 15343{
433df2d4
DE
15344 unsigned int hash_number;
15345 struct abbrev_info *abbrev;
15346
15347 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15348 abbrev = abbrev_table->abbrevs[hash_number];
15349
15350 while (abbrev)
15351 {
15352 if (abbrev->number == abbrev_number)
15353 return abbrev;
15354 abbrev = abbrev->next;
15355 }
15356 return NULL;
15357}
15358
15359/* Read in an abbrev table. */
15360
15361static struct abbrev_table *
15362abbrev_table_read_table (struct dwarf2_section_info *section,
15363 sect_offset offset)
15364{
15365 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 15366 bfd *abfd = get_section_bfd_owner (section);
433df2d4 15367 struct abbrev_table *abbrev_table;
d521ce57 15368 const gdb_byte *abbrev_ptr;
c906108c
SS
15369 struct abbrev_info *cur_abbrev;
15370 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 15371 unsigned int abbrev_form;
f3dd6933
DJ
15372 struct attr_abbrev *cur_attrs;
15373 unsigned int allocated_attrs;
c906108c 15374
70ba0933 15375 abbrev_table = XNEW (struct abbrev_table);
f4dc4d17 15376 abbrev_table->offset = offset;
433df2d4 15377 obstack_init (&abbrev_table->abbrev_obstack);
8d749320
SM
15378 abbrev_table->abbrevs =
15379 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15380 ABBREV_HASH_SIZE);
433df2d4
DE
15381 memset (abbrev_table->abbrevs, 0,
15382 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 15383
433df2d4
DE
15384 dwarf2_read_section (objfile, section);
15385 abbrev_ptr = section->buffer + offset.sect_off;
c906108c
SS
15386 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15387 abbrev_ptr += bytes_read;
15388
f3dd6933 15389 allocated_attrs = ATTR_ALLOC_CHUNK;
8d749320 15390 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
6e70227d 15391
0963b4bd 15392 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
15393 while (abbrev_number)
15394 {
433df2d4 15395 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
15396
15397 /* read in abbrev header */
15398 cur_abbrev->number = abbrev_number;
aead7601
SM
15399 cur_abbrev->tag
15400 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
c906108c
SS
15401 abbrev_ptr += bytes_read;
15402 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15403 abbrev_ptr += 1;
15404
15405 /* now read in declarations */
15406 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15407 abbrev_ptr += bytes_read;
15408 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15409 abbrev_ptr += bytes_read;
15410 while (abbrev_name)
15411 {
f3dd6933 15412 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 15413 {
f3dd6933
DJ
15414 allocated_attrs += ATTR_ALLOC_CHUNK;
15415 cur_attrs
224c3ddb 15416 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
c906108c 15417 }
ae038cb0 15418
aead7601
SM
15419 cur_attrs[cur_abbrev->num_attrs].name
15420 = (enum dwarf_attribute) abbrev_name;
15421 cur_attrs[cur_abbrev->num_attrs++].form
15422 = (enum dwarf_form) abbrev_form;
c906108c
SS
15423 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15424 abbrev_ptr += bytes_read;
15425 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15426 abbrev_ptr += bytes_read;
15427 }
15428
8d749320
SM
15429 cur_abbrev->attrs =
15430 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15431 cur_abbrev->num_attrs);
f3dd6933
DJ
15432 memcpy (cur_abbrev->attrs, cur_attrs,
15433 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15434
433df2d4 15435 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
15436
15437 /* Get next abbreviation.
15438 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
15439 always properly terminated with an abbrev number of 0.
15440 Exit loop if we encounter an abbreviation which we have
15441 already read (which means we are about to read the abbreviations
15442 for the next compile unit) or if the end of the abbreviation
15443 table is reached. */
433df2d4 15444 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
15445 break;
15446 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15447 abbrev_ptr += bytes_read;
433df2d4 15448 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
15449 break;
15450 }
f3dd6933
DJ
15451
15452 xfree (cur_attrs);
433df2d4 15453 return abbrev_table;
c906108c
SS
15454}
15455
433df2d4 15456/* Free the resources held by ABBREV_TABLE. */
c906108c 15457
c906108c 15458static void
433df2d4 15459abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 15460{
433df2d4
DE
15461 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15462 xfree (abbrev_table);
c906108c
SS
15463}
15464
f4dc4d17
DE
15465/* Same as abbrev_table_free but as a cleanup.
15466 We pass in a pointer to the pointer to the table so that we can
15467 set the pointer to NULL when we're done. It also simplifies
73051182 15468 build_type_psymtabs_1. */
f4dc4d17
DE
15469
15470static void
15471abbrev_table_free_cleanup (void *table_ptr)
15472{
9a3c8263 15473 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
f4dc4d17
DE
15474
15475 if (*abbrev_table_ptr != NULL)
15476 abbrev_table_free (*abbrev_table_ptr);
15477 *abbrev_table_ptr = NULL;
15478}
15479
433df2d4
DE
15480/* Read the abbrev table for CU from ABBREV_SECTION. */
15481
15482static void
15483dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15484 struct dwarf2_section_info *abbrev_section)
c906108c 15485{
433df2d4
DE
15486 cu->abbrev_table =
15487 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15488}
c906108c 15489
433df2d4 15490/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 15491
433df2d4
DE
15492static void
15493dwarf2_free_abbrev_table (void *ptr_to_cu)
15494{
9a3c8263 15495 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
c906108c 15496
a2ce51a0
DE
15497 if (cu->abbrev_table != NULL)
15498 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
15499 /* Set this to NULL so that we SEGV if we try to read it later,
15500 and also because free_comp_unit verifies this is NULL. */
15501 cu->abbrev_table = NULL;
15502}
15503\f
72bf9492
DJ
15504/* Returns nonzero if TAG represents a type that we might generate a partial
15505 symbol for. */
15506
15507static int
15508is_type_tag_for_partial (int tag)
15509{
15510 switch (tag)
15511 {
15512#if 0
15513 /* Some types that would be reasonable to generate partial symbols for,
15514 that we don't at present. */
15515 case DW_TAG_array_type:
15516 case DW_TAG_file_type:
15517 case DW_TAG_ptr_to_member_type:
15518 case DW_TAG_set_type:
15519 case DW_TAG_string_type:
15520 case DW_TAG_subroutine_type:
15521#endif
15522 case DW_TAG_base_type:
15523 case DW_TAG_class_type:
680b30c7 15524 case DW_TAG_interface_type:
72bf9492
DJ
15525 case DW_TAG_enumeration_type:
15526 case DW_TAG_structure_type:
15527 case DW_TAG_subrange_type:
15528 case DW_TAG_typedef:
15529 case DW_TAG_union_type:
15530 return 1;
15531 default:
15532 return 0;
15533 }
15534}
15535
15536/* Load all DIEs that are interesting for partial symbols into memory. */
15537
15538static struct partial_die_info *
dee91e82 15539load_partial_dies (const struct die_reader_specs *reader,
d521ce57 15540 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 15541{
dee91e82 15542 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15543 struct objfile *objfile = cu->objfile;
72bf9492
DJ
15544 struct partial_die_info *part_die;
15545 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15546 struct abbrev_info *abbrev;
15547 unsigned int bytes_read;
5afb4e99 15548 unsigned int load_all = 0;
72bf9492
DJ
15549 int nesting_level = 1;
15550
15551 parent_die = NULL;
15552 last_die = NULL;
15553
7adf1e79
DE
15554 gdb_assert (cu->per_cu != NULL);
15555 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
15556 load_all = 1;
15557
72bf9492
DJ
15558 cu->partial_dies
15559 = htab_create_alloc_ex (cu->header.length / 12,
15560 partial_die_hash,
15561 partial_die_eq,
15562 NULL,
15563 &cu->comp_unit_obstack,
15564 hashtab_obstack_allocate,
15565 dummy_obstack_deallocate);
15566
8d749320 15567 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
15568
15569 while (1)
15570 {
15571 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15572
15573 /* A NULL abbrev means the end of a series of children. */
15574 if (abbrev == NULL)
15575 {
15576 if (--nesting_level == 0)
15577 {
15578 /* PART_DIE was probably the last thing allocated on the
15579 comp_unit_obstack, so we could call obstack_free
15580 here. We don't do that because the waste is small,
15581 and will be cleaned up when we're done with this
15582 compilation unit. This way, we're also more robust
15583 against other users of the comp_unit_obstack. */
15584 return first_die;
15585 }
15586 info_ptr += bytes_read;
15587 last_die = parent_die;
15588 parent_die = parent_die->die_parent;
15589 continue;
15590 }
15591
98bfdba5
PA
15592 /* Check for template arguments. We never save these; if
15593 they're seen, we just mark the parent, and go on our way. */
15594 if (parent_die != NULL
15595 && cu->language == language_cplus
15596 && (abbrev->tag == DW_TAG_template_type_param
15597 || abbrev->tag == DW_TAG_template_value_param))
15598 {
15599 parent_die->has_template_arguments = 1;
15600
15601 if (!load_all)
15602 {
15603 /* We don't need a partial DIE for the template argument. */
dee91e82 15604 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15605 continue;
15606 }
15607 }
15608
0d99eb77 15609 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
15610 Skip their other children. */
15611 if (!load_all
15612 && cu->language == language_cplus
15613 && parent_die != NULL
15614 && parent_die->tag == DW_TAG_subprogram)
15615 {
dee91e82 15616 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15617 continue;
15618 }
15619
5afb4e99
DJ
15620 /* Check whether this DIE is interesting enough to save. Normally
15621 we would not be interested in members here, but there may be
15622 later variables referencing them via DW_AT_specification (for
15623 static members). */
15624 if (!load_all
15625 && !is_type_tag_for_partial (abbrev->tag)
72929c62 15626 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
15627 && abbrev->tag != DW_TAG_enumerator
15628 && abbrev->tag != DW_TAG_subprogram
bc30ff58 15629 && abbrev->tag != DW_TAG_lexical_block
72bf9492 15630 && abbrev->tag != DW_TAG_variable
5afb4e99 15631 && abbrev->tag != DW_TAG_namespace
f55ee35c 15632 && abbrev->tag != DW_TAG_module
95554aad 15633 && abbrev->tag != DW_TAG_member
74921315
KS
15634 && abbrev->tag != DW_TAG_imported_unit
15635 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
15636 {
15637 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15638 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
15639 continue;
15640 }
15641
dee91e82
DE
15642 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15643 info_ptr);
72bf9492
DJ
15644
15645 /* This two-pass algorithm for processing partial symbols has a
15646 high cost in cache pressure. Thus, handle some simple cases
15647 here which cover the majority of C partial symbols. DIEs
15648 which neither have specification tags in them, nor could have
15649 specification tags elsewhere pointing at them, can simply be
15650 processed and discarded.
15651
15652 This segment is also optional; scan_partial_symbols and
15653 add_partial_symbol will handle these DIEs if we chain
15654 them in normally. When compilers which do not emit large
15655 quantities of duplicate debug information are more common,
15656 this code can probably be removed. */
15657
15658 /* Any complete simple types at the top level (pretty much all
15659 of them, for a language without namespaces), can be processed
15660 directly. */
15661 if (parent_die == NULL
15662 && part_die->has_specification == 0
15663 && part_die->is_declaration == 0
d8228535 15664 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
15665 || part_die->tag == DW_TAG_base_type
15666 || part_die->tag == DW_TAG_subrange_type))
15667 {
15668 if (building_psymtab && part_die->name != NULL)
04a679b8 15669 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15670 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363 15671 &objfile->static_psymbols,
1762568f 15672 0, cu->language, objfile);
dee91e82 15673 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15674 continue;
15675 }
15676
d8228535
JK
15677 /* The exception for DW_TAG_typedef with has_children above is
15678 a workaround of GCC PR debug/47510. In the case of this complaint
15679 type_name_no_tag_or_error will error on such types later.
15680
15681 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15682 it could not find the child DIEs referenced later, this is checked
15683 above. In correct DWARF DW_TAG_typedef should have no children. */
15684
15685 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15686 complaint (&symfile_complaints,
15687 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15688 "- DIE at 0x%x [in module %s]"),
4262abfb 15689 part_die->offset.sect_off, objfile_name (objfile));
d8228535 15690
72bf9492
DJ
15691 /* If we're at the second level, and we're an enumerator, and
15692 our parent has no specification (meaning possibly lives in a
15693 namespace elsewhere), then we can add the partial symbol now
15694 instead of queueing it. */
15695 if (part_die->tag == DW_TAG_enumerator
15696 && parent_die != NULL
15697 && parent_die->die_parent == NULL
15698 && parent_die->tag == DW_TAG_enumeration_type
15699 && parent_die->has_specification == 0)
15700 {
15701 if (part_die->name == NULL)
3e43a32a
MS
15702 complaint (&symfile_complaints,
15703 _("malformed enumerator DIE ignored"));
72bf9492 15704 else if (building_psymtab)
04a679b8 15705 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15706 VAR_DOMAIN, LOC_CONST,
9c37b5ae 15707 cu->language == language_cplus
bb5ed363
DE
15708 ? &objfile->global_psymbols
15709 : &objfile->static_psymbols,
1762568f 15710 0, cu->language, objfile);
72bf9492 15711
dee91e82 15712 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15713 continue;
15714 }
15715
15716 /* We'll save this DIE so link it in. */
15717 part_die->die_parent = parent_die;
15718 part_die->die_sibling = NULL;
15719 part_die->die_child = NULL;
15720
15721 if (last_die && last_die == parent_die)
15722 last_die->die_child = part_die;
15723 else if (last_die)
15724 last_die->die_sibling = part_die;
15725
15726 last_die = part_die;
15727
15728 if (first_die == NULL)
15729 first_die = part_die;
15730
15731 /* Maybe add the DIE to the hash table. Not all DIEs that we
15732 find interesting need to be in the hash table, because we
15733 also have the parent/sibling/child chains; only those that we
15734 might refer to by offset later during partial symbol reading.
15735
15736 For now this means things that might have be the target of a
15737 DW_AT_specification, DW_AT_abstract_origin, or
15738 DW_AT_extension. DW_AT_extension will refer only to
15739 namespaces; DW_AT_abstract_origin refers to functions (and
15740 many things under the function DIE, but we do not recurse
15741 into function DIEs during partial symbol reading) and
15742 possibly variables as well; DW_AT_specification refers to
15743 declarations. Declarations ought to have the DW_AT_declaration
15744 flag. It happens that GCC forgets to put it in sometimes, but
15745 only for functions, not for types.
15746
15747 Adding more things than necessary to the hash table is harmless
15748 except for the performance cost. Adding too few will result in
5afb4e99
DJ
15749 wasted time in find_partial_die, when we reread the compilation
15750 unit with load_all_dies set. */
72bf9492 15751
5afb4e99 15752 if (load_all
72929c62 15753 || abbrev->tag == DW_TAG_constant
5afb4e99 15754 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
15755 || abbrev->tag == DW_TAG_variable
15756 || abbrev->tag == DW_TAG_namespace
15757 || part_die->is_declaration)
15758 {
15759 void **slot;
15760
15761 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
b64f50a1 15762 part_die->offset.sect_off, INSERT);
72bf9492
DJ
15763 *slot = part_die;
15764 }
15765
8d749320 15766 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
15767
15768 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 15769 we have no reason to follow the children of structures; for other
98bfdba5
PA
15770 languages we have to, so that we can get at method physnames
15771 to infer fully qualified class names, for DW_AT_specification,
15772 and for C++ template arguments. For C++, we also look one level
15773 inside functions to find template arguments (if the name of the
15774 function does not already contain the template arguments).
bc30ff58
JB
15775
15776 For Ada, we need to scan the children of subprograms and lexical
15777 blocks as well because Ada allows the definition of nested
15778 entities that could be interesting for the debugger, such as
15779 nested subprograms for instance. */
72bf9492 15780 if (last_die->has_children
5afb4e99
DJ
15781 && (load_all
15782 || last_die->tag == DW_TAG_namespace
f55ee35c 15783 || last_die->tag == DW_TAG_module
72bf9492 15784 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
15785 || (cu->language == language_cplus
15786 && last_die->tag == DW_TAG_subprogram
15787 && (last_die->name == NULL
15788 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
15789 || (cu->language != language_c
15790 && (last_die->tag == DW_TAG_class_type
680b30c7 15791 || last_die->tag == DW_TAG_interface_type
72bf9492 15792 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
15793 || last_die->tag == DW_TAG_union_type))
15794 || (cu->language == language_ada
15795 && (last_die->tag == DW_TAG_subprogram
15796 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
15797 {
15798 nesting_level++;
15799 parent_die = last_die;
15800 continue;
15801 }
15802
15803 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15804 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
15805
15806 /* Back to the top, do it again. */
15807 }
15808}
15809
c906108c
SS
15810/* Read a minimal amount of information into the minimal die structure. */
15811
d521ce57 15812static const gdb_byte *
dee91e82
DE
15813read_partial_die (const struct die_reader_specs *reader,
15814 struct partial_die_info *part_die,
15815 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 15816 const gdb_byte *info_ptr)
c906108c 15817{
dee91e82 15818 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15819 struct objfile *objfile = cu->objfile;
d521ce57 15820 const gdb_byte *buffer = reader->buffer;
fa238c03 15821 unsigned int i;
c906108c 15822 struct attribute attr;
c5aa993b 15823 int has_low_pc_attr = 0;
c906108c 15824 int has_high_pc_attr = 0;
91da1414 15825 int high_pc_relative = 0;
c906108c 15826
72bf9492 15827 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 15828
b64f50a1 15829 part_die->offset.sect_off = info_ptr - buffer;
72bf9492
DJ
15830
15831 info_ptr += abbrev_len;
15832
15833 if (abbrev == NULL)
15834 return info_ptr;
15835
c906108c
SS
15836 part_die->tag = abbrev->tag;
15837 part_die->has_children = abbrev->has_children;
c906108c
SS
15838
15839 for (i = 0; i < abbrev->num_attrs; ++i)
15840 {
dee91e82 15841 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
15842
15843 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 15844 partial symbol table. */
c906108c
SS
15845 switch (attr.name)
15846 {
15847 case DW_AT_name:
71c25dea
TT
15848 switch (part_die->tag)
15849 {
15850 case DW_TAG_compile_unit:
95554aad 15851 case DW_TAG_partial_unit:
348e048f 15852 case DW_TAG_type_unit:
71c25dea
TT
15853 /* Compilation units have a DW_AT_name that is a filename, not
15854 a source language identifier. */
15855 case DW_TAG_enumeration_type:
15856 case DW_TAG_enumerator:
15857 /* These tags always have simple identifiers already; no need
15858 to canonicalize them. */
15859 part_die->name = DW_STRING (&attr);
15860 break;
15861 default:
15862 part_die->name
15863 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
34a68019 15864 &objfile->per_bfd->storage_obstack);
71c25dea
TT
15865 break;
15866 }
c906108c 15867 break;
31ef98ae 15868 case DW_AT_linkage_name:
c906108c 15869 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
15870 /* Note that both forms of linkage name might appear. We
15871 assume they will be the same, and we only store the last
15872 one we see. */
94af9270
KS
15873 if (cu->language == language_ada)
15874 part_die->name = DW_STRING (&attr);
abc72ce4 15875 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
15876 break;
15877 case DW_AT_low_pc:
15878 has_low_pc_attr = 1;
31aa7e4e 15879 part_die->lowpc = attr_value_as_address (&attr);
c906108c
SS
15880 break;
15881 case DW_AT_high_pc:
15882 has_high_pc_attr = 1;
31aa7e4e
JB
15883 part_die->highpc = attr_value_as_address (&attr);
15884 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15885 high_pc_relative = 1;
c906108c
SS
15886 break;
15887 case DW_AT_location:
0963b4bd 15888 /* Support the .debug_loc offsets. */
8e19ed76
PS
15889 if (attr_form_is_block (&attr))
15890 {
95554aad 15891 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 15892 }
3690dd37 15893 else if (attr_form_is_section_offset (&attr))
8e19ed76 15894 {
4d3c2250 15895 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
15896 }
15897 else
15898 {
4d3c2250
KB
15899 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15900 "partial symbol information");
8e19ed76 15901 }
c906108c 15902 break;
c906108c
SS
15903 case DW_AT_external:
15904 part_die->is_external = DW_UNSND (&attr);
15905 break;
15906 case DW_AT_declaration:
15907 part_die->is_declaration = DW_UNSND (&attr);
15908 break;
15909 case DW_AT_type:
15910 part_die->has_type = 1;
15911 break;
15912 case DW_AT_abstract_origin:
15913 case DW_AT_specification:
72bf9492
DJ
15914 case DW_AT_extension:
15915 part_die->has_specification = 1;
c764a876 15916 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
15917 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15918 || cu->per_cu->is_dwz);
c906108c
SS
15919 break;
15920 case DW_AT_sibling:
15921 /* Ignore absolute siblings, they might point outside of
15922 the current compile unit. */
15923 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
15924 complaint (&symfile_complaints,
15925 _("ignoring absolute DW_AT_sibling"));
c906108c 15926 else
b9502d3f
WN
15927 {
15928 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15929 const gdb_byte *sibling_ptr = buffer + off;
15930
15931 if (sibling_ptr < info_ptr)
15932 complaint (&symfile_complaints,
15933 _("DW_AT_sibling points backwards"));
22869d73
KS
15934 else if (sibling_ptr > reader->buffer_end)
15935 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
15936 else
15937 part_die->sibling = sibling_ptr;
15938 }
c906108c 15939 break;
fa4028e9
JB
15940 case DW_AT_byte_size:
15941 part_die->has_byte_size = 1;
15942 break;
ff908ebf
AW
15943 case DW_AT_const_value:
15944 part_die->has_const_value = 1;
15945 break;
68511cec
CES
15946 case DW_AT_calling_convention:
15947 /* DWARF doesn't provide a way to identify a program's source-level
15948 entry point. DW_AT_calling_convention attributes are only meant
15949 to describe functions' calling conventions.
15950
15951 However, because it's a necessary piece of information in
15952 Fortran, and because DW_CC_program is the only piece of debugging
15953 information whose definition refers to a 'main program' at all,
15954 several compilers have begun marking Fortran main programs with
15955 DW_CC_program --- even when those functions use the standard
15956 calling conventions.
15957
15958 So until DWARF specifies a way to provide this information and
15959 compilers pick up the new representation, we'll support this
15960 practice. */
15961 if (DW_UNSND (&attr) == DW_CC_program
dc365182
JH
15962 && cu->language == language_fortran
15963 && part_die->name != NULL)
3d548a53 15964 set_objfile_main_name (objfile, part_die->name, language_fortran);
68511cec 15965 break;
481860b3
GB
15966 case DW_AT_inline:
15967 if (DW_UNSND (&attr) == DW_INL_inlined
15968 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15969 part_die->may_be_inlined = 1;
15970 break;
95554aad
TT
15971
15972 case DW_AT_import:
15973 if (part_die->tag == DW_TAG_imported_unit)
36586728
TT
15974 {
15975 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15976 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15977 || cu->per_cu->is_dwz);
15978 }
95554aad
TT
15979 break;
15980
c906108c
SS
15981 default:
15982 break;
15983 }
15984 }
15985
91da1414
MW
15986 if (high_pc_relative)
15987 part_die->highpc += part_die->lowpc;
15988
9373cf26
JK
15989 if (has_low_pc_attr && has_high_pc_attr)
15990 {
15991 /* When using the GNU linker, .gnu.linkonce. sections are used to
15992 eliminate duplicate copies of functions and vtables and such.
15993 The linker will arbitrarily choose one and discard the others.
15994 The AT_*_pc values for such functions refer to local labels in
15995 these sections. If the section from that file was discarded, the
15996 labels are not in the output, so the relocs get a value of 0.
15997 If this is a discarded function, mark the pc bounds as invalid,
15998 so that GDB will ignore it. */
15999 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
16000 {
bb5ed363 16001 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
16002
16003 complaint (&symfile_complaints,
16004 _("DW_AT_low_pc %s is zero "
16005 "for DIE at 0x%x [in module %s]"),
16006 paddress (gdbarch, part_die->lowpc),
4262abfb 16007 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
16008 }
16009 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
16010 else if (part_die->lowpc >= part_die->highpc)
16011 {
bb5ed363 16012 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
16013
16014 complaint (&symfile_complaints,
16015 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
16016 "for DIE at 0x%x [in module %s]"),
16017 paddress (gdbarch, part_die->lowpc),
16018 paddress (gdbarch, part_die->highpc),
4262abfb 16019 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
16020 }
16021 else
16022 part_die->has_pc_info = 1;
16023 }
85cbf3d3 16024
c906108c
SS
16025 return info_ptr;
16026}
16027
72bf9492
DJ
16028/* Find a cached partial DIE at OFFSET in CU. */
16029
16030static struct partial_die_info *
b64f50a1 16031find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
72bf9492
DJ
16032{
16033 struct partial_die_info *lookup_die = NULL;
16034 struct partial_die_info part_die;
16035
16036 part_die.offset = offset;
9a3c8263
SM
16037 lookup_die = ((struct partial_die_info *)
16038 htab_find_with_hash (cu->partial_dies, &part_die,
16039 offset.sect_off));
72bf9492 16040
72bf9492
DJ
16041 return lookup_die;
16042}
16043
348e048f
DE
16044/* Find a partial DIE at OFFSET, which may or may not be in CU,
16045 except in the case of .debug_types DIEs which do not reference
16046 outside their CU (they do however referencing other types via
55f1336d 16047 DW_FORM_ref_sig8). */
72bf9492
DJ
16048
16049static struct partial_die_info *
36586728 16050find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 16051{
bb5ed363 16052 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
16053 struct dwarf2_per_cu_data *per_cu = NULL;
16054 struct partial_die_info *pd = NULL;
72bf9492 16055
36586728
TT
16056 if (offset_in_dwz == cu->per_cu->is_dwz
16057 && offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
16058 {
16059 pd = find_partial_die_in_comp_unit (offset, cu);
16060 if (pd != NULL)
16061 return pd;
0d99eb77
DE
16062 /* We missed recording what we needed.
16063 Load all dies and try again. */
16064 per_cu = cu->per_cu;
5afb4e99 16065 }
0d99eb77
DE
16066 else
16067 {
16068 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 16069 if (cu->per_cu->is_debug_types)
0d99eb77
DE
16070 {
16071 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16072 " external reference to offset 0x%lx [in module %s].\n"),
16073 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16074 bfd_get_filename (objfile->obfd));
16075 }
36586728
TT
16076 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16077 objfile);
72bf9492 16078
0d99eb77
DE
16079 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16080 load_partial_comp_unit (per_cu);
ae038cb0 16081
0d99eb77
DE
16082 per_cu->cu->last_used = 0;
16083 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16084 }
5afb4e99 16085
dee91e82
DE
16086 /* If we didn't find it, and not all dies have been loaded,
16087 load them all and try again. */
16088
5afb4e99
DJ
16089 if (pd == NULL && per_cu->load_all_dies == 0)
16090 {
5afb4e99 16091 per_cu->load_all_dies = 1;
fd820528
DE
16092
16093 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16094 THIS_CU->cu may already be in use. So we can't just free it and
16095 replace its DIEs with the ones we read in. Instead, we leave those
16096 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16097 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16098 set. */
dee91e82 16099 load_partial_comp_unit (per_cu);
5afb4e99
DJ
16100
16101 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16102 }
16103
16104 if (pd == NULL)
16105 internal_error (__FILE__, __LINE__,
3e43a32a
MS
16106 _("could not find partial DIE 0x%x "
16107 "in cache [from module %s]\n"),
b64f50a1 16108 offset.sect_off, bfd_get_filename (objfile->obfd));
5afb4e99 16109 return pd;
72bf9492
DJ
16110}
16111
abc72ce4
DE
16112/* See if we can figure out if the class lives in a namespace. We do
16113 this by looking for a member function; its demangled name will
16114 contain namespace info, if there is any. */
16115
16116static void
16117guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16118 struct dwarf2_cu *cu)
16119{
16120 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16121 what template types look like, because the demangler
16122 frequently doesn't give the same name as the debug info. We
16123 could fix this by only using the demangled name to get the
16124 prefix (but see comment in read_structure_type). */
16125
16126 struct partial_die_info *real_pdi;
16127 struct partial_die_info *child_pdi;
16128
16129 /* If this DIE (this DIE's specification, if any) has a parent, then
16130 we should not do this. We'll prepend the parent's fully qualified
16131 name when we create the partial symbol. */
16132
16133 real_pdi = struct_pdi;
16134 while (real_pdi->has_specification)
36586728
TT
16135 real_pdi = find_partial_die (real_pdi->spec_offset,
16136 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
16137
16138 if (real_pdi->die_parent != NULL)
16139 return;
16140
16141 for (child_pdi = struct_pdi->die_child;
16142 child_pdi != NULL;
16143 child_pdi = child_pdi->die_sibling)
16144 {
16145 if (child_pdi->tag == DW_TAG_subprogram
16146 && child_pdi->linkage_name != NULL)
16147 {
16148 char *actual_class_name
16149 = language_class_name_from_physname (cu->language_defn,
16150 child_pdi->linkage_name);
16151 if (actual_class_name != NULL)
16152 {
16153 struct_pdi->name
224c3ddb
SM
16154 = ((const char *)
16155 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16156 actual_class_name,
16157 strlen (actual_class_name)));
abc72ce4
DE
16158 xfree (actual_class_name);
16159 }
16160 break;
16161 }
16162 }
16163}
16164
72bf9492
DJ
16165/* Adjust PART_DIE before generating a symbol for it. This function
16166 may set the is_external flag or change the DIE's name. */
16167
16168static void
16169fixup_partial_die (struct partial_die_info *part_die,
16170 struct dwarf2_cu *cu)
16171{
abc72ce4
DE
16172 /* Once we've fixed up a die, there's no point in doing so again.
16173 This also avoids a memory leak if we were to call
16174 guess_partial_die_structure_name multiple times. */
16175 if (part_die->fixup_called)
16176 return;
16177
72bf9492
DJ
16178 /* If we found a reference attribute and the DIE has no name, try
16179 to find a name in the referred to DIE. */
16180
16181 if (part_die->name == NULL && part_die->has_specification)
16182 {
16183 struct partial_die_info *spec_die;
72bf9492 16184
36586728
TT
16185 spec_die = find_partial_die (part_die->spec_offset,
16186 part_die->spec_is_dwz, cu);
72bf9492 16187
10b3939b 16188 fixup_partial_die (spec_die, cu);
72bf9492
DJ
16189
16190 if (spec_die->name)
16191 {
16192 part_die->name = spec_die->name;
16193
16194 /* Copy DW_AT_external attribute if it is set. */
16195 if (spec_die->is_external)
16196 part_die->is_external = spec_die->is_external;
16197 }
16198 }
16199
16200 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
16201
16202 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 16203 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 16204
abc72ce4
DE
16205 /* If there is no parent die to provide a namespace, and there are
16206 children, see if we can determine the namespace from their linkage
122d1940 16207 name. */
abc72ce4 16208 if (cu->language == language_cplus
8b70b953 16209 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
16210 && part_die->die_parent == NULL
16211 && part_die->has_children
16212 && (part_die->tag == DW_TAG_class_type
16213 || part_die->tag == DW_TAG_structure_type
16214 || part_die->tag == DW_TAG_union_type))
16215 guess_partial_die_structure_name (part_die, cu);
16216
53832f31
TT
16217 /* GCC might emit a nameless struct or union that has a linkage
16218 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16219 if (part_die->name == NULL
96408a79
SA
16220 && (part_die->tag == DW_TAG_class_type
16221 || part_die->tag == DW_TAG_interface_type
16222 || part_die->tag == DW_TAG_structure_type
16223 || part_die->tag == DW_TAG_union_type)
53832f31
TT
16224 && part_die->linkage_name != NULL)
16225 {
16226 char *demangled;
16227
8de20a37 16228 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
16229 if (demangled)
16230 {
96408a79
SA
16231 const char *base;
16232
16233 /* Strip any leading namespaces/classes, keep only the base name.
16234 DW_AT_name for named DIEs does not contain the prefixes. */
16235 base = strrchr (demangled, ':');
16236 if (base && base > demangled && base[-1] == ':')
16237 base++;
16238 else
16239 base = demangled;
16240
34a68019 16241 part_die->name
224c3ddb
SM
16242 = ((const char *)
16243 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16244 base, strlen (base)));
53832f31
TT
16245 xfree (demangled);
16246 }
16247 }
16248
abc72ce4 16249 part_die->fixup_called = 1;
72bf9492
DJ
16250}
16251
a8329558 16252/* Read an attribute value described by an attribute form. */
c906108c 16253
d521ce57 16254static const gdb_byte *
dee91e82
DE
16255read_attribute_value (const struct die_reader_specs *reader,
16256 struct attribute *attr, unsigned form,
d521ce57 16257 const gdb_byte *info_ptr)
c906108c 16258{
dee91e82 16259 struct dwarf2_cu *cu = reader->cu;
3e29f34a
MR
16260 struct objfile *objfile = cu->objfile;
16261 struct gdbarch *gdbarch = get_objfile_arch (objfile);
dee91e82 16262 bfd *abfd = reader->abfd;
e7c27a73 16263 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16264 unsigned int bytes_read;
16265 struct dwarf_block *blk;
16266
aead7601 16267 attr->form = (enum dwarf_form) form;
a8329558 16268 switch (form)
c906108c 16269 {
c906108c 16270 case DW_FORM_ref_addr:
ae411497 16271 if (cu->header.version == 2)
4568ecf9 16272 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 16273 else
4568ecf9
DE
16274 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16275 &cu->header, &bytes_read);
ae411497
TT
16276 info_ptr += bytes_read;
16277 break;
36586728
TT
16278 case DW_FORM_GNU_ref_alt:
16279 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16280 info_ptr += bytes_read;
16281 break;
ae411497 16282 case DW_FORM_addr:
e7c27a73 16283 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
3e29f34a 16284 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
107d2387 16285 info_ptr += bytes_read;
c906108c
SS
16286 break;
16287 case DW_FORM_block2:
7b5a2f43 16288 blk = dwarf_alloc_block (cu);
c906108c
SS
16289 blk->size = read_2_bytes (abfd, info_ptr);
16290 info_ptr += 2;
16291 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16292 info_ptr += blk->size;
16293 DW_BLOCK (attr) = blk;
16294 break;
16295 case DW_FORM_block4:
7b5a2f43 16296 blk = dwarf_alloc_block (cu);
c906108c
SS
16297 blk->size = read_4_bytes (abfd, info_ptr);
16298 info_ptr += 4;
16299 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16300 info_ptr += blk->size;
16301 DW_BLOCK (attr) = blk;
16302 break;
16303 case DW_FORM_data2:
16304 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16305 info_ptr += 2;
16306 break;
16307 case DW_FORM_data4:
16308 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16309 info_ptr += 4;
16310 break;
16311 case DW_FORM_data8:
16312 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16313 info_ptr += 8;
16314 break;
2dc7f7b3
TT
16315 case DW_FORM_sec_offset:
16316 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16317 info_ptr += bytes_read;
16318 break;
c906108c 16319 case DW_FORM_string:
9b1c24c8 16320 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 16321 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
16322 info_ptr += bytes_read;
16323 break;
4bdf3d34 16324 case DW_FORM_strp:
36586728
TT
16325 if (!cu->per_cu->is_dwz)
16326 {
16327 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16328 &bytes_read);
16329 DW_STRING_IS_CANONICAL (attr) = 0;
16330 info_ptr += bytes_read;
16331 break;
16332 }
16333 /* FALLTHROUGH */
16334 case DW_FORM_GNU_strp_alt:
16335 {
16336 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16337 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16338 &bytes_read);
16339
16340 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16341 DW_STRING_IS_CANONICAL (attr) = 0;
16342 info_ptr += bytes_read;
16343 }
4bdf3d34 16344 break;
2dc7f7b3 16345 case DW_FORM_exprloc:
c906108c 16346 case DW_FORM_block:
7b5a2f43 16347 blk = dwarf_alloc_block (cu);
c906108c
SS
16348 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16349 info_ptr += bytes_read;
16350 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16351 info_ptr += blk->size;
16352 DW_BLOCK (attr) = blk;
16353 break;
16354 case DW_FORM_block1:
7b5a2f43 16355 blk = dwarf_alloc_block (cu);
c906108c
SS
16356 blk->size = read_1_byte (abfd, info_ptr);
16357 info_ptr += 1;
16358 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16359 info_ptr += blk->size;
16360 DW_BLOCK (attr) = blk;
16361 break;
16362 case DW_FORM_data1:
16363 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16364 info_ptr += 1;
16365 break;
16366 case DW_FORM_flag:
16367 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16368 info_ptr += 1;
16369 break;
2dc7f7b3
TT
16370 case DW_FORM_flag_present:
16371 DW_UNSND (attr) = 1;
16372 break;
c906108c
SS
16373 case DW_FORM_sdata:
16374 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16375 info_ptr += bytes_read;
16376 break;
16377 case DW_FORM_udata:
16378 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16379 info_ptr += bytes_read;
16380 break;
16381 case DW_FORM_ref1:
4568ecf9
DE
16382 DW_UNSND (attr) = (cu->header.offset.sect_off
16383 + read_1_byte (abfd, info_ptr));
c906108c
SS
16384 info_ptr += 1;
16385 break;
16386 case DW_FORM_ref2:
4568ecf9
DE
16387 DW_UNSND (attr) = (cu->header.offset.sect_off
16388 + read_2_bytes (abfd, info_ptr));
c906108c
SS
16389 info_ptr += 2;
16390 break;
16391 case DW_FORM_ref4:
4568ecf9
DE
16392 DW_UNSND (attr) = (cu->header.offset.sect_off
16393 + read_4_bytes (abfd, info_ptr));
c906108c
SS
16394 info_ptr += 4;
16395 break;
613e1657 16396 case DW_FORM_ref8:
4568ecf9
DE
16397 DW_UNSND (attr) = (cu->header.offset.sect_off
16398 + read_8_bytes (abfd, info_ptr));
613e1657
KB
16399 info_ptr += 8;
16400 break;
55f1336d 16401 case DW_FORM_ref_sig8:
ac9ec31b 16402 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
16403 info_ptr += 8;
16404 break;
c906108c 16405 case DW_FORM_ref_udata:
4568ecf9
DE
16406 DW_UNSND (attr) = (cu->header.offset.sect_off
16407 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
16408 info_ptr += bytes_read;
16409 break;
c906108c 16410 case DW_FORM_indirect:
a8329558
KW
16411 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16412 info_ptr += bytes_read;
dee91e82 16413 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
a8329558 16414 break;
3019eac3
DE
16415 case DW_FORM_GNU_addr_index:
16416 if (reader->dwo_file == NULL)
16417 {
16418 /* For now flag a hard error.
16419 Later we can turn this into a complaint. */
16420 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16421 dwarf_form_name (form),
16422 bfd_get_filename (abfd));
16423 }
16424 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16425 info_ptr += bytes_read;
16426 break;
16427 case DW_FORM_GNU_str_index:
16428 if (reader->dwo_file == NULL)
16429 {
16430 /* For now flag a hard error.
16431 Later we can turn this into a complaint if warranted. */
16432 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16433 dwarf_form_name (form),
16434 bfd_get_filename (abfd));
16435 }
16436 {
16437 ULONGEST str_index =
16438 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16439
342587c4 16440 DW_STRING (attr) = read_str_index (reader, str_index);
3019eac3
DE
16441 DW_STRING_IS_CANONICAL (attr) = 0;
16442 info_ptr += bytes_read;
16443 }
16444 break;
c906108c 16445 default:
8a3fe4f8 16446 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
16447 dwarf_form_name (form),
16448 bfd_get_filename (abfd));
c906108c 16449 }
28e94949 16450
36586728 16451 /* Super hack. */
7771576e 16452 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
16453 attr->form = DW_FORM_GNU_ref_alt;
16454
28e94949
JB
16455 /* We have seen instances where the compiler tried to emit a byte
16456 size attribute of -1 which ended up being encoded as an unsigned
16457 0xffffffff. Although 0xffffffff is technically a valid size value,
16458 an object of this size seems pretty unlikely so we can relatively
16459 safely treat these cases as if the size attribute was invalid and
16460 treat them as zero by default. */
16461 if (attr->name == DW_AT_byte_size
16462 && form == DW_FORM_data4
16463 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
16464 {
16465 complaint
16466 (&symfile_complaints,
43bbcdc2
PH
16467 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16468 hex_string (DW_UNSND (attr)));
01c66ae6
JB
16469 DW_UNSND (attr) = 0;
16470 }
28e94949 16471
c906108c
SS
16472 return info_ptr;
16473}
16474
a8329558
KW
16475/* Read an attribute described by an abbreviated attribute. */
16476
d521ce57 16477static const gdb_byte *
dee91e82
DE
16478read_attribute (const struct die_reader_specs *reader,
16479 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 16480 const gdb_byte *info_ptr)
a8329558
KW
16481{
16482 attr->name = abbrev->name;
dee91e82 16483 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
a8329558
KW
16484}
16485
0963b4bd 16486/* Read dwarf information from a buffer. */
c906108c
SS
16487
16488static unsigned int
a1855c1d 16489read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16490{
fe1b8b76 16491 return bfd_get_8 (abfd, buf);
c906108c
SS
16492}
16493
16494static int
a1855c1d 16495read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16496{
fe1b8b76 16497 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
16498}
16499
16500static unsigned int
a1855c1d 16501read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16502{
fe1b8b76 16503 return bfd_get_16 (abfd, buf);
c906108c
SS
16504}
16505
21ae7a4d 16506static int
a1855c1d 16507read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16508{
16509 return bfd_get_signed_16 (abfd, buf);
16510}
16511
c906108c 16512static unsigned int
a1855c1d 16513read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16514{
fe1b8b76 16515 return bfd_get_32 (abfd, buf);
c906108c
SS
16516}
16517
21ae7a4d 16518static int
a1855c1d 16519read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16520{
16521 return bfd_get_signed_32 (abfd, buf);
16522}
16523
93311388 16524static ULONGEST
a1855c1d 16525read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16526{
fe1b8b76 16527 return bfd_get_64 (abfd, buf);
c906108c
SS
16528}
16529
16530static CORE_ADDR
d521ce57 16531read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 16532 unsigned int *bytes_read)
c906108c 16533{
e7c27a73 16534 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16535 CORE_ADDR retval = 0;
16536
107d2387 16537 if (cu_header->signed_addr_p)
c906108c 16538 {
107d2387
AC
16539 switch (cu_header->addr_size)
16540 {
16541 case 2:
fe1b8b76 16542 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
16543 break;
16544 case 4:
fe1b8b76 16545 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
16546 break;
16547 case 8:
fe1b8b76 16548 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
16549 break;
16550 default:
8e65ff28 16551 internal_error (__FILE__, __LINE__,
e2e0b3e5 16552 _("read_address: bad switch, signed [in module %s]"),
659b0389 16553 bfd_get_filename (abfd));
107d2387
AC
16554 }
16555 }
16556 else
16557 {
16558 switch (cu_header->addr_size)
16559 {
16560 case 2:
fe1b8b76 16561 retval = bfd_get_16 (abfd, buf);
107d2387
AC
16562 break;
16563 case 4:
fe1b8b76 16564 retval = bfd_get_32 (abfd, buf);
107d2387
AC
16565 break;
16566 case 8:
fe1b8b76 16567 retval = bfd_get_64 (abfd, buf);
107d2387
AC
16568 break;
16569 default:
8e65ff28 16570 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
16571 _("read_address: bad switch, "
16572 "unsigned [in module %s]"),
659b0389 16573 bfd_get_filename (abfd));
107d2387 16574 }
c906108c 16575 }
64367e0a 16576
107d2387
AC
16577 *bytes_read = cu_header->addr_size;
16578 return retval;
c906108c
SS
16579}
16580
f7ef9339 16581/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
16582 specification allows the initial length to take up either 4 bytes
16583 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16584 bytes describe the length and all offsets will be 8 bytes in length
16585 instead of 4.
16586
f7ef9339
KB
16587 An older, non-standard 64-bit format is also handled by this
16588 function. The older format in question stores the initial length
16589 as an 8-byte quantity without an escape value. Lengths greater
16590 than 2^32 aren't very common which means that the initial 4 bytes
16591 is almost always zero. Since a length value of zero doesn't make
16592 sense for the 32-bit format, this initial zero can be considered to
16593 be an escape value which indicates the presence of the older 64-bit
16594 format. As written, the code can't detect (old format) lengths
917c78fc
MK
16595 greater than 4GB. If it becomes necessary to handle lengths
16596 somewhat larger than 4GB, we could allow other small values (such
16597 as the non-sensical values of 1, 2, and 3) to also be used as
16598 escape values indicating the presence of the old format.
f7ef9339 16599
917c78fc
MK
16600 The value returned via bytes_read should be used to increment the
16601 relevant pointer after calling read_initial_length().
c764a876 16602
613e1657
KB
16603 [ Note: read_initial_length() and read_offset() are based on the
16604 document entitled "DWARF Debugging Information Format", revision
f7ef9339 16605 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
16606 from:
16607
f7ef9339 16608 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 16609
613e1657
KB
16610 This document is only a draft and is subject to change. (So beware.)
16611
f7ef9339 16612 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
16613 determined empirically by examining 64-bit ELF files produced by
16614 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
16615
16616 - Kevin, July 16, 2002
613e1657
KB
16617 ] */
16618
16619static LONGEST
d521ce57 16620read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 16621{
fe1b8b76 16622 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 16623
dd373385 16624 if (length == 0xffffffff)
613e1657 16625 {
fe1b8b76 16626 length = bfd_get_64 (abfd, buf + 4);
613e1657 16627 *bytes_read = 12;
613e1657 16628 }
dd373385 16629 else if (length == 0)
f7ef9339 16630 {
dd373385 16631 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 16632 length = bfd_get_64 (abfd, buf);
f7ef9339 16633 *bytes_read = 8;
f7ef9339 16634 }
613e1657
KB
16635 else
16636 {
16637 *bytes_read = 4;
613e1657
KB
16638 }
16639
c764a876
DE
16640 return length;
16641}
dd373385 16642
c764a876
DE
16643/* Cover function for read_initial_length.
16644 Returns the length of the object at BUF, and stores the size of the
16645 initial length in *BYTES_READ and stores the size that offsets will be in
16646 *OFFSET_SIZE.
16647 If the initial length size is not equivalent to that specified in
16648 CU_HEADER then issue a complaint.
16649 This is useful when reading non-comp-unit headers. */
dd373385 16650
c764a876 16651static LONGEST
d521ce57 16652read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
16653 const struct comp_unit_head *cu_header,
16654 unsigned int *bytes_read,
16655 unsigned int *offset_size)
16656{
16657 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16658
16659 gdb_assert (cu_header->initial_length_size == 4
16660 || cu_header->initial_length_size == 8
16661 || cu_header->initial_length_size == 12);
16662
16663 if (cu_header->initial_length_size != *bytes_read)
16664 complaint (&symfile_complaints,
16665 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 16666
c764a876 16667 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 16668 return length;
613e1657
KB
16669}
16670
16671/* Read an offset from the data stream. The size of the offset is
917c78fc 16672 given by cu_header->offset_size. */
613e1657
KB
16673
16674static LONGEST
d521ce57
TT
16675read_offset (bfd *abfd, const gdb_byte *buf,
16676 const struct comp_unit_head *cu_header,
891d2f0b 16677 unsigned int *bytes_read)
c764a876
DE
16678{
16679 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 16680
c764a876
DE
16681 *bytes_read = cu_header->offset_size;
16682 return offset;
16683}
16684
16685/* Read an offset from the data stream. */
16686
16687static LONGEST
d521ce57 16688read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
16689{
16690 LONGEST retval = 0;
16691
c764a876 16692 switch (offset_size)
613e1657
KB
16693 {
16694 case 4:
fe1b8b76 16695 retval = bfd_get_32 (abfd, buf);
613e1657
KB
16696 break;
16697 case 8:
fe1b8b76 16698 retval = bfd_get_64 (abfd, buf);
613e1657
KB
16699 break;
16700 default:
8e65ff28 16701 internal_error (__FILE__, __LINE__,
c764a876 16702 _("read_offset_1: bad switch [in module %s]"),
659b0389 16703 bfd_get_filename (abfd));
613e1657
KB
16704 }
16705
917c78fc 16706 return retval;
613e1657
KB
16707}
16708
d521ce57
TT
16709static const gdb_byte *
16710read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
16711{
16712 /* If the size of a host char is 8 bits, we can return a pointer
16713 to the buffer, otherwise we have to copy the data to a buffer
16714 allocated on the temporary obstack. */
4bdf3d34 16715 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 16716 return buf;
c906108c
SS
16717}
16718
d521ce57
TT
16719static const char *
16720read_direct_string (bfd *abfd, const gdb_byte *buf,
16721 unsigned int *bytes_read_ptr)
c906108c
SS
16722{
16723 /* If the size of a host char is 8 bits, we can return a pointer
16724 to the string, otherwise we have to copy the string to a buffer
16725 allocated on the temporary obstack. */
4bdf3d34 16726 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
16727 if (*buf == '\0')
16728 {
16729 *bytes_read_ptr = 1;
16730 return NULL;
16731 }
d521ce57
TT
16732 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16733 return (const char *) buf;
4bdf3d34
JJ
16734}
16735
d521ce57 16736static const char *
cf2c3c16 16737read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
4bdf3d34 16738{
be391dca 16739 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 16740 if (dwarf2_per_objfile->str.buffer == NULL)
cf2c3c16
TT
16741 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16742 bfd_get_filename (abfd));
dce234bc 16743 if (str_offset >= dwarf2_per_objfile->str.size)
cf2c3c16
TT
16744 error (_("DW_FORM_strp pointing outside of "
16745 ".debug_str section [in module %s]"),
16746 bfd_get_filename (abfd));
4bdf3d34 16747 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 16748 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 16749 return NULL;
d521ce57 16750 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
16751}
16752
36586728
TT
16753/* Read a string at offset STR_OFFSET in the .debug_str section from
16754 the .dwz file DWZ. Throw an error if the offset is too large. If
16755 the string consists of a single NUL byte, return NULL; otherwise
16756 return a pointer to the string. */
16757
d521ce57 16758static const char *
36586728
TT
16759read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16760{
16761 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16762
16763 if (dwz->str.buffer == NULL)
16764 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16765 "section [in module %s]"),
16766 bfd_get_filename (dwz->dwz_bfd));
16767 if (str_offset >= dwz->str.size)
16768 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16769 ".debug_str section [in module %s]"),
16770 bfd_get_filename (dwz->dwz_bfd));
16771 gdb_assert (HOST_CHAR_BIT == 8);
16772 if (dwz->str.buffer[str_offset] == '\0')
16773 return NULL;
d521ce57 16774 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
16775}
16776
d521ce57
TT
16777static const char *
16778read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
16779 const struct comp_unit_head *cu_header,
16780 unsigned int *bytes_read_ptr)
16781{
16782 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16783
16784 return read_indirect_string_at_offset (abfd, str_offset);
16785}
16786
12df843f 16787static ULONGEST
d521ce57
TT
16788read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16789 unsigned int *bytes_read_ptr)
c906108c 16790{
12df843f 16791 ULONGEST result;
ce5d95e1 16792 unsigned int num_read;
870f88f7 16793 int shift;
c906108c
SS
16794 unsigned char byte;
16795
16796 result = 0;
16797 shift = 0;
16798 num_read = 0;
c906108c
SS
16799 while (1)
16800 {
fe1b8b76 16801 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16802 buf++;
16803 num_read++;
12df843f 16804 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
16805 if ((byte & 128) == 0)
16806 {
16807 break;
16808 }
16809 shift += 7;
16810 }
16811 *bytes_read_ptr = num_read;
16812 return result;
16813}
16814
12df843f 16815static LONGEST
d521ce57
TT
16816read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16817 unsigned int *bytes_read_ptr)
c906108c 16818{
12df843f 16819 LONGEST result;
870f88f7 16820 int shift, num_read;
c906108c
SS
16821 unsigned char byte;
16822
16823 result = 0;
16824 shift = 0;
c906108c 16825 num_read = 0;
c906108c
SS
16826 while (1)
16827 {
fe1b8b76 16828 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16829 buf++;
16830 num_read++;
12df843f 16831 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
16832 shift += 7;
16833 if ((byte & 128) == 0)
16834 {
16835 break;
16836 }
16837 }
77e0b926 16838 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 16839 result |= -(((LONGEST) 1) << shift);
c906108c
SS
16840 *bytes_read_ptr = num_read;
16841 return result;
16842}
16843
3019eac3
DE
16844/* Given index ADDR_INDEX in .debug_addr, fetch the value.
16845 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16846 ADDR_SIZE is the size of addresses from the CU header. */
16847
16848static CORE_ADDR
16849read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16850{
16851 struct objfile *objfile = dwarf2_per_objfile->objfile;
16852 bfd *abfd = objfile->obfd;
16853 const gdb_byte *info_ptr;
16854
16855 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16856 if (dwarf2_per_objfile->addr.buffer == NULL)
16857 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 16858 objfile_name (objfile));
3019eac3
DE
16859 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16860 error (_("DW_FORM_addr_index pointing outside of "
16861 ".debug_addr section [in module %s]"),
4262abfb 16862 objfile_name (objfile));
3019eac3
DE
16863 info_ptr = (dwarf2_per_objfile->addr.buffer
16864 + addr_base + addr_index * addr_size);
16865 if (addr_size == 4)
16866 return bfd_get_32 (abfd, info_ptr);
16867 else
16868 return bfd_get_64 (abfd, info_ptr);
16869}
16870
16871/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16872
16873static CORE_ADDR
16874read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16875{
16876 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16877}
16878
16879/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16880
16881static CORE_ADDR
d521ce57 16882read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
16883 unsigned int *bytes_read)
16884{
16885 bfd *abfd = cu->objfile->obfd;
16886 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16887
16888 return read_addr_index (cu, addr_index);
16889}
16890
16891/* Data structure to pass results from dwarf2_read_addr_index_reader
16892 back to dwarf2_read_addr_index. */
16893
16894struct dwarf2_read_addr_index_data
16895{
16896 ULONGEST addr_base;
16897 int addr_size;
16898};
16899
16900/* die_reader_func for dwarf2_read_addr_index. */
16901
16902static void
16903dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 16904 const gdb_byte *info_ptr,
3019eac3
DE
16905 struct die_info *comp_unit_die,
16906 int has_children,
16907 void *data)
16908{
16909 struct dwarf2_cu *cu = reader->cu;
16910 struct dwarf2_read_addr_index_data *aidata =
16911 (struct dwarf2_read_addr_index_data *) data;
16912
16913 aidata->addr_base = cu->addr_base;
16914 aidata->addr_size = cu->header.addr_size;
16915}
16916
16917/* Given an index in .debug_addr, fetch the value.
16918 NOTE: This can be called during dwarf expression evaluation,
16919 long after the debug information has been read, and thus per_cu->cu
16920 may no longer exist. */
16921
16922CORE_ADDR
16923dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16924 unsigned int addr_index)
16925{
16926 struct objfile *objfile = per_cu->objfile;
16927 struct dwarf2_cu *cu = per_cu->cu;
16928 ULONGEST addr_base;
16929 int addr_size;
16930
16931 /* This is intended to be called from outside this file. */
16932 dw2_setup (objfile);
16933
16934 /* We need addr_base and addr_size.
16935 If we don't have PER_CU->cu, we have to get it.
16936 Nasty, but the alternative is storing the needed info in PER_CU,
16937 which at this point doesn't seem justified: it's not clear how frequently
16938 it would get used and it would increase the size of every PER_CU.
16939 Entry points like dwarf2_per_cu_addr_size do a similar thing
16940 so we're not in uncharted territory here.
16941 Alas we need to be a bit more complicated as addr_base is contained
16942 in the DIE.
16943
16944 We don't need to read the entire CU(/TU).
16945 We just need the header and top level die.
a1b64ce1 16946
3019eac3 16947 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 16948 For now we skip this optimization. */
3019eac3
DE
16949
16950 if (cu != NULL)
16951 {
16952 addr_base = cu->addr_base;
16953 addr_size = cu->header.addr_size;
16954 }
16955 else
16956 {
16957 struct dwarf2_read_addr_index_data aidata;
16958
a1b64ce1
DE
16959 /* Note: We can't use init_cutu_and_read_dies_simple here,
16960 we need addr_base. */
16961 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16962 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
16963 addr_base = aidata.addr_base;
16964 addr_size = aidata.addr_size;
16965 }
16966
16967 return read_addr_index_1 (addr_index, addr_base, addr_size);
16968}
16969
57d63ce2
DE
16970/* Given a DW_FORM_GNU_str_index, fetch the string.
16971 This is only used by the Fission support. */
3019eac3 16972
d521ce57 16973static const char *
342587c4 16974read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
3019eac3
DE
16975{
16976 struct objfile *objfile = dwarf2_per_objfile->objfile;
c5164cbc 16977 const char *objf_name = objfile_name (objfile);
3019eac3 16978 bfd *abfd = objfile->obfd;
342587c4 16979 struct dwarf2_cu *cu = reader->cu;
73869dc2
DE
16980 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16981 struct dwarf2_section_info *str_offsets_section =
16982 &reader->dwo_file->sections.str_offsets;
d521ce57 16983 const gdb_byte *info_ptr;
3019eac3 16984 ULONGEST str_offset;
57d63ce2 16985 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 16986
73869dc2
DE
16987 dwarf2_read_section (objfile, str_section);
16988 dwarf2_read_section (objfile, str_offsets_section);
16989 if (str_section->buffer == NULL)
57d63ce2 16990 error (_("%s used without .debug_str.dwo section"
3019eac3 16991 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16992 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16993 if (str_offsets_section->buffer == NULL)
57d63ce2 16994 error (_("%s used without .debug_str_offsets.dwo section"
3019eac3 16995 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16996 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16997 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 16998 error (_("%s pointing outside of .debug_str_offsets.dwo"
3019eac3 16999 " section in CU at offset 0x%lx [in module %s]"),
c5164cbc 17000 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 17001 info_ptr = (str_offsets_section->buffer
3019eac3
DE
17002 + str_index * cu->header.offset_size);
17003 if (cu->header.offset_size == 4)
17004 str_offset = bfd_get_32 (abfd, info_ptr);
17005 else
17006 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 17007 if (str_offset >= str_section->size)
57d63ce2 17008 error (_("Offset from %s pointing outside of"
3019eac3 17009 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
c5164cbc 17010 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 17011 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
17012}
17013
3019eac3
DE
17014/* Return the length of an LEB128 number in BUF. */
17015
17016static int
17017leb128_size (const gdb_byte *buf)
17018{
17019 const gdb_byte *begin = buf;
17020 gdb_byte byte;
17021
17022 while (1)
17023 {
17024 byte = *buf++;
17025 if ((byte & 128) == 0)
17026 return buf - begin;
17027 }
17028}
17029
c906108c 17030static void
e142c38c 17031set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
17032{
17033 switch (lang)
17034 {
17035 case DW_LANG_C89:
76bee0cc 17036 case DW_LANG_C99:
0cfd832f 17037 case DW_LANG_C11:
c906108c 17038 case DW_LANG_C:
d1be3247 17039 case DW_LANG_UPC:
e142c38c 17040 cu->language = language_c;
c906108c 17041 break;
9c37b5ae 17042 case DW_LANG_Java:
c906108c 17043 case DW_LANG_C_plus_plus:
0cfd832f
MW
17044 case DW_LANG_C_plus_plus_11:
17045 case DW_LANG_C_plus_plus_14:
e142c38c 17046 cu->language = language_cplus;
c906108c 17047 break;
6aecb9c2
JB
17048 case DW_LANG_D:
17049 cu->language = language_d;
17050 break;
c906108c
SS
17051 case DW_LANG_Fortran77:
17052 case DW_LANG_Fortran90:
b21b22e0 17053 case DW_LANG_Fortran95:
f7de9aab
MW
17054 case DW_LANG_Fortran03:
17055 case DW_LANG_Fortran08:
e142c38c 17056 cu->language = language_fortran;
c906108c 17057 break;
a766d390
DE
17058 case DW_LANG_Go:
17059 cu->language = language_go;
17060 break;
c906108c 17061 case DW_LANG_Mips_Assembler:
e142c38c 17062 cu->language = language_asm;
c906108c
SS
17063 break;
17064 case DW_LANG_Ada83:
8aaf0b47 17065 case DW_LANG_Ada95:
bc5f45f8
JB
17066 cu->language = language_ada;
17067 break;
72019c9c
GM
17068 case DW_LANG_Modula2:
17069 cu->language = language_m2;
17070 break;
fe8e67fd
PM
17071 case DW_LANG_Pascal83:
17072 cu->language = language_pascal;
17073 break;
22566fbd
DJ
17074 case DW_LANG_ObjC:
17075 cu->language = language_objc;
17076 break;
c44af4eb
TT
17077 case DW_LANG_Rust:
17078 case DW_LANG_Rust_old:
17079 cu->language = language_rust;
17080 break;
c906108c
SS
17081 case DW_LANG_Cobol74:
17082 case DW_LANG_Cobol85:
c906108c 17083 default:
e142c38c 17084 cu->language = language_minimal;
c906108c
SS
17085 break;
17086 }
e142c38c 17087 cu->language_defn = language_def (cu->language);
c906108c
SS
17088}
17089
17090/* Return the named attribute or NULL if not there. */
17091
17092static struct attribute *
e142c38c 17093dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 17094{
a48e046c 17095 for (;;)
c906108c 17096 {
a48e046c
TT
17097 unsigned int i;
17098 struct attribute *spec = NULL;
17099
17100 for (i = 0; i < die->num_attrs; ++i)
17101 {
17102 if (die->attrs[i].name == name)
17103 return &die->attrs[i];
17104 if (die->attrs[i].name == DW_AT_specification
17105 || die->attrs[i].name == DW_AT_abstract_origin)
17106 spec = &die->attrs[i];
17107 }
17108
17109 if (!spec)
17110 break;
c906108c 17111
f2f0e013 17112 die = follow_die_ref (die, spec, &cu);
f2f0e013 17113 }
c5aa993b 17114
c906108c
SS
17115 return NULL;
17116}
17117
348e048f
DE
17118/* Return the named attribute or NULL if not there,
17119 but do not follow DW_AT_specification, etc.
17120 This is for use in contexts where we're reading .debug_types dies.
17121 Following DW_AT_specification, DW_AT_abstract_origin will take us
17122 back up the chain, and we want to go down. */
17123
17124static struct attribute *
45e58e77 17125dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
17126{
17127 unsigned int i;
17128
17129 for (i = 0; i < die->num_attrs; ++i)
17130 if (die->attrs[i].name == name)
17131 return &die->attrs[i];
17132
17133 return NULL;
17134}
17135
7d45c7c3
KB
17136/* Return the string associated with a string-typed attribute, or NULL if it
17137 is either not found or is of an incorrect type. */
17138
17139static const char *
17140dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17141{
17142 struct attribute *attr;
17143 const char *str = NULL;
17144
17145 attr = dwarf2_attr (die, name, cu);
17146
17147 if (attr != NULL)
17148 {
17149 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_string
17150 || attr->form == DW_FORM_GNU_strp_alt)
17151 str = DW_STRING (attr);
17152 else
17153 complaint (&symfile_complaints,
17154 _("string type expected for attribute %s for "
17155 "DIE at 0x%x in module %s"),
17156 dwarf_attr_name (name), die->offset.sect_off,
17157 objfile_name (cu->objfile));
17158 }
17159
17160 return str;
17161}
17162
05cf31d1
JB
17163/* Return non-zero iff the attribute NAME is defined for the given DIE,
17164 and holds a non-zero value. This function should only be used for
2dc7f7b3 17165 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
17166
17167static int
17168dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17169{
17170 struct attribute *attr = dwarf2_attr (die, name, cu);
17171
17172 return (attr && DW_UNSND (attr));
17173}
17174
3ca72b44 17175static int
e142c38c 17176die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 17177{
05cf31d1
JB
17178 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17179 which value is non-zero. However, we have to be careful with
17180 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17181 (via dwarf2_flag_true_p) follows this attribute. So we may
17182 end up accidently finding a declaration attribute that belongs
17183 to a different DIE referenced by the specification attribute,
17184 even though the given DIE does not have a declaration attribute. */
17185 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17186 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
17187}
17188
63d06c5c 17189/* Return the die giving the specification for DIE, if there is
f2f0e013 17190 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
17191 containing the return value on output. If there is no
17192 specification, but there is an abstract origin, that is
17193 returned. */
63d06c5c
DC
17194
17195static struct die_info *
f2f0e013 17196die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 17197{
f2f0e013
DJ
17198 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17199 *spec_cu);
63d06c5c 17200
edb3359d
DJ
17201 if (spec_attr == NULL)
17202 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17203
63d06c5c
DC
17204 if (spec_attr == NULL)
17205 return NULL;
17206 else
f2f0e013 17207 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 17208}
c906108c 17209
debd256d 17210/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
17211 refers to.
17212 NOTE: This is also used as a "cleanup" function. */
17213
debd256d
JB
17214static void
17215free_line_header (struct line_header *lh)
17216{
17217 if (lh->standard_opcode_lengths)
a8bc7b56 17218 xfree (lh->standard_opcode_lengths);
debd256d
JB
17219
17220 /* Remember that all the lh->file_names[i].name pointers are
17221 pointers into debug_line_buffer, and don't need to be freed. */
17222 if (lh->file_names)
a8bc7b56 17223 xfree (lh->file_names);
debd256d
JB
17224
17225 /* Similarly for the include directory names. */
17226 if (lh->include_dirs)
a8bc7b56 17227 xfree (lh->include_dirs);
debd256d 17228
a8bc7b56 17229 xfree (lh);
debd256d
JB
17230}
17231
527f3840
JK
17232/* Stub for free_line_header to match void * callback types. */
17233
17234static void
17235free_line_header_voidp (void *arg)
17236{
9a3c8263 17237 struct line_header *lh = (struct line_header *) arg;
527f3840
JK
17238
17239 free_line_header (lh);
17240}
17241
debd256d 17242/* Add an entry to LH's include directory table. */
ae2de4f8 17243
debd256d 17244static void
d521ce57 17245add_include_dir (struct line_header *lh, const char *include_dir)
c906108c 17246{
27e0867f
DE
17247 if (dwarf_line_debug >= 2)
17248 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17249 lh->num_include_dirs + 1, include_dir);
17250
debd256d
JB
17251 /* Grow the array if necessary. */
17252 if (lh->include_dirs_size == 0)
c5aa993b 17253 {
debd256d 17254 lh->include_dirs_size = 1; /* for testing */
8d749320 17255 lh->include_dirs = XNEWVEC (const char *, lh->include_dirs_size);
debd256d
JB
17256 }
17257 else if (lh->num_include_dirs >= lh->include_dirs_size)
17258 {
17259 lh->include_dirs_size *= 2;
8d749320
SM
17260 lh->include_dirs = XRESIZEVEC (const char *, lh->include_dirs,
17261 lh->include_dirs_size);
c5aa993b 17262 }
c906108c 17263
debd256d
JB
17264 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17265}
6e70227d 17266
debd256d 17267/* Add an entry to LH's file name table. */
ae2de4f8 17268
debd256d
JB
17269static void
17270add_file_name (struct line_header *lh,
d521ce57 17271 const char *name,
debd256d
JB
17272 unsigned int dir_index,
17273 unsigned int mod_time,
17274 unsigned int length)
17275{
17276 struct file_entry *fe;
17277
27e0867f
DE
17278 if (dwarf_line_debug >= 2)
17279 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17280 lh->num_file_names + 1, name);
17281
debd256d
JB
17282 /* Grow the array if necessary. */
17283 if (lh->file_names_size == 0)
17284 {
17285 lh->file_names_size = 1; /* for testing */
8d749320 17286 lh->file_names = XNEWVEC (struct file_entry, lh->file_names_size);
debd256d
JB
17287 }
17288 else if (lh->num_file_names >= lh->file_names_size)
17289 {
17290 lh->file_names_size *= 2;
224c3ddb
SM
17291 lh->file_names
17292 = XRESIZEVEC (struct file_entry, lh->file_names, lh->file_names_size);
debd256d
JB
17293 }
17294
17295 fe = &lh->file_names[lh->num_file_names++];
17296 fe->name = name;
17297 fe->dir_index = dir_index;
17298 fe->mod_time = mod_time;
17299 fe->length = length;
aaa75496 17300 fe->included_p = 0;
cb1df416 17301 fe->symtab = NULL;
debd256d 17302}
6e70227d 17303
83769d0b 17304/* A convenience function to find the proper .debug_line section for a CU. */
36586728
TT
17305
17306static struct dwarf2_section_info *
17307get_debug_line_section (struct dwarf2_cu *cu)
17308{
17309 struct dwarf2_section_info *section;
17310
17311 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17312 DWO file. */
17313 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17314 section = &cu->dwo_unit->dwo_file->sections.line;
17315 else if (cu->per_cu->is_dwz)
17316 {
17317 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17318
17319 section = &dwz->line;
17320 }
17321 else
17322 section = &dwarf2_per_objfile->line;
17323
17324 return section;
17325}
17326
debd256d 17327/* Read the statement program header starting at OFFSET in
3019eac3 17328 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 17329 to a struct line_header, allocated using xmalloc.
cd366ee8
DE
17330 Returns NULL if there is a problem reading the header, e.g., if it
17331 has a version we don't understand.
debd256d
JB
17332
17333 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
17334 the returned object point into the dwarf line section buffer,
17335 and must not be freed. */
ae2de4f8 17336
debd256d 17337static struct line_header *
3019eac3 17338dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
debd256d
JB
17339{
17340 struct cleanup *back_to;
17341 struct line_header *lh;
d521ce57 17342 const gdb_byte *line_ptr;
c764a876 17343 unsigned int bytes_read, offset_size;
debd256d 17344 int i;
d521ce57 17345 const char *cur_dir, *cur_file;
3019eac3
DE
17346 struct dwarf2_section_info *section;
17347 bfd *abfd;
17348
36586728 17349 section = get_debug_line_section (cu);
3019eac3
DE
17350 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17351 if (section->buffer == NULL)
debd256d 17352 {
3019eac3
DE
17353 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17354 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17355 else
17356 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
17357 return 0;
17358 }
17359
fceca515
DE
17360 /* We can't do this until we know the section is non-empty.
17361 Only then do we know we have such a section. */
a32a8923 17362 abfd = get_section_bfd_owner (section);
fceca515 17363
a738430d
MK
17364 /* Make sure that at least there's room for the total_length field.
17365 That could be 12 bytes long, but we're just going to fudge that. */
3019eac3 17366 if (offset + 4 >= section->size)
debd256d 17367 {
4d3c2250 17368 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
17369 return 0;
17370 }
17371
8d749320 17372 lh = XNEW (struct line_header);
debd256d
JB
17373 memset (lh, 0, sizeof (*lh));
17374 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17375 (void *) lh);
17376
527f3840
JK
17377 lh->offset.sect_off = offset;
17378 lh->offset_in_dwz = cu->per_cu->is_dwz;
17379
3019eac3 17380 line_ptr = section->buffer + offset;
debd256d 17381
a738430d 17382 /* Read in the header. */
6e70227d 17383 lh->total_length =
c764a876
DE
17384 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17385 &bytes_read, &offset_size);
debd256d 17386 line_ptr += bytes_read;
3019eac3 17387 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 17388 {
4d3c2250 17389 dwarf2_statement_list_fits_in_line_number_section_complaint ();
2f324bf6 17390 do_cleanups (back_to);
debd256d
JB
17391 return 0;
17392 }
17393 lh->statement_program_end = line_ptr + lh->total_length;
17394 lh->version = read_2_bytes (abfd, line_ptr);
17395 line_ptr += 2;
cd366ee8
DE
17396 if (lh->version > 4)
17397 {
17398 /* This is a version we don't understand. The format could have
17399 changed in ways we don't handle properly so just punt. */
17400 complaint (&symfile_complaints,
17401 _("unsupported version in .debug_line section"));
17402 return NULL;
17403 }
c764a876
DE
17404 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17405 line_ptr += offset_size;
debd256d
JB
17406 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17407 line_ptr += 1;
2dc7f7b3
TT
17408 if (lh->version >= 4)
17409 {
17410 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17411 line_ptr += 1;
17412 }
17413 else
17414 lh->maximum_ops_per_instruction = 1;
17415
17416 if (lh->maximum_ops_per_instruction == 0)
17417 {
17418 lh->maximum_ops_per_instruction = 1;
17419 complaint (&symfile_complaints,
3e43a32a
MS
17420 _("invalid maximum_ops_per_instruction "
17421 "in `.debug_line' section"));
2dc7f7b3
TT
17422 }
17423
debd256d
JB
17424 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17425 line_ptr += 1;
17426 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17427 line_ptr += 1;
17428 lh->line_range = read_1_byte (abfd, line_ptr);
17429 line_ptr += 1;
17430 lh->opcode_base = read_1_byte (abfd, line_ptr);
17431 line_ptr += 1;
8d749320 17432 lh->standard_opcode_lengths = XNEWVEC (unsigned char, lh->opcode_base);
debd256d
JB
17433
17434 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17435 for (i = 1; i < lh->opcode_base; ++i)
17436 {
17437 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17438 line_ptr += 1;
17439 }
17440
a738430d 17441 /* Read directory table. */
9b1c24c8 17442 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17443 {
17444 line_ptr += bytes_read;
17445 add_include_dir (lh, cur_dir);
17446 }
17447 line_ptr += bytes_read;
17448
a738430d 17449 /* Read file name table. */
9b1c24c8 17450 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17451 {
17452 unsigned int dir_index, mod_time, length;
17453
17454 line_ptr += bytes_read;
17455 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17456 line_ptr += bytes_read;
17457 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17458 line_ptr += bytes_read;
17459 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17460 line_ptr += bytes_read;
17461
17462 add_file_name (lh, cur_file, dir_index, mod_time, length);
17463 }
17464 line_ptr += bytes_read;
6e70227d 17465 lh->statement_program_start = line_ptr;
debd256d 17466
3019eac3 17467 if (line_ptr > (section->buffer + section->size))
4d3c2250 17468 complaint (&symfile_complaints,
3e43a32a
MS
17469 _("line number info header doesn't "
17470 "fit in `.debug_line' section"));
debd256d
JB
17471
17472 discard_cleanups (back_to);
17473 return lh;
17474}
c906108c 17475
c6da4cef
DE
17476/* Subroutine of dwarf_decode_lines to simplify it.
17477 Return the file name of the psymtab for included file FILE_INDEX
17478 in line header LH of PST.
17479 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17480 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
17481 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17482
17483 The function creates dangling cleanup registration. */
c6da4cef 17484
d521ce57 17485static const char *
c6da4cef
DE
17486psymtab_include_file_name (const struct line_header *lh, int file_index,
17487 const struct partial_symtab *pst,
17488 const char *comp_dir)
17489{
17490 const struct file_entry fe = lh->file_names [file_index];
d521ce57
TT
17491 const char *include_name = fe.name;
17492 const char *include_name_to_compare = include_name;
17493 const char *dir_name = NULL;
72b9f47f
TT
17494 const char *pst_filename;
17495 char *copied_name = NULL;
c6da4cef
DE
17496 int file_is_pst;
17497
afa6c9ab 17498 if (fe.dir_index && lh->include_dirs != NULL)
c6da4cef
DE
17499 dir_name = lh->include_dirs[fe.dir_index - 1];
17500
17501 if (!IS_ABSOLUTE_PATH (include_name)
17502 && (dir_name != NULL || comp_dir != NULL))
17503 {
17504 /* Avoid creating a duplicate psymtab for PST.
17505 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17506 Before we do the comparison, however, we need to account
17507 for DIR_NAME and COMP_DIR.
17508 First prepend dir_name (if non-NULL). If we still don't
17509 have an absolute path prepend comp_dir (if non-NULL).
17510 However, the directory we record in the include-file's
17511 psymtab does not contain COMP_DIR (to match the
17512 corresponding symtab(s)).
17513
17514 Example:
17515
17516 bash$ cd /tmp
17517 bash$ gcc -g ./hello.c
17518 include_name = "hello.c"
17519 dir_name = "."
17520 DW_AT_comp_dir = comp_dir = "/tmp"
5f52445b
YQ
17521 DW_AT_name = "./hello.c"
17522
17523 */
c6da4cef
DE
17524
17525 if (dir_name != NULL)
17526 {
d521ce57
TT
17527 char *tem = concat (dir_name, SLASH_STRING,
17528 include_name, (char *)NULL);
17529
17530 make_cleanup (xfree, tem);
17531 include_name = tem;
c6da4cef 17532 include_name_to_compare = include_name;
c6da4cef
DE
17533 }
17534 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17535 {
d521ce57
TT
17536 char *tem = concat (comp_dir, SLASH_STRING,
17537 include_name, (char *)NULL);
17538
17539 make_cleanup (xfree, tem);
17540 include_name_to_compare = tem;
c6da4cef
DE
17541 }
17542 }
17543
17544 pst_filename = pst->filename;
17545 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17546 {
72b9f47f
TT
17547 copied_name = concat (pst->dirname, SLASH_STRING,
17548 pst_filename, (char *)NULL);
17549 pst_filename = copied_name;
c6da4cef
DE
17550 }
17551
1e3fad37 17552 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 17553
72b9f47f
TT
17554 if (copied_name != NULL)
17555 xfree (copied_name);
c6da4cef
DE
17556
17557 if (file_is_pst)
17558 return NULL;
17559 return include_name;
17560}
17561
d9b3de22
DE
17562/* State machine to track the state of the line number program. */
17563
17564typedef struct
17565{
17566 /* These are part of the standard DWARF line number state machine. */
17567
17568 unsigned char op_index;
17569 unsigned int file;
17570 unsigned int line;
17571 CORE_ADDR address;
17572 int is_stmt;
17573 unsigned int discriminator;
17574
17575 /* Additional bits of state we need to track. */
17576
17577 /* The last file that we called dwarf2_start_subfile for.
17578 This is only used for TLLs. */
17579 unsigned int last_file;
17580 /* The last file a line number was recorded for. */
17581 struct subfile *last_subfile;
17582
17583 /* The function to call to record a line. */
17584 record_line_ftype *record_line;
17585
17586 /* The last line number that was recorded, used to coalesce
17587 consecutive entries for the same line. This can happen, for
17588 example, when discriminators are present. PR 17276. */
17589 unsigned int last_line;
17590 int line_has_non_zero_discriminator;
17591} lnp_state_machine;
17592
17593/* There's a lot of static state to pass to dwarf_record_line.
17594 This keeps it all together. */
17595
17596typedef struct
17597{
17598 /* The gdbarch. */
17599 struct gdbarch *gdbarch;
17600
17601 /* The line number header. */
17602 struct line_header *line_header;
17603
17604 /* Non-zero if we're recording lines.
17605 Otherwise we're building partial symtabs and are just interested in
17606 finding include files mentioned by the line number program. */
17607 int record_lines_p;
17608} lnp_reader_state;
17609
c91513d8
PP
17610/* Ignore this record_line request. */
17611
17612static void
17613noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17614{
17615 return;
17616}
17617
a05a36a5
DE
17618/* Return non-zero if we should add LINE to the line number table.
17619 LINE is the line to add, LAST_LINE is the last line that was added,
17620 LAST_SUBFILE is the subfile for LAST_LINE.
17621 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17622 had a non-zero discriminator.
17623
17624 We have to be careful in the presence of discriminators.
17625 E.g., for this line:
17626
17627 for (i = 0; i < 100000; i++);
17628
17629 clang can emit four line number entries for that one line,
17630 each with a different discriminator.
17631 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17632
17633 However, we want gdb to coalesce all four entries into one.
17634 Otherwise the user could stepi into the middle of the line and
17635 gdb would get confused about whether the pc really was in the
17636 middle of the line.
17637
17638 Things are further complicated by the fact that two consecutive
17639 line number entries for the same line is a heuristic used by gcc
17640 to denote the end of the prologue. So we can't just discard duplicate
17641 entries, we have to be selective about it. The heuristic we use is
17642 that we only collapse consecutive entries for the same line if at least
17643 one of those entries has a non-zero discriminator. PR 17276.
17644
17645 Note: Addresses in the line number state machine can never go backwards
17646 within one sequence, thus this coalescing is ok. */
17647
17648static int
17649dwarf_record_line_p (unsigned int line, unsigned int last_line,
17650 int line_has_non_zero_discriminator,
17651 struct subfile *last_subfile)
17652{
17653 if (current_subfile != last_subfile)
17654 return 1;
17655 if (line != last_line)
17656 return 1;
17657 /* Same line for the same file that we've seen already.
17658 As a last check, for pr 17276, only record the line if the line
17659 has never had a non-zero discriminator. */
17660 if (!line_has_non_zero_discriminator)
17661 return 1;
17662 return 0;
17663}
17664
252a6764
DE
17665/* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17666 in the line table of subfile SUBFILE. */
17667
17668static void
d9b3de22
DE
17669dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
17670 unsigned int line, CORE_ADDR address,
17671 record_line_ftype p_record_line)
252a6764
DE
17672{
17673 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17674
27e0867f
DE
17675 if (dwarf_line_debug)
17676 {
17677 fprintf_unfiltered (gdb_stdlog,
17678 "Recording line %u, file %s, address %s\n",
17679 line, lbasename (subfile->name),
17680 paddress (gdbarch, address));
17681 }
17682
d5962de5 17683 (*p_record_line) (subfile, line, addr);
252a6764
DE
17684}
17685
17686/* Subroutine of dwarf_decode_lines_1 to simplify it.
17687 Mark the end of a set of line number records.
d9b3de22 17688 The arguments are the same as for dwarf_record_line_1.
252a6764
DE
17689 If SUBFILE is NULL the request is ignored. */
17690
17691static void
17692dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17693 CORE_ADDR address, record_line_ftype p_record_line)
17694{
27e0867f
DE
17695 if (subfile == NULL)
17696 return;
17697
17698 if (dwarf_line_debug)
17699 {
17700 fprintf_unfiltered (gdb_stdlog,
17701 "Finishing current line, file %s, address %s\n",
17702 lbasename (subfile->name),
17703 paddress (gdbarch, address));
17704 }
17705
d9b3de22
DE
17706 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
17707}
17708
17709/* Record the line in STATE.
17710 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
17711
17712static void
17713dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
17714 int end_sequence)
17715{
17716 const struct line_header *lh = reader->line_header;
17717 unsigned int file, line, discriminator;
17718 int is_stmt;
17719
17720 file = state->file;
17721 line = state->line;
17722 is_stmt = state->is_stmt;
17723 discriminator = state->discriminator;
17724
17725 if (dwarf_line_debug)
17726 {
17727 fprintf_unfiltered (gdb_stdlog,
17728 "Processing actual line %u: file %u,"
17729 " address %s, is_stmt %u, discrim %u\n",
17730 line, file,
17731 paddress (reader->gdbarch, state->address),
17732 is_stmt, discriminator);
17733 }
17734
17735 if (file == 0 || file - 1 >= lh->num_file_names)
17736 dwarf2_debug_line_missing_file_complaint ();
17737 /* For now we ignore lines not starting on an instruction boundary.
17738 But not when processing end_sequence for compatibility with the
17739 previous version of the code. */
17740 else if (state->op_index == 0 || end_sequence)
17741 {
17742 lh->file_names[file - 1].included_p = 1;
17743 if (reader->record_lines_p && is_stmt)
17744 {
e815d2d2 17745 if (state->last_subfile != current_subfile || end_sequence)
d9b3de22
DE
17746 {
17747 dwarf_finish_line (reader->gdbarch, state->last_subfile,
17748 state->address, state->record_line);
17749 }
17750
17751 if (!end_sequence)
17752 {
17753 if (dwarf_record_line_p (line, state->last_line,
17754 state->line_has_non_zero_discriminator,
17755 state->last_subfile))
17756 {
17757 dwarf_record_line_1 (reader->gdbarch, current_subfile,
17758 line, state->address,
17759 state->record_line);
17760 }
17761 state->last_subfile = current_subfile;
17762 state->last_line = line;
17763 }
17764 }
17765 }
17766}
17767
17768/* Initialize STATE for the start of a line number program. */
17769
17770static void
17771init_lnp_state_machine (lnp_state_machine *state,
17772 const lnp_reader_state *reader)
17773{
17774 memset (state, 0, sizeof (*state));
17775
17776 /* Just starting, there is no "last file". */
17777 state->last_file = 0;
17778 state->last_subfile = NULL;
17779
17780 state->record_line = record_line;
17781
17782 state->last_line = 0;
17783 state->line_has_non_zero_discriminator = 0;
17784
17785 /* Initialize these according to the DWARF spec. */
17786 state->op_index = 0;
17787 state->file = 1;
17788 state->line = 1;
17789 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
17790 was a line entry for it so that the backend has a chance to adjust it
17791 and also record it in case it needs it. This is currently used by MIPS
17792 code, cf. `mips_adjust_dwarf2_line'. */
17793 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
17794 state->is_stmt = reader->line_header->default_is_stmt;
17795 state->discriminator = 0;
252a6764
DE
17796}
17797
924c2928
DE
17798/* Check address and if invalid nop-out the rest of the lines in this
17799 sequence. */
17800
17801static void
d9b3de22 17802check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
924c2928
DE
17803 const gdb_byte *line_ptr,
17804 CORE_ADDR lowpc, CORE_ADDR address)
17805{
17806 /* If address < lowpc then it's not a usable value, it's outside the
17807 pc range of the CU. However, we restrict the test to only address
17808 values of zero to preserve GDB's previous behaviour which is to
17809 handle the specific case of a function being GC'd by the linker. */
17810
17811 if (address == 0 && address < lowpc)
17812 {
17813 /* This line table is for a function which has been
17814 GCd by the linker. Ignore it. PR gdb/12528 */
17815
17816 struct objfile *objfile = cu->objfile;
17817 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
17818
17819 complaint (&symfile_complaints,
17820 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
17821 line_offset, objfile_name (objfile));
d9b3de22
DE
17822 state->record_line = noop_record_line;
17823 /* Note: sm.record_line is left as noop_record_line
924c2928
DE
17824 until we see DW_LNE_end_sequence. */
17825 }
17826}
17827
f3f5162e 17828/* Subroutine of dwarf_decode_lines to simplify it.
d9b3de22
DE
17829 Process the line number information in LH.
17830 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
17831 program in order to set included_p for every referenced header. */
debd256d 17832
c906108c 17833static void
43f3e411
DE
17834dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17835 const int decode_for_pst_p, CORE_ADDR lowpc)
c906108c 17836{
d521ce57
TT
17837 const gdb_byte *line_ptr, *extended_end;
17838 const gdb_byte *line_end;
a8c50c1f 17839 unsigned int bytes_read, extended_len;
699ca60a 17840 unsigned char op_code, extended_op;
e142c38c
DJ
17841 CORE_ADDR baseaddr;
17842 struct objfile *objfile = cu->objfile;
f3f5162e 17843 bfd *abfd = objfile->obfd;
fbf65064 17844 struct gdbarch *gdbarch = get_objfile_arch (objfile);
d9b3de22
DE
17845 /* Non-zero if we're recording line info (as opposed to building partial
17846 symtabs). */
17847 int record_lines_p = !decode_for_pst_p;
17848 /* A collection of things we need to pass to dwarf_record_line. */
17849 lnp_reader_state reader_state;
e142c38c
DJ
17850
17851 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 17852
debd256d
JB
17853 line_ptr = lh->statement_program_start;
17854 line_end = lh->statement_program_end;
c906108c 17855
d9b3de22
DE
17856 reader_state.gdbarch = gdbarch;
17857 reader_state.line_header = lh;
17858 reader_state.record_lines_p = record_lines_p;
17859
c906108c
SS
17860 /* Read the statement sequences until there's nothing left. */
17861 while (line_ptr < line_end)
17862 {
d9b3de22
DE
17863 /* The DWARF line number program state machine. */
17864 lnp_state_machine state_machine;
c906108c 17865 int end_sequence = 0;
d9b3de22
DE
17866
17867 /* Reset the state machine at the start of each sequence. */
17868 init_lnp_state_machine (&state_machine, &reader_state);
17869
17870 if (record_lines_p && lh->num_file_names >= state_machine.file)
c906108c 17871 {
aaa75496 17872 /* Start a subfile for the current file of the state machine. */
debd256d
JB
17873 /* lh->include_dirs and lh->file_names are 0-based, but the
17874 directory and file name numbers in the statement program
17875 are 1-based. */
d9b3de22 17876 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
d521ce57 17877 const char *dir = NULL;
a738430d 17878
afa6c9ab 17879 if (fe->dir_index && lh->include_dirs != NULL)
debd256d 17880 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb 17881
4d663531 17882 dwarf2_start_subfile (fe->name, dir);
c906108c
SS
17883 }
17884
a738430d 17885 /* Decode the table. */
d9b3de22 17886 while (line_ptr < line_end && !end_sequence)
c906108c
SS
17887 {
17888 op_code = read_1_byte (abfd, line_ptr);
17889 line_ptr += 1;
9aa1fe7e 17890
debd256d 17891 if (op_code >= lh->opcode_base)
6e70227d 17892 {
8e07a239 17893 /* Special opcode. */
699ca60a 17894 unsigned char adj_opcode;
3e29f34a 17895 CORE_ADDR addr_adj;
a05a36a5 17896 int line_delta;
8e07a239 17897
debd256d 17898 adj_opcode = op_code - lh->opcode_base;
d9b3de22
DE
17899 addr_adj = (((state_machine.op_index
17900 + (adj_opcode / lh->line_range))
2dc7f7b3
TT
17901 / lh->maximum_ops_per_instruction)
17902 * lh->minimum_instruction_length);
d9b3de22
DE
17903 state_machine.address
17904 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17905 state_machine.op_index = ((state_machine.op_index
17906 + (adj_opcode / lh->line_range))
17907 % lh->maximum_ops_per_instruction);
a05a36a5 17908 line_delta = lh->line_base + (adj_opcode % lh->line_range);
d9b3de22 17909 state_machine.line += line_delta;
a05a36a5 17910 if (line_delta != 0)
d9b3de22
DE
17911 state_machine.line_has_non_zero_discriminator
17912 = state_machine.discriminator != 0;
17913
17914 dwarf_record_line (&reader_state, &state_machine, 0);
17915 state_machine.discriminator = 0;
9aa1fe7e
GK
17916 }
17917 else switch (op_code)
c906108c
SS
17918 {
17919 case DW_LNS_extended_op:
3e43a32a
MS
17920 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17921 &bytes_read);
473b7be6 17922 line_ptr += bytes_read;
a8c50c1f 17923 extended_end = line_ptr + extended_len;
c906108c
SS
17924 extended_op = read_1_byte (abfd, line_ptr);
17925 line_ptr += 1;
17926 switch (extended_op)
17927 {
17928 case DW_LNE_end_sequence:
d9b3de22 17929 state_machine.record_line = record_line;
c906108c 17930 end_sequence = 1;
c906108c
SS
17931 break;
17932 case DW_LNE_set_address:
d9b3de22
DE
17933 {
17934 CORE_ADDR address
17935 = read_address (abfd, line_ptr, cu, &bytes_read);
17936
17937 line_ptr += bytes_read;
17938 check_line_address (cu, &state_machine, line_ptr,
17939 lowpc, address);
17940 state_machine.op_index = 0;
17941 address += baseaddr;
17942 state_machine.address
17943 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17944 }
c906108c
SS
17945 break;
17946 case DW_LNE_define_file:
debd256d 17947 {
d521ce57 17948 const char *cur_file;
debd256d 17949 unsigned int dir_index, mod_time, length;
6e70227d 17950
3e43a32a
MS
17951 cur_file = read_direct_string (abfd, line_ptr,
17952 &bytes_read);
debd256d
JB
17953 line_ptr += bytes_read;
17954 dir_index =
17955 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17956 line_ptr += bytes_read;
17957 mod_time =
17958 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17959 line_ptr += bytes_read;
17960 length =
17961 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17962 line_ptr += bytes_read;
17963 add_file_name (lh, cur_file, dir_index, mod_time, length);
17964 }
c906108c 17965 break;
d0c6ba3d
CC
17966 case DW_LNE_set_discriminator:
17967 /* The discriminator is not interesting to the debugger;
a05a36a5
DE
17968 just ignore it. We still need to check its value though:
17969 if there are consecutive entries for the same
17970 (non-prologue) line we want to coalesce them.
17971 PR 17276. */
d9b3de22
DE
17972 state_machine.discriminator
17973 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17974 state_machine.line_has_non_zero_discriminator
17975 |= state_machine.discriminator != 0;
a05a36a5 17976 line_ptr += bytes_read;
d0c6ba3d 17977 break;
c906108c 17978 default:
4d3c2250 17979 complaint (&symfile_complaints,
e2e0b3e5 17980 _("mangled .debug_line section"));
debd256d 17981 return;
c906108c 17982 }
a8c50c1f
DJ
17983 /* Make sure that we parsed the extended op correctly. If e.g.
17984 we expected a different address size than the producer used,
17985 we may have read the wrong number of bytes. */
17986 if (line_ptr != extended_end)
17987 {
17988 complaint (&symfile_complaints,
17989 _("mangled .debug_line section"));
17990 return;
17991 }
c906108c
SS
17992 break;
17993 case DW_LNS_copy:
d9b3de22
DE
17994 dwarf_record_line (&reader_state, &state_machine, 0);
17995 state_machine.discriminator = 0;
c906108c
SS
17996 break;
17997 case DW_LNS_advance_pc:
2dc7f7b3
TT
17998 {
17999 CORE_ADDR adjust
18000 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
3e29f34a 18001 CORE_ADDR addr_adj;
2dc7f7b3 18002
d9b3de22 18003 addr_adj = (((state_machine.op_index + adjust)
2dc7f7b3
TT
18004 / lh->maximum_ops_per_instruction)
18005 * lh->minimum_instruction_length);
d9b3de22
DE
18006 state_machine.address
18007 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18008 state_machine.op_index = ((state_machine.op_index + adjust)
18009 % lh->maximum_ops_per_instruction);
2dc7f7b3
TT
18010 line_ptr += bytes_read;
18011 }
c906108c
SS
18012 break;
18013 case DW_LNS_advance_line:
a05a36a5
DE
18014 {
18015 int line_delta
18016 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
18017
d9b3de22 18018 state_machine.line += line_delta;
a05a36a5 18019 if (line_delta != 0)
d9b3de22
DE
18020 state_machine.line_has_non_zero_discriminator
18021 = state_machine.discriminator != 0;
a05a36a5
DE
18022 line_ptr += bytes_read;
18023 }
c906108c
SS
18024 break;
18025 case DW_LNS_set_file:
d9b3de22
DE
18026 {
18027 /* The arrays lh->include_dirs and lh->file_names are
18028 0-based, but the directory and file name numbers in
18029 the statement program are 1-based. */
18030 struct file_entry *fe;
18031 const char *dir = NULL;
18032
18033 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
18034 &bytes_read);
18035 line_ptr += bytes_read;
18036 if (state_machine.file == 0
18037 || state_machine.file - 1 >= lh->num_file_names)
18038 dwarf2_debug_line_missing_file_complaint ();
18039 else
18040 {
18041 fe = &lh->file_names[state_machine.file - 1];
18042 if (fe->dir_index && lh->include_dirs != NULL)
18043 dir = lh->include_dirs[fe->dir_index - 1];
18044 if (record_lines_p)
18045 {
18046 state_machine.last_subfile = current_subfile;
18047 state_machine.line_has_non_zero_discriminator
18048 = state_machine.discriminator != 0;
18049 dwarf2_start_subfile (fe->name, dir);
18050 }
18051 }
18052 }
c906108c
SS
18053 break;
18054 case DW_LNS_set_column:
0ad93d4f 18055 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
c906108c
SS
18056 line_ptr += bytes_read;
18057 break;
18058 case DW_LNS_negate_stmt:
d9b3de22 18059 state_machine.is_stmt = (!state_machine.is_stmt);
c906108c
SS
18060 break;
18061 case DW_LNS_set_basic_block:
c906108c 18062 break;
c2c6d25f
JM
18063 /* Add to the address register of the state machine the
18064 address increment value corresponding to special opcode
a738430d
MK
18065 255. I.e., this value is scaled by the minimum
18066 instruction length since special opcode 255 would have
b021a221 18067 scaled the increment. */
c906108c 18068 case DW_LNS_const_add_pc:
2dc7f7b3
TT
18069 {
18070 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
3e29f34a 18071 CORE_ADDR addr_adj;
2dc7f7b3 18072
d9b3de22 18073 addr_adj = (((state_machine.op_index + adjust)
2dc7f7b3
TT
18074 / lh->maximum_ops_per_instruction)
18075 * lh->minimum_instruction_length);
d9b3de22
DE
18076 state_machine.address
18077 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18078 state_machine.op_index = ((state_machine.op_index + adjust)
18079 % lh->maximum_ops_per_instruction);
2dc7f7b3 18080 }
c906108c
SS
18081 break;
18082 case DW_LNS_fixed_advance_pc:
3e29f34a
MR
18083 {
18084 CORE_ADDR addr_adj;
18085
18086 addr_adj = read_2_bytes (abfd, line_ptr);
d9b3de22
DE
18087 state_machine.address
18088 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18089 state_machine.op_index = 0;
3e29f34a
MR
18090 line_ptr += 2;
18091 }
c906108c 18092 break;
9aa1fe7e 18093 default:
a738430d
MK
18094 {
18095 /* Unknown standard opcode, ignore it. */
9aa1fe7e 18096 int i;
a738430d 18097
debd256d 18098 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
18099 {
18100 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18101 line_ptr += bytes_read;
18102 }
18103 }
c906108c
SS
18104 }
18105 }
d9b3de22
DE
18106
18107 if (!end_sequence)
18108 dwarf2_debug_line_missing_end_sequence_complaint ();
18109
18110 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18111 in which case we still finish recording the last line). */
18112 dwarf_record_line (&reader_state, &state_machine, 1);
c906108c 18113 }
f3f5162e
DE
18114}
18115
18116/* Decode the Line Number Program (LNP) for the given line_header
18117 structure and CU. The actual information extracted and the type
18118 of structures created from the LNP depends on the value of PST.
18119
18120 1. If PST is NULL, then this procedure uses the data from the program
18121 to create all necessary symbol tables, and their linetables.
18122
18123 2. If PST is not NULL, this procedure reads the program to determine
18124 the list of files included by the unit represented by PST, and
18125 builds all the associated partial symbol tables.
18126
18127 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18128 It is used for relative paths in the line table.
18129 NOTE: When processing partial symtabs (pst != NULL),
18130 comp_dir == pst->dirname.
18131
18132 NOTE: It is important that psymtabs have the same file name (via strcmp)
18133 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18134 symtab we don't use it in the name of the psymtabs we create.
18135 E.g. expand_line_sal requires this when finding psymtabs to expand.
c3b7b696
YQ
18136 A good testcase for this is mb-inline.exp.
18137
527f3840
JK
18138 LOWPC is the lowest address in CU (or 0 if not known).
18139
18140 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18141 for its PC<->lines mapping information. Otherwise only the filename
18142 table is read in. */
f3f5162e
DE
18143
18144static void
18145dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
c3b7b696 18146 struct dwarf2_cu *cu, struct partial_symtab *pst,
527f3840 18147 CORE_ADDR lowpc, int decode_mapping)
f3f5162e
DE
18148{
18149 struct objfile *objfile = cu->objfile;
18150 const int decode_for_pst_p = (pst != NULL);
f3f5162e 18151
527f3840
JK
18152 if (decode_mapping)
18153 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
aaa75496
JB
18154
18155 if (decode_for_pst_p)
18156 {
18157 int file_index;
18158
18159 /* Now that we're done scanning the Line Header Program, we can
18160 create the psymtab of each included file. */
18161 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18162 if (lh->file_names[file_index].included_p == 1)
18163 {
d521ce57 18164 const char *include_name =
c6da4cef
DE
18165 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18166 if (include_name != NULL)
aaa75496
JB
18167 dwarf2_create_include_psymtab (include_name, pst, objfile);
18168 }
18169 }
cb1df416
DJ
18170 else
18171 {
18172 /* Make sure a symtab is created for every file, even files
18173 which contain only variables (i.e. no code with associated
18174 line numbers). */
43f3e411 18175 struct compunit_symtab *cust = buildsym_compunit_symtab ();
cb1df416 18176 int i;
cb1df416
DJ
18177
18178 for (i = 0; i < lh->num_file_names; i++)
18179 {
d521ce57 18180 const char *dir = NULL;
f3f5162e 18181 struct file_entry *fe;
9a619af0 18182
cb1df416 18183 fe = &lh->file_names[i];
afa6c9ab 18184 if (fe->dir_index && lh->include_dirs != NULL)
cb1df416 18185 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 18186 dwarf2_start_subfile (fe->name, dir);
cb1df416 18187
cb1df416 18188 if (current_subfile->symtab == NULL)
43f3e411
DE
18189 {
18190 current_subfile->symtab
18191 = allocate_symtab (cust, current_subfile->name);
18192 }
cb1df416
DJ
18193 fe->symtab = current_subfile->symtab;
18194 }
18195 }
c906108c
SS
18196}
18197
18198/* Start a subfile for DWARF. FILENAME is the name of the file and
18199 DIRNAME the name of the source directory which contains FILENAME
4d663531 18200 or NULL if not known.
c906108c
SS
18201 This routine tries to keep line numbers from identical absolute and
18202 relative file names in a common subfile.
18203
18204 Using the `list' example from the GDB testsuite, which resides in
18205 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18206 of /srcdir/list0.c yields the following debugging information for list0.c:
18207
c5aa993b 18208 DW_AT_name: /srcdir/list0.c
4d663531 18209 DW_AT_comp_dir: /compdir
357e46e7 18210 files.files[0].name: list0.h
c5aa993b 18211 files.files[0].dir: /srcdir
357e46e7 18212 files.files[1].name: list0.c
c5aa993b 18213 files.files[1].dir: /srcdir
c906108c
SS
18214
18215 The line number information for list0.c has to end up in a single
4f1520fb
FR
18216 subfile, so that `break /srcdir/list0.c:1' works as expected.
18217 start_subfile will ensure that this happens provided that we pass the
18218 concatenation of files.files[1].dir and files.files[1].name as the
18219 subfile's name. */
c906108c
SS
18220
18221static void
4d663531 18222dwarf2_start_subfile (const char *filename, const char *dirname)
c906108c 18223{
d521ce57 18224 char *copy = NULL;
4f1520fb 18225
4d663531 18226 /* In order not to lose the line information directory,
4f1520fb
FR
18227 we concatenate it to the filename when it makes sense.
18228 Note that the Dwarf3 standard says (speaking of filenames in line
18229 information): ``The directory index is ignored for file names
18230 that represent full path names''. Thus ignoring dirname in the
18231 `else' branch below isn't an issue. */
c906108c 18232
d5166ae1 18233 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
18234 {
18235 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18236 filename = copy;
18237 }
c906108c 18238
4d663531 18239 start_subfile (filename);
4f1520fb 18240
d521ce57
TT
18241 if (copy != NULL)
18242 xfree (copy);
c906108c
SS
18243}
18244
f4dc4d17
DE
18245/* Start a symtab for DWARF.
18246 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18247
43f3e411 18248static struct compunit_symtab *
f4dc4d17 18249dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 18250 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17 18251{
43f3e411
DE
18252 struct compunit_symtab *cust
18253 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18254
f4dc4d17
DE
18255 record_debugformat ("DWARF 2");
18256 record_producer (cu->producer);
18257
18258 /* We assume that we're processing GCC output. */
18259 processing_gcc_compilation = 2;
18260
4d4ec4e5 18261 cu->processing_has_namespace_info = 0;
43f3e411
DE
18262
18263 return cust;
f4dc4d17
DE
18264}
18265
4c2df51b
DJ
18266static void
18267var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 18268 struct dwarf2_cu *cu)
4c2df51b 18269{
e7c27a73
DJ
18270 struct objfile *objfile = cu->objfile;
18271 struct comp_unit_head *cu_header = &cu->header;
18272
4c2df51b
DJ
18273 /* NOTE drow/2003-01-30: There used to be a comment and some special
18274 code here to turn a symbol with DW_AT_external and a
18275 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18276 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18277 with some versions of binutils) where shared libraries could have
18278 relocations against symbols in their debug information - the
18279 minimal symbol would have the right address, but the debug info
18280 would not. It's no longer necessary, because we will explicitly
18281 apply relocations when we read in the debug information now. */
18282
18283 /* A DW_AT_location attribute with no contents indicates that a
18284 variable has been optimized away. */
18285 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18286 {
f1e6e072 18287 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
18288 return;
18289 }
18290
18291 /* Handle one degenerate form of location expression specially, to
18292 preserve GDB's previous behavior when section offsets are
3019eac3
DE
18293 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18294 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
18295
18296 if (attr_form_is_block (attr)
3019eac3
DE
18297 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18298 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18299 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18300 && (DW_BLOCK (attr)->size
18301 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 18302 {
891d2f0b 18303 unsigned int dummy;
4c2df51b 18304
3019eac3
DE
18305 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18306 SYMBOL_VALUE_ADDRESS (sym) =
18307 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18308 else
18309 SYMBOL_VALUE_ADDRESS (sym) =
18310 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 18311 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
18312 fixup_symbol_section (sym, objfile);
18313 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18314 SYMBOL_SECTION (sym));
4c2df51b
DJ
18315 return;
18316 }
18317
18318 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18319 expression evaluator, and use LOC_COMPUTED only when necessary
18320 (i.e. when the value of a register or memory location is
18321 referenced, or a thread-local block, etc.). Then again, it might
18322 not be worthwhile. I'm assuming that it isn't unless performance
18323 or memory numbers show me otherwise. */
18324
f1e6e072 18325 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 18326
f1e6e072 18327 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 18328 cu->has_loclist = 1;
4c2df51b
DJ
18329}
18330
c906108c
SS
18331/* Given a pointer to a DWARF information entry, figure out if we need
18332 to make a symbol table entry for it, and if so, create a new entry
18333 and return a pointer to it.
18334 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
18335 used the passed type.
18336 If SPACE is not NULL, use it to hold the new symbol. If it is
18337 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
18338
18339static struct symbol *
34eaf542
TT
18340new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18341 struct symbol *space)
c906108c 18342{
e7c27a73 18343 struct objfile *objfile = cu->objfile;
3e29f34a 18344 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 18345 struct symbol *sym = NULL;
15d034d0 18346 const char *name;
c906108c
SS
18347 struct attribute *attr = NULL;
18348 struct attribute *attr2 = NULL;
e142c38c 18349 CORE_ADDR baseaddr;
e37fd15a
SW
18350 struct pending **list_to_add = NULL;
18351
edb3359d 18352 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
18353
18354 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 18355
94af9270 18356 name = dwarf2_name (die, cu);
c906108c
SS
18357 if (name)
18358 {
94af9270 18359 const char *linkagename;
34eaf542 18360 int suppress_add = 0;
94af9270 18361
34eaf542
TT
18362 if (space)
18363 sym = space;
18364 else
e623cf5d 18365 sym = allocate_symbol (objfile);
c906108c 18366 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
18367
18368 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 18369 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
18370 linkagename = dwarf2_physname (name, die, cu);
18371 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 18372
f55ee35c
JK
18373 /* Fortran does not have mangling standard and the mangling does differ
18374 between gfortran, iFort etc. */
18375 if (cu->language == language_fortran
b250c185 18376 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 18377 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 18378 dwarf2_full_name (name, die, cu),
29df156d 18379 NULL);
f55ee35c 18380
c906108c 18381 /* Default assumptions.
c5aa993b 18382 Use the passed type or decode it from the die. */
176620f1 18383 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 18384 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
18385 if (type != NULL)
18386 SYMBOL_TYPE (sym) = type;
18387 else
e7c27a73 18388 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
18389 attr = dwarf2_attr (die,
18390 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18391 cu);
c906108c
SS
18392 if (attr)
18393 {
18394 SYMBOL_LINE (sym) = DW_UNSND (attr);
18395 }
cb1df416 18396
edb3359d
DJ
18397 attr = dwarf2_attr (die,
18398 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18399 cu);
cb1df416
DJ
18400 if (attr)
18401 {
18402 int file_index = DW_UNSND (attr);
9a619af0 18403
cb1df416
DJ
18404 if (cu->line_header == NULL
18405 || file_index > cu->line_header->num_file_names)
18406 complaint (&symfile_complaints,
18407 _("file index out of range"));
1c3d648d 18408 else if (file_index > 0)
cb1df416
DJ
18409 {
18410 struct file_entry *fe;
9a619af0 18411
cb1df416 18412 fe = &cu->line_header->file_names[file_index - 1];
08be3fe3 18413 symbol_set_symtab (sym, fe->symtab);
cb1df416
DJ
18414 }
18415 }
18416
c906108c
SS
18417 switch (die->tag)
18418 {
18419 case DW_TAG_label:
e142c38c 18420 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c 18421 if (attr)
3e29f34a
MR
18422 {
18423 CORE_ADDR addr;
18424
18425 addr = attr_value_as_address (attr);
18426 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18427 SYMBOL_VALUE_ADDRESS (sym) = addr;
18428 }
0f5238ed
TT
18429 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18430 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 18431 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 18432 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
18433 break;
18434 case DW_TAG_subprogram:
18435 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18436 finish_block. */
f1e6e072 18437 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 18438 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
18439 if ((attr2 && (DW_UNSND (attr2) != 0))
18440 || cu->language == language_ada)
c906108c 18441 {
2cfa0c8d
JB
18442 /* Subprograms marked external are stored as a global symbol.
18443 Ada subprograms, whether marked external or not, are always
18444 stored as a global symbol, because we want to be able to
18445 access them globally. For instance, we want to be able
18446 to break on a nested subprogram without having to
18447 specify the context. */
e37fd15a 18448 list_to_add = &global_symbols;
c906108c
SS
18449 }
18450 else
18451 {
e37fd15a 18452 list_to_add = cu->list_in_scope;
c906108c
SS
18453 }
18454 break;
edb3359d
DJ
18455 case DW_TAG_inlined_subroutine:
18456 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18457 finish_block. */
f1e6e072 18458 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 18459 SYMBOL_INLINED (sym) = 1;
481860b3 18460 list_to_add = cu->list_in_scope;
edb3359d 18461 break;
34eaf542
TT
18462 case DW_TAG_template_value_param:
18463 suppress_add = 1;
18464 /* Fall through. */
72929c62 18465 case DW_TAG_constant:
c906108c 18466 case DW_TAG_variable:
254e6b9e 18467 case DW_TAG_member:
0963b4bd
MS
18468 /* Compilation with minimal debug info may result in
18469 variables with missing type entries. Change the
18470 misleading `void' type to something sensible. */
c906108c 18471 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 18472 SYMBOL_TYPE (sym)
46bf5051 18473 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 18474
e142c38c 18475 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
18476 /* In the case of DW_TAG_member, we should only be called for
18477 static const members. */
18478 if (die->tag == DW_TAG_member)
18479 {
3863f96c
DE
18480 /* dwarf2_add_field uses die_is_declaration,
18481 so we do the same. */
254e6b9e
DE
18482 gdb_assert (die_is_declaration (die, cu));
18483 gdb_assert (attr);
18484 }
c906108c
SS
18485 if (attr)
18486 {
e7c27a73 18487 dwarf2_const_value (attr, sym, cu);
e142c38c 18488 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 18489 if (!suppress_add)
34eaf542
TT
18490 {
18491 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 18492 list_to_add = &global_symbols;
34eaf542 18493 else
e37fd15a 18494 list_to_add = cu->list_in_scope;
34eaf542 18495 }
c906108c
SS
18496 break;
18497 }
e142c38c 18498 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18499 if (attr)
18500 {
e7c27a73 18501 var_decode_location (attr, sym, cu);
e142c38c 18502 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
18503
18504 /* Fortran explicitly imports any global symbols to the local
18505 scope by DW_TAG_common_block. */
18506 if (cu->language == language_fortran && die->parent
18507 && die->parent->tag == DW_TAG_common_block)
18508 attr2 = NULL;
18509
caac4577
JG
18510 if (SYMBOL_CLASS (sym) == LOC_STATIC
18511 && SYMBOL_VALUE_ADDRESS (sym) == 0
18512 && !dwarf2_per_objfile->has_section_at_zero)
18513 {
18514 /* When a static variable is eliminated by the linker,
18515 the corresponding debug information is not stripped
18516 out, but the variable address is set to null;
18517 do not add such variables into symbol table. */
18518 }
18519 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 18520 {
f55ee35c
JK
18521 /* Workaround gfortran PR debug/40040 - it uses
18522 DW_AT_location for variables in -fPIC libraries which may
18523 get overriden by other libraries/executable and get
18524 a different address. Resolve it by the minimal symbol
18525 which may come from inferior's executable using copy
18526 relocation. Make this workaround only for gfortran as for
18527 other compilers GDB cannot guess the minimal symbol
18528 Fortran mangling kind. */
18529 if (cu->language == language_fortran && die->parent
18530 && die->parent->tag == DW_TAG_module
18531 && cu->producer
28586665 18532 && startswith (cu->producer, "GNU Fortran"))
f1e6e072 18533 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 18534
1c809c68
TT
18535 /* A variable with DW_AT_external is never static,
18536 but it may be block-scoped. */
18537 list_to_add = (cu->list_in_scope == &file_symbols
18538 ? &global_symbols : cu->list_in_scope);
1c809c68 18539 }
c906108c 18540 else
e37fd15a 18541 list_to_add = cu->list_in_scope;
c906108c
SS
18542 }
18543 else
18544 {
18545 /* We do not know the address of this symbol.
c5aa993b
JM
18546 If it is an external symbol and we have type information
18547 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18548 The address of the variable will then be determined from
18549 the minimal symbol table whenever the variable is
18550 referenced. */
e142c38c 18551 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
18552
18553 /* Fortran explicitly imports any global symbols to the local
18554 scope by DW_TAG_common_block. */
18555 if (cu->language == language_fortran && die->parent
18556 && die->parent->tag == DW_TAG_common_block)
18557 {
18558 /* SYMBOL_CLASS doesn't matter here because
18559 read_common_block is going to reset it. */
18560 if (!suppress_add)
18561 list_to_add = cu->list_in_scope;
18562 }
18563 else if (attr2 && (DW_UNSND (attr2) != 0)
18564 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 18565 {
0fe7935b
DJ
18566 /* A variable with DW_AT_external is never static, but it
18567 may be block-scoped. */
18568 list_to_add = (cu->list_in_scope == &file_symbols
18569 ? &global_symbols : cu->list_in_scope);
18570
f1e6e072 18571 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 18572 }
442ddf59
JK
18573 else if (!die_is_declaration (die, cu))
18574 {
18575 /* Use the default LOC_OPTIMIZED_OUT class. */
18576 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
18577 if (!suppress_add)
18578 list_to_add = cu->list_in_scope;
442ddf59 18579 }
c906108c
SS
18580 }
18581 break;
18582 case DW_TAG_formal_parameter:
edb3359d
DJ
18583 /* If we are inside a function, mark this as an argument. If
18584 not, we might be looking at an argument to an inlined function
18585 when we do not have enough information to show inlined frames;
18586 pretend it's a local variable in that case so that the user can
18587 still see it. */
18588 if (context_stack_depth > 0
18589 && context_stack[context_stack_depth - 1].name != NULL)
18590 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 18591 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18592 if (attr)
18593 {
e7c27a73 18594 var_decode_location (attr, sym, cu);
c906108c 18595 }
e142c38c 18596 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18597 if (attr)
18598 {
e7c27a73 18599 dwarf2_const_value (attr, sym, cu);
c906108c 18600 }
f346a30d 18601
e37fd15a 18602 list_to_add = cu->list_in_scope;
c906108c
SS
18603 break;
18604 case DW_TAG_unspecified_parameters:
18605 /* From varargs functions; gdb doesn't seem to have any
18606 interest in this information, so just ignore it for now.
18607 (FIXME?) */
18608 break;
34eaf542
TT
18609 case DW_TAG_template_type_param:
18610 suppress_add = 1;
18611 /* Fall through. */
c906108c 18612 case DW_TAG_class_type:
680b30c7 18613 case DW_TAG_interface_type:
c906108c
SS
18614 case DW_TAG_structure_type:
18615 case DW_TAG_union_type:
72019c9c 18616 case DW_TAG_set_type:
c906108c 18617 case DW_TAG_enumeration_type:
f1e6e072 18618 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18619 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 18620
63d06c5c 18621 {
9c37b5ae 18622 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
63d06c5c
DC
18623 really ever be static objects: otherwise, if you try
18624 to, say, break of a class's method and you're in a file
18625 which doesn't mention that class, it won't work unless
18626 the check for all static symbols in lookup_symbol_aux
18627 saves you. See the OtherFileClass tests in
18628 gdb.c++/namespace.exp. */
18629
e37fd15a 18630 if (!suppress_add)
34eaf542 18631 {
34eaf542 18632 list_to_add = (cu->list_in_scope == &file_symbols
9c37b5ae 18633 && cu->language == language_cplus
34eaf542 18634 ? &global_symbols : cu->list_in_scope);
63d06c5c 18635
64382290 18636 /* The semantics of C++ state that "struct foo {
9c37b5ae 18637 ... }" also defines a typedef for "foo". */
64382290 18638 if (cu->language == language_cplus
45280282 18639 || cu->language == language_ada
c44af4eb
TT
18640 || cu->language == language_d
18641 || cu->language == language_rust)
64382290
TT
18642 {
18643 /* The symbol's name is already allocated along
18644 with this objfile, so we don't need to
18645 duplicate it for the type. */
18646 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18647 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18648 }
63d06c5c
DC
18649 }
18650 }
c906108c
SS
18651 break;
18652 case DW_TAG_typedef:
f1e6e072 18653 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 18654 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18655 list_to_add = cu->list_in_scope;
63d06c5c 18656 break;
c906108c 18657 case DW_TAG_base_type:
a02abb62 18658 case DW_TAG_subrange_type:
f1e6e072 18659 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18660 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18661 list_to_add = cu->list_in_scope;
c906108c
SS
18662 break;
18663 case DW_TAG_enumerator:
e142c38c 18664 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18665 if (attr)
18666 {
e7c27a73 18667 dwarf2_const_value (attr, sym, cu);
c906108c 18668 }
63d06c5c
DC
18669 {
18670 /* NOTE: carlton/2003-11-10: See comment above in the
18671 DW_TAG_class_type, etc. block. */
18672
e142c38c 18673 list_to_add = (cu->list_in_scope == &file_symbols
9c37b5ae 18674 && cu->language == language_cplus
e142c38c 18675 ? &global_symbols : cu->list_in_scope);
63d06c5c 18676 }
c906108c 18677 break;
74921315 18678 case DW_TAG_imported_declaration:
5c4e30ca 18679 case DW_TAG_namespace:
f1e6e072 18680 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 18681 list_to_add = &global_symbols;
5c4e30ca 18682 break;
530e8392
KB
18683 case DW_TAG_module:
18684 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18685 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18686 list_to_add = &global_symbols;
18687 break;
4357ac6c 18688 case DW_TAG_common_block:
f1e6e072 18689 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
18690 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18691 add_symbol_to_list (sym, cu->list_in_scope);
18692 break;
c906108c
SS
18693 default:
18694 /* Not a tag we recognize. Hopefully we aren't processing
18695 trash data, but since we must specifically ignore things
18696 we don't recognize, there is nothing else we should do at
0963b4bd 18697 this point. */
e2e0b3e5 18698 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 18699 dwarf_tag_name (die->tag));
c906108c
SS
18700 break;
18701 }
df8a16a1 18702
e37fd15a
SW
18703 if (suppress_add)
18704 {
18705 sym->hash_next = objfile->template_symbols;
18706 objfile->template_symbols = sym;
18707 list_to_add = NULL;
18708 }
18709
18710 if (list_to_add != NULL)
18711 add_symbol_to_list (sym, list_to_add);
18712
df8a16a1
DJ
18713 /* For the benefit of old versions of GCC, check for anonymous
18714 namespaces based on the demangled name. */
4d4ec4e5 18715 if (!cu->processing_has_namespace_info
94af9270 18716 && cu->language == language_cplus)
a10964d1 18717 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
18718 }
18719 return (sym);
18720}
18721
34eaf542
TT
18722/* A wrapper for new_symbol_full that always allocates a new symbol. */
18723
18724static struct symbol *
18725new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18726{
18727 return new_symbol_full (die, type, cu, NULL);
18728}
18729
98bfdba5
PA
18730/* Given an attr with a DW_FORM_dataN value in host byte order,
18731 zero-extend it as appropriate for the symbol's type. The DWARF
18732 standard (v4) is not entirely clear about the meaning of using
18733 DW_FORM_dataN for a constant with a signed type, where the type is
18734 wider than the data. The conclusion of a discussion on the DWARF
18735 list was that this is unspecified. We choose to always zero-extend
18736 because that is the interpretation long in use by GCC. */
c906108c 18737
98bfdba5 18738static gdb_byte *
ff39bb5e 18739dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 18740 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 18741{
e7c27a73 18742 struct objfile *objfile = cu->objfile;
e17a4113
UW
18743 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18744 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
18745 LONGEST l = DW_UNSND (attr);
18746
18747 if (bits < sizeof (*value) * 8)
18748 {
18749 l &= ((LONGEST) 1 << bits) - 1;
18750 *value = l;
18751 }
18752 else if (bits == sizeof (*value) * 8)
18753 *value = l;
18754 else
18755 {
224c3ddb 18756 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
98bfdba5
PA
18757 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18758 return bytes;
18759 }
18760
18761 return NULL;
18762}
18763
18764/* Read a constant value from an attribute. Either set *VALUE, or if
18765 the value does not fit in *VALUE, set *BYTES - either already
18766 allocated on the objfile obstack, or newly allocated on OBSTACK,
18767 or, set *BATON, if we translated the constant to a location
18768 expression. */
18769
18770static void
ff39bb5e 18771dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
18772 const char *name, struct obstack *obstack,
18773 struct dwarf2_cu *cu,
d521ce57 18774 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
18775 struct dwarf2_locexpr_baton **baton)
18776{
18777 struct objfile *objfile = cu->objfile;
18778 struct comp_unit_head *cu_header = &cu->header;
c906108c 18779 struct dwarf_block *blk;
98bfdba5
PA
18780 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18781 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18782
18783 *value = 0;
18784 *bytes = NULL;
18785 *baton = NULL;
c906108c
SS
18786
18787 switch (attr->form)
18788 {
18789 case DW_FORM_addr:
3019eac3 18790 case DW_FORM_GNU_addr_index:
ac56253d 18791 {
ac56253d
TT
18792 gdb_byte *data;
18793
98bfdba5
PA
18794 if (TYPE_LENGTH (type) != cu_header->addr_size)
18795 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 18796 cu_header->addr_size,
98bfdba5 18797 TYPE_LENGTH (type));
ac56253d
TT
18798 /* Symbols of this form are reasonably rare, so we just
18799 piggyback on the existing location code rather than writing
18800 a new implementation of symbol_computed_ops. */
8d749320 18801 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
98bfdba5
PA
18802 (*baton)->per_cu = cu->per_cu;
18803 gdb_assert ((*baton)->per_cu);
ac56253d 18804
98bfdba5 18805 (*baton)->size = 2 + cu_header->addr_size;
224c3ddb 18806 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
98bfdba5 18807 (*baton)->data = data;
ac56253d
TT
18808
18809 data[0] = DW_OP_addr;
18810 store_unsigned_integer (&data[1], cu_header->addr_size,
18811 byte_order, DW_ADDR (attr));
18812 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 18813 }
c906108c 18814 break;
4ac36638 18815 case DW_FORM_string:
93b5768b 18816 case DW_FORM_strp:
3019eac3 18817 case DW_FORM_GNU_str_index:
36586728 18818 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
18819 /* DW_STRING is already allocated on the objfile obstack, point
18820 directly to it. */
d521ce57 18821 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 18822 break;
c906108c
SS
18823 case DW_FORM_block1:
18824 case DW_FORM_block2:
18825 case DW_FORM_block4:
18826 case DW_FORM_block:
2dc7f7b3 18827 case DW_FORM_exprloc:
c906108c 18828 blk = DW_BLOCK (attr);
98bfdba5
PA
18829 if (TYPE_LENGTH (type) != blk->size)
18830 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18831 TYPE_LENGTH (type));
18832 *bytes = blk->data;
c906108c 18833 break;
2df3850c
JM
18834
18835 /* The DW_AT_const_value attributes are supposed to carry the
18836 symbol's value "represented as it would be on the target
18837 architecture." By the time we get here, it's already been
18838 converted to host endianness, so we just need to sign- or
18839 zero-extend it as appropriate. */
18840 case DW_FORM_data1:
3aef2284 18841 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 18842 break;
c906108c 18843 case DW_FORM_data2:
3aef2284 18844 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 18845 break;
c906108c 18846 case DW_FORM_data4:
3aef2284 18847 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 18848 break;
c906108c 18849 case DW_FORM_data8:
3aef2284 18850 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
18851 break;
18852
c906108c 18853 case DW_FORM_sdata:
98bfdba5 18854 *value = DW_SND (attr);
2df3850c
JM
18855 break;
18856
c906108c 18857 case DW_FORM_udata:
98bfdba5 18858 *value = DW_UNSND (attr);
c906108c 18859 break;
2df3850c 18860
c906108c 18861 default:
4d3c2250 18862 complaint (&symfile_complaints,
e2e0b3e5 18863 _("unsupported const value attribute form: '%s'"),
4d3c2250 18864 dwarf_form_name (attr->form));
98bfdba5 18865 *value = 0;
c906108c
SS
18866 break;
18867 }
18868}
18869
2df3850c 18870
98bfdba5
PA
18871/* Copy constant value from an attribute to a symbol. */
18872
2df3850c 18873static void
ff39bb5e 18874dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 18875 struct dwarf2_cu *cu)
2df3850c 18876{
98bfdba5 18877 struct objfile *objfile = cu->objfile;
12df843f 18878 LONGEST value;
d521ce57 18879 const gdb_byte *bytes;
98bfdba5 18880 struct dwarf2_locexpr_baton *baton;
2df3850c 18881
98bfdba5
PA
18882 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18883 SYMBOL_PRINT_NAME (sym),
18884 &objfile->objfile_obstack, cu,
18885 &value, &bytes, &baton);
2df3850c 18886
98bfdba5
PA
18887 if (baton != NULL)
18888 {
98bfdba5 18889 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 18890 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
18891 }
18892 else if (bytes != NULL)
18893 {
18894 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 18895 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
18896 }
18897 else
18898 {
18899 SYMBOL_VALUE (sym) = value;
f1e6e072 18900 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 18901 }
2df3850c
JM
18902}
18903
c906108c
SS
18904/* Return the type of the die in question using its DW_AT_type attribute. */
18905
18906static struct type *
e7c27a73 18907die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18908{
c906108c 18909 struct attribute *type_attr;
c906108c 18910
e142c38c 18911 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
18912 if (!type_attr)
18913 {
18914 /* A missing DW_AT_type represents a void type. */
46bf5051 18915 return objfile_type (cu->objfile)->builtin_void;
c906108c 18916 }
348e048f 18917
673bfd45 18918 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18919}
18920
b4ba55a1
JB
18921/* True iff CU's producer generates GNAT Ada auxiliary information
18922 that allows to find parallel types through that information instead
18923 of having to do expensive parallel lookups by type name. */
18924
18925static int
18926need_gnat_info (struct dwarf2_cu *cu)
18927{
18928 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18929 of GNAT produces this auxiliary information, without any indication
18930 that it is produced. Part of enhancing the FSF version of GNAT
18931 to produce that information will be to put in place an indicator
18932 that we can use in order to determine whether the descriptive type
18933 info is available or not. One suggestion that has been made is
18934 to use a new attribute, attached to the CU die. For now, assume
18935 that the descriptive type info is not available. */
18936 return 0;
18937}
18938
b4ba55a1
JB
18939/* Return the auxiliary type of the die in question using its
18940 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18941 attribute is not present. */
18942
18943static struct type *
18944die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18945{
b4ba55a1 18946 struct attribute *type_attr;
b4ba55a1
JB
18947
18948 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18949 if (!type_attr)
18950 return NULL;
18951
673bfd45 18952 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
18953}
18954
18955/* If DIE has a descriptive_type attribute, then set the TYPE's
18956 descriptive type accordingly. */
18957
18958static void
18959set_descriptive_type (struct type *type, struct die_info *die,
18960 struct dwarf2_cu *cu)
18961{
18962 struct type *descriptive_type = die_descriptive_type (die, cu);
18963
18964 if (descriptive_type)
18965 {
18966 ALLOCATE_GNAT_AUX_TYPE (type);
18967 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18968 }
18969}
18970
c906108c
SS
18971/* Return the containing type of the die in question using its
18972 DW_AT_containing_type attribute. */
18973
18974static struct type *
e7c27a73 18975die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18976{
c906108c 18977 struct attribute *type_attr;
c906108c 18978
e142c38c 18979 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
18980 if (!type_attr)
18981 error (_("Dwarf Error: Problem turning containing type into gdb type "
4262abfb 18982 "[in module %s]"), objfile_name (cu->objfile));
33ac96f0 18983
673bfd45 18984 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18985}
18986
ac9ec31b
DE
18987/* Return an error marker type to use for the ill formed type in DIE/CU. */
18988
18989static struct type *
18990build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18991{
18992 struct objfile *objfile = dwarf2_per_objfile->objfile;
18993 char *message, *saved;
18994
18995 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
4262abfb 18996 objfile_name (objfile),
ac9ec31b
DE
18997 cu->header.offset.sect_off,
18998 die->offset.sect_off);
224c3ddb
SM
18999 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
19000 message, strlen (message));
ac9ec31b
DE
19001 xfree (message);
19002
19f392bc 19003 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
ac9ec31b
DE
19004}
19005
673bfd45 19006/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
19007 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
19008 DW_AT_containing_type.
673bfd45
DE
19009 If there is no type substitute an error marker. */
19010
c906108c 19011static struct type *
ff39bb5e 19012lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 19013 struct dwarf2_cu *cu)
c906108c 19014{
bb5ed363 19015 struct objfile *objfile = cu->objfile;
f792889a
DJ
19016 struct type *this_type;
19017
ac9ec31b
DE
19018 gdb_assert (attr->name == DW_AT_type
19019 || attr->name == DW_AT_GNAT_descriptive_type
19020 || attr->name == DW_AT_containing_type);
19021
673bfd45
DE
19022 /* First see if we have it cached. */
19023
36586728
TT
19024 if (attr->form == DW_FORM_GNU_ref_alt)
19025 {
19026 struct dwarf2_per_cu_data *per_cu;
19027 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19028
19029 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
19030 this_type = get_die_type_at_offset (offset, per_cu);
19031 }
7771576e 19032 else if (attr_form_is_ref (attr))
673bfd45 19033 {
b64f50a1 19034 sect_offset offset = dwarf2_get_ref_die_offset (attr);
673bfd45
DE
19035
19036 this_type = get_die_type_at_offset (offset, cu->per_cu);
19037 }
55f1336d 19038 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 19039 {
ac9ec31b 19040 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 19041
ac9ec31b 19042 return get_signatured_type (die, signature, cu);
673bfd45
DE
19043 }
19044 else
19045 {
ac9ec31b
DE
19046 complaint (&symfile_complaints,
19047 _("Dwarf Error: Bad type attribute %s in DIE"
19048 " at 0x%x [in module %s]"),
19049 dwarf_attr_name (attr->name), die->offset.sect_off,
4262abfb 19050 objfile_name (objfile));
ac9ec31b 19051 return build_error_marker_type (cu, die);
673bfd45
DE
19052 }
19053
19054 /* If not cached we need to read it in. */
19055
19056 if (this_type == NULL)
19057 {
ac9ec31b 19058 struct die_info *type_die = NULL;
673bfd45
DE
19059 struct dwarf2_cu *type_cu = cu;
19060
7771576e 19061 if (attr_form_is_ref (attr))
ac9ec31b
DE
19062 type_die = follow_die_ref (die, attr, &type_cu);
19063 if (type_die == NULL)
19064 return build_error_marker_type (cu, die);
19065 /* If we find the type now, it's probably because the type came
3019eac3
DE
19066 from an inter-CU reference and the type's CU got expanded before
19067 ours. */
ac9ec31b 19068 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
19069 }
19070
19071 /* If we still don't have a type use an error marker. */
19072
19073 if (this_type == NULL)
ac9ec31b 19074 return build_error_marker_type (cu, die);
673bfd45 19075
f792889a 19076 return this_type;
c906108c
SS
19077}
19078
673bfd45
DE
19079/* Return the type in DIE, CU.
19080 Returns NULL for invalid types.
19081
02142a6c 19082 This first does a lookup in die_type_hash,
673bfd45
DE
19083 and only reads the die in if necessary.
19084
19085 NOTE: This can be called when reading in partial or full symbols. */
19086
f792889a 19087static struct type *
e7c27a73 19088read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19089{
f792889a
DJ
19090 struct type *this_type;
19091
19092 this_type = get_die_type (die, cu);
19093 if (this_type)
19094 return this_type;
19095
673bfd45
DE
19096 return read_type_die_1 (die, cu);
19097}
19098
19099/* Read the type in DIE, CU.
19100 Returns NULL for invalid types. */
19101
19102static struct type *
19103read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19104{
19105 struct type *this_type = NULL;
19106
c906108c
SS
19107 switch (die->tag)
19108 {
19109 case DW_TAG_class_type:
680b30c7 19110 case DW_TAG_interface_type:
c906108c
SS
19111 case DW_TAG_structure_type:
19112 case DW_TAG_union_type:
f792889a 19113 this_type = read_structure_type (die, cu);
c906108c
SS
19114 break;
19115 case DW_TAG_enumeration_type:
f792889a 19116 this_type = read_enumeration_type (die, cu);
c906108c
SS
19117 break;
19118 case DW_TAG_subprogram:
19119 case DW_TAG_subroutine_type:
edb3359d 19120 case DW_TAG_inlined_subroutine:
f792889a 19121 this_type = read_subroutine_type (die, cu);
c906108c
SS
19122 break;
19123 case DW_TAG_array_type:
f792889a 19124 this_type = read_array_type (die, cu);
c906108c 19125 break;
72019c9c 19126 case DW_TAG_set_type:
f792889a 19127 this_type = read_set_type (die, cu);
72019c9c 19128 break;
c906108c 19129 case DW_TAG_pointer_type:
f792889a 19130 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
19131 break;
19132 case DW_TAG_ptr_to_member_type:
f792889a 19133 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
19134 break;
19135 case DW_TAG_reference_type:
f792889a 19136 this_type = read_tag_reference_type (die, cu);
c906108c
SS
19137 break;
19138 case DW_TAG_const_type:
f792889a 19139 this_type = read_tag_const_type (die, cu);
c906108c
SS
19140 break;
19141 case DW_TAG_volatile_type:
f792889a 19142 this_type = read_tag_volatile_type (die, cu);
c906108c 19143 break;
06d66ee9
TT
19144 case DW_TAG_restrict_type:
19145 this_type = read_tag_restrict_type (die, cu);
19146 break;
c906108c 19147 case DW_TAG_string_type:
f792889a 19148 this_type = read_tag_string_type (die, cu);
c906108c
SS
19149 break;
19150 case DW_TAG_typedef:
f792889a 19151 this_type = read_typedef (die, cu);
c906108c 19152 break;
a02abb62 19153 case DW_TAG_subrange_type:
f792889a 19154 this_type = read_subrange_type (die, cu);
a02abb62 19155 break;
c906108c 19156 case DW_TAG_base_type:
f792889a 19157 this_type = read_base_type (die, cu);
c906108c 19158 break;
81a17f79 19159 case DW_TAG_unspecified_type:
f792889a 19160 this_type = read_unspecified_type (die, cu);
81a17f79 19161 break;
0114d602
DJ
19162 case DW_TAG_namespace:
19163 this_type = read_namespace_type (die, cu);
19164 break;
f55ee35c
JK
19165 case DW_TAG_module:
19166 this_type = read_module_type (die, cu);
19167 break;
a2c2acaf
MW
19168 case DW_TAG_atomic_type:
19169 this_type = read_tag_atomic_type (die, cu);
19170 break;
c906108c 19171 default:
3e43a32a
MS
19172 complaint (&symfile_complaints,
19173 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 19174 dwarf_tag_name (die->tag));
c906108c
SS
19175 break;
19176 }
63d06c5c 19177
f792889a 19178 return this_type;
63d06c5c
DC
19179}
19180
abc72ce4
DE
19181/* See if we can figure out if the class lives in a namespace. We do
19182 this by looking for a member function; its demangled name will
19183 contain namespace info, if there is any.
19184 Return the computed name or NULL.
19185 Space for the result is allocated on the objfile's obstack.
19186 This is the full-die version of guess_partial_die_structure_name.
19187 In this case we know DIE has no useful parent. */
19188
19189static char *
19190guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19191{
19192 struct die_info *spec_die;
19193 struct dwarf2_cu *spec_cu;
19194 struct die_info *child;
19195
19196 spec_cu = cu;
19197 spec_die = die_specification (die, &spec_cu);
19198 if (spec_die != NULL)
19199 {
19200 die = spec_die;
19201 cu = spec_cu;
19202 }
19203
19204 for (child = die->child;
19205 child != NULL;
19206 child = child->sibling)
19207 {
19208 if (child->tag == DW_TAG_subprogram)
19209 {
7d45c7c3 19210 const char *linkage_name;
abc72ce4 19211
7d45c7c3
KB
19212 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19213 if (linkage_name == NULL)
19214 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19215 cu);
19216 if (linkage_name != NULL)
abc72ce4
DE
19217 {
19218 char *actual_name
19219 = language_class_name_from_physname (cu->language_defn,
7d45c7c3 19220 linkage_name);
abc72ce4
DE
19221 char *name = NULL;
19222
19223 if (actual_name != NULL)
19224 {
15d034d0 19225 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
19226
19227 if (die_name != NULL
19228 && strcmp (die_name, actual_name) != 0)
19229 {
19230 /* Strip off the class name from the full name.
19231 We want the prefix. */
19232 int die_name_len = strlen (die_name);
19233 int actual_name_len = strlen (actual_name);
19234
19235 /* Test for '::' as a sanity check. */
19236 if (actual_name_len > die_name_len + 2
3e43a32a
MS
19237 && actual_name[actual_name_len
19238 - die_name_len - 1] == ':')
224c3ddb
SM
19239 name = (char *) obstack_copy0 (
19240 &cu->objfile->per_bfd->storage_obstack,
19241 actual_name, actual_name_len - die_name_len - 2);
abc72ce4
DE
19242 }
19243 }
19244 xfree (actual_name);
19245 return name;
19246 }
19247 }
19248 }
19249
19250 return NULL;
19251}
19252
96408a79
SA
19253/* GCC might emit a nameless typedef that has a linkage name. Determine the
19254 prefix part in such case. See
19255 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19256
19257static char *
19258anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19259{
19260 struct attribute *attr;
e6a959d6 19261 const char *base;
96408a79
SA
19262
19263 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19264 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19265 return NULL;
19266
7d45c7c3 19267 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
96408a79
SA
19268 return NULL;
19269
19270 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19271 if (attr == NULL)
19272 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19273 if (attr == NULL || DW_STRING (attr) == NULL)
19274 return NULL;
19275
19276 /* dwarf2_name had to be already called. */
19277 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19278
19279 /* Strip the base name, keep any leading namespaces/classes. */
19280 base = strrchr (DW_STRING (attr), ':');
19281 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19282 return "";
19283
224c3ddb
SM
19284 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19285 DW_STRING (attr),
19286 &base[-1] - DW_STRING (attr));
96408a79
SA
19287}
19288
fdde2d81 19289/* Return the name of the namespace/class that DIE is defined within,
0114d602 19290 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 19291
0114d602
DJ
19292 For example, if we're within the method foo() in the following
19293 code:
19294
19295 namespace N {
19296 class C {
19297 void foo () {
19298 }
19299 };
19300 }
19301
19302 then determine_prefix on foo's die will return "N::C". */
fdde2d81 19303
0d5cff50 19304static const char *
e142c38c 19305determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 19306{
0114d602
DJ
19307 struct die_info *parent, *spec_die;
19308 struct dwarf2_cu *spec_cu;
19309 struct type *parent_type;
96408a79 19310 char *retval;
63d06c5c 19311
9c37b5ae 19312 if (cu->language != language_cplus
c44af4eb
TT
19313 && cu->language != language_fortran && cu->language != language_d
19314 && cu->language != language_rust)
0114d602
DJ
19315 return "";
19316
96408a79
SA
19317 retval = anonymous_struct_prefix (die, cu);
19318 if (retval)
19319 return retval;
19320
0114d602
DJ
19321 /* We have to be careful in the presence of DW_AT_specification.
19322 For example, with GCC 3.4, given the code
19323
19324 namespace N {
19325 void foo() {
19326 // Definition of N::foo.
19327 }
19328 }
19329
19330 then we'll have a tree of DIEs like this:
19331
19332 1: DW_TAG_compile_unit
19333 2: DW_TAG_namespace // N
19334 3: DW_TAG_subprogram // declaration of N::foo
19335 4: DW_TAG_subprogram // definition of N::foo
19336 DW_AT_specification // refers to die #3
19337
19338 Thus, when processing die #4, we have to pretend that we're in
19339 the context of its DW_AT_specification, namely the contex of die
19340 #3. */
19341 spec_cu = cu;
19342 spec_die = die_specification (die, &spec_cu);
19343 if (spec_die == NULL)
19344 parent = die->parent;
19345 else
63d06c5c 19346 {
0114d602
DJ
19347 parent = spec_die->parent;
19348 cu = spec_cu;
63d06c5c 19349 }
0114d602
DJ
19350
19351 if (parent == NULL)
19352 return "";
98bfdba5
PA
19353 else if (parent->building_fullname)
19354 {
19355 const char *name;
19356 const char *parent_name;
19357
19358 /* It has been seen on RealView 2.2 built binaries,
19359 DW_TAG_template_type_param types actually _defined_ as
19360 children of the parent class:
19361
19362 enum E {};
19363 template class <class Enum> Class{};
19364 Class<enum E> class_e;
19365
19366 1: DW_TAG_class_type (Class)
19367 2: DW_TAG_enumeration_type (E)
19368 3: DW_TAG_enumerator (enum1:0)
19369 3: DW_TAG_enumerator (enum2:1)
19370 ...
19371 2: DW_TAG_template_type_param
19372 DW_AT_type DW_FORM_ref_udata (E)
19373
19374 Besides being broken debug info, it can put GDB into an
19375 infinite loop. Consider:
19376
19377 When we're building the full name for Class<E>, we'll start
19378 at Class, and go look over its template type parameters,
19379 finding E. We'll then try to build the full name of E, and
19380 reach here. We're now trying to build the full name of E,
19381 and look over the parent DIE for containing scope. In the
19382 broken case, if we followed the parent DIE of E, we'd again
19383 find Class, and once again go look at its template type
19384 arguments, etc., etc. Simply don't consider such parent die
19385 as source-level parent of this die (it can't be, the language
19386 doesn't allow it), and break the loop here. */
19387 name = dwarf2_name (die, cu);
19388 parent_name = dwarf2_name (parent, cu);
19389 complaint (&symfile_complaints,
19390 _("template param type '%s' defined within parent '%s'"),
19391 name ? name : "<unknown>",
19392 parent_name ? parent_name : "<unknown>");
19393 return "";
19394 }
63d06c5c 19395 else
0114d602
DJ
19396 switch (parent->tag)
19397 {
63d06c5c 19398 case DW_TAG_namespace:
0114d602 19399 parent_type = read_type_die (parent, cu);
acebe513
UW
19400 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19401 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19402 Work around this problem here. */
19403 if (cu->language == language_cplus
19404 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19405 return "";
0114d602
DJ
19406 /* We give a name to even anonymous namespaces. */
19407 return TYPE_TAG_NAME (parent_type);
63d06c5c 19408 case DW_TAG_class_type:
680b30c7 19409 case DW_TAG_interface_type:
63d06c5c 19410 case DW_TAG_structure_type:
0114d602 19411 case DW_TAG_union_type:
f55ee35c 19412 case DW_TAG_module:
0114d602
DJ
19413 parent_type = read_type_die (parent, cu);
19414 if (TYPE_TAG_NAME (parent_type) != NULL)
19415 return TYPE_TAG_NAME (parent_type);
19416 else
19417 /* An anonymous structure is only allowed non-static data
19418 members; no typedefs, no member functions, et cetera.
19419 So it does not need a prefix. */
19420 return "";
abc72ce4 19421 case DW_TAG_compile_unit:
95554aad 19422 case DW_TAG_partial_unit:
abc72ce4
DE
19423 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19424 if (cu->language == language_cplus
8b70b953 19425 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
19426 && die->child != NULL
19427 && (die->tag == DW_TAG_class_type
19428 || die->tag == DW_TAG_structure_type
19429 || die->tag == DW_TAG_union_type))
19430 {
19431 char *name = guess_full_die_structure_name (die, cu);
19432 if (name != NULL)
19433 return name;
19434 }
19435 return "";
3d567982
TT
19436 case DW_TAG_enumeration_type:
19437 parent_type = read_type_die (parent, cu);
19438 if (TYPE_DECLARED_CLASS (parent_type))
19439 {
19440 if (TYPE_TAG_NAME (parent_type) != NULL)
19441 return TYPE_TAG_NAME (parent_type);
19442 return "";
19443 }
19444 /* Fall through. */
63d06c5c 19445 default:
8176b9b8 19446 return determine_prefix (parent, cu);
63d06c5c 19447 }
63d06c5c
DC
19448}
19449
3e43a32a
MS
19450/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19451 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19452 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19453 an obconcat, otherwise allocate storage for the result. The CU argument is
19454 used to determine the language and hence, the appropriate separator. */
987504bb 19455
f55ee35c 19456#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
19457
19458static char *
f55ee35c
JK
19459typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19460 int physname, struct dwarf2_cu *cu)
63d06c5c 19461{
f55ee35c 19462 const char *lead = "";
5c315b68 19463 const char *sep;
63d06c5c 19464
3e43a32a
MS
19465 if (suffix == NULL || suffix[0] == '\0'
19466 || prefix == NULL || prefix[0] == '\0')
987504bb 19467 sep = "";
45280282
IB
19468 else if (cu->language == language_d)
19469 {
19470 /* For D, the 'main' function could be defined in any module, but it
19471 should never be prefixed. */
19472 if (strcmp (suffix, "D main") == 0)
19473 {
19474 prefix = "";
19475 sep = "";
19476 }
19477 else
19478 sep = ".";
19479 }
f55ee35c
JK
19480 else if (cu->language == language_fortran && physname)
19481 {
19482 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19483 DW_AT_MIPS_linkage_name is preferred and used instead. */
19484
19485 lead = "__";
19486 sep = "_MOD_";
19487 }
987504bb
JJ
19488 else
19489 sep = "::";
63d06c5c 19490
6dd47d34
DE
19491 if (prefix == NULL)
19492 prefix = "";
19493 if (suffix == NULL)
19494 suffix = "";
19495
987504bb
JJ
19496 if (obs == NULL)
19497 {
3e43a32a 19498 char *retval
224c3ddb
SM
19499 = ((char *)
19500 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
9a619af0 19501
f55ee35c
JK
19502 strcpy (retval, lead);
19503 strcat (retval, prefix);
6dd47d34
DE
19504 strcat (retval, sep);
19505 strcat (retval, suffix);
63d06c5c
DC
19506 return retval;
19507 }
987504bb
JJ
19508 else
19509 {
19510 /* We have an obstack. */
f55ee35c 19511 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 19512 }
63d06c5c
DC
19513}
19514
c906108c
SS
19515/* Return sibling of die, NULL if no sibling. */
19516
f9aca02d 19517static struct die_info *
fba45db2 19518sibling_die (struct die_info *die)
c906108c 19519{
639d11d3 19520 return die->sibling;
c906108c
SS
19521}
19522
71c25dea
TT
19523/* Get name of a die, return NULL if not found. */
19524
15d034d0
TT
19525static const char *
19526dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
19527 struct obstack *obstack)
19528{
19529 if (name && cu->language == language_cplus)
19530 {
2f408ecb 19531 std::string canon_name = cp_canonicalize_string (name);
71c25dea 19532
2f408ecb 19533 if (!canon_name.empty ())
71c25dea 19534 {
2f408ecb
PA
19535 if (canon_name != name)
19536 name = (const char *) obstack_copy0 (obstack,
19537 canon_name.c_str (),
19538 canon_name.length ());
71c25dea
TT
19539 }
19540 }
19541
19542 return name;
c906108c
SS
19543}
19544
96553a0c
DE
19545/* Get name of a die, return NULL if not found.
19546 Anonymous namespaces are converted to their magic string. */
9219021c 19547
15d034d0 19548static const char *
e142c38c 19549dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
19550{
19551 struct attribute *attr;
19552
e142c38c 19553 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31 19554 if ((!attr || !DW_STRING (attr))
96553a0c 19555 && die->tag != DW_TAG_namespace
53832f31
TT
19556 && die->tag != DW_TAG_class_type
19557 && die->tag != DW_TAG_interface_type
19558 && die->tag != DW_TAG_structure_type
19559 && die->tag != DW_TAG_union_type)
71c25dea
TT
19560 return NULL;
19561
19562 switch (die->tag)
19563 {
19564 case DW_TAG_compile_unit:
95554aad 19565 case DW_TAG_partial_unit:
71c25dea
TT
19566 /* Compilation units have a DW_AT_name that is a filename, not
19567 a source language identifier. */
19568 case DW_TAG_enumeration_type:
19569 case DW_TAG_enumerator:
19570 /* These tags always have simple identifiers already; no need
19571 to canonicalize them. */
19572 return DW_STRING (attr);
907af001 19573
96553a0c
DE
19574 case DW_TAG_namespace:
19575 if (attr != NULL && DW_STRING (attr) != NULL)
19576 return DW_STRING (attr);
19577 return CP_ANONYMOUS_NAMESPACE_STR;
19578
907af001
UW
19579 case DW_TAG_class_type:
19580 case DW_TAG_interface_type:
19581 case DW_TAG_structure_type:
19582 case DW_TAG_union_type:
19583 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19584 structures or unions. These were of the form "._%d" in GCC 4.1,
19585 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19586 and GCC 4.4. We work around this problem by ignoring these. */
53832f31 19587 if (attr && DW_STRING (attr)
61012eef
GB
19588 && (startswith (DW_STRING (attr), "._")
19589 || startswith (DW_STRING (attr), "<anonymous")))
907af001 19590 return NULL;
53832f31
TT
19591
19592 /* GCC might emit a nameless typedef that has a linkage name. See
19593 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19594 if (!attr || DW_STRING (attr) == NULL)
19595 {
df5c6c50 19596 char *demangled = NULL;
53832f31
TT
19597
19598 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19599 if (attr == NULL)
19600 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19601
19602 if (attr == NULL || DW_STRING (attr) == NULL)
19603 return NULL;
19604
df5c6c50
JK
19605 /* Avoid demangling DW_STRING (attr) the second time on a second
19606 call for the same DIE. */
19607 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 19608 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
19609
19610 if (demangled)
19611 {
e6a959d6 19612 const char *base;
96408a79 19613
53832f31 19614 /* FIXME: we already did this for the partial symbol... */
34a68019 19615 DW_STRING (attr)
224c3ddb
SM
19616 = ((const char *)
19617 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19618 demangled, strlen (demangled)));
53832f31
TT
19619 DW_STRING_IS_CANONICAL (attr) = 1;
19620 xfree (demangled);
96408a79
SA
19621
19622 /* Strip any leading namespaces/classes, keep only the base name.
19623 DW_AT_name for named DIEs does not contain the prefixes. */
19624 base = strrchr (DW_STRING (attr), ':');
19625 if (base && base > DW_STRING (attr) && base[-1] == ':')
19626 return &base[1];
19627 else
19628 return DW_STRING (attr);
53832f31
TT
19629 }
19630 }
907af001
UW
19631 break;
19632
71c25dea 19633 default:
907af001
UW
19634 break;
19635 }
19636
19637 if (!DW_STRING_IS_CANONICAL (attr))
19638 {
19639 DW_STRING (attr)
19640 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
34a68019 19641 &cu->objfile->per_bfd->storage_obstack);
907af001 19642 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 19643 }
907af001 19644 return DW_STRING (attr);
9219021c
DC
19645}
19646
19647/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
19648 is none. *EXT_CU is the CU containing DIE on input, and the CU
19649 containing the return value on output. */
9219021c
DC
19650
19651static struct die_info *
f2f0e013 19652dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
19653{
19654 struct attribute *attr;
9219021c 19655
f2f0e013 19656 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
19657 if (attr == NULL)
19658 return NULL;
19659
f2f0e013 19660 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
19661}
19662
c906108c
SS
19663/* Convert a DIE tag into its string name. */
19664
f39c6ffd 19665static const char *
aa1ee363 19666dwarf_tag_name (unsigned tag)
c906108c 19667{
f39c6ffd
TT
19668 const char *name = get_DW_TAG_name (tag);
19669
19670 if (name == NULL)
19671 return "DW_TAG_<unknown>";
19672
19673 return name;
c906108c
SS
19674}
19675
19676/* Convert a DWARF attribute code into its string name. */
19677
f39c6ffd 19678static const char *
aa1ee363 19679dwarf_attr_name (unsigned attr)
c906108c 19680{
f39c6ffd
TT
19681 const char *name;
19682
c764a876 19683#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
19684 if (attr == DW_AT_MIPS_fde)
19685 return "DW_AT_MIPS_fde";
19686#else
19687 if (attr == DW_AT_HP_block_index)
19688 return "DW_AT_HP_block_index";
c764a876 19689#endif
f39c6ffd
TT
19690
19691 name = get_DW_AT_name (attr);
19692
19693 if (name == NULL)
19694 return "DW_AT_<unknown>";
19695
19696 return name;
c906108c
SS
19697}
19698
19699/* Convert a DWARF value form code into its string name. */
19700
f39c6ffd 19701static const char *
aa1ee363 19702dwarf_form_name (unsigned form)
c906108c 19703{
f39c6ffd
TT
19704 const char *name = get_DW_FORM_name (form);
19705
19706 if (name == NULL)
19707 return "DW_FORM_<unknown>";
19708
19709 return name;
c906108c
SS
19710}
19711
19712static char *
fba45db2 19713dwarf_bool_name (unsigned mybool)
c906108c
SS
19714{
19715 if (mybool)
19716 return "TRUE";
19717 else
19718 return "FALSE";
19719}
19720
19721/* Convert a DWARF type code into its string name. */
19722
f39c6ffd 19723static const char *
aa1ee363 19724dwarf_type_encoding_name (unsigned enc)
c906108c 19725{
f39c6ffd 19726 const char *name = get_DW_ATE_name (enc);
c906108c 19727
f39c6ffd
TT
19728 if (name == NULL)
19729 return "DW_ATE_<unknown>";
c906108c 19730
f39c6ffd 19731 return name;
c906108c 19732}
c906108c 19733
f9aca02d 19734static void
d97bc12b 19735dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
19736{
19737 unsigned int i;
19738
d97bc12b
DE
19739 print_spaces (indent, f);
19740 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
b64f50a1 19741 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
d97bc12b
DE
19742
19743 if (die->parent != NULL)
19744 {
19745 print_spaces (indent, f);
19746 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
b64f50a1 19747 die->parent->offset.sect_off);
d97bc12b
DE
19748 }
19749
19750 print_spaces (indent, f);
19751 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 19752 dwarf_bool_name (die->child != NULL));
c906108c 19753
d97bc12b
DE
19754 print_spaces (indent, f);
19755 fprintf_unfiltered (f, " attributes:\n");
19756
c906108c
SS
19757 for (i = 0; i < die->num_attrs; ++i)
19758 {
d97bc12b
DE
19759 print_spaces (indent, f);
19760 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
19761 dwarf_attr_name (die->attrs[i].name),
19762 dwarf_form_name (die->attrs[i].form));
d97bc12b 19763
c906108c
SS
19764 switch (die->attrs[i].form)
19765 {
c906108c 19766 case DW_FORM_addr:
3019eac3 19767 case DW_FORM_GNU_addr_index:
d97bc12b 19768 fprintf_unfiltered (f, "address: ");
5af949e3 19769 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
19770 break;
19771 case DW_FORM_block2:
19772 case DW_FORM_block4:
19773 case DW_FORM_block:
19774 case DW_FORM_block1:
56eb65bd
SP
19775 fprintf_unfiltered (f, "block: size %s",
19776 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 19777 break;
2dc7f7b3 19778 case DW_FORM_exprloc:
56eb65bd
SP
19779 fprintf_unfiltered (f, "expression: size %s",
19780 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 19781 break;
4568ecf9
DE
19782 case DW_FORM_ref_addr:
19783 fprintf_unfiltered (f, "ref address: ");
19784 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19785 break;
36586728
TT
19786 case DW_FORM_GNU_ref_alt:
19787 fprintf_unfiltered (f, "alt ref address: ");
19788 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19789 break;
10b3939b
DJ
19790 case DW_FORM_ref1:
19791 case DW_FORM_ref2:
19792 case DW_FORM_ref4:
4568ecf9
DE
19793 case DW_FORM_ref8:
19794 case DW_FORM_ref_udata:
d97bc12b 19795 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 19796 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 19797 break;
c906108c
SS
19798 case DW_FORM_data1:
19799 case DW_FORM_data2:
19800 case DW_FORM_data4:
ce5d95e1 19801 case DW_FORM_data8:
c906108c
SS
19802 case DW_FORM_udata:
19803 case DW_FORM_sdata:
43bbcdc2
PH
19804 fprintf_unfiltered (f, "constant: %s",
19805 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 19806 break;
2dc7f7b3
TT
19807 case DW_FORM_sec_offset:
19808 fprintf_unfiltered (f, "section offset: %s",
19809 pulongest (DW_UNSND (&die->attrs[i])));
19810 break;
55f1336d 19811 case DW_FORM_ref_sig8:
ac9ec31b
DE
19812 fprintf_unfiltered (f, "signature: %s",
19813 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 19814 break;
c906108c 19815 case DW_FORM_string:
4bdf3d34 19816 case DW_FORM_strp:
3019eac3 19817 case DW_FORM_GNU_str_index:
36586728 19818 case DW_FORM_GNU_strp_alt:
8285870a 19819 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 19820 DW_STRING (&die->attrs[i])
8285870a
JK
19821 ? DW_STRING (&die->attrs[i]) : "",
19822 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
19823 break;
19824 case DW_FORM_flag:
19825 if (DW_UNSND (&die->attrs[i]))
d97bc12b 19826 fprintf_unfiltered (f, "flag: TRUE");
c906108c 19827 else
d97bc12b 19828 fprintf_unfiltered (f, "flag: FALSE");
c906108c 19829 break;
2dc7f7b3
TT
19830 case DW_FORM_flag_present:
19831 fprintf_unfiltered (f, "flag: TRUE");
19832 break;
a8329558 19833 case DW_FORM_indirect:
0963b4bd
MS
19834 /* The reader will have reduced the indirect form to
19835 the "base form" so this form should not occur. */
3e43a32a
MS
19836 fprintf_unfiltered (f,
19837 "unexpected attribute form: DW_FORM_indirect");
a8329558 19838 break;
c906108c 19839 default:
d97bc12b 19840 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 19841 die->attrs[i].form);
d97bc12b 19842 break;
c906108c 19843 }
d97bc12b 19844 fprintf_unfiltered (f, "\n");
c906108c
SS
19845 }
19846}
19847
f9aca02d 19848static void
d97bc12b 19849dump_die_for_error (struct die_info *die)
c906108c 19850{
d97bc12b
DE
19851 dump_die_shallow (gdb_stderr, 0, die);
19852}
19853
19854static void
19855dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19856{
19857 int indent = level * 4;
19858
19859 gdb_assert (die != NULL);
19860
19861 if (level >= max_level)
19862 return;
19863
19864 dump_die_shallow (f, indent, die);
19865
19866 if (die->child != NULL)
c906108c 19867 {
d97bc12b
DE
19868 print_spaces (indent, f);
19869 fprintf_unfiltered (f, " Children:");
19870 if (level + 1 < max_level)
19871 {
19872 fprintf_unfiltered (f, "\n");
19873 dump_die_1 (f, level + 1, max_level, die->child);
19874 }
19875 else
19876 {
3e43a32a
MS
19877 fprintf_unfiltered (f,
19878 " [not printed, max nesting level reached]\n");
d97bc12b
DE
19879 }
19880 }
19881
19882 if (die->sibling != NULL && level > 0)
19883 {
19884 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
19885 }
19886}
19887
d97bc12b
DE
19888/* This is called from the pdie macro in gdbinit.in.
19889 It's not static so gcc will keep a copy callable from gdb. */
19890
19891void
19892dump_die (struct die_info *die, int max_level)
19893{
19894 dump_die_1 (gdb_stdlog, 0, max_level, die);
19895}
19896
f9aca02d 19897static void
51545339 19898store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19899{
51545339 19900 void **slot;
c906108c 19901
b64f50a1
JK
19902 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19903 INSERT);
51545339
DJ
19904
19905 *slot = die;
c906108c
SS
19906}
19907
b64f50a1
JK
19908/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19909 required kind. */
19910
19911static sect_offset
ff39bb5e 19912dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 19913{
4568ecf9 19914 sect_offset retval = { DW_UNSND (attr) };
b64f50a1 19915
7771576e 19916 if (attr_form_is_ref (attr))
b64f50a1 19917 return retval;
93311388 19918
b64f50a1 19919 retval.sect_off = 0;
93311388
DE
19920 complaint (&symfile_complaints,
19921 _("unsupported die ref attribute form: '%s'"),
19922 dwarf_form_name (attr->form));
b64f50a1 19923 return retval;
c906108c
SS
19924}
19925
43bbcdc2
PH
19926/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19927 * the value held by the attribute is not constant. */
a02abb62 19928
43bbcdc2 19929static LONGEST
ff39bb5e 19930dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62
JB
19931{
19932 if (attr->form == DW_FORM_sdata)
19933 return DW_SND (attr);
19934 else if (attr->form == DW_FORM_udata
19935 || attr->form == DW_FORM_data1
19936 || attr->form == DW_FORM_data2
19937 || attr->form == DW_FORM_data4
19938 || attr->form == DW_FORM_data8)
19939 return DW_UNSND (attr);
19940 else
19941 {
3e43a32a
MS
19942 complaint (&symfile_complaints,
19943 _("Attribute value is not a constant (%s)"),
a02abb62
JB
19944 dwarf_form_name (attr->form));
19945 return default_value;
19946 }
19947}
19948
348e048f
DE
19949/* Follow reference or signature attribute ATTR of SRC_DIE.
19950 On entry *REF_CU is the CU of SRC_DIE.
19951 On exit *REF_CU is the CU of the result. */
19952
19953static struct die_info *
ff39bb5e 19954follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
19955 struct dwarf2_cu **ref_cu)
19956{
19957 struct die_info *die;
19958
7771576e 19959 if (attr_form_is_ref (attr))
348e048f 19960 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 19961 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
19962 die = follow_die_sig (src_die, attr, ref_cu);
19963 else
19964 {
19965 dump_die_for_error (src_die);
19966 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
4262abfb 19967 objfile_name ((*ref_cu)->objfile));
348e048f
DE
19968 }
19969
19970 return die;
03dd20cc
DJ
19971}
19972
5c631832 19973/* Follow reference OFFSET.
673bfd45
DE
19974 On entry *REF_CU is the CU of the source die referencing OFFSET.
19975 On exit *REF_CU is the CU of the result.
19976 Returns NULL if OFFSET is invalid. */
f504f079 19977
f9aca02d 19978static struct die_info *
36586728
TT
19979follow_die_offset (sect_offset offset, int offset_in_dwz,
19980 struct dwarf2_cu **ref_cu)
c906108c 19981{
10b3939b 19982 struct die_info temp_die;
f2f0e013 19983 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 19984
348e048f
DE
19985 gdb_assert (cu->per_cu != NULL);
19986
98bfdba5
PA
19987 target_cu = cu;
19988
3019eac3 19989 if (cu->per_cu->is_debug_types)
348e048f
DE
19990 {
19991 /* .debug_types CUs cannot reference anything outside their CU.
19992 If they need to, they have to reference a signatured type via
55f1336d 19993 DW_FORM_ref_sig8. */
348e048f 19994 if (! offset_in_cu_p (&cu->header, offset))
5c631832 19995 return NULL;
348e048f 19996 }
36586728
TT
19997 else if (offset_in_dwz != cu->per_cu->is_dwz
19998 || ! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
19999 {
20000 struct dwarf2_per_cu_data *per_cu;
9a619af0 20001
36586728
TT
20002 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
20003 cu->objfile);
03dd20cc
DJ
20004
20005 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
20006 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20007 load_full_comp_unit (per_cu, cu->language);
03dd20cc 20008
10b3939b
DJ
20009 target_cu = per_cu->cu;
20010 }
98bfdba5
PA
20011 else if (cu->dies == NULL)
20012 {
20013 /* We're loading full DIEs during partial symbol reading. */
20014 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 20015 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 20016 }
c906108c 20017
f2f0e013 20018 *ref_cu = target_cu;
51545339 20019 temp_die.offset = offset;
9a3c8263
SM
20020 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20021 &temp_die, offset.sect_off);
5c631832 20022}
10b3939b 20023
5c631832
JK
20024/* Follow reference attribute ATTR of SRC_DIE.
20025 On entry *REF_CU is the CU of SRC_DIE.
20026 On exit *REF_CU is the CU of the result. */
20027
20028static struct die_info *
ff39bb5e 20029follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
20030 struct dwarf2_cu **ref_cu)
20031{
b64f50a1 20032 sect_offset offset = dwarf2_get_ref_die_offset (attr);
5c631832
JK
20033 struct dwarf2_cu *cu = *ref_cu;
20034 struct die_info *die;
20035
36586728
TT
20036 die = follow_die_offset (offset,
20037 (attr->form == DW_FORM_GNU_ref_alt
20038 || cu->per_cu->is_dwz),
20039 ref_cu);
5c631832
JK
20040 if (!die)
20041 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20042 "at 0x%x [in module %s]"),
4262abfb
JK
20043 offset.sect_off, src_die->offset.sect_off,
20044 objfile_name (cu->objfile));
348e048f 20045
5c631832
JK
20046 return die;
20047}
20048
d83e736b
JK
20049/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
20050 Returned value is intended for DW_OP_call*. Returned
20051 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
20052
20053struct dwarf2_locexpr_baton
8b9737bf
TT
20054dwarf2_fetch_die_loc_sect_off (sect_offset offset,
20055 struct dwarf2_per_cu_data *per_cu,
20056 CORE_ADDR (*get_frame_pc) (void *baton),
20057 void *baton)
5c631832 20058{
918dd910 20059 struct dwarf2_cu *cu;
5c631832
JK
20060 struct die_info *die;
20061 struct attribute *attr;
20062 struct dwarf2_locexpr_baton retval;
20063
8cf6f0b1
TT
20064 dw2_setup (per_cu->objfile);
20065
918dd910
JK
20066 if (per_cu->cu == NULL)
20067 load_cu (per_cu);
20068 cu = per_cu->cu;
cc12ce38
DE
20069 if (cu == NULL)
20070 {
20071 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20072 Instead just throw an error, not much else we can do. */
20073 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20074 offset.sect_off, objfile_name (per_cu->objfile));
20075 }
918dd910 20076
36586728 20077 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
5c631832
JK
20078 if (!die)
20079 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 20080 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
20081
20082 attr = dwarf2_attr (die, DW_AT_location, cu);
20083 if (!attr)
20084 {
e103e986
JK
20085 /* DWARF: "If there is no such attribute, then there is no effect.".
20086 DATA is ignored if SIZE is 0. */
5c631832 20087
e103e986 20088 retval.data = NULL;
5c631832
JK
20089 retval.size = 0;
20090 }
8cf6f0b1
TT
20091 else if (attr_form_is_section_offset (attr))
20092 {
20093 struct dwarf2_loclist_baton loclist_baton;
20094 CORE_ADDR pc = (*get_frame_pc) (baton);
20095 size_t size;
20096
20097 fill_in_loclist_baton (cu, &loclist_baton, attr);
20098
20099 retval.data = dwarf2_find_location_expression (&loclist_baton,
20100 &size, pc);
20101 retval.size = size;
20102 }
5c631832
JK
20103 else
20104 {
20105 if (!attr_form_is_block (attr))
20106 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20107 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
4262abfb 20108 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
20109
20110 retval.data = DW_BLOCK (attr)->data;
20111 retval.size = DW_BLOCK (attr)->size;
20112 }
20113 retval.per_cu = cu->per_cu;
918dd910 20114
918dd910
JK
20115 age_cached_comp_units ();
20116
5c631832 20117 return retval;
348e048f
DE
20118}
20119
8b9737bf
TT
20120/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20121 offset. */
20122
20123struct dwarf2_locexpr_baton
20124dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20125 struct dwarf2_per_cu_data *per_cu,
20126 CORE_ADDR (*get_frame_pc) (void *baton),
20127 void *baton)
20128{
20129 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20130
20131 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20132}
20133
b6807d98
TT
20134/* Write a constant of a given type as target-ordered bytes into
20135 OBSTACK. */
20136
20137static const gdb_byte *
20138write_constant_as_bytes (struct obstack *obstack,
20139 enum bfd_endian byte_order,
20140 struct type *type,
20141 ULONGEST value,
20142 LONGEST *len)
20143{
20144 gdb_byte *result;
20145
20146 *len = TYPE_LENGTH (type);
224c3ddb 20147 result = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
20148 store_unsigned_integer (result, *len, byte_order, value);
20149
20150 return result;
20151}
20152
20153/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20154 pointer to the constant bytes and set LEN to the length of the
20155 data. If memory is needed, allocate it on OBSTACK. If the DIE
20156 does not have a DW_AT_const_value, return NULL. */
20157
20158const gdb_byte *
20159dwarf2_fetch_constant_bytes (sect_offset offset,
20160 struct dwarf2_per_cu_data *per_cu,
20161 struct obstack *obstack,
20162 LONGEST *len)
20163{
20164 struct dwarf2_cu *cu;
20165 struct die_info *die;
20166 struct attribute *attr;
20167 const gdb_byte *result = NULL;
20168 struct type *type;
20169 LONGEST value;
20170 enum bfd_endian byte_order;
20171
20172 dw2_setup (per_cu->objfile);
20173
20174 if (per_cu->cu == NULL)
20175 load_cu (per_cu);
20176 cu = per_cu->cu;
cc12ce38
DE
20177 if (cu == NULL)
20178 {
20179 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20180 Instead just throw an error, not much else we can do. */
20181 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20182 offset.sect_off, objfile_name (per_cu->objfile));
20183 }
b6807d98
TT
20184
20185 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20186 if (!die)
20187 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 20188 offset.sect_off, objfile_name (per_cu->objfile));
b6807d98
TT
20189
20190
20191 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20192 if (attr == NULL)
20193 return NULL;
20194
20195 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20196 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20197
20198 switch (attr->form)
20199 {
20200 case DW_FORM_addr:
20201 case DW_FORM_GNU_addr_index:
20202 {
20203 gdb_byte *tem;
20204
20205 *len = cu->header.addr_size;
224c3ddb 20206 tem = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
20207 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20208 result = tem;
20209 }
20210 break;
20211 case DW_FORM_string:
20212 case DW_FORM_strp:
20213 case DW_FORM_GNU_str_index:
20214 case DW_FORM_GNU_strp_alt:
20215 /* DW_STRING is already allocated on the objfile obstack, point
20216 directly to it. */
20217 result = (const gdb_byte *) DW_STRING (attr);
20218 *len = strlen (DW_STRING (attr));
20219 break;
20220 case DW_FORM_block1:
20221 case DW_FORM_block2:
20222 case DW_FORM_block4:
20223 case DW_FORM_block:
20224 case DW_FORM_exprloc:
20225 result = DW_BLOCK (attr)->data;
20226 *len = DW_BLOCK (attr)->size;
20227 break;
20228
20229 /* The DW_AT_const_value attributes are supposed to carry the
20230 symbol's value "represented as it would be on the target
20231 architecture." By the time we get here, it's already been
20232 converted to host endianness, so we just need to sign- or
20233 zero-extend it as appropriate. */
20234 case DW_FORM_data1:
20235 type = die_type (die, cu);
20236 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20237 if (result == NULL)
20238 result = write_constant_as_bytes (obstack, byte_order,
20239 type, value, len);
20240 break;
20241 case DW_FORM_data2:
20242 type = die_type (die, cu);
20243 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20244 if (result == NULL)
20245 result = write_constant_as_bytes (obstack, byte_order,
20246 type, value, len);
20247 break;
20248 case DW_FORM_data4:
20249 type = die_type (die, cu);
20250 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20251 if (result == NULL)
20252 result = write_constant_as_bytes (obstack, byte_order,
20253 type, value, len);
20254 break;
20255 case DW_FORM_data8:
20256 type = die_type (die, cu);
20257 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20258 if (result == NULL)
20259 result = write_constant_as_bytes (obstack, byte_order,
20260 type, value, len);
20261 break;
20262
20263 case DW_FORM_sdata:
20264 type = die_type (die, cu);
20265 result = write_constant_as_bytes (obstack, byte_order,
20266 type, DW_SND (attr), len);
20267 break;
20268
20269 case DW_FORM_udata:
20270 type = die_type (die, cu);
20271 result = write_constant_as_bytes (obstack, byte_order,
20272 type, DW_UNSND (attr), len);
20273 break;
20274
20275 default:
20276 complaint (&symfile_complaints,
20277 _("unsupported const value attribute form: '%s'"),
20278 dwarf_form_name (attr->form));
20279 break;
20280 }
20281
20282 return result;
20283}
20284
8a9b8146
TT
20285/* Return the type of the DIE at DIE_OFFSET in the CU named by
20286 PER_CU. */
20287
20288struct type *
b64f50a1 20289dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
20290 struct dwarf2_per_cu_data *per_cu)
20291{
b64f50a1
JK
20292 sect_offset die_offset_sect;
20293
8a9b8146 20294 dw2_setup (per_cu->objfile);
b64f50a1
JK
20295
20296 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20297 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
20298}
20299
ac9ec31b 20300/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 20301 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
20302 On exit *REF_CU is the CU of the result.
20303 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
20304
20305static struct die_info *
ac9ec31b
DE
20306follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20307 struct dwarf2_cu **ref_cu)
348e048f 20308{
348e048f 20309 struct die_info temp_die;
348e048f
DE
20310 struct dwarf2_cu *sig_cu;
20311 struct die_info *die;
20312
ac9ec31b
DE
20313 /* While it might be nice to assert sig_type->type == NULL here,
20314 we can get here for DW_AT_imported_declaration where we need
20315 the DIE not the type. */
348e048f
DE
20316
20317 /* If necessary, add it to the queue and load its DIEs. */
20318
95554aad 20319 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 20320 read_signatured_type (sig_type);
348e048f 20321
348e048f 20322 sig_cu = sig_type->per_cu.cu;
69d751e3 20323 gdb_assert (sig_cu != NULL);
3019eac3
DE
20324 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20325 temp_die.offset = sig_type->type_offset_in_section;
9a3c8263
SM
20326 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
20327 temp_die.offset.sect_off);
348e048f
DE
20328 if (die)
20329 {
796a7ff8
DE
20330 /* For .gdb_index version 7 keep track of included TUs.
20331 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20332 if (dwarf2_per_objfile->index_table != NULL
20333 && dwarf2_per_objfile->index_table->version <= 7)
20334 {
20335 VEC_safe_push (dwarf2_per_cu_ptr,
20336 (*ref_cu)->per_cu->imported_symtabs,
20337 sig_cu->per_cu);
20338 }
20339
348e048f
DE
20340 *ref_cu = sig_cu;
20341 return die;
20342 }
20343
ac9ec31b
DE
20344 return NULL;
20345}
20346
20347/* Follow signatured type referenced by ATTR in SRC_DIE.
20348 On entry *REF_CU is the CU of SRC_DIE.
20349 On exit *REF_CU is the CU of the result.
20350 The result is the DIE of the type.
20351 If the referenced type cannot be found an error is thrown. */
20352
20353static struct die_info *
ff39bb5e 20354follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
20355 struct dwarf2_cu **ref_cu)
20356{
20357 ULONGEST signature = DW_SIGNATURE (attr);
20358 struct signatured_type *sig_type;
20359 struct die_info *die;
20360
20361 gdb_assert (attr->form == DW_FORM_ref_sig8);
20362
a2ce51a0 20363 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
20364 /* sig_type will be NULL if the signatured type is missing from
20365 the debug info. */
20366 if (sig_type == NULL)
20367 {
20368 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20369 " from DIE at 0x%x [in module %s]"),
20370 hex_string (signature), src_die->offset.sect_off,
4262abfb 20371 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
20372 }
20373
20374 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20375 if (die == NULL)
20376 {
20377 dump_die_for_error (src_die);
20378 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20379 " from DIE at 0x%x [in module %s]"),
20380 hex_string (signature), src_die->offset.sect_off,
4262abfb 20381 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
20382 }
20383
20384 return die;
20385}
20386
20387/* Get the type specified by SIGNATURE referenced in DIE/CU,
20388 reading in and processing the type unit if necessary. */
20389
20390static struct type *
20391get_signatured_type (struct die_info *die, ULONGEST signature,
20392 struct dwarf2_cu *cu)
20393{
20394 struct signatured_type *sig_type;
20395 struct dwarf2_cu *type_cu;
20396 struct die_info *type_die;
20397 struct type *type;
20398
a2ce51a0 20399 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
20400 /* sig_type will be NULL if the signatured type is missing from
20401 the debug info. */
20402 if (sig_type == NULL)
20403 {
20404 complaint (&symfile_complaints,
20405 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20406 " from DIE at 0x%x [in module %s]"),
20407 hex_string (signature), die->offset.sect_off,
4262abfb 20408 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20409 return build_error_marker_type (cu, die);
20410 }
20411
20412 /* If we already know the type we're done. */
20413 if (sig_type->type != NULL)
20414 return sig_type->type;
20415
20416 type_cu = cu;
20417 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20418 if (type_die != NULL)
20419 {
20420 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20421 is created. This is important, for example, because for c++ classes
20422 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20423 type = read_type_die (type_die, type_cu);
20424 if (type == NULL)
20425 {
20426 complaint (&symfile_complaints,
20427 _("Dwarf Error: Cannot build signatured type %s"
20428 " referenced from DIE at 0x%x [in module %s]"),
20429 hex_string (signature), die->offset.sect_off,
4262abfb 20430 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20431 type = build_error_marker_type (cu, die);
20432 }
20433 }
20434 else
20435 {
20436 complaint (&symfile_complaints,
20437 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20438 " from DIE at 0x%x [in module %s]"),
20439 hex_string (signature), die->offset.sect_off,
4262abfb 20440 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20441 type = build_error_marker_type (cu, die);
20442 }
20443 sig_type->type = type;
20444
20445 return type;
20446}
20447
20448/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20449 reading in and processing the type unit if necessary. */
20450
20451static struct type *
ff39bb5e 20452get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 20453 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
20454{
20455 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 20456 if (attr_form_is_ref (attr))
ac9ec31b
DE
20457 {
20458 struct dwarf2_cu *type_cu = cu;
20459 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20460
20461 return read_type_die (type_die, type_cu);
20462 }
20463 else if (attr->form == DW_FORM_ref_sig8)
20464 {
20465 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20466 }
20467 else
20468 {
20469 complaint (&symfile_complaints,
20470 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20471 " at 0x%x [in module %s]"),
20472 dwarf_form_name (attr->form), die->offset.sect_off,
4262abfb 20473 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20474 return build_error_marker_type (cu, die);
20475 }
348e048f
DE
20476}
20477
e5fe5e75 20478/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
20479
20480static void
e5fe5e75 20481load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 20482{
52dc124a 20483 struct signatured_type *sig_type;
348e048f 20484
f4dc4d17
DE
20485 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20486 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20487
6721b2ec
DE
20488 /* We have the per_cu, but we need the signatured_type.
20489 Fortunately this is an easy translation. */
20490 gdb_assert (per_cu->is_debug_types);
20491 sig_type = (struct signatured_type *) per_cu;
348e048f 20492
6721b2ec 20493 gdb_assert (per_cu->cu == NULL);
348e048f 20494
52dc124a 20495 read_signatured_type (sig_type);
348e048f 20496
6721b2ec 20497 gdb_assert (per_cu->cu != NULL);
348e048f
DE
20498}
20499
dee91e82
DE
20500/* die_reader_func for read_signatured_type.
20501 This is identical to load_full_comp_unit_reader,
20502 but is kept separate for now. */
348e048f
DE
20503
20504static void
dee91e82 20505read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 20506 const gdb_byte *info_ptr,
dee91e82
DE
20507 struct die_info *comp_unit_die,
20508 int has_children,
20509 void *data)
348e048f 20510{
dee91e82 20511 struct dwarf2_cu *cu = reader->cu;
348e048f 20512
dee91e82
DE
20513 gdb_assert (cu->die_hash == NULL);
20514 cu->die_hash =
20515 htab_create_alloc_ex (cu->header.length / 12,
20516 die_hash,
20517 die_eq,
20518 NULL,
20519 &cu->comp_unit_obstack,
20520 hashtab_obstack_allocate,
20521 dummy_obstack_deallocate);
348e048f 20522
dee91e82
DE
20523 if (has_children)
20524 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20525 &info_ptr, comp_unit_die);
20526 cu->dies = comp_unit_die;
20527 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
20528
20529 /* We try not to read any attributes in this function, because not
9cdd5dbd 20530 all CUs needed for references have been loaded yet, and symbol
348e048f 20531 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
20532 or we won't be able to build types correctly.
20533 Similarly, if we do not read the producer, we can not apply
20534 producer-specific interpretation. */
95554aad 20535 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 20536}
348e048f 20537
3019eac3
DE
20538/* Read in a signatured type and build its CU and DIEs.
20539 If the type is a stub for the real type in a DWO file,
20540 read in the real type from the DWO file as well. */
dee91e82
DE
20541
20542static void
20543read_signatured_type (struct signatured_type *sig_type)
20544{
20545 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 20546
3019eac3 20547 gdb_assert (per_cu->is_debug_types);
dee91e82 20548 gdb_assert (per_cu->cu == NULL);
348e048f 20549
f4dc4d17
DE
20550 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20551 read_signatured_type_reader, NULL);
7ee85ab1 20552 sig_type->per_cu.tu_read = 1;
c906108c
SS
20553}
20554
c906108c
SS
20555/* Decode simple location descriptions.
20556 Given a pointer to a dwarf block that defines a location, compute
20557 the location and return the value.
20558
4cecd739
DJ
20559 NOTE drow/2003-11-18: This function is called in two situations
20560 now: for the address of static or global variables (partial symbols
20561 only) and for offsets into structures which are expected to be
20562 (more or less) constant. The partial symbol case should go away,
20563 and only the constant case should remain. That will let this
20564 function complain more accurately. A few special modes are allowed
20565 without complaint for global variables (for instance, global
20566 register values and thread-local values).
c906108c
SS
20567
20568 A location description containing no operations indicates that the
4cecd739 20569 object is optimized out. The return value is 0 for that case.
6b992462
DJ
20570 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20571 callers will only want a very basic result and this can become a
21ae7a4d
JK
20572 complaint.
20573
20574 Note that stack[0] is unused except as a default error return. */
c906108c
SS
20575
20576static CORE_ADDR
e7c27a73 20577decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 20578{
e7c27a73 20579 struct objfile *objfile = cu->objfile;
56eb65bd
SP
20580 size_t i;
20581 size_t size = blk->size;
d521ce57 20582 const gdb_byte *data = blk->data;
21ae7a4d
JK
20583 CORE_ADDR stack[64];
20584 int stacki;
20585 unsigned int bytes_read, unsnd;
20586 gdb_byte op;
c906108c 20587
21ae7a4d
JK
20588 i = 0;
20589 stacki = 0;
20590 stack[stacki] = 0;
20591 stack[++stacki] = 0;
20592
20593 while (i < size)
20594 {
20595 op = data[i++];
20596 switch (op)
20597 {
20598 case DW_OP_lit0:
20599 case DW_OP_lit1:
20600 case DW_OP_lit2:
20601 case DW_OP_lit3:
20602 case DW_OP_lit4:
20603 case DW_OP_lit5:
20604 case DW_OP_lit6:
20605 case DW_OP_lit7:
20606 case DW_OP_lit8:
20607 case DW_OP_lit9:
20608 case DW_OP_lit10:
20609 case DW_OP_lit11:
20610 case DW_OP_lit12:
20611 case DW_OP_lit13:
20612 case DW_OP_lit14:
20613 case DW_OP_lit15:
20614 case DW_OP_lit16:
20615 case DW_OP_lit17:
20616 case DW_OP_lit18:
20617 case DW_OP_lit19:
20618 case DW_OP_lit20:
20619 case DW_OP_lit21:
20620 case DW_OP_lit22:
20621 case DW_OP_lit23:
20622 case DW_OP_lit24:
20623 case DW_OP_lit25:
20624 case DW_OP_lit26:
20625 case DW_OP_lit27:
20626 case DW_OP_lit28:
20627 case DW_OP_lit29:
20628 case DW_OP_lit30:
20629 case DW_OP_lit31:
20630 stack[++stacki] = op - DW_OP_lit0;
20631 break;
f1bea926 20632
21ae7a4d
JK
20633 case DW_OP_reg0:
20634 case DW_OP_reg1:
20635 case DW_OP_reg2:
20636 case DW_OP_reg3:
20637 case DW_OP_reg4:
20638 case DW_OP_reg5:
20639 case DW_OP_reg6:
20640 case DW_OP_reg7:
20641 case DW_OP_reg8:
20642 case DW_OP_reg9:
20643 case DW_OP_reg10:
20644 case DW_OP_reg11:
20645 case DW_OP_reg12:
20646 case DW_OP_reg13:
20647 case DW_OP_reg14:
20648 case DW_OP_reg15:
20649 case DW_OP_reg16:
20650 case DW_OP_reg17:
20651 case DW_OP_reg18:
20652 case DW_OP_reg19:
20653 case DW_OP_reg20:
20654 case DW_OP_reg21:
20655 case DW_OP_reg22:
20656 case DW_OP_reg23:
20657 case DW_OP_reg24:
20658 case DW_OP_reg25:
20659 case DW_OP_reg26:
20660 case DW_OP_reg27:
20661 case DW_OP_reg28:
20662 case DW_OP_reg29:
20663 case DW_OP_reg30:
20664 case DW_OP_reg31:
20665 stack[++stacki] = op - DW_OP_reg0;
20666 if (i < size)
20667 dwarf2_complex_location_expr_complaint ();
20668 break;
c906108c 20669
21ae7a4d
JK
20670 case DW_OP_regx:
20671 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20672 i += bytes_read;
20673 stack[++stacki] = unsnd;
20674 if (i < size)
20675 dwarf2_complex_location_expr_complaint ();
20676 break;
c906108c 20677
21ae7a4d
JK
20678 case DW_OP_addr:
20679 stack[++stacki] = read_address (objfile->obfd, &data[i],
20680 cu, &bytes_read);
20681 i += bytes_read;
20682 break;
d53d4ac5 20683
21ae7a4d
JK
20684 case DW_OP_const1u:
20685 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20686 i += 1;
20687 break;
20688
20689 case DW_OP_const1s:
20690 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20691 i += 1;
20692 break;
20693
20694 case DW_OP_const2u:
20695 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20696 i += 2;
20697 break;
20698
20699 case DW_OP_const2s:
20700 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20701 i += 2;
20702 break;
d53d4ac5 20703
21ae7a4d
JK
20704 case DW_OP_const4u:
20705 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20706 i += 4;
20707 break;
20708
20709 case DW_OP_const4s:
20710 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20711 i += 4;
20712 break;
20713
585861ea
JK
20714 case DW_OP_const8u:
20715 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20716 i += 8;
20717 break;
20718
21ae7a4d
JK
20719 case DW_OP_constu:
20720 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20721 &bytes_read);
20722 i += bytes_read;
20723 break;
20724
20725 case DW_OP_consts:
20726 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20727 i += bytes_read;
20728 break;
20729
20730 case DW_OP_dup:
20731 stack[stacki + 1] = stack[stacki];
20732 stacki++;
20733 break;
20734
20735 case DW_OP_plus:
20736 stack[stacki - 1] += stack[stacki];
20737 stacki--;
20738 break;
20739
20740 case DW_OP_plus_uconst:
20741 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20742 &bytes_read);
20743 i += bytes_read;
20744 break;
20745
20746 case DW_OP_minus:
20747 stack[stacki - 1] -= stack[stacki];
20748 stacki--;
20749 break;
20750
20751 case DW_OP_deref:
20752 /* If we're not the last op, then we definitely can't encode
20753 this using GDB's address_class enum. This is valid for partial
20754 global symbols, although the variable's address will be bogus
20755 in the psymtab. */
20756 if (i < size)
20757 dwarf2_complex_location_expr_complaint ();
20758 break;
20759
20760 case DW_OP_GNU_push_tls_address:
4aa4e28b 20761 case DW_OP_form_tls_address:
21ae7a4d
JK
20762 /* The top of the stack has the offset from the beginning
20763 of the thread control block at which the variable is located. */
20764 /* Nothing should follow this operator, so the top of stack would
20765 be returned. */
20766 /* This is valid for partial global symbols, but the variable's
585861ea
JK
20767 address will be bogus in the psymtab. Make it always at least
20768 non-zero to not look as a variable garbage collected by linker
20769 which have DW_OP_addr 0. */
21ae7a4d
JK
20770 if (i < size)
20771 dwarf2_complex_location_expr_complaint ();
585861ea 20772 stack[stacki]++;
21ae7a4d
JK
20773 break;
20774
20775 case DW_OP_GNU_uninit:
20776 break;
20777
3019eac3 20778 case DW_OP_GNU_addr_index:
49f6c839 20779 case DW_OP_GNU_const_index:
3019eac3
DE
20780 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20781 &bytes_read);
20782 i += bytes_read;
20783 break;
20784
21ae7a4d
JK
20785 default:
20786 {
f39c6ffd 20787 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
20788
20789 if (name)
20790 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20791 name);
20792 else
20793 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20794 op);
20795 }
20796
20797 return (stack[stacki]);
d53d4ac5 20798 }
3c6e0cb3 20799
21ae7a4d
JK
20800 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20801 outside of the allocated space. Also enforce minimum>0. */
20802 if (stacki >= ARRAY_SIZE (stack) - 1)
20803 {
20804 complaint (&symfile_complaints,
20805 _("location description stack overflow"));
20806 return 0;
20807 }
20808
20809 if (stacki <= 0)
20810 {
20811 complaint (&symfile_complaints,
20812 _("location description stack underflow"));
20813 return 0;
20814 }
20815 }
20816 return (stack[stacki]);
c906108c
SS
20817}
20818
20819/* memory allocation interface */
20820
c906108c 20821static struct dwarf_block *
7b5a2f43 20822dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c 20823{
8d749320 20824 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
c906108c
SS
20825}
20826
c906108c 20827static struct die_info *
b60c80d6 20828dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
20829{
20830 struct die_info *die;
b60c80d6
DJ
20831 size_t size = sizeof (struct die_info);
20832
20833 if (num_attrs > 1)
20834 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 20835
b60c80d6 20836 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
20837 memset (die, 0, sizeof (struct die_info));
20838 return (die);
20839}
2e276125
JB
20840
20841\f
20842/* Macro support. */
20843
233d95b5
JK
20844/* Return file name relative to the compilation directory of file number I in
20845 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 20846 responsible for freeing it. */
233d95b5 20847
2e276125 20848static char *
233d95b5 20849file_file_name (int file, struct line_header *lh)
2e276125 20850{
6a83a1e6
EZ
20851 /* Is the file number a valid index into the line header's file name
20852 table? Remember that file numbers start with one, not zero. */
20853 if (1 <= file && file <= lh->num_file_names)
20854 {
20855 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 20856
afa6c9ab
SL
20857 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20858 || lh->include_dirs == NULL)
6a83a1e6 20859 return xstrdup (fe->name);
233d95b5 20860 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
b36cec19 20861 fe->name, (char *) NULL);
6a83a1e6 20862 }
2e276125
JB
20863 else
20864 {
6a83a1e6
EZ
20865 /* The compiler produced a bogus file number. We can at least
20866 record the macro definitions made in the file, even if we
20867 won't be able to find the file by name. */
20868 char fake_name[80];
9a619af0 20869
8c042590
PM
20870 xsnprintf (fake_name, sizeof (fake_name),
20871 "<bad macro file number %d>", file);
2e276125 20872
6e70227d 20873 complaint (&symfile_complaints,
6a83a1e6
EZ
20874 _("bad file number in macro information (%d)"),
20875 file);
2e276125 20876
6a83a1e6 20877 return xstrdup (fake_name);
2e276125
JB
20878 }
20879}
20880
233d95b5
JK
20881/* Return the full name of file number I in *LH's file name table.
20882 Use COMP_DIR as the name of the current directory of the
20883 compilation. The result is allocated using xmalloc; the caller is
20884 responsible for freeing it. */
20885static char *
20886file_full_name (int file, struct line_header *lh, const char *comp_dir)
20887{
20888 /* Is the file number a valid index into the line header's file name
20889 table? Remember that file numbers start with one, not zero. */
20890 if (1 <= file && file <= lh->num_file_names)
20891 {
20892 char *relative = file_file_name (file, lh);
20893
20894 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20895 return relative;
b36cec19
PA
20896 return reconcat (relative, comp_dir, SLASH_STRING,
20897 relative, (char *) NULL);
233d95b5
JK
20898 }
20899 else
20900 return file_file_name (file, lh);
20901}
20902
2e276125
JB
20903
20904static struct macro_source_file *
20905macro_start_file (int file, int line,
20906 struct macro_source_file *current_file,
43f3e411 20907 struct line_header *lh)
2e276125 20908{
233d95b5
JK
20909 /* File name relative to the compilation directory of this source file. */
20910 char *file_name = file_file_name (file, lh);
2e276125 20911
2e276125 20912 if (! current_file)
abc9d0dc 20913 {
fc474241
DE
20914 /* Note: We don't create a macro table for this compilation unit
20915 at all until we actually get a filename. */
43f3e411 20916 struct macro_table *macro_table = get_macro_table ();
fc474241 20917
abc9d0dc
TT
20918 /* If we have no current file, then this must be the start_file
20919 directive for the compilation unit's main source file. */
fc474241
DE
20920 current_file = macro_set_main (macro_table, file_name);
20921 macro_define_special (macro_table);
abc9d0dc 20922 }
2e276125 20923 else
233d95b5 20924 current_file = macro_include (current_file, line, file_name);
2e276125 20925
233d95b5 20926 xfree (file_name);
6e70227d 20927
2e276125
JB
20928 return current_file;
20929}
20930
20931
20932/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20933 followed by a null byte. */
20934static char *
20935copy_string (const char *buf, int len)
20936{
224c3ddb 20937 char *s = (char *) xmalloc (len + 1);
9a619af0 20938
2e276125
JB
20939 memcpy (s, buf, len);
20940 s[len] = '\0';
2e276125
JB
20941 return s;
20942}
20943
20944
20945static const char *
20946consume_improper_spaces (const char *p, const char *body)
20947{
20948 if (*p == ' ')
20949 {
4d3c2250 20950 complaint (&symfile_complaints,
3e43a32a
MS
20951 _("macro definition contains spaces "
20952 "in formal argument list:\n`%s'"),
4d3c2250 20953 body);
2e276125
JB
20954
20955 while (*p == ' ')
20956 p++;
20957 }
20958
20959 return p;
20960}
20961
20962
20963static void
20964parse_macro_definition (struct macro_source_file *file, int line,
20965 const char *body)
20966{
20967 const char *p;
20968
20969 /* The body string takes one of two forms. For object-like macro
20970 definitions, it should be:
20971
20972 <macro name> " " <definition>
20973
20974 For function-like macro definitions, it should be:
20975
20976 <macro name> "() " <definition>
20977 or
20978 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20979
20980 Spaces may appear only where explicitly indicated, and in the
20981 <definition>.
20982
20983 The Dwarf 2 spec says that an object-like macro's name is always
20984 followed by a space, but versions of GCC around March 2002 omit
6e70227d 20985 the space when the macro's definition is the empty string.
2e276125
JB
20986
20987 The Dwarf 2 spec says that there should be no spaces between the
20988 formal arguments in a function-like macro's formal argument list,
20989 but versions of GCC around March 2002 include spaces after the
20990 commas. */
20991
20992
20993 /* Find the extent of the macro name. The macro name is terminated
20994 by either a space or null character (for an object-like macro) or
20995 an opening paren (for a function-like macro). */
20996 for (p = body; *p; p++)
20997 if (*p == ' ' || *p == '(')
20998 break;
20999
21000 if (*p == ' ' || *p == '\0')
21001 {
21002 /* It's an object-like macro. */
21003 int name_len = p - body;
21004 char *name = copy_string (body, name_len);
21005 const char *replacement;
21006
21007 if (*p == ' ')
21008 replacement = body + name_len + 1;
21009 else
21010 {
4d3c2250 21011 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21012 replacement = body + name_len;
21013 }
6e70227d 21014
2e276125
JB
21015 macro_define_object (file, line, name, replacement);
21016
21017 xfree (name);
21018 }
21019 else if (*p == '(')
21020 {
21021 /* It's a function-like macro. */
21022 char *name = copy_string (body, p - body);
21023 int argc = 0;
21024 int argv_size = 1;
8d749320 21025 char **argv = XNEWVEC (char *, argv_size);
2e276125
JB
21026
21027 p++;
21028
21029 p = consume_improper_spaces (p, body);
21030
21031 /* Parse the formal argument list. */
21032 while (*p && *p != ')')
21033 {
21034 /* Find the extent of the current argument name. */
21035 const char *arg_start = p;
21036
21037 while (*p && *p != ',' && *p != ')' && *p != ' ')
21038 p++;
21039
21040 if (! *p || p == arg_start)
4d3c2250 21041 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21042 else
21043 {
21044 /* Make sure argv has room for the new argument. */
21045 if (argc >= argv_size)
21046 {
21047 argv_size *= 2;
224c3ddb 21048 argv = XRESIZEVEC (char *, argv, argv_size);
2e276125
JB
21049 }
21050
21051 argv[argc++] = copy_string (arg_start, p - arg_start);
21052 }
21053
21054 p = consume_improper_spaces (p, body);
21055
21056 /* Consume the comma, if present. */
21057 if (*p == ',')
21058 {
21059 p++;
21060
21061 p = consume_improper_spaces (p, body);
21062 }
21063 }
21064
21065 if (*p == ')')
21066 {
21067 p++;
21068
21069 if (*p == ' ')
21070 /* Perfectly formed definition, no complaints. */
21071 macro_define_function (file, line, name,
6e70227d 21072 argc, (const char **) argv,
2e276125
JB
21073 p + 1);
21074 else if (*p == '\0')
21075 {
21076 /* Complain, but do define it. */
4d3c2250 21077 dwarf2_macro_malformed_definition_complaint (body);
2e276125 21078 macro_define_function (file, line, name,
6e70227d 21079 argc, (const char **) argv,
2e276125
JB
21080 p);
21081 }
21082 else
21083 /* Just complain. */
4d3c2250 21084 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21085 }
21086 else
21087 /* Just complain. */
4d3c2250 21088 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21089
21090 xfree (name);
21091 {
21092 int i;
21093
21094 for (i = 0; i < argc; i++)
21095 xfree (argv[i]);
21096 }
21097 xfree (argv);
21098 }
21099 else
4d3c2250 21100 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21101}
21102
cf2c3c16
TT
21103/* Skip some bytes from BYTES according to the form given in FORM.
21104 Returns the new pointer. */
2e276125 21105
d521ce57
TT
21106static const gdb_byte *
21107skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
21108 enum dwarf_form form,
21109 unsigned int offset_size,
21110 struct dwarf2_section_info *section)
2e276125 21111{
cf2c3c16 21112 unsigned int bytes_read;
2e276125 21113
cf2c3c16 21114 switch (form)
2e276125 21115 {
cf2c3c16
TT
21116 case DW_FORM_data1:
21117 case DW_FORM_flag:
21118 ++bytes;
21119 break;
21120
21121 case DW_FORM_data2:
21122 bytes += 2;
21123 break;
21124
21125 case DW_FORM_data4:
21126 bytes += 4;
21127 break;
21128
21129 case DW_FORM_data8:
21130 bytes += 8;
21131 break;
21132
21133 case DW_FORM_string:
21134 read_direct_string (abfd, bytes, &bytes_read);
21135 bytes += bytes_read;
21136 break;
21137
21138 case DW_FORM_sec_offset:
21139 case DW_FORM_strp:
36586728 21140 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
21141 bytes += offset_size;
21142 break;
21143
21144 case DW_FORM_block:
21145 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21146 bytes += bytes_read;
21147 break;
21148
21149 case DW_FORM_block1:
21150 bytes += 1 + read_1_byte (abfd, bytes);
21151 break;
21152 case DW_FORM_block2:
21153 bytes += 2 + read_2_bytes (abfd, bytes);
21154 break;
21155 case DW_FORM_block4:
21156 bytes += 4 + read_4_bytes (abfd, bytes);
21157 break;
21158
21159 case DW_FORM_sdata:
21160 case DW_FORM_udata:
3019eac3
DE
21161 case DW_FORM_GNU_addr_index:
21162 case DW_FORM_GNU_str_index:
d521ce57 21163 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
21164 if (bytes == NULL)
21165 {
21166 dwarf2_section_buffer_overflow_complaint (section);
21167 return NULL;
21168 }
cf2c3c16
TT
21169 break;
21170
21171 default:
21172 {
21173 complain:
21174 complaint (&symfile_complaints,
21175 _("invalid form 0x%x in `%s'"),
a32a8923 21176 form, get_section_name (section));
cf2c3c16
TT
21177 return NULL;
21178 }
2e276125
JB
21179 }
21180
cf2c3c16
TT
21181 return bytes;
21182}
757a13d0 21183
cf2c3c16
TT
21184/* A helper for dwarf_decode_macros that handles skipping an unknown
21185 opcode. Returns an updated pointer to the macro data buffer; or,
21186 on error, issues a complaint and returns NULL. */
757a13d0 21187
d521ce57 21188static const gdb_byte *
cf2c3c16 21189skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
21190 const gdb_byte **opcode_definitions,
21191 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
21192 bfd *abfd,
21193 unsigned int offset_size,
21194 struct dwarf2_section_info *section)
21195{
21196 unsigned int bytes_read, i;
21197 unsigned long arg;
d521ce57 21198 const gdb_byte *defn;
2e276125 21199
cf2c3c16 21200 if (opcode_definitions[opcode] == NULL)
2e276125 21201 {
cf2c3c16
TT
21202 complaint (&symfile_complaints,
21203 _("unrecognized DW_MACFINO opcode 0x%x"),
21204 opcode);
21205 return NULL;
21206 }
2e276125 21207
cf2c3c16
TT
21208 defn = opcode_definitions[opcode];
21209 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21210 defn += bytes_read;
2e276125 21211
cf2c3c16
TT
21212 for (i = 0; i < arg; ++i)
21213 {
aead7601
SM
21214 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21215 (enum dwarf_form) defn[i], offset_size,
f664829e 21216 section);
cf2c3c16
TT
21217 if (mac_ptr == NULL)
21218 {
21219 /* skip_form_bytes already issued the complaint. */
21220 return NULL;
21221 }
21222 }
757a13d0 21223
cf2c3c16
TT
21224 return mac_ptr;
21225}
757a13d0 21226
cf2c3c16
TT
21227/* A helper function which parses the header of a macro section.
21228 If the macro section is the extended (for now called "GNU") type,
21229 then this updates *OFFSET_SIZE. Returns a pointer to just after
21230 the header, or issues a complaint and returns NULL on error. */
757a13d0 21231
d521ce57
TT
21232static const gdb_byte *
21233dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 21234 bfd *abfd,
d521ce57 21235 const gdb_byte *mac_ptr,
cf2c3c16
TT
21236 unsigned int *offset_size,
21237 int section_is_gnu)
21238{
21239 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 21240
cf2c3c16
TT
21241 if (section_is_gnu)
21242 {
21243 unsigned int version, flags;
757a13d0 21244
cf2c3c16
TT
21245 version = read_2_bytes (abfd, mac_ptr);
21246 if (version != 4)
21247 {
21248 complaint (&symfile_complaints,
21249 _("unrecognized version `%d' in .debug_macro section"),
21250 version);
21251 return NULL;
21252 }
21253 mac_ptr += 2;
757a13d0 21254
cf2c3c16
TT
21255 flags = read_1_byte (abfd, mac_ptr);
21256 ++mac_ptr;
21257 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 21258
cf2c3c16
TT
21259 if ((flags & 2) != 0)
21260 /* We don't need the line table offset. */
21261 mac_ptr += *offset_size;
757a13d0 21262
cf2c3c16
TT
21263 /* Vendor opcode descriptions. */
21264 if ((flags & 4) != 0)
21265 {
21266 unsigned int i, count;
757a13d0 21267
cf2c3c16
TT
21268 count = read_1_byte (abfd, mac_ptr);
21269 ++mac_ptr;
21270 for (i = 0; i < count; ++i)
21271 {
21272 unsigned int opcode, bytes_read;
21273 unsigned long arg;
21274
21275 opcode = read_1_byte (abfd, mac_ptr);
21276 ++mac_ptr;
21277 opcode_definitions[opcode] = mac_ptr;
21278 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21279 mac_ptr += bytes_read;
21280 mac_ptr += arg;
21281 }
757a13d0 21282 }
cf2c3c16 21283 }
757a13d0 21284
cf2c3c16
TT
21285 return mac_ptr;
21286}
757a13d0 21287
cf2c3c16 21288/* A helper for dwarf_decode_macros that handles the GNU extensions,
8fc3fc34 21289 including DW_MACRO_GNU_transparent_include. */
cf2c3c16
TT
21290
21291static void
d521ce57
TT
21292dwarf_decode_macro_bytes (bfd *abfd,
21293 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 21294 struct macro_source_file *current_file,
43f3e411 21295 struct line_header *lh,
cf2c3c16 21296 struct dwarf2_section_info *section,
36586728 21297 int section_is_gnu, int section_is_dwz,
cf2c3c16 21298 unsigned int offset_size,
8fc3fc34 21299 htab_t include_hash)
cf2c3c16 21300{
4d663531 21301 struct objfile *objfile = dwarf2_per_objfile->objfile;
cf2c3c16
TT
21302 enum dwarf_macro_record_type macinfo_type;
21303 int at_commandline;
d521ce57 21304 const gdb_byte *opcode_definitions[256];
757a13d0 21305
cf2c3c16
TT
21306 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21307 &offset_size, section_is_gnu);
21308 if (mac_ptr == NULL)
21309 {
21310 /* We already issued a complaint. */
21311 return;
21312 }
757a13d0
JK
21313
21314 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21315 GDB is still reading the definitions from command line. First
21316 DW_MACINFO_start_file will need to be ignored as it was already executed
21317 to create CURRENT_FILE for the main source holding also the command line
21318 definitions. On first met DW_MACINFO_start_file this flag is reset to
21319 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21320
21321 at_commandline = 1;
21322
21323 do
21324 {
21325 /* Do we at least have room for a macinfo type byte? */
21326 if (mac_ptr >= mac_end)
21327 {
f664829e 21328 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
21329 break;
21330 }
21331
aead7601 21332 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
757a13d0
JK
21333 mac_ptr++;
21334
cf2c3c16
TT
21335 /* Note that we rely on the fact that the corresponding GNU and
21336 DWARF constants are the same. */
757a13d0
JK
21337 switch (macinfo_type)
21338 {
21339 /* A zero macinfo type indicates the end of the macro
21340 information. */
21341 case 0:
21342 break;
2e276125 21343
cf2c3c16
TT
21344 case DW_MACRO_GNU_define:
21345 case DW_MACRO_GNU_undef:
21346 case DW_MACRO_GNU_define_indirect:
21347 case DW_MACRO_GNU_undef_indirect:
36586728
TT
21348 case DW_MACRO_GNU_define_indirect_alt:
21349 case DW_MACRO_GNU_undef_indirect_alt:
2e276125 21350 {
891d2f0b 21351 unsigned int bytes_read;
2e276125 21352 int line;
d521ce57 21353 const char *body;
cf2c3c16 21354 int is_define;
2e276125 21355
cf2c3c16
TT
21356 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21357 mac_ptr += bytes_read;
21358
21359 if (macinfo_type == DW_MACRO_GNU_define
21360 || macinfo_type == DW_MACRO_GNU_undef)
21361 {
21362 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21363 mac_ptr += bytes_read;
21364 }
21365 else
21366 {
21367 LONGEST str_offset;
21368
21369 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21370 mac_ptr += offset_size;
2e276125 21371
36586728 21372 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
f7a35f02
TT
21373 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21374 || section_is_dwz)
36586728
TT
21375 {
21376 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21377
21378 body = read_indirect_string_from_dwz (dwz, str_offset);
21379 }
21380 else
21381 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
21382 }
21383
21384 is_define = (macinfo_type == DW_MACRO_GNU_define
36586728
TT
21385 || macinfo_type == DW_MACRO_GNU_define_indirect
21386 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
2e276125 21387 if (! current_file)
757a13d0
JK
21388 {
21389 /* DWARF violation as no main source is present. */
21390 complaint (&symfile_complaints,
21391 _("debug info with no main source gives macro %s "
21392 "on line %d: %s"),
cf2c3c16
TT
21393 is_define ? _("definition") : _("undefinition"),
21394 line, body);
757a13d0
JK
21395 break;
21396 }
3e43a32a
MS
21397 if ((line == 0 && !at_commandline)
21398 || (line != 0 && at_commandline))
4d3c2250 21399 complaint (&symfile_complaints,
757a13d0
JK
21400 _("debug info gives %s macro %s with %s line %d: %s"),
21401 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 21402 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
21403 line == 0 ? _("zero") : _("non-zero"), line, body);
21404
cf2c3c16 21405 if (is_define)
757a13d0 21406 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
21407 else
21408 {
21409 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
36586728
TT
21410 || macinfo_type == DW_MACRO_GNU_undef_indirect
21411 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
cf2c3c16
TT
21412 macro_undef (current_file, line, body);
21413 }
2e276125
JB
21414 }
21415 break;
21416
cf2c3c16 21417 case DW_MACRO_GNU_start_file:
2e276125 21418 {
891d2f0b 21419 unsigned int bytes_read;
2e276125
JB
21420 int line, file;
21421
21422 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21423 mac_ptr += bytes_read;
21424 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21425 mac_ptr += bytes_read;
21426
3e43a32a
MS
21427 if ((line == 0 && !at_commandline)
21428 || (line != 0 && at_commandline))
757a13d0
JK
21429 complaint (&symfile_complaints,
21430 _("debug info gives source %d included "
21431 "from %s at %s line %d"),
21432 file, at_commandline ? _("command-line") : _("file"),
21433 line == 0 ? _("zero") : _("non-zero"), line);
21434
21435 if (at_commandline)
21436 {
cf2c3c16
TT
21437 /* This DW_MACRO_GNU_start_file was executed in the
21438 pass one. */
757a13d0
JK
21439 at_commandline = 0;
21440 }
21441 else
43f3e411 21442 current_file = macro_start_file (file, line, current_file, lh);
2e276125
JB
21443 }
21444 break;
21445
cf2c3c16 21446 case DW_MACRO_GNU_end_file:
2e276125 21447 if (! current_file)
4d3c2250 21448 complaint (&symfile_complaints,
3e43a32a
MS
21449 _("macro debug info has an unmatched "
21450 "`close_file' directive"));
2e276125
JB
21451 else
21452 {
21453 current_file = current_file->included_by;
21454 if (! current_file)
21455 {
cf2c3c16 21456 enum dwarf_macro_record_type next_type;
2e276125
JB
21457
21458 /* GCC circa March 2002 doesn't produce the zero
21459 type byte marking the end of the compilation
21460 unit. Complain if it's not there, but exit no
21461 matter what. */
21462
21463 /* Do we at least have room for a macinfo type byte? */
21464 if (mac_ptr >= mac_end)
21465 {
f664829e 21466 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
21467 return;
21468 }
21469
21470 /* We don't increment mac_ptr here, so this is just
21471 a look-ahead. */
aead7601
SM
21472 next_type
21473 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21474 mac_ptr);
2e276125 21475 if (next_type != 0)
4d3c2250 21476 complaint (&symfile_complaints,
3e43a32a
MS
21477 _("no terminating 0-type entry for "
21478 "macros in `.debug_macinfo' section"));
2e276125
JB
21479
21480 return;
21481 }
21482 }
21483 break;
21484
cf2c3c16 21485 case DW_MACRO_GNU_transparent_include:
36586728 21486 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21487 {
21488 LONGEST offset;
8fc3fc34 21489 void **slot;
a036ba48
TT
21490 bfd *include_bfd = abfd;
21491 struct dwarf2_section_info *include_section = section;
d521ce57 21492 const gdb_byte *include_mac_end = mac_end;
a036ba48 21493 int is_dwz = section_is_dwz;
d521ce57 21494 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
21495
21496 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21497 mac_ptr += offset_size;
21498
a036ba48
TT
21499 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21500 {
21501 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21502
4d663531 21503 dwarf2_read_section (objfile, &dwz->macro);
a036ba48 21504
a036ba48 21505 include_section = &dwz->macro;
a32a8923 21506 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
21507 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21508 is_dwz = 1;
21509 }
21510
21511 new_mac_ptr = include_section->buffer + offset;
21512 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21513
8fc3fc34
TT
21514 if (*slot != NULL)
21515 {
21516 /* This has actually happened; see
21517 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21518 complaint (&symfile_complaints,
21519 _("recursive DW_MACRO_GNU_transparent_include in "
21520 ".debug_macro section"));
21521 }
21522 else
21523 {
d521ce57 21524 *slot = (void *) new_mac_ptr;
36586728 21525
a036ba48 21526 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
43f3e411 21527 include_mac_end, current_file, lh,
36586728 21528 section, section_is_gnu, is_dwz,
4d663531 21529 offset_size, include_hash);
8fc3fc34 21530
d521ce57 21531 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 21532 }
cf2c3c16
TT
21533 }
21534 break;
21535
2e276125 21536 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
21537 if (!section_is_gnu)
21538 {
21539 unsigned int bytes_read;
2e276125 21540
ac298888
TT
21541 /* This reads the constant, but since we don't recognize
21542 any vendor extensions, we ignore it. */
21543 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
cf2c3c16
TT
21544 mac_ptr += bytes_read;
21545 read_direct_string (abfd, mac_ptr, &bytes_read);
21546 mac_ptr += bytes_read;
2e276125 21547
cf2c3c16
TT
21548 /* We don't recognize any vendor extensions. */
21549 break;
21550 }
21551 /* FALLTHROUGH */
21552
21553 default:
21554 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21555 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21556 section);
21557 if (mac_ptr == NULL)
21558 return;
21559 break;
2e276125 21560 }
757a13d0 21561 } while (macinfo_type != 0);
2e276125 21562}
8e19ed76 21563
cf2c3c16 21564static void
09262596 21565dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
43f3e411 21566 int section_is_gnu)
cf2c3c16 21567{
bb5ed363 21568 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
21569 struct line_header *lh = cu->line_header;
21570 bfd *abfd;
d521ce57 21571 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
21572 struct macro_source_file *current_file = 0;
21573 enum dwarf_macro_record_type macinfo_type;
21574 unsigned int offset_size = cu->header.offset_size;
d521ce57 21575 const gdb_byte *opcode_definitions[256];
8fc3fc34
TT
21576 struct cleanup *cleanup;
21577 htab_t include_hash;
21578 void **slot;
09262596
DE
21579 struct dwarf2_section_info *section;
21580 const char *section_name;
21581
21582 if (cu->dwo_unit != NULL)
21583 {
21584 if (section_is_gnu)
21585 {
21586 section = &cu->dwo_unit->dwo_file->sections.macro;
21587 section_name = ".debug_macro.dwo";
21588 }
21589 else
21590 {
21591 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21592 section_name = ".debug_macinfo.dwo";
21593 }
21594 }
21595 else
21596 {
21597 if (section_is_gnu)
21598 {
21599 section = &dwarf2_per_objfile->macro;
21600 section_name = ".debug_macro";
21601 }
21602 else
21603 {
21604 section = &dwarf2_per_objfile->macinfo;
21605 section_name = ".debug_macinfo";
21606 }
21607 }
cf2c3c16 21608
bb5ed363 21609 dwarf2_read_section (objfile, section);
cf2c3c16
TT
21610 if (section->buffer == NULL)
21611 {
fceca515 21612 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
21613 return;
21614 }
a32a8923 21615 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
21616
21617 /* First pass: Find the name of the base filename.
21618 This filename is needed in order to process all macros whose definition
21619 (or undefinition) comes from the command line. These macros are defined
21620 before the first DW_MACINFO_start_file entry, and yet still need to be
21621 associated to the base file.
21622
21623 To determine the base file name, we scan the macro definitions until we
21624 reach the first DW_MACINFO_start_file entry. We then initialize
21625 CURRENT_FILE accordingly so that any macro definition found before the
21626 first DW_MACINFO_start_file can still be associated to the base file. */
21627
21628 mac_ptr = section->buffer + offset;
21629 mac_end = section->buffer + section->size;
21630
21631 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21632 &offset_size, section_is_gnu);
21633 if (mac_ptr == NULL)
21634 {
21635 /* We already issued a complaint. */
21636 return;
21637 }
21638
21639 do
21640 {
21641 /* Do we at least have room for a macinfo type byte? */
21642 if (mac_ptr >= mac_end)
21643 {
21644 /* Complaint is printed during the second pass as GDB will probably
21645 stop the first pass earlier upon finding
21646 DW_MACINFO_start_file. */
21647 break;
21648 }
21649
aead7601 21650 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
cf2c3c16
TT
21651 mac_ptr++;
21652
21653 /* Note that we rely on the fact that the corresponding GNU and
21654 DWARF constants are the same. */
21655 switch (macinfo_type)
21656 {
21657 /* A zero macinfo type indicates the end of the macro
21658 information. */
21659 case 0:
21660 break;
21661
21662 case DW_MACRO_GNU_define:
21663 case DW_MACRO_GNU_undef:
21664 /* Only skip the data by MAC_PTR. */
21665 {
21666 unsigned int bytes_read;
21667
21668 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21669 mac_ptr += bytes_read;
21670 read_direct_string (abfd, mac_ptr, &bytes_read);
21671 mac_ptr += bytes_read;
21672 }
21673 break;
21674
21675 case DW_MACRO_GNU_start_file:
21676 {
21677 unsigned int bytes_read;
21678 int line, file;
21679
21680 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21681 mac_ptr += bytes_read;
21682 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21683 mac_ptr += bytes_read;
21684
43f3e411 21685 current_file = macro_start_file (file, line, current_file, lh);
cf2c3c16
TT
21686 }
21687 break;
21688
21689 case DW_MACRO_GNU_end_file:
21690 /* No data to skip by MAC_PTR. */
21691 break;
21692
21693 case DW_MACRO_GNU_define_indirect:
21694 case DW_MACRO_GNU_undef_indirect:
f7a35f02
TT
21695 case DW_MACRO_GNU_define_indirect_alt:
21696 case DW_MACRO_GNU_undef_indirect_alt:
cf2c3c16
TT
21697 {
21698 unsigned int bytes_read;
21699
21700 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21701 mac_ptr += bytes_read;
21702 mac_ptr += offset_size;
21703 }
21704 break;
21705
21706 case DW_MACRO_GNU_transparent_include:
f7a35f02 21707 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21708 /* Note that, according to the spec, a transparent include
21709 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21710 skip this opcode. */
21711 mac_ptr += offset_size;
21712 break;
21713
21714 case DW_MACINFO_vendor_ext:
21715 /* Only skip the data by MAC_PTR. */
21716 if (!section_is_gnu)
21717 {
21718 unsigned int bytes_read;
21719
21720 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21721 mac_ptr += bytes_read;
21722 read_direct_string (abfd, mac_ptr, &bytes_read);
21723 mac_ptr += bytes_read;
21724 }
21725 /* FALLTHROUGH */
21726
21727 default:
21728 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21729 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21730 section);
21731 if (mac_ptr == NULL)
21732 return;
21733 break;
21734 }
21735 } while (macinfo_type != 0 && current_file == NULL);
21736
21737 /* Second pass: Process all entries.
21738
21739 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21740 command-line macro definitions/undefinitions. This flag is unset when we
21741 reach the first DW_MACINFO_start_file entry. */
21742
8fc3fc34
TT
21743 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21744 NULL, xcalloc, xfree);
21745 cleanup = make_cleanup_htab_delete (include_hash);
21746 mac_ptr = section->buffer + offset;
21747 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
d521ce57 21748 *slot = (void *) mac_ptr;
8fc3fc34 21749 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
43f3e411 21750 current_file, lh, section,
4d663531 21751 section_is_gnu, 0, offset_size, include_hash);
8fc3fc34 21752 do_cleanups (cleanup);
cf2c3c16
TT
21753}
21754
8e19ed76 21755/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 21756 if so return true else false. */
380bca97 21757
8e19ed76 21758static int
6e5a29e1 21759attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
21760{
21761 return (attr == NULL ? 0 :
21762 attr->form == DW_FORM_block1
21763 || attr->form == DW_FORM_block2
21764 || attr->form == DW_FORM_block4
2dc7f7b3
TT
21765 || attr->form == DW_FORM_block
21766 || attr->form == DW_FORM_exprloc);
8e19ed76 21767}
4c2df51b 21768
c6a0999f
JB
21769/* Return non-zero if ATTR's value is a section offset --- classes
21770 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21771 You may use DW_UNSND (attr) to retrieve such offsets.
21772
21773 Section 7.5.4, "Attribute Encodings", explains that no attribute
21774 may have a value that belongs to more than one of these classes; it
21775 would be ambiguous if we did, because we use the same forms for all
21776 of them. */
380bca97 21777
3690dd37 21778static int
6e5a29e1 21779attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
21780{
21781 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
21782 || attr->form == DW_FORM_data8
21783 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
21784}
21785
3690dd37
JB
21786/* Return non-zero if ATTR's value falls in the 'constant' class, or
21787 zero otherwise. When this function returns true, you can apply
21788 dwarf2_get_attr_constant_value to it.
21789
21790 However, note that for some attributes you must check
21791 attr_form_is_section_offset before using this test. DW_FORM_data4
21792 and DW_FORM_data8 are members of both the constant class, and of
21793 the classes that contain offsets into other debug sections
21794 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21795 that, if an attribute's can be either a constant or one of the
21796 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21797 taken as section offsets, not constants. */
380bca97 21798
3690dd37 21799static int
6e5a29e1 21800attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
21801{
21802 switch (attr->form)
21803 {
21804 case DW_FORM_sdata:
21805 case DW_FORM_udata:
21806 case DW_FORM_data1:
21807 case DW_FORM_data2:
21808 case DW_FORM_data4:
21809 case DW_FORM_data8:
21810 return 1;
21811 default:
21812 return 0;
21813 }
21814}
21815
7771576e
SA
21816
21817/* DW_ADDR is always stored already as sect_offset; despite for the forms
21818 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21819
21820static int
6e5a29e1 21821attr_form_is_ref (const struct attribute *attr)
7771576e
SA
21822{
21823 switch (attr->form)
21824 {
21825 case DW_FORM_ref_addr:
21826 case DW_FORM_ref1:
21827 case DW_FORM_ref2:
21828 case DW_FORM_ref4:
21829 case DW_FORM_ref8:
21830 case DW_FORM_ref_udata:
21831 case DW_FORM_GNU_ref_alt:
21832 return 1;
21833 default:
21834 return 0;
21835 }
21836}
21837
3019eac3
DE
21838/* Return the .debug_loc section to use for CU.
21839 For DWO files use .debug_loc.dwo. */
21840
21841static struct dwarf2_section_info *
21842cu_debug_loc_section (struct dwarf2_cu *cu)
21843{
21844 if (cu->dwo_unit)
21845 return &cu->dwo_unit->dwo_file->sections.loc;
21846 return &dwarf2_per_objfile->loc;
21847}
21848
8cf6f0b1
TT
21849/* A helper function that fills in a dwarf2_loclist_baton. */
21850
21851static void
21852fill_in_loclist_baton (struct dwarf2_cu *cu,
21853 struct dwarf2_loclist_baton *baton,
ff39bb5e 21854 const struct attribute *attr)
8cf6f0b1 21855{
3019eac3
DE
21856 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21857
21858 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
21859
21860 baton->per_cu = cu->per_cu;
21861 gdb_assert (baton->per_cu);
21862 /* We don't know how long the location list is, but make sure we
21863 don't run off the edge of the section. */
3019eac3
DE
21864 baton->size = section->size - DW_UNSND (attr);
21865 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 21866 baton->base_address = cu->base_address;
f664829e 21867 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
21868}
21869
4c2df51b 21870static void
ff39bb5e 21871dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 21872 struct dwarf2_cu *cu, int is_block)
4c2df51b 21873{
bb5ed363 21874 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 21875 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 21876
3690dd37 21877 if (attr_form_is_section_offset (attr)
3019eac3 21878 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
21879 the section. If so, fall through to the complaint in the
21880 other branch. */
3019eac3 21881 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 21882 {
0d53c4c4 21883 struct dwarf2_loclist_baton *baton;
4c2df51b 21884
8d749320 21885 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
4c2df51b 21886
8cf6f0b1 21887 fill_in_loclist_baton (cu, baton, attr);
be391dca 21888
d00adf39 21889 if (cu->base_known == 0)
0d53c4c4 21890 complaint (&symfile_complaints,
3e43a32a
MS
21891 _("Location list used without "
21892 "specifying the CU base address."));
4c2df51b 21893
f1e6e072
TT
21894 SYMBOL_ACLASS_INDEX (sym) = (is_block
21895 ? dwarf2_loclist_block_index
21896 : dwarf2_loclist_index);
0d53c4c4
DJ
21897 SYMBOL_LOCATION_BATON (sym) = baton;
21898 }
21899 else
21900 {
21901 struct dwarf2_locexpr_baton *baton;
21902
8d749320 21903 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
ae0d2f24
UW
21904 baton->per_cu = cu->per_cu;
21905 gdb_assert (baton->per_cu);
0d53c4c4
DJ
21906
21907 if (attr_form_is_block (attr))
21908 {
21909 /* Note that we're just copying the block's data pointer
21910 here, not the actual data. We're still pointing into the
6502dd73
DJ
21911 info_buffer for SYM's objfile; right now we never release
21912 that buffer, but when we do clean up properly this may
21913 need to change. */
0d53c4c4
DJ
21914 baton->size = DW_BLOCK (attr)->size;
21915 baton->data = DW_BLOCK (attr)->data;
21916 }
21917 else
21918 {
21919 dwarf2_invalid_attrib_class_complaint ("location description",
21920 SYMBOL_NATURAL_NAME (sym));
21921 baton->size = 0;
0d53c4c4 21922 }
6e70227d 21923
f1e6e072
TT
21924 SYMBOL_ACLASS_INDEX (sym) = (is_block
21925 ? dwarf2_locexpr_block_index
21926 : dwarf2_locexpr_index);
0d53c4c4
DJ
21927 SYMBOL_LOCATION_BATON (sym) = baton;
21928 }
4c2df51b 21929}
6502dd73 21930
9aa1f1e3
TT
21931/* Return the OBJFILE associated with the compilation unit CU. If CU
21932 came from a separate debuginfo file, then the master objfile is
21933 returned. */
ae0d2f24
UW
21934
21935struct objfile *
21936dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21937{
9291a0cd 21938 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
21939
21940 /* Return the master objfile, so that we can report and look up the
21941 correct file containing this variable. */
21942 if (objfile->separate_debug_objfile_backlink)
21943 objfile = objfile->separate_debug_objfile_backlink;
21944
21945 return objfile;
21946}
21947
96408a79
SA
21948/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21949 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21950 CU_HEADERP first. */
21951
21952static const struct comp_unit_head *
21953per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21954 struct dwarf2_per_cu_data *per_cu)
21955{
d521ce57 21956 const gdb_byte *info_ptr;
96408a79
SA
21957
21958 if (per_cu->cu)
21959 return &per_cu->cu->header;
21960
8a0459fd 21961 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
96408a79
SA
21962
21963 memset (cu_headerp, 0, sizeof (*cu_headerp));
0bc3a05c 21964 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
96408a79
SA
21965
21966 return cu_headerp;
21967}
21968
ae0d2f24
UW
21969/* Return the address size given in the compilation unit header for CU. */
21970
98714339 21971int
ae0d2f24
UW
21972dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21973{
96408a79
SA
21974 struct comp_unit_head cu_header_local;
21975 const struct comp_unit_head *cu_headerp;
c471e790 21976
96408a79
SA
21977 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21978
21979 return cu_headerp->addr_size;
ae0d2f24
UW
21980}
21981
9eae7c52
TT
21982/* Return the offset size given in the compilation unit header for CU. */
21983
21984int
21985dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21986{
96408a79
SA
21987 struct comp_unit_head cu_header_local;
21988 const struct comp_unit_head *cu_headerp;
9c6c53f7 21989
96408a79
SA
21990 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21991
21992 return cu_headerp->offset_size;
21993}
21994
21995/* See its dwarf2loc.h declaration. */
21996
21997int
21998dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21999{
22000 struct comp_unit_head cu_header_local;
22001 const struct comp_unit_head *cu_headerp;
22002
22003 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22004
22005 if (cu_headerp->version == 2)
22006 return cu_headerp->addr_size;
22007 else
22008 return cu_headerp->offset_size;
181cebd4
JK
22009}
22010
9aa1f1e3
TT
22011/* Return the text offset of the CU. The returned offset comes from
22012 this CU's objfile. If this objfile came from a separate debuginfo
22013 file, then the offset may be different from the corresponding
22014 offset in the parent objfile. */
22015
22016CORE_ADDR
22017dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22018{
bb3fa9d0 22019 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
22020
22021 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22022}
22023
348e048f
DE
22024/* Locate the .debug_info compilation unit from CU's objfile which contains
22025 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
22026
22027static struct dwarf2_per_cu_data *
b64f50a1 22028dwarf2_find_containing_comp_unit (sect_offset offset,
36586728 22029 unsigned int offset_in_dwz,
ae038cb0
DJ
22030 struct objfile *objfile)
22031{
22032 struct dwarf2_per_cu_data *this_cu;
22033 int low, high;
36586728 22034 const sect_offset *cu_off;
ae038cb0 22035
ae038cb0
DJ
22036 low = 0;
22037 high = dwarf2_per_objfile->n_comp_units - 1;
22038 while (high > low)
22039 {
36586728 22040 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 22041 int mid = low + (high - low) / 2;
9a619af0 22042
36586728
TT
22043 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22044 cu_off = &mid_cu->offset;
22045 if (mid_cu->is_dwz > offset_in_dwz
22046 || (mid_cu->is_dwz == offset_in_dwz
22047 && cu_off->sect_off >= offset.sect_off))
ae038cb0
DJ
22048 high = mid;
22049 else
22050 low = mid + 1;
22051 }
22052 gdb_assert (low == high);
36586728
TT
22053 this_cu = dwarf2_per_objfile->all_comp_units[low];
22054 cu_off = &this_cu->offset;
22055 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
ae038cb0 22056 {
36586728 22057 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8
AC
22058 error (_("Dwarf Error: could not find partial DIE containing "
22059 "offset 0x%lx [in module %s]"),
b64f50a1 22060 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
10b3939b 22061
b64f50a1
JK
22062 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22063 <= offset.sect_off);
ae038cb0
DJ
22064 return dwarf2_per_objfile->all_comp_units[low-1];
22065 }
22066 else
22067 {
22068 this_cu = dwarf2_per_objfile->all_comp_units[low];
22069 if (low == dwarf2_per_objfile->n_comp_units - 1
b64f50a1
JK
22070 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22071 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22072 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
ae038cb0
DJ
22073 return this_cu;
22074 }
22075}
22076
23745b47 22077/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 22078
9816fde3 22079static void
23745b47 22080init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 22081{
9816fde3 22082 memset (cu, 0, sizeof (*cu));
23745b47
DE
22083 per_cu->cu = cu;
22084 cu->per_cu = per_cu;
22085 cu->objfile = per_cu->objfile;
93311388 22086 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
22087}
22088
22089/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22090
22091static void
95554aad
TT
22092prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22093 enum language pretend_language)
9816fde3
JK
22094{
22095 struct attribute *attr;
22096
22097 /* Set the language we're debugging. */
22098 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22099 if (attr)
22100 set_cu_language (DW_UNSND (attr), cu);
22101 else
9cded63f 22102 {
95554aad 22103 cu->language = pretend_language;
9cded63f
TT
22104 cu->language_defn = language_def (cu->language);
22105 }
dee91e82 22106
7d45c7c3 22107 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
93311388
DE
22108}
22109
ae038cb0
DJ
22110/* Release one cached compilation unit, CU. We unlink it from the tree
22111 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
22112 the caller is responsible for that.
22113 NOTE: DATA is a void * because this function is also used as a
22114 cleanup routine. */
ae038cb0
DJ
22115
22116static void
68dc6402 22117free_heap_comp_unit (void *data)
ae038cb0 22118{
9a3c8263 22119 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
ae038cb0 22120
23745b47
DE
22121 gdb_assert (cu->per_cu != NULL);
22122 cu->per_cu->cu = NULL;
ae038cb0
DJ
22123 cu->per_cu = NULL;
22124
22125 obstack_free (&cu->comp_unit_obstack, NULL);
22126
22127 xfree (cu);
22128}
22129
72bf9492 22130/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 22131 when we're finished with it. We can't free the pointer itself, but be
dee91e82 22132 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
22133
22134static void
22135free_stack_comp_unit (void *data)
22136{
9a3c8263 22137 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
72bf9492 22138
23745b47
DE
22139 gdb_assert (cu->per_cu != NULL);
22140 cu->per_cu->cu = NULL;
22141 cu->per_cu = NULL;
22142
72bf9492
DJ
22143 obstack_free (&cu->comp_unit_obstack, NULL);
22144 cu->partial_dies = NULL;
ae038cb0
DJ
22145}
22146
22147/* Free all cached compilation units. */
22148
22149static void
22150free_cached_comp_units (void *data)
22151{
22152 struct dwarf2_per_cu_data *per_cu, **last_chain;
22153
22154 per_cu = dwarf2_per_objfile->read_in_chain;
22155 last_chain = &dwarf2_per_objfile->read_in_chain;
22156 while (per_cu != NULL)
22157 {
22158 struct dwarf2_per_cu_data *next_cu;
22159
22160 next_cu = per_cu->cu->read_in_chain;
22161
68dc6402 22162 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
22163 *last_chain = next_cu;
22164
22165 per_cu = next_cu;
22166 }
22167}
22168
22169/* Increase the age counter on each cached compilation unit, and free
22170 any that are too old. */
22171
22172static void
22173age_cached_comp_units (void)
22174{
22175 struct dwarf2_per_cu_data *per_cu, **last_chain;
22176
22177 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22178 per_cu = dwarf2_per_objfile->read_in_chain;
22179 while (per_cu != NULL)
22180 {
22181 per_cu->cu->last_used ++;
b4f54984 22182 if (per_cu->cu->last_used <= dwarf_max_cache_age)
ae038cb0
DJ
22183 dwarf2_mark (per_cu->cu);
22184 per_cu = per_cu->cu->read_in_chain;
22185 }
22186
22187 per_cu = dwarf2_per_objfile->read_in_chain;
22188 last_chain = &dwarf2_per_objfile->read_in_chain;
22189 while (per_cu != NULL)
22190 {
22191 struct dwarf2_per_cu_data *next_cu;
22192
22193 next_cu = per_cu->cu->read_in_chain;
22194
22195 if (!per_cu->cu->mark)
22196 {
68dc6402 22197 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
22198 *last_chain = next_cu;
22199 }
22200 else
22201 last_chain = &per_cu->cu->read_in_chain;
22202
22203 per_cu = next_cu;
22204 }
22205}
22206
22207/* Remove a single compilation unit from the cache. */
22208
22209static void
dee91e82 22210free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
22211{
22212 struct dwarf2_per_cu_data *per_cu, **last_chain;
22213
22214 per_cu = dwarf2_per_objfile->read_in_chain;
22215 last_chain = &dwarf2_per_objfile->read_in_chain;
22216 while (per_cu != NULL)
22217 {
22218 struct dwarf2_per_cu_data *next_cu;
22219
22220 next_cu = per_cu->cu->read_in_chain;
22221
dee91e82 22222 if (per_cu == target_per_cu)
ae038cb0 22223 {
68dc6402 22224 free_heap_comp_unit (per_cu->cu);
dee91e82 22225 per_cu->cu = NULL;
ae038cb0
DJ
22226 *last_chain = next_cu;
22227 break;
22228 }
22229 else
22230 last_chain = &per_cu->cu->read_in_chain;
22231
22232 per_cu = next_cu;
22233 }
22234}
22235
fe3e1990
DJ
22236/* Release all extra memory associated with OBJFILE. */
22237
22238void
22239dwarf2_free_objfile (struct objfile *objfile)
22240{
9a3c8263
SM
22241 dwarf2_per_objfile
22242 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22243 dwarf2_objfile_data_key);
fe3e1990
DJ
22244
22245 if (dwarf2_per_objfile == NULL)
22246 return;
22247
22248 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22249 free_cached_comp_units (NULL);
22250
7b9f3c50
DE
22251 if (dwarf2_per_objfile->quick_file_names_table)
22252 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 22253
527f3840
JK
22254 if (dwarf2_per_objfile->line_header_hash)
22255 htab_delete (dwarf2_per_objfile->line_header_hash);
22256
fe3e1990
DJ
22257 /* Everything else should be on the objfile obstack. */
22258}
22259
dee91e82
DE
22260/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22261 We store these in a hash table separate from the DIEs, and preserve them
22262 when the DIEs are flushed out of cache.
22263
22264 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 22265 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
22266 or the type may come from a DWO file. Furthermore, while it's more logical
22267 to use per_cu->section+offset, with Fission the section with the data is in
22268 the DWO file but we don't know that section at the point we need it.
22269 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22270 because we can enter the lookup routine, get_die_type_at_offset, from
22271 outside this file, and thus won't necessarily have PER_CU->cu.
22272 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 22273
dee91e82 22274struct dwarf2_per_cu_offset_and_type
1c379e20 22275{
dee91e82 22276 const struct dwarf2_per_cu_data *per_cu;
b64f50a1 22277 sect_offset offset;
1c379e20
DJ
22278 struct type *type;
22279};
22280
dee91e82 22281/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22282
22283static hashval_t
dee91e82 22284per_cu_offset_and_type_hash (const void *item)
1c379e20 22285{
9a3c8263
SM
22286 const struct dwarf2_per_cu_offset_and_type *ofs
22287 = (const struct dwarf2_per_cu_offset_and_type *) item;
9a619af0 22288
dee91e82 22289 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
1c379e20
DJ
22290}
22291
dee91e82 22292/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22293
22294static int
dee91e82 22295per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 22296{
9a3c8263
SM
22297 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22298 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22299 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22300 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
9a619af0 22301
dee91e82
DE
22302 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22303 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
1c379e20
DJ
22304}
22305
22306/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
22307 table if necessary. For convenience, return TYPE.
22308
22309 The DIEs reading must have careful ordering to:
22310 * Not cause infite loops trying to read in DIEs as a prerequisite for
22311 reading current DIE.
22312 * Not trying to dereference contents of still incompletely read in types
22313 while reading in other DIEs.
22314 * Enable referencing still incompletely read in types just by a pointer to
22315 the type without accessing its fields.
22316
22317 Therefore caller should follow these rules:
22318 * Try to fetch any prerequisite types we may need to build this DIE type
22319 before building the type and calling set_die_type.
e71ec853 22320 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
22321 possible before fetching more types to complete the current type.
22322 * Make the type as complete as possible before fetching more types. */
1c379e20 22323
f792889a 22324static struct type *
1c379e20
DJ
22325set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22326{
dee91e82 22327 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 22328 struct objfile *objfile = cu->objfile;
3cdcd0ce
JB
22329 struct attribute *attr;
22330 struct dynamic_prop prop;
1c379e20 22331
b4ba55a1
JB
22332 /* For Ada types, make sure that the gnat-specific data is always
22333 initialized (if not already set). There are a few types where
22334 we should not be doing so, because the type-specific area is
22335 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22336 where the type-specific area is used to store the floatformat).
22337 But this is not a problem, because the gnat-specific information
22338 is actually not needed for these types. */
22339 if (need_gnat_info (cu)
22340 && TYPE_CODE (type) != TYPE_CODE_FUNC
22341 && TYPE_CODE (type) != TYPE_CODE_FLT
09e2d7c7
DE
22342 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22343 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22344 && TYPE_CODE (type) != TYPE_CODE_METHOD
b4ba55a1
JB
22345 && !HAVE_GNAT_AUX_INFO (type))
22346 INIT_GNAT_SPECIFIC (type);
22347
3f2f83dd
KB
22348 /* Read DW_AT_allocated and set in type. */
22349 attr = dwarf2_attr (die, DW_AT_allocated, cu);
22350 if (attr_form_is_block (attr))
22351 {
22352 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22353 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
22354 }
22355 else if (attr != NULL)
22356 {
22357 complaint (&symfile_complaints,
22358 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
22359 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22360 die->offset.sect_off);
22361 }
22362
22363 /* Read DW_AT_associated and set in type. */
22364 attr = dwarf2_attr (die, DW_AT_associated, cu);
22365 if (attr_form_is_block (attr))
22366 {
22367 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22368 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
22369 }
22370 else if (attr != NULL)
22371 {
22372 complaint (&symfile_complaints,
22373 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
22374 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22375 die->offset.sect_off);
22376 }
22377
3cdcd0ce
JB
22378 /* Read DW_AT_data_location and set in type. */
22379 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22380 if (attr_to_dynamic_prop (attr, die, cu, &prop))
93a8e227 22381 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
3cdcd0ce 22382
dee91e82 22383 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 22384 {
dee91e82
DE
22385 dwarf2_per_objfile->die_type_hash =
22386 htab_create_alloc_ex (127,
22387 per_cu_offset_and_type_hash,
22388 per_cu_offset_and_type_eq,
22389 NULL,
22390 &objfile->objfile_obstack,
22391 hashtab_obstack_allocate,
22392 dummy_obstack_deallocate);
f792889a 22393 }
1c379e20 22394
dee91e82 22395 ofs.per_cu = cu->per_cu;
1c379e20
DJ
22396 ofs.offset = die->offset;
22397 ofs.type = type;
dee91e82
DE
22398 slot = (struct dwarf2_per_cu_offset_and_type **)
22399 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
22400 if (*slot)
22401 complaint (&symfile_complaints,
22402 _("A problem internal to GDB: DIE 0x%x has type already set"),
b64f50a1 22403 die->offset.sect_off);
8d749320
SM
22404 *slot = XOBNEW (&objfile->objfile_obstack,
22405 struct dwarf2_per_cu_offset_and_type);
1c379e20 22406 **slot = ofs;
f792889a 22407 return type;
1c379e20
DJ
22408}
22409
02142a6c
DE
22410/* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22411 or return NULL if the die does not have a saved type. */
1c379e20
DJ
22412
22413static struct type *
b64f50a1 22414get_die_type_at_offset (sect_offset offset,
673bfd45 22415 struct dwarf2_per_cu_data *per_cu)
1c379e20 22416{
dee91e82 22417 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 22418
dee91e82 22419 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 22420 return NULL;
1c379e20 22421
dee91e82 22422 ofs.per_cu = per_cu;
673bfd45 22423 ofs.offset = offset;
9a3c8263
SM
22424 slot = ((struct dwarf2_per_cu_offset_and_type *)
22425 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
1c379e20
DJ
22426 if (slot)
22427 return slot->type;
22428 else
22429 return NULL;
22430}
22431
02142a6c 22432/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
22433 or return NULL if DIE does not have a saved type. */
22434
22435static struct type *
22436get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22437{
22438 return get_die_type_at_offset (die->offset, cu->per_cu);
22439}
22440
10b3939b
DJ
22441/* Add a dependence relationship from CU to REF_PER_CU. */
22442
22443static void
22444dwarf2_add_dependence (struct dwarf2_cu *cu,
22445 struct dwarf2_per_cu_data *ref_per_cu)
22446{
22447 void **slot;
22448
22449 if (cu->dependencies == NULL)
22450 cu->dependencies
22451 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22452 NULL, &cu->comp_unit_obstack,
22453 hashtab_obstack_allocate,
22454 dummy_obstack_deallocate);
22455
22456 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22457 if (*slot == NULL)
22458 *slot = ref_per_cu;
22459}
1c379e20 22460
f504f079
DE
22461/* Subroutine of dwarf2_mark to pass to htab_traverse.
22462 Set the mark field in every compilation unit in the
ae038cb0
DJ
22463 cache that we must keep because we are keeping CU. */
22464
10b3939b
DJ
22465static int
22466dwarf2_mark_helper (void **slot, void *data)
22467{
22468 struct dwarf2_per_cu_data *per_cu;
22469
22470 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
22471
22472 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22473 reading of the chain. As such dependencies remain valid it is not much
22474 useful to track and undo them during QUIT cleanups. */
22475 if (per_cu->cu == NULL)
22476 return 1;
22477
10b3939b
DJ
22478 if (per_cu->cu->mark)
22479 return 1;
22480 per_cu->cu->mark = 1;
22481
22482 if (per_cu->cu->dependencies != NULL)
22483 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22484
22485 return 1;
22486}
22487
f504f079
DE
22488/* Set the mark field in CU and in every other compilation unit in the
22489 cache that we must keep because we are keeping CU. */
22490
ae038cb0
DJ
22491static void
22492dwarf2_mark (struct dwarf2_cu *cu)
22493{
22494 if (cu->mark)
22495 return;
22496 cu->mark = 1;
10b3939b
DJ
22497 if (cu->dependencies != NULL)
22498 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
22499}
22500
22501static void
22502dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22503{
22504 while (per_cu)
22505 {
22506 per_cu->cu->mark = 0;
22507 per_cu = per_cu->cu->read_in_chain;
22508 }
72bf9492
DJ
22509}
22510
72bf9492
DJ
22511/* Trivial hash function for partial_die_info: the hash value of a DIE
22512 is its offset in .debug_info for this objfile. */
22513
22514static hashval_t
22515partial_die_hash (const void *item)
22516{
9a3c8263
SM
22517 const struct partial_die_info *part_die
22518 = (const struct partial_die_info *) item;
9a619af0 22519
b64f50a1 22520 return part_die->offset.sect_off;
72bf9492
DJ
22521}
22522
22523/* Trivial comparison function for partial_die_info structures: two DIEs
22524 are equal if they have the same offset. */
22525
22526static int
22527partial_die_eq (const void *item_lhs, const void *item_rhs)
22528{
9a3c8263
SM
22529 const struct partial_die_info *part_die_lhs
22530 = (const struct partial_die_info *) item_lhs;
22531 const struct partial_die_info *part_die_rhs
22532 = (const struct partial_die_info *) item_rhs;
9a619af0 22533
b64f50a1 22534 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
72bf9492
DJ
22535}
22536
b4f54984
DE
22537static struct cmd_list_element *set_dwarf_cmdlist;
22538static struct cmd_list_element *show_dwarf_cmdlist;
ae038cb0
DJ
22539
22540static void
b4f54984 22541set_dwarf_cmd (char *args, int from_tty)
ae038cb0 22542{
b4f54984 22543 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
635c7e8a 22544 gdb_stdout);
ae038cb0
DJ
22545}
22546
22547static void
b4f54984 22548show_dwarf_cmd (char *args, int from_tty)
6e70227d 22549{
b4f54984 22550 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
ae038cb0
DJ
22551}
22552
4bf44c1c 22553/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
22554
22555static void
c1bd65d0 22556dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc 22557{
9a3c8263 22558 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
8b70b953 22559 int ix;
8b70b953 22560
626f2d1c
TT
22561 /* Make sure we don't accidentally use dwarf2_per_objfile while
22562 cleaning up. */
22563 dwarf2_per_objfile = NULL;
22564
59b0c7c1
JB
22565 for (ix = 0; ix < data->n_comp_units; ++ix)
22566 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
796a7ff8 22567
59b0c7c1 22568 for (ix = 0; ix < data->n_type_units; ++ix)
796a7ff8 22569 VEC_free (dwarf2_per_cu_ptr,
59b0c7c1
JB
22570 data->all_type_units[ix]->per_cu.imported_symtabs);
22571 xfree (data->all_type_units);
95554aad 22572
8b70b953 22573 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
22574
22575 if (data->dwo_files)
22576 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
22577 if (data->dwp_file)
22578 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
22579
22580 if (data->dwz_file && data->dwz_file->dwz_bfd)
22581 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
22582}
22583
22584\f
ae2de4f8 22585/* The "save gdb-index" command. */
9291a0cd
TT
22586
22587/* The contents of the hash table we create when building the string
22588 table. */
22589struct strtab_entry
22590{
22591 offset_type offset;
22592 const char *str;
22593};
22594
559a7a62
JK
22595/* Hash function for a strtab_entry.
22596
22597 Function is used only during write_hash_table so no index format backward
22598 compatibility is needed. */
b89be57b 22599
9291a0cd
TT
22600static hashval_t
22601hash_strtab_entry (const void *e)
22602{
9a3c8263 22603 const struct strtab_entry *entry = (const struct strtab_entry *) e;
559a7a62 22604 return mapped_index_string_hash (INT_MAX, entry->str);
9291a0cd
TT
22605}
22606
22607/* Equality function for a strtab_entry. */
b89be57b 22608
9291a0cd
TT
22609static int
22610eq_strtab_entry (const void *a, const void *b)
22611{
9a3c8263
SM
22612 const struct strtab_entry *ea = (const struct strtab_entry *) a;
22613 const struct strtab_entry *eb = (const struct strtab_entry *) b;
9291a0cd
TT
22614 return !strcmp (ea->str, eb->str);
22615}
22616
22617/* Create a strtab_entry hash table. */
b89be57b 22618
9291a0cd
TT
22619static htab_t
22620create_strtab (void)
22621{
22622 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22623 xfree, xcalloc, xfree);
22624}
22625
22626/* Add a string to the constant pool. Return the string's offset in
22627 host order. */
b89be57b 22628
9291a0cd
TT
22629static offset_type
22630add_string (htab_t table, struct obstack *cpool, const char *str)
22631{
22632 void **slot;
22633 struct strtab_entry entry;
22634 struct strtab_entry *result;
22635
22636 entry.str = str;
22637 slot = htab_find_slot (table, &entry, INSERT);
22638 if (*slot)
9a3c8263 22639 result = (struct strtab_entry *) *slot;
9291a0cd
TT
22640 else
22641 {
22642 result = XNEW (struct strtab_entry);
22643 result->offset = obstack_object_size (cpool);
22644 result->str = str;
22645 obstack_grow_str0 (cpool, str);
22646 *slot = result;
22647 }
22648 return result->offset;
22649}
22650
22651/* An entry in the symbol table. */
22652struct symtab_index_entry
22653{
22654 /* The name of the symbol. */
22655 const char *name;
22656 /* The offset of the name in the constant pool. */
22657 offset_type index_offset;
22658 /* A sorted vector of the indices of all the CUs that hold an object
22659 of this name. */
22660 VEC (offset_type) *cu_indices;
22661};
22662
22663/* The symbol table. This is a power-of-2-sized hash table. */
22664struct mapped_symtab
22665{
22666 offset_type n_elements;
22667 offset_type size;
22668 struct symtab_index_entry **data;
22669};
22670
22671/* Hash function for a symtab_index_entry. */
b89be57b 22672
9291a0cd
TT
22673static hashval_t
22674hash_symtab_entry (const void *e)
22675{
9a3c8263
SM
22676 const struct symtab_index_entry *entry
22677 = (const struct symtab_index_entry *) e;
9291a0cd
TT
22678 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22679 sizeof (offset_type) * VEC_length (offset_type,
22680 entry->cu_indices),
22681 0);
22682}
22683
22684/* Equality function for a symtab_index_entry. */
b89be57b 22685
9291a0cd
TT
22686static int
22687eq_symtab_entry (const void *a, const void *b)
22688{
9a3c8263
SM
22689 const struct symtab_index_entry *ea = (const struct symtab_index_entry *) a;
22690 const struct symtab_index_entry *eb = (const struct symtab_index_entry *) b;
9291a0cd
TT
22691 int len = VEC_length (offset_type, ea->cu_indices);
22692 if (len != VEC_length (offset_type, eb->cu_indices))
22693 return 0;
22694 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22695 VEC_address (offset_type, eb->cu_indices),
22696 sizeof (offset_type) * len);
22697}
22698
22699/* Destroy a symtab_index_entry. */
b89be57b 22700
9291a0cd
TT
22701static void
22702delete_symtab_entry (void *p)
22703{
9a3c8263 22704 struct symtab_index_entry *entry = (struct symtab_index_entry *) p;
9291a0cd
TT
22705 VEC_free (offset_type, entry->cu_indices);
22706 xfree (entry);
22707}
22708
22709/* Create a hash table holding symtab_index_entry objects. */
b89be57b 22710
9291a0cd 22711static htab_t
3876f04e 22712create_symbol_hash_table (void)
9291a0cd
TT
22713{
22714 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22715 delete_symtab_entry, xcalloc, xfree);
22716}
22717
22718/* Create a new mapped symtab object. */
b89be57b 22719
9291a0cd
TT
22720static struct mapped_symtab *
22721create_mapped_symtab (void)
22722{
22723 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22724 symtab->n_elements = 0;
22725 symtab->size = 1024;
22726 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22727 return symtab;
22728}
22729
22730/* Destroy a mapped_symtab. */
b89be57b 22731
9291a0cd
TT
22732static void
22733cleanup_mapped_symtab (void *p)
22734{
9a3c8263 22735 struct mapped_symtab *symtab = (struct mapped_symtab *) p;
9291a0cd
TT
22736 /* The contents of the array are freed when the other hash table is
22737 destroyed. */
22738 xfree (symtab->data);
22739 xfree (symtab);
22740}
22741
22742/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
559a7a62
JK
22743 the slot.
22744
22745 Function is used only during write_hash_table so no index format backward
22746 compatibility is needed. */
b89be57b 22747
9291a0cd
TT
22748static struct symtab_index_entry **
22749find_slot (struct mapped_symtab *symtab, const char *name)
22750{
559a7a62 22751 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd
TT
22752
22753 index = hash & (symtab->size - 1);
22754 step = ((hash * 17) & (symtab->size - 1)) | 1;
22755
22756 for (;;)
22757 {
22758 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22759 return &symtab->data[index];
22760 index = (index + step) & (symtab->size - 1);
22761 }
22762}
22763
22764/* Expand SYMTAB's hash table. */
b89be57b 22765
9291a0cd
TT
22766static void
22767hash_expand (struct mapped_symtab *symtab)
22768{
22769 offset_type old_size = symtab->size;
22770 offset_type i;
22771 struct symtab_index_entry **old_entries = symtab->data;
22772
22773 symtab->size *= 2;
22774 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22775
22776 for (i = 0; i < old_size; ++i)
22777 {
22778 if (old_entries[i])
22779 {
22780 struct symtab_index_entry **slot = find_slot (symtab,
22781 old_entries[i]->name);
22782 *slot = old_entries[i];
22783 }
22784 }
22785
22786 xfree (old_entries);
22787}
22788
156942c7
DE
22789/* Add an entry to SYMTAB. NAME is the name of the symbol.
22790 CU_INDEX is the index of the CU in which the symbol appears.
22791 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 22792
9291a0cd
TT
22793static void
22794add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 22795 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
22796 offset_type cu_index)
22797{
22798 struct symtab_index_entry **slot;
156942c7 22799 offset_type cu_index_and_attrs;
9291a0cd
TT
22800
22801 ++symtab->n_elements;
22802 if (4 * symtab->n_elements / 3 >= symtab->size)
22803 hash_expand (symtab);
22804
22805 slot = find_slot (symtab, name);
22806 if (!*slot)
22807 {
22808 *slot = XNEW (struct symtab_index_entry);
22809 (*slot)->name = name;
156942c7 22810 /* index_offset is set later. */
9291a0cd
TT
22811 (*slot)->cu_indices = NULL;
22812 }
156942c7
DE
22813
22814 cu_index_and_attrs = 0;
22815 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22816 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22817 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22818
22819 /* We don't want to record an index value twice as we want to avoid the
22820 duplication.
22821 We process all global symbols and then all static symbols
22822 (which would allow us to avoid the duplication by only having to check
22823 the last entry pushed), but a symbol could have multiple kinds in one CU.
22824 To keep things simple we don't worry about the duplication here and
22825 sort and uniqufy the list after we've processed all symbols. */
22826 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22827}
22828
22829/* qsort helper routine for uniquify_cu_indices. */
22830
22831static int
22832offset_type_compare (const void *ap, const void *bp)
22833{
22834 offset_type a = *(offset_type *) ap;
22835 offset_type b = *(offset_type *) bp;
22836
22837 return (a > b) - (b > a);
22838}
22839
22840/* Sort and remove duplicates of all symbols' cu_indices lists. */
22841
22842static void
22843uniquify_cu_indices (struct mapped_symtab *symtab)
22844{
22845 int i;
22846
22847 for (i = 0; i < symtab->size; ++i)
22848 {
22849 struct symtab_index_entry *entry = symtab->data[i];
22850
22851 if (entry
22852 && entry->cu_indices != NULL)
22853 {
22854 unsigned int next_to_insert, next_to_check;
22855 offset_type last_value;
22856
22857 qsort (VEC_address (offset_type, entry->cu_indices),
22858 VEC_length (offset_type, entry->cu_indices),
22859 sizeof (offset_type), offset_type_compare);
22860
22861 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22862 next_to_insert = 1;
22863 for (next_to_check = 1;
22864 next_to_check < VEC_length (offset_type, entry->cu_indices);
22865 ++next_to_check)
22866 {
22867 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22868 != last_value)
22869 {
22870 last_value = VEC_index (offset_type, entry->cu_indices,
22871 next_to_check);
22872 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22873 last_value);
22874 ++next_to_insert;
22875 }
22876 }
22877 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22878 }
22879 }
9291a0cd
TT
22880}
22881
22882/* Add a vector of indices to the constant pool. */
b89be57b 22883
9291a0cd 22884static offset_type
3876f04e 22885add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
22886 struct symtab_index_entry *entry)
22887{
22888 void **slot;
22889
3876f04e 22890 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
22891 if (!*slot)
22892 {
22893 offset_type len = VEC_length (offset_type, entry->cu_indices);
22894 offset_type val = MAYBE_SWAP (len);
22895 offset_type iter;
22896 int i;
22897
22898 *slot = entry;
22899 entry->index_offset = obstack_object_size (cpool);
22900
22901 obstack_grow (cpool, &val, sizeof (val));
22902 for (i = 0;
22903 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22904 ++i)
22905 {
22906 val = MAYBE_SWAP (iter);
22907 obstack_grow (cpool, &val, sizeof (val));
22908 }
22909 }
22910 else
22911 {
9a3c8263
SM
22912 struct symtab_index_entry *old_entry
22913 = (struct symtab_index_entry *) *slot;
9291a0cd
TT
22914 entry->index_offset = old_entry->index_offset;
22915 entry = old_entry;
22916 }
22917 return entry->index_offset;
22918}
22919
22920/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22921 constant pool entries going into the obstack CPOOL. */
b89be57b 22922
9291a0cd
TT
22923static void
22924write_hash_table (struct mapped_symtab *symtab,
22925 struct obstack *output, struct obstack *cpool)
22926{
22927 offset_type i;
3876f04e 22928 htab_t symbol_hash_table;
9291a0cd
TT
22929 htab_t str_table;
22930
3876f04e 22931 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 22932 str_table = create_strtab ();
3876f04e 22933
9291a0cd
TT
22934 /* We add all the index vectors to the constant pool first, to
22935 ensure alignment is ok. */
22936 for (i = 0; i < symtab->size; ++i)
22937 {
22938 if (symtab->data[i])
3876f04e 22939 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
22940 }
22941
22942 /* Now write out the hash table. */
22943 for (i = 0; i < symtab->size; ++i)
22944 {
22945 offset_type str_off, vec_off;
22946
22947 if (symtab->data[i])
22948 {
22949 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22950 vec_off = symtab->data[i]->index_offset;
22951 }
22952 else
22953 {
22954 /* While 0 is a valid constant pool index, it is not valid
22955 to have 0 for both offsets. */
22956 str_off = 0;
22957 vec_off = 0;
22958 }
22959
22960 str_off = MAYBE_SWAP (str_off);
22961 vec_off = MAYBE_SWAP (vec_off);
22962
22963 obstack_grow (output, &str_off, sizeof (str_off));
22964 obstack_grow (output, &vec_off, sizeof (vec_off));
22965 }
22966
22967 htab_delete (str_table);
3876f04e 22968 htab_delete (symbol_hash_table);
9291a0cd
TT
22969}
22970
0a5429f6
DE
22971/* Struct to map psymtab to CU index in the index file. */
22972struct psymtab_cu_index_map
22973{
22974 struct partial_symtab *psymtab;
22975 unsigned int cu_index;
22976};
22977
22978static hashval_t
22979hash_psymtab_cu_index (const void *item)
22980{
9a3c8263
SM
22981 const struct psymtab_cu_index_map *map
22982 = (const struct psymtab_cu_index_map *) item;
0a5429f6
DE
22983
22984 return htab_hash_pointer (map->psymtab);
22985}
22986
22987static int
22988eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22989{
9a3c8263
SM
22990 const struct psymtab_cu_index_map *lhs
22991 = (const struct psymtab_cu_index_map *) item_lhs;
22992 const struct psymtab_cu_index_map *rhs
22993 = (const struct psymtab_cu_index_map *) item_rhs;
0a5429f6
DE
22994
22995 return lhs->psymtab == rhs->psymtab;
22996}
22997
22998/* Helper struct for building the address table. */
22999struct addrmap_index_data
23000{
23001 struct objfile *objfile;
23002 struct obstack *addr_obstack;
23003 htab_t cu_index_htab;
23004
23005 /* Non-zero if the previous_* fields are valid.
23006 We can't write an entry until we see the next entry (since it is only then
23007 that we know the end of the entry). */
23008 int previous_valid;
23009 /* Index of the CU in the table of all CUs in the index file. */
23010 unsigned int previous_cu_index;
0963b4bd 23011 /* Start address of the CU. */
0a5429f6
DE
23012 CORE_ADDR previous_cu_start;
23013};
23014
23015/* Write an address entry to OBSTACK. */
b89be57b 23016
9291a0cd 23017static void
0a5429f6
DE
23018add_address_entry (struct objfile *objfile, struct obstack *obstack,
23019 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 23020{
0a5429f6 23021 offset_type cu_index_to_write;
948f8e3d 23022 gdb_byte addr[8];
9291a0cd
TT
23023 CORE_ADDR baseaddr;
23024
23025 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23026
0a5429f6
DE
23027 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
23028 obstack_grow (obstack, addr, 8);
23029 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
23030 obstack_grow (obstack, addr, 8);
23031 cu_index_to_write = MAYBE_SWAP (cu_index);
23032 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
23033}
23034
23035/* Worker function for traversing an addrmap to build the address table. */
23036
23037static int
23038add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23039{
9a3c8263
SM
23040 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23041 struct partial_symtab *pst = (struct partial_symtab *) obj;
0a5429f6
DE
23042
23043 if (data->previous_valid)
23044 add_address_entry (data->objfile, data->addr_obstack,
23045 data->previous_cu_start, start_addr,
23046 data->previous_cu_index);
23047
23048 data->previous_cu_start = start_addr;
23049 if (pst != NULL)
23050 {
23051 struct psymtab_cu_index_map find_map, *map;
23052 find_map.psymtab = pst;
9a3c8263
SM
23053 map = ((struct psymtab_cu_index_map *)
23054 htab_find (data->cu_index_htab, &find_map));
0a5429f6
DE
23055 gdb_assert (map != NULL);
23056 data->previous_cu_index = map->cu_index;
23057 data->previous_valid = 1;
23058 }
23059 else
23060 data->previous_valid = 0;
23061
23062 return 0;
23063}
23064
23065/* Write OBJFILE's address map to OBSTACK.
23066 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23067 in the index file. */
23068
23069static void
23070write_address_map (struct objfile *objfile, struct obstack *obstack,
23071 htab_t cu_index_htab)
23072{
23073 struct addrmap_index_data addrmap_index_data;
23074
23075 /* When writing the address table, we have to cope with the fact that
23076 the addrmap iterator only provides the start of a region; we have to
23077 wait until the next invocation to get the start of the next region. */
23078
23079 addrmap_index_data.objfile = objfile;
23080 addrmap_index_data.addr_obstack = obstack;
23081 addrmap_index_data.cu_index_htab = cu_index_htab;
23082 addrmap_index_data.previous_valid = 0;
23083
23084 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23085 &addrmap_index_data);
23086
23087 /* It's highly unlikely the last entry (end address = 0xff...ff)
23088 is valid, but we should still handle it.
23089 The end address is recorded as the start of the next region, but that
23090 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23091 anyway. */
23092 if (addrmap_index_data.previous_valid)
23093 add_address_entry (objfile, obstack,
23094 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23095 addrmap_index_data.previous_cu_index);
9291a0cd
TT
23096}
23097
156942c7
DE
23098/* Return the symbol kind of PSYM. */
23099
23100static gdb_index_symbol_kind
23101symbol_kind (struct partial_symbol *psym)
23102{
23103 domain_enum domain = PSYMBOL_DOMAIN (psym);
23104 enum address_class aclass = PSYMBOL_CLASS (psym);
23105
23106 switch (domain)
23107 {
23108 case VAR_DOMAIN:
23109 switch (aclass)
23110 {
23111 case LOC_BLOCK:
23112 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23113 case LOC_TYPEDEF:
23114 return GDB_INDEX_SYMBOL_KIND_TYPE;
23115 case LOC_COMPUTED:
23116 case LOC_CONST_BYTES:
23117 case LOC_OPTIMIZED_OUT:
23118 case LOC_STATIC:
23119 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23120 case LOC_CONST:
23121 /* Note: It's currently impossible to recognize psyms as enum values
23122 short of reading the type info. For now punt. */
23123 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23124 default:
23125 /* There are other LOC_FOO values that one might want to classify
23126 as variables, but dwarf2read.c doesn't currently use them. */
23127 return GDB_INDEX_SYMBOL_KIND_OTHER;
23128 }
23129 case STRUCT_DOMAIN:
23130 return GDB_INDEX_SYMBOL_KIND_TYPE;
23131 default:
23132 return GDB_INDEX_SYMBOL_KIND_OTHER;
23133 }
23134}
23135
9291a0cd 23136/* Add a list of partial symbols to SYMTAB. */
b89be57b 23137
9291a0cd
TT
23138static void
23139write_psymbols (struct mapped_symtab *symtab,
987d643c 23140 htab_t psyms_seen,
9291a0cd
TT
23141 struct partial_symbol **psymp,
23142 int count,
987d643c
TT
23143 offset_type cu_index,
23144 int is_static)
9291a0cd
TT
23145{
23146 for (; count-- > 0; ++psymp)
23147 {
156942c7
DE
23148 struct partial_symbol *psym = *psymp;
23149 void **slot;
987d643c 23150
156942c7 23151 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 23152 error (_("Ada is not currently supported by the index"));
987d643c 23153
987d643c 23154 /* Only add a given psymbol once. */
156942c7 23155 slot = htab_find_slot (psyms_seen, psym, INSERT);
987d643c
TT
23156 if (!*slot)
23157 {
156942c7
DE
23158 gdb_index_symbol_kind kind = symbol_kind (psym);
23159
23160 *slot = psym;
23161 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23162 is_static, kind, cu_index);
987d643c 23163 }
9291a0cd
TT
23164 }
23165}
23166
23167/* Write the contents of an ("unfinished") obstack to FILE. Throw an
23168 exception if there is an error. */
b89be57b 23169
9291a0cd
TT
23170static void
23171write_obstack (FILE *file, struct obstack *obstack)
23172{
23173 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23174 file)
23175 != obstack_object_size (obstack))
23176 error (_("couldn't data write to file"));
23177}
23178
23179/* Unlink a file if the argument is not NULL. */
b89be57b 23180
9291a0cd
TT
23181static void
23182unlink_if_set (void *p)
23183{
9a3c8263 23184 char **filename = (char **) p;
9291a0cd
TT
23185 if (*filename)
23186 unlink (*filename);
23187}
23188
1fd400ff
TT
23189/* A helper struct used when iterating over debug_types. */
23190struct signatured_type_index_data
23191{
23192 struct objfile *objfile;
23193 struct mapped_symtab *symtab;
23194 struct obstack *types_list;
987d643c 23195 htab_t psyms_seen;
1fd400ff
TT
23196 int cu_index;
23197};
23198
23199/* A helper function that writes a single signatured_type to an
23200 obstack. */
b89be57b 23201
1fd400ff
TT
23202static int
23203write_one_signatured_type (void **slot, void *d)
23204{
9a3c8263
SM
23205 struct signatured_type_index_data *info
23206 = (struct signatured_type_index_data *) d;
1fd400ff 23207 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 23208 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
23209 gdb_byte val[8];
23210
23211 write_psymbols (info->symtab,
987d643c 23212 info->psyms_seen,
3e43a32a
MS
23213 info->objfile->global_psymbols.list
23214 + psymtab->globals_offset,
987d643c
TT
23215 psymtab->n_global_syms, info->cu_index,
23216 0);
1fd400ff 23217 write_psymbols (info->symtab,
987d643c 23218 info->psyms_seen,
3e43a32a
MS
23219 info->objfile->static_psymbols.list
23220 + psymtab->statics_offset,
987d643c
TT
23221 psymtab->n_static_syms, info->cu_index,
23222 1);
1fd400ff 23223
b64f50a1
JK
23224 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23225 entry->per_cu.offset.sect_off);
1fd400ff 23226 obstack_grow (info->types_list, val, 8);
3019eac3
DE
23227 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23228 entry->type_offset_in_tu.cu_off);
1fd400ff
TT
23229 obstack_grow (info->types_list, val, 8);
23230 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23231 obstack_grow (info->types_list, val, 8);
23232
23233 ++info->cu_index;
23234
23235 return 1;
23236}
23237
95554aad
TT
23238/* Recurse into all "included" dependencies and write their symbols as
23239 if they appeared in this psymtab. */
23240
23241static void
23242recursively_write_psymbols (struct objfile *objfile,
23243 struct partial_symtab *psymtab,
23244 struct mapped_symtab *symtab,
23245 htab_t psyms_seen,
23246 offset_type cu_index)
23247{
23248 int i;
23249
23250 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23251 if (psymtab->dependencies[i]->user != NULL)
23252 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23253 symtab, psyms_seen, cu_index);
23254
23255 write_psymbols (symtab,
23256 psyms_seen,
23257 objfile->global_psymbols.list + psymtab->globals_offset,
23258 psymtab->n_global_syms, cu_index,
23259 0);
23260 write_psymbols (symtab,
23261 psyms_seen,
23262 objfile->static_psymbols.list + psymtab->statics_offset,
23263 psymtab->n_static_syms, cu_index,
23264 1);
23265}
23266
9291a0cd 23267/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 23268
9291a0cd
TT
23269static void
23270write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23271{
23272 struct cleanup *cleanup;
23273 char *filename, *cleanup_filename;
1fd400ff
TT
23274 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23275 struct obstack cu_list, types_cu_list;
9291a0cd
TT
23276 int i;
23277 FILE *out_file;
23278 struct mapped_symtab *symtab;
23279 offset_type val, size_of_contents, total_len;
23280 struct stat st;
987d643c 23281 htab_t psyms_seen;
0a5429f6
DE
23282 htab_t cu_index_htab;
23283 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd 23284
9291a0cd
TT
23285 if (dwarf2_per_objfile->using_index)
23286 error (_("Cannot use an index to create the index"));
23287
8b70b953
TT
23288 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23289 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23290
260b681b
DE
23291 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23292 return;
23293
4262abfb
JK
23294 if (stat (objfile_name (objfile), &st) < 0)
23295 perror_with_name (objfile_name (objfile));
9291a0cd 23296
4262abfb 23297 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
9291a0cd
TT
23298 INDEX_SUFFIX, (char *) NULL);
23299 cleanup = make_cleanup (xfree, filename);
23300
614c279d 23301 out_file = gdb_fopen_cloexec (filename, "wb");
9291a0cd
TT
23302 if (!out_file)
23303 error (_("Can't open `%s' for writing"), filename);
23304
23305 cleanup_filename = filename;
23306 make_cleanup (unlink_if_set, &cleanup_filename);
23307
23308 symtab = create_mapped_symtab ();
23309 make_cleanup (cleanup_mapped_symtab, symtab);
23310
23311 obstack_init (&addr_obstack);
23312 make_cleanup_obstack_free (&addr_obstack);
23313
23314 obstack_init (&cu_list);
23315 make_cleanup_obstack_free (&cu_list);
23316
1fd400ff
TT
23317 obstack_init (&types_cu_list);
23318 make_cleanup_obstack_free (&types_cu_list);
23319
987d643c
TT
23320 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23321 NULL, xcalloc, xfree);
96408a79 23322 make_cleanup_htab_delete (psyms_seen);
987d643c 23323
0a5429f6
DE
23324 /* While we're scanning CU's create a table that maps a psymtab pointer
23325 (which is what addrmap records) to its index (which is what is recorded
23326 in the index file). This will later be needed to write the address
23327 table. */
23328 cu_index_htab = htab_create_alloc (100,
23329 hash_psymtab_cu_index,
23330 eq_psymtab_cu_index,
23331 NULL, xcalloc, xfree);
96408a79 23332 make_cleanup_htab_delete (cu_index_htab);
8d749320
SM
23333 psymtab_cu_index_map = XNEWVEC (struct psymtab_cu_index_map,
23334 dwarf2_per_objfile->n_comp_units);
0a5429f6
DE
23335 make_cleanup (xfree, psymtab_cu_index_map);
23336
23337 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
23338 work here. Also, the debug_types entries do not appear in
23339 all_comp_units, but only in their own hash table. */
9291a0cd
TT
23340 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23341 {
3e43a32a
MS
23342 struct dwarf2_per_cu_data *per_cu
23343 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 23344 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 23345 gdb_byte val[8];
0a5429f6
DE
23346 struct psymtab_cu_index_map *map;
23347 void **slot;
9291a0cd 23348
92fac807
JK
23349 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23350 It may be referenced from a local scope but in such case it does not
23351 need to be present in .gdb_index. */
23352 if (psymtab == NULL)
23353 continue;
23354
95554aad
TT
23355 if (psymtab->user == NULL)
23356 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
9291a0cd 23357
0a5429f6
DE
23358 map = &psymtab_cu_index_map[i];
23359 map->psymtab = psymtab;
23360 map->cu_index = i;
23361 slot = htab_find_slot (cu_index_htab, map, INSERT);
23362 gdb_assert (slot != NULL);
23363 gdb_assert (*slot == NULL);
23364 *slot = map;
9291a0cd 23365
b64f50a1
JK
23366 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23367 per_cu->offset.sect_off);
9291a0cd 23368 obstack_grow (&cu_list, val, 8);
e254ef6a 23369 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
23370 obstack_grow (&cu_list, val, 8);
23371 }
23372
0a5429f6
DE
23373 /* Dump the address map. */
23374 write_address_map (objfile, &addr_obstack, cu_index_htab);
23375
1fd400ff
TT
23376 /* Write out the .debug_type entries, if any. */
23377 if (dwarf2_per_objfile->signatured_types)
23378 {
23379 struct signatured_type_index_data sig_data;
23380
23381 sig_data.objfile = objfile;
23382 sig_data.symtab = symtab;
23383 sig_data.types_list = &types_cu_list;
987d643c 23384 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
23385 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23386 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23387 write_one_signatured_type, &sig_data);
23388 }
23389
156942c7
DE
23390 /* Now that we've processed all symbols we can shrink their cu_indices
23391 lists. */
23392 uniquify_cu_indices (symtab);
23393
9291a0cd
TT
23394 obstack_init (&constant_pool);
23395 make_cleanup_obstack_free (&constant_pool);
23396 obstack_init (&symtab_obstack);
23397 make_cleanup_obstack_free (&symtab_obstack);
23398 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23399
23400 obstack_init (&contents);
23401 make_cleanup_obstack_free (&contents);
1fd400ff 23402 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
23403 total_len = size_of_contents;
23404
23405 /* The version number. */
796a7ff8 23406 val = MAYBE_SWAP (8);
9291a0cd
TT
23407 obstack_grow (&contents, &val, sizeof (val));
23408
23409 /* The offset of the CU list from the start of the file. */
23410 val = MAYBE_SWAP (total_len);
23411 obstack_grow (&contents, &val, sizeof (val));
23412 total_len += obstack_object_size (&cu_list);
23413
1fd400ff
TT
23414 /* The offset of the types CU list from the start of the file. */
23415 val = MAYBE_SWAP (total_len);
23416 obstack_grow (&contents, &val, sizeof (val));
23417 total_len += obstack_object_size (&types_cu_list);
23418
9291a0cd
TT
23419 /* The offset of the address table from the start of the file. */
23420 val = MAYBE_SWAP (total_len);
23421 obstack_grow (&contents, &val, sizeof (val));
23422 total_len += obstack_object_size (&addr_obstack);
23423
23424 /* The offset of the symbol table from the start of the file. */
23425 val = MAYBE_SWAP (total_len);
23426 obstack_grow (&contents, &val, sizeof (val));
23427 total_len += obstack_object_size (&symtab_obstack);
23428
23429 /* The offset of the constant pool from the start of the file. */
23430 val = MAYBE_SWAP (total_len);
23431 obstack_grow (&contents, &val, sizeof (val));
23432 total_len += obstack_object_size (&constant_pool);
23433
23434 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23435
23436 write_obstack (out_file, &contents);
23437 write_obstack (out_file, &cu_list);
1fd400ff 23438 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
23439 write_obstack (out_file, &addr_obstack);
23440 write_obstack (out_file, &symtab_obstack);
23441 write_obstack (out_file, &constant_pool);
23442
23443 fclose (out_file);
23444
23445 /* We want to keep the file, so we set cleanup_filename to NULL
23446 here. See unlink_if_set. */
23447 cleanup_filename = NULL;
23448
23449 do_cleanups (cleanup);
23450}
23451
90476074
TT
23452/* Implementation of the `save gdb-index' command.
23453
23454 Note that the file format used by this command is documented in the
23455 GDB manual. Any changes here must be documented there. */
11570e71 23456
9291a0cd
TT
23457static void
23458save_gdb_index_command (char *arg, int from_tty)
23459{
23460 struct objfile *objfile;
23461
23462 if (!arg || !*arg)
96d19272 23463 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
23464
23465 ALL_OBJFILES (objfile)
23466 {
23467 struct stat st;
23468
23469 /* If the objfile does not correspond to an actual file, skip it. */
4262abfb 23470 if (stat (objfile_name (objfile), &st) < 0)
9291a0cd
TT
23471 continue;
23472
9a3c8263
SM
23473 dwarf2_per_objfile
23474 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23475 dwarf2_objfile_data_key);
9291a0cd
TT
23476 if (dwarf2_per_objfile)
23477 {
9291a0cd 23478
492d29ea 23479 TRY
9291a0cd
TT
23480 {
23481 write_psymtabs_to_index (objfile, arg);
23482 }
492d29ea
PA
23483 CATCH (except, RETURN_MASK_ERROR)
23484 {
23485 exception_fprintf (gdb_stderr, except,
23486 _("Error while writing index for `%s': "),
23487 objfile_name (objfile));
23488 }
23489 END_CATCH
9291a0cd
TT
23490 }
23491 }
dce234bc
PP
23492}
23493
9291a0cd
TT
23494\f
23495
b4f54984 23496int dwarf_always_disassemble;
9eae7c52
TT
23497
23498static void
b4f54984
DE
23499show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23500 struct cmd_list_element *c, const char *value)
9eae7c52 23501{
3e43a32a
MS
23502 fprintf_filtered (file,
23503 _("Whether to always disassemble "
23504 "DWARF expressions is %s.\n"),
9eae7c52
TT
23505 value);
23506}
23507
900e11f9
JK
23508static void
23509show_check_physname (struct ui_file *file, int from_tty,
23510 struct cmd_list_element *c, const char *value)
23511{
23512 fprintf_filtered (file,
23513 _("Whether to check \"physname\" is %s.\n"),
23514 value);
23515}
23516
6502dd73
DJ
23517void _initialize_dwarf2_read (void);
23518
23519void
23520_initialize_dwarf2_read (void)
23521{
96d19272
JK
23522 struct cmd_list_element *c;
23523
dce234bc 23524 dwarf2_objfile_data_key
c1bd65d0 23525 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 23526
b4f54984
DE
23527 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23528Set DWARF specific variables.\n\
23529Configure DWARF variables such as the cache size"),
23530 &set_dwarf_cmdlist, "maintenance set dwarf ",
ae038cb0
DJ
23531 0/*allow-unknown*/, &maintenance_set_cmdlist);
23532
b4f54984
DE
23533 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23534Show DWARF specific variables\n\
23535Show DWARF variables such as the cache size"),
23536 &show_dwarf_cmdlist, "maintenance show dwarf ",
ae038cb0
DJ
23537 0/*allow-unknown*/, &maintenance_show_cmdlist);
23538
23539 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
b4f54984
DE
23540 &dwarf_max_cache_age, _("\
23541Set the upper bound on the age of cached DWARF compilation units."), _("\
23542Show the upper bound on the age of cached DWARF compilation units."), _("\
7915a72c
AC
23543A higher limit means that cached compilation units will be stored\n\
23544in memory longer, and more total memory will be used. Zero disables\n\
23545caching, which can slow down startup."),
2c5b56ce 23546 NULL,
b4f54984
DE
23547 show_dwarf_max_cache_age,
23548 &set_dwarf_cmdlist,
23549 &show_dwarf_cmdlist);
d97bc12b 23550
9eae7c52 23551 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
b4f54984 23552 &dwarf_always_disassemble, _("\
9eae7c52
TT
23553Set whether `info address' always disassembles DWARF expressions."), _("\
23554Show whether `info address' always disassembles DWARF expressions."), _("\
23555When enabled, DWARF expressions are always printed in an assembly-like\n\
23556syntax. When disabled, expressions will be printed in a more\n\
23557conversational style, when possible."),
23558 NULL,
b4f54984
DE
23559 show_dwarf_always_disassemble,
23560 &set_dwarf_cmdlist,
23561 &show_dwarf_cmdlist);
23562
23563 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23564Set debugging of the DWARF reader."), _("\
23565Show debugging of the DWARF reader."), _("\
23566When enabled (non-zero), debugging messages are printed during DWARF\n\
73be47f5
DE
23567reading and symtab expansion. A value of 1 (one) provides basic\n\
23568information. A value greater than 1 provides more verbose information."),
45cfd468
DE
23569 NULL,
23570 NULL,
23571 &setdebuglist, &showdebuglist);
23572
b4f54984
DE
23573 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23574Set debugging of the DWARF DIE reader."), _("\
23575Show debugging of the DWARF DIE reader."), _("\
d97bc12b
DE
23576When enabled (non-zero), DIEs are dumped after they are read in.\n\
23577The value is the maximum depth to print."),
ccce17b0
YQ
23578 NULL,
23579 NULL,
23580 &setdebuglist, &showdebuglist);
9291a0cd 23581
27e0867f
DE
23582 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23583Set debugging of the dwarf line reader."), _("\
23584Show debugging of the dwarf line reader."), _("\
23585When enabled (non-zero), line number entries are dumped as they are read in.\n\
23586A value of 1 (one) provides basic information.\n\
23587A value greater than 1 provides more verbose information."),
23588 NULL,
23589 NULL,
23590 &setdebuglist, &showdebuglist);
23591
900e11f9
JK
23592 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23593Set cross-checking of \"physname\" code against demangler."), _("\
23594Show cross-checking of \"physname\" code against demangler."), _("\
23595When enabled, GDB's internal \"physname\" code is checked against\n\
23596the demangler."),
23597 NULL, show_check_physname,
23598 &setdebuglist, &showdebuglist);
23599
e615022a
DE
23600 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23601 no_class, &use_deprecated_index_sections, _("\
23602Set whether to use deprecated gdb_index sections."), _("\
23603Show whether to use deprecated gdb_index sections."), _("\
23604When enabled, deprecated .gdb_index sections are used anyway.\n\
23605Normally they are ignored either because of a missing feature or\n\
23606performance issue.\n\
23607Warning: This option must be enabled before gdb reads the file."),
23608 NULL,
23609 NULL,
23610 &setlist, &showlist);
23611
96d19272 23612 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 23613 _("\
fc1a9d6e 23614Save a gdb-index file.\n\
11570e71 23615Usage: save gdb-index DIRECTORY"),
96d19272
JK
23616 &save_cmdlist);
23617 set_cmd_completer (c, filename_completer);
f1e6e072
TT
23618
23619 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23620 &dwarf2_locexpr_funcs);
23621 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23622 &dwarf2_loclist_funcs);
23623
23624 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23625 &dwarf2_block_frame_base_locexpr_funcs);
23626 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23627 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 23628}
This page took 4.730899 seconds and 4 git commands to generate.