Added 3 miscellaneous testcases like read32.ms uread16.ms hw-trap.ms.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
6aba47ca 3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
9b254dd1 4 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
c906108c
SS
5
6 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
7 Inc. with support from Florida State University (under contract
8 with the Ada Joint Program Office), and Silicon Graphics, Inc.
9 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
10 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 11 support.
c906108c 12
c5aa993b 13 This file is part of GDB.
c906108c 14
c5aa993b
JM
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
a9762ec7
JB
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
c906108c 19
a9762ec7
JB
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
c906108c 24
c5aa993b 25 You should have received a copy of the GNU General Public License
a9762ec7 26 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
27
28#include "defs.h"
29#include "bfd.h"
c906108c
SS
30#include "symtab.h"
31#include "gdbtypes.h"
c906108c
SS
32#include "objfiles.h"
33#include "elf/dwarf2.h"
34#include "buildsym.h"
35#include "demangle.h"
36#include "expression.h"
d5166ae1 37#include "filenames.h" /* for DOSish file names */
2e276125 38#include "macrotab.h"
c906108c
SS
39#include "language.h"
40#include "complaints.h"
357e46e7 41#include "bcache.h"
4c2df51b
DJ
42#include "dwarf2expr.h"
43#include "dwarf2loc.h"
9219021c 44#include "cp-support.h"
72bf9492 45#include "hashtab.h"
ae038cb0
DJ
46#include "command.h"
47#include "gdbcmd.h"
ff013f42 48#include "addrmap.h"
4c2df51b 49
c906108c
SS
50#include <fcntl.h>
51#include "gdb_string.h"
4bdf3d34 52#include "gdb_assert.h"
c906108c 53#include <sys/types.h>
233a11ab
CS
54#ifdef HAVE_ZLIB_H
55#include <zlib.h>
56#endif
c906108c 57
d8151005
DJ
58/* A note on memory usage for this file.
59
60 At the present time, this code reads the debug info sections into
61 the objfile's objfile_obstack. A definite improvement for startup
62 time, on platforms which do not emit relocations for debug
63 sections, would be to use mmap instead. The object's complete
64 debug information is loaded into memory, partly to simplify
65 absolute DIE references.
66
67 Whether using obstacks or mmap, the sections should remain loaded
68 until the objfile is released, and pointers into the section data
69 can be used for any other data associated to the objfile (symbol
70 names, type names, location expressions to name a few). */
71
107d2387 72#if 0
357e46e7 73/* .debug_info header for a compilation unit
c906108c
SS
74 Because of alignment constraints, this structure has padding and cannot
75 be mapped directly onto the beginning of the .debug_info section. */
76typedef struct comp_unit_header
77 {
78 unsigned int length; /* length of the .debug_info
79 contribution */
80 unsigned short version; /* version number -- 2 for DWARF
81 version 2 */
82 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
83 unsigned char addr_size; /* byte size of an address -- 4 */
84 }
85_COMP_UNIT_HEADER;
86#define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
107d2387 87#endif
c906108c
SS
88
89/* .debug_pubnames header
90 Because of alignment constraints, this structure has padding and cannot
91 be mapped directly onto the beginning of the .debug_info section. */
92typedef struct pubnames_header
93 {
94 unsigned int length; /* length of the .debug_pubnames
95 contribution */
96 unsigned char version; /* version number -- 2 for DWARF
97 version 2 */
98 unsigned int info_offset; /* offset into .debug_info section */
99 unsigned int info_size; /* byte size of .debug_info section
100 portion */
101 }
102_PUBNAMES_HEADER;
103#define _ACTUAL_PUBNAMES_HEADER_SIZE 13
104
105/* .debug_pubnames header
106 Because of alignment constraints, this structure has padding and cannot
107 be mapped directly onto the beginning of the .debug_info section. */
108typedef struct aranges_header
109 {
110 unsigned int length; /* byte len of the .debug_aranges
111 contribution */
112 unsigned short version; /* version number -- 2 for DWARF
113 version 2 */
114 unsigned int info_offset; /* offset into .debug_info section */
115 unsigned char addr_size; /* byte size of an address */
116 unsigned char seg_size; /* byte size of segment descriptor */
117 }
118_ARANGES_HEADER;
119#define _ACTUAL_ARANGES_HEADER_SIZE 12
120
121/* .debug_line statement program prologue
122 Because of alignment constraints, this structure has padding and cannot
123 be mapped directly onto the beginning of the .debug_info section. */
124typedef struct statement_prologue
125 {
126 unsigned int total_length; /* byte length of the statement
127 information */
128 unsigned short version; /* version number -- 2 for DWARF
129 version 2 */
130 unsigned int prologue_length; /* # bytes between prologue &
131 stmt program */
132 unsigned char minimum_instruction_length; /* byte size of
133 smallest instr */
134 unsigned char default_is_stmt; /* initial value of is_stmt
135 register */
136 char line_base;
137 unsigned char line_range;
138 unsigned char opcode_base; /* number assigned to first special
139 opcode */
140 unsigned char *standard_opcode_lengths;
141 }
142_STATEMENT_PROLOGUE;
143
6502dd73
DJ
144static const struct objfile_data *dwarf2_objfile_data_key;
145
146struct dwarf2_per_objfile
147{
148 /* Sizes of debugging sections. */
149 unsigned int info_size;
150 unsigned int abbrev_size;
151 unsigned int line_size;
152 unsigned int pubnames_size;
153 unsigned int aranges_size;
154 unsigned int loc_size;
155 unsigned int macinfo_size;
156 unsigned int str_size;
157 unsigned int ranges_size;
158 unsigned int frame_size;
159 unsigned int eh_frame_size;
160
161 /* Loaded data from the sections. */
fe1b8b76
JB
162 gdb_byte *info_buffer;
163 gdb_byte *abbrev_buffer;
164 gdb_byte *line_buffer;
165 gdb_byte *str_buffer;
166 gdb_byte *macinfo_buffer;
167 gdb_byte *ranges_buffer;
168 gdb_byte *loc_buffer;
ae038cb0 169
10b3939b
DJ
170 /* A list of all the compilation units. This is used to locate
171 the target compilation unit of a particular reference. */
ae038cb0
DJ
172 struct dwarf2_per_cu_data **all_comp_units;
173
174 /* The number of compilation units in ALL_COMP_UNITS. */
175 int n_comp_units;
176
177 /* A chain of compilation units that are currently read in, so that
178 they can be freed later. */
179 struct dwarf2_per_cu_data *read_in_chain;
72dca2f5
FR
180
181 /* A flag indicating wether this objfile has a section loaded at a
182 VMA of 0. */
183 int has_section_at_zero;
6502dd73
DJ
184};
185
186static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 187
086df311
DJ
188static asection *dwarf_info_section;
189static asection *dwarf_abbrev_section;
190static asection *dwarf_line_section;
191static asection *dwarf_pubnames_section;
192static asection *dwarf_aranges_section;
193static asection *dwarf_loc_section;
194static asection *dwarf_macinfo_section;
195static asection *dwarf_str_section;
196static asection *dwarf_ranges_section;
197asection *dwarf_frame_section;
198asection *dwarf_eh_frame_section;
199
c906108c
SS
200/* names of the debugging sections */
201
233a11ab
CS
202/* Note that if the debugging section has been compressed, it might
203 have a name like .zdebug_info. */
204
205#define INFO_SECTION "debug_info"
206#define ABBREV_SECTION "debug_abbrev"
207#define LINE_SECTION "debug_line"
208#define PUBNAMES_SECTION "debug_pubnames"
209#define ARANGES_SECTION "debug_aranges"
210#define LOC_SECTION "debug_loc"
211#define MACINFO_SECTION "debug_macinfo"
212#define STR_SECTION "debug_str"
213#define RANGES_SECTION "debug_ranges"
214#define FRAME_SECTION "debug_frame"
215#define EH_FRAME_SECTION "eh_frame"
c906108c
SS
216
217/* local data types */
218
57349743
JB
219/* We hold several abbreviation tables in memory at the same time. */
220#ifndef ABBREV_HASH_SIZE
221#define ABBREV_HASH_SIZE 121
222#endif
223
107d2387
AC
224/* The data in a compilation unit header, after target2host
225 translation, looks like this. */
c906108c 226struct comp_unit_head
a738430d
MK
227{
228 unsigned long length;
229 short version;
230 unsigned int abbrev_offset;
231 unsigned char addr_size;
232 unsigned char signed_addr_p;
57349743 233
a738430d
MK
234 /* Size of file offsets; either 4 or 8. */
235 unsigned int offset_size;
57349743 236
a738430d
MK
237 /* Size of the length field; either 4 or 12. */
238 unsigned int initial_length_size;
57349743 239
a738430d
MK
240 /* Offset to the first byte of this compilation unit header in the
241 .debug_info section, for resolving relative reference dies. */
242 unsigned int offset;
57349743 243
a738430d
MK
244 /* Pointer to this compilation unit header in the .debug_info
245 section. */
fe1b8b76 246 gdb_byte *cu_head_ptr;
57349743 247
a738430d
MK
248 /* Pointer to the first die of this compilation unit. This will be
249 the first byte following the compilation unit header. */
fe1b8b76 250 gdb_byte *first_die_ptr;
af34e669 251
a738430d
MK
252 /* Pointer to the next compilation unit header in the program. */
253 struct comp_unit_head *next;
0d53c4c4 254
a738430d
MK
255 /* Base address of this compilation unit. */
256 CORE_ADDR base_address;
0d53c4c4 257
a738430d
MK
258 /* Non-zero if base_address has been set. */
259 int base_known;
260};
c906108c 261
10b3939b
DJ
262/* Fixed size for the DIE hash table. */
263#ifndef REF_HASH_SIZE
264#define REF_HASH_SIZE 1021
265#endif
266
e7c27a73
DJ
267/* Internal state when decoding a particular compilation unit. */
268struct dwarf2_cu
269{
270 /* The objfile containing this compilation unit. */
271 struct objfile *objfile;
272
273 /* The header of the compilation unit.
274
275 FIXME drow/2003-11-10: Some of the things from the comp_unit_head
f3dd6933 276 should logically be moved to the dwarf2_cu structure. */
e7c27a73 277 struct comp_unit_head header;
e142c38c
DJ
278
279 struct function_range *first_fn, *last_fn, *cached_fn;
280
281 /* The language we are debugging. */
282 enum language language;
283 const struct language_defn *language_defn;
284
b0f35d58
DL
285 const char *producer;
286
e142c38c
DJ
287 /* The generic symbol table building routines have separate lists for
288 file scope symbols and all all other scopes (local scopes). So
289 we need to select the right one to pass to add_symbol_to_list().
290 We do it by keeping a pointer to the correct list in list_in_scope.
291
292 FIXME: The original dwarf code just treated the file scope as the
293 first local scope, and all other local scopes as nested local
294 scopes, and worked fine. Check to see if we really need to
295 distinguish these in buildsym.c. */
296 struct pending **list_in_scope;
297
f3dd6933
DJ
298 /* DWARF abbreviation table associated with this compilation unit. */
299 struct abbrev_info **dwarf2_abbrevs;
300
301 /* Storage for the abbrev table. */
302 struct obstack abbrev_obstack;
72bf9492
DJ
303
304 /* Hash table holding all the loaded partial DIEs. */
305 htab_t partial_dies;
306
ff013f42
JK
307 /* `.debug_ranges' offset for this `DW_TAG_compile_unit' DIE. */
308 unsigned long ranges_offset;
309
72bf9492
DJ
310 /* Storage for things with the same lifetime as this read-in compilation
311 unit, including partial DIEs. */
312 struct obstack comp_unit_obstack;
313
ae038cb0
DJ
314 /* When multiple dwarf2_cu structures are living in memory, this field
315 chains them all together, so that they can be released efficiently.
316 We will probably also want a generation counter so that most-recently-used
317 compilation units are cached... */
318 struct dwarf2_per_cu_data *read_in_chain;
319
320 /* Backchain to our per_cu entry if the tree has been built. */
321 struct dwarf2_per_cu_data *per_cu;
322
f792889a
DJ
323 /* Pointer to the die -> type map. Although it is stored
324 permanently in per_cu, we copy it here to avoid double
325 indirection. */
326 htab_t type_hash;
327
ae038cb0
DJ
328 /* How many compilation units ago was this CU last referenced? */
329 int last_used;
330
10b3939b
DJ
331 /* A hash table of die offsets for following references. */
332 struct die_info *die_ref_table[REF_HASH_SIZE];
333
334 /* Full DIEs if read in. */
335 struct die_info *dies;
336
337 /* A set of pointers to dwarf2_per_cu_data objects for compilation
338 units referenced by this one. Only set during full symbol processing;
339 partial symbol tables do not have dependencies. */
340 htab_t dependencies;
341
cb1df416
DJ
342 /* Header data from the line table, during full symbol processing. */
343 struct line_header *line_header;
344
ae038cb0
DJ
345 /* Mark used when releasing cached dies. */
346 unsigned int mark : 1;
347
348 /* This flag will be set if this compilation unit might include
349 inter-compilation-unit references. */
350 unsigned int has_form_ref_addr : 1;
351
72bf9492
DJ
352 /* This flag will be set if this compilation unit includes any
353 DW_TAG_namespace DIEs. If we know that there are explicit
354 DIEs for namespaces, we don't need to try to infer them
355 from mangled names. */
356 unsigned int has_namespace_info : 1;
ff013f42
JK
357
358 /* Field `ranges_offset' is filled in; flag as the value may be zero. */
359 unsigned int has_ranges_offset : 1;
e7c27a73
DJ
360};
361
10b3939b
DJ
362/* Persistent data held for a compilation unit, even when not
363 processing it. We put a pointer to this structure in the
364 read_symtab_private field of the psymtab. If we encounter
365 inter-compilation-unit references, we also maintain a sorted
366 list of all compilation units. */
367
ae038cb0
DJ
368struct dwarf2_per_cu_data
369{
5afb4e99 370 /* The start offset and length of this compilation unit. 2**30-1
ae038cb0
DJ
371 bytes should suffice to store the length of any compilation unit
372 - if it doesn't, GDB will fall over anyway. */
373 unsigned long offset;
5afb4e99 374 unsigned long length : 30;
ae038cb0
DJ
375
376 /* Flag indicating this compilation unit will be read in before
377 any of the current compilation units are processed. */
378 unsigned long queued : 1;
379
5afb4e99
DJ
380 /* This flag will be set if we need to load absolutely all DIEs
381 for this compilation unit, instead of just the ones we think
382 are interesting. It gets set if we look for a DIE in the
383 hash table and don't find it. */
384 unsigned int load_all_dies : 1;
385
ae038cb0
DJ
386 /* Set iff currently read in. */
387 struct dwarf2_cu *cu;
1c379e20
DJ
388
389 /* If full symbols for this CU have been read in, then this field
390 holds a map of DIE offsets to types. It isn't always possible
391 to reconstruct this information later, so we have to preserve
392 it. */
1c379e20 393 htab_t type_hash;
10b3939b 394
31ffec48
DJ
395 /* The partial symbol table associated with this compilation unit,
396 or NULL for partial units (which do not have an associated
397 symtab). */
10b3939b 398 struct partial_symtab *psymtab;
ae038cb0
DJ
399};
400
debd256d
JB
401/* The line number information for a compilation unit (found in the
402 .debug_line section) begins with a "statement program header",
403 which contains the following information. */
404struct line_header
405{
406 unsigned int total_length;
407 unsigned short version;
408 unsigned int header_length;
409 unsigned char minimum_instruction_length;
410 unsigned char default_is_stmt;
411 int line_base;
412 unsigned char line_range;
413 unsigned char opcode_base;
414
415 /* standard_opcode_lengths[i] is the number of operands for the
416 standard opcode whose value is i. This means that
417 standard_opcode_lengths[0] is unused, and the last meaningful
418 element is standard_opcode_lengths[opcode_base - 1]. */
419 unsigned char *standard_opcode_lengths;
420
421 /* The include_directories table. NOTE! These strings are not
422 allocated with xmalloc; instead, they are pointers into
423 debug_line_buffer. If you try to free them, `free' will get
424 indigestion. */
425 unsigned int num_include_dirs, include_dirs_size;
426 char **include_dirs;
427
428 /* The file_names table. NOTE! These strings are not allocated
429 with xmalloc; instead, they are pointers into debug_line_buffer.
430 Don't try to free them directly. */
431 unsigned int num_file_names, file_names_size;
432 struct file_entry
c906108c 433 {
debd256d
JB
434 char *name;
435 unsigned int dir_index;
436 unsigned int mod_time;
437 unsigned int length;
aaa75496 438 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 439 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
440 } *file_names;
441
442 /* The start and end of the statement program following this
6502dd73 443 header. These point into dwarf2_per_objfile->line_buffer. */
fe1b8b76 444 gdb_byte *statement_program_start, *statement_program_end;
debd256d 445};
c906108c
SS
446
447/* When we construct a partial symbol table entry we only
448 need this much information. */
449struct partial_die_info
450 {
72bf9492 451 /* Offset of this DIE. */
c906108c 452 unsigned int offset;
72bf9492
DJ
453
454 /* DWARF-2 tag for this DIE. */
455 ENUM_BITFIELD(dwarf_tag) tag : 16;
456
457 /* Language code associated with this DIE. This is only used
458 for the compilation unit DIE. */
459 unsigned int language : 8;
460
461 /* Assorted flags describing the data found in this DIE. */
462 unsigned int has_children : 1;
463 unsigned int is_external : 1;
464 unsigned int is_declaration : 1;
465 unsigned int has_type : 1;
466 unsigned int has_specification : 1;
aaa75496 467 unsigned int has_stmt_list : 1;
72bf9492
DJ
468 unsigned int has_pc_info : 1;
469
470 /* Flag set if the SCOPE field of this structure has been
471 computed. */
472 unsigned int scope_set : 1;
473
fa4028e9
JB
474 /* Flag set if the DIE has a byte_size attribute. */
475 unsigned int has_byte_size : 1;
476
72bf9492
DJ
477 /* The name of this DIE. Normally the value of DW_AT_name, but
478 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
479 other fashion. */
c906108c 480 char *name;
57c22c6c 481 char *dirname;
72bf9492
DJ
482
483 /* The scope to prepend to our children. This is generally
484 allocated on the comp_unit_obstack, so will disappear
485 when this compilation unit leaves the cache. */
486 char *scope;
487
488 /* The location description associated with this DIE, if any. */
489 struct dwarf_block *locdesc;
490
491 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
492 CORE_ADDR lowpc;
493 CORE_ADDR highpc;
72bf9492
DJ
494
495 /* Pointer into the info_buffer pointing at the target of
496 DW_AT_sibling, if any. */
fe1b8b76 497 gdb_byte *sibling;
72bf9492
DJ
498
499 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
500 DW_AT_specification (or DW_AT_abstract_origin or
501 DW_AT_extension). */
502 unsigned int spec_offset;
503
aaa75496
JB
504 /* If HAS_STMT_LIST, the offset of the Line Number Information data. */
505 unsigned int line_offset;
506
72bf9492
DJ
507 /* Pointers to this DIE's parent, first child, and next sibling,
508 if any. */
509 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
510 };
511
512/* This data structure holds the information of an abbrev. */
513struct abbrev_info
514 {
515 unsigned int number; /* number identifying abbrev */
516 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
517 unsigned short has_children; /* boolean */
518 unsigned short num_attrs; /* number of attributes */
c906108c
SS
519 struct attr_abbrev *attrs; /* an array of attribute descriptions */
520 struct abbrev_info *next; /* next in chain */
521 };
522
523struct attr_abbrev
524 {
525 enum dwarf_attribute name;
526 enum dwarf_form form;
527 };
528
529/* This data structure holds a complete die structure. */
530struct die_info
531 {
c5aa993b 532 enum dwarf_tag tag; /* Tag indicating type of die */
c5aa993b
JM
533 unsigned int abbrev; /* Abbrev number */
534 unsigned int offset; /* Offset in .debug_info section */
535 unsigned int num_attrs; /* Number of attributes */
536 struct attribute *attrs; /* An array of attributes */
537 struct die_info *next_ref; /* Next die in ref hash table */
78ba4af6
JB
538
539 /* The dies in a compilation unit form an n-ary tree. PARENT
540 points to this die's parent; CHILD points to the first child of
541 this node; and all the children of a given node are chained
542 together via their SIBLING fields, terminated by a die whose
543 tag is zero. */
639d11d3
DC
544 struct die_info *child; /* Its first child, if any. */
545 struct die_info *sibling; /* Its next sibling, if any. */
546 struct die_info *parent; /* Its parent, if any. */
c906108c
SS
547 };
548
549/* Attributes have a name and a value */
550struct attribute
551 {
552 enum dwarf_attribute name;
553 enum dwarf_form form;
554 union
555 {
556 char *str;
557 struct dwarf_block *blk;
ce5d95e1
JB
558 unsigned long unsnd;
559 long int snd;
c906108c
SS
560 CORE_ADDR addr;
561 }
562 u;
563 };
564
5fb290d7
DJ
565struct function_range
566{
567 const char *name;
568 CORE_ADDR lowpc, highpc;
569 int seen_line;
570 struct function_range *next;
571};
572
c906108c
SS
573/* Get at parts of an attribute structure */
574
575#define DW_STRING(attr) ((attr)->u.str)
576#define DW_UNSND(attr) ((attr)->u.unsnd)
577#define DW_BLOCK(attr) ((attr)->u.blk)
578#define DW_SND(attr) ((attr)->u.snd)
579#define DW_ADDR(attr) ((attr)->u.addr)
580
581/* Blocks are a bunch of untyped bytes. */
582struct dwarf_block
583 {
584 unsigned int size;
fe1b8b76 585 gdb_byte *data;
c906108c
SS
586 };
587
c906108c
SS
588#ifndef ATTR_ALLOC_CHUNK
589#define ATTR_ALLOC_CHUNK 4
590#endif
591
c906108c
SS
592/* Allocate fields for structs, unions and enums in this size. */
593#ifndef DW_FIELD_ALLOC_CHUNK
594#define DW_FIELD_ALLOC_CHUNK 4
595#endif
596
c906108c
SS
597/* A zeroed version of a partial die for initialization purposes. */
598static struct partial_die_info zeroed_partial_die;
599
c906108c
SS
600/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
601 but this would require a corresponding change in unpack_field_as_long
602 and friends. */
603static int bits_per_byte = 8;
604
605/* The routines that read and process dies for a C struct or C++ class
606 pass lists of data member fields and lists of member function fields
607 in an instance of a field_info structure, as defined below. */
608struct field_info
c5aa993b
JM
609 {
610 /* List of data member and baseclasses fields. */
611 struct nextfield
612 {
613 struct nextfield *next;
614 int accessibility;
615 int virtuality;
616 struct field field;
617 }
618 *fields;
c906108c 619
c5aa993b
JM
620 /* Number of fields. */
621 int nfields;
c906108c 622
c5aa993b
JM
623 /* Number of baseclasses. */
624 int nbaseclasses;
c906108c 625
c5aa993b
JM
626 /* Set if the accesibility of one of the fields is not public. */
627 int non_public_fields;
c906108c 628
c5aa993b
JM
629 /* Member function fields array, entries are allocated in the order they
630 are encountered in the object file. */
631 struct nextfnfield
632 {
633 struct nextfnfield *next;
634 struct fn_field fnfield;
635 }
636 *fnfields;
c906108c 637
c5aa993b
JM
638 /* Member function fieldlist array, contains name of possibly overloaded
639 member function, number of overloaded member functions and a pointer
640 to the head of the member function field chain. */
641 struct fnfieldlist
642 {
643 char *name;
644 int length;
645 struct nextfnfield *head;
646 }
647 *fnfieldlists;
c906108c 648
c5aa993b
JM
649 /* Number of entries in the fnfieldlists array. */
650 int nfnfields;
651 };
c906108c 652
10b3939b
DJ
653/* One item on the queue of compilation units to read in full symbols
654 for. */
655struct dwarf2_queue_item
656{
657 struct dwarf2_per_cu_data *per_cu;
658 struct dwarf2_queue_item *next;
659};
660
661/* The current queue. */
662static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
663
ae038cb0
DJ
664/* Loaded secondary compilation units are kept in memory until they
665 have not been referenced for the processing of this many
666 compilation units. Set this to zero to disable caching. Cache
667 sizes of up to at least twenty will improve startup time for
668 typical inter-CU-reference binaries, at an obvious memory cost. */
669static int dwarf2_max_cache_age = 5;
920d2a44
AC
670static void
671show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
672 struct cmd_list_element *c, const char *value)
673{
674 fprintf_filtered (file, _("\
675The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
676 value);
677}
678
ae038cb0 679
c906108c
SS
680/* Various complaints about symbol reading that don't abort the process */
681
4d3c2250
KB
682static void
683dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2e276125 684{
4d3c2250 685 complaint (&symfile_complaints,
e2e0b3e5 686 _("statement list doesn't fit in .debug_line section"));
4d3c2250
KB
687}
688
25e43795
DJ
689static void
690dwarf2_debug_line_missing_file_complaint (void)
691{
692 complaint (&symfile_complaints,
693 _(".debug_line section has line data without a file"));
694}
695
4d3c2250
KB
696static void
697dwarf2_complex_location_expr_complaint (void)
2e276125 698{
e2e0b3e5 699 complaint (&symfile_complaints, _("location expression too complex"));
4d3c2250
KB
700}
701
4d3c2250
KB
702static void
703dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
704 int arg3)
2e276125 705{
4d3c2250 706 complaint (&symfile_complaints,
e2e0b3e5 707 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
4d3c2250
KB
708 arg2, arg3);
709}
710
711static void
712dwarf2_macros_too_long_complaint (void)
2e276125 713{
4d3c2250 714 complaint (&symfile_complaints,
e2e0b3e5 715 _("macro info runs off end of `.debug_macinfo' section"));
4d3c2250
KB
716}
717
718static void
719dwarf2_macro_malformed_definition_complaint (const char *arg1)
8e19ed76 720{
4d3c2250 721 complaint (&symfile_complaints,
e2e0b3e5 722 _("macro debug info contains a malformed macro definition:\n`%s'"),
4d3c2250
KB
723 arg1);
724}
725
726static void
727dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
8b2dbe47 728{
4d3c2250 729 complaint (&symfile_complaints,
e2e0b3e5 730 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
4d3c2250 731}
c906108c 732
c906108c
SS
733/* local function prototypes */
734
4efb68b1 735static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c
SS
736
737#if 0
a14ed312 738static void dwarf2_build_psymtabs_easy (struct objfile *, int);
c906108c
SS
739#endif
740
aaa75496
JB
741static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
742 struct objfile *);
743
744static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
745 struct partial_die_info *,
746 struct partial_symtab *);
747
a14ed312 748static void dwarf2_build_psymtabs_hard (struct objfile *, int);
c906108c 749
72bf9492
DJ
750static void scan_partial_symbols (struct partial_die_info *,
751 CORE_ADDR *, CORE_ADDR *,
752 struct dwarf2_cu *);
c906108c 753
72bf9492
DJ
754static void add_partial_symbol (struct partial_die_info *,
755 struct dwarf2_cu *);
63d06c5c 756
72bf9492 757static int pdi_needs_namespace (enum dwarf_tag tag);
91c24f0a 758
72bf9492
DJ
759static void add_partial_namespace (struct partial_die_info *pdi,
760 CORE_ADDR *lowpc, CORE_ADDR *highpc,
761 struct dwarf2_cu *cu);
63d06c5c 762
72bf9492
DJ
763static void add_partial_enumeration (struct partial_die_info *enum_pdi,
764 struct dwarf2_cu *cu);
91c24f0a 765
fe1b8b76
JB
766static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
767 gdb_byte *info_ptr,
768 bfd *abfd,
769 struct dwarf2_cu *cu);
91c24f0a 770
a14ed312 771static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
c906108c 772
a14ed312 773static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 774
fe1b8b76 775gdb_byte *dwarf2_read_section (struct objfile *, asection *);
c906108c 776
e7c27a73 777static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
c906108c 778
f3dd6933 779static void dwarf2_free_abbrev_table (void *);
c906108c 780
fe1b8b76 781static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
891d2f0b 782 struct dwarf2_cu *);
72bf9492 783
57349743 784static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
e7c27a73 785 struct dwarf2_cu *);
c906108c 786
fe1b8b76 787static struct partial_die_info *load_partial_dies (bfd *, gdb_byte *, int,
72bf9492
DJ
788 struct dwarf2_cu *);
789
fe1b8b76
JB
790static gdb_byte *read_partial_die (struct partial_die_info *,
791 struct abbrev_info *abbrev, unsigned int,
792 bfd *, gdb_byte *, struct dwarf2_cu *);
c906108c 793
72bf9492 794static struct partial_die_info *find_partial_die (unsigned long,
10b3939b 795 struct dwarf2_cu *);
72bf9492
DJ
796
797static void fixup_partial_die (struct partial_die_info *,
798 struct dwarf2_cu *);
799
fe1b8b76
JB
800static gdb_byte *read_full_die (struct die_info **, bfd *, gdb_byte *,
801 struct dwarf2_cu *, int *);
c906108c 802
fe1b8b76
JB
803static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
804 bfd *, gdb_byte *, struct dwarf2_cu *);
c906108c 805
fe1b8b76
JB
806static gdb_byte *read_attribute_value (struct attribute *, unsigned,
807 bfd *, gdb_byte *, struct dwarf2_cu *);
a8329558 808
fe1b8b76 809static unsigned int read_1_byte (bfd *, gdb_byte *);
c906108c 810
fe1b8b76 811static int read_1_signed_byte (bfd *, gdb_byte *);
c906108c 812
fe1b8b76 813static unsigned int read_2_bytes (bfd *, gdb_byte *);
c906108c 814
fe1b8b76 815static unsigned int read_4_bytes (bfd *, gdb_byte *);
c906108c 816
fe1b8b76 817static unsigned long read_8_bytes (bfd *, gdb_byte *);
c906108c 818
fe1b8b76 819static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 820 unsigned int *);
c906108c 821
fe1b8b76 822static LONGEST read_initial_length (bfd *, gdb_byte *,
891d2f0b 823 struct comp_unit_head *, unsigned int *);
613e1657 824
fe1b8b76 825static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
891d2f0b 826 unsigned int *);
613e1657 827
fe1b8b76 828static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
c906108c 829
fe1b8b76 830static char *read_string (bfd *, gdb_byte *, unsigned int *);
c906108c 831
fe1b8b76
JB
832static char *read_indirect_string (bfd *, gdb_byte *,
833 const struct comp_unit_head *,
834 unsigned int *);
4bdf3d34 835
fe1b8b76 836static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 837
fe1b8b76 838static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 839
fe1b8b76 840static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
4bb7a0a7 841
e142c38c 842static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 843
e142c38c
DJ
844static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
845 struct dwarf2_cu *);
c906108c 846
05cf31d1
JB
847static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
848 struct dwarf2_cu *cu);
849
e142c38c 850static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 851
e142c38c
DJ
852static struct die_info *die_specification (struct die_info *die,
853 struct dwarf2_cu *);
63d06c5c 854
debd256d
JB
855static void free_line_header (struct line_header *lh);
856
aaa75496
JB
857static void add_file_name (struct line_header *, char *, unsigned int,
858 unsigned int, unsigned int);
859
debd256d
JB
860static struct line_header *(dwarf_decode_line_header
861 (unsigned int offset,
e7c27a73 862 bfd *abfd, struct dwarf2_cu *cu));
debd256d
JB
863
864static void dwarf_decode_lines (struct line_header *, char *, bfd *,
aaa75496 865 struct dwarf2_cu *, struct partial_symtab *);
c906108c 866
4f1520fb 867static void dwarf2_start_subfile (char *, char *, char *);
c906108c 868
a14ed312 869static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 870 struct dwarf2_cu *);
c906108c 871
a14ed312 872static void dwarf2_const_value (struct attribute *, struct symbol *,
e7c27a73 873 struct dwarf2_cu *);
c906108c 874
2df3850c
JM
875static void dwarf2_const_value_data (struct attribute *attr,
876 struct symbol *sym,
877 int bits);
878
e7c27a73 879static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 880
e7c27a73
DJ
881static struct type *die_containing_type (struct die_info *,
882 struct dwarf2_cu *);
c906108c 883
e7c27a73 884static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
c906108c 885
f792889a 886static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 887
086ed43d 888static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 889
fe1b8b76
JB
890static char *typename_concat (struct obstack *,
891 const char *prefix,
892 const char *suffix,
987504bb 893 struct dwarf2_cu *);
63d06c5c 894
e7c27a73 895static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 896
e7c27a73 897static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 898
e7c27a73 899static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 900
ff013f42
JK
901static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
902 struct dwarf2_cu *, struct partial_symtab *);
903
a14ed312 904static int dwarf2_get_pc_bounds (struct die_info *,
e7c27a73 905 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *);
c906108c 906
fae299cd
DC
907static void get_scope_pc_bounds (struct die_info *,
908 CORE_ADDR *, CORE_ADDR *,
909 struct dwarf2_cu *);
910
801e3a5b
JB
911static void dwarf2_record_block_ranges (struct die_info *, struct block *,
912 CORE_ADDR, struct dwarf2_cu *);
913
a14ed312 914static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 915 struct dwarf2_cu *);
c906108c 916
a14ed312 917static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 918 struct type *, struct dwarf2_cu *);
c906108c 919
a14ed312 920static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 921 struct die_info *, struct type *,
e7c27a73 922 struct dwarf2_cu *);
c906108c 923
a14ed312 924static void dwarf2_attach_fn_fields_to_type (struct field_info *,
e7c27a73 925 struct type *, struct dwarf2_cu *);
c906108c 926
134d01f1 927static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 928
8176b9b8
DC
929static char *determine_class_name (struct die_info *die, struct dwarf2_cu *cu);
930
e7c27a73 931static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 932
e7c27a73 933static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 934
38d518c9 935static const char *namespace_name (struct die_info *die,
e142c38c 936 int *is_anonymous, struct dwarf2_cu *);
38d518c9 937
134d01f1 938static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 939
e7c27a73 940static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 941
7ca2d3a3
DL
942static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
943 struct dwarf2_cu *);
944
fe1b8b76 945static struct die_info *read_comp_unit (gdb_byte *, bfd *, struct dwarf2_cu *);
c906108c 946
fe1b8b76 947static struct die_info *read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
e7c27a73 948 struct dwarf2_cu *,
fe1b8b76 949 gdb_byte **new_info_ptr,
639d11d3
DC
950 struct die_info *parent);
951
fe1b8b76 952static struct die_info *read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
e7c27a73 953 struct dwarf2_cu *,
fe1b8b76 954 gdb_byte **new_info_ptr,
639d11d3
DC
955 struct die_info *parent);
956
a14ed312 957static void free_die_list (struct die_info *);
c906108c 958
e7c27a73 959static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 960
e142c38c 961static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
c906108c 962
e142c38c 963static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 964
e142c38c
DJ
965static struct die_info *dwarf2_extension (struct die_info *die,
966 struct dwarf2_cu *);
9219021c 967
a14ed312 968static char *dwarf_tag_name (unsigned int);
c906108c 969
a14ed312 970static char *dwarf_attr_name (unsigned int);
c906108c 971
a14ed312 972static char *dwarf_form_name (unsigned int);
c906108c 973
a14ed312 974static char *dwarf_stack_op_name (unsigned int);
c906108c 975
a14ed312 976static char *dwarf_bool_name (unsigned int);
c906108c 977
a14ed312 978static char *dwarf_type_encoding_name (unsigned int);
c906108c
SS
979
980#if 0
a14ed312 981static char *dwarf_cfi_name (unsigned int);
c906108c 982
a14ed312 983struct die_info *copy_die (struct die_info *);
c906108c
SS
984#endif
985
f9aca02d 986static struct die_info *sibling_die (struct die_info *);
c906108c 987
f9aca02d 988static void dump_die (struct die_info *);
c906108c 989
f9aca02d 990static void dump_die_list (struct die_info *);
c906108c 991
10b3939b
DJ
992static void store_in_ref_table (unsigned int, struct die_info *,
993 struct dwarf2_cu *);
c906108c 994
e142c38c
DJ
995static unsigned int dwarf2_get_ref_die_offset (struct attribute *,
996 struct dwarf2_cu *);
c906108c 997
a02abb62
JB
998static int dwarf2_get_attr_constant_value (struct attribute *, int);
999
10b3939b
DJ
1000static struct die_info *follow_die_ref (struct die_info *,
1001 struct attribute *,
1002 struct dwarf2_cu *);
c906108c 1003
c906108c
SS
1004/* memory allocation interface */
1005
7b5a2f43 1006static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1007
f3dd6933 1008static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
c906108c 1009
a14ed312 1010static struct die_info *dwarf_alloc_die (void);
c906108c 1011
e142c38c 1012static void initialize_cu_func_list (struct dwarf2_cu *);
5fb290d7 1013
e142c38c
DJ
1014static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1015 struct dwarf2_cu *);
5fb290d7 1016
2e276125 1017static void dwarf_decode_macros (struct line_header *, unsigned int,
e7c27a73 1018 char *, bfd *, struct dwarf2_cu *);
2e276125 1019
8e19ed76
PS
1020static int attr_form_is_block (struct attribute *);
1021
3690dd37
JB
1022static int attr_form_is_section_offset (struct attribute *);
1023
1024static int attr_form_is_constant (struct attribute *);
1025
93e7bd98
DJ
1026static void dwarf2_symbol_mark_computed (struct attribute *attr,
1027 struct symbol *sym,
1028 struct dwarf2_cu *cu);
4c2df51b 1029
fe1b8b76
JB
1030static gdb_byte *skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
1031 struct dwarf2_cu *cu);
4bb7a0a7 1032
72bf9492
DJ
1033static void free_stack_comp_unit (void *);
1034
72bf9492
DJ
1035static hashval_t partial_die_hash (const void *item);
1036
1037static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1038
ae038cb0
DJ
1039static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1040 (unsigned long offset, struct objfile *objfile);
1041
1042static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1043 (unsigned long offset, struct objfile *objfile);
1044
1045static void free_one_comp_unit (void *);
1046
1047static void free_cached_comp_units (void *);
1048
1049static void age_cached_comp_units (void);
1050
1051static void free_one_cached_comp_unit (void *);
1052
f792889a
DJ
1053static struct type *set_die_type (struct die_info *, struct type *,
1054 struct dwarf2_cu *);
1c379e20 1055
ae038cb0
DJ
1056static void create_all_comp_units (struct objfile *);
1057
31ffec48
DJ
1058static struct dwarf2_cu *load_full_comp_unit (struct dwarf2_per_cu_data *,
1059 struct objfile *);
10b3939b
DJ
1060
1061static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1062
1063static void dwarf2_add_dependence (struct dwarf2_cu *,
1064 struct dwarf2_per_cu_data *);
1065
ae038cb0
DJ
1066static void dwarf2_mark (struct dwarf2_cu *);
1067
1068static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1069
f792889a 1070static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1071
c906108c
SS
1072/* Try to locate the sections we need for DWARF 2 debugging
1073 information and return true if we have enough to do something. */
1074
1075int
6502dd73 1076dwarf2_has_info (struct objfile *objfile)
c906108c 1077{
6502dd73
DJ
1078 struct dwarf2_per_objfile *data;
1079
1080 /* Initialize per-objfile state. */
1081 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1082 memset (data, 0, sizeof (*data));
1083 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1084 dwarf2_per_objfile = data;
1085
188dd5d6
DJ
1086 dwarf_info_section = 0;
1087 dwarf_abbrev_section = 0;
1088 dwarf_line_section = 0;
1089 dwarf_str_section = 0;
1090 dwarf_macinfo_section = 0;
1091 dwarf_frame_section = 0;
1092 dwarf_eh_frame_section = 0;
1093 dwarf_ranges_section = 0;
1094 dwarf_loc_section = 0;
af34e669 1095
6502dd73 1096 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
188dd5d6 1097 return (dwarf_info_section != NULL && dwarf_abbrev_section != NULL);
c906108c
SS
1098}
1099
233a11ab
CS
1100/* When loading sections, we can either look for ".<name>", or for
1101 * ".z<name>", which indicates a compressed section. */
1102
1103static int
1104section_is_p (asection *sectp, const char *name)
1105{
1106 return ((sectp->name[0] == '.'
1107 && strcmp (sectp->name + 1, name) == 0)
1108 || (sectp->name[0] == '.' && sectp->name[1] == 'z'
1109 && strcmp (sectp->name + 2, name) == 0));
1110}
1111
c906108c
SS
1112/* This function is mapped across the sections and remembers the
1113 offset and size of each of the debugging sections we are interested
1114 in. */
1115
1116static void
72dca2f5 1117dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
c906108c 1118{
233a11ab 1119 if (section_is_p (sectp, INFO_SECTION))
c906108c 1120 {
2c500098 1121 dwarf2_per_objfile->info_size = bfd_get_section_size (sectp);
086df311 1122 dwarf_info_section = sectp;
c906108c 1123 }
233a11ab 1124 else if (section_is_p (sectp, ABBREV_SECTION))
c906108c 1125 {
2c500098 1126 dwarf2_per_objfile->abbrev_size = bfd_get_section_size (sectp);
086df311 1127 dwarf_abbrev_section = sectp;
c906108c 1128 }
233a11ab 1129 else if (section_is_p (sectp, LINE_SECTION))
c906108c 1130 {
2c500098 1131 dwarf2_per_objfile->line_size = bfd_get_section_size (sectp);
086df311 1132 dwarf_line_section = sectp;
c906108c 1133 }
233a11ab 1134 else if (section_is_p (sectp, PUBNAMES_SECTION))
c906108c 1135 {
2c500098 1136 dwarf2_per_objfile->pubnames_size = bfd_get_section_size (sectp);
086df311 1137 dwarf_pubnames_section = sectp;
c906108c 1138 }
233a11ab 1139 else if (section_is_p (sectp, ARANGES_SECTION))
c906108c 1140 {
2c500098 1141 dwarf2_per_objfile->aranges_size = bfd_get_section_size (sectp);
086df311 1142 dwarf_aranges_section = sectp;
c906108c 1143 }
233a11ab 1144 else if (section_is_p (sectp, LOC_SECTION))
c906108c 1145 {
2c500098 1146 dwarf2_per_objfile->loc_size = bfd_get_section_size (sectp);
086df311 1147 dwarf_loc_section = sectp;
c906108c 1148 }
233a11ab 1149 else if (section_is_p (sectp, MACINFO_SECTION))
c906108c 1150 {
2c500098 1151 dwarf2_per_objfile->macinfo_size = bfd_get_section_size (sectp);
0cf824c9 1152 dwarf_macinfo_section = sectp;
c906108c 1153 }
233a11ab 1154 else if (section_is_p (sectp, STR_SECTION))
c906108c 1155 {
2c500098 1156 dwarf2_per_objfile->str_size = bfd_get_section_size (sectp);
086df311 1157 dwarf_str_section = sectp;
c906108c 1158 }
233a11ab 1159 else if (section_is_p (sectp, FRAME_SECTION))
b6af0555 1160 {
2c500098 1161 dwarf2_per_objfile->frame_size = bfd_get_section_size (sectp);
086df311 1162 dwarf_frame_section = sectp;
b6af0555 1163 }
233a11ab 1164 else if (section_is_p (sectp, EH_FRAME_SECTION))
b6af0555 1165 {
3799ccc6
EZ
1166 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1167 if (aflag & SEC_HAS_CONTENTS)
1168 {
2c500098 1169 dwarf2_per_objfile->eh_frame_size = bfd_get_section_size (sectp);
3799ccc6
EZ
1170 dwarf_eh_frame_section = sectp;
1171 }
b6af0555 1172 }
233a11ab 1173 else if (section_is_p (sectp, RANGES_SECTION))
af34e669 1174 {
2c500098 1175 dwarf2_per_objfile->ranges_size = bfd_get_section_size (sectp);
6f10aeb1 1176 dwarf_ranges_section = sectp;
af34e669 1177 }
72dca2f5
FR
1178
1179 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1180 && bfd_section_vma (abfd, sectp) == 0)
1181 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
1182}
1183
233a11ab
CS
1184/* This function is called after decompressing a section, so
1185 dwarf2_per_objfile can record its new, uncompressed size. */
1186
1187static void
1188dwarf2_resize_section (asection *sectp, bfd_size_type new_size)
1189{
1190 if (section_is_p (sectp, INFO_SECTION))
1191 dwarf2_per_objfile->info_size = new_size;
1192 else if (section_is_p (sectp, ABBREV_SECTION))
1193 dwarf2_per_objfile->abbrev_size = new_size;
1194 else if (section_is_p (sectp, LINE_SECTION))
1195 dwarf2_per_objfile->line_size = new_size;
1196 else if (section_is_p (sectp, PUBNAMES_SECTION))
1197 dwarf2_per_objfile->pubnames_size = new_size;
1198 else if (section_is_p (sectp, ARANGES_SECTION))
1199 dwarf2_per_objfile->aranges_size = new_size;
1200 else if (section_is_p (sectp, LOC_SECTION))
1201 dwarf2_per_objfile->loc_size = new_size;
1202 else if (section_is_p (sectp, MACINFO_SECTION))
1203 dwarf2_per_objfile->macinfo_size = new_size;
1204 else if (section_is_p (sectp, STR_SECTION))
1205 dwarf2_per_objfile->str_size = new_size;
1206 else if (section_is_p (sectp, FRAME_SECTION))
1207 dwarf2_per_objfile->frame_size = new_size;
1208 else if (section_is_p (sectp, EH_FRAME_SECTION))
1209 dwarf2_per_objfile->eh_frame_size = new_size;
1210 else if (section_is_p (sectp, RANGES_SECTION))
1211 dwarf2_per_objfile->ranges_size = new_size;
1212 else
1213 internal_error (__FILE__, __LINE__,
1214 _("dwarf2_resize_section: missing section_is_p check: %s"),
1215 sectp->name);
1216}
1217
c906108c
SS
1218/* Build a partial symbol table. */
1219
1220void
fba45db2 1221dwarf2_build_psymtabs (struct objfile *objfile, int mainline)
c906108c 1222{
c906108c
SS
1223 /* We definitely need the .debug_info and .debug_abbrev sections */
1224
6502dd73
DJ
1225 dwarf2_per_objfile->info_buffer = dwarf2_read_section (objfile, dwarf_info_section);
1226 dwarf2_per_objfile->abbrev_buffer = dwarf2_read_section (objfile, dwarf_abbrev_section);
188dd5d6
DJ
1227
1228 if (dwarf_line_section)
6502dd73 1229 dwarf2_per_objfile->line_buffer = dwarf2_read_section (objfile, dwarf_line_section);
41ff2da1 1230 else
6502dd73 1231 dwarf2_per_objfile->line_buffer = NULL;
c906108c 1232
188dd5d6 1233 if (dwarf_str_section)
6502dd73 1234 dwarf2_per_objfile->str_buffer = dwarf2_read_section (objfile, dwarf_str_section);
4bdf3d34 1235 else
6502dd73 1236 dwarf2_per_objfile->str_buffer = NULL;
4bdf3d34 1237
188dd5d6 1238 if (dwarf_macinfo_section)
6502dd73 1239 dwarf2_per_objfile->macinfo_buffer = dwarf2_read_section (objfile,
086df311 1240 dwarf_macinfo_section);
2e276125 1241 else
6502dd73 1242 dwarf2_per_objfile->macinfo_buffer = NULL;
2e276125 1243
188dd5d6 1244 if (dwarf_ranges_section)
6502dd73 1245 dwarf2_per_objfile->ranges_buffer = dwarf2_read_section (objfile, dwarf_ranges_section);
af34e669 1246 else
6502dd73 1247 dwarf2_per_objfile->ranges_buffer = NULL;
af34e669 1248
188dd5d6 1249 if (dwarf_loc_section)
6502dd73 1250 dwarf2_per_objfile->loc_buffer = dwarf2_read_section (objfile, dwarf_loc_section);
0d53c4c4 1251 else
6502dd73 1252 dwarf2_per_objfile->loc_buffer = NULL;
0d53c4c4 1253
ef96bde8
EZ
1254 if (mainline
1255 || (objfile->global_psymbols.size == 0
1256 && objfile->static_psymbols.size == 0))
c906108c
SS
1257 {
1258 init_psymbol_list (objfile, 1024);
1259 }
1260
1261#if 0
1262 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1263 {
d4f3574e 1264 /* Things are significantly easier if we have .debug_aranges and
c906108c
SS
1265 .debug_pubnames sections */
1266
d4f3574e 1267 dwarf2_build_psymtabs_easy (objfile, mainline);
c906108c
SS
1268 }
1269 else
1270#endif
1271 /* only test this case for now */
c5aa993b 1272 {
c906108c 1273 /* In this case we have to work a bit harder */
d4f3574e 1274 dwarf2_build_psymtabs_hard (objfile, mainline);
c906108c
SS
1275 }
1276}
1277
1278#if 0
1279/* Build the partial symbol table from the information in the
1280 .debug_pubnames and .debug_aranges sections. */
1281
1282static void
fba45db2 1283dwarf2_build_psymtabs_easy (struct objfile *objfile, int mainline)
c906108c
SS
1284{
1285 bfd *abfd = objfile->obfd;
1286 char *aranges_buffer, *pubnames_buffer;
1287 char *aranges_ptr, *pubnames_ptr;
1288 unsigned int entry_length, version, info_offset, info_size;
1289
1290 pubnames_buffer = dwarf2_read_section (objfile,
086df311 1291 dwarf_pubnames_section);
c906108c 1292 pubnames_ptr = pubnames_buffer;
6502dd73 1293 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames_size)
c906108c 1294 {
613e1657 1295 struct comp_unit_head cu_header;
891d2f0b 1296 unsigned int bytes_read;
613e1657
KB
1297
1298 entry_length = read_initial_length (abfd, pubnames_ptr, &cu_header,
891d2f0b 1299 &bytes_read);
613e1657 1300 pubnames_ptr += bytes_read;
c906108c
SS
1301 version = read_1_byte (abfd, pubnames_ptr);
1302 pubnames_ptr += 1;
1303 info_offset = read_4_bytes (abfd, pubnames_ptr);
1304 pubnames_ptr += 4;
1305 info_size = read_4_bytes (abfd, pubnames_ptr);
1306 pubnames_ptr += 4;
1307 }
1308
1309 aranges_buffer = dwarf2_read_section (objfile,
086df311 1310 dwarf_aranges_section);
c906108c
SS
1311
1312}
1313#endif
1314
107d2387 1315/* Read in the comp unit header information from the debug_info at
917c78fc 1316 info_ptr. */
107d2387 1317
fe1b8b76 1318static gdb_byte *
107d2387 1319read_comp_unit_head (struct comp_unit_head *cu_header,
fe1b8b76 1320 gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
1321{
1322 int signed_addr;
891d2f0b 1323 unsigned int bytes_read;
613e1657
KB
1324 cu_header->length = read_initial_length (abfd, info_ptr, cu_header,
1325 &bytes_read);
1326 info_ptr += bytes_read;
107d2387
AC
1327 cu_header->version = read_2_bytes (abfd, info_ptr);
1328 info_ptr += 2;
613e1657
KB
1329 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1330 &bytes_read);
1331 info_ptr += bytes_read;
107d2387
AC
1332 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1333 info_ptr += 1;
1334 signed_addr = bfd_get_sign_extend_vma (abfd);
1335 if (signed_addr < 0)
8e65ff28 1336 internal_error (__FILE__, __LINE__,
e2e0b3e5 1337 _("read_comp_unit_head: dwarf from non elf file"));
107d2387
AC
1338 cu_header->signed_addr_p = signed_addr;
1339 return info_ptr;
1340}
1341
fe1b8b76
JB
1342static gdb_byte *
1343partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
72bf9492
DJ
1344 bfd *abfd)
1345{
fe1b8b76 1346 gdb_byte *beg_of_comp_unit = info_ptr;
72bf9492
DJ
1347
1348 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1349
2b949cb6 1350 if (header->version != 2 && header->version != 3)
8a3fe4f8
AC
1351 error (_("Dwarf Error: wrong version in compilation unit header "
1352 "(is %d, should be %d) [in module %s]"), header->version,
72bf9492
DJ
1353 2, bfd_get_filename (abfd));
1354
1355 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev_size)
8a3fe4f8
AC
1356 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1357 "(offset 0x%lx + 6) [in module %s]"),
72bf9492
DJ
1358 (long) header->abbrev_offset,
1359 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1360 bfd_get_filename (abfd));
1361
1362 if (beg_of_comp_unit + header->length + header->initial_length_size
1363 > dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
8a3fe4f8
AC
1364 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
1365 "(offset 0x%lx + 0) [in module %s]"),
72bf9492
DJ
1366 (long) header->length,
1367 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1368 bfd_get_filename (abfd));
1369
1370 return info_ptr;
1371}
1372
aaa75496
JB
1373/* Allocate a new partial symtab for file named NAME and mark this new
1374 partial symtab as being an include of PST. */
1375
1376static void
1377dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1378 struct objfile *objfile)
1379{
1380 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1381
1382 subpst->section_offsets = pst->section_offsets;
1383 subpst->textlow = 0;
1384 subpst->texthigh = 0;
1385
1386 subpst->dependencies = (struct partial_symtab **)
1387 obstack_alloc (&objfile->objfile_obstack,
1388 sizeof (struct partial_symtab *));
1389 subpst->dependencies[0] = pst;
1390 subpst->number_of_dependencies = 1;
1391
1392 subpst->globals_offset = 0;
1393 subpst->n_global_syms = 0;
1394 subpst->statics_offset = 0;
1395 subpst->n_static_syms = 0;
1396 subpst->symtab = NULL;
1397 subpst->read_symtab = pst->read_symtab;
1398 subpst->readin = 0;
1399
1400 /* No private part is necessary for include psymtabs. This property
1401 can be used to differentiate between such include psymtabs and
10b3939b 1402 the regular ones. */
58a9656e 1403 subpst->read_symtab_private = NULL;
aaa75496
JB
1404}
1405
1406/* Read the Line Number Program data and extract the list of files
1407 included by the source file represented by PST. Build an include
1408 partial symtab for each of these included files.
1409
1410 This procedure assumes that there *is* a Line Number Program in
1411 the given CU. Callers should check that PDI->HAS_STMT_LIST is set
1412 before calling this procedure. */
1413
1414static void
1415dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1416 struct partial_die_info *pdi,
1417 struct partial_symtab *pst)
1418{
1419 struct objfile *objfile = cu->objfile;
1420 bfd *abfd = objfile->obfd;
1421 struct line_header *lh;
1422
1423 lh = dwarf_decode_line_header (pdi->line_offset, abfd, cu);
1424 if (lh == NULL)
1425 return; /* No linetable, so no includes. */
1426
1427 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1428
1429 free_line_header (lh);
1430}
1431
1432
c906108c
SS
1433/* Build the partial symbol table by doing a quick pass through the
1434 .debug_info and .debug_abbrev sections. */
1435
1436static void
fba45db2 1437dwarf2_build_psymtabs_hard (struct objfile *objfile, int mainline)
c906108c
SS
1438{
1439 /* Instead of reading this into a big buffer, we should probably use
1440 mmap() on architectures that support it. (FIXME) */
1441 bfd *abfd = objfile->obfd;
fe1b8b76
JB
1442 gdb_byte *info_ptr;
1443 gdb_byte *beg_of_comp_unit;
c906108c
SS
1444 struct partial_die_info comp_unit_die;
1445 struct partial_symtab *pst;
ae038cb0 1446 struct cleanup *back_to;
e142c38c 1447 CORE_ADDR lowpc, highpc, baseaddr;
c906108c 1448
6502dd73 1449 info_ptr = dwarf2_per_objfile->info_buffer;
c906108c 1450
ae038cb0
DJ
1451 /* Any cached compilation units will be linked by the per-objfile
1452 read_in_chain. Make sure to free them when we're done. */
1453 back_to = make_cleanup (free_cached_comp_units, NULL);
1454
10b3939b
DJ
1455 create_all_comp_units (objfile);
1456
ff013f42
JK
1457 objfile->psymtabs_addrmap = addrmap_create_mutable
1458 (&objfile->objfile_obstack);
1459
6502dd73 1460 /* Since the objects we're extracting from .debug_info vary in
af703f96 1461 length, only the individual functions to extract them (like
72bf9492 1462 read_comp_unit_head and load_partial_die) can really know whether
af703f96
JB
1463 the buffer is large enough to hold another complete object.
1464
6502dd73
DJ
1465 At the moment, they don't actually check that. If .debug_info
1466 holds just one extra byte after the last compilation unit's dies,
1467 then read_comp_unit_head will happily read off the end of the
1468 buffer. read_partial_die is similarly casual. Those functions
1469 should be fixed.
af703f96
JB
1470
1471 For this loop condition, simply checking whether there's any data
1472 left at all should be sufficient. */
6502dd73
DJ
1473 while (info_ptr < (dwarf2_per_objfile->info_buffer
1474 + dwarf2_per_objfile->info_size))
c906108c 1475 {
f3dd6933 1476 struct cleanup *back_to_inner;
e7c27a73 1477 struct dwarf2_cu cu;
72bf9492
DJ
1478 struct abbrev_info *abbrev;
1479 unsigned int bytes_read;
1480 struct dwarf2_per_cu_data *this_cu;
1481
c906108c 1482 beg_of_comp_unit = info_ptr;
c906108c 1483
72bf9492
DJ
1484 memset (&cu, 0, sizeof (cu));
1485
1486 obstack_init (&cu.comp_unit_obstack);
1487
1488 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1489
e7c27a73 1490 cu.objfile = objfile;
72bf9492 1491 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr, abfd);
e7c27a73 1492
57349743 1493 /* Complete the cu_header */
6502dd73 1494 cu.header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
e7c27a73
DJ
1495 cu.header.first_die_ptr = info_ptr;
1496 cu.header.cu_head_ptr = beg_of_comp_unit;
57349743 1497
e142c38c
DJ
1498 cu.list_in_scope = &file_symbols;
1499
c906108c 1500 /* Read the abbrevs for this compilation unit into a table */
e7c27a73 1501 dwarf2_read_abbrevs (abfd, &cu);
72bf9492 1502 make_cleanup (dwarf2_free_abbrev_table, &cu);
c906108c 1503
10b3939b 1504 this_cu = dwarf2_find_comp_unit (cu.header.offset, objfile);
ae038cb0 1505
c906108c 1506 /* Read the compilation unit die */
72bf9492
DJ
1507 abbrev = peek_die_abbrev (info_ptr, &bytes_read, &cu);
1508 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1509 abfd, info_ptr, &cu);
c906108c 1510
31ffec48
DJ
1511 if (comp_unit_die.tag == DW_TAG_partial_unit)
1512 {
1513 info_ptr = (beg_of_comp_unit + cu.header.length
1514 + cu.header.initial_length_size);
1515 do_cleanups (back_to_inner);
1516 continue;
1517 }
1518
c906108c 1519 /* Set the language we're debugging */
e142c38c 1520 set_cu_language (comp_unit_die.language, &cu);
c906108c
SS
1521
1522 /* Allocate a new partial symbol table structure */
d4f3574e 1523 pst = start_psymtab_common (objfile, objfile->section_offsets,
96baa820 1524 comp_unit_die.name ? comp_unit_die.name : "",
ff013f42
JK
1525 /* TEXTLOW and TEXTHIGH are set below. */
1526 0,
c906108c
SS
1527 objfile->global_psymbols.next,
1528 objfile->static_psymbols.next);
1529
ae038cb0
DJ
1530 if (comp_unit_die.dirname)
1531 pst->dirname = xstrdup (comp_unit_die.dirname);
57c22c6c 1532
10b3939b
DJ
1533 pst->read_symtab_private = (char *) this_cu;
1534
613e1657 1535 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
1536
1537 /* Store the function that reads in the rest of the symbol table */
1538 pst->read_symtab = dwarf2_psymtab_to_symtab;
1539
10b3939b
DJ
1540 /* If this compilation unit was already read in, free the
1541 cached copy in order to read it in again. This is
1542 necessary because we skipped some symbols when we first
1543 read in the compilation unit (see load_partial_dies).
1544 This problem could be avoided, but the benefit is
1545 unclear. */
1546 if (this_cu->cu != NULL)
1547 free_one_cached_comp_unit (this_cu->cu);
ae038cb0 1548
10b3939b 1549 cu.per_cu = this_cu;
ae038cb0 1550
10b3939b
DJ
1551 /* Note that this is a pointer to our stack frame, being
1552 added to a global data structure. It will be cleaned up
1553 in free_stack_comp_unit when we finish with this
1554 compilation unit. */
1555 this_cu->cu = &cu;
ae038cb0 1556
10b3939b 1557 this_cu->psymtab = pst;
ae038cb0 1558
ff013f42
JK
1559 /* Possibly set the default values of LOWPC and HIGHPC from
1560 `DW_AT_ranges'. */
1561 if (cu.has_ranges_offset)
1562 {
1563 if (dwarf2_ranges_read (cu.ranges_offset, &comp_unit_die.lowpc,
1564 &comp_unit_die.highpc, &cu, pst))
1565 comp_unit_die.has_pc_info = 1;
1566 }
1567
c906108c
SS
1568 /* Check if comp unit has_children.
1569 If so, read the rest of the partial symbols from this comp unit.
1570 If not, there's no more debug_info for this comp unit. */
1571 if (comp_unit_die.has_children)
1572 {
72bf9492
DJ
1573 struct partial_die_info *first_die;
1574
91c24f0a
DC
1575 lowpc = ((CORE_ADDR) -1);
1576 highpc = ((CORE_ADDR) 0);
1577
72bf9492
DJ
1578 first_die = load_partial_dies (abfd, info_ptr, 1, &cu);
1579
1580 scan_partial_symbols (first_die, &lowpc, &highpc, &cu);
c906108c 1581
91c24f0a
DC
1582 /* If we didn't find a lowpc, set it to highpc to avoid
1583 complaints from `maint check'. */
1584 if (lowpc == ((CORE_ADDR) -1))
1585 lowpc = highpc;
72bf9492 1586
c906108c
SS
1587 /* If the compilation unit didn't have an explicit address range,
1588 then use the information extracted from its child dies. */
0b010bcc 1589 if (! comp_unit_die.has_pc_info)
c906108c 1590 {
c5aa993b 1591 comp_unit_die.lowpc = lowpc;
c906108c
SS
1592 comp_unit_die.highpc = highpc;
1593 }
1594 }
c5aa993b 1595 pst->textlow = comp_unit_die.lowpc + baseaddr;
c906108c
SS
1596 pst->texthigh = comp_unit_die.highpc + baseaddr;
1597
ff013f42
JK
1598 /* Store the contiguous range; `DW_AT_ranges' range is stored above. The
1599 range can be also empty for CUs with no code. */
1600 if (!cu.has_ranges_offset && pst->textlow < pst->texthigh)
1601 addrmap_set_empty (objfile->psymtabs_addrmap, pst->textlow,
1602 pst->texthigh - 1, pst);
1603
c906108c
SS
1604 pst->n_global_syms = objfile->global_psymbols.next -
1605 (objfile->global_psymbols.list + pst->globals_offset);
1606 pst->n_static_syms = objfile->static_psymbols.next -
1607 (objfile->static_psymbols.list + pst->statics_offset);
1608 sort_pst_symbols (pst);
1609
1610 /* If there is already a psymtab or symtab for a file of this
1611 name, remove it. (If there is a symtab, more drastic things
1612 also happen.) This happens in VxWorks. */
1613 free_named_symtabs (pst->filename);
1614
dd373385
EZ
1615 info_ptr = beg_of_comp_unit + cu.header.length
1616 + cu.header.initial_length_size;
1617
aaa75496
JB
1618 if (comp_unit_die.has_stmt_list)
1619 {
1620 /* Get the list of files included in the current compilation unit,
1621 and build a psymtab for each of them. */
1622 dwarf2_build_include_psymtabs (&cu, &comp_unit_die, pst);
1623 }
1624
f3dd6933 1625 do_cleanups (back_to_inner);
c906108c 1626 }
ff013f42
JK
1627
1628 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
1629 &objfile->objfile_obstack);
1630
ae038cb0
DJ
1631 do_cleanups (back_to);
1632}
1633
1634/* Load the DIEs for a secondary CU into memory. */
1635
1636static void
1637load_comp_unit (struct dwarf2_per_cu_data *this_cu, struct objfile *objfile)
1638{
1639 bfd *abfd = objfile->obfd;
fe1b8b76 1640 gdb_byte *info_ptr, *beg_of_comp_unit;
ae038cb0
DJ
1641 struct partial_die_info comp_unit_die;
1642 struct dwarf2_cu *cu;
1643 struct abbrev_info *abbrev;
1644 unsigned int bytes_read;
1645 struct cleanup *back_to;
1646
1647 info_ptr = dwarf2_per_objfile->info_buffer + this_cu->offset;
1648 beg_of_comp_unit = info_ptr;
1649
1650 cu = xmalloc (sizeof (struct dwarf2_cu));
1651 memset (cu, 0, sizeof (struct dwarf2_cu));
1652
1653 obstack_init (&cu->comp_unit_obstack);
1654
1655 cu->objfile = objfile;
1656 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr, abfd);
1657
1658 /* Complete the cu_header. */
1659 cu->header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1660 cu->header.first_die_ptr = info_ptr;
1661 cu->header.cu_head_ptr = beg_of_comp_unit;
1662
1663 /* Read the abbrevs for this compilation unit into a table. */
1664 dwarf2_read_abbrevs (abfd, cu);
1665 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
1666
1667 /* Read the compilation unit die. */
1668 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
1669 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1670 abfd, info_ptr, cu);
1671
1672 /* Set the language we're debugging. */
1673 set_cu_language (comp_unit_die.language, cu);
1674
1675 /* Link this compilation unit into the compilation unit tree. */
1676 this_cu->cu = cu;
1677 cu->per_cu = this_cu;
f792889a 1678 cu->type_hash = cu->per_cu->type_hash;
ae038cb0
DJ
1679
1680 /* Check if comp unit has_children.
1681 If so, read the rest of the partial symbols from this comp unit.
1682 If not, there's no more debug_info for this comp unit. */
1683 if (comp_unit_die.has_children)
1684 load_partial_dies (abfd, info_ptr, 0, cu);
1685
1686 do_cleanups (back_to);
1687}
1688
1689/* Create a list of all compilation units in OBJFILE. We do this only
1690 if an inter-comp-unit reference is found; presumably if there is one,
1691 there will be many, and one will occur early in the .debug_info section.
1692 So there's no point in building this list incrementally. */
1693
1694static void
1695create_all_comp_units (struct objfile *objfile)
1696{
1697 int n_allocated;
1698 int n_comp_units;
1699 struct dwarf2_per_cu_data **all_comp_units;
fe1b8b76 1700 gdb_byte *info_ptr = dwarf2_per_objfile->info_buffer;
ae038cb0
DJ
1701
1702 n_comp_units = 0;
1703 n_allocated = 10;
1704 all_comp_units = xmalloc (n_allocated
1705 * sizeof (struct dwarf2_per_cu_data *));
1706
1707 while (info_ptr < dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1708 {
1709 struct comp_unit_head cu_header;
fe1b8b76 1710 gdb_byte *beg_of_comp_unit;
ae038cb0
DJ
1711 struct dwarf2_per_cu_data *this_cu;
1712 unsigned long offset;
891d2f0b 1713 unsigned int bytes_read;
ae038cb0
DJ
1714
1715 offset = info_ptr - dwarf2_per_objfile->info_buffer;
1716
1717 /* Read just enough information to find out where the next
1718 compilation unit is. */
dd373385 1719 cu_header.initial_length_size = 0;
ae038cb0
DJ
1720 cu_header.length = read_initial_length (objfile->obfd, info_ptr,
1721 &cu_header, &bytes_read);
1722
1723 /* Save the compilation unit for later lookup. */
1724 this_cu = obstack_alloc (&objfile->objfile_obstack,
1725 sizeof (struct dwarf2_per_cu_data));
1726 memset (this_cu, 0, sizeof (*this_cu));
1727 this_cu->offset = offset;
1728 this_cu->length = cu_header.length + cu_header.initial_length_size;
1729
1730 if (n_comp_units == n_allocated)
1731 {
1732 n_allocated *= 2;
1733 all_comp_units = xrealloc (all_comp_units,
1734 n_allocated
1735 * sizeof (struct dwarf2_per_cu_data *));
1736 }
1737 all_comp_units[n_comp_units++] = this_cu;
1738
1739 info_ptr = info_ptr + this_cu->length;
1740 }
1741
1742 dwarf2_per_objfile->all_comp_units
1743 = obstack_alloc (&objfile->objfile_obstack,
1744 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1745 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
1746 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1747 xfree (all_comp_units);
1748 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
1749}
1750
72bf9492
DJ
1751/* Process all loaded DIEs for compilation unit CU, starting at FIRST_DIE.
1752 Also set *LOWPC and *HIGHPC to the lowest and highest PC values found
1753 in CU. */
c906108c 1754
72bf9492
DJ
1755static void
1756scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
1757 CORE_ADDR *highpc, struct dwarf2_cu *cu)
c906108c 1758{
e7c27a73 1759 struct objfile *objfile = cu->objfile;
c906108c 1760 bfd *abfd = objfile->obfd;
72bf9492 1761 struct partial_die_info *pdi;
c906108c 1762
91c24f0a
DC
1763 /* Now, march along the PDI's, descending into ones which have
1764 interesting children but skipping the children of the other ones,
1765 until we reach the end of the compilation unit. */
c906108c 1766
72bf9492 1767 pdi = first_die;
91c24f0a 1768
72bf9492
DJ
1769 while (pdi != NULL)
1770 {
1771 fixup_partial_die (pdi, cu);
c906108c 1772
91c24f0a
DC
1773 /* Anonymous namespaces have no name but have interesting
1774 children, so we need to look at them. Ditto for anonymous
1775 enums. */
933c6fe4 1776
72bf9492
DJ
1777 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
1778 || pdi->tag == DW_TAG_enumeration_type)
c906108c 1779 {
72bf9492 1780 switch (pdi->tag)
c906108c
SS
1781 {
1782 case DW_TAG_subprogram:
72bf9492 1783 if (pdi->has_pc_info)
c906108c 1784 {
72bf9492 1785 if (pdi->lowpc < *lowpc)
c906108c 1786 {
72bf9492 1787 *lowpc = pdi->lowpc;
c906108c 1788 }
72bf9492 1789 if (pdi->highpc > *highpc)
c906108c 1790 {
72bf9492 1791 *highpc = pdi->highpc;
c906108c 1792 }
72bf9492 1793 if (!pdi->is_declaration)
c906108c 1794 {
72bf9492 1795 add_partial_symbol (pdi, cu);
c906108c
SS
1796 }
1797 }
1798 break;
1799 case DW_TAG_variable:
1800 case DW_TAG_typedef:
91c24f0a 1801 case DW_TAG_union_type:
72bf9492 1802 if (!pdi->is_declaration)
63d06c5c 1803 {
72bf9492 1804 add_partial_symbol (pdi, cu);
63d06c5c
DC
1805 }
1806 break;
c906108c 1807 case DW_TAG_class_type:
680b30c7 1808 case DW_TAG_interface_type:
c906108c 1809 case DW_TAG_structure_type:
72bf9492 1810 if (!pdi->is_declaration)
c906108c 1811 {
72bf9492 1812 add_partial_symbol (pdi, cu);
c906108c
SS
1813 }
1814 break;
91c24f0a 1815 case DW_TAG_enumeration_type:
72bf9492
DJ
1816 if (!pdi->is_declaration)
1817 add_partial_enumeration (pdi, cu);
c906108c
SS
1818 break;
1819 case DW_TAG_base_type:
a02abb62 1820 case DW_TAG_subrange_type:
c906108c 1821 /* File scope base type definitions are added to the partial
c5aa993b 1822 symbol table. */
72bf9492 1823 add_partial_symbol (pdi, cu);
c906108c 1824 break;
d9fa45fe 1825 case DW_TAG_namespace:
72bf9492 1826 add_partial_namespace (pdi, lowpc, highpc, cu);
91c24f0a 1827 break;
c906108c
SS
1828 default:
1829 break;
1830 }
1831 }
1832
72bf9492
DJ
1833 /* If the die has a sibling, skip to the sibling. */
1834
1835 pdi = pdi->die_sibling;
1836 }
1837}
1838
1839/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 1840
72bf9492 1841 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
1842 name is concatenated with "::" and the partial DIE's name. For
1843 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
1844 Enumerators are an exception; they use the scope of their parent
1845 enumeration type, i.e. the name of the enumeration type is not
1846 prepended to the enumerator.
91c24f0a 1847
72bf9492
DJ
1848 There are two complexities. One is DW_AT_specification; in this
1849 case "parent" means the parent of the target of the specification,
1850 instead of the direct parent of the DIE. The other is compilers
1851 which do not emit DW_TAG_namespace; in this case we try to guess
1852 the fully qualified name of structure types from their members'
1853 linkage names. This must be done using the DIE's children rather
1854 than the children of any DW_AT_specification target. We only need
1855 to do this for structures at the top level, i.e. if the target of
1856 any DW_AT_specification (if any; otherwise the DIE itself) does not
1857 have a parent. */
1858
1859/* Compute the scope prefix associated with PDI's parent, in
1860 compilation unit CU. The result will be allocated on CU's
1861 comp_unit_obstack, or a copy of the already allocated PDI->NAME
1862 field. NULL is returned if no prefix is necessary. */
1863static char *
1864partial_die_parent_scope (struct partial_die_info *pdi,
1865 struct dwarf2_cu *cu)
1866{
1867 char *grandparent_scope;
1868 struct partial_die_info *parent, *real_pdi;
91c24f0a 1869
72bf9492
DJ
1870 /* We need to look at our parent DIE; if we have a DW_AT_specification,
1871 then this means the parent of the specification DIE. */
1872
1873 real_pdi = pdi;
72bf9492 1874 while (real_pdi->has_specification)
10b3939b 1875 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
72bf9492
DJ
1876
1877 parent = real_pdi->die_parent;
1878 if (parent == NULL)
1879 return NULL;
1880
1881 if (parent->scope_set)
1882 return parent->scope;
1883
1884 fixup_partial_die (parent, cu);
1885
10b3939b 1886 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492
DJ
1887
1888 if (parent->tag == DW_TAG_namespace
1889 || parent->tag == DW_TAG_structure_type
1890 || parent->tag == DW_TAG_class_type
680b30c7 1891 || parent->tag == DW_TAG_interface_type
72bf9492
DJ
1892 || parent->tag == DW_TAG_union_type)
1893 {
1894 if (grandparent_scope == NULL)
1895 parent->scope = parent->name;
1896 else
987504bb
JJ
1897 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
1898 parent->name, cu);
72bf9492
DJ
1899 }
1900 else if (parent->tag == DW_TAG_enumeration_type)
1901 /* Enumerators should not get the name of the enumeration as a prefix. */
1902 parent->scope = grandparent_scope;
1903 else
1904 {
1905 /* FIXME drow/2004-04-01: What should we be doing with
1906 function-local names? For partial symbols, we should probably be
1907 ignoring them. */
1908 complaint (&symfile_complaints,
e2e0b3e5 1909 _("unhandled containing DIE tag %d for DIE at %d"),
72bf9492
DJ
1910 parent->tag, pdi->offset);
1911 parent->scope = grandparent_scope;
c906108c
SS
1912 }
1913
72bf9492
DJ
1914 parent->scope_set = 1;
1915 return parent->scope;
1916}
1917
1918/* Return the fully scoped name associated with PDI, from compilation unit
1919 CU. The result will be allocated with malloc. */
1920static char *
1921partial_die_full_name (struct partial_die_info *pdi,
1922 struct dwarf2_cu *cu)
1923{
1924 char *parent_scope;
1925
1926 parent_scope = partial_die_parent_scope (pdi, cu);
1927 if (parent_scope == NULL)
1928 return NULL;
1929 else
987504bb 1930 return typename_concat (NULL, parent_scope, pdi->name, cu);
c906108c
SS
1931}
1932
1933static void
72bf9492 1934add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 1935{
e7c27a73 1936 struct objfile *objfile = cu->objfile;
c906108c 1937 CORE_ADDR addr = 0;
decbce07 1938 char *actual_name = NULL;
72bf9492 1939 const char *my_prefix;
5c4e30ca 1940 const struct partial_symbol *psym = NULL;
e142c38c 1941 CORE_ADDR baseaddr;
72bf9492 1942 int built_actual_name = 0;
e142c38c
DJ
1943
1944 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 1945
72bf9492 1946 if (pdi_needs_namespace (pdi->tag))
63d06c5c 1947 {
72bf9492
DJ
1948 actual_name = partial_die_full_name (pdi, cu);
1949 if (actual_name)
1950 built_actual_name = 1;
63d06c5c
DC
1951 }
1952
72bf9492
DJ
1953 if (actual_name == NULL)
1954 actual_name = pdi->name;
1955
c906108c
SS
1956 switch (pdi->tag)
1957 {
1958 case DW_TAG_subprogram:
2cfa0c8d 1959 if (pdi->is_external || cu->language == language_ada)
c906108c 1960 {
2cfa0c8d
JB
1961 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
1962 of the global scope. But in Ada, we want to be able to access
1963 nested procedures globally. So all Ada subprograms are stored
1964 in the global scope. */
38d518c9 1965 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 1966 mst_text, objfile); */
38d518c9 1967 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1968 VAR_DOMAIN, LOC_BLOCK,
1969 &objfile->global_psymbols,
1970 0, pdi->lowpc + baseaddr,
e142c38c 1971 cu->language, objfile);
c906108c
SS
1972 }
1973 else
1974 {
38d518c9 1975 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 1976 mst_file_text, objfile); */
38d518c9 1977 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1978 VAR_DOMAIN, LOC_BLOCK,
1979 &objfile->static_psymbols,
1980 0, pdi->lowpc + baseaddr,
e142c38c 1981 cu->language, objfile);
c906108c
SS
1982 }
1983 break;
1984 case DW_TAG_variable:
1985 if (pdi->is_external)
1986 {
1987 /* Global Variable.
1988 Don't enter into the minimal symbol tables as there is
1989 a minimal symbol table entry from the ELF symbols already.
1990 Enter into partial symbol table if it has a location
1991 descriptor or a type.
1992 If the location descriptor is missing, new_symbol will create
1993 a LOC_UNRESOLVED symbol, the address of the variable will then
1994 be determined from the minimal symbol table whenever the variable
1995 is referenced.
1996 The address for the partial symbol table entry is not
1997 used by GDB, but it comes in handy for debugging partial symbol
1998 table building. */
1999
2000 if (pdi->locdesc)
e7c27a73 2001 addr = decode_locdesc (pdi->locdesc, cu);
c906108c 2002 if (pdi->locdesc || pdi->has_type)
38d518c9 2003 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
2004 VAR_DOMAIN, LOC_STATIC,
2005 &objfile->global_psymbols,
2006 0, addr + baseaddr,
e142c38c 2007 cu->language, objfile);
c906108c
SS
2008 }
2009 else
2010 {
2011 /* Static Variable. Skip symbols without location descriptors. */
2012 if (pdi->locdesc == NULL)
decbce07
MS
2013 {
2014 if (built_actual_name)
2015 xfree (actual_name);
2016 return;
2017 }
e7c27a73 2018 addr = decode_locdesc (pdi->locdesc, cu);
38d518c9 2019 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 2020 mst_file_data, objfile); */
38d518c9 2021 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
2022 VAR_DOMAIN, LOC_STATIC,
2023 &objfile->static_psymbols,
2024 0, addr + baseaddr,
e142c38c 2025 cu->language, objfile);
c906108c
SS
2026 }
2027 break;
2028 case DW_TAG_typedef:
2029 case DW_TAG_base_type:
a02abb62 2030 case DW_TAG_subrange_type:
38d518c9 2031 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 2032 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 2033 &objfile->static_psymbols,
e142c38c 2034 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 2035 break;
72bf9492
DJ
2036 case DW_TAG_namespace:
2037 add_psymbol_to_list (actual_name, strlen (actual_name),
2038 VAR_DOMAIN, LOC_TYPEDEF,
2039 &objfile->global_psymbols,
2040 0, (CORE_ADDR) 0, cu->language, objfile);
2041 break;
c906108c 2042 case DW_TAG_class_type:
680b30c7 2043 case DW_TAG_interface_type:
c906108c
SS
2044 case DW_TAG_structure_type:
2045 case DW_TAG_union_type:
2046 case DW_TAG_enumeration_type:
fa4028e9
JB
2047 /* Skip external references. The DWARF standard says in the section
2048 about "Structure, Union, and Class Type Entries": "An incomplete
2049 structure, union or class type is represented by a structure,
2050 union or class entry that does not have a byte size attribute
2051 and that has a DW_AT_declaration attribute." */
2052 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07
MS
2053 {
2054 if (built_actual_name)
2055 xfree (actual_name);
2056 return;
2057 }
fa4028e9 2058
63d06c5c
DC
2059 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
2060 static vs. global. */
38d518c9 2061 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 2062 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
2063 (cu->language == language_cplus
2064 || cu->language == language_java)
63d06c5c
DC
2065 ? &objfile->global_psymbols
2066 : &objfile->static_psymbols,
e142c38c 2067 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 2068
987504bb 2069 if (cu->language == language_cplus
8c6860bb
JB
2070 || cu->language == language_java
2071 || cu->language == language_ada)
c906108c 2072 {
987504bb 2073 /* For C++ and Java, these implicitly act as typedefs as well. */
38d518c9 2074 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 2075 VAR_DOMAIN, LOC_TYPEDEF,
63d06c5c 2076 &objfile->global_psymbols,
e142c38c 2077 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
2078 }
2079 break;
2080 case DW_TAG_enumerator:
38d518c9 2081 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 2082 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
2083 (cu->language == language_cplus
2084 || cu->language == language_java)
f6fe98ef
DJ
2085 ? &objfile->global_psymbols
2086 : &objfile->static_psymbols,
e142c38c 2087 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
2088 break;
2089 default:
2090 break;
2091 }
5c4e30ca
DC
2092
2093 /* Check to see if we should scan the name for possible namespace
2094 info. Only do this if this is C++, if we don't have namespace
2095 debugging info in the file, if the psym is of an appropriate type
2096 (otherwise we'll have psym == NULL), and if we actually had a
2097 mangled name to begin with. */
2098
72bf9492
DJ
2099 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
2100 cases which do not set PSYM above? */
2101
e142c38c 2102 if (cu->language == language_cplus
72bf9492 2103 && cu->has_namespace_info == 0
5c4e30ca
DC
2104 && psym != NULL
2105 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
2106 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
2107 objfile);
72bf9492
DJ
2108
2109 if (built_actual_name)
2110 xfree (actual_name);
c906108c
SS
2111}
2112
72bf9492
DJ
2113/* Determine whether a die of type TAG living in a C++ class or
2114 namespace needs to have the name of the scope prepended to the
63d06c5c
DC
2115 name listed in the die. */
2116
2117static int
72bf9492 2118pdi_needs_namespace (enum dwarf_tag tag)
63d06c5c 2119{
63d06c5c
DC
2120 switch (tag)
2121 {
72bf9492 2122 case DW_TAG_namespace:
63d06c5c
DC
2123 case DW_TAG_typedef:
2124 case DW_TAG_class_type:
680b30c7 2125 case DW_TAG_interface_type:
63d06c5c
DC
2126 case DW_TAG_structure_type:
2127 case DW_TAG_union_type:
2128 case DW_TAG_enumeration_type:
2129 case DW_TAG_enumerator:
2130 return 1;
2131 default:
2132 return 0;
2133 }
2134}
2135
5c4e30ca
DC
2136/* Read a partial die corresponding to a namespace; also, add a symbol
2137 corresponding to that namespace to the symbol table. NAMESPACE is
2138 the name of the enclosing namespace. */
91c24f0a 2139
72bf9492
DJ
2140static void
2141add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 2142 CORE_ADDR *lowpc, CORE_ADDR *highpc,
72bf9492 2143 struct dwarf2_cu *cu)
91c24f0a 2144{
e7c27a73 2145 struct objfile *objfile = cu->objfile;
5c4e30ca 2146
72bf9492 2147 /* Add a symbol for the namespace. */
e7c27a73 2148
72bf9492 2149 add_partial_symbol (pdi, cu);
5c4e30ca
DC
2150
2151 /* Now scan partial symbols in that namespace. */
2152
91c24f0a 2153 if (pdi->has_children)
72bf9492 2154 scan_partial_symbols (pdi->die_child, lowpc, highpc, cu);
91c24f0a
DC
2155}
2156
72bf9492
DJ
2157/* See if we can figure out if the class lives in a namespace. We do
2158 this by looking for a member function; its demangled name will
2159 contain namespace info, if there is any. */
63d06c5c 2160
72bf9492
DJ
2161static void
2162guess_structure_name (struct partial_die_info *struct_pdi,
2163 struct dwarf2_cu *cu)
63d06c5c 2164{
987504bb
JJ
2165 if ((cu->language == language_cplus
2166 || cu->language == language_java)
72bf9492 2167 && cu->has_namespace_info == 0
63d06c5c
DC
2168 && struct_pdi->has_children)
2169 {
63d06c5c
DC
2170 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2171 what template types look like, because the demangler
2172 frequently doesn't give the same name as the debug info. We
2173 could fix this by only using the demangled name to get the
134d01f1 2174 prefix (but see comment in read_structure_type). */
63d06c5c 2175
72bf9492
DJ
2176 struct partial_die_info *child_pdi = struct_pdi->die_child;
2177 struct partial_die_info *real_pdi;
5d51ca54 2178
72bf9492
DJ
2179 /* If this DIE (this DIE's specification, if any) has a parent, then
2180 we should not do this. We'll prepend the parent's fully qualified
2181 name when we create the partial symbol. */
5d51ca54 2182
72bf9492 2183 real_pdi = struct_pdi;
72bf9492 2184 while (real_pdi->has_specification)
10b3939b 2185 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
63d06c5c 2186
72bf9492
DJ
2187 if (real_pdi->die_parent != NULL)
2188 return;
63d06c5c 2189
72bf9492
DJ
2190 while (child_pdi != NULL)
2191 {
2192 if (child_pdi->tag == DW_TAG_subprogram)
63d06c5c 2193 {
72bf9492 2194 char *actual_class_name
31c27f77
JJ
2195 = language_class_name_from_physname (cu->language_defn,
2196 child_pdi->name);
63d06c5c 2197 if (actual_class_name != NULL)
72bf9492
DJ
2198 {
2199 struct_pdi->name
2200 = obsavestring (actual_class_name,
2201 strlen (actual_class_name),
2202 &cu->comp_unit_obstack);
2203 xfree (actual_class_name);
2204 }
63d06c5c
DC
2205 break;
2206 }
72bf9492
DJ
2207
2208 child_pdi = child_pdi->die_sibling;
63d06c5c
DC
2209 }
2210 }
63d06c5c
DC
2211}
2212
91c24f0a
DC
2213/* Read a partial die corresponding to an enumeration type. */
2214
72bf9492
DJ
2215static void
2216add_partial_enumeration (struct partial_die_info *enum_pdi,
2217 struct dwarf2_cu *cu)
91c24f0a 2218{
e7c27a73 2219 struct objfile *objfile = cu->objfile;
91c24f0a 2220 bfd *abfd = objfile->obfd;
72bf9492 2221 struct partial_die_info *pdi;
91c24f0a
DC
2222
2223 if (enum_pdi->name != NULL)
72bf9492
DJ
2224 add_partial_symbol (enum_pdi, cu);
2225
2226 pdi = enum_pdi->die_child;
2227 while (pdi)
91c24f0a 2228 {
72bf9492 2229 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 2230 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 2231 else
72bf9492
DJ
2232 add_partial_symbol (pdi, cu);
2233 pdi = pdi->die_sibling;
91c24f0a 2234 }
91c24f0a
DC
2235}
2236
4bb7a0a7
DJ
2237/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2238 Return the corresponding abbrev, or NULL if the number is zero (indicating
2239 an empty DIE). In either case *BYTES_READ will be set to the length of
2240 the initial number. */
2241
2242static struct abbrev_info *
fe1b8b76 2243peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 2244 struct dwarf2_cu *cu)
4bb7a0a7
DJ
2245{
2246 bfd *abfd = cu->objfile->obfd;
2247 unsigned int abbrev_number;
2248 struct abbrev_info *abbrev;
2249
2250 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2251
2252 if (abbrev_number == 0)
2253 return NULL;
2254
2255 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2256 if (!abbrev)
2257 {
8a3fe4f8 2258 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
4bb7a0a7
DJ
2259 bfd_get_filename (abfd));
2260 }
2261
2262 return abbrev;
2263}
2264
2265/* Scan the debug information for CU starting at INFO_PTR. Returns a
2266 pointer to the end of a series of DIEs, terminated by an empty
2267 DIE. Any children of the skipped DIEs will also be skipped. */
2268
fe1b8b76
JB
2269static gdb_byte *
2270skip_children (gdb_byte *info_ptr, struct dwarf2_cu *cu)
4bb7a0a7
DJ
2271{
2272 struct abbrev_info *abbrev;
2273 unsigned int bytes_read;
2274
2275 while (1)
2276 {
2277 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2278 if (abbrev == NULL)
2279 return info_ptr + bytes_read;
2280 else
2281 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
2282 }
2283}
2284
2285/* Scan the debug information for CU starting at INFO_PTR. INFO_PTR
2286 should point just after the initial uleb128 of a DIE, and the
2287 abbrev corresponding to that skipped uleb128 should be passed in
2288 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2289 children. */
2290
fe1b8b76
JB
2291static gdb_byte *
2292skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
4bb7a0a7
DJ
2293 struct dwarf2_cu *cu)
2294{
2295 unsigned int bytes_read;
2296 struct attribute attr;
2297 bfd *abfd = cu->objfile->obfd;
2298 unsigned int form, i;
2299
2300 for (i = 0; i < abbrev->num_attrs; i++)
2301 {
2302 /* The only abbrev we care about is DW_AT_sibling. */
2303 if (abbrev->attrs[i].name == DW_AT_sibling)
2304 {
2305 read_attribute (&attr, &abbrev->attrs[i],
2306 abfd, info_ptr, cu);
2307 if (attr.form == DW_FORM_ref_addr)
e2e0b3e5 2308 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 2309 else
6502dd73
DJ
2310 return dwarf2_per_objfile->info_buffer
2311 + dwarf2_get_ref_die_offset (&attr, cu);
4bb7a0a7
DJ
2312 }
2313
2314 /* If it isn't DW_AT_sibling, skip this attribute. */
2315 form = abbrev->attrs[i].form;
2316 skip_attribute:
2317 switch (form)
2318 {
2319 case DW_FORM_addr:
2320 case DW_FORM_ref_addr:
2321 info_ptr += cu->header.addr_size;
2322 break;
2323 case DW_FORM_data1:
2324 case DW_FORM_ref1:
2325 case DW_FORM_flag:
2326 info_ptr += 1;
2327 break;
2328 case DW_FORM_data2:
2329 case DW_FORM_ref2:
2330 info_ptr += 2;
2331 break;
2332 case DW_FORM_data4:
2333 case DW_FORM_ref4:
2334 info_ptr += 4;
2335 break;
2336 case DW_FORM_data8:
2337 case DW_FORM_ref8:
2338 info_ptr += 8;
2339 break;
2340 case DW_FORM_string:
2341 read_string (abfd, info_ptr, &bytes_read);
2342 info_ptr += bytes_read;
2343 break;
2344 case DW_FORM_strp:
2345 info_ptr += cu->header.offset_size;
2346 break;
2347 case DW_FORM_block:
2348 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2349 info_ptr += bytes_read;
2350 break;
2351 case DW_FORM_block1:
2352 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2353 break;
2354 case DW_FORM_block2:
2355 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2356 break;
2357 case DW_FORM_block4:
2358 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2359 break;
2360 case DW_FORM_sdata:
2361 case DW_FORM_udata:
2362 case DW_FORM_ref_udata:
2363 info_ptr = skip_leb128 (abfd, info_ptr);
2364 break;
2365 case DW_FORM_indirect:
2366 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2367 info_ptr += bytes_read;
2368 /* We need to continue parsing from here, so just go back to
2369 the top. */
2370 goto skip_attribute;
2371
2372 default:
8a3fe4f8 2373 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
4bb7a0a7
DJ
2374 dwarf_form_name (form),
2375 bfd_get_filename (abfd));
2376 }
2377 }
2378
2379 if (abbrev->has_children)
2380 return skip_children (info_ptr, cu);
2381 else
2382 return info_ptr;
2383}
2384
2385/* Locate ORIG_PDI's sibling; INFO_PTR should point to the start of
2386 the next DIE after ORIG_PDI. */
91c24f0a 2387
fe1b8b76
JB
2388static gdb_byte *
2389locate_pdi_sibling (struct partial_die_info *orig_pdi, gdb_byte *info_ptr,
e7c27a73 2390 bfd *abfd, struct dwarf2_cu *cu)
91c24f0a
DC
2391{
2392 /* Do we know the sibling already? */
72bf9492 2393
91c24f0a
DC
2394 if (orig_pdi->sibling)
2395 return orig_pdi->sibling;
2396
2397 /* Are there any children to deal with? */
2398
2399 if (!orig_pdi->has_children)
2400 return info_ptr;
2401
4bb7a0a7 2402 /* Skip the children the long way. */
91c24f0a 2403
4bb7a0a7 2404 return skip_children (info_ptr, cu);
91c24f0a
DC
2405}
2406
c906108c
SS
2407/* Expand this partial symbol table into a full symbol table. */
2408
2409static void
fba45db2 2410dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
2411{
2412 /* FIXME: This is barely more than a stub. */
2413 if (pst != NULL)
2414 {
2415 if (pst->readin)
2416 {
8a3fe4f8 2417 warning (_("bug: psymtab for %s is already read in."), pst->filename);
c906108c
SS
2418 }
2419 else
2420 {
2421 if (info_verbose)
2422 {
a3f17187 2423 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
c906108c
SS
2424 gdb_flush (gdb_stdout);
2425 }
2426
10b3939b
DJ
2427 /* Restore our global data. */
2428 dwarf2_per_objfile = objfile_data (pst->objfile,
2429 dwarf2_objfile_data_key);
2430
c906108c
SS
2431 psymtab_to_symtab_1 (pst);
2432
2433 /* Finish up the debug error message. */
2434 if (info_verbose)
a3f17187 2435 printf_filtered (_("done.\n"));
c906108c
SS
2436 }
2437 }
2438}
2439
10b3939b
DJ
2440/* Add PER_CU to the queue. */
2441
2442static void
2443queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
2444{
2445 struct dwarf2_queue_item *item;
2446
2447 per_cu->queued = 1;
2448 item = xmalloc (sizeof (*item));
2449 item->per_cu = per_cu;
2450 item->next = NULL;
2451
2452 if (dwarf2_queue == NULL)
2453 dwarf2_queue = item;
2454 else
2455 dwarf2_queue_tail->next = item;
2456
2457 dwarf2_queue_tail = item;
2458}
2459
2460/* Process the queue. */
2461
2462static void
2463process_queue (struct objfile *objfile)
2464{
2465 struct dwarf2_queue_item *item, *next_item;
2466
2467 /* Initially, there is just one item on the queue. Load its DIEs,
2468 and the DIEs of any other compilation units it requires,
2469 transitively. */
2470
2471 for (item = dwarf2_queue; item != NULL; item = item->next)
2472 {
2473 /* Read in this compilation unit. This may add new items to
2474 the end of the queue. */
31ffec48 2475 load_full_comp_unit (item->per_cu, objfile);
10b3939b
DJ
2476
2477 item->per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
2478 dwarf2_per_objfile->read_in_chain = item->per_cu;
10b3939b
DJ
2479 }
2480
2481 /* Now everything left on the queue needs to be read in. Process
2482 them, one at a time, removing from the queue as we finish. */
2483 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
2484 {
31ffec48 2485 if (item->per_cu->psymtab && !item->per_cu->psymtab->readin)
10b3939b
DJ
2486 process_full_comp_unit (item->per_cu);
2487
2488 item->per_cu->queued = 0;
2489 next_item = item->next;
2490 xfree (item);
2491 }
2492
2493 dwarf2_queue_tail = NULL;
2494}
2495
2496/* Free all allocated queue entries. This function only releases anything if
2497 an error was thrown; if the queue was processed then it would have been
2498 freed as we went along. */
2499
2500static void
2501dwarf2_release_queue (void *dummy)
2502{
2503 struct dwarf2_queue_item *item, *last;
2504
2505 item = dwarf2_queue;
2506 while (item)
2507 {
2508 /* Anything still marked queued is likely to be in an
2509 inconsistent state, so discard it. */
2510 if (item->per_cu->queued)
2511 {
2512 if (item->per_cu->cu != NULL)
2513 free_one_cached_comp_unit (item->per_cu->cu);
2514 item->per_cu->queued = 0;
2515 }
2516
2517 last = item;
2518 item = item->next;
2519 xfree (last);
2520 }
2521
2522 dwarf2_queue = dwarf2_queue_tail = NULL;
2523}
2524
2525/* Read in full symbols for PST, and anything it depends on. */
2526
c906108c 2527static void
fba45db2 2528psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 2529{
10b3939b 2530 struct dwarf2_per_cu_data *per_cu;
c906108c 2531 struct cleanup *back_to;
aaa75496
JB
2532 int i;
2533
2534 for (i = 0; i < pst->number_of_dependencies; i++)
2535 if (!pst->dependencies[i]->readin)
2536 {
2537 /* Inform about additional files that need to be read in. */
2538 if (info_verbose)
2539 {
a3f17187 2540 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
2541 fputs_filtered (" ", gdb_stdout);
2542 wrap_here ("");
2543 fputs_filtered ("and ", gdb_stdout);
2544 wrap_here ("");
2545 printf_filtered ("%s...", pst->dependencies[i]->filename);
2546 wrap_here (""); /* Flush output */
2547 gdb_flush (gdb_stdout);
2548 }
2549 psymtab_to_symtab_1 (pst->dependencies[i]);
2550 }
2551
10b3939b
DJ
2552 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
2553
2554 if (per_cu == NULL)
aaa75496
JB
2555 {
2556 /* It's an include file, no symbols to read for it.
2557 Everything is in the parent symtab. */
2558 pst->readin = 1;
2559 return;
2560 }
c906108c 2561
10b3939b
DJ
2562 back_to = make_cleanup (dwarf2_release_queue, NULL);
2563
2564 queue_comp_unit (per_cu);
2565
2566 process_queue (pst->objfile);
2567
2568 /* Age the cache, releasing compilation units that have not
2569 been used recently. */
2570 age_cached_comp_units ();
2571
2572 do_cleanups (back_to);
2573}
2574
2575/* Load the DIEs associated with PST and PER_CU into memory. */
2576
2577static struct dwarf2_cu *
31ffec48 2578load_full_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
10b3939b 2579{
31ffec48 2580 bfd *abfd = objfile->obfd;
10b3939b
DJ
2581 struct dwarf2_cu *cu;
2582 unsigned long offset;
fe1b8b76 2583 gdb_byte *info_ptr;
10b3939b
DJ
2584 struct cleanup *back_to, *free_cu_cleanup;
2585 struct attribute *attr;
2586 CORE_ADDR baseaddr;
6502dd73 2587
c906108c 2588 /* Set local variables from the partial symbol table info. */
10b3939b 2589 offset = per_cu->offset;
6502dd73
DJ
2590
2591 info_ptr = dwarf2_per_objfile->info_buffer + offset;
63d06c5c 2592
10b3939b
DJ
2593 cu = xmalloc (sizeof (struct dwarf2_cu));
2594 memset (cu, 0, sizeof (struct dwarf2_cu));
c906108c 2595
10b3939b
DJ
2596 /* If an error occurs while loading, release our storage. */
2597 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
c906108c 2598
31ffec48 2599 cu->objfile = objfile;
e7c27a73 2600
c906108c 2601 /* read in the comp_unit header */
10b3939b 2602 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
c906108c
SS
2603
2604 /* Read the abbrevs for this compilation unit */
10b3939b
DJ
2605 dwarf2_read_abbrevs (abfd, cu);
2606 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2607
2608 cu->header.offset = offset;
c906108c 2609
10b3939b
DJ
2610 cu->per_cu = per_cu;
2611 per_cu->cu = cu;
f792889a 2612 cu->type_hash = per_cu->type_hash;
e142c38c 2613
10b3939b
DJ
2614 /* We use this obstack for block values in dwarf_alloc_block. */
2615 obstack_init (&cu->comp_unit_obstack);
2616
2617 cu->dies = read_comp_unit (info_ptr, abfd, cu);
2618
2619 /* We try not to read any attributes in this function, because not
2620 all objfiles needed for references have been loaded yet, and symbol
2621 table processing isn't initialized. But we have to set the CU language,
2622 or we won't be able to build types correctly. */
2623 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
2624 if (attr)
2625 set_cu_language (DW_UNSND (attr), cu);
2626 else
2627 set_cu_language (language_minimal, cu);
2628
2629 do_cleanups (back_to);
e142c38c 2630
10b3939b
DJ
2631 /* We've successfully allocated this compilation unit. Let our caller
2632 clean it up when finished with it. */
2633 discard_cleanups (free_cu_cleanup);
c906108c 2634
10b3939b
DJ
2635 return cu;
2636}
2637
2638/* Generate full symbol information for PST and CU, whose DIEs have
2639 already been loaded into memory. */
2640
2641static void
2642process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2643{
2644 struct partial_symtab *pst = per_cu->psymtab;
2645 struct dwarf2_cu *cu = per_cu->cu;
2646 struct objfile *objfile = pst->objfile;
2647 bfd *abfd = objfile->obfd;
2648 CORE_ADDR lowpc, highpc;
2649 struct symtab *symtab;
2650 struct cleanup *back_to;
2651 struct attribute *attr;
2652 CORE_ADDR baseaddr;
2653
2654 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2655
2656 /* We're in the global namespace. */
2657 processing_current_prefix = "";
2658
2659 buildsym_init ();
2660 back_to = make_cleanup (really_free_pendings, NULL);
2661
2662 cu->list_in_scope = &file_symbols;
c906108c 2663
0d53c4c4
DJ
2664 /* Find the base address of the compilation unit for range lists and
2665 location lists. It will normally be specified by DW_AT_low_pc.
2666 In DWARF-3 draft 4, the base address could be overridden by
2667 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2668 compilation units with discontinuous ranges. */
2669
10b3939b
DJ
2670 cu->header.base_known = 0;
2671 cu->header.base_address = 0;
0d53c4c4 2672
10b3939b 2673 attr = dwarf2_attr (cu->dies, DW_AT_entry_pc, cu);
0d53c4c4
DJ
2674 if (attr)
2675 {
10b3939b
DJ
2676 cu->header.base_address = DW_ADDR (attr);
2677 cu->header.base_known = 1;
0d53c4c4
DJ
2678 }
2679 else
2680 {
10b3939b 2681 attr = dwarf2_attr (cu->dies, DW_AT_low_pc, cu);
0d53c4c4
DJ
2682 if (attr)
2683 {
10b3939b
DJ
2684 cu->header.base_address = DW_ADDR (attr);
2685 cu->header.base_known = 1;
0d53c4c4
DJ
2686 }
2687 }
2688
c906108c 2689 /* Do line number decoding in read_file_scope () */
10b3939b 2690 process_die (cu->dies, cu);
c906108c 2691
fae299cd
DC
2692 /* Some compilers don't define a DW_AT_high_pc attribute for the
2693 compilation unit. If the DW_AT_high_pc is missing, synthesize
2694 it, by scanning the DIE's below the compilation unit. */
10b3939b 2695 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 2696
613e1657 2697 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
c906108c
SS
2698
2699 /* Set symtab language to language from DW_AT_language.
2700 If the compilation is from a C file generated by language preprocessors,
2701 do not set the language if it was already deduced by start_subfile. */
2702 if (symtab != NULL
10b3939b 2703 && !(cu->language == language_c && symtab->language != language_c))
c906108c 2704 {
10b3939b 2705 symtab->language = cu->language;
c906108c
SS
2706 }
2707 pst->symtab = symtab;
2708 pst->readin = 1;
c906108c
SS
2709
2710 do_cleanups (back_to);
2711}
2712
2713/* Process a die and its children. */
2714
2715static void
e7c27a73 2716process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
2717{
2718 switch (die->tag)
2719 {
2720 case DW_TAG_padding:
2721 break;
2722 case DW_TAG_compile_unit:
e7c27a73 2723 read_file_scope (die, cu);
c906108c
SS
2724 break;
2725 case DW_TAG_subprogram:
e7c27a73 2726 read_func_scope (die, cu);
c906108c
SS
2727 break;
2728 case DW_TAG_inlined_subroutine:
2729 /* FIXME: These are ignored for now.
c5aa993b
JM
2730 They could be used to set breakpoints on all inlined instances
2731 of a function and make GDB `next' properly over inlined functions. */
c906108c
SS
2732 break;
2733 case DW_TAG_lexical_block:
14898363
L
2734 case DW_TAG_try_block:
2735 case DW_TAG_catch_block:
e7c27a73 2736 read_lexical_block_scope (die, cu);
c906108c
SS
2737 break;
2738 case DW_TAG_class_type:
680b30c7 2739 case DW_TAG_interface_type:
c906108c
SS
2740 case DW_TAG_structure_type:
2741 case DW_TAG_union_type:
134d01f1 2742 process_structure_scope (die, cu);
c906108c
SS
2743 break;
2744 case DW_TAG_enumeration_type:
134d01f1 2745 process_enumeration_scope (die, cu);
c906108c 2746 break;
134d01f1 2747
f792889a
DJ
2748 /* These dies have a type, but processing them does not create
2749 a symbol or recurse to process the children. Therefore we can
2750 read them on-demand through read_type_die. */
c906108c 2751 case DW_TAG_subroutine_type:
72019c9c 2752 case DW_TAG_set_type:
c906108c 2753 case DW_TAG_array_type:
c906108c 2754 case DW_TAG_pointer_type:
c906108c 2755 case DW_TAG_ptr_to_member_type:
c906108c 2756 case DW_TAG_reference_type:
c906108c 2757 case DW_TAG_string_type:
c906108c 2758 break;
134d01f1 2759
c906108c 2760 case DW_TAG_base_type:
a02abb62 2761 case DW_TAG_subrange_type:
134d01f1
DJ
2762 /* Add a typedef symbol for the type definition, if it has a
2763 DW_AT_name. */
f792889a 2764 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 2765 break;
c906108c 2766 case DW_TAG_common_block:
e7c27a73 2767 read_common_block (die, cu);
c906108c
SS
2768 break;
2769 case DW_TAG_common_inclusion:
2770 break;
d9fa45fe 2771 case DW_TAG_namespace:
63d06c5c 2772 processing_has_namespace_info = 1;
e7c27a73 2773 read_namespace (die, cu);
d9fa45fe
DC
2774 break;
2775 case DW_TAG_imported_declaration:
2776 case DW_TAG_imported_module:
2777 /* FIXME: carlton/2002-10-16: Eventually, we should use the
2778 information contained in these. DW_TAG_imported_declaration
2779 dies shouldn't have children; DW_TAG_imported_module dies
2780 shouldn't in the C++ case, but conceivably could in the
2781 Fortran case, so we'll have to replace this gdb_assert if
2782 Fortran compilers start generating that info. */
63d06c5c 2783 processing_has_namespace_info = 1;
639d11d3 2784 gdb_assert (die->child == NULL);
d9fa45fe 2785 break;
c906108c 2786 default:
e7c27a73 2787 new_symbol (die, NULL, cu);
c906108c
SS
2788 break;
2789 }
2790}
2791
5fb290d7 2792static void
e142c38c 2793initialize_cu_func_list (struct dwarf2_cu *cu)
5fb290d7 2794{
e142c38c 2795 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
5fb290d7
DJ
2796}
2797
cb1df416
DJ
2798static void
2799free_cu_line_header (void *arg)
2800{
2801 struct dwarf2_cu *cu = arg;
2802
2803 free_line_header (cu->line_header);
2804 cu->line_header = NULL;
2805}
2806
c906108c 2807static void
e7c27a73 2808read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 2809{
e7c27a73
DJ
2810 struct objfile *objfile = cu->objfile;
2811 struct comp_unit_head *cu_header = &cu->header;
debd256d 2812 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 2813 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
2814 CORE_ADDR highpc = ((CORE_ADDR) 0);
2815 struct attribute *attr;
e1024ff1 2816 char *name = NULL;
c906108c
SS
2817 char *comp_dir = NULL;
2818 struct die_info *child_die;
2819 bfd *abfd = objfile->obfd;
debd256d 2820 struct line_header *line_header = 0;
e142c38c
DJ
2821 CORE_ADDR baseaddr;
2822
2823 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 2824
fae299cd 2825 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
2826
2827 /* If we didn't find a lowpc, set it to highpc to avoid complaints
2828 from finish_block. */
2acceee2 2829 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
2830 lowpc = highpc;
2831 lowpc += baseaddr;
2832 highpc += baseaddr;
2833
39cbfefa
DJ
2834 /* Find the filename. Do not use dwarf2_name here, since the filename
2835 is not a source language identifier. */
e142c38c 2836 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
2837 if (attr)
2838 {
2839 name = DW_STRING (attr);
2840 }
e1024ff1 2841
e142c38c 2842 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
c906108c 2843 if (attr)
e1024ff1
DJ
2844 comp_dir = DW_STRING (attr);
2845 else if (name != NULL && IS_ABSOLUTE_PATH (name))
c906108c 2846 {
e1024ff1
DJ
2847 comp_dir = ldirname (name);
2848 if (comp_dir != NULL)
2849 make_cleanup (xfree, comp_dir);
2850 }
2851 if (comp_dir != NULL)
2852 {
2853 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2854 directory, get rid of it. */
2855 char *cp = strchr (comp_dir, ':');
c906108c 2856
e1024ff1
DJ
2857 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2858 comp_dir = cp + 1;
c906108c
SS
2859 }
2860
e1024ff1
DJ
2861 if (name == NULL)
2862 name = "<unknown>";
2863
e142c38c 2864 attr = dwarf2_attr (die, DW_AT_language, cu);
c906108c
SS
2865 if (attr)
2866 {
e142c38c 2867 set_cu_language (DW_UNSND (attr), cu);
c906108c
SS
2868 }
2869
b0f35d58
DL
2870 attr = dwarf2_attr (die, DW_AT_producer, cu);
2871 if (attr)
2872 cu->producer = DW_STRING (attr);
303b6f5d 2873
c906108c
SS
2874 /* We assume that we're processing GCC output. */
2875 processing_gcc_compilation = 2;
c906108c 2876
c906108c
SS
2877 start_symtab (name, comp_dir, lowpc);
2878 record_debugformat ("DWARF 2");
303b6f5d 2879 record_producer (cu->producer);
c906108c 2880
e142c38c 2881 initialize_cu_func_list (cu);
c906108c 2882
cb1df416
DJ
2883 /* Decode line number information if present. We do this before
2884 processing child DIEs, so that the line header table is available
2885 for DW_AT_decl_file. */
e142c38c 2886 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5fb290d7
DJ
2887 if (attr)
2888 {
debd256d 2889 unsigned int line_offset = DW_UNSND (attr);
e7c27a73 2890 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
debd256d
JB
2891 if (line_header)
2892 {
cb1df416
DJ
2893 cu->line_header = line_header;
2894 make_cleanup (free_cu_line_header, cu);
aaa75496 2895 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
debd256d 2896 }
5fb290d7 2897 }
debd256d 2898
cb1df416
DJ
2899 /* Process all dies in compilation unit. */
2900 if (die->child != NULL)
2901 {
2902 child_die = die->child;
2903 while (child_die && child_die->tag)
2904 {
2905 process_die (child_die, cu);
2906 child_die = sibling_die (child_die);
2907 }
2908 }
2909
2e276125
JB
2910 /* Decode macro information, if present. Dwarf 2 macro information
2911 refers to information in the line number info statement program
2912 header, so we can only read it if we've read the header
2913 successfully. */
e142c38c 2914 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
41ff2da1 2915 if (attr && line_header)
2e276125
JB
2916 {
2917 unsigned int macro_offset = DW_UNSND (attr);
2918 dwarf_decode_macros (line_header, macro_offset,
e7c27a73 2919 comp_dir, abfd, cu);
2e276125 2920 }
debd256d 2921 do_cleanups (back_to);
5fb290d7
DJ
2922}
2923
2924static void
e142c38c
DJ
2925add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
2926 struct dwarf2_cu *cu)
5fb290d7
DJ
2927{
2928 struct function_range *thisfn;
2929
2930 thisfn = (struct function_range *)
7b5a2f43 2931 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
5fb290d7
DJ
2932 thisfn->name = name;
2933 thisfn->lowpc = lowpc;
2934 thisfn->highpc = highpc;
2935 thisfn->seen_line = 0;
2936 thisfn->next = NULL;
2937
e142c38c
DJ
2938 if (cu->last_fn == NULL)
2939 cu->first_fn = thisfn;
5fb290d7 2940 else
e142c38c 2941 cu->last_fn->next = thisfn;
5fb290d7 2942
e142c38c 2943 cu->last_fn = thisfn;
c906108c
SS
2944}
2945
2946static void
e7c27a73 2947read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 2948{
e7c27a73 2949 struct objfile *objfile = cu->objfile;
52f0bd74 2950 struct context_stack *new;
c906108c
SS
2951 CORE_ADDR lowpc;
2952 CORE_ADDR highpc;
2953 struct die_info *child_die;
2954 struct attribute *attr;
2955 char *name;
fdde2d81
DC
2956 const char *previous_prefix = processing_current_prefix;
2957 struct cleanup *back_to = NULL;
e142c38c 2958 CORE_ADDR baseaddr;
801e3a5b 2959 struct block *block;
c906108c 2960
e142c38c
DJ
2961 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2962
2963 name = dwarf2_linkage_name (die, cu);
c906108c
SS
2964
2965 /* Ignore functions with missing or empty names and functions with
2966 missing or invalid low and high pc attributes. */
e7c27a73 2967 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
c906108c
SS
2968 return;
2969
987504bb
JJ
2970 if (cu->language == language_cplus
2971 || cu->language == language_java)
fdde2d81 2972 {
086ed43d 2973 struct die_info *spec_die = die_specification (die, cu);
fdde2d81 2974
2a35147e
JB
2975 /* NOTE: carlton/2004-01-23: We have to be careful in the
2976 presence of DW_AT_specification. For example, with GCC 3.4,
2977 given the code
2978
2979 namespace N {
2980 void foo() {
2981 // Definition of N::foo.
2982 }
2983 }
2984
2985 then we'll have a tree of DIEs like this:
2986
2987 1: DW_TAG_compile_unit
2988 2: DW_TAG_namespace // N
2989 3: DW_TAG_subprogram // declaration of N::foo
2990 4: DW_TAG_subprogram // definition of N::foo
2991 DW_AT_specification // refers to die #3
2992
2993 Thus, when processing die #4, we have to pretend that we're
2994 in the context of its DW_AT_specification, namely the contex
2995 of die #3. */
fdde2d81
DC
2996
2997 if (spec_die != NULL)
2998 {
e142c38c 2999 char *specification_prefix = determine_prefix (spec_die, cu);
fdde2d81
DC
3000 processing_current_prefix = specification_prefix;
3001 back_to = make_cleanup (xfree, specification_prefix);
3002 }
3003 }
3004
c906108c
SS
3005 lowpc += baseaddr;
3006 highpc += baseaddr;
3007
5fb290d7 3008 /* Record the function range for dwarf_decode_lines. */
e142c38c 3009 add_to_cu_func_list (name, lowpc, highpc, cu);
5fb290d7 3010
c906108c 3011 new = push_context (0, lowpc);
f792889a 3012 new->name = new_symbol (die, read_type_die (die, cu), cu);
4c2df51b 3013
4cecd739
DJ
3014 /* If there is a location expression for DW_AT_frame_base, record
3015 it. */
e142c38c 3016 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 3017 if (attr)
c034e007
AC
3018 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
3019 expression is being recorded directly in the function's symbol
3020 and not in a separate frame-base object. I guess this hack is
3021 to avoid adding some sort of frame-base adjunct/annex to the
3022 function's symbol :-(. The problem with doing this is that it
3023 results in a function symbol with a location expression that
3024 has nothing to do with the location of the function, ouch! The
3025 relationship should be: a function's symbol has-a frame base; a
3026 frame-base has-a location expression. */
e7c27a73 3027 dwarf2_symbol_mark_computed (attr, new->name, cu);
4c2df51b 3028
e142c38c 3029 cu->list_in_scope = &local_symbols;
c906108c 3030
639d11d3 3031 if (die->child != NULL)
c906108c 3032 {
639d11d3 3033 child_die = die->child;
c906108c
SS
3034 while (child_die && child_die->tag)
3035 {
e7c27a73 3036 process_die (child_die, cu);
c906108c
SS
3037 child_die = sibling_die (child_die);
3038 }
3039 }
3040
3041 new = pop_context ();
3042 /* Make a block for the local symbols within. */
801e3a5b
JB
3043 block = finish_block (new->name, &local_symbols, new->old_blocks,
3044 lowpc, highpc, objfile);
3045
3046 /* If we have address ranges, record them. */
3047 dwarf2_record_block_ranges (die, block, baseaddr, cu);
208d8187
JB
3048
3049 /* In C++, we can have functions nested inside functions (e.g., when
3050 a function declares a class that has methods). This means that
3051 when we finish processing a function scope, we may need to go
3052 back to building a containing block's symbol lists. */
3053 local_symbols = new->locals;
3054 param_symbols = new->params;
3055
921e78cf
JB
3056 /* If we've finished processing a top-level function, subsequent
3057 symbols go in the file symbol list. */
3058 if (outermost_context_p ())
e142c38c 3059 cu->list_in_scope = &file_symbols;
fdde2d81
DC
3060
3061 processing_current_prefix = previous_prefix;
3062 if (back_to != NULL)
3063 do_cleanups (back_to);
c906108c
SS
3064}
3065
3066/* Process all the DIES contained within a lexical block scope. Start
3067 a new scope, process the dies, and then close the scope. */
3068
3069static void
e7c27a73 3070read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 3071{
e7c27a73 3072 struct objfile *objfile = cu->objfile;
52f0bd74 3073 struct context_stack *new;
c906108c
SS
3074 CORE_ADDR lowpc, highpc;
3075 struct die_info *child_die;
e142c38c
DJ
3076 CORE_ADDR baseaddr;
3077
3078 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
3079
3080 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
3081 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
3082 as multiple lexical blocks? Handling children in a sane way would
3083 be nasty. Might be easier to properly extend generic blocks to
3084 describe ranges. */
e7c27a73 3085 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
c906108c
SS
3086 return;
3087 lowpc += baseaddr;
3088 highpc += baseaddr;
3089
3090 push_context (0, lowpc);
639d11d3 3091 if (die->child != NULL)
c906108c 3092 {
639d11d3 3093 child_die = die->child;
c906108c
SS
3094 while (child_die && child_die->tag)
3095 {
e7c27a73 3096 process_die (child_die, cu);
c906108c
SS
3097 child_die = sibling_die (child_die);
3098 }
3099 }
3100 new = pop_context ();
3101
3102 if (local_symbols != NULL)
3103 {
801e3a5b
JB
3104 struct block *block
3105 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
3106 highpc, objfile);
3107
3108 /* Note that recording ranges after traversing children, as we
3109 do here, means that recording a parent's ranges entails
3110 walking across all its children's ranges as they appear in
3111 the address map, which is quadratic behavior.
3112
3113 It would be nicer to record the parent's ranges before
3114 traversing its children, simply overriding whatever you find
3115 there. But since we don't even decide whether to create a
3116 block until after we've traversed its children, that's hard
3117 to do. */
3118 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c
SS
3119 }
3120 local_symbols = new->locals;
3121}
3122
43039443 3123/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
3124 Return 1 if the attributes are present and valid, otherwise, return 0.
3125 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
3126
3127static int
3128dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
3129 CORE_ADDR *high_return, struct dwarf2_cu *cu,
3130 struct partial_symtab *ranges_pst)
43039443
JK
3131{
3132 struct objfile *objfile = cu->objfile;
3133 struct comp_unit_head *cu_header = &cu->header;
3134 bfd *obfd = objfile->obfd;
3135 unsigned int addr_size = cu_header->addr_size;
3136 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3137 /* Base address selection entry. */
3138 CORE_ADDR base;
3139 int found_base;
3140 unsigned int dummy;
3141 gdb_byte *buffer;
3142 CORE_ADDR marker;
3143 int low_set;
3144 CORE_ADDR low = 0;
3145 CORE_ADDR high = 0;
ff013f42 3146 CORE_ADDR baseaddr;
43039443
JK
3147
3148 found_base = cu_header->base_known;
3149 base = cu_header->base_address;
3150
3151 if (offset >= dwarf2_per_objfile->ranges_size)
3152 {
3153 complaint (&symfile_complaints,
3154 _("Offset %d out of bounds for DW_AT_ranges attribute"),
3155 offset);
3156 return 0;
3157 }
3158 buffer = dwarf2_per_objfile->ranges_buffer + offset;
3159
3160 /* Read in the largest possible address. */
3161 marker = read_address (obfd, buffer, cu, &dummy);
3162 if ((marker & mask) == mask)
3163 {
3164 /* If we found the largest possible address, then
3165 read the base address. */
3166 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3167 buffer += 2 * addr_size;
3168 offset += 2 * addr_size;
3169 found_base = 1;
3170 }
3171
3172 low_set = 0;
3173
e7030f15 3174 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 3175
43039443
JK
3176 while (1)
3177 {
3178 CORE_ADDR range_beginning, range_end;
3179
3180 range_beginning = read_address (obfd, buffer, cu, &dummy);
3181 buffer += addr_size;
3182 range_end = read_address (obfd, buffer, cu, &dummy);
3183 buffer += addr_size;
3184 offset += 2 * addr_size;
3185
3186 /* An end of list marker is a pair of zero addresses. */
3187 if (range_beginning == 0 && range_end == 0)
3188 /* Found the end of list entry. */
3189 break;
3190
3191 /* Each base address selection entry is a pair of 2 values.
3192 The first is the largest possible address, the second is
3193 the base address. Check for a base address here. */
3194 if ((range_beginning & mask) == mask)
3195 {
3196 /* If we found the largest possible address, then
3197 read the base address. */
3198 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3199 found_base = 1;
3200 continue;
3201 }
3202
3203 if (!found_base)
3204 {
3205 /* We have no valid base address for the ranges
3206 data. */
3207 complaint (&symfile_complaints,
3208 _("Invalid .debug_ranges data (no base address)"));
3209 return 0;
3210 }
3211
3212 range_beginning += base;
3213 range_end += base;
3214
ff013f42
JK
3215 if (ranges_pst != NULL && range_beginning < range_end)
3216 addrmap_set_empty (objfile->psymtabs_addrmap,
3217 range_beginning + baseaddr, range_end - 1 + baseaddr,
3218 ranges_pst);
3219
43039443
JK
3220 /* FIXME: This is recording everything as a low-high
3221 segment of consecutive addresses. We should have a
3222 data structure for discontiguous block ranges
3223 instead. */
3224 if (! low_set)
3225 {
3226 low = range_beginning;
3227 high = range_end;
3228 low_set = 1;
3229 }
3230 else
3231 {
3232 if (range_beginning < low)
3233 low = range_beginning;
3234 if (range_end > high)
3235 high = range_end;
3236 }
3237 }
3238
3239 if (! low_set)
3240 /* If the first entry is an end-of-list marker, the range
3241 describes an empty scope, i.e. no instructions. */
3242 return 0;
3243
3244 if (low_return)
3245 *low_return = low;
3246 if (high_return)
3247 *high_return = high;
3248 return 1;
3249}
3250
af34e669
DJ
3251/* Get low and high pc attributes from a die. Return 1 if the attributes
3252 are present and valid, otherwise, return 0. Return -1 if the range is
3253 discontinuous, i.e. derived from DW_AT_ranges information. */
c906108c 3254static int
af34e669 3255dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
e7c27a73 3256 CORE_ADDR *highpc, struct dwarf2_cu *cu)
c906108c
SS
3257{
3258 struct attribute *attr;
af34e669
DJ
3259 CORE_ADDR low = 0;
3260 CORE_ADDR high = 0;
3261 int ret = 0;
c906108c 3262
e142c38c 3263 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
c906108c 3264 if (attr)
af34e669
DJ
3265 {
3266 high = DW_ADDR (attr);
e142c38c 3267 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669
DJ
3268 if (attr)
3269 low = DW_ADDR (attr);
3270 else
3271 /* Found high w/o low attribute. */
3272 return 0;
3273
3274 /* Found consecutive range of addresses. */
3275 ret = 1;
3276 }
c906108c 3277 else
af34e669 3278 {
e142c38c 3279 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
3280 if (attr != NULL)
3281 {
af34e669 3282 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 3283 .debug_ranges section. */
ff013f42 3284 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, NULL))
af34e669 3285 return 0;
43039443 3286 /* Found discontinuous range of addresses. */
af34e669
DJ
3287 ret = -1;
3288 }
3289 }
c906108c
SS
3290
3291 if (high < low)
3292 return 0;
3293
3294 /* When using the GNU linker, .gnu.linkonce. sections are used to
3295 eliminate duplicate copies of functions and vtables and such.
3296 The linker will arbitrarily choose one and discard the others.
3297 The AT_*_pc values for such functions refer to local labels in
3298 these sections. If the section from that file was discarded, the
3299 labels are not in the output, so the relocs get a value of 0.
3300 If this is a discarded function, mark the pc bounds as invalid,
3301 so that GDB will ignore it. */
72dca2f5 3302 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
3303 return 0;
3304
3305 *lowpc = low;
3306 *highpc = high;
af34e669 3307 return ret;
c906108c
SS
3308}
3309
fae299cd
DC
3310/* Get the low and high pc's represented by the scope DIE, and store
3311 them in *LOWPC and *HIGHPC. If the correct values can't be
3312 determined, set *LOWPC to -1 and *HIGHPC to 0. */
3313
3314static void
3315get_scope_pc_bounds (struct die_info *die,
3316 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3317 struct dwarf2_cu *cu)
3318{
3319 CORE_ADDR best_low = (CORE_ADDR) -1;
3320 CORE_ADDR best_high = (CORE_ADDR) 0;
3321 CORE_ADDR current_low, current_high;
3322
3323 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu))
3324 {
3325 best_low = current_low;
3326 best_high = current_high;
3327 }
3328 else
3329 {
3330 struct die_info *child = die->child;
3331
3332 while (child && child->tag)
3333 {
3334 switch (child->tag) {
3335 case DW_TAG_subprogram:
3336 if (dwarf2_get_pc_bounds (child, &current_low, &current_high, cu))
3337 {
3338 best_low = min (best_low, current_low);
3339 best_high = max (best_high, current_high);
3340 }
3341 break;
3342 case DW_TAG_namespace:
3343 /* FIXME: carlton/2004-01-16: Should we do this for
3344 DW_TAG_class_type/DW_TAG_structure_type, too? I think
3345 that current GCC's always emit the DIEs corresponding
3346 to definitions of methods of classes as children of a
3347 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
3348 the DIEs giving the declarations, which could be
3349 anywhere). But I don't see any reason why the
3350 standards says that they have to be there. */
3351 get_scope_pc_bounds (child, &current_low, &current_high, cu);
3352
3353 if (current_low != ((CORE_ADDR) -1))
3354 {
3355 best_low = min (best_low, current_low);
3356 best_high = max (best_high, current_high);
3357 }
3358 break;
3359 default:
3360 /* Ignore. */
3361 break;
3362 }
3363
3364 child = sibling_die (child);
3365 }
3366 }
3367
3368 *lowpc = best_low;
3369 *highpc = best_high;
3370}
3371
801e3a5b
JB
3372/* Record the address ranges for BLOCK, offset by BASEADDR, as given
3373 in DIE. */
3374static void
3375dwarf2_record_block_ranges (struct die_info *die, struct block *block,
3376 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
3377{
3378 struct attribute *attr;
3379
3380 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
3381 if (attr)
3382 {
3383 CORE_ADDR high = DW_ADDR (attr);
3384 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3385 if (attr)
3386 {
3387 CORE_ADDR low = DW_ADDR (attr);
3388 record_block_range (block, baseaddr + low, baseaddr + high - 1);
3389 }
3390 }
3391
3392 attr = dwarf2_attr (die, DW_AT_ranges, cu);
3393 if (attr)
3394 {
3395 bfd *obfd = cu->objfile->obfd;
3396
3397 /* The value of the DW_AT_ranges attribute is the offset of the
3398 address range list in the .debug_ranges section. */
3399 unsigned long offset = DW_UNSND (attr);
3400 gdb_byte *buffer = dwarf2_per_objfile->ranges_buffer + offset;
3401
3402 /* For some target architectures, but not others, the
3403 read_address function sign-extends the addresses it returns.
3404 To recognize base address selection entries, we need a
3405 mask. */
3406 unsigned int addr_size = cu->header.addr_size;
3407 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3408
3409 /* The base address, to which the next pair is relative. Note
3410 that this 'base' is a DWARF concept: most entries in a range
3411 list are relative, to reduce the number of relocs against the
3412 debugging information. This is separate from this function's
3413 'baseaddr' argument, which GDB uses to relocate debugging
3414 information from a shared library based on the address at
3415 which the library was loaded. */
3416 CORE_ADDR base = cu->header.base_address;
3417 int base_known = cu->header.base_known;
3418
3419 if (offset >= dwarf2_per_objfile->ranges_size)
3420 {
3421 complaint (&symfile_complaints,
3422 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
3423 offset);
3424 return;
3425 }
3426
3427 for (;;)
3428 {
3429 unsigned int bytes_read;
3430 CORE_ADDR start, end;
3431
3432 start = read_address (obfd, buffer, cu, &bytes_read);
3433 buffer += bytes_read;
3434 end = read_address (obfd, buffer, cu, &bytes_read);
3435 buffer += bytes_read;
3436
3437 /* Did we find the end of the range list? */
3438 if (start == 0 && end == 0)
3439 break;
3440
3441 /* Did we find a base address selection entry? */
3442 else if ((start & base_select_mask) == base_select_mask)
3443 {
3444 base = end;
3445 base_known = 1;
3446 }
3447
3448 /* We found an ordinary address range. */
3449 else
3450 {
3451 if (!base_known)
3452 {
3453 complaint (&symfile_complaints,
3454 _("Invalid .debug_ranges data (no base address)"));
3455 return;
3456 }
3457
3458 record_block_range (block,
3459 baseaddr + base + start,
3460 baseaddr + base + end - 1);
3461 }
3462 }
3463 }
3464}
3465
c906108c
SS
3466/* Add an aggregate field to the field list. */
3467
3468static void
107d2387 3469dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73
DJ
3470 struct dwarf2_cu *cu)
3471{
3472 struct objfile *objfile = cu->objfile;
5e2b427d 3473 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
3474 struct nextfield *new_field;
3475 struct attribute *attr;
3476 struct field *fp;
3477 char *fieldname = "";
3478
3479 /* Allocate a new field list entry and link it in. */
3480 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 3481 make_cleanup (xfree, new_field);
c906108c
SS
3482 memset (new_field, 0, sizeof (struct nextfield));
3483 new_field->next = fip->fields;
3484 fip->fields = new_field;
3485 fip->nfields++;
3486
3487 /* Handle accessibility and virtuality of field.
3488 The default accessibility for members is public, the default
3489 accessibility for inheritance is private. */
3490 if (die->tag != DW_TAG_inheritance)
3491 new_field->accessibility = DW_ACCESS_public;
3492 else
3493 new_field->accessibility = DW_ACCESS_private;
3494 new_field->virtuality = DW_VIRTUALITY_none;
3495
e142c38c 3496 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
3497 if (attr)
3498 new_field->accessibility = DW_UNSND (attr);
3499 if (new_field->accessibility != DW_ACCESS_public)
3500 fip->non_public_fields = 1;
e142c38c 3501 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
3502 if (attr)
3503 new_field->virtuality = DW_UNSND (attr);
3504
3505 fp = &new_field->field;
a9a9bd0f 3506
e142c38c 3507 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 3508 {
a9a9bd0f
DC
3509 /* Data member other than a C++ static data member. */
3510
c906108c 3511 /* Get type of field. */
e7c27a73 3512 fp->type = die_type (die, cu);
c906108c 3513
01ad7f36
DJ
3514 FIELD_STATIC_KIND (*fp) = 0;
3515
c906108c 3516 /* Get bit size of field (zero if none). */
e142c38c 3517 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
3518 if (attr)
3519 {
3520 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
3521 }
3522 else
3523 {
3524 FIELD_BITSIZE (*fp) = 0;
3525 }
3526
3527 /* Get bit offset of field. */
e142c38c 3528 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c
SS
3529 if (attr)
3530 {
c6a0999f
JB
3531 int byte_offset;
3532
3690dd37
JB
3533 if (attr_form_is_section_offset (attr))
3534 {
3535 dwarf2_complex_location_expr_complaint ();
c6a0999f 3536 byte_offset = 0;
3690dd37
JB
3537 }
3538 else if (attr_form_is_constant (attr))
c6a0999f 3539 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
3690dd37 3540 else
c6a0999f
JB
3541 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
3542
3543 FIELD_BITPOS (*fp) = byte_offset * bits_per_byte;
c906108c
SS
3544 }
3545 else
3546 FIELD_BITPOS (*fp) = 0;
e142c38c 3547 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
3548 if (attr)
3549 {
5e2b427d 3550 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
3551 {
3552 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
3553 additional bit offset from the MSB of the containing
3554 anonymous object to the MSB of the field. We don't
3555 have to do anything special since we don't need to
3556 know the size of the anonymous object. */
c906108c
SS
3557 FIELD_BITPOS (*fp) += DW_UNSND (attr);
3558 }
3559 else
3560 {
3561 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
3562 MSB of the anonymous object, subtract off the number of
3563 bits from the MSB of the field to the MSB of the
3564 object, and then subtract off the number of bits of
3565 the field itself. The result is the bit offset of
3566 the LSB of the field. */
c906108c
SS
3567 int anonymous_size;
3568 int bit_offset = DW_UNSND (attr);
3569
e142c38c 3570 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
3571 if (attr)
3572 {
3573 /* The size of the anonymous object containing
3574 the bit field is explicit, so use the
3575 indicated size (in bytes). */
3576 anonymous_size = DW_UNSND (attr);
3577 }
3578 else
3579 {
3580 /* The size of the anonymous object containing
3581 the bit field must be inferred from the type
3582 attribute of the data member containing the
3583 bit field. */
3584 anonymous_size = TYPE_LENGTH (fp->type);
3585 }
3586 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
3587 - bit_offset - FIELD_BITSIZE (*fp);
3588 }
3589 }
3590
3591 /* Get name of field. */
39cbfefa
DJ
3592 fieldname = dwarf2_name (die, cu);
3593 if (fieldname == NULL)
3594 fieldname = "";
d8151005
DJ
3595
3596 /* The name is already allocated along with this objfile, so we don't
3597 need to duplicate it for the type. */
3598 fp->name = fieldname;
c906108c
SS
3599
3600 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 3601 pointer or virtual base class pointer) to private. */
e142c38c 3602 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c
SS
3603 {
3604 new_field->accessibility = DW_ACCESS_private;
3605 fip->non_public_fields = 1;
3606 }
3607 }
a9a9bd0f 3608 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 3609 {
a9a9bd0f
DC
3610 /* C++ static member. */
3611
3612 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
3613 is a declaration, but all versions of G++ as of this writing
3614 (so through at least 3.2.1) incorrectly generate
3615 DW_TAG_variable tags. */
3616
c906108c 3617 char *physname;
c906108c 3618
a9a9bd0f 3619 /* Get name of field. */
39cbfefa
DJ
3620 fieldname = dwarf2_name (die, cu);
3621 if (fieldname == NULL)
c906108c
SS
3622 return;
3623
2df3850c 3624 /* Get physical name. */
e142c38c 3625 physname = dwarf2_linkage_name (die, cu);
c906108c 3626
d8151005
DJ
3627 /* The name is already allocated along with this objfile, so we don't
3628 need to duplicate it for the type. */
3629 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 3630 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 3631 FIELD_NAME (*fp) = fieldname;
c906108c
SS
3632 }
3633 else if (die->tag == DW_TAG_inheritance)
3634 {
3635 /* C++ base class field. */
e142c38c 3636 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c 3637 if (attr)
e7c27a73 3638 FIELD_BITPOS (*fp) = (decode_locdesc (DW_BLOCK (attr), cu)
107d2387 3639 * bits_per_byte);
c906108c 3640 FIELD_BITSIZE (*fp) = 0;
01ad7f36 3641 FIELD_STATIC_KIND (*fp) = 0;
e7c27a73 3642 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
3643 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
3644 fip->nbaseclasses++;
3645 }
3646}
3647
3648/* Create the vector of fields, and attach it to the type. */
3649
3650static void
fba45db2 3651dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 3652 struct dwarf2_cu *cu)
c906108c
SS
3653{
3654 int nfields = fip->nfields;
3655
3656 /* Record the field count, allocate space for the array of fields,
3657 and create blank accessibility bitfields if necessary. */
3658 TYPE_NFIELDS (type) = nfields;
3659 TYPE_FIELDS (type) = (struct field *)
3660 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3661 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3662
3663 if (fip->non_public_fields)
3664 {
3665 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3666
3667 TYPE_FIELD_PRIVATE_BITS (type) =
3668 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3669 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3670
3671 TYPE_FIELD_PROTECTED_BITS (type) =
3672 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3673 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3674
3675 TYPE_FIELD_IGNORE_BITS (type) =
3676 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3677 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3678 }
3679
3680 /* If the type has baseclasses, allocate and clear a bit vector for
3681 TYPE_FIELD_VIRTUAL_BITS. */
3682 if (fip->nbaseclasses)
3683 {
3684 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 3685 unsigned char *pointer;
c906108c
SS
3686
3687 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
3688 pointer = TYPE_ALLOC (type, num_bytes);
3689 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
3690 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
3691 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
3692 }
3693
3694 /* Copy the saved-up fields into the field vector. Start from the head
3695 of the list, adding to the tail of the field array, so that they end
3696 up in the same order in the array in which they were added to the list. */
3697 while (nfields-- > 0)
3698 {
3699 TYPE_FIELD (type, nfields) = fip->fields->field;
3700 switch (fip->fields->accessibility)
3701 {
c5aa993b
JM
3702 case DW_ACCESS_private:
3703 SET_TYPE_FIELD_PRIVATE (type, nfields);
3704 break;
c906108c 3705
c5aa993b
JM
3706 case DW_ACCESS_protected:
3707 SET_TYPE_FIELD_PROTECTED (type, nfields);
3708 break;
c906108c 3709
c5aa993b
JM
3710 case DW_ACCESS_public:
3711 break;
c906108c 3712
c5aa993b
JM
3713 default:
3714 /* Unknown accessibility. Complain and treat it as public. */
3715 {
e2e0b3e5 3716 complaint (&symfile_complaints, _("unsupported accessibility %d"),
4d3c2250 3717 fip->fields->accessibility);
c5aa993b
JM
3718 }
3719 break;
c906108c
SS
3720 }
3721 if (nfields < fip->nbaseclasses)
3722 {
3723 switch (fip->fields->virtuality)
3724 {
c5aa993b
JM
3725 case DW_VIRTUALITY_virtual:
3726 case DW_VIRTUALITY_pure_virtual:
3727 SET_TYPE_FIELD_VIRTUAL (type, nfields);
3728 break;
c906108c
SS
3729 }
3730 }
3731 fip->fields = fip->fields->next;
3732 }
3733}
3734
c906108c
SS
3735/* Add a member function to the proper fieldlist. */
3736
3737static void
107d2387 3738dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 3739 struct type *type, struct dwarf2_cu *cu)
c906108c 3740{
e7c27a73 3741 struct objfile *objfile = cu->objfile;
c906108c
SS
3742 struct attribute *attr;
3743 struct fnfieldlist *flp;
3744 int i;
3745 struct fn_field *fnp;
3746 char *fieldname;
3747 char *physname;
3748 struct nextfnfield *new_fnfield;
f792889a 3749 struct type *this_type;
c906108c 3750
2df3850c 3751 /* Get name of member function. */
39cbfefa
DJ
3752 fieldname = dwarf2_name (die, cu);
3753 if (fieldname == NULL)
2df3850c 3754 return;
c906108c 3755
2df3850c 3756 /* Get the mangled name. */
e142c38c 3757 physname = dwarf2_linkage_name (die, cu);
c906108c
SS
3758
3759 /* Look up member function name in fieldlist. */
3760 for (i = 0; i < fip->nfnfields; i++)
3761 {
27bfe10e 3762 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
3763 break;
3764 }
3765
3766 /* Create new list element if necessary. */
3767 if (i < fip->nfnfields)
3768 flp = &fip->fnfieldlists[i];
3769 else
3770 {
3771 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
3772 {
3773 fip->fnfieldlists = (struct fnfieldlist *)
3774 xrealloc (fip->fnfieldlists,
3775 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 3776 * sizeof (struct fnfieldlist));
c906108c 3777 if (fip->nfnfields == 0)
c13c43fd 3778 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
3779 }
3780 flp = &fip->fnfieldlists[fip->nfnfields];
3781 flp->name = fieldname;
3782 flp->length = 0;
3783 flp->head = NULL;
3784 fip->nfnfields++;
3785 }
3786
3787 /* Create a new member function field and chain it to the field list
3788 entry. */
3789 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 3790 make_cleanup (xfree, new_fnfield);
c906108c
SS
3791 memset (new_fnfield, 0, sizeof (struct nextfnfield));
3792 new_fnfield->next = flp->head;
3793 flp->head = new_fnfield;
3794 flp->length++;
3795
3796 /* Fill in the member function field info. */
3797 fnp = &new_fnfield->fnfield;
d8151005
DJ
3798 /* The name is already allocated along with this objfile, so we don't
3799 need to duplicate it for the type. */
3800 fnp->physname = physname ? physname : "";
c906108c 3801 fnp->type = alloc_type (objfile);
f792889a
DJ
3802 this_type = read_type_die (die, cu);
3803 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 3804 {
f792889a 3805 int nparams = TYPE_NFIELDS (this_type);
c906108c 3806
f792889a 3807 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
3808 of the method itself (TYPE_CODE_METHOD). */
3809 smash_to_method_type (fnp->type, type,
f792889a
DJ
3810 TYPE_TARGET_TYPE (this_type),
3811 TYPE_FIELDS (this_type),
3812 TYPE_NFIELDS (this_type),
3813 TYPE_VARARGS (this_type));
c906108c
SS
3814
3815 /* Handle static member functions.
c5aa993b
JM
3816 Dwarf2 has no clean way to discern C++ static and non-static
3817 member functions. G++ helps GDB by marking the first
3818 parameter for non-static member functions (which is the
3819 this pointer) as artificial. We obtain this information
3820 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 3821 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
3822 fnp->voffset = VOFFSET_STATIC;
3823 }
3824 else
e2e0b3e5 3825 complaint (&symfile_complaints, _("member function type missing for '%s'"),
4d3c2250 3826 physname);
c906108c
SS
3827
3828 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 3829 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 3830 fnp->fcontext = die_containing_type (die, cu);
c906108c
SS
3831
3832 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
3833 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
3834
3835 /* Get accessibility. */
e142c38c 3836 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
3837 if (attr)
3838 {
3839 switch (DW_UNSND (attr))
3840 {
c5aa993b
JM
3841 case DW_ACCESS_private:
3842 fnp->is_private = 1;
3843 break;
3844 case DW_ACCESS_protected:
3845 fnp->is_protected = 1;
3846 break;
c906108c
SS
3847 }
3848 }
3849
b02dede2 3850 /* Check for artificial methods. */
e142c38c 3851 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
3852 if (attr && DW_UNSND (attr) != 0)
3853 fnp->is_artificial = 1;
3854
c906108c 3855 /* Get index in virtual function table if it is a virtual member function. */
e142c38c 3856 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
c906108c 3857 if (attr)
8e19ed76
PS
3858 {
3859 /* Support the .debug_loc offsets */
3860 if (attr_form_is_block (attr))
3861 {
e7c27a73 3862 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
8e19ed76 3863 }
3690dd37 3864 else if (attr_form_is_section_offset (attr))
8e19ed76 3865 {
4d3c2250 3866 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
3867 }
3868 else
3869 {
4d3c2250
KB
3870 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
3871 fieldname);
8e19ed76
PS
3872 }
3873 }
c906108c
SS
3874}
3875
3876/* Create the vector of member function fields, and attach it to the type. */
3877
3878static void
fba45db2 3879dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 3880 struct dwarf2_cu *cu)
c906108c
SS
3881{
3882 struct fnfieldlist *flp;
3883 int total_length = 0;
3884 int i;
3885
3886 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3887 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3888 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
3889
3890 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
3891 {
3892 struct nextfnfield *nfp = flp->head;
3893 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
3894 int k;
3895
3896 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
3897 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
3898 fn_flp->fn_fields = (struct fn_field *)
3899 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
3900 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 3901 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
3902
3903 total_length += flp->length;
3904 }
3905
3906 TYPE_NFN_FIELDS (type) = fip->nfnfields;
3907 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3908}
3909
1168df01
JB
3910/* Returns non-zero if NAME is the name of a vtable member in CU's
3911 language, zero otherwise. */
3912static int
3913is_vtable_name (const char *name, struct dwarf2_cu *cu)
3914{
3915 static const char vptr[] = "_vptr";
987504bb 3916 static const char vtable[] = "vtable";
1168df01 3917
987504bb
JJ
3918 /* Look for the C++ and Java forms of the vtable. */
3919 if ((cu->language == language_java
3920 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
3921 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
3922 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
3923 return 1;
3924
3925 return 0;
3926}
3927
c0dd20ea
DJ
3928/* GCC outputs unnamed structures that are really pointers to member
3929 functions, with the ABI-specified layout. If DIE (from CU) describes
3930 such a structure, set its type, and return nonzero. Otherwise return
61049d3b
DJ
3931 zero.
3932
3933 GCC shouldn't do this; it should just output pointer to member DIEs.
3934 This is GCC PR debug/28767. */
c0dd20ea 3935
f792889a 3936static struct type *
c0dd20ea
DJ
3937quirk_gcc_member_function_pointer (struct die_info *die, struct dwarf2_cu *cu)
3938{
3939 struct objfile *objfile = cu->objfile;
3940 struct type *type;
3941 struct die_info *pfn_die, *delta_die;
3942 struct attribute *pfn_name, *delta_name;
3943 struct type *pfn_type, *domain_type;
3944
3945 /* Check for a structure with no name and two children. */
3946 if (die->tag != DW_TAG_structure_type
3947 || dwarf2_attr (die, DW_AT_name, cu) != NULL
3948 || die->child == NULL
3949 || die->child->sibling == NULL
3950 || (die->child->sibling->sibling != NULL
3951 && die->child->sibling->sibling->tag != DW_TAG_padding))
f792889a 3952 return NULL;
c0dd20ea
DJ
3953
3954 /* Check for __pfn and __delta members. */
3955 pfn_die = die->child;
3956 pfn_name = dwarf2_attr (pfn_die, DW_AT_name, cu);
3957 if (pfn_die->tag != DW_TAG_member
3958 || pfn_name == NULL
3959 || DW_STRING (pfn_name) == NULL
3960 || strcmp ("__pfn", DW_STRING (pfn_name)) != 0)
f792889a 3961 return NULL;
c0dd20ea
DJ
3962
3963 delta_die = pfn_die->sibling;
3964 delta_name = dwarf2_attr (delta_die, DW_AT_name, cu);
3965 if (delta_die->tag != DW_TAG_member
3966 || delta_name == NULL
3967 || DW_STRING (delta_name) == NULL
3968 || strcmp ("__delta", DW_STRING (delta_name)) != 0)
f792889a 3969 return NULL;
c0dd20ea
DJ
3970
3971 /* Find the type of the method. */
3972 pfn_type = die_type (pfn_die, cu);
3973 if (pfn_type == NULL
3974 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
3975 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
f792889a 3976 return NULL;
c0dd20ea
DJ
3977
3978 /* Look for the "this" argument. */
3979 pfn_type = TYPE_TARGET_TYPE (pfn_type);
3980 if (TYPE_NFIELDS (pfn_type) == 0
3981 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
f792889a 3982 return NULL;
c0dd20ea
DJ
3983
3984 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
3985 type = alloc_type (objfile);
3986 smash_to_method_type (type, domain_type, TYPE_TARGET_TYPE (pfn_type),
3987 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
3988 TYPE_VARARGS (pfn_type));
0d5de010 3989 type = lookup_methodptr_type (type);
f792889a 3990 return set_die_type (die, type, cu);
c0dd20ea 3991}
1168df01 3992
c906108c
SS
3993/* Called when we find the DIE that starts a structure or union scope
3994 (definition) to process all dies that define the members of the
3995 structure or union.
3996
3997 NOTE: we need to call struct_type regardless of whether or not the
3998 DIE has an at_name attribute, since it might be an anonymous
3999 structure or union. This gets the type entered into our set of
4000 user defined types.
4001
4002 However, if the structure is incomplete (an opaque struct/union)
4003 then suppress creating a symbol table entry for it since gdb only
4004 wants to find the one with the complete definition. Note that if
4005 it is complete, we just call new_symbol, which does it's own
4006 checking about whether the struct/union is anonymous or not (and
4007 suppresses creating a symbol table entry itself). */
4008
f792889a 4009static struct type *
134d01f1 4010read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4011{
e7c27a73 4012 struct objfile *objfile = cu->objfile;
c906108c
SS
4013 struct type *type;
4014 struct attribute *attr;
63d06c5c
DC
4015 const char *previous_prefix = processing_current_prefix;
4016 struct cleanup *back_to = NULL;
39cbfefa 4017 char *name;
c906108c 4018
f792889a
DJ
4019 type = quirk_gcc_member_function_pointer (die, cu);
4020 if (type)
4021 return type;
c906108c 4022
c0dd20ea 4023 type = alloc_type (objfile);
c906108c 4024 INIT_CPLUS_SPECIFIC (type);
39cbfefa
DJ
4025 name = dwarf2_name (die, cu);
4026 if (name != NULL)
c906108c 4027 {
987504bb
JJ
4028 if (cu->language == language_cplus
4029 || cu->language == language_java)
63d06c5c 4030 {
8176b9b8
DC
4031 char *new_prefix = determine_class_name (die, cu);
4032 TYPE_TAG_NAME (type) = obsavestring (new_prefix,
4033 strlen (new_prefix),
4034 &objfile->objfile_obstack);
4035 back_to = make_cleanup (xfree, new_prefix);
63d06c5c
DC
4036 processing_current_prefix = new_prefix;
4037 }
4038 else
4039 {
d8151005
DJ
4040 /* The name is already allocated along with this objfile, so
4041 we don't need to duplicate it for the type. */
39cbfefa 4042 TYPE_TAG_NAME (type) = name;
63d06c5c 4043 }
c906108c
SS
4044 }
4045
4046 if (die->tag == DW_TAG_structure_type)
4047 {
4048 TYPE_CODE (type) = TYPE_CODE_STRUCT;
4049 }
4050 else if (die->tag == DW_TAG_union_type)
4051 {
4052 TYPE_CODE (type) = TYPE_CODE_UNION;
4053 }
4054 else
4055 {
4056 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
c5aa993b 4057 in gdbtypes.h. */
c906108c
SS
4058 TYPE_CODE (type) = TYPE_CODE_CLASS;
4059 }
4060
e142c38c 4061 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
4062 if (attr)
4063 {
4064 TYPE_LENGTH (type) = DW_UNSND (attr);
4065 }
4066 else
4067 {
4068 TYPE_LENGTH (type) = 0;
4069 }
4070
d77b6808 4071 TYPE_FLAGS (type) |= TYPE_FLAG_STUB_SUPPORTED;
dc718098
JB
4072 if (die_is_declaration (die, cu))
4073 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
4074
c906108c
SS
4075 /* We need to add the type field to the die immediately so we don't
4076 infinitely recurse when dealing with pointers to the structure
4077 type within the structure itself. */
1c379e20 4078 set_die_type (die, type, cu);
c906108c 4079
e142c38c 4080 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
4081 {
4082 struct field_info fi;
4083 struct die_info *child_die;
4084 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
4085
4086 memset (&fi, 0, sizeof (struct field_info));
4087
639d11d3 4088 child_die = die->child;
c906108c
SS
4089
4090 while (child_die && child_die->tag)
4091 {
a9a9bd0f
DC
4092 if (child_die->tag == DW_TAG_member
4093 || child_die->tag == DW_TAG_variable)
c906108c 4094 {
a9a9bd0f
DC
4095 /* NOTE: carlton/2002-11-05: A C++ static data member
4096 should be a DW_TAG_member that is a declaration, but
4097 all versions of G++ as of this writing (so through at
4098 least 3.2.1) incorrectly generate DW_TAG_variable
4099 tags for them instead. */
e7c27a73 4100 dwarf2_add_field (&fi, child_die, cu);
c906108c 4101 }
8713b1b1 4102 else if (child_die->tag == DW_TAG_subprogram)
c906108c
SS
4103 {
4104 /* C++ member function. */
e7c27a73 4105 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
4106 }
4107 else if (child_die->tag == DW_TAG_inheritance)
4108 {
4109 /* C++ base class field. */
e7c27a73 4110 dwarf2_add_field (&fi, child_die, cu);
c906108c 4111 }
c906108c
SS
4112 child_die = sibling_die (child_die);
4113 }
4114
4115 /* Attach fields and member functions to the type. */
4116 if (fi.nfields)
e7c27a73 4117 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
4118 if (fi.nfnfields)
4119 {
e7c27a73 4120 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 4121
c5aa993b 4122 /* Get the type which refers to the base class (possibly this
c906108c
SS
4123 class itself) which contains the vtable pointer for the current
4124 class from the DW_AT_containing_type attribute. */
4125
e142c38c 4126 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 4127 {
e7c27a73 4128 struct type *t = die_containing_type (die, cu);
c906108c
SS
4129
4130 TYPE_VPTR_BASETYPE (type) = t;
4131 if (type == t)
4132 {
c906108c
SS
4133 int i;
4134
4135 /* Our own class provides vtbl ptr. */
4136 for (i = TYPE_NFIELDS (t) - 1;
4137 i >= TYPE_N_BASECLASSES (t);
4138 --i)
4139 {
4140 char *fieldname = TYPE_FIELD_NAME (t, i);
4141
1168df01 4142 if (is_vtable_name (fieldname, cu))
c906108c
SS
4143 {
4144 TYPE_VPTR_FIELDNO (type) = i;
4145 break;
4146 }
4147 }
4148
4149 /* Complain if virtual function table field not found. */
4150 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 4151 complaint (&symfile_complaints,
e2e0b3e5 4152 _("virtual function table pointer not found when defining class '%s'"),
4d3c2250
KB
4153 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
4154 "");
c906108c
SS
4155 }
4156 else
4157 {
4158 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
4159 }
4160 }
f6235d4c
EZ
4161 else if (cu->producer
4162 && strncmp (cu->producer,
4163 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
4164 {
4165 /* The IBM XLC compiler does not provide direct indication
4166 of the containing type, but the vtable pointer is
4167 always named __vfp. */
4168
4169 int i;
4170
4171 for (i = TYPE_NFIELDS (type) - 1;
4172 i >= TYPE_N_BASECLASSES (type);
4173 --i)
4174 {
4175 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
4176 {
4177 TYPE_VPTR_FIELDNO (type) = i;
4178 TYPE_VPTR_BASETYPE (type) = type;
4179 break;
4180 }
4181 }
4182 }
c906108c
SS
4183 }
4184
c906108c
SS
4185 do_cleanups (back_to);
4186 }
63d06c5c
DC
4187
4188 processing_current_prefix = previous_prefix;
4189 if (back_to != NULL)
4190 do_cleanups (back_to);
f792889a
DJ
4191
4192 return type;
c906108c
SS
4193}
4194
134d01f1
DJ
4195static void
4196process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
4197{
4198 struct objfile *objfile = cu->objfile;
4199 const char *previous_prefix = processing_current_prefix;
90aeadfc 4200 struct die_info *child_die = die->child;
f792889a 4201 struct type *this_type;
c906108c 4202
f792889a
DJ
4203 this_type = get_die_type (die, cu);
4204 if (this_type == NULL)
4205 this_type = read_structure_type (die, cu);
4206 if (TYPE_TAG_NAME (this_type) != NULL)
4207 processing_current_prefix = TYPE_TAG_NAME (this_type);
c906108c 4208
90aeadfc
DC
4209 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
4210 snapshots) has been known to create a die giving a declaration
4211 for a class that has, as a child, a die giving a definition for a
4212 nested class. So we have to process our children even if the
4213 current die is a declaration. Normally, of course, a declaration
4214 won't have any children at all. */
134d01f1 4215
90aeadfc
DC
4216 while (child_die != NULL && child_die->tag)
4217 {
4218 if (child_die->tag == DW_TAG_member
4219 || child_die->tag == DW_TAG_variable
4220 || child_die->tag == DW_TAG_inheritance)
134d01f1 4221 {
90aeadfc 4222 /* Do nothing. */
134d01f1 4223 }
90aeadfc
DC
4224 else
4225 process_die (child_die, cu);
134d01f1 4226
90aeadfc 4227 child_die = sibling_die (child_die);
134d01f1
DJ
4228 }
4229
fa4028e9
JB
4230 /* Do not consider external references. According to the DWARF standard,
4231 these DIEs are identified by the fact that they have no byte_size
4232 attribute, and a declaration attribute. */
4233 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
4234 || !die_is_declaration (die, cu))
f792889a 4235 new_symbol (die, this_type, cu);
90aeadfc 4236
134d01f1
DJ
4237 processing_current_prefix = previous_prefix;
4238}
4239
4240/* Given a DW_AT_enumeration_type die, set its type. We do not
4241 complete the type's fields yet, or create any symbols. */
c906108c 4242
f792889a 4243static struct type *
134d01f1 4244read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4245{
e7c27a73 4246 struct objfile *objfile = cu->objfile;
c906108c 4247 struct type *type;
c906108c 4248 struct attribute *attr;
39cbfefa 4249 char *name;
134d01f1 4250
c906108c
SS
4251 type = alloc_type (objfile);
4252
4253 TYPE_CODE (type) = TYPE_CODE_ENUM;
39cbfefa
DJ
4254 name = dwarf2_name (die, cu);
4255 if (name != NULL)
c906108c 4256 {
63d06c5c
DC
4257 if (processing_has_namespace_info)
4258 {
987504bb
JJ
4259 TYPE_TAG_NAME (type) = typename_concat (&objfile->objfile_obstack,
4260 processing_current_prefix,
4261 name, cu);
63d06c5c
DC
4262 }
4263 else
4264 {
d8151005
DJ
4265 /* The name is already allocated along with this objfile, so
4266 we don't need to duplicate it for the type. */
4267 TYPE_TAG_NAME (type) = name;
63d06c5c 4268 }
c906108c
SS
4269 }
4270
e142c38c 4271 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
4272 if (attr)
4273 {
4274 TYPE_LENGTH (type) = DW_UNSND (attr);
4275 }
4276 else
4277 {
4278 TYPE_LENGTH (type) = 0;
4279 }
4280
137033e9
JB
4281 /* The enumeration DIE can be incomplete. In Ada, any type can be
4282 declared as private in the package spec, and then defined only
4283 inside the package body. Such types are known as Taft Amendment
4284 Types. When another package uses such a type, an incomplete DIE
4285 may be generated by the compiler. */
02eb380e
JB
4286 if (die_is_declaration (die, cu))
4287 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
4288
f792889a 4289 return set_die_type (die, type, cu);
134d01f1
DJ
4290}
4291
8176b9b8 4292/* Determine the name of the type represented by DIE, which should be
987504bb 4293 a named C++ or Java compound type. Return the name in question; the caller
8176b9b8
DC
4294 is responsible for xfree()'ing it. */
4295
4296static char *
4297determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
4298{
4299 struct cleanup *back_to = NULL;
4300 struct die_info *spec_die = die_specification (die, cu);
4301 char *new_prefix = NULL;
4302
4303 /* If this is the definition of a class that is declared by another
4304 die, then processing_current_prefix may not be accurate; see
4305 read_func_scope for a similar example. */
4306 if (spec_die != NULL)
4307 {
4308 char *specification_prefix = determine_prefix (spec_die, cu);
4309 processing_current_prefix = specification_prefix;
4310 back_to = make_cleanup (xfree, specification_prefix);
4311 }
4312
4313 /* If we don't have namespace debug info, guess the name by trying
4314 to demangle the names of members, just like we did in
72bf9492 4315 guess_structure_name. */
8176b9b8
DC
4316 if (!processing_has_namespace_info)
4317 {
4318 struct die_info *child;
4319
4320 for (child = die->child;
4321 child != NULL && child->tag != 0;
4322 child = sibling_die (child))
4323 {
4324 if (child->tag == DW_TAG_subprogram)
4325 {
31c27f77
JJ
4326 new_prefix
4327 = language_class_name_from_physname (cu->language_defn,
4328 dwarf2_linkage_name
8176b9b8
DC
4329 (child, cu));
4330
4331 if (new_prefix != NULL)
4332 break;
4333 }
4334 }
4335 }
4336
4337 if (new_prefix == NULL)
4338 {
4339 const char *name = dwarf2_name (die, cu);
987504bb
JJ
4340 new_prefix = typename_concat (NULL, processing_current_prefix,
4341 name ? name : "<<anonymous>>",
4342 cu);
8176b9b8
DC
4343 }
4344
4345 if (back_to != NULL)
4346 do_cleanups (back_to);
4347
4348 return new_prefix;
4349}
4350
134d01f1
DJ
4351/* Given a pointer to a die which begins an enumeration, process all
4352 the dies that define the members of the enumeration, and create the
4353 symbol for the enumeration type.
4354
4355 NOTE: We reverse the order of the element list. */
4356
4357static void
4358process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
4359{
4360 struct objfile *objfile = cu->objfile;
4361 struct die_info *child_die;
4362 struct field *fields;
134d01f1
DJ
4363 struct symbol *sym;
4364 int num_fields;
4365 int unsigned_enum = 1;
39cbfefa 4366 char *name;
f792889a 4367 struct type *this_type;
134d01f1 4368
c906108c
SS
4369 num_fields = 0;
4370 fields = NULL;
f792889a
DJ
4371 this_type = get_die_type (die, cu);
4372 if (this_type == NULL)
4373 this_type = read_enumeration_type (die, cu);
639d11d3 4374 if (die->child != NULL)
c906108c 4375 {
639d11d3 4376 child_die = die->child;
c906108c
SS
4377 while (child_die && child_die->tag)
4378 {
4379 if (child_die->tag != DW_TAG_enumerator)
4380 {
e7c27a73 4381 process_die (child_die, cu);
c906108c
SS
4382 }
4383 else
4384 {
39cbfefa
DJ
4385 name = dwarf2_name (child_die, cu);
4386 if (name)
c906108c 4387 {
f792889a 4388 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
4389 if (SYMBOL_VALUE (sym) < 0)
4390 unsigned_enum = 0;
4391
4392 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
4393 {
4394 fields = (struct field *)
4395 xrealloc (fields,
4396 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 4397 * sizeof (struct field));
c906108c
SS
4398 }
4399
22abf04a 4400 FIELD_NAME (fields[num_fields]) = DEPRECATED_SYMBOL_NAME (sym);
c906108c
SS
4401 FIELD_TYPE (fields[num_fields]) = NULL;
4402 FIELD_BITPOS (fields[num_fields]) = SYMBOL_VALUE (sym);
4403 FIELD_BITSIZE (fields[num_fields]) = 0;
01ad7f36 4404 FIELD_STATIC_KIND (fields[num_fields]) = 0;
c906108c
SS
4405
4406 num_fields++;
4407 }
4408 }
4409
4410 child_die = sibling_die (child_die);
4411 }
4412
4413 if (num_fields)
4414 {
f792889a
DJ
4415 TYPE_NFIELDS (this_type) = num_fields;
4416 TYPE_FIELDS (this_type) = (struct field *)
4417 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
4418 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 4419 sizeof (struct field) * num_fields);
b8c9b27d 4420 xfree (fields);
c906108c
SS
4421 }
4422 if (unsigned_enum)
f792889a 4423 TYPE_FLAGS (this_type) |= TYPE_FLAG_UNSIGNED;
c906108c 4424 }
134d01f1 4425
f792889a 4426 new_symbol (die, this_type, cu);
c906108c
SS
4427}
4428
4429/* Extract all information from a DW_TAG_array_type DIE and put it in
4430 the DIE's type field. For now, this only handles one dimensional
4431 arrays. */
4432
f792889a 4433static struct type *
e7c27a73 4434read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4435{
e7c27a73 4436 struct objfile *objfile = cu->objfile;
c906108c
SS
4437 struct die_info *child_die;
4438 struct type *type = NULL;
4439 struct type *element_type, *range_type, *index_type;
4440 struct type **range_types = NULL;
4441 struct attribute *attr;
4442 int ndim = 0;
4443 struct cleanup *back_to;
39cbfefa 4444 char *name;
c906108c 4445
e7c27a73 4446 element_type = die_type (die, cu);
c906108c
SS
4447
4448 /* Irix 6.2 native cc creates array types without children for
4449 arrays with unspecified length. */
639d11d3 4450 if (die->child == NULL)
c906108c 4451 {
6ccb9162 4452 index_type = builtin_type_int32;
c906108c 4453 range_type = create_range_type (NULL, index_type, 0, -1);
f792889a
DJ
4454 type = create_array_type (NULL, element_type, range_type);
4455 return set_die_type (die, type, cu);
c906108c
SS
4456 }
4457
4458 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 4459 child_die = die->child;
c906108c
SS
4460 while (child_die && child_die->tag)
4461 {
4462 if (child_die->tag == DW_TAG_subrange_type)
4463 {
f792889a
DJ
4464 struct type *child_type = read_type_die (child_die, cu);
4465 if (child_type != NULL)
a02abb62
JB
4466 {
4467 /* The range type was succesfully read. Save it for
4468 the array type creation. */
4469 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
4470 {
4471 range_types = (struct type **)
4472 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
4473 * sizeof (struct type *));
4474 if (ndim == 0)
4475 make_cleanup (free_current_contents, &range_types);
4476 }
f792889a 4477 range_types[ndim++] = child_type;
a02abb62 4478 }
c906108c
SS
4479 }
4480 child_die = sibling_die (child_die);
4481 }
4482
4483 /* Dwarf2 dimensions are output from left to right, create the
4484 necessary array types in backwards order. */
7ca2d3a3 4485
c906108c 4486 type = element_type;
7ca2d3a3
DL
4487
4488 if (read_array_order (die, cu) == DW_ORD_col_major)
4489 {
4490 int i = 0;
4491 while (i < ndim)
4492 type = create_array_type (NULL, type, range_types[i++]);
4493 }
4494 else
4495 {
4496 while (ndim-- > 0)
4497 type = create_array_type (NULL, type, range_types[ndim]);
4498 }
c906108c 4499
f5f8a009
EZ
4500 /* Understand Dwarf2 support for vector types (like they occur on
4501 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
4502 array type. This is not part of the Dwarf2/3 standard yet, but a
4503 custom vendor extension. The main difference between a regular
4504 array and the vector variant is that vectors are passed by value
4505 to functions. */
e142c38c 4506 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 4507 if (attr)
ea37ba09 4508 make_vector_type (type);
f5f8a009 4509
39cbfefa
DJ
4510 name = dwarf2_name (die, cu);
4511 if (name)
4512 TYPE_NAME (type) = name;
714e295e 4513
c906108c
SS
4514 do_cleanups (back_to);
4515
4516 /* Install the type in the die. */
f792889a 4517 return set_die_type (die, type, cu);
c906108c
SS
4518}
4519
7ca2d3a3
DL
4520static enum dwarf_array_dim_ordering
4521read_array_order (struct die_info *die, struct dwarf2_cu *cu)
4522{
4523 struct attribute *attr;
4524
4525 attr = dwarf2_attr (die, DW_AT_ordering, cu);
4526
4527 if (attr) return DW_SND (attr);
4528
4529 /*
4530 GNU F77 is a special case, as at 08/2004 array type info is the
4531 opposite order to the dwarf2 specification, but data is still
4532 laid out as per normal fortran.
4533
4534 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
4535 version checking.
4536 */
4537
4538 if (cu->language == language_fortran &&
4539 cu->producer && strstr (cu->producer, "GNU F77"))
4540 {
4541 return DW_ORD_row_major;
4542 }
4543
4544 switch (cu->language_defn->la_array_ordering)
4545 {
4546 case array_column_major:
4547 return DW_ORD_col_major;
4548 case array_row_major:
4549 default:
4550 return DW_ORD_row_major;
4551 };
4552}
4553
72019c9c
GM
4554/* Extract all information from a DW_TAG_set_type DIE and put it in
4555 the DIE's type field. */
4556
f792889a 4557static struct type *
72019c9c
GM
4558read_set_type (struct die_info *die, struct dwarf2_cu *cu)
4559{
f792889a
DJ
4560 struct type *set_type = create_set_type (NULL, die_type (die, cu));
4561
4562 return set_die_type (die, set_type, cu);
72019c9c 4563}
7ca2d3a3 4564
c906108c
SS
4565/* First cut: install each common block member as a global variable. */
4566
4567static void
e7c27a73 4568read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
4569{
4570 struct die_info *child_die;
4571 struct attribute *attr;
4572 struct symbol *sym;
4573 CORE_ADDR base = (CORE_ADDR) 0;
4574
e142c38c 4575 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
4576 if (attr)
4577 {
8e19ed76
PS
4578 /* Support the .debug_loc offsets */
4579 if (attr_form_is_block (attr))
4580 {
e7c27a73 4581 base = decode_locdesc (DW_BLOCK (attr), cu);
8e19ed76 4582 }
3690dd37 4583 else if (attr_form_is_section_offset (attr))
8e19ed76 4584 {
4d3c2250 4585 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
4586 }
4587 else
4588 {
4d3c2250
KB
4589 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
4590 "common block member");
8e19ed76 4591 }
c906108c 4592 }
639d11d3 4593 if (die->child != NULL)
c906108c 4594 {
639d11d3 4595 child_die = die->child;
c906108c
SS
4596 while (child_die && child_die->tag)
4597 {
e7c27a73 4598 sym = new_symbol (child_die, NULL, cu);
e142c38c 4599 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
c906108c
SS
4600 if (attr)
4601 {
4602 SYMBOL_VALUE_ADDRESS (sym) =
e7c27a73 4603 base + decode_locdesc (DW_BLOCK (attr), cu);
c906108c
SS
4604 add_symbol_to_list (sym, &global_symbols);
4605 }
4606 child_die = sibling_die (child_die);
4607 }
4608 }
4609}
4610
d9fa45fe
DC
4611/* Read a C++ namespace. */
4612
d9fa45fe 4613static void
e7c27a73 4614read_namespace (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 4615{
e7c27a73 4616 struct objfile *objfile = cu->objfile;
38d518c9 4617 const char *previous_prefix = processing_current_prefix;
63d06c5c 4618 const char *name;
9219021c
DC
4619 int is_anonymous;
4620 struct die_info *current_die;
987504bb 4621 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9219021c 4622
e142c38c 4623 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
4624
4625 /* Now build the name of the current namespace. */
4626
38d518c9 4627 if (previous_prefix[0] == '\0')
9219021c 4628 {
38d518c9 4629 processing_current_prefix = name;
9219021c
DC
4630 }
4631 else
4632 {
987504bb
JJ
4633 char *temp_name = typename_concat (NULL, previous_prefix, name, cu);
4634 make_cleanup (xfree, temp_name);
38d518c9 4635 processing_current_prefix = temp_name;
9219021c
DC
4636 }
4637
5c4e30ca
DC
4638 /* Add a symbol associated to this if we haven't seen the namespace
4639 before. Also, add a using directive if it's an anonymous
4640 namespace. */
9219021c 4641
e142c38c 4642 if (dwarf2_extension (die, cu) == NULL)
5c4e30ca
DC
4643 {
4644 struct type *type;
4645
4646 /* FIXME: carlton/2003-06-27: Once GDB is more const-correct,
4647 this cast will hopefully become unnecessary. */
4648 type = init_type (TYPE_CODE_NAMESPACE, 0, 0,
38d518c9 4649 (char *) processing_current_prefix,
5c4e30ca
DC
4650 objfile);
4651 TYPE_TAG_NAME (type) = TYPE_NAME (type);
4652
e7c27a73 4653 new_symbol (die, type, cu);
1c379e20 4654 set_die_type (die, type, cu);
5c4e30ca
DC
4655
4656 if (is_anonymous)
38d518c9
EZ
4657 cp_add_using_directive (processing_current_prefix,
4658 strlen (previous_prefix),
4659 strlen (processing_current_prefix));
5c4e30ca 4660 }
9219021c 4661
639d11d3 4662 if (die->child != NULL)
d9fa45fe 4663 {
639d11d3 4664 struct die_info *child_die = die->child;
d9fa45fe
DC
4665
4666 while (child_die && child_die->tag)
4667 {
e7c27a73 4668 process_die (child_die, cu);
d9fa45fe
DC
4669 child_die = sibling_die (child_die);
4670 }
4671 }
9219021c 4672
38d518c9 4673 processing_current_prefix = previous_prefix;
987504bb 4674 do_cleanups (back_to);
38d518c9
EZ
4675}
4676
4677/* Return the name of the namespace represented by DIE. Set
4678 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
4679 namespace. */
4680
4681static const char *
e142c38c 4682namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
4683{
4684 struct die_info *current_die;
4685 const char *name = NULL;
4686
4687 /* Loop through the extensions until we find a name. */
4688
4689 for (current_die = die;
4690 current_die != NULL;
e142c38c 4691 current_die = dwarf2_extension (die, cu))
38d518c9 4692 {
e142c38c 4693 name = dwarf2_name (current_die, cu);
38d518c9
EZ
4694 if (name != NULL)
4695 break;
4696 }
4697
4698 /* Is it an anonymous namespace? */
4699
4700 *is_anonymous = (name == NULL);
4701 if (*is_anonymous)
4702 name = "(anonymous namespace)";
4703
4704 return name;
d9fa45fe
DC
4705}
4706
c906108c
SS
4707/* Extract all information from a DW_TAG_pointer_type DIE and add to
4708 the user defined type vector. */
4709
f792889a 4710static struct type *
e7c27a73 4711read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4712{
5e2b427d 4713 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 4714 struct comp_unit_head *cu_header = &cu->header;
c906108c 4715 struct type *type;
8b2dbe47
KB
4716 struct attribute *attr_byte_size;
4717 struct attribute *attr_address_class;
4718 int byte_size, addr_class;
c906108c 4719
e7c27a73 4720 type = lookup_pointer_type (die_type (die, cu));
8b2dbe47 4721
e142c38c 4722 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
4723 if (attr_byte_size)
4724 byte_size = DW_UNSND (attr_byte_size);
c906108c 4725 else
8b2dbe47
KB
4726 byte_size = cu_header->addr_size;
4727
e142c38c 4728 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
4729 if (attr_address_class)
4730 addr_class = DW_UNSND (attr_address_class);
4731 else
4732 addr_class = DW_ADDR_none;
4733
4734 /* If the pointer size or address class is different than the
4735 default, create a type variant marked as such and set the
4736 length accordingly. */
4737 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 4738 {
5e2b427d 4739 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
4740 {
4741 int type_flags;
4742
849957d9 4743 type_flags = gdbarch_address_class_type_flags
5e2b427d 4744 (gdbarch, byte_size, addr_class);
8b2dbe47
KB
4745 gdb_assert ((type_flags & ~TYPE_FLAG_ADDRESS_CLASS_ALL) == 0);
4746 type = make_type_with_address_space (type, type_flags);
4747 }
4748 else if (TYPE_LENGTH (type) != byte_size)
4749 {
e2e0b3e5 4750 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
8b2dbe47
KB
4751 }
4752 else {
4753 /* Should we also complain about unhandled address classes? */
4754 }
c906108c 4755 }
8b2dbe47
KB
4756
4757 TYPE_LENGTH (type) = byte_size;
f792889a 4758 return set_die_type (die, type, cu);
c906108c
SS
4759}
4760
4761/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
4762 the user defined type vector. */
4763
f792889a 4764static struct type *
e7c27a73 4765read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4766{
e7c27a73 4767 struct objfile *objfile = cu->objfile;
c906108c
SS
4768 struct type *type;
4769 struct type *to_type;
4770 struct type *domain;
4771
e7c27a73
DJ
4772 to_type = die_type (die, cu);
4773 domain = die_containing_type (die, cu);
0d5de010
DJ
4774
4775 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
4776 type = lookup_methodptr_type (to_type);
4777 else
4778 type = lookup_memberptr_type (to_type, domain);
c906108c 4779
f792889a 4780 return set_die_type (die, type, cu);
c906108c
SS
4781}
4782
4783/* Extract all information from a DW_TAG_reference_type DIE and add to
4784 the user defined type vector. */
4785
f792889a 4786static struct type *
e7c27a73 4787read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4788{
e7c27a73 4789 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
4790 struct type *type;
4791 struct attribute *attr;
4792
e7c27a73 4793 type = lookup_reference_type (die_type (die, cu));
e142c38c 4794 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
4795 if (attr)
4796 {
4797 TYPE_LENGTH (type) = DW_UNSND (attr);
4798 }
4799 else
4800 {
107d2387 4801 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 4802 }
f792889a 4803 return set_die_type (die, type, cu);
c906108c
SS
4804}
4805
f792889a 4806static struct type *
e7c27a73 4807read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4808{
f792889a 4809 struct type *base_type, *cv_type;
c906108c 4810
e7c27a73 4811 base_type = die_type (die, cu);
f792889a
DJ
4812 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
4813 return set_die_type (die, cv_type, cu);
c906108c
SS
4814}
4815
f792889a 4816static struct type *
e7c27a73 4817read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4818{
f792889a 4819 struct type *base_type, *cv_type;
c906108c 4820
e7c27a73 4821 base_type = die_type (die, cu);
f792889a
DJ
4822 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
4823 return set_die_type (die, cv_type, cu);
c906108c
SS
4824}
4825
4826/* Extract all information from a DW_TAG_string_type DIE and add to
4827 the user defined type vector. It isn't really a user defined type,
4828 but it behaves like one, with other DIE's using an AT_user_def_type
4829 attribute to reference it. */
4830
f792889a 4831static struct type *
e7c27a73 4832read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4833{
e7c27a73 4834 struct objfile *objfile = cu->objfile;
c906108c
SS
4835 struct type *type, *range_type, *index_type, *char_type;
4836 struct attribute *attr;
4837 unsigned int length;
4838
e142c38c 4839 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
4840 if (attr)
4841 {
4842 length = DW_UNSND (attr);
4843 }
4844 else
4845 {
b21b22e0 4846 /* check for the DW_AT_byte_size attribute */
e142c38c 4847 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
4848 if (attr)
4849 {
4850 length = DW_UNSND (attr);
4851 }
4852 else
4853 {
4854 length = 1;
4855 }
c906108c 4856 }
6ccb9162
UW
4857
4858 index_type = builtin_type_int32;
c906108c 4859 range_type = create_range_type (NULL, index_type, 1, length);
6ccb9162
UW
4860 type = create_string_type (NULL, range_type);
4861
f792889a 4862 return set_die_type (die, type, cu);
c906108c
SS
4863}
4864
4865/* Handle DIES due to C code like:
4866
4867 struct foo
c5aa993b
JM
4868 {
4869 int (*funcp)(int a, long l);
4870 int b;
4871 };
c906108c
SS
4872
4873 ('funcp' generates a DW_TAG_subroutine_type DIE)
c5aa993b 4874 */
c906108c 4875
f792889a 4876static struct type *
e7c27a73 4877read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
4878{
4879 struct type *type; /* Type that this function returns */
4880 struct type *ftype; /* Function that returns above type */
4881 struct attribute *attr;
4882
e7c27a73 4883 type = die_type (die, cu);
1326e61b 4884 ftype = make_function_type (type, (struct type **) 0);
c906108c 4885
5b8101ae 4886 /* All functions in C++, Pascal and Java have prototypes. */
e142c38c 4887 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
c906108c 4888 if ((attr && (DW_UNSND (attr) != 0))
987504bb 4889 || cu->language == language_cplus
5b8101ae
PM
4890 || cu->language == language_java
4891 || cu->language == language_pascal)
c906108c
SS
4892 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
4893
c055b101
CV
4894 /* Store the calling convention in the type if it's available in
4895 the subroutine die. Otherwise set the calling convention to
4896 the default value DW_CC_normal. */
4897 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
4898 TYPE_CALLING_CONVENTION (ftype) = attr ? DW_UNSND (attr) : DW_CC_normal;
4899
639d11d3 4900 if (die->child != NULL)
c906108c
SS
4901 {
4902 struct die_info *child_die;
4903 int nparams = 0;
4904 int iparams = 0;
4905
4906 /* Count the number of parameters.
4907 FIXME: GDB currently ignores vararg functions, but knows about
4908 vararg member functions. */
639d11d3 4909 child_die = die->child;
c906108c
SS
4910 while (child_die && child_die->tag)
4911 {
4912 if (child_die->tag == DW_TAG_formal_parameter)
4913 nparams++;
4914 else if (child_die->tag == DW_TAG_unspecified_parameters)
4915 TYPE_FLAGS (ftype) |= TYPE_FLAG_VARARGS;
4916 child_die = sibling_die (child_die);
4917 }
4918
4919 /* Allocate storage for parameters and fill them in. */
4920 TYPE_NFIELDS (ftype) = nparams;
4921 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 4922 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 4923
639d11d3 4924 child_die = die->child;
c906108c
SS
4925 while (child_die && child_die->tag)
4926 {
4927 if (child_die->tag == DW_TAG_formal_parameter)
4928 {
4929 /* Dwarf2 has no clean way to discern C++ static and non-static
c5aa993b
JM
4930 member functions. G++ helps GDB by marking the first
4931 parameter for non-static member functions (which is the
4932 this pointer) as artificial. We pass this information
4933 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
e142c38c 4934 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
4935 if (attr)
4936 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
4937 else
4938 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
e7c27a73 4939 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
c906108c
SS
4940 iparams++;
4941 }
4942 child_die = sibling_die (child_die);
4943 }
4944 }
4945
f792889a 4946 return set_die_type (die, ftype, cu);
c906108c
SS
4947}
4948
f792889a 4949static struct type *
e7c27a73 4950read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4951{
e7c27a73 4952 struct objfile *objfile = cu->objfile;
2f038fcb
FF
4953 struct attribute *attr;
4954 char *name = NULL;
f792889a 4955 struct type *this_type;
c906108c 4956
f792889a
DJ
4957 name = dwarf2_name (die, cu);
4958 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
4959 TYPE_FLAG_TARGET_STUB, name, objfile);
4960 set_die_type (die, this_type, cu);
4961 TYPE_TARGET_TYPE (this_type) = die_type (die, cu);
4962 return this_type;
c906108c
SS
4963}
4964
4965/* Find a representation of a given base type and install
4966 it in the TYPE field of the die. */
4967
f792889a 4968static struct type *
e7c27a73 4969read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4970{
e7c27a73 4971 struct objfile *objfile = cu->objfile;
c906108c
SS
4972 struct type *type;
4973 struct attribute *attr;
4974 int encoding = 0, size = 0;
39cbfefa 4975 char *name;
6ccb9162
UW
4976 enum type_code code = TYPE_CODE_INT;
4977 int type_flags = 0;
4978 struct type *target_type = NULL;
c906108c 4979
e142c38c 4980 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
4981 if (attr)
4982 {
4983 encoding = DW_UNSND (attr);
4984 }
e142c38c 4985 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
4986 if (attr)
4987 {
4988 size = DW_UNSND (attr);
4989 }
39cbfefa 4990 name = dwarf2_name (die, cu);
6ccb9162 4991 if (!name)
c906108c 4992 {
6ccb9162
UW
4993 complaint (&symfile_complaints,
4994 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 4995 }
6ccb9162
UW
4996
4997 switch (encoding)
c906108c 4998 {
6ccb9162
UW
4999 case DW_ATE_address:
5000 /* Turn DW_ATE_address into a void * pointer. */
5001 code = TYPE_CODE_PTR;
5002 type_flags |= TYPE_FLAG_UNSIGNED;
5003 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
5004 break;
5005 case DW_ATE_boolean:
5006 code = TYPE_CODE_BOOL;
5007 type_flags |= TYPE_FLAG_UNSIGNED;
5008 break;
5009 case DW_ATE_complex_float:
5010 code = TYPE_CODE_COMPLEX;
5011 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
5012 break;
5013 case DW_ATE_decimal_float:
5014 code = TYPE_CODE_DECFLOAT;
5015 break;
5016 case DW_ATE_float:
5017 code = TYPE_CODE_FLT;
5018 break;
5019 case DW_ATE_signed:
5020 break;
5021 case DW_ATE_unsigned:
5022 type_flags |= TYPE_FLAG_UNSIGNED;
5023 break;
5024 case DW_ATE_signed_char:
1760d9d5 5025 if (cu->language == language_ada || cu->language == language_m2)
6ccb9162
UW
5026 code = TYPE_CODE_CHAR;
5027 break;
5028 case DW_ATE_unsigned_char:
1760d9d5 5029 if (cu->language == language_ada || cu->language == language_m2)
6ccb9162
UW
5030 code = TYPE_CODE_CHAR;
5031 type_flags |= TYPE_FLAG_UNSIGNED;
5032 break;
5033 default:
5034 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
5035 dwarf_type_encoding_name (encoding));
5036 break;
c906108c 5037 }
6ccb9162
UW
5038
5039 type = init_type (code, size, type_flags, name, objfile);
5040 TYPE_TARGET_TYPE (type) = target_type;
5041
f792889a 5042 return set_die_type (die, type, cu);
c906108c
SS
5043}
5044
a02abb62
JB
5045/* Read the given DW_AT_subrange DIE. */
5046
f792889a 5047static struct type *
a02abb62
JB
5048read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
5049{
5e2b427d 5050 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
a02abb62
JB
5051 struct type *base_type;
5052 struct type *range_type;
5053 struct attribute *attr;
5054 int low = 0;
5055 int high = -1;
39cbfefa 5056 char *name;
a02abb62 5057
a02abb62 5058 base_type = die_type (die, cu);
3d1f72c2 5059 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
a02abb62
JB
5060 {
5061 complaint (&symfile_complaints,
e2e0b3e5 5062 _("DW_AT_type missing from DW_TAG_subrange_type"));
17a912b6 5063 base_type
5e2b427d 5064 = init_type (TYPE_CODE_INT, gdbarch_addr_bit (gdbarch) / 8,
6ccb9162 5065 0, NULL, cu->objfile);
a02abb62
JB
5066 }
5067
e142c38c 5068 if (cu->language == language_fortran)
a02abb62
JB
5069 {
5070 /* FORTRAN implies a lower bound of 1, if not given. */
5071 low = 1;
5072 }
5073
dd5e6932
DJ
5074 /* FIXME: For variable sized arrays either of these could be
5075 a variable rather than a constant value. We'll allow it,
5076 but we don't know how to handle it. */
e142c38c 5077 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62
JB
5078 if (attr)
5079 low = dwarf2_get_attr_constant_value (attr, 0);
5080
e142c38c 5081 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
a02abb62
JB
5082 if (attr)
5083 {
5084 if (attr->form == DW_FORM_block1)
5085 {
5086 /* GCC encodes arrays with unspecified or dynamic length
5087 with a DW_FORM_block1 attribute.
5088 FIXME: GDB does not yet know how to handle dynamic
5089 arrays properly, treat them as arrays with unspecified
5090 length for now.
5091
5092 FIXME: jimb/2003-09-22: GDB does not really know
5093 how to handle arrays of unspecified length
5094 either; we just represent them as zero-length
5095 arrays. Choose an appropriate upper bound given
5096 the lower bound we've computed above. */
5097 high = low - 1;
5098 }
5099 else
5100 high = dwarf2_get_attr_constant_value (attr, 1);
5101 }
5102
5103 range_type = create_range_type (NULL, base_type, low, high);
5104
39cbfefa
DJ
5105 name = dwarf2_name (die, cu);
5106 if (name)
5107 TYPE_NAME (range_type) = name;
a02abb62 5108
e142c38c 5109 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
5110 if (attr)
5111 TYPE_LENGTH (range_type) = DW_UNSND (attr);
5112
f792889a 5113 return set_die_type (die, range_type, cu);
a02abb62
JB
5114}
5115
f792889a 5116static struct type *
81a17f79
JB
5117read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
5118{
5119 struct type *type;
81a17f79 5120
81a17f79
JB
5121 /* For now, we only support the C meaning of an unspecified type: void. */
5122
39cbfefa 5123 type = init_type (TYPE_CODE_VOID, 0, 0, dwarf2_name (die, cu),
81a17f79
JB
5124 cu->objfile);
5125
f792889a 5126 return set_die_type (die, type, cu);
81a17f79 5127}
a02abb62 5128
c906108c
SS
5129/* Read a whole compilation unit into a linked list of dies. */
5130
f9aca02d 5131static struct die_info *
fe1b8b76 5132read_comp_unit (gdb_byte *info_ptr, bfd *abfd, struct dwarf2_cu *cu)
c906108c 5133{
e7c27a73 5134 return read_die_and_children (info_ptr, abfd, cu, &info_ptr, NULL);
639d11d3
DC
5135}
5136
5137/* Read a single die and all its descendents. Set the die's sibling
5138 field to NULL; set other fields in the die correctly, and set all
5139 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
5140 location of the info_ptr after reading all of those dies. PARENT
5141 is the parent of the die in question. */
5142
5143static struct die_info *
fe1b8b76 5144read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
e7c27a73 5145 struct dwarf2_cu *cu,
fe1b8b76 5146 gdb_byte **new_info_ptr,
639d11d3
DC
5147 struct die_info *parent)
5148{
5149 struct die_info *die;
fe1b8b76 5150 gdb_byte *cur_ptr;
639d11d3
DC
5151 int has_children;
5152
e7c27a73 5153 cur_ptr = read_full_die (&die, abfd, info_ptr, cu, &has_children);
10b3939b 5154 store_in_ref_table (die->offset, die, cu);
639d11d3
DC
5155
5156 if (has_children)
5157 {
e7c27a73 5158 die->child = read_die_and_siblings (cur_ptr, abfd, cu,
639d11d3
DC
5159 new_info_ptr, die);
5160 }
5161 else
5162 {
5163 die->child = NULL;
5164 *new_info_ptr = cur_ptr;
5165 }
5166
5167 die->sibling = NULL;
5168 die->parent = parent;
5169 return die;
5170}
5171
5172/* Read a die, all of its descendents, and all of its siblings; set
5173 all of the fields of all of the dies correctly. Arguments are as
5174 in read_die_and_children. */
5175
5176static struct die_info *
fe1b8b76 5177read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
e7c27a73 5178 struct dwarf2_cu *cu,
fe1b8b76 5179 gdb_byte **new_info_ptr,
639d11d3
DC
5180 struct die_info *parent)
5181{
5182 struct die_info *first_die, *last_sibling;
fe1b8b76 5183 gdb_byte *cur_ptr;
639d11d3 5184
c906108c 5185 cur_ptr = info_ptr;
639d11d3
DC
5186 first_die = last_sibling = NULL;
5187
5188 while (1)
c906108c 5189 {
639d11d3 5190 struct die_info *die
e7c27a73 5191 = read_die_and_children (cur_ptr, abfd, cu, &cur_ptr, parent);
639d11d3
DC
5192
5193 if (!first_die)
c906108c 5194 {
639d11d3 5195 first_die = die;
c906108c 5196 }
639d11d3 5197 else
c906108c 5198 {
639d11d3 5199 last_sibling->sibling = die;
c906108c
SS
5200 }
5201
639d11d3 5202 if (die->tag == 0)
c906108c 5203 {
639d11d3
DC
5204 *new_info_ptr = cur_ptr;
5205 return first_die;
c906108c
SS
5206 }
5207 else
5208 {
639d11d3 5209 last_sibling = die;
c906108c
SS
5210 }
5211 }
c906108c
SS
5212}
5213
5214/* Free a linked list of dies. */
5215
5216static void
fba45db2 5217free_die_list (struct die_info *dies)
c906108c
SS
5218{
5219 struct die_info *die, *next;
5220
5221 die = dies;
5222 while (die)
5223 {
639d11d3
DC
5224 if (die->child != NULL)
5225 free_die_list (die->child);
5226 next = die->sibling;
b8c9b27d
KB
5227 xfree (die->attrs);
5228 xfree (die);
c906108c
SS
5229 die = next;
5230 }
5231}
5232
233a11ab
CS
5233/* Decompress a section that was compressed using zlib. Store the
5234 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
5235
5236static void
5237zlib_decompress_section (struct objfile *objfile, asection *sectp,
5238 gdb_byte **outbuf, bfd_size_type *outsize)
5239{
ef72380d 5240 bfd *abfd = objfile->obfd;
233a11ab
CS
5241#ifndef HAVE_ZLIB_H
5242 error (_("Support for zlib-compressed DWARF data (from '%s') "
5243 "is disabled in this copy of GDB"),
5244 bfd_get_filename (abfd));
5245#else
233a11ab
CS
5246 bfd_size_type compressed_size = bfd_get_section_size (sectp);
5247 gdb_byte *compressed_buffer = xmalloc (compressed_size);
5248 bfd_size_type uncompressed_size;
5249 gdb_byte *uncompressed_buffer;
5250 z_stream strm;
5251 int rc;
5252 int header_size = 12;
5253
5254 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
5255 || bfd_bread (compressed_buffer, compressed_size, abfd) != compressed_size)
5256 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
5257 bfd_get_filename (abfd));
5258
5259 /* Read the zlib header. In this case, it should be "ZLIB" followed
5260 by the uncompressed section size, 8 bytes in big-endian order. */
5261 if (compressed_size < header_size
5262 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
5263 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
5264 bfd_get_filename (abfd));
5265 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
5266 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
5267 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
5268 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
5269 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
5270 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
5271 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
5272 uncompressed_size += compressed_buffer[11];
5273
5274 /* It is possible the section consists of several compressed
5275 buffers concatenated together, so we uncompress in a loop. */
5276 strm.zalloc = NULL;
5277 strm.zfree = NULL;
5278 strm.opaque = NULL;
5279 strm.avail_in = compressed_size - header_size;
5280 strm.next_in = (Bytef*) compressed_buffer + header_size;
5281 strm.avail_out = uncompressed_size;
5282 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
5283 uncompressed_size);
5284 rc = inflateInit (&strm);
5285 while (strm.avail_in > 0)
5286 {
5287 if (rc != Z_OK)
5288 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
5289 bfd_get_filename (abfd), rc);
5290 strm.next_out = ((Bytef*) uncompressed_buffer
5291 + (uncompressed_size - strm.avail_out));
5292 rc = inflate (&strm, Z_FINISH);
5293 if (rc != Z_STREAM_END)
5294 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
5295 bfd_get_filename (abfd), rc);
5296 rc = inflateReset (&strm);
5297 }
5298 rc = inflateEnd (&strm);
5299 if (rc != Z_OK
5300 || strm.avail_out != 0)
5301 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
5302 bfd_get_filename (abfd), rc);
5303
5304 xfree (compressed_buffer);
5305 *outbuf = uncompressed_buffer;
5306 *outsize = uncompressed_size;
5307#endif
5308}
5309
5310
c906108c 5311/* Read the contents of the section at OFFSET and of size SIZE from the
233a11ab
CS
5312 object file specified by OBJFILE into the objfile_obstack and return it.
5313 If the section is compressed, uncompress it before returning. */
c906108c 5314
fe1b8b76 5315gdb_byte *
188dd5d6 5316dwarf2_read_section (struct objfile *objfile, asection *sectp)
c906108c
SS
5317{
5318 bfd *abfd = objfile->obfd;
fe1b8b76 5319 gdb_byte *buf, *retbuf;
2c500098 5320 bfd_size_type size = bfd_get_section_size (sectp);
233a11ab 5321 unsigned char header[4];
c906108c
SS
5322
5323 if (size == 0)
5324 return NULL;
5325
233a11ab
CS
5326 /* Check if the file has a 4-byte header indicating compression. */
5327 if (size > sizeof (header)
5328 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
5329 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
5330 {
5331 /* Upon decompression, update the buffer and its size. */
5332 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
5333 {
5334 zlib_decompress_section (objfile, sectp, &buf, &size);
5335 dwarf2_resize_section (sectp, size);
5336 return buf;
5337 }
5338 }
5339
5340 /* If we get here, we are a normal, not-compressed section. */
fe1b8b76 5341 buf = obstack_alloc (&objfile->objfile_obstack, size);
233a11ab
CS
5342 /* When debugging .o files, we may need to apply relocations; see
5343 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
5344 We never compress sections in .o files, so we only need to
5345 try this when the section is not compressed. */
fe1b8b76 5346 retbuf = symfile_relocate_debug_section (abfd, sectp, buf);
086df311
DJ
5347 if (retbuf != NULL)
5348 return retbuf;
5349
188dd5d6
DJ
5350 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
5351 || bfd_bread (buf, size, abfd) != size)
8a3fe4f8 5352 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
188dd5d6
DJ
5353 bfd_get_filename (abfd));
5354
c906108c
SS
5355 return buf;
5356}
5357
5358/* In DWARF version 2, the description of the debugging information is
5359 stored in a separate .debug_abbrev section. Before we read any
5360 dies from a section we read in all abbreviations and install them
72bf9492
DJ
5361 in a hash table. This function also sets flags in CU describing
5362 the data found in the abbrev table. */
c906108c
SS
5363
5364static void
e7c27a73 5365dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
c906108c 5366{
e7c27a73 5367 struct comp_unit_head *cu_header = &cu->header;
fe1b8b76 5368 gdb_byte *abbrev_ptr;
c906108c
SS
5369 struct abbrev_info *cur_abbrev;
5370 unsigned int abbrev_number, bytes_read, abbrev_name;
5371 unsigned int abbrev_form, hash_number;
f3dd6933
DJ
5372 struct attr_abbrev *cur_attrs;
5373 unsigned int allocated_attrs;
c906108c 5374
57349743 5375 /* Initialize dwarf2 abbrevs */
f3dd6933
DJ
5376 obstack_init (&cu->abbrev_obstack);
5377 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
5378 (ABBREV_HASH_SIZE
5379 * sizeof (struct abbrev_info *)));
5380 memset (cu->dwarf2_abbrevs, 0,
5381 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 5382
6502dd73 5383 abbrev_ptr = dwarf2_per_objfile->abbrev_buffer + cu_header->abbrev_offset;
c906108c
SS
5384 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5385 abbrev_ptr += bytes_read;
5386
f3dd6933
DJ
5387 allocated_attrs = ATTR_ALLOC_CHUNK;
5388 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
5389
c906108c
SS
5390 /* loop until we reach an abbrev number of 0 */
5391 while (abbrev_number)
5392 {
f3dd6933 5393 cur_abbrev = dwarf_alloc_abbrev (cu);
c906108c
SS
5394
5395 /* read in abbrev header */
5396 cur_abbrev->number = abbrev_number;
5397 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5398 abbrev_ptr += bytes_read;
5399 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
5400 abbrev_ptr += 1;
5401
72bf9492
DJ
5402 if (cur_abbrev->tag == DW_TAG_namespace)
5403 cu->has_namespace_info = 1;
5404
c906108c
SS
5405 /* now read in declarations */
5406 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5407 abbrev_ptr += bytes_read;
5408 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5409 abbrev_ptr += bytes_read;
5410 while (abbrev_name)
5411 {
f3dd6933 5412 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 5413 {
f3dd6933
DJ
5414 allocated_attrs += ATTR_ALLOC_CHUNK;
5415 cur_attrs
5416 = xrealloc (cur_attrs, (allocated_attrs
5417 * sizeof (struct attr_abbrev)));
c906108c 5418 }
ae038cb0
DJ
5419
5420 /* Record whether this compilation unit might have
5421 inter-compilation-unit references. If we don't know what form
5422 this attribute will have, then it might potentially be a
5423 DW_FORM_ref_addr, so we conservatively expect inter-CU
5424 references. */
5425
5426 if (abbrev_form == DW_FORM_ref_addr
5427 || abbrev_form == DW_FORM_indirect)
5428 cu->has_form_ref_addr = 1;
5429
f3dd6933
DJ
5430 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
5431 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
5432 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5433 abbrev_ptr += bytes_read;
5434 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5435 abbrev_ptr += bytes_read;
5436 }
5437
f3dd6933
DJ
5438 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
5439 (cur_abbrev->num_attrs
5440 * sizeof (struct attr_abbrev)));
5441 memcpy (cur_abbrev->attrs, cur_attrs,
5442 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
5443
c906108c 5444 hash_number = abbrev_number % ABBREV_HASH_SIZE;
f3dd6933
DJ
5445 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
5446 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
c906108c
SS
5447
5448 /* Get next abbreviation.
5449 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
5450 always properly terminated with an abbrev number of 0.
5451 Exit loop if we encounter an abbreviation which we have
5452 already read (which means we are about to read the abbreviations
5453 for the next compile unit) or if the end of the abbreviation
5454 table is reached. */
6502dd73
DJ
5455 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev_buffer)
5456 >= dwarf2_per_objfile->abbrev_size)
c906108c
SS
5457 break;
5458 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5459 abbrev_ptr += bytes_read;
e7c27a73 5460 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
c906108c
SS
5461 break;
5462 }
f3dd6933
DJ
5463
5464 xfree (cur_attrs);
c906108c
SS
5465}
5466
f3dd6933 5467/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 5468
c906108c 5469static void
f3dd6933 5470dwarf2_free_abbrev_table (void *ptr_to_cu)
c906108c 5471{
f3dd6933 5472 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 5473
f3dd6933
DJ
5474 obstack_free (&cu->abbrev_obstack, NULL);
5475 cu->dwarf2_abbrevs = NULL;
c906108c
SS
5476}
5477
5478/* Lookup an abbrev_info structure in the abbrev hash table. */
5479
5480static struct abbrev_info *
e7c27a73 5481dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
c906108c
SS
5482{
5483 unsigned int hash_number;
5484 struct abbrev_info *abbrev;
5485
5486 hash_number = number % ABBREV_HASH_SIZE;
f3dd6933 5487 abbrev = cu->dwarf2_abbrevs[hash_number];
c906108c
SS
5488
5489 while (abbrev)
5490 {
5491 if (abbrev->number == number)
5492 return abbrev;
5493 else
5494 abbrev = abbrev->next;
5495 }
5496 return NULL;
5497}
5498
72bf9492
DJ
5499/* Returns nonzero if TAG represents a type that we might generate a partial
5500 symbol for. */
5501
5502static int
5503is_type_tag_for_partial (int tag)
5504{
5505 switch (tag)
5506 {
5507#if 0
5508 /* Some types that would be reasonable to generate partial symbols for,
5509 that we don't at present. */
5510 case DW_TAG_array_type:
5511 case DW_TAG_file_type:
5512 case DW_TAG_ptr_to_member_type:
5513 case DW_TAG_set_type:
5514 case DW_TAG_string_type:
5515 case DW_TAG_subroutine_type:
5516#endif
5517 case DW_TAG_base_type:
5518 case DW_TAG_class_type:
680b30c7 5519 case DW_TAG_interface_type:
72bf9492
DJ
5520 case DW_TAG_enumeration_type:
5521 case DW_TAG_structure_type:
5522 case DW_TAG_subrange_type:
5523 case DW_TAG_typedef:
5524 case DW_TAG_union_type:
5525 return 1;
5526 default:
5527 return 0;
5528 }
5529}
5530
5531/* Load all DIEs that are interesting for partial symbols into memory. */
5532
5533static struct partial_die_info *
fe1b8b76 5534load_partial_dies (bfd *abfd, gdb_byte *info_ptr, int building_psymtab,
72bf9492
DJ
5535 struct dwarf2_cu *cu)
5536{
5537 struct partial_die_info *part_die;
5538 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
5539 struct abbrev_info *abbrev;
5540 unsigned int bytes_read;
5afb4e99 5541 unsigned int load_all = 0;
72bf9492
DJ
5542
5543 int nesting_level = 1;
5544
5545 parent_die = NULL;
5546 last_die = NULL;
5547
5afb4e99
DJ
5548 if (cu->per_cu && cu->per_cu->load_all_dies)
5549 load_all = 1;
5550
72bf9492
DJ
5551 cu->partial_dies
5552 = htab_create_alloc_ex (cu->header.length / 12,
5553 partial_die_hash,
5554 partial_die_eq,
5555 NULL,
5556 &cu->comp_unit_obstack,
5557 hashtab_obstack_allocate,
5558 dummy_obstack_deallocate);
5559
5560 part_die = obstack_alloc (&cu->comp_unit_obstack,
5561 sizeof (struct partial_die_info));
5562
5563 while (1)
5564 {
5565 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
5566
5567 /* A NULL abbrev means the end of a series of children. */
5568 if (abbrev == NULL)
5569 {
5570 if (--nesting_level == 0)
5571 {
5572 /* PART_DIE was probably the last thing allocated on the
5573 comp_unit_obstack, so we could call obstack_free
5574 here. We don't do that because the waste is small,
5575 and will be cleaned up when we're done with this
5576 compilation unit. This way, we're also more robust
5577 against other users of the comp_unit_obstack. */
5578 return first_die;
5579 }
5580 info_ptr += bytes_read;
5581 last_die = parent_die;
5582 parent_die = parent_die->die_parent;
5583 continue;
5584 }
5585
5afb4e99
DJ
5586 /* Check whether this DIE is interesting enough to save. Normally
5587 we would not be interested in members here, but there may be
5588 later variables referencing them via DW_AT_specification (for
5589 static members). */
5590 if (!load_all
5591 && !is_type_tag_for_partial (abbrev->tag)
72bf9492
DJ
5592 && abbrev->tag != DW_TAG_enumerator
5593 && abbrev->tag != DW_TAG_subprogram
5594 && abbrev->tag != DW_TAG_variable
5afb4e99
DJ
5595 && abbrev->tag != DW_TAG_namespace
5596 && abbrev->tag != DW_TAG_member)
72bf9492
DJ
5597 {
5598 /* Otherwise we skip to the next sibling, if any. */
5599 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
5600 continue;
5601 }
5602
5603 info_ptr = read_partial_die (part_die, abbrev, bytes_read,
5604 abfd, info_ptr, cu);
5605
5606 /* This two-pass algorithm for processing partial symbols has a
5607 high cost in cache pressure. Thus, handle some simple cases
5608 here which cover the majority of C partial symbols. DIEs
5609 which neither have specification tags in them, nor could have
5610 specification tags elsewhere pointing at them, can simply be
5611 processed and discarded.
5612
5613 This segment is also optional; scan_partial_symbols and
5614 add_partial_symbol will handle these DIEs if we chain
5615 them in normally. When compilers which do not emit large
5616 quantities of duplicate debug information are more common,
5617 this code can probably be removed. */
5618
5619 /* Any complete simple types at the top level (pretty much all
5620 of them, for a language without namespaces), can be processed
5621 directly. */
5622 if (parent_die == NULL
5623 && part_die->has_specification == 0
5624 && part_die->is_declaration == 0
5625 && (part_die->tag == DW_TAG_typedef
5626 || part_die->tag == DW_TAG_base_type
5627 || part_die->tag == DW_TAG_subrange_type))
5628 {
5629 if (building_psymtab && part_die->name != NULL)
5630 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5631 VAR_DOMAIN, LOC_TYPEDEF,
5632 &cu->objfile->static_psymbols,
5633 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5634 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5635 continue;
5636 }
5637
5638 /* If we're at the second level, and we're an enumerator, and
5639 our parent has no specification (meaning possibly lives in a
5640 namespace elsewhere), then we can add the partial symbol now
5641 instead of queueing it. */
5642 if (part_die->tag == DW_TAG_enumerator
5643 && parent_die != NULL
5644 && parent_die->die_parent == NULL
5645 && parent_die->tag == DW_TAG_enumeration_type
5646 && parent_die->has_specification == 0)
5647 {
5648 if (part_die->name == NULL)
e2e0b3e5 5649 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
72bf9492
DJ
5650 else if (building_psymtab)
5651 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5652 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
5653 (cu->language == language_cplus
5654 || cu->language == language_java)
72bf9492
DJ
5655 ? &cu->objfile->global_psymbols
5656 : &cu->objfile->static_psymbols,
5657 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5658
5659 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5660 continue;
5661 }
5662
5663 /* We'll save this DIE so link it in. */
5664 part_die->die_parent = parent_die;
5665 part_die->die_sibling = NULL;
5666 part_die->die_child = NULL;
5667
5668 if (last_die && last_die == parent_die)
5669 last_die->die_child = part_die;
5670 else if (last_die)
5671 last_die->die_sibling = part_die;
5672
5673 last_die = part_die;
5674
5675 if (first_die == NULL)
5676 first_die = part_die;
5677
5678 /* Maybe add the DIE to the hash table. Not all DIEs that we
5679 find interesting need to be in the hash table, because we
5680 also have the parent/sibling/child chains; only those that we
5681 might refer to by offset later during partial symbol reading.
5682
5683 For now this means things that might have be the target of a
5684 DW_AT_specification, DW_AT_abstract_origin, or
5685 DW_AT_extension. DW_AT_extension will refer only to
5686 namespaces; DW_AT_abstract_origin refers to functions (and
5687 many things under the function DIE, but we do not recurse
5688 into function DIEs during partial symbol reading) and
5689 possibly variables as well; DW_AT_specification refers to
5690 declarations. Declarations ought to have the DW_AT_declaration
5691 flag. It happens that GCC forgets to put it in sometimes, but
5692 only for functions, not for types.
5693
5694 Adding more things than necessary to the hash table is harmless
5695 except for the performance cost. Adding too few will result in
5afb4e99
DJ
5696 wasted time in find_partial_die, when we reread the compilation
5697 unit with load_all_dies set. */
72bf9492 5698
5afb4e99
DJ
5699 if (load_all
5700 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
5701 || abbrev->tag == DW_TAG_variable
5702 || abbrev->tag == DW_TAG_namespace
5703 || part_die->is_declaration)
5704 {
5705 void **slot;
5706
5707 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
5708 part_die->offset, INSERT);
5709 *slot = part_die;
5710 }
5711
5712 part_die = obstack_alloc (&cu->comp_unit_obstack,
5713 sizeof (struct partial_die_info));
5714
5715 /* For some DIEs we want to follow their children (if any). For C
5716 we have no reason to follow the children of structures; for other
5717 languages we have to, both so that we can get at method physnames
5718 to infer fully qualified class names, and for DW_AT_specification. */
5719 if (last_die->has_children
5afb4e99
DJ
5720 && (load_all
5721 || last_die->tag == DW_TAG_namespace
72bf9492
DJ
5722 || last_die->tag == DW_TAG_enumeration_type
5723 || (cu->language != language_c
5724 && (last_die->tag == DW_TAG_class_type
680b30c7 5725 || last_die->tag == DW_TAG_interface_type
72bf9492
DJ
5726 || last_die->tag == DW_TAG_structure_type
5727 || last_die->tag == DW_TAG_union_type))))
5728 {
5729 nesting_level++;
5730 parent_die = last_die;
5731 continue;
5732 }
5733
5734 /* Otherwise we skip to the next sibling, if any. */
5735 info_ptr = locate_pdi_sibling (last_die, info_ptr, abfd, cu);
5736
5737 /* Back to the top, do it again. */
5738 }
5739}
5740
c906108c
SS
5741/* Read a minimal amount of information into the minimal die structure. */
5742
fe1b8b76 5743static gdb_byte *
72bf9492
DJ
5744read_partial_die (struct partial_die_info *part_die,
5745 struct abbrev_info *abbrev,
5746 unsigned int abbrev_len, bfd *abfd,
fe1b8b76 5747 gdb_byte *info_ptr, struct dwarf2_cu *cu)
c906108c 5748{
72bf9492 5749 unsigned int bytes_read, i;
c906108c 5750 struct attribute attr;
c5aa993b 5751 int has_low_pc_attr = 0;
c906108c 5752 int has_high_pc_attr = 0;
e7030f15 5753 CORE_ADDR base_address = 0;
85cbf3d3
JK
5754 enum
5755 {
5756 base_address_none,
5757 base_address_low_pc,
5758 /* Overrides BASE_ADDRESS_LOW_PC. */
5759 base_address_entry_pc
5760 }
5761 base_address_type = base_address_none;
c906108c 5762
72bf9492 5763 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 5764
6502dd73 5765 part_die->offset = info_ptr - dwarf2_per_objfile->info_buffer;
72bf9492
DJ
5766
5767 info_ptr += abbrev_len;
5768
5769 if (abbrev == NULL)
5770 return info_ptr;
5771
c906108c
SS
5772 part_die->tag = abbrev->tag;
5773 part_die->has_children = abbrev->has_children;
c906108c
SS
5774
5775 for (i = 0; i < abbrev->num_attrs; ++i)
5776 {
e7c27a73 5777 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
c906108c
SS
5778
5779 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 5780 partial symbol table. */
c906108c
SS
5781 switch (attr.name)
5782 {
5783 case DW_AT_name:
5784
5785 /* Prefer DW_AT_MIPS_linkage_name over DW_AT_name. */
5786 if (part_die->name == NULL)
5787 part_die->name = DW_STRING (&attr);
5788 break;
57c22c6c
BR
5789 case DW_AT_comp_dir:
5790 if (part_die->dirname == NULL)
5791 part_die->dirname = DW_STRING (&attr);
5792 break;
c906108c
SS
5793 case DW_AT_MIPS_linkage_name:
5794 part_die->name = DW_STRING (&attr);
5795 break;
5796 case DW_AT_low_pc:
5797 has_low_pc_attr = 1;
5798 part_die->lowpc = DW_ADDR (&attr);
85cbf3d3
JK
5799 if (part_die->tag == DW_TAG_compile_unit
5800 && base_address_type < base_address_low_pc)
5801 {
5802 base_address = DW_ADDR (&attr);
5803 base_address_type = base_address_low_pc;
5804 }
c906108c
SS
5805 break;
5806 case DW_AT_high_pc:
5807 has_high_pc_attr = 1;
5808 part_die->highpc = DW_ADDR (&attr);
5809 break;
85cbf3d3
JK
5810 case DW_AT_entry_pc:
5811 if (part_die->tag == DW_TAG_compile_unit
5812 && base_address_type < base_address_entry_pc)
5813 {
5814 base_address = DW_ADDR (&attr);
5815 base_address_type = base_address_entry_pc;
5816 }
5817 break;
43039443 5818 case DW_AT_ranges:
ff013f42
JK
5819 if (part_die->tag == DW_TAG_compile_unit)
5820 {
5821 cu->ranges_offset = DW_UNSND (&attr);
5822 cu->has_ranges_offset = 1;
5823 }
43039443 5824 break;
c906108c 5825 case DW_AT_location:
8e19ed76
PS
5826 /* Support the .debug_loc offsets */
5827 if (attr_form_is_block (&attr))
5828 {
5829 part_die->locdesc = DW_BLOCK (&attr);
5830 }
3690dd37 5831 else if (attr_form_is_section_offset (&attr))
8e19ed76 5832 {
4d3c2250 5833 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
5834 }
5835 else
5836 {
4d3c2250
KB
5837 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5838 "partial symbol information");
8e19ed76 5839 }
c906108c
SS
5840 break;
5841 case DW_AT_language:
5842 part_die->language = DW_UNSND (&attr);
5843 break;
5844 case DW_AT_external:
5845 part_die->is_external = DW_UNSND (&attr);
5846 break;
5847 case DW_AT_declaration:
5848 part_die->is_declaration = DW_UNSND (&attr);
5849 break;
5850 case DW_AT_type:
5851 part_die->has_type = 1;
5852 break;
5853 case DW_AT_abstract_origin:
5854 case DW_AT_specification:
72bf9492
DJ
5855 case DW_AT_extension:
5856 part_die->has_specification = 1;
5857 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr, cu);
c906108c
SS
5858 break;
5859 case DW_AT_sibling:
5860 /* Ignore absolute siblings, they might point outside of
5861 the current compile unit. */
5862 if (attr.form == DW_FORM_ref_addr)
e2e0b3e5 5863 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
c906108c 5864 else
6502dd73
DJ
5865 part_die->sibling = dwarf2_per_objfile->info_buffer
5866 + dwarf2_get_ref_die_offset (&attr, cu);
c906108c 5867 break;
aaa75496
JB
5868 case DW_AT_stmt_list:
5869 part_die->has_stmt_list = 1;
5870 part_die->line_offset = DW_UNSND (&attr);
5871 break;
fa4028e9
JB
5872 case DW_AT_byte_size:
5873 part_die->has_byte_size = 1;
5874 break;
68511cec
CES
5875 case DW_AT_calling_convention:
5876 /* DWARF doesn't provide a way to identify a program's source-level
5877 entry point. DW_AT_calling_convention attributes are only meant
5878 to describe functions' calling conventions.
5879
5880 However, because it's a necessary piece of information in
5881 Fortran, and because DW_CC_program is the only piece of debugging
5882 information whose definition refers to a 'main program' at all,
5883 several compilers have begun marking Fortran main programs with
5884 DW_CC_program --- even when those functions use the standard
5885 calling conventions.
5886
5887 So until DWARF specifies a way to provide this information and
5888 compilers pick up the new representation, we'll support this
5889 practice. */
5890 if (DW_UNSND (&attr) == DW_CC_program
5891 && cu->language == language_fortran)
5892 set_main_name (part_die->name);
5893 break;
c906108c
SS
5894 default:
5895 break;
5896 }
5897 }
5898
c906108c
SS
5899 /* When using the GNU linker, .gnu.linkonce. sections are used to
5900 eliminate duplicate copies of functions and vtables and such.
5901 The linker will arbitrarily choose one and discard the others.
5902 The AT_*_pc values for such functions refer to local labels in
5903 these sections. If the section from that file was discarded, the
5904 labels are not in the output, so the relocs get a value of 0.
5905 If this is a discarded function, mark the pc bounds as invalid,
5906 so that GDB will ignore it. */
5907 if (has_low_pc_attr && has_high_pc_attr
5908 && part_die->lowpc < part_die->highpc
5909 && (part_die->lowpc != 0
72dca2f5 5910 || dwarf2_per_objfile->has_section_at_zero))
0b010bcc 5911 part_die->has_pc_info = 1;
85cbf3d3
JK
5912
5913 if (base_address_type != base_address_none && !cu->header.base_known)
5914 {
5915 gdb_assert (part_die->tag == DW_TAG_compile_unit);
5916 cu->header.base_known = 1;
5917 cu->header.base_address = base_address;
5918 }
5919
c906108c
SS
5920 return info_ptr;
5921}
5922
72bf9492
DJ
5923/* Find a cached partial DIE at OFFSET in CU. */
5924
5925static struct partial_die_info *
5926find_partial_die_in_comp_unit (unsigned long offset, struct dwarf2_cu *cu)
5927{
5928 struct partial_die_info *lookup_die = NULL;
5929 struct partial_die_info part_die;
5930
5931 part_die.offset = offset;
5932 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
5933
72bf9492
DJ
5934 return lookup_die;
5935}
5936
5937/* Find a partial DIE at OFFSET, which may or may not be in CU. */
5938
5939static struct partial_die_info *
10b3939b 5940find_partial_die (unsigned long offset, struct dwarf2_cu *cu)
72bf9492 5941{
5afb4e99
DJ
5942 struct dwarf2_per_cu_data *per_cu = NULL;
5943 struct partial_die_info *pd = NULL;
72bf9492
DJ
5944
5945 if (offset >= cu->header.offset
5946 && offset < cu->header.offset + cu->header.length)
5afb4e99
DJ
5947 {
5948 pd = find_partial_die_in_comp_unit (offset, cu);
5949 if (pd != NULL)
5950 return pd;
5951 }
72bf9492 5952
ae038cb0
DJ
5953 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
5954
ae038cb0
DJ
5955 if (per_cu->cu == NULL)
5956 {
5957 load_comp_unit (per_cu, cu->objfile);
5958 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5959 dwarf2_per_objfile->read_in_chain = per_cu;
5960 }
5961
5962 per_cu->cu->last_used = 0;
5afb4e99
DJ
5963 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5964
5965 if (pd == NULL && per_cu->load_all_dies == 0)
5966 {
5967 struct cleanup *back_to;
5968 struct partial_die_info comp_unit_die;
5969 struct abbrev_info *abbrev;
5970 unsigned int bytes_read;
5971 char *info_ptr;
5972
5973 per_cu->load_all_dies = 1;
5974
5975 /* Re-read the DIEs. */
5976 back_to = make_cleanup (null_cleanup, 0);
5977 if (per_cu->cu->dwarf2_abbrevs == NULL)
5978 {
5979 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
5980 back_to = make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
5981 }
5982 info_ptr = per_cu->cu->header.first_die_ptr;
5983 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
5984 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
5985 per_cu->cu->objfile->obfd, info_ptr,
5986 per_cu->cu);
5987 if (comp_unit_die.has_children)
5988 load_partial_dies (per_cu->cu->objfile->obfd, info_ptr, 0, per_cu->cu);
5989 do_cleanups (back_to);
5990
5991 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5992 }
5993
5994 if (pd == NULL)
5995 internal_error (__FILE__, __LINE__,
5996 _("could not find partial DIE 0x%lx in cache [from module %s]\n"),
5997 offset, bfd_get_filename (cu->objfile->obfd));
5998 return pd;
72bf9492
DJ
5999}
6000
6001/* Adjust PART_DIE before generating a symbol for it. This function
6002 may set the is_external flag or change the DIE's name. */
6003
6004static void
6005fixup_partial_die (struct partial_die_info *part_die,
6006 struct dwarf2_cu *cu)
6007{
6008 /* If we found a reference attribute and the DIE has no name, try
6009 to find a name in the referred to DIE. */
6010
6011 if (part_die->name == NULL && part_die->has_specification)
6012 {
6013 struct partial_die_info *spec_die;
72bf9492 6014
10b3939b 6015 spec_die = find_partial_die (part_die->spec_offset, cu);
72bf9492 6016
10b3939b 6017 fixup_partial_die (spec_die, cu);
72bf9492
DJ
6018
6019 if (spec_die->name)
6020 {
6021 part_die->name = spec_die->name;
6022
6023 /* Copy DW_AT_external attribute if it is set. */
6024 if (spec_die->is_external)
6025 part_die->is_external = spec_die->is_external;
6026 }
6027 }
6028
6029 /* Set default names for some unnamed DIEs. */
6030 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
6031 || part_die->tag == DW_TAG_class_type))
6032 part_die->name = "(anonymous class)";
6033
6034 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
6035 part_die->name = "(anonymous namespace)";
6036
6037 if (part_die->tag == DW_TAG_structure_type
6038 || part_die->tag == DW_TAG_class_type
6039 || part_die->tag == DW_TAG_union_type)
6040 guess_structure_name (part_die, cu);
6041}
6042
639d11d3
DC
6043/* Read the die from the .debug_info section buffer. Set DIEP to
6044 point to a newly allocated die with its information, except for its
6045 child, sibling, and parent fields. Set HAS_CHILDREN to tell
6046 whether the die has children or not. */
c906108c 6047
fe1b8b76
JB
6048static gdb_byte *
6049read_full_die (struct die_info **diep, bfd *abfd, gdb_byte *info_ptr,
e7c27a73 6050 struct dwarf2_cu *cu, int *has_children)
c906108c
SS
6051{
6052 unsigned int abbrev_number, bytes_read, i, offset;
6053 struct abbrev_info *abbrev;
6054 struct die_info *die;
6055
6502dd73 6056 offset = info_ptr - dwarf2_per_objfile->info_buffer;
c906108c
SS
6057 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6058 info_ptr += bytes_read;
6059 if (!abbrev_number)
6060 {
6061 die = dwarf_alloc_die ();
6062 die->tag = 0;
6063 die->abbrev = abbrev_number;
c906108c 6064 *diep = die;
639d11d3 6065 *has_children = 0;
c906108c
SS
6066 return info_ptr;
6067 }
6068
e7c27a73 6069 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
c906108c
SS
6070 if (!abbrev)
6071 {
8a3fe4f8 6072 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
72bf9492 6073 abbrev_number,
639d11d3 6074 bfd_get_filename (abfd));
c906108c
SS
6075 }
6076 die = dwarf_alloc_die ();
6077 die->offset = offset;
6078 die->tag = abbrev->tag;
c906108c 6079 die->abbrev = abbrev_number;
c906108c
SS
6080
6081 die->num_attrs = abbrev->num_attrs;
6082 die->attrs = (struct attribute *)
6083 xmalloc (die->num_attrs * sizeof (struct attribute));
6084
6085 for (i = 0; i < abbrev->num_attrs; ++i)
6086 {
6087 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
e7c27a73 6088 abfd, info_ptr, cu);
10b3939b
DJ
6089
6090 /* If this attribute is an absolute reference to a different
6091 compilation unit, make sure that compilation unit is loaded
6092 also. */
6093 if (die->attrs[i].form == DW_FORM_ref_addr
6094 && (DW_ADDR (&die->attrs[i]) < cu->header.offset
6095 || (DW_ADDR (&die->attrs[i])
6096 >= cu->header.offset + cu->header.length)))
6097 {
6098 struct dwarf2_per_cu_data *per_cu;
6099 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (&die->attrs[i]),
6100 cu->objfile);
6101
6102 /* Mark the dependence relation so that we don't flush PER_CU
6103 too early. */
6104 dwarf2_add_dependence (cu, per_cu);
6105
6106 /* If it's already on the queue, we have nothing to do. */
6107 if (per_cu->queued)
6108 continue;
6109
6110 /* If the compilation unit is already loaded, just mark it as
6111 used. */
6112 if (per_cu->cu != NULL)
6113 {
6114 per_cu->cu->last_used = 0;
6115 continue;
6116 }
6117
6118 /* Add it to the queue. */
6119 queue_comp_unit (per_cu);
6120 }
c906108c
SS
6121 }
6122
6123 *diep = die;
639d11d3 6124 *has_children = abbrev->has_children;
c906108c
SS
6125 return info_ptr;
6126}
6127
a8329558 6128/* Read an attribute value described by an attribute form. */
c906108c 6129
fe1b8b76 6130static gdb_byte *
a8329558 6131read_attribute_value (struct attribute *attr, unsigned form,
fe1b8b76 6132 bfd *abfd, gdb_byte *info_ptr,
e7c27a73 6133 struct dwarf2_cu *cu)
c906108c 6134{
e7c27a73 6135 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
6136 unsigned int bytes_read;
6137 struct dwarf_block *blk;
6138
a8329558
KW
6139 attr->form = form;
6140 switch (form)
c906108c
SS
6141 {
6142 case DW_FORM_addr:
6143 case DW_FORM_ref_addr:
e7c27a73 6144 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 6145 info_ptr += bytes_read;
c906108c
SS
6146 break;
6147 case DW_FORM_block2:
7b5a2f43 6148 blk = dwarf_alloc_block (cu);
c906108c
SS
6149 blk->size = read_2_bytes (abfd, info_ptr);
6150 info_ptr += 2;
6151 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
6152 info_ptr += blk->size;
6153 DW_BLOCK (attr) = blk;
6154 break;
6155 case DW_FORM_block4:
7b5a2f43 6156 blk = dwarf_alloc_block (cu);
c906108c
SS
6157 blk->size = read_4_bytes (abfd, info_ptr);
6158 info_ptr += 4;
6159 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
6160 info_ptr += blk->size;
6161 DW_BLOCK (attr) = blk;
6162 break;
6163 case DW_FORM_data2:
6164 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
6165 info_ptr += 2;
6166 break;
6167 case DW_FORM_data4:
6168 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
6169 info_ptr += 4;
6170 break;
6171 case DW_FORM_data8:
6172 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
6173 info_ptr += 8;
6174 break;
6175 case DW_FORM_string:
6176 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
6177 info_ptr += bytes_read;
6178 break;
4bdf3d34
JJ
6179 case DW_FORM_strp:
6180 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
6181 &bytes_read);
6182 info_ptr += bytes_read;
6183 break;
c906108c 6184 case DW_FORM_block:
7b5a2f43 6185 blk = dwarf_alloc_block (cu);
c906108c
SS
6186 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6187 info_ptr += bytes_read;
6188 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
6189 info_ptr += blk->size;
6190 DW_BLOCK (attr) = blk;
6191 break;
6192 case DW_FORM_block1:
7b5a2f43 6193 blk = dwarf_alloc_block (cu);
c906108c
SS
6194 blk->size = read_1_byte (abfd, info_ptr);
6195 info_ptr += 1;
6196 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
6197 info_ptr += blk->size;
6198 DW_BLOCK (attr) = blk;
6199 break;
6200 case DW_FORM_data1:
6201 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
6202 info_ptr += 1;
6203 break;
6204 case DW_FORM_flag:
6205 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
6206 info_ptr += 1;
6207 break;
6208 case DW_FORM_sdata:
6209 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
6210 info_ptr += bytes_read;
6211 break;
6212 case DW_FORM_udata:
6213 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6214 info_ptr += bytes_read;
6215 break;
6216 case DW_FORM_ref1:
10b3939b 6217 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
c906108c
SS
6218 info_ptr += 1;
6219 break;
6220 case DW_FORM_ref2:
10b3939b 6221 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
c906108c
SS
6222 info_ptr += 2;
6223 break;
6224 case DW_FORM_ref4:
10b3939b 6225 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
c906108c
SS
6226 info_ptr += 4;
6227 break;
613e1657 6228 case DW_FORM_ref8:
10b3939b 6229 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
613e1657
KB
6230 info_ptr += 8;
6231 break;
c906108c 6232 case DW_FORM_ref_udata:
10b3939b
DJ
6233 DW_ADDR (attr) = (cu->header.offset
6234 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
6235 info_ptr += bytes_read;
6236 break;
c906108c 6237 case DW_FORM_indirect:
a8329558
KW
6238 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6239 info_ptr += bytes_read;
e7c27a73 6240 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
a8329558 6241 break;
c906108c 6242 default:
8a3fe4f8 6243 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
6244 dwarf_form_name (form),
6245 bfd_get_filename (abfd));
c906108c
SS
6246 }
6247 return info_ptr;
6248}
6249
a8329558
KW
6250/* Read an attribute described by an abbreviated attribute. */
6251
fe1b8b76 6252static gdb_byte *
a8329558 6253read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
fe1b8b76 6254 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
a8329558
KW
6255{
6256 attr->name = abbrev->name;
e7c27a73 6257 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
a8329558
KW
6258}
6259
c906108c
SS
6260/* read dwarf information from a buffer */
6261
6262static unsigned int
fe1b8b76 6263read_1_byte (bfd *abfd, gdb_byte *buf)
c906108c 6264{
fe1b8b76 6265 return bfd_get_8 (abfd, buf);
c906108c
SS
6266}
6267
6268static int
fe1b8b76 6269read_1_signed_byte (bfd *abfd, gdb_byte *buf)
c906108c 6270{
fe1b8b76 6271 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
6272}
6273
6274static unsigned int
fe1b8b76 6275read_2_bytes (bfd *abfd, gdb_byte *buf)
c906108c 6276{
fe1b8b76 6277 return bfd_get_16 (abfd, buf);
c906108c
SS
6278}
6279
6280static int
fe1b8b76 6281read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 6282{
fe1b8b76 6283 return bfd_get_signed_16 (abfd, buf);
c906108c
SS
6284}
6285
6286static unsigned int
fe1b8b76 6287read_4_bytes (bfd *abfd, gdb_byte *buf)
c906108c 6288{
fe1b8b76 6289 return bfd_get_32 (abfd, buf);
c906108c
SS
6290}
6291
6292static int
fe1b8b76 6293read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 6294{
fe1b8b76 6295 return bfd_get_signed_32 (abfd, buf);
c906108c
SS
6296}
6297
ce5d95e1 6298static unsigned long
fe1b8b76 6299read_8_bytes (bfd *abfd, gdb_byte *buf)
c906108c 6300{
fe1b8b76 6301 return bfd_get_64 (abfd, buf);
c906108c
SS
6302}
6303
6304static CORE_ADDR
fe1b8b76 6305read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 6306 unsigned int *bytes_read)
c906108c 6307{
e7c27a73 6308 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
6309 CORE_ADDR retval = 0;
6310
107d2387 6311 if (cu_header->signed_addr_p)
c906108c 6312 {
107d2387
AC
6313 switch (cu_header->addr_size)
6314 {
6315 case 2:
fe1b8b76 6316 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
6317 break;
6318 case 4:
fe1b8b76 6319 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
6320 break;
6321 case 8:
fe1b8b76 6322 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
6323 break;
6324 default:
8e65ff28 6325 internal_error (__FILE__, __LINE__,
e2e0b3e5 6326 _("read_address: bad switch, signed [in module %s]"),
659b0389 6327 bfd_get_filename (abfd));
107d2387
AC
6328 }
6329 }
6330 else
6331 {
6332 switch (cu_header->addr_size)
6333 {
6334 case 2:
fe1b8b76 6335 retval = bfd_get_16 (abfd, buf);
107d2387
AC
6336 break;
6337 case 4:
fe1b8b76 6338 retval = bfd_get_32 (abfd, buf);
107d2387
AC
6339 break;
6340 case 8:
fe1b8b76 6341 retval = bfd_get_64 (abfd, buf);
107d2387
AC
6342 break;
6343 default:
8e65ff28 6344 internal_error (__FILE__, __LINE__,
e2e0b3e5 6345 _("read_address: bad switch, unsigned [in module %s]"),
659b0389 6346 bfd_get_filename (abfd));
107d2387 6347 }
c906108c 6348 }
64367e0a 6349
107d2387
AC
6350 *bytes_read = cu_header->addr_size;
6351 return retval;
c906108c
SS
6352}
6353
f7ef9339 6354/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
6355 specification allows the initial length to take up either 4 bytes
6356 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
6357 bytes describe the length and all offsets will be 8 bytes in length
6358 instead of 4.
6359
f7ef9339
KB
6360 An older, non-standard 64-bit format is also handled by this
6361 function. The older format in question stores the initial length
6362 as an 8-byte quantity without an escape value. Lengths greater
6363 than 2^32 aren't very common which means that the initial 4 bytes
6364 is almost always zero. Since a length value of zero doesn't make
6365 sense for the 32-bit format, this initial zero can be considered to
6366 be an escape value which indicates the presence of the older 64-bit
6367 format. As written, the code can't detect (old format) lengths
917c78fc
MK
6368 greater than 4GB. If it becomes necessary to handle lengths
6369 somewhat larger than 4GB, we could allow other small values (such
6370 as the non-sensical values of 1, 2, and 3) to also be used as
6371 escape values indicating the presence of the old format.
f7ef9339 6372
917c78fc
MK
6373 The value returned via bytes_read should be used to increment the
6374 relevant pointer after calling read_initial_length().
613e1657
KB
6375
6376 As a side effect, this function sets the fields initial_length_size
6377 and offset_size in cu_header to the values appropriate for the
6378 length field. (The format of the initial length field determines
dd373385 6379 the width of file offsets to be fetched later with read_offset().)
613e1657
KB
6380
6381 [ Note: read_initial_length() and read_offset() are based on the
6382 document entitled "DWARF Debugging Information Format", revision
f7ef9339 6383 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
6384 from:
6385
f7ef9339 6386 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
613e1657
KB
6387
6388 This document is only a draft and is subject to change. (So beware.)
6389
f7ef9339 6390 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
6391 determined empirically by examining 64-bit ELF files produced by
6392 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
6393
6394 - Kevin, July 16, 2002
613e1657
KB
6395 ] */
6396
6397static LONGEST
fe1b8b76 6398read_initial_length (bfd *abfd, gdb_byte *buf, struct comp_unit_head *cu_header,
891d2f0b 6399 unsigned int *bytes_read)
613e1657 6400{
fe1b8b76 6401 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 6402
dd373385 6403 if (length == 0xffffffff)
613e1657 6404 {
fe1b8b76 6405 length = bfd_get_64 (abfd, buf + 4);
613e1657 6406 *bytes_read = 12;
613e1657 6407 }
dd373385 6408 else if (length == 0)
f7ef9339 6409 {
dd373385 6410 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 6411 length = bfd_get_64 (abfd, buf);
f7ef9339 6412 *bytes_read = 8;
f7ef9339 6413 }
613e1657
KB
6414 else
6415 {
6416 *bytes_read = 4;
613e1657
KB
6417 }
6418
dd373385
EZ
6419 if (cu_header)
6420 {
6421 gdb_assert (cu_header->initial_length_size == 0
6422 || cu_header->initial_length_size == 4
6423 || cu_header->initial_length_size == 8
6424 || cu_header->initial_length_size == 12);
6425
6426 if (cu_header->initial_length_size != 0
6427 && cu_header->initial_length_size != *bytes_read)
6428 complaint (&symfile_complaints,
6429 _("intermixed 32-bit and 64-bit DWARF sections"));
6430
6431 cu_header->initial_length_size = *bytes_read;
6432 cu_header->offset_size = (*bytes_read == 4) ? 4 : 8;
6433 }
6434
6435 return length;
613e1657
KB
6436}
6437
6438/* Read an offset from the data stream. The size of the offset is
917c78fc 6439 given by cu_header->offset_size. */
613e1657
KB
6440
6441static LONGEST
fe1b8b76 6442read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
891d2f0b 6443 unsigned int *bytes_read)
613e1657
KB
6444{
6445 LONGEST retval = 0;
6446
6447 switch (cu_header->offset_size)
6448 {
6449 case 4:
fe1b8b76 6450 retval = bfd_get_32 (abfd, buf);
613e1657
KB
6451 *bytes_read = 4;
6452 break;
6453 case 8:
fe1b8b76 6454 retval = bfd_get_64 (abfd, buf);
613e1657
KB
6455 *bytes_read = 8;
6456 break;
6457 default:
8e65ff28 6458 internal_error (__FILE__, __LINE__,
e2e0b3e5 6459 _("read_offset: bad switch [in module %s]"),
659b0389 6460 bfd_get_filename (abfd));
613e1657
KB
6461 }
6462
917c78fc 6463 return retval;
613e1657
KB
6464}
6465
fe1b8b76
JB
6466static gdb_byte *
6467read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
c906108c
SS
6468{
6469 /* If the size of a host char is 8 bits, we can return a pointer
6470 to the buffer, otherwise we have to copy the data to a buffer
6471 allocated on the temporary obstack. */
4bdf3d34 6472 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 6473 return buf;
c906108c
SS
6474}
6475
6476static char *
fe1b8b76 6477read_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c
SS
6478{
6479 /* If the size of a host char is 8 bits, we can return a pointer
6480 to the string, otherwise we have to copy the string to a buffer
6481 allocated on the temporary obstack. */
4bdf3d34 6482 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
6483 if (*buf == '\0')
6484 {
6485 *bytes_read_ptr = 1;
6486 return NULL;
6487 }
fe1b8b76
JB
6488 *bytes_read_ptr = strlen ((char *) buf) + 1;
6489 return (char *) buf;
4bdf3d34
JJ
6490}
6491
6492static char *
fe1b8b76 6493read_indirect_string (bfd *abfd, gdb_byte *buf,
4bdf3d34
JJ
6494 const struct comp_unit_head *cu_header,
6495 unsigned int *bytes_read_ptr)
6496{
6497 LONGEST str_offset = read_offset (abfd, buf, cu_header,
891d2f0b 6498 bytes_read_ptr);
c906108c 6499
6502dd73 6500 if (dwarf2_per_objfile->str_buffer == NULL)
c906108c 6501 {
8a3fe4f8 6502 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
659b0389 6503 bfd_get_filename (abfd));
4bdf3d34 6504 return NULL;
c906108c 6505 }
6502dd73 6506 if (str_offset >= dwarf2_per_objfile->str_size)
c906108c 6507 {
8a3fe4f8 6508 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
659b0389 6509 bfd_get_filename (abfd));
c906108c
SS
6510 return NULL;
6511 }
4bdf3d34 6512 gdb_assert (HOST_CHAR_BIT == 8);
6502dd73 6513 if (dwarf2_per_objfile->str_buffer[str_offset] == '\0')
4bdf3d34 6514 return NULL;
fe1b8b76 6515 return (char *) (dwarf2_per_objfile->str_buffer + str_offset);
c906108c
SS
6516}
6517
ce5d95e1 6518static unsigned long
fe1b8b76 6519read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 6520{
ce5d95e1
JB
6521 unsigned long result;
6522 unsigned int num_read;
c906108c
SS
6523 int i, shift;
6524 unsigned char byte;
6525
6526 result = 0;
6527 shift = 0;
6528 num_read = 0;
6529 i = 0;
6530 while (1)
6531 {
fe1b8b76 6532 byte = bfd_get_8 (abfd, buf);
c906108c
SS
6533 buf++;
6534 num_read++;
ce5d95e1 6535 result |= ((unsigned long)(byte & 127) << shift);
c906108c
SS
6536 if ((byte & 128) == 0)
6537 {
6538 break;
6539 }
6540 shift += 7;
6541 }
6542 *bytes_read_ptr = num_read;
6543 return result;
6544}
6545
ce5d95e1 6546static long
fe1b8b76 6547read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 6548{
ce5d95e1 6549 long result;
77e0b926 6550 int i, shift, num_read;
c906108c
SS
6551 unsigned char byte;
6552
6553 result = 0;
6554 shift = 0;
c906108c
SS
6555 num_read = 0;
6556 i = 0;
6557 while (1)
6558 {
fe1b8b76 6559 byte = bfd_get_8 (abfd, buf);
c906108c
SS
6560 buf++;
6561 num_read++;
ce5d95e1 6562 result |= ((long)(byte & 127) << shift);
c906108c
SS
6563 shift += 7;
6564 if ((byte & 128) == 0)
6565 {
6566 break;
6567 }
6568 }
77e0b926
DJ
6569 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
6570 result |= -(((long)1) << shift);
c906108c
SS
6571 *bytes_read_ptr = num_read;
6572 return result;
6573}
6574
4bb7a0a7
DJ
6575/* Return a pointer to just past the end of an LEB128 number in BUF. */
6576
fe1b8b76
JB
6577static gdb_byte *
6578skip_leb128 (bfd *abfd, gdb_byte *buf)
4bb7a0a7
DJ
6579{
6580 int byte;
6581
6582 while (1)
6583 {
fe1b8b76 6584 byte = bfd_get_8 (abfd, buf);
4bb7a0a7
DJ
6585 buf++;
6586 if ((byte & 128) == 0)
6587 return buf;
6588 }
6589}
6590
c906108c 6591static void
e142c38c 6592set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
6593{
6594 switch (lang)
6595 {
6596 case DW_LANG_C89:
6597 case DW_LANG_C:
e142c38c 6598 cu->language = language_c;
c906108c
SS
6599 break;
6600 case DW_LANG_C_plus_plus:
e142c38c 6601 cu->language = language_cplus;
c906108c
SS
6602 break;
6603 case DW_LANG_Fortran77:
6604 case DW_LANG_Fortran90:
b21b22e0 6605 case DW_LANG_Fortran95:
e142c38c 6606 cu->language = language_fortran;
c906108c
SS
6607 break;
6608 case DW_LANG_Mips_Assembler:
e142c38c 6609 cu->language = language_asm;
c906108c 6610 break;
bebd888e 6611 case DW_LANG_Java:
e142c38c 6612 cu->language = language_java;
bebd888e 6613 break;
c906108c 6614 case DW_LANG_Ada83:
8aaf0b47 6615 case DW_LANG_Ada95:
bc5f45f8
JB
6616 cu->language = language_ada;
6617 break;
72019c9c
GM
6618 case DW_LANG_Modula2:
6619 cu->language = language_m2;
6620 break;
fe8e67fd
PM
6621 case DW_LANG_Pascal83:
6622 cu->language = language_pascal;
6623 break;
22566fbd
DJ
6624 case DW_LANG_ObjC:
6625 cu->language = language_objc;
6626 break;
c906108c
SS
6627 case DW_LANG_Cobol74:
6628 case DW_LANG_Cobol85:
c906108c 6629 default:
e142c38c 6630 cu->language = language_minimal;
c906108c
SS
6631 break;
6632 }
e142c38c 6633 cu->language_defn = language_def (cu->language);
c906108c
SS
6634}
6635
6636/* Return the named attribute or NULL if not there. */
6637
6638static struct attribute *
e142c38c 6639dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c
SS
6640{
6641 unsigned int i;
6642 struct attribute *spec = NULL;
6643
6644 for (i = 0; i < die->num_attrs; ++i)
6645 {
6646 if (die->attrs[i].name == name)
10b3939b 6647 return &die->attrs[i];
c906108c
SS
6648 if (die->attrs[i].name == DW_AT_specification
6649 || die->attrs[i].name == DW_AT_abstract_origin)
6650 spec = &die->attrs[i];
6651 }
c906108c 6652
10b3939b
DJ
6653 if (spec)
6654 return dwarf2_attr (follow_die_ref (die, spec, cu), name, cu);
c5aa993b 6655
c906108c
SS
6656 return NULL;
6657}
6658
05cf31d1
JB
6659/* Return non-zero iff the attribute NAME is defined for the given DIE,
6660 and holds a non-zero value. This function should only be used for
6661 DW_FORM_flag attributes. */
6662
6663static int
6664dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
6665{
6666 struct attribute *attr = dwarf2_attr (die, name, cu);
6667
6668 return (attr && DW_UNSND (attr));
6669}
6670
3ca72b44 6671static int
e142c38c 6672die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 6673{
05cf31d1
JB
6674 /* A DIE is a declaration if it has a DW_AT_declaration attribute
6675 which value is non-zero. However, we have to be careful with
6676 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
6677 (via dwarf2_flag_true_p) follows this attribute. So we may
6678 end up accidently finding a declaration attribute that belongs
6679 to a different DIE referenced by the specification attribute,
6680 even though the given DIE does not have a declaration attribute. */
6681 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
6682 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
6683}
6684
63d06c5c
DC
6685/* Return the die giving the specification for DIE, if there is
6686 one. */
6687
6688static struct die_info *
e142c38c 6689die_specification (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 6690{
e142c38c 6691 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification, cu);
63d06c5c
DC
6692
6693 if (spec_attr == NULL)
6694 return NULL;
6695 else
10b3939b 6696 return follow_die_ref (die, spec_attr, cu);
63d06c5c 6697}
c906108c 6698
debd256d
JB
6699/* Free the line_header structure *LH, and any arrays and strings it
6700 refers to. */
6701static void
6702free_line_header (struct line_header *lh)
6703{
6704 if (lh->standard_opcode_lengths)
a8bc7b56 6705 xfree (lh->standard_opcode_lengths);
debd256d
JB
6706
6707 /* Remember that all the lh->file_names[i].name pointers are
6708 pointers into debug_line_buffer, and don't need to be freed. */
6709 if (lh->file_names)
a8bc7b56 6710 xfree (lh->file_names);
debd256d
JB
6711
6712 /* Similarly for the include directory names. */
6713 if (lh->include_dirs)
a8bc7b56 6714 xfree (lh->include_dirs);
debd256d 6715
a8bc7b56 6716 xfree (lh);
debd256d
JB
6717}
6718
6719
6720/* Add an entry to LH's include directory table. */
6721static void
6722add_include_dir (struct line_header *lh, char *include_dir)
c906108c 6723{
debd256d
JB
6724 /* Grow the array if necessary. */
6725 if (lh->include_dirs_size == 0)
c5aa993b 6726 {
debd256d
JB
6727 lh->include_dirs_size = 1; /* for testing */
6728 lh->include_dirs = xmalloc (lh->include_dirs_size
6729 * sizeof (*lh->include_dirs));
6730 }
6731 else if (lh->num_include_dirs >= lh->include_dirs_size)
6732 {
6733 lh->include_dirs_size *= 2;
6734 lh->include_dirs = xrealloc (lh->include_dirs,
6735 (lh->include_dirs_size
6736 * sizeof (*lh->include_dirs)));
c5aa993b 6737 }
c906108c 6738
debd256d
JB
6739 lh->include_dirs[lh->num_include_dirs++] = include_dir;
6740}
6741
6742
6743/* Add an entry to LH's file name table. */
6744static void
6745add_file_name (struct line_header *lh,
6746 char *name,
6747 unsigned int dir_index,
6748 unsigned int mod_time,
6749 unsigned int length)
6750{
6751 struct file_entry *fe;
6752
6753 /* Grow the array if necessary. */
6754 if (lh->file_names_size == 0)
6755 {
6756 lh->file_names_size = 1; /* for testing */
6757 lh->file_names = xmalloc (lh->file_names_size
6758 * sizeof (*lh->file_names));
6759 }
6760 else if (lh->num_file_names >= lh->file_names_size)
6761 {
6762 lh->file_names_size *= 2;
6763 lh->file_names = xrealloc (lh->file_names,
6764 (lh->file_names_size
6765 * sizeof (*lh->file_names)));
6766 }
6767
6768 fe = &lh->file_names[lh->num_file_names++];
6769 fe->name = name;
6770 fe->dir_index = dir_index;
6771 fe->mod_time = mod_time;
6772 fe->length = length;
aaa75496 6773 fe->included_p = 0;
cb1df416 6774 fe->symtab = NULL;
debd256d
JB
6775}
6776
6777
6778/* Read the statement program header starting at OFFSET in
6502dd73
DJ
6779 .debug_line, according to the endianness of ABFD. Return a pointer
6780 to a struct line_header, allocated using xmalloc.
debd256d
JB
6781
6782 NOTE: the strings in the include directory and file name tables of
6783 the returned object point into debug_line_buffer, and must not be
6784 freed. */
6785static struct line_header *
6786dwarf_decode_line_header (unsigned int offset, bfd *abfd,
e7c27a73 6787 struct dwarf2_cu *cu)
debd256d
JB
6788{
6789 struct cleanup *back_to;
6790 struct line_header *lh;
fe1b8b76 6791 gdb_byte *line_ptr;
891d2f0b 6792 unsigned int bytes_read;
debd256d
JB
6793 int i;
6794 char *cur_dir, *cur_file;
6795
6502dd73 6796 if (dwarf2_per_objfile->line_buffer == NULL)
debd256d 6797 {
e2e0b3e5 6798 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
6799 return 0;
6800 }
6801
a738430d
MK
6802 /* Make sure that at least there's room for the total_length field.
6803 That could be 12 bytes long, but we're just going to fudge that. */
6502dd73 6804 if (offset + 4 >= dwarf2_per_objfile->line_size)
debd256d 6805 {
4d3c2250 6806 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
6807 return 0;
6808 }
6809
6810 lh = xmalloc (sizeof (*lh));
6811 memset (lh, 0, sizeof (*lh));
6812 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
6813 (void *) lh);
6814
6502dd73 6815 line_ptr = dwarf2_per_objfile->line_buffer + offset;
debd256d 6816
a738430d 6817 /* Read in the header. */
dd373385
EZ
6818 lh->total_length =
6819 read_initial_length (abfd, line_ptr, &cu->header, &bytes_read);
debd256d 6820 line_ptr += bytes_read;
6502dd73
DJ
6821 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line_buffer
6822 + dwarf2_per_objfile->line_size))
debd256d 6823 {
4d3c2250 6824 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
6825 return 0;
6826 }
6827 lh->statement_program_end = line_ptr + lh->total_length;
6828 lh->version = read_2_bytes (abfd, line_ptr);
6829 line_ptr += 2;
e7c27a73 6830 lh->header_length = read_offset (abfd, line_ptr, &cu->header, &bytes_read);
debd256d
JB
6831 line_ptr += bytes_read;
6832 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
6833 line_ptr += 1;
6834 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
6835 line_ptr += 1;
6836 lh->line_base = read_1_signed_byte (abfd, line_ptr);
6837 line_ptr += 1;
6838 lh->line_range = read_1_byte (abfd, line_ptr);
6839 line_ptr += 1;
6840 lh->opcode_base = read_1_byte (abfd, line_ptr);
6841 line_ptr += 1;
6842 lh->standard_opcode_lengths
fe1b8b76 6843 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
6844
6845 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
6846 for (i = 1; i < lh->opcode_base; ++i)
6847 {
6848 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
6849 line_ptr += 1;
6850 }
6851
a738430d 6852 /* Read directory table. */
debd256d
JB
6853 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6854 {
6855 line_ptr += bytes_read;
6856 add_include_dir (lh, cur_dir);
6857 }
6858 line_ptr += bytes_read;
6859
a738430d 6860 /* Read file name table. */
debd256d
JB
6861 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6862 {
6863 unsigned int dir_index, mod_time, length;
6864
6865 line_ptr += bytes_read;
6866 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6867 line_ptr += bytes_read;
6868 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6869 line_ptr += bytes_read;
6870 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6871 line_ptr += bytes_read;
6872
6873 add_file_name (lh, cur_file, dir_index, mod_time, length);
6874 }
6875 line_ptr += bytes_read;
6876 lh->statement_program_start = line_ptr;
6877
6502dd73
DJ
6878 if (line_ptr > (dwarf2_per_objfile->line_buffer
6879 + dwarf2_per_objfile->line_size))
4d3c2250 6880 complaint (&symfile_complaints,
e2e0b3e5 6881 _("line number info header doesn't fit in `.debug_line' section"));
debd256d
JB
6882
6883 discard_cleanups (back_to);
6884 return lh;
6885}
c906108c 6886
5fb290d7
DJ
6887/* This function exists to work around a bug in certain compilers
6888 (particularly GCC 2.95), in which the first line number marker of a
6889 function does not show up until after the prologue, right before
6890 the second line number marker. This function shifts ADDRESS down
6891 to the beginning of the function if necessary, and is called on
6892 addresses passed to record_line. */
6893
6894static CORE_ADDR
e142c38c 6895check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
5fb290d7
DJ
6896{
6897 struct function_range *fn;
6898
6899 /* Find the function_range containing address. */
e142c38c 6900 if (!cu->first_fn)
5fb290d7
DJ
6901 return address;
6902
e142c38c
DJ
6903 if (!cu->cached_fn)
6904 cu->cached_fn = cu->first_fn;
5fb290d7 6905
e142c38c 6906 fn = cu->cached_fn;
5fb290d7
DJ
6907 while (fn)
6908 if (fn->lowpc <= address && fn->highpc > address)
6909 goto found;
6910 else
6911 fn = fn->next;
6912
e142c38c
DJ
6913 fn = cu->first_fn;
6914 while (fn && fn != cu->cached_fn)
5fb290d7
DJ
6915 if (fn->lowpc <= address && fn->highpc > address)
6916 goto found;
6917 else
6918 fn = fn->next;
6919
6920 return address;
6921
6922 found:
6923 if (fn->seen_line)
6924 return address;
6925 if (address != fn->lowpc)
4d3c2250 6926 complaint (&symfile_complaints,
e2e0b3e5 6927 _("misplaced first line number at 0x%lx for '%s'"),
4d3c2250 6928 (unsigned long) address, fn->name);
5fb290d7
DJ
6929 fn->seen_line = 1;
6930 return fn->lowpc;
6931}
6932
aaa75496
JB
6933/* Decode the Line Number Program (LNP) for the given line_header
6934 structure and CU. The actual information extracted and the type
6935 of structures created from the LNP depends on the value of PST.
6936
6937 1. If PST is NULL, then this procedure uses the data from the program
6938 to create all necessary symbol tables, and their linetables.
6939 The compilation directory of the file is passed in COMP_DIR,
6940 and must not be NULL.
6941
6942 2. If PST is not NULL, this procedure reads the program to determine
6943 the list of files included by the unit represented by PST, and
6944 builds all the associated partial symbol tables. In this case,
6945 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
6946 is not used to compute the full name of the symtab, and therefore
6947 omitting it when building the partial symtab does not introduce
6948 the potential for inconsistency - a partial symtab and its associated
6949 symbtab having a different fullname -). */
debd256d 6950
c906108c 6951static void
debd256d 6952dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
aaa75496 6953 struct dwarf2_cu *cu, struct partial_symtab *pst)
c906108c 6954{
a8c50c1f 6955 gdb_byte *line_ptr, *extended_end;
fe1b8b76 6956 gdb_byte *line_end;
a8c50c1f 6957 unsigned int bytes_read, extended_len;
c906108c 6958 unsigned char op_code, extended_op, adj_opcode;
e142c38c
DJ
6959 CORE_ADDR baseaddr;
6960 struct objfile *objfile = cu->objfile;
aaa75496 6961 const int decode_for_pst_p = (pst != NULL);
cb1df416 6962 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
e142c38c
DJ
6963
6964 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6965
debd256d
JB
6966 line_ptr = lh->statement_program_start;
6967 line_end = lh->statement_program_end;
c906108c
SS
6968
6969 /* Read the statement sequences until there's nothing left. */
6970 while (line_ptr < line_end)
6971 {
6972 /* state machine registers */
6973 CORE_ADDR address = 0;
6974 unsigned int file = 1;
6975 unsigned int line = 1;
6976 unsigned int column = 0;
debd256d 6977 int is_stmt = lh->default_is_stmt;
c906108c
SS
6978 int basic_block = 0;
6979 int end_sequence = 0;
6980
aaa75496 6981 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 6982 {
aaa75496 6983 /* Start a subfile for the current file of the state machine. */
debd256d
JB
6984 /* lh->include_dirs and lh->file_names are 0-based, but the
6985 directory and file name numbers in the statement program
6986 are 1-based. */
6987 struct file_entry *fe = &lh->file_names[file - 1];
4f1520fb 6988 char *dir = NULL;
a738430d 6989
debd256d
JB
6990 if (fe->dir_index)
6991 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb
FR
6992
6993 dwarf2_start_subfile (fe->name, dir, comp_dir);
c906108c
SS
6994 }
6995
a738430d 6996 /* Decode the table. */
c5aa993b 6997 while (!end_sequence)
c906108c
SS
6998 {
6999 op_code = read_1_byte (abfd, line_ptr);
7000 line_ptr += 1;
9aa1fe7e 7001
debd256d 7002 if (op_code >= lh->opcode_base)
a738430d
MK
7003 {
7004 /* Special operand. */
debd256d
JB
7005 adj_opcode = op_code - lh->opcode_base;
7006 address += (adj_opcode / lh->line_range)
7007 * lh->minimum_instruction_length;
7008 line += lh->line_base + (adj_opcode % lh->line_range);
25e43795
DJ
7009 if (lh->num_file_names < file)
7010 dwarf2_debug_line_missing_file_complaint ();
7011 else
7012 {
7013 lh->file_names[file - 1].included_p = 1;
7014 if (!decode_for_pst_p)
7015 {
7016 if (last_subfile != current_subfile)
7017 {
7018 if (last_subfile)
7019 record_line (last_subfile, 0, address);
7020 last_subfile = current_subfile;
7021 }
7022 /* Append row to matrix using current values. */
7023 record_line (current_subfile, line,
7024 check_cu_functions (address, cu));
366da635 7025 }
25e43795 7026 }
9aa1fe7e
GK
7027 basic_block = 1;
7028 }
7029 else switch (op_code)
c906108c
SS
7030 {
7031 case DW_LNS_extended_op:
a8c50c1f 7032 extended_len = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
473b7be6 7033 line_ptr += bytes_read;
a8c50c1f 7034 extended_end = line_ptr + extended_len;
c906108c
SS
7035 extended_op = read_1_byte (abfd, line_ptr);
7036 line_ptr += 1;
7037 switch (extended_op)
7038 {
7039 case DW_LNE_end_sequence:
7040 end_sequence = 1;
25e43795
DJ
7041
7042 if (lh->num_file_names < file)
7043 dwarf2_debug_line_missing_file_complaint ();
7044 else
7045 {
7046 lh->file_names[file - 1].included_p = 1;
7047 if (!decode_for_pst_p)
7048 record_line (current_subfile, 0, address);
7049 }
c906108c
SS
7050 break;
7051 case DW_LNE_set_address:
e7c27a73 7052 address = read_address (abfd, line_ptr, cu, &bytes_read);
107d2387
AC
7053 line_ptr += bytes_read;
7054 address += baseaddr;
c906108c
SS
7055 break;
7056 case DW_LNE_define_file:
debd256d
JB
7057 {
7058 char *cur_file;
7059 unsigned int dir_index, mod_time, length;
7060
7061 cur_file = read_string (abfd, line_ptr, &bytes_read);
7062 line_ptr += bytes_read;
7063 dir_index =
7064 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7065 line_ptr += bytes_read;
7066 mod_time =
7067 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7068 line_ptr += bytes_read;
7069 length =
7070 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7071 line_ptr += bytes_read;
7072 add_file_name (lh, cur_file, dir_index, mod_time, length);
7073 }
c906108c
SS
7074 break;
7075 default:
4d3c2250 7076 complaint (&symfile_complaints,
e2e0b3e5 7077 _("mangled .debug_line section"));
debd256d 7078 return;
c906108c 7079 }
a8c50c1f
DJ
7080 /* Make sure that we parsed the extended op correctly. If e.g.
7081 we expected a different address size than the producer used,
7082 we may have read the wrong number of bytes. */
7083 if (line_ptr != extended_end)
7084 {
7085 complaint (&symfile_complaints,
7086 _("mangled .debug_line section"));
7087 return;
7088 }
c906108c
SS
7089 break;
7090 case DW_LNS_copy:
25e43795
DJ
7091 if (lh->num_file_names < file)
7092 dwarf2_debug_line_missing_file_complaint ();
7093 else
366da635 7094 {
25e43795
DJ
7095 lh->file_names[file - 1].included_p = 1;
7096 if (!decode_for_pst_p)
7097 {
7098 if (last_subfile != current_subfile)
7099 {
7100 if (last_subfile)
7101 record_line (last_subfile, 0, address);
7102 last_subfile = current_subfile;
7103 }
7104 record_line (current_subfile, line,
7105 check_cu_functions (address, cu));
7106 }
366da635 7107 }
c906108c
SS
7108 basic_block = 0;
7109 break;
7110 case DW_LNS_advance_pc:
debd256d 7111 address += lh->minimum_instruction_length
c906108c
SS
7112 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7113 line_ptr += bytes_read;
7114 break;
7115 case DW_LNS_advance_line:
7116 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
7117 line_ptr += bytes_read;
7118 break;
7119 case DW_LNS_set_file:
debd256d 7120 {
a738430d
MK
7121 /* The arrays lh->include_dirs and lh->file_names are
7122 0-based, but the directory and file name numbers in
7123 the statement program are 1-based. */
debd256d 7124 struct file_entry *fe;
4f1520fb 7125 char *dir = NULL;
a738430d 7126
debd256d
JB
7127 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7128 line_ptr += bytes_read;
25e43795
DJ
7129 if (lh->num_file_names < file)
7130 dwarf2_debug_line_missing_file_complaint ();
7131 else
7132 {
7133 fe = &lh->file_names[file - 1];
7134 if (fe->dir_index)
7135 dir = lh->include_dirs[fe->dir_index - 1];
7136 if (!decode_for_pst_p)
7137 {
7138 last_subfile = current_subfile;
7139 dwarf2_start_subfile (fe->name, dir, comp_dir);
7140 }
7141 }
debd256d 7142 }
c906108c
SS
7143 break;
7144 case DW_LNS_set_column:
7145 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7146 line_ptr += bytes_read;
7147 break;
7148 case DW_LNS_negate_stmt:
7149 is_stmt = (!is_stmt);
7150 break;
7151 case DW_LNS_set_basic_block:
7152 basic_block = 1;
7153 break;
c2c6d25f
JM
7154 /* Add to the address register of the state machine the
7155 address increment value corresponding to special opcode
a738430d
MK
7156 255. I.e., this value is scaled by the minimum
7157 instruction length since special opcode 255 would have
7158 scaled the the increment. */
c906108c 7159 case DW_LNS_const_add_pc:
debd256d
JB
7160 address += (lh->minimum_instruction_length
7161 * ((255 - lh->opcode_base) / lh->line_range));
c906108c
SS
7162 break;
7163 case DW_LNS_fixed_advance_pc:
7164 address += read_2_bytes (abfd, line_ptr);
7165 line_ptr += 2;
7166 break;
9aa1fe7e 7167 default:
a738430d
MK
7168 {
7169 /* Unknown standard opcode, ignore it. */
9aa1fe7e 7170 int i;
a738430d 7171
debd256d 7172 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
7173 {
7174 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7175 line_ptr += bytes_read;
7176 }
7177 }
c906108c
SS
7178 }
7179 }
7180 }
aaa75496
JB
7181
7182 if (decode_for_pst_p)
7183 {
7184 int file_index;
7185
7186 /* Now that we're done scanning the Line Header Program, we can
7187 create the psymtab of each included file. */
7188 for (file_index = 0; file_index < lh->num_file_names; file_index++)
7189 if (lh->file_names[file_index].included_p == 1)
7190 {
5b5464ad
JB
7191 const struct file_entry fe = lh->file_names [file_index];
7192 char *include_name = fe.name;
7193 char *dir_name = NULL;
7194 char *pst_filename = pst->filename;
7195
7196 if (fe.dir_index)
7197 dir_name = lh->include_dirs[fe.dir_index - 1];
7198
7199 if (!IS_ABSOLUTE_PATH (include_name) && dir_name != NULL)
7200 {
1754f103
MK
7201 include_name = concat (dir_name, SLASH_STRING,
7202 include_name, (char *)NULL);
5b5464ad
JB
7203 make_cleanup (xfree, include_name);
7204 }
7205
7206 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
7207 {
1754f103
MK
7208 pst_filename = concat (pst->dirname, SLASH_STRING,
7209 pst_filename, (char *)NULL);
5b5464ad
JB
7210 make_cleanup (xfree, pst_filename);
7211 }
7212
7213 if (strcmp (include_name, pst_filename) != 0)
aaa75496
JB
7214 dwarf2_create_include_psymtab (include_name, pst, objfile);
7215 }
7216 }
cb1df416
DJ
7217 else
7218 {
7219 /* Make sure a symtab is created for every file, even files
7220 which contain only variables (i.e. no code with associated
7221 line numbers). */
7222
7223 int i;
7224 struct file_entry *fe;
7225
7226 for (i = 0; i < lh->num_file_names; i++)
7227 {
7228 char *dir = NULL;
7229 fe = &lh->file_names[i];
7230 if (fe->dir_index)
7231 dir = lh->include_dirs[fe->dir_index - 1];
7232 dwarf2_start_subfile (fe->name, dir, comp_dir);
7233
7234 /* Skip the main file; we don't need it, and it must be
7235 allocated last, so that it will show up before the
7236 non-primary symtabs in the objfile's symtab list. */
7237 if (current_subfile == first_subfile)
7238 continue;
7239
7240 if (current_subfile->symtab == NULL)
7241 current_subfile->symtab = allocate_symtab (current_subfile->name,
7242 cu->objfile);
7243 fe->symtab = current_subfile->symtab;
7244 }
7245 }
c906108c
SS
7246}
7247
7248/* Start a subfile for DWARF. FILENAME is the name of the file and
7249 DIRNAME the name of the source directory which contains FILENAME
4f1520fb
FR
7250 or NULL if not known. COMP_DIR is the compilation directory for the
7251 linetable's compilation unit or NULL if not known.
c906108c
SS
7252 This routine tries to keep line numbers from identical absolute and
7253 relative file names in a common subfile.
7254
7255 Using the `list' example from the GDB testsuite, which resides in
7256 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
7257 of /srcdir/list0.c yields the following debugging information for list0.c:
7258
c5aa993b
JM
7259 DW_AT_name: /srcdir/list0.c
7260 DW_AT_comp_dir: /compdir
357e46e7 7261 files.files[0].name: list0.h
c5aa993b 7262 files.files[0].dir: /srcdir
357e46e7 7263 files.files[1].name: list0.c
c5aa993b 7264 files.files[1].dir: /srcdir
c906108c
SS
7265
7266 The line number information for list0.c has to end up in a single
4f1520fb
FR
7267 subfile, so that `break /srcdir/list0.c:1' works as expected.
7268 start_subfile will ensure that this happens provided that we pass the
7269 concatenation of files.files[1].dir and files.files[1].name as the
7270 subfile's name. */
c906108c
SS
7271
7272static void
4f1520fb 7273dwarf2_start_subfile (char *filename, char *dirname, char *comp_dir)
c906108c 7274{
4f1520fb
FR
7275 char *fullname;
7276
7277 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
7278 `start_symtab' will always pass the contents of DW_AT_comp_dir as
7279 second argument to start_subfile. To be consistent, we do the
7280 same here. In order not to lose the line information directory,
7281 we concatenate it to the filename when it makes sense.
7282 Note that the Dwarf3 standard says (speaking of filenames in line
7283 information): ``The directory index is ignored for file names
7284 that represent full path names''. Thus ignoring dirname in the
7285 `else' branch below isn't an issue. */
c906108c 7286
d5166ae1 7287 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
4f1520fb
FR
7288 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
7289 else
7290 fullname = filename;
c906108c 7291
4f1520fb
FR
7292 start_subfile (fullname, comp_dir);
7293
7294 if (fullname != filename)
7295 xfree (fullname);
c906108c
SS
7296}
7297
4c2df51b
DJ
7298static void
7299var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 7300 struct dwarf2_cu *cu)
4c2df51b 7301{
e7c27a73
DJ
7302 struct objfile *objfile = cu->objfile;
7303 struct comp_unit_head *cu_header = &cu->header;
7304
4c2df51b
DJ
7305 /* NOTE drow/2003-01-30: There used to be a comment and some special
7306 code here to turn a symbol with DW_AT_external and a
7307 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
7308 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
7309 with some versions of binutils) where shared libraries could have
7310 relocations against symbols in their debug information - the
7311 minimal symbol would have the right address, but the debug info
7312 would not. It's no longer necessary, because we will explicitly
7313 apply relocations when we read in the debug information now. */
7314
7315 /* A DW_AT_location attribute with no contents indicates that a
7316 variable has been optimized away. */
7317 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
7318 {
7319 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
7320 return;
7321 }
7322
7323 /* Handle one degenerate form of location expression specially, to
7324 preserve GDB's previous behavior when section offsets are
7325 specified. If this is just a DW_OP_addr then mark this symbol
7326 as LOC_STATIC. */
7327
7328 if (attr_form_is_block (attr)
7329 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
7330 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
7331 {
891d2f0b 7332 unsigned int dummy;
4c2df51b
DJ
7333
7334 SYMBOL_VALUE_ADDRESS (sym) =
e7c27a73 7335 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
4c2df51b
DJ
7336 fixup_symbol_section (sym, objfile);
7337 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
7338 SYMBOL_SECTION (sym));
7339 SYMBOL_CLASS (sym) = LOC_STATIC;
7340 return;
7341 }
7342
7343 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
7344 expression evaluator, and use LOC_COMPUTED only when necessary
7345 (i.e. when the value of a register or memory location is
7346 referenced, or a thread-local block, etc.). Then again, it might
7347 not be worthwhile. I'm assuming that it isn't unless performance
7348 or memory numbers show me otherwise. */
7349
e7c27a73 7350 dwarf2_symbol_mark_computed (attr, sym, cu);
4c2df51b
DJ
7351 SYMBOL_CLASS (sym) = LOC_COMPUTED;
7352}
7353
c906108c
SS
7354/* Given a pointer to a DWARF information entry, figure out if we need
7355 to make a symbol table entry for it, and if so, create a new entry
7356 and return a pointer to it.
7357 If TYPE is NULL, determine symbol type from the die, otherwise
2df3850c 7358 used the passed type. */
c906108c
SS
7359
7360static struct symbol *
e7c27a73 7361new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
c906108c 7362{
e7c27a73 7363 struct objfile *objfile = cu->objfile;
5e2b427d 7364 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
7365 struct symbol *sym = NULL;
7366 char *name;
7367 struct attribute *attr = NULL;
7368 struct attribute *attr2 = NULL;
e142c38c
DJ
7369 CORE_ADDR baseaddr;
7370
7371 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 7372
5c4e30ca 7373 if (die->tag != DW_TAG_namespace)
e142c38c 7374 name = dwarf2_linkage_name (die, cu);
5c4e30ca
DC
7375 else
7376 name = TYPE_NAME (type);
7377
c906108c
SS
7378 if (name)
7379 {
4a146b47 7380 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
7381 sizeof (struct symbol));
7382 OBJSTAT (objfile, n_syms++);
7383 memset (sym, 0, sizeof (struct symbol));
2de7ced7
DJ
7384
7385 /* Cache this symbol's name and the name's demangled form (if any). */
e142c38c 7386 SYMBOL_LANGUAGE (sym) = cu->language;
2de7ced7 7387 SYMBOL_SET_NAMES (sym, name, strlen (name), objfile);
c906108c
SS
7388
7389 /* Default assumptions.
c5aa993b 7390 Use the passed type or decode it from the die. */
176620f1 7391 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
875dc2fc 7392 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
7393 if (type != NULL)
7394 SYMBOL_TYPE (sym) = type;
7395 else
e7c27a73 7396 SYMBOL_TYPE (sym) = die_type (die, cu);
e142c38c 7397 attr = dwarf2_attr (die, DW_AT_decl_line, cu);
c906108c
SS
7398 if (attr)
7399 {
7400 SYMBOL_LINE (sym) = DW_UNSND (attr);
7401 }
cb1df416
DJ
7402
7403 attr = dwarf2_attr (die, DW_AT_decl_file, cu);
7404 if (attr)
7405 {
7406 int file_index = DW_UNSND (attr);
7407 if (cu->line_header == NULL
7408 || file_index > cu->line_header->num_file_names)
7409 complaint (&symfile_complaints,
7410 _("file index out of range"));
1c3d648d 7411 else if (file_index > 0)
cb1df416
DJ
7412 {
7413 struct file_entry *fe;
7414 fe = &cu->line_header->file_names[file_index - 1];
7415 SYMBOL_SYMTAB (sym) = fe->symtab;
7416 }
7417 }
7418
c906108c
SS
7419 switch (die->tag)
7420 {
7421 case DW_TAG_label:
e142c38c 7422 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c
SS
7423 if (attr)
7424 {
7425 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
7426 }
7427 SYMBOL_CLASS (sym) = LOC_LABEL;
7428 break;
7429 case DW_TAG_subprogram:
7430 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
7431 finish_block. */
7432 SYMBOL_CLASS (sym) = LOC_BLOCK;
e142c38c 7433 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
7434 if ((attr2 && (DW_UNSND (attr2) != 0))
7435 || cu->language == language_ada)
c906108c 7436 {
2cfa0c8d
JB
7437 /* Subprograms marked external are stored as a global symbol.
7438 Ada subprograms, whether marked external or not, are always
7439 stored as a global symbol, because we want to be able to
7440 access them globally. For instance, we want to be able
7441 to break on a nested subprogram without having to
7442 specify the context. */
c906108c
SS
7443 add_symbol_to_list (sym, &global_symbols);
7444 }
7445 else
7446 {
e142c38c 7447 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7448 }
7449 break;
7450 case DW_TAG_variable:
7451 /* Compilation with minimal debug info may result in variables
7452 with missing type entries. Change the misleading `void' type
7453 to something sensible. */
7454 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 7455 SYMBOL_TYPE (sym)
5e2b427d 7456 = builtin_type (gdbarch)->nodebug_data_symbol;
64c50499 7457
e142c38c 7458 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
7459 if (attr)
7460 {
e7c27a73 7461 dwarf2_const_value (attr, sym, cu);
e142c38c 7462 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c
SS
7463 if (attr2 && (DW_UNSND (attr2) != 0))
7464 add_symbol_to_list (sym, &global_symbols);
7465 else
e142c38c 7466 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7467 break;
7468 }
e142c38c 7469 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
7470 if (attr)
7471 {
e7c27a73 7472 var_decode_location (attr, sym, cu);
e142c38c 7473 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 7474 if (attr2 && (DW_UNSND (attr2) != 0))
4c2df51b 7475 add_symbol_to_list (sym, &global_symbols);
c906108c 7476 else
e142c38c 7477 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7478 }
7479 else
7480 {
7481 /* We do not know the address of this symbol.
c5aa993b
JM
7482 If it is an external symbol and we have type information
7483 for it, enter the symbol as a LOC_UNRESOLVED symbol.
7484 The address of the variable will then be determined from
7485 the minimal symbol table whenever the variable is
7486 referenced. */
e142c38c 7487 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 7488 if (attr2 && (DW_UNSND (attr2) != 0)
e142c38c 7489 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c
SS
7490 {
7491 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
7492 add_symbol_to_list (sym, &global_symbols);
7493 }
7494 }
7495 break;
7496 case DW_TAG_formal_parameter:
e142c38c 7497 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
7498 if (attr)
7499 {
e7c27a73 7500 var_decode_location (attr, sym, cu);
7cf6e574
DJ
7501 /* FIXME drow/2003-07-31: Is LOC_COMPUTED_ARG necessary? */
7502 if (SYMBOL_CLASS (sym) == LOC_COMPUTED)
7503 SYMBOL_CLASS (sym) = LOC_COMPUTED_ARG;
c906108c 7504 }
e142c38c 7505 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
7506 if (attr)
7507 {
e7c27a73 7508 dwarf2_const_value (attr, sym, cu);
c906108c 7509 }
e142c38c 7510 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7511 break;
7512 case DW_TAG_unspecified_parameters:
7513 /* From varargs functions; gdb doesn't seem to have any
7514 interest in this information, so just ignore it for now.
7515 (FIXME?) */
7516 break;
7517 case DW_TAG_class_type:
680b30c7 7518 case DW_TAG_interface_type:
c906108c
SS
7519 case DW_TAG_structure_type:
7520 case DW_TAG_union_type:
72019c9c 7521 case DW_TAG_set_type:
c906108c
SS
7522 case DW_TAG_enumeration_type:
7523 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 7524 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 7525
63d06c5c
DC
7526 /* Make sure that the symbol includes appropriate enclosing
7527 classes/namespaces in its name. These are calculated in
134d01f1 7528 read_structure_type, and the correct name is saved in
63d06c5c
DC
7529 the type. */
7530
987504bb
JJ
7531 if (cu->language == language_cplus
7532 || cu->language == language_java)
c906108c 7533 {
63d06c5c
DC
7534 struct type *type = SYMBOL_TYPE (sym);
7535
7536 if (TYPE_TAG_NAME (type) != NULL)
7537 {
7538 /* FIXME: carlton/2003-11-10: Should this use
7539 SYMBOL_SET_NAMES instead? (The same problem also
d8151005
DJ
7540 arises further down in this function.) */
7541 /* The type's name is already allocated along with
7542 this objfile, so we don't need to duplicate it
7543 for the symbol. */
7544 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
63d06c5c 7545 }
c906108c 7546 }
63d06c5c
DC
7547
7548 {
987504bb 7549 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
7550 really ever be static objects: otherwise, if you try
7551 to, say, break of a class's method and you're in a file
7552 which doesn't mention that class, it won't work unless
7553 the check for all static symbols in lookup_symbol_aux
7554 saves you. See the OtherFileClass tests in
7555 gdb.c++/namespace.exp. */
7556
7557 struct pending **list_to_add;
7558
e142c38c 7559 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
7560 && (cu->language == language_cplus
7561 || cu->language == language_java)
e142c38c 7562 ? &global_symbols : cu->list_in_scope);
63d06c5c
DC
7563
7564 add_symbol_to_list (sym, list_to_add);
7565
7566 /* The semantics of C++ state that "struct foo { ... }" also
987504bb
JJ
7567 defines a typedef for "foo". A Java class declaration also
7568 defines a typedef for the class. Synthesize a typedef symbol
7569 so that "ptype foo" works as expected. */
7570 if (cu->language == language_cplus
8c6860bb
JB
7571 || cu->language == language_java
7572 || cu->language == language_ada)
63d06c5c
DC
7573 {
7574 struct symbol *typedef_sym = (struct symbol *)
4a146b47 7575 obstack_alloc (&objfile->objfile_obstack,
63d06c5c
DC
7576 sizeof (struct symbol));
7577 *typedef_sym = *sym;
7578 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
d8151005
DJ
7579 /* The symbol's name is already allocated along with
7580 this objfile, so we don't need to duplicate it for
7581 the type. */
63d06c5c 7582 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
77ef991d 7583 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
63d06c5c
DC
7584 add_symbol_to_list (typedef_sym, list_to_add);
7585 }
7586 }
c906108c
SS
7587 break;
7588 case DW_TAG_typedef:
63d06c5c
DC
7589 if (processing_has_namespace_info
7590 && processing_current_prefix[0] != '\0')
7591 {
987504bb
JJ
7592 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7593 processing_current_prefix,
7594 name, cu);
63d06c5c
DC
7595 }
7596 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7597 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e142c38c 7598 add_symbol_to_list (sym, cu->list_in_scope);
63d06c5c 7599 break;
c906108c 7600 case DW_TAG_base_type:
a02abb62 7601 case DW_TAG_subrange_type:
c906108c 7602 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 7603 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e142c38c 7604 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7605 break;
7606 case DW_TAG_enumerator:
63d06c5c
DC
7607 if (processing_has_namespace_info
7608 && processing_current_prefix[0] != '\0')
7609 {
987504bb
JJ
7610 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7611 processing_current_prefix,
7612 name, cu);
63d06c5c 7613 }
e142c38c 7614 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
7615 if (attr)
7616 {
e7c27a73 7617 dwarf2_const_value (attr, sym, cu);
c906108c 7618 }
63d06c5c
DC
7619 {
7620 /* NOTE: carlton/2003-11-10: See comment above in the
7621 DW_TAG_class_type, etc. block. */
7622
7623 struct pending **list_to_add;
7624
e142c38c 7625 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
7626 && (cu->language == language_cplus
7627 || cu->language == language_java)
e142c38c 7628 ? &global_symbols : cu->list_in_scope);
63d06c5c
DC
7629
7630 add_symbol_to_list (sym, list_to_add);
7631 }
c906108c 7632 break;
5c4e30ca
DC
7633 case DW_TAG_namespace:
7634 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7635 add_symbol_to_list (sym, &global_symbols);
7636 break;
c906108c
SS
7637 default:
7638 /* Not a tag we recognize. Hopefully we aren't processing
7639 trash data, but since we must specifically ignore things
7640 we don't recognize, there is nothing else we should do at
7641 this point. */
e2e0b3e5 7642 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 7643 dwarf_tag_name (die->tag));
c906108c
SS
7644 break;
7645 }
7646 }
7647 return (sym);
7648}
7649
7650/* Copy constant value from an attribute to a symbol. */
7651
7652static void
107d2387 7653dwarf2_const_value (struct attribute *attr, struct symbol *sym,
e7c27a73 7654 struct dwarf2_cu *cu)
c906108c 7655{
e7c27a73
DJ
7656 struct objfile *objfile = cu->objfile;
7657 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
7658 struct dwarf_block *blk;
7659
7660 switch (attr->form)
7661 {
7662 case DW_FORM_addr:
107d2387 7663 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
22abf04a 7664 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
4d3c2250
KB
7665 cu_header->addr_size,
7666 TYPE_LENGTH (SYMBOL_TYPE
7667 (sym)));
4e38b386 7668 SYMBOL_VALUE_BYTES (sym) =
4a146b47 7669 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
fbd9dcd3
AC
7670 /* NOTE: cagney/2003-05-09: In-lined store_address call with
7671 it's body - store_unsigned_integer. */
7672 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
7673 DW_ADDR (attr));
c906108c
SS
7674 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7675 break;
93b5768b
PA
7676 case DW_FORM_strp:
7677 /* DW_STRING is already allocated on the obstack, point directly
7678 to it. */
7679 SYMBOL_VALUE_BYTES (sym) = (gdb_byte *) DW_STRING (attr);
7680 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7681 break;
c906108c
SS
7682 case DW_FORM_block1:
7683 case DW_FORM_block2:
7684 case DW_FORM_block4:
7685 case DW_FORM_block:
7686 blk = DW_BLOCK (attr);
7687 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
22abf04a 7688 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
4d3c2250
KB
7689 blk->size,
7690 TYPE_LENGTH (SYMBOL_TYPE
7691 (sym)));
4e38b386 7692 SYMBOL_VALUE_BYTES (sym) =
4a146b47 7693 obstack_alloc (&objfile->objfile_obstack, blk->size);
c906108c
SS
7694 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
7695 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7696 break;
2df3850c
JM
7697
7698 /* The DW_AT_const_value attributes are supposed to carry the
7699 symbol's value "represented as it would be on the target
7700 architecture." By the time we get here, it's already been
7701 converted to host endianness, so we just need to sign- or
7702 zero-extend it as appropriate. */
7703 case DW_FORM_data1:
7704 dwarf2_const_value_data (attr, sym, 8);
7705 break;
c906108c 7706 case DW_FORM_data2:
2df3850c
JM
7707 dwarf2_const_value_data (attr, sym, 16);
7708 break;
c906108c 7709 case DW_FORM_data4:
2df3850c
JM
7710 dwarf2_const_value_data (attr, sym, 32);
7711 break;
c906108c 7712 case DW_FORM_data8:
2df3850c
JM
7713 dwarf2_const_value_data (attr, sym, 64);
7714 break;
7715
c906108c 7716 case DW_FORM_sdata:
2df3850c
JM
7717 SYMBOL_VALUE (sym) = DW_SND (attr);
7718 SYMBOL_CLASS (sym) = LOC_CONST;
7719 break;
7720
c906108c
SS
7721 case DW_FORM_udata:
7722 SYMBOL_VALUE (sym) = DW_UNSND (attr);
7723 SYMBOL_CLASS (sym) = LOC_CONST;
7724 break;
2df3850c 7725
c906108c 7726 default:
4d3c2250 7727 complaint (&symfile_complaints,
e2e0b3e5 7728 _("unsupported const value attribute form: '%s'"),
4d3c2250 7729 dwarf_form_name (attr->form));
c906108c
SS
7730 SYMBOL_VALUE (sym) = 0;
7731 SYMBOL_CLASS (sym) = LOC_CONST;
7732 break;
7733 }
7734}
7735
2df3850c
JM
7736
7737/* Given an attr with a DW_FORM_dataN value in host byte order, sign-
7738 or zero-extend it as appropriate for the symbol's type. */
7739static void
7740dwarf2_const_value_data (struct attribute *attr,
7741 struct symbol *sym,
7742 int bits)
7743{
7744 LONGEST l = DW_UNSND (attr);
7745
7746 if (bits < sizeof (l) * 8)
7747 {
7748 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
7749 l &= ((LONGEST) 1 << bits) - 1;
7750 else
bf9198f1 7751 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
2df3850c
JM
7752 }
7753
7754 SYMBOL_VALUE (sym) = l;
7755 SYMBOL_CLASS (sym) = LOC_CONST;
7756}
7757
7758
c906108c
SS
7759/* Return the type of the die in question using its DW_AT_type attribute. */
7760
7761static struct type *
e7c27a73 7762die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7763{
5e2b427d 7764 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
c906108c
SS
7765 struct type *type;
7766 struct attribute *type_attr;
7767 struct die_info *type_die;
c906108c 7768
e142c38c 7769 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
7770 if (!type_attr)
7771 {
7772 /* A missing DW_AT_type represents a void type. */
5e2b427d 7773 return builtin_type (gdbarch)->builtin_void;
c906108c
SS
7774 }
7775 else
10b3939b
DJ
7776 type_die = follow_die_ref (die, type_attr, cu);
7777
e7c27a73 7778 type = tag_type_to_type (type_die, cu);
c906108c
SS
7779 if (!type)
7780 {
7781 dump_die (type_die);
8a3fe4f8 7782 error (_("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]"),
e7c27a73 7783 cu->objfile->name);
c906108c
SS
7784 }
7785 return type;
7786}
7787
7788/* Return the containing type of the die in question using its
7789 DW_AT_containing_type attribute. */
7790
7791static struct type *
e7c27a73 7792die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7793{
7794 struct type *type = NULL;
7795 struct attribute *type_attr;
7796 struct die_info *type_die = NULL;
c906108c 7797
e142c38c 7798 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
c906108c
SS
7799 if (type_attr)
7800 {
10b3939b 7801 type_die = follow_die_ref (die, type_attr, cu);
e7c27a73 7802 type = tag_type_to_type (type_die, cu);
c906108c
SS
7803 }
7804 if (!type)
7805 {
7806 if (type_die)
7807 dump_die (type_die);
8a3fe4f8 7808 error (_("Dwarf Error: Problem turning containing type into gdb type [in module %s]"),
e7c27a73 7809 cu->objfile->name);
c906108c
SS
7810 }
7811 return type;
7812}
7813
c906108c 7814static struct type *
e7c27a73 7815tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7816{
f792889a
DJ
7817 struct type *this_type;
7818
7819 this_type = read_type_die (die, cu);
7820 if (!this_type)
c906108c 7821 {
f792889a
DJ
7822 dump_die (die);
7823 error (_("Dwarf Error: Cannot find type of die [in module %s]"),
7824 cu->objfile->name);
c906108c 7825 }
f792889a 7826 return this_type;
c906108c
SS
7827}
7828
f792889a 7829static struct type *
e7c27a73 7830read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7831{
f792889a
DJ
7832 char *prefix;
7833 const char *old_prefix;
7834 struct cleanup *back_to;
7835 struct type *this_type;
7836
7837 this_type = get_die_type (die, cu);
7838 if (this_type)
7839 return this_type;
7840
7841 prefix = determine_prefix (die, cu);
7842 old_prefix = processing_current_prefix;
7843 back_to = make_cleanup (xfree, prefix);
63d06c5c 7844 processing_current_prefix = prefix;
f792889a 7845
c906108c
SS
7846 switch (die->tag)
7847 {
7848 case DW_TAG_class_type:
680b30c7 7849 case DW_TAG_interface_type:
c906108c
SS
7850 case DW_TAG_structure_type:
7851 case DW_TAG_union_type:
f792889a 7852 this_type = read_structure_type (die, cu);
c906108c
SS
7853 break;
7854 case DW_TAG_enumeration_type:
f792889a 7855 this_type = read_enumeration_type (die, cu);
c906108c
SS
7856 break;
7857 case DW_TAG_subprogram:
7858 case DW_TAG_subroutine_type:
f792889a 7859 this_type = read_subroutine_type (die, cu);
c906108c
SS
7860 break;
7861 case DW_TAG_array_type:
f792889a 7862 this_type = read_array_type (die, cu);
c906108c 7863 break;
72019c9c 7864 case DW_TAG_set_type:
f792889a 7865 this_type = read_set_type (die, cu);
72019c9c 7866 break;
c906108c 7867 case DW_TAG_pointer_type:
f792889a 7868 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
7869 break;
7870 case DW_TAG_ptr_to_member_type:
f792889a 7871 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
7872 break;
7873 case DW_TAG_reference_type:
f792889a 7874 this_type = read_tag_reference_type (die, cu);
c906108c
SS
7875 break;
7876 case DW_TAG_const_type:
f792889a 7877 this_type = read_tag_const_type (die, cu);
c906108c
SS
7878 break;
7879 case DW_TAG_volatile_type:
f792889a 7880 this_type = read_tag_volatile_type (die, cu);
c906108c
SS
7881 break;
7882 case DW_TAG_string_type:
f792889a 7883 this_type = read_tag_string_type (die, cu);
c906108c
SS
7884 break;
7885 case DW_TAG_typedef:
f792889a 7886 this_type = read_typedef (die, cu);
c906108c 7887 break;
a02abb62 7888 case DW_TAG_subrange_type:
f792889a 7889 this_type = read_subrange_type (die, cu);
a02abb62 7890 break;
c906108c 7891 case DW_TAG_base_type:
f792889a 7892 this_type = read_base_type (die, cu);
c906108c 7893 break;
81a17f79 7894 case DW_TAG_unspecified_type:
f792889a 7895 this_type = read_unspecified_type (die, cu);
81a17f79 7896 break;
c906108c 7897 default:
a1f5b845 7898 complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
4d3c2250 7899 dwarf_tag_name (die->tag));
c906108c
SS
7900 break;
7901 }
63d06c5c
DC
7902
7903 processing_current_prefix = old_prefix;
7904 do_cleanups (back_to);
f792889a 7905 return this_type;
63d06c5c
DC
7906}
7907
fdde2d81
DC
7908/* Return the name of the namespace/class that DIE is defined within,
7909 or "" if we can't tell. The caller should xfree the result. */
7910
7911/* NOTE: carlton/2004-01-23: See read_func_scope (and the comment
7912 therein) for an example of how to use this function to deal with
7913 DW_AT_specification. */
7914
7915static char *
e142c38c 7916determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c
DC
7917{
7918 struct die_info *parent;
7919
987504bb
JJ
7920 if (cu->language != language_cplus
7921 && cu->language != language_java)
63d06c5c
DC
7922 return NULL;
7923
7924 parent = die->parent;
7925
7926 if (parent == NULL)
7927 {
8176b9b8 7928 return xstrdup ("");
63d06c5c
DC
7929 }
7930 else
7931 {
63d06c5c
DC
7932 switch (parent->tag) {
7933 case DW_TAG_namespace:
7934 {
8176b9b8
DC
7935 /* FIXME: carlton/2004-03-05: Should I follow extension dies
7936 before doing this check? */
f792889a
DJ
7937 struct type *parent_type = get_die_type (parent, cu);
7938 if (parent_type != NULL && TYPE_TAG_NAME (parent_type) != NULL)
8176b9b8 7939 {
f792889a 7940 return xstrdup (TYPE_TAG_NAME (parent_type));
8176b9b8
DC
7941 }
7942 else
7943 {
7944 int dummy;
7945 char *parent_prefix = determine_prefix (parent, cu);
987504bb 7946 char *retval = typename_concat (NULL, parent_prefix,
8176b9b8 7947 namespace_name (parent, &dummy,
987504bb
JJ
7948 cu),
7949 cu);
8176b9b8
DC
7950 xfree (parent_prefix);
7951 return retval;
7952 }
63d06c5c
DC
7953 }
7954 break;
7955 case DW_TAG_class_type:
680b30c7 7956 case DW_TAG_interface_type:
63d06c5c
DC
7957 case DW_TAG_structure_type:
7958 {
f792889a
DJ
7959 struct type *parent_type = get_die_type (parent, cu);
7960 if (parent_type != NULL && TYPE_TAG_NAME (parent_type) != NULL)
63d06c5c 7961 {
f792889a 7962 return xstrdup (TYPE_TAG_NAME (parent_type));
63d06c5c
DC
7963 }
7964 else
8176b9b8
DC
7965 {
7966 const char *old_prefix = processing_current_prefix;
7967 char *new_prefix = determine_prefix (parent, cu);
7968 char *retval;
7969
7970 processing_current_prefix = new_prefix;
7971 retval = determine_class_name (parent, cu);
7972 processing_current_prefix = old_prefix;
7973
7974 xfree (new_prefix);
7975 return retval;
7976 }
63d06c5c 7977 }
63d06c5c 7978 default:
8176b9b8 7979 return determine_prefix (parent, cu);
63d06c5c 7980 }
63d06c5c
DC
7981 }
7982}
7983
987504bb
JJ
7984/* Return a newly-allocated string formed by concatenating PREFIX and
7985 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
7986 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
7987 perform an obconcat, otherwise allocate storage for the result. The CU argument
7988 is used to determine the language and hence, the appropriate separator. */
7989
7990#define MAX_SEP_LEN 2 /* sizeof ("::") */
63d06c5c
DC
7991
7992static char *
987504bb
JJ
7993typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
7994 struct dwarf2_cu *cu)
63d06c5c 7995{
987504bb 7996 char *sep;
63d06c5c 7997
987504bb
JJ
7998 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
7999 sep = "";
8000 else if (cu->language == language_java)
8001 sep = ".";
8002 else
8003 sep = "::";
63d06c5c 8004
987504bb
JJ
8005 if (obs == NULL)
8006 {
8007 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
8008 retval[0] = '\0';
8009
8010 if (prefix)
8011 {
8012 strcpy (retval, prefix);
8013 strcat (retval, sep);
8014 }
8015 if (suffix)
8016 strcat (retval, suffix);
8017
63d06c5c
DC
8018 return retval;
8019 }
987504bb
JJ
8020 else
8021 {
8022 /* We have an obstack. */
8023 return obconcat (obs, prefix, sep, suffix);
8024 }
63d06c5c
DC
8025}
8026
c906108c
SS
8027#if 0
8028struct die_info *
fba45db2 8029copy_die (struct die_info *old_die)
c906108c
SS
8030{
8031 struct die_info *new_die;
8032 int i, num_attrs;
8033
8034 new_die = (struct die_info *) xmalloc (sizeof (struct die_info));
8035 memset (new_die, 0, sizeof (struct die_info));
8036
8037 new_die->tag = old_die->tag;
8038 new_die->has_children = old_die->has_children;
8039 new_die->abbrev = old_die->abbrev;
8040 new_die->offset = old_die->offset;
c906108c
SS
8041
8042 num_attrs = old_die->num_attrs;
8043 new_die->num_attrs = num_attrs;
8044 new_die->attrs = (struct attribute *)
8045 xmalloc (num_attrs * sizeof (struct attribute));
8046
8047 for (i = 0; i < old_die->num_attrs; ++i)
8048 {
8049 new_die->attrs[i].name = old_die->attrs[i].name;
8050 new_die->attrs[i].form = old_die->attrs[i].form;
8051 new_die->attrs[i].u.addr = old_die->attrs[i].u.addr;
8052 }
8053
8054 new_die->next = NULL;
8055 return new_die;
8056}
8057#endif
8058
8059/* Return sibling of die, NULL if no sibling. */
8060
f9aca02d 8061static struct die_info *
fba45db2 8062sibling_die (struct die_info *die)
c906108c 8063{
639d11d3 8064 return die->sibling;
c906108c
SS
8065}
8066
8067/* Get linkage name of a die, return NULL if not found. */
8068
8069static char *
e142c38c 8070dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
8071{
8072 struct attribute *attr;
8073
e142c38c 8074 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
c906108c
SS
8075 if (attr && DW_STRING (attr))
8076 return DW_STRING (attr);
e142c38c 8077 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
8078 if (attr && DW_STRING (attr))
8079 return DW_STRING (attr);
8080 return NULL;
8081}
8082
9219021c
DC
8083/* Get name of a die, return NULL if not found. */
8084
8085static char *
e142c38c 8086dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
8087{
8088 struct attribute *attr;
8089
e142c38c 8090 attr = dwarf2_attr (die, DW_AT_name, cu);
9219021c
DC
8091 if (attr && DW_STRING (attr))
8092 return DW_STRING (attr);
8093 return NULL;
8094}
8095
8096/* Return the die that this die in an extension of, or NULL if there
8097 is none. */
8098
8099static struct die_info *
e142c38c 8100dwarf2_extension (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
8101{
8102 struct attribute *attr;
9219021c 8103
e142c38c 8104 attr = dwarf2_attr (die, DW_AT_extension, cu);
9219021c
DC
8105 if (attr == NULL)
8106 return NULL;
8107
10b3939b 8108 return follow_die_ref (die, attr, cu);
9219021c
DC
8109}
8110
c906108c
SS
8111/* Convert a DIE tag into its string name. */
8112
8113static char *
aa1ee363 8114dwarf_tag_name (unsigned tag)
c906108c
SS
8115{
8116 switch (tag)
8117 {
8118 case DW_TAG_padding:
8119 return "DW_TAG_padding";
8120 case DW_TAG_array_type:
8121 return "DW_TAG_array_type";
8122 case DW_TAG_class_type:
8123 return "DW_TAG_class_type";
8124 case DW_TAG_entry_point:
8125 return "DW_TAG_entry_point";
8126 case DW_TAG_enumeration_type:
8127 return "DW_TAG_enumeration_type";
8128 case DW_TAG_formal_parameter:
8129 return "DW_TAG_formal_parameter";
8130 case DW_TAG_imported_declaration:
8131 return "DW_TAG_imported_declaration";
8132 case DW_TAG_label:
8133 return "DW_TAG_label";
8134 case DW_TAG_lexical_block:
8135 return "DW_TAG_lexical_block";
8136 case DW_TAG_member:
8137 return "DW_TAG_member";
8138 case DW_TAG_pointer_type:
8139 return "DW_TAG_pointer_type";
8140 case DW_TAG_reference_type:
8141 return "DW_TAG_reference_type";
8142 case DW_TAG_compile_unit:
8143 return "DW_TAG_compile_unit";
8144 case DW_TAG_string_type:
8145 return "DW_TAG_string_type";
8146 case DW_TAG_structure_type:
8147 return "DW_TAG_structure_type";
8148 case DW_TAG_subroutine_type:
8149 return "DW_TAG_subroutine_type";
8150 case DW_TAG_typedef:
8151 return "DW_TAG_typedef";
8152 case DW_TAG_union_type:
8153 return "DW_TAG_union_type";
8154 case DW_TAG_unspecified_parameters:
8155 return "DW_TAG_unspecified_parameters";
8156 case DW_TAG_variant:
8157 return "DW_TAG_variant";
8158 case DW_TAG_common_block:
8159 return "DW_TAG_common_block";
8160 case DW_TAG_common_inclusion:
8161 return "DW_TAG_common_inclusion";
8162 case DW_TAG_inheritance:
8163 return "DW_TAG_inheritance";
8164 case DW_TAG_inlined_subroutine:
8165 return "DW_TAG_inlined_subroutine";
8166 case DW_TAG_module:
8167 return "DW_TAG_module";
8168 case DW_TAG_ptr_to_member_type:
8169 return "DW_TAG_ptr_to_member_type";
8170 case DW_TAG_set_type:
8171 return "DW_TAG_set_type";
8172 case DW_TAG_subrange_type:
8173 return "DW_TAG_subrange_type";
8174 case DW_TAG_with_stmt:
8175 return "DW_TAG_with_stmt";
8176 case DW_TAG_access_declaration:
8177 return "DW_TAG_access_declaration";
8178 case DW_TAG_base_type:
8179 return "DW_TAG_base_type";
8180 case DW_TAG_catch_block:
8181 return "DW_TAG_catch_block";
8182 case DW_TAG_const_type:
8183 return "DW_TAG_const_type";
8184 case DW_TAG_constant:
8185 return "DW_TAG_constant";
8186 case DW_TAG_enumerator:
8187 return "DW_TAG_enumerator";
8188 case DW_TAG_file_type:
8189 return "DW_TAG_file_type";
8190 case DW_TAG_friend:
8191 return "DW_TAG_friend";
8192 case DW_TAG_namelist:
8193 return "DW_TAG_namelist";
8194 case DW_TAG_namelist_item:
8195 return "DW_TAG_namelist_item";
8196 case DW_TAG_packed_type:
8197 return "DW_TAG_packed_type";
8198 case DW_TAG_subprogram:
8199 return "DW_TAG_subprogram";
8200 case DW_TAG_template_type_param:
8201 return "DW_TAG_template_type_param";
8202 case DW_TAG_template_value_param:
8203 return "DW_TAG_template_value_param";
8204 case DW_TAG_thrown_type:
8205 return "DW_TAG_thrown_type";
8206 case DW_TAG_try_block:
8207 return "DW_TAG_try_block";
8208 case DW_TAG_variant_part:
8209 return "DW_TAG_variant_part";
8210 case DW_TAG_variable:
8211 return "DW_TAG_variable";
8212 case DW_TAG_volatile_type:
8213 return "DW_TAG_volatile_type";
d9fa45fe
DC
8214 case DW_TAG_dwarf_procedure:
8215 return "DW_TAG_dwarf_procedure";
8216 case DW_TAG_restrict_type:
8217 return "DW_TAG_restrict_type";
8218 case DW_TAG_interface_type:
8219 return "DW_TAG_interface_type";
8220 case DW_TAG_namespace:
8221 return "DW_TAG_namespace";
8222 case DW_TAG_imported_module:
8223 return "DW_TAG_imported_module";
8224 case DW_TAG_unspecified_type:
8225 return "DW_TAG_unspecified_type";
8226 case DW_TAG_partial_unit:
8227 return "DW_TAG_partial_unit";
8228 case DW_TAG_imported_unit:
8229 return "DW_TAG_imported_unit";
b7619582
GF
8230 case DW_TAG_condition:
8231 return "DW_TAG_condition";
8232 case DW_TAG_shared_type:
8233 return "DW_TAG_shared_type";
c906108c
SS
8234 case DW_TAG_MIPS_loop:
8235 return "DW_TAG_MIPS_loop";
b7619582
GF
8236 case DW_TAG_HP_array_descriptor:
8237 return "DW_TAG_HP_array_descriptor";
c906108c
SS
8238 case DW_TAG_format_label:
8239 return "DW_TAG_format_label";
8240 case DW_TAG_function_template:
8241 return "DW_TAG_function_template";
8242 case DW_TAG_class_template:
8243 return "DW_TAG_class_template";
b7619582
GF
8244 case DW_TAG_GNU_BINCL:
8245 return "DW_TAG_GNU_BINCL";
8246 case DW_TAG_GNU_EINCL:
8247 return "DW_TAG_GNU_EINCL";
8248 case DW_TAG_upc_shared_type:
8249 return "DW_TAG_upc_shared_type";
8250 case DW_TAG_upc_strict_type:
8251 return "DW_TAG_upc_strict_type";
8252 case DW_TAG_upc_relaxed_type:
8253 return "DW_TAG_upc_relaxed_type";
8254 case DW_TAG_PGI_kanji_type:
8255 return "DW_TAG_PGI_kanji_type";
8256 case DW_TAG_PGI_interface_block:
8257 return "DW_TAG_PGI_interface_block";
c906108c
SS
8258 default:
8259 return "DW_TAG_<unknown>";
8260 }
8261}
8262
8263/* Convert a DWARF attribute code into its string name. */
8264
8265static char *
aa1ee363 8266dwarf_attr_name (unsigned attr)
c906108c
SS
8267{
8268 switch (attr)
8269 {
8270 case DW_AT_sibling:
8271 return "DW_AT_sibling";
8272 case DW_AT_location:
8273 return "DW_AT_location";
8274 case DW_AT_name:
8275 return "DW_AT_name";
8276 case DW_AT_ordering:
8277 return "DW_AT_ordering";
8278 case DW_AT_subscr_data:
8279 return "DW_AT_subscr_data";
8280 case DW_AT_byte_size:
8281 return "DW_AT_byte_size";
8282 case DW_AT_bit_offset:
8283 return "DW_AT_bit_offset";
8284 case DW_AT_bit_size:
8285 return "DW_AT_bit_size";
8286 case DW_AT_element_list:
8287 return "DW_AT_element_list";
8288 case DW_AT_stmt_list:
8289 return "DW_AT_stmt_list";
8290 case DW_AT_low_pc:
8291 return "DW_AT_low_pc";
8292 case DW_AT_high_pc:
8293 return "DW_AT_high_pc";
8294 case DW_AT_language:
8295 return "DW_AT_language";
8296 case DW_AT_member:
8297 return "DW_AT_member";
8298 case DW_AT_discr:
8299 return "DW_AT_discr";
8300 case DW_AT_discr_value:
8301 return "DW_AT_discr_value";
8302 case DW_AT_visibility:
8303 return "DW_AT_visibility";
8304 case DW_AT_import:
8305 return "DW_AT_import";
8306 case DW_AT_string_length:
8307 return "DW_AT_string_length";
8308 case DW_AT_common_reference:
8309 return "DW_AT_common_reference";
8310 case DW_AT_comp_dir:
8311 return "DW_AT_comp_dir";
8312 case DW_AT_const_value:
8313 return "DW_AT_const_value";
8314 case DW_AT_containing_type:
8315 return "DW_AT_containing_type";
8316 case DW_AT_default_value:
8317 return "DW_AT_default_value";
8318 case DW_AT_inline:
8319 return "DW_AT_inline";
8320 case DW_AT_is_optional:
8321 return "DW_AT_is_optional";
8322 case DW_AT_lower_bound:
8323 return "DW_AT_lower_bound";
8324 case DW_AT_producer:
8325 return "DW_AT_producer";
8326 case DW_AT_prototyped:
8327 return "DW_AT_prototyped";
8328 case DW_AT_return_addr:
8329 return "DW_AT_return_addr";
8330 case DW_AT_start_scope:
8331 return "DW_AT_start_scope";
09fa0d7c
JK
8332 case DW_AT_bit_stride:
8333 return "DW_AT_bit_stride";
c906108c
SS
8334 case DW_AT_upper_bound:
8335 return "DW_AT_upper_bound";
8336 case DW_AT_abstract_origin:
8337 return "DW_AT_abstract_origin";
8338 case DW_AT_accessibility:
8339 return "DW_AT_accessibility";
8340 case DW_AT_address_class:
8341 return "DW_AT_address_class";
8342 case DW_AT_artificial:
8343 return "DW_AT_artificial";
8344 case DW_AT_base_types:
8345 return "DW_AT_base_types";
8346 case DW_AT_calling_convention:
8347 return "DW_AT_calling_convention";
8348 case DW_AT_count:
8349 return "DW_AT_count";
8350 case DW_AT_data_member_location:
8351 return "DW_AT_data_member_location";
8352 case DW_AT_decl_column:
8353 return "DW_AT_decl_column";
8354 case DW_AT_decl_file:
8355 return "DW_AT_decl_file";
8356 case DW_AT_decl_line:
8357 return "DW_AT_decl_line";
8358 case DW_AT_declaration:
8359 return "DW_AT_declaration";
8360 case DW_AT_discr_list:
8361 return "DW_AT_discr_list";
8362 case DW_AT_encoding:
8363 return "DW_AT_encoding";
8364 case DW_AT_external:
8365 return "DW_AT_external";
8366 case DW_AT_frame_base:
8367 return "DW_AT_frame_base";
8368 case DW_AT_friend:
8369 return "DW_AT_friend";
8370 case DW_AT_identifier_case:
8371 return "DW_AT_identifier_case";
8372 case DW_AT_macro_info:
8373 return "DW_AT_macro_info";
8374 case DW_AT_namelist_items:
8375 return "DW_AT_namelist_items";
8376 case DW_AT_priority:
8377 return "DW_AT_priority";
8378 case DW_AT_segment:
8379 return "DW_AT_segment";
8380 case DW_AT_specification:
8381 return "DW_AT_specification";
8382 case DW_AT_static_link:
8383 return "DW_AT_static_link";
8384 case DW_AT_type:
8385 return "DW_AT_type";
8386 case DW_AT_use_location:
8387 return "DW_AT_use_location";
8388 case DW_AT_variable_parameter:
8389 return "DW_AT_variable_parameter";
8390 case DW_AT_virtuality:
8391 return "DW_AT_virtuality";
8392 case DW_AT_vtable_elem_location:
8393 return "DW_AT_vtable_elem_location";
b7619582 8394 /* DWARF 3 values. */
d9fa45fe
DC
8395 case DW_AT_allocated:
8396 return "DW_AT_allocated";
8397 case DW_AT_associated:
8398 return "DW_AT_associated";
8399 case DW_AT_data_location:
8400 return "DW_AT_data_location";
09fa0d7c
JK
8401 case DW_AT_byte_stride:
8402 return "DW_AT_byte_stride";
d9fa45fe
DC
8403 case DW_AT_entry_pc:
8404 return "DW_AT_entry_pc";
8405 case DW_AT_use_UTF8:
8406 return "DW_AT_use_UTF8";
8407 case DW_AT_extension:
8408 return "DW_AT_extension";
8409 case DW_AT_ranges:
8410 return "DW_AT_ranges";
8411 case DW_AT_trampoline:
8412 return "DW_AT_trampoline";
8413 case DW_AT_call_column:
8414 return "DW_AT_call_column";
8415 case DW_AT_call_file:
8416 return "DW_AT_call_file";
8417 case DW_AT_call_line:
8418 return "DW_AT_call_line";
b7619582
GF
8419 case DW_AT_description:
8420 return "DW_AT_description";
8421 case DW_AT_binary_scale:
8422 return "DW_AT_binary_scale";
8423 case DW_AT_decimal_scale:
8424 return "DW_AT_decimal_scale";
8425 case DW_AT_small:
8426 return "DW_AT_small";
8427 case DW_AT_decimal_sign:
8428 return "DW_AT_decimal_sign";
8429 case DW_AT_digit_count:
8430 return "DW_AT_digit_count";
8431 case DW_AT_picture_string:
8432 return "DW_AT_picture_string";
8433 case DW_AT_mutable:
8434 return "DW_AT_mutable";
8435 case DW_AT_threads_scaled:
8436 return "DW_AT_threads_scaled";
8437 case DW_AT_explicit:
8438 return "DW_AT_explicit";
8439 case DW_AT_object_pointer:
8440 return "DW_AT_object_pointer";
8441 case DW_AT_endianity:
8442 return "DW_AT_endianity";
8443 case DW_AT_elemental:
8444 return "DW_AT_elemental";
8445 case DW_AT_pure:
8446 return "DW_AT_pure";
8447 case DW_AT_recursive:
8448 return "DW_AT_recursive";
c906108c 8449#ifdef MIPS
b7619582 8450 /* SGI/MIPS extensions. */
c906108c
SS
8451 case DW_AT_MIPS_fde:
8452 return "DW_AT_MIPS_fde";
8453 case DW_AT_MIPS_loop_begin:
8454 return "DW_AT_MIPS_loop_begin";
8455 case DW_AT_MIPS_tail_loop_begin:
8456 return "DW_AT_MIPS_tail_loop_begin";
8457 case DW_AT_MIPS_epilog_begin:
8458 return "DW_AT_MIPS_epilog_begin";
8459 case DW_AT_MIPS_loop_unroll_factor:
8460 return "DW_AT_MIPS_loop_unroll_factor";
8461 case DW_AT_MIPS_software_pipeline_depth:
8462 return "DW_AT_MIPS_software_pipeline_depth";
8463 case DW_AT_MIPS_linkage_name:
8464 return "DW_AT_MIPS_linkage_name";
b7619582
GF
8465 case DW_AT_MIPS_stride:
8466 return "DW_AT_MIPS_stride";
8467 case DW_AT_MIPS_abstract_name:
8468 return "DW_AT_MIPS_abstract_name";
8469 case DW_AT_MIPS_clone_origin:
8470 return "DW_AT_MIPS_clone_origin";
8471 case DW_AT_MIPS_has_inlines:
8472 return "DW_AT_MIPS_has_inlines";
8473#endif
8474 /* HP extensions. */
8475 case DW_AT_HP_block_index:
8476 return "DW_AT_HP_block_index";
8477 case DW_AT_HP_unmodifiable:
8478 return "DW_AT_HP_unmodifiable";
8479 case DW_AT_HP_actuals_stmt_list:
8480 return "DW_AT_HP_actuals_stmt_list";
8481 case DW_AT_HP_proc_per_section:
8482 return "DW_AT_HP_proc_per_section";
8483 case DW_AT_HP_raw_data_ptr:
8484 return "DW_AT_HP_raw_data_ptr";
8485 case DW_AT_HP_pass_by_reference:
8486 return "DW_AT_HP_pass_by_reference";
8487 case DW_AT_HP_opt_level:
8488 return "DW_AT_HP_opt_level";
8489 case DW_AT_HP_prof_version_id:
8490 return "DW_AT_HP_prof_version_id";
8491 case DW_AT_HP_opt_flags:
8492 return "DW_AT_HP_opt_flags";
8493 case DW_AT_HP_cold_region_low_pc:
8494 return "DW_AT_HP_cold_region_low_pc";
8495 case DW_AT_HP_cold_region_high_pc:
8496 return "DW_AT_HP_cold_region_high_pc";
8497 case DW_AT_HP_all_variables_modifiable:
8498 return "DW_AT_HP_all_variables_modifiable";
8499 case DW_AT_HP_linkage_name:
8500 return "DW_AT_HP_linkage_name";
8501 case DW_AT_HP_prof_flags:
8502 return "DW_AT_HP_prof_flags";
8503 /* GNU extensions. */
c906108c
SS
8504 case DW_AT_sf_names:
8505 return "DW_AT_sf_names";
8506 case DW_AT_src_info:
8507 return "DW_AT_src_info";
8508 case DW_AT_mac_info:
8509 return "DW_AT_mac_info";
8510 case DW_AT_src_coords:
8511 return "DW_AT_src_coords";
8512 case DW_AT_body_begin:
8513 return "DW_AT_body_begin";
8514 case DW_AT_body_end:
8515 return "DW_AT_body_end";
f5f8a009
EZ
8516 case DW_AT_GNU_vector:
8517 return "DW_AT_GNU_vector";
b7619582
GF
8518 /* VMS extensions. */
8519 case DW_AT_VMS_rtnbeg_pd_address:
8520 return "DW_AT_VMS_rtnbeg_pd_address";
8521 /* UPC extension. */
8522 case DW_AT_upc_threads_scaled:
8523 return "DW_AT_upc_threads_scaled";
8524 /* PGI (STMicroelectronics) extensions. */
8525 case DW_AT_PGI_lbase:
8526 return "DW_AT_PGI_lbase";
8527 case DW_AT_PGI_soffset:
8528 return "DW_AT_PGI_soffset";
8529 case DW_AT_PGI_lstride:
8530 return "DW_AT_PGI_lstride";
c906108c
SS
8531 default:
8532 return "DW_AT_<unknown>";
8533 }
8534}
8535
8536/* Convert a DWARF value form code into its string name. */
8537
8538static char *
aa1ee363 8539dwarf_form_name (unsigned form)
c906108c
SS
8540{
8541 switch (form)
8542 {
8543 case DW_FORM_addr:
8544 return "DW_FORM_addr";
8545 case DW_FORM_block2:
8546 return "DW_FORM_block2";
8547 case DW_FORM_block4:
8548 return "DW_FORM_block4";
8549 case DW_FORM_data2:
8550 return "DW_FORM_data2";
8551 case DW_FORM_data4:
8552 return "DW_FORM_data4";
8553 case DW_FORM_data8:
8554 return "DW_FORM_data8";
8555 case DW_FORM_string:
8556 return "DW_FORM_string";
8557 case DW_FORM_block:
8558 return "DW_FORM_block";
8559 case DW_FORM_block1:
8560 return "DW_FORM_block1";
8561 case DW_FORM_data1:
8562 return "DW_FORM_data1";
8563 case DW_FORM_flag:
8564 return "DW_FORM_flag";
8565 case DW_FORM_sdata:
8566 return "DW_FORM_sdata";
8567 case DW_FORM_strp:
8568 return "DW_FORM_strp";
8569 case DW_FORM_udata:
8570 return "DW_FORM_udata";
8571 case DW_FORM_ref_addr:
8572 return "DW_FORM_ref_addr";
8573 case DW_FORM_ref1:
8574 return "DW_FORM_ref1";
8575 case DW_FORM_ref2:
8576 return "DW_FORM_ref2";
8577 case DW_FORM_ref4:
8578 return "DW_FORM_ref4";
8579 case DW_FORM_ref8:
8580 return "DW_FORM_ref8";
8581 case DW_FORM_ref_udata:
8582 return "DW_FORM_ref_udata";
8583 case DW_FORM_indirect:
8584 return "DW_FORM_indirect";
8585 default:
8586 return "DW_FORM_<unknown>";
8587 }
8588}
8589
8590/* Convert a DWARF stack opcode into its string name. */
8591
8592static char *
aa1ee363 8593dwarf_stack_op_name (unsigned op)
c906108c
SS
8594{
8595 switch (op)
8596 {
8597 case DW_OP_addr:
8598 return "DW_OP_addr";
8599 case DW_OP_deref:
8600 return "DW_OP_deref";
8601 case DW_OP_const1u:
8602 return "DW_OP_const1u";
8603 case DW_OP_const1s:
8604 return "DW_OP_const1s";
8605 case DW_OP_const2u:
8606 return "DW_OP_const2u";
8607 case DW_OP_const2s:
8608 return "DW_OP_const2s";
8609 case DW_OP_const4u:
8610 return "DW_OP_const4u";
8611 case DW_OP_const4s:
8612 return "DW_OP_const4s";
8613 case DW_OP_const8u:
8614 return "DW_OP_const8u";
8615 case DW_OP_const8s:
8616 return "DW_OP_const8s";
8617 case DW_OP_constu:
8618 return "DW_OP_constu";
8619 case DW_OP_consts:
8620 return "DW_OP_consts";
8621 case DW_OP_dup:
8622 return "DW_OP_dup";
8623 case DW_OP_drop:
8624 return "DW_OP_drop";
8625 case DW_OP_over:
8626 return "DW_OP_over";
8627 case DW_OP_pick:
8628 return "DW_OP_pick";
8629 case DW_OP_swap:
8630 return "DW_OP_swap";
8631 case DW_OP_rot:
8632 return "DW_OP_rot";
8633 case DW_OP_xderef:
8634 return "DW_OP_xderef";
8635 case DW_OP_abs:
8636 return "DW_OP_abs";
8637 case DW_OP_and:
8638 return "DW_OP_and";
8639 case DW_OP_div:
8640 return "DW_OP_div";
8641 case DW_OP_minus:
8642 return "DW_OP_minus";
8643 case DW_OP_mod:
8644 return "DW_OP_mod";
8645 case DW_OP_mul:
8646 return "DW_OP_mul";
8647 case DW_OP_neg:
8648 return "DW_OP_neg";
8649 case DW_OP_not:
8650 return "DW_OP_not";
8651 case DW_OP_or:
8652 return "DW_OP_or";
8653 case DW_OP_plus:
8654 return "DW_OP_plus";
8655 case DW_OP_plus_uconst:
8656 return "DW_OP_plus_uconst";
8657 case DW_OP_shl:
8658 return "DW_OP_shl";
8659 case DW_OP_shr:
8660 return "DW_OP_shr";
8661 case DW_OP_shra:
8662 return "DW_OP_shra";
8663 case DW_OP_xor:
8664 return "DW_OP_xor";
8665 case DW_OP_bra:
8666 return "DW_OP_bra";
8667 case DW_OP_eq:
8668 return "DW_OP_eq";
8669 case DW_OP_ge:
8670 return "DW_OP_ge";
8671 case DW_OP_gt:
8672 return "DW_OP_gt";
8673 case DW_OP_le:
8674 return "DW_OP_le";
8675 case DW_OP_lt:
8676 return "DW_OP_lt";
8677 case DW_OP_ne:
8678 return "DW_OP_ne";
8679 case DW_OP_skip:
8680 return "DW_OP_skip";
8681 case DW_OP_lit0:
8682 return "DW_OP_lit0";
8683 case DW_OP_lit1:
8684 return "DW_OP_lit1";
8685 case DW_OP_lit2:
8686 return "DW_OP_lit2";
8687 case DW_OP_lit3:
8688 return "DW_OP_lit3";
8689 case DW_OP_lit4:
8690 return "DW_OP_lit4";
8691 case DW_OP_lit5:
8692 return "DW_OP_lit5";
8693 case DW_OP_lit6:
8694 return "DW_OP_lit6";
8695 case DW_OP_lit7:
8696 return "DW_OP_lit7";
8697 case DW_OP_lit8:
8698 return "DW_OP_lit8";
8699 case DW_OP_lit9:
8700 return "DW_OP_lit9";
8701 case DW_OP_lit10:
8702 return "DW_OP_lit10";
8703 case DW_OP_lit11:
8704 return "DW_OP_lit11";
8705 case DW_OP_lit12:
8706 return "DW_OP_lit12";
8707 case DW_OP_lit13:
8708 return "DW_OP_lit13";
8709 case DW_OP_lit14:
8710 return "DW_OP_lit14";
8711 case DW_OP_lit15:
8712 return "DW_OP_lit15";
8713 case DW_OP_lit16:
8714 return "DW_OP_lit16";
8715 case DW_OP_lit17:
8716 return "DW_OP_lit17";
8717 case DW_OP_lit18:
8718 return "DW_OP_lit18";
8719 case DW_OP_lit19:
8720 return "DW_OP_lit19";
8721 case DW_OP_lit20:
8722 return "DW_OP_lit20";
8723 case DW_OP_lit21:
8724 return "DW_OP_lit21";
8725 case DW_OP_lit22:
8726 return "DW_OP_lit22";
8727 case DW_OP_lit23:
8728 return "DW_OP_lit23";
8729 case DW_OP_lit24:
8730 return "DW_OP_lit24";
8731 case DW_OP_lit25:
8732 return "DW_OP_lit25";
8733 case DW_OP_lit26:
8734 return "DW_OP_lit26";
8735 case DW_OP_lit27:
8736 return "DW_OP_lit27";
8737 case DW_OP_lit28:
8738 return "DW_OP_lit28";
8739 case DW_OP_lit29:
8740 return "DW_OP_lit29";
8741 case DW_OP_lit30:
8742 return "DW_OP_lit30";
8743 case DW_OP_lit31:
8744 return "DW_OP_lit31";
8745 case DW_OP_reg0:
8746 return "DW_OP_reg0";
8747 case DW_OP_reg1:
8748 return "DW_OP_reg1";
8749 case DW_OP_reg2:
8750 return "DW_OP_reg2";
8751 case DW_OP_reg3:
8752 return "DW_OP_reg3";
8753 case DW_OP_reg4:
8754 return "DW_OP_reg4";
8755 case DW_OP_reg5:
8756 return "DW_OP_reg5";
8757 case DW_OP_reg6:
8758 return "DW_OP_reg6";
8759 case DW_OP_reg7:
8760 return "DW_OP_reg7";
8761 case DW_OP_reg8:
8762 return "DW_OP_reg8";
8763 case DW_OP_reg9:
8764 return "DW_OP_reg9";
8765 case DW_OP_reg10:
8766 return "DW_OP_reg10";
8767 case DW_OP_reg11:
8768 return "DW_OP_reg11";
8769 case DW_OP_reg12:
8770 return "DW_OP_reg12";
8771 case DW_OP_reg13:
8772 return "DW_OP_reg13";
8773 case DW_OP_reg14:
8774 return "DW_OP_reg14";
8775 case DW_OP_reg15:
8776 return "DW_OP_reg15";
8777 case DW_OP_reg16:
8778 return "DW_OP_reg16";
8779 case DW_OP_reg17:
8780 return "DW_OP_reg17";
8781 case DW_OP_reg18:
8782 return "DW_OP_reg18";
8783 case DW_OP_reg19:
8784 return "DW_OP_reg19";
8785 case DW_OP_reg20:
8786 return "DW_OP_reg20";
8787 case DW_OP_reg21:
8788 return "DW_OP_reg21";
8789 case DW_OP_reg22:
8790 return "DW_OP_reg22";
8791 case DW_OP_reg23:
8792 return "DW_OP_reg23";
8793 case DW_OP_reg24:
8794 return "DW_OP_reg24";
8795 case DW_OP_reg25:
8796 return "DW_OP_reg25";
8797 case DW_OP_reg26:
8798 return "DW_OP_reg26";
8799 case DW_OP_reg27:
8800 return "DW_OP_reg27";
8801 case DW_OP_reg28:
8802 return "DW_OP_reg28";
8803 case DW_OP_reg29:
8804 return "DW_OP_reg29";
8805 case DW_OP_reg30:
8806 return "DW_OP_reg30";
8807 case DW_OP_reg31:
8808 return "DW_OP_reg31";
8809 case DW_OP_breg0:
8810 return "DW_OP_breg0";
8811 case DW_OP_breg1:
8812 return "DW_OP_breg1";
8813 case DW_OP_breg2:
8814 return "DW_OP_breg2";
8815 case DW_OP_breg3:
8816 return "DW_OP_breg3";
8817 case DW_OP_breg4:
8818 return "DW_OP_breg4";
8819 case DW_OP_breg5:
8820 return "DW_OP_breg5";
8821 case DW_OP_breg6:
8822 return "DW_OP_breg6";
8823 case DW_OP_breg7:
8824 return "DW_OP_breg7";
8825 case DW_OP_breg8:
8826 return "DW_OP_breg8";
8827 case DW_OP_breg9:
8828 return "DW_OP_breg9";
8829 case DW_OP_breg10:
8830 return "DW_OP_breg10";
8831 case DW_OP_breg11:
8832 return "DW_OP_breg11";
8833 case DW_OP_breg12:
8834 return "DW_OP_breg12";
8835 case DW_OP_breg13:
8836 return "DW_OP_breg13";
8837 case DW_OP_breg14:
8838 return "DW_OP_breg14";
8839 case DW_OP_breg15:
8840 return "DW_OP_breg15";
8841 case DW_OP_breg16:
8842 return "DW_OP_breg16";
8843 case DW_OP_breg17:
8844 return "DW_OP_breg17";
8845 case DW_OP_breg18:
8846 return "DW_OP_breg18";
8847 case DW_OP_breg19:
8848 return "DW_OP_breg19";
8849 case DW_OP_breg20:
8850 return "DW_OP_breg20";
8851 case DW_OP_breg21:
8852 return "DW_OP_breg21";
8853 case DW_OP_breg22:
8854 return "DW_OP_breg22";
8855 case DW_OP_breg23:
8856 return "DW_OP_breg23";
8857 case DW_OP_breg24:
8858 return "DW_OP_breg24";
8859 case DW_OP_breg25:
8860 return "DW_OP_breg25";
8861 case DW_OP_breg26:
8862 return "DW_OP_breg26";
8863 case DW_OP_breg27:
8864 return "DW_OP_breg27";
8865 case DW_OP_breg28:
8866 return "DW_OP_breg28";
8867 case DW_OP_breg29:
8868 return "DW_OP_breg29";
8869 case DW_OP_breg30:
8870 return "DW_OP_breg30";
8871 case DW_OP_breg31:
8872 return "DW_OP_breg31";
8873 case DW_OP_regx:
8874 return "DW_OP_regx";
8875 case DW_OP_fbreg:
8876 return "DW_OP_fbreg";
8877 case DW_OP_bregx:
8878 return "DW_OP_bregx";
8879 case DW_OP_piece:
8880 return "DW_OP_piece";
8881 case DW_OP_deref_size:
8882 return "DW_OP_deref_size";
8883 case DW_OP_xderef_size:
8884 return "DW_OP_xderef_size";
8885 case DW_OP_nop:
8886 return "DW_OP_nop";
b7619582 8887 /* DWARF 3 extensions. */
ed348acc
EZ
8888 case DW_OP_push_object_address:
8889 return "DW_OP_push_object_address";
8890 case DW_OP_call2:
8891 return "DW_OP_call2";
8892 case DW_OP_call4:
8893 return "DW_OP_call4";
8894 case DW_OP_call_ref:
8895 return "DW_OP_call_ref";
b7619582
GF
8896 /* GNU extensions. */
8897 case DW_OP_form_tls_address:
8898 return "DW_OP_form_tls_address";
8899 case DW_OP_call_frame_cfa:
8900 return "DW_OP_call_frame_cfa";
8901 case DW_OP_bit_piece:
8902 return "DW_OP_bit_piece";
ed348acc
EZ
8903 case DW_OP_GNU_push_tls_address:
8904 return "DW_OP_GNU_push_tls_address";
42be36b3
CT
8905 case DW_OP_GNU_uninit:
8906 return "DW_OP_GNU_uninit";
b7619582
GF
8907 /* HP extensions. */
8908 case DW_OP_HP_is_value:
8909 return "DW_OP_HP_is_value";
8910 case DW_OP_HP_fltconst4:
8911 return "DW_OP_HP_fltconst4";
8912 case DW_OP_HP_fltconst8:
8913 return "DW_OP_HP_fltconst8";
8914 case DW_OP_HP_mod_range:
8915 return "DW_OP_HP_mod_range";
8916 case DW_OP_HP_unmod_range:
8917 return "DW_OP_HP_unmod_range";
8918 case DW_OP_HP_tls:
8919 return "DW_OP_HP_tls";
c906108c
SS
8920 default:
8921 return "OP_<unknown>";
8922 }
8923}
8924
8925static char *
fba45db2 8926dwarf_bool_name (unsigned mybool)
c906108c
SS
8927{
8928 if (mybool)
8929 return "TRUE";
8930 else
8931 return "FALSE";
8932}
8933
8934/* Convert a DWARF type code into its string name. */
8935
8936static char *
aa1ee363 8937dwarf_type_encoding_name (unsigned enc)
c906108c
SS
8938{
8939 switch (enc)
8940 {
b7619582
GF
8941 case DW_ATE_void:
8942 return "DW_ATE_void";
c906108c
SS
8943 case DW_ATE_address:
8944 return "DW_ATE_address";
8945 case DW_ATE_boolean:
8946 return "DW_ATE_boolean";
8947 case DW_ATE_complex_float:
8948 return "DW_ATE_complex_float";
8949 case DW_ATE_float:
8950 return "DW_ATE_float";
8951 case DW_ATE_signed:
8952 return "DW_ATE_signed";
8953 case DW_ATE_signed_char:
8954 return "DW_ATE_signed_char";
8955 case DW_ATE_unsigned:
8956 return "DW_ATE_unsigned";
8957 case DW_ATE_unsigned_char:
8958 return "DW_ATE_unsigned_char";
b7619582 8959 /* DWARF 3. */
d9fa45fe
DC
8960 case DW_ATE_imaginary_float:
8961 return "DW_ATE_imaginary_float";
b7619582
GF
8962 case DW_ATE_packed_decimal:
8963 return "DW_ATE_packed_decimal";
8964 case DW_ATE_numeric_string:
8965 return "DW_ATE_numeric_string";
8966 case DW_ATE_edited:
8967 return "DW_ATE_edited";
8968 case DW_ATE_signed_fixed:
8969 return "DW_ATE_signed_fixed";
8970 case DW_ATE_unsigned_fixed:
8971 return "DW_ATE_unsigned_fixed";
8972 case DW_ATE_decimal_float:
8973 return "DW_ATE_decimal_float";
8974 /* HP extensions. */
8975 case DW_ATE_HP_float80:
8976 return "DW_ATE_HP_float80";
8977 case DW_ATE_HP_complex_float80:
8978 return "DW_ATE_HP_complex_float80";
8979 case DW_ATE_HP_float128:
8980 return "DW_ATE_HP_float128";
8981 case DW_ATE_HP_complex_float128:
8982 return "DW_ATE_HP_complex_float128";
8983 case DW_ATE_HP_floathpintel:
8984 return "DW_ATE_HP_floathpintel";
8985 case DW_ATE_HP_imaginary_float80:
8986 return "DW_ATE_HP_imaginary_float80";
8987 case DW_ATE_HP_imaginary_float128:
8988 return "DW_ATE_HP_imaginary_float128";
c906108c
SS
8989 default:
8990 return "DW_ATE_<unknown>";
8991 }
8992}
8993
8994/* Convert a DWARF call frame info operation to its string name. */
8995
8996#if 0
8997static char *
aa1ee363 8998dwarf_cfi_name (unsigned cfi_opc)
c906108c
SS
8999{
9000 switch (cfi_opc)
9001 {
9002 case DW_CFA_advance_loc:
9003 return "DW_CFA_advance_loc";
9004 case DW_CFA_offset:
9005 return "DW_CFA_offset";
9006 case DW_CFA_restore:
9007 return "DW_CFA_restore";
9008 case DW_CFA_nop:
9009 return "DW_CFA_nop";
9010 case DW_CFA_set_loc:
9011 return "DW_CFA_set_loc";
9012 case DW_CFA_advance_loc1:
9013 return "DW_CFA_advance_loc1";
9014 case DW_CFA_advance_loc2:
9015 return "DW_CFA_advance_loc2";
9016 case DW_CFA_advance_loc4:
9017 return "DW_CFA_advance_loc4";
9018 case DW_CFA_offset_extended:
9019 return "DW_CFA_offset_extended";
9020 case DW_CFA_restore_extended:
9021 return "DW_CFA_restore_extended";
9022 case DW_CFA_undefined:
9023 return "DW_CFA_undefined";
9024 case DW_CFA_same_value:
9025 return "DW_CFA_same_value";
9026 case DW_CFA_register:
9027 return "DW_CFA_register";
9028 case DW_CFA_remember_state:
9029 return "DW_CFA_remember_state";
9030 case DW_CFA_restore_state:
9031 return "DW_CFA_restore_state";
9032 case DW_CFA_def_cfa:
9033 return "DW_CFA_def_cfa";
9034 case DW_CFA_def_cfa_register:
9035 return "DW_CFA_def_cfa_register";
9036 case DW_CFA_def_cfa_offset:
9037 return "DW_CFA_def_cfa_offset";
b7619582 9038 /* DWARF 3. */
985cb1a3
JM
9039 case DW_CFA_def_cfa_expression:
9040 return "DW_CFA_def_cfa_expression";
9041 case DW_CFA_expression:
9042 return "DW_CFA_expression";
9043 case DW_CFA_offset_extended_sf:
9044 return "DW_CFA_offset_extended_sf";
9045 case DW_CFA_def_cfa_sf:
9046 return "DW_CFA_def_cfa_sf";
9047 case DW_CFA_def_cfa_offset_sf:
9048 return "DW_CFA_def_cfa_offset_sf";
b7619582
GF
9049 case DW_CFA_val_offset:
9050 return "DW_CFA_val_offset";
9051 case DW_CFA_val_offset_sf:
9052 return "DW_CFA_val_offset_sf";
9053 case DW_CFA_val_expression:
9054 return "DW_CFA_val_expression";
9055 /* SGI/MIPS specific. */
c906108c
SS
9056 case DW_CFA_MIPS_advance_loc8:
9057 return "DW_CFA_MIPS_advance_loc8";
b7619582 9058 /* GNU extensions. */
985cb1a3
JM
9059 case DW_CFA_GNU_window_save:
9060 return "DW_CFA_GNU_window_save";
9061 case DW_CFA_GNU_args_size:
9062 return "DW_CFA_GNU_args_size";
9063 case DW_CFA_GNU_negative_offset_extended:
9064 return "DW_CFA_GNU_negative_offset_extended";
c906108c
SS
9065 default:
9066 return "DW_CFA_<unknown>";
9067 }
9068}
9069#endif
9070
f9aca02d 9071static void
fba45db2 9072dump_die (struct die_info *die)
c906108c
SS
9073{
9074 unsigned int i;
9075
48cd0caa 9076 fprintf_unfiltered (gdb_stderr, "Die: %s (abbrev = %d, offset = %d)\n",
c906108c 9077 dwarf_tag_name (die->tag), die->abbrev, die->offset);
48cd0caa 9078 fprintf_unfiltered (gdb_stderr, "\thas children: %s\n",
639d11d3 9079 dwarf_bool_name (die->child != NULL));
c906108c 9080
48cd0caa 9081 fprintf_unfiltered (gdb_stderr, "\tattributes:\n");
c906108c
SS
9082 for (i = 0; i < die->num_attrs; ++i)
9083 {
48cd0caa 9084 fprintf_unfiltered (gdb_stderr, "\t\t%s (%s) ",
c906108c
SS
9085 dwarf_attr_name (die->attrs[i].name),
9086 dwarf_form_name (die->attrs[i].form));
9087 switch (die->attrs[i].form)
9088 {
9089 case DW_FORM_ref_addr:
9090 case DW_FORM_addr:
48cd0caa 9091 fprintf_unfiltered (gdb_stderr, "address: ");
ed49a04f 9092 fputs_filtered (paddress (DW_ADDR (&die->attrs[i])), gdb_stderr);
c906108c
SS
9093 break;
9094 case DW_FORM_block2:
9095 case DW_FORM_block4:
9096 case DW_FORM_block:
9097 case DW_FORM_block1:
48cd0caa 9098 fprintf_unfiltered (gdb_stderr, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
c906108c 9099 break;
10b3939b
DJ
9100 case DW_FORM_ref1:
9101 case DW_FORM_ref2:
9102 case DW_FORM_ref4:
9103 fprintf_unfiltered (gdb_stderr, "constant ref: %ld (adjusted)",
9104 (long) (DW_ADDR (&die->attrs[i])));
9105 break;
c906108c
SS
9106 case DW_FORM_data1:
9107 case DW_FORM_data2:
9108 case DW_FORM_data4:
ce5d95e1 9109 case DW_FORM_data8:
c906108c
SS
9110 case DW_FORM_udata:
9111 case DW_FORM_sdata:
48cd0caa 9112 fprintf_unfiltered (gdb_stderr, "constant: %ld", DW_UNSND (&die->attrs[i]));
c906108c
SS
9113 break;
9114 case DW_FORM_string:
4bdf3d34 9115 case DW_FORM_strp:
48cd0caa 9116 fprintf_unfiltered (gdb_stderr, "string: \"%s\"",
c906108c 9117 DW_STRING (&die->attrs[i])
c5aa993b 9118 ? DW_STRING (&die->attrs[i]) : "");
c906108c
SS
9119 break;
9120 case DW_FORM_flag:
9121 if (DW_UNSND (&die->attrs[i]))
48cd0caa 9122 fprintf_unfiltered (gdb_stderr, "flag: TRUE");
c906108c 9123 else
48cd0caa 9124 fprintf_unfiltered (gdb_stderr, "flag: FALSE");
c906108c 9125 break;
a8329558
KW
9126 case DW_FORM_indirect:
9127 /* the reader will have reduced the indirect form to
9128 the "base form" so this form should not occur */
48cd0caa 9129 fprintf_unfiltered (gdb_stderr, "unexpected attribute form: DW_FORM_indirect");
a8329558 9130 break;
c906108c 9131 default:
48cd0caa 9132 fprintf_unfiltered (gdb_stderr, "unsupported attribute form: %d.",
c5aa993b 9133 die->attrs[i].form);
c906108c 9134 }
48cd0caa 9135 fprintf_unfiltered (gdb_stderr, "\n");
c906108c
SS
9136 }
9137}
9138
f9aca02d 9139static void
fba45db2 9140dump_die_list (struct die_info *die)
c906108c
SS
9141{
9142 while (die)
9143 {
9144 dump_die (die);
639d11d3
DC
9145 if (die->child != NULL)
9146 dump_die_list (die->child);
9147 if (die->sibling != NULL)
9148 dump_die_list (die->sibling);
c906108c
SS
9149 }
9150}
9151
f9aca02d 9152static void
10b3939b
DJ
9153store_in_ref_table (unsigned int offset, struct die_info *die,
9154 struct dwarf2_cu *cu)
c906108c
SS
9155{
9156 int h;
9157 struct die_info *old;
9158
9159 h = (offset % REF_HASH_SIZE);
10b3939b 9160 old = cu->die_ref_table[h];
c906108c 9161 die->next_ref = old;
10b3939b 9162 cu->die_ref_table[h] = die;
c906108c
SS
9163}
9164
9165static unsigned int
e142c38c 9166dwarf2_get_ref_die_offset (struct attribute *attr, struct dwarf2_cu *cu)
c906108c
SS
9167{
9168 unsigned int result = 0;
9169
9170 switch (attr->form)
9171 {
9172 case DW_FORM_ref_addr:
c906108c
SS
9173 case DW_FORM_ref1:
9174 case DW_FORM_ref2:
9175 case DW_FORM_ref4:
613e1657 9176 case DW_FORM_ref8:
c906108c 9177 case DW_FORM_ref_udata:
10b3939b 9178 result = DW_ADDR (attr);
c906108c
SS
9179 break;
9180 default:
4d3c2250 9181 complaint (&symfile_complaints,
e2e0b3e5 9182 _("unsupported die ref attribute form: '%s'"),
4d3c2250 9183 dwarf_form_name (attr->form));
c906108c
SS
9184 }
9185 return result;
9186}
9187
a02abb62
JB
9188/* Return the constant value held by the given attribute. Return -1
9189 if the value held by the attribute is not constant. */
9190
9191static int
9192dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
9193{
9194 if (attr->form == DW_FORM_sdata)
9195 return DW_SND (attr);
9196 else if (attr->form == DW_FORM_udata
9197 || attr->form == DW_FORM_data1
9198 || attr->form == DW_FORM_data2
9199 || attr->form == DW_FORM_data4
9200 || attr->form == DW_FORM_data8)
9201 return DW_UNSND (attr);
9202 else
9203 {
e2e0b3e5 9204 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
a02abb62
JB
9205 dwarf_form_name (attr->form));
9206 return default_value;
9207 }
9208}
9209
f9aca02d 9210static struct die_info *
10b3939b
DJ
9211follow_die_ref (struct die_info *src_die, struct attribute *attr,
9212 struct dwarf2_cu *cu)
c906108c
SS
9213{
9214 struct die_info *die;
10b3939b 9215 unsigned int offset;
c906108c 9216 int h;
10b3939b
DJ
9217 struct die_info temp_die;
9218 struct dwarf2_cu *target_cu;
9219
9220 offset = dwarf2_get_ref_die_offset (attr, cu);
9221
9222 if (DW_ADDR (attr) < cu->header.offset
9223 || DW_ADDR (attr) >= cu->header.offset + cu->header.length)
9224 {
9225 struct dwarf2_per_cu_data *per_cu;
9226 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (attr),
9227 cu->objfile);
9228 target_cu = per_cu->cu;
9229 }
9230 else
9231 target_cu = cu;
c906108c
SS
9232
9233 h = (offset % REF_HASH_SIZE);
10b3939b 9234 die = target_cu->die_ref_table[h];
c906108c
SS
9235 while (die)
9236 {
9237 if (die->offset == offset)
10b3939b 9238 return die;
c906108c
SS
9239 die = die->next_ref;
9240 }
10b3939b 9241
8a3fe4f8
AC
9242 error (_("Dwarf Error: Cannot find DIE at 0x%lx referenced from DIE "
9243 "at 0x%lx [in module %s]"),
10b3939b
DJ
9244 (long) src_die->offset, (long) offset, cu->objfile->name);
9245
c906108c
SS
9246 return NULL;
9247}
9248
c906108c
SS
9249/* Decode simple location descriptions.
9250 Given a pointer to a dwarf block that defines a location, compute
9251 the location and return the value.
9252
4cecd739
DJ
9253 NOTE drow/2003-11-18: This function is called in two situations
9254 now: for the address of static or global variables (partial symbols
9255 only) and for offsets into structures which are expected to be
9256 (more or less) constant. The partial symbol case should go away,
9257 and only the constant case should remain. That will let this
9258 function complain more accurately. A few special modes are allowed
9259 without complaint for global variables (for instance, global
9260 register values and thread-local values).
c906108c
SS
9261
9262 A location description containing no operations indicates that the
4cecd739 9263 object is optimized out. The return value is 0 for that case.
6b992462
DJ
9264 FIXME drow/2003-11-16: No callers check for this case any more; soon all
9265 callers will only want a very basic result and this can become a
9266 complaint.
c906108c 9267
c906108c
SS
9268 Note that stack[0] is unused except as a default error return.
9269 Note that stack overflow is not yet handled. */
9270
9271static CORE_ADDR
e7c27a73 9272decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 9273{
e7c27a73
DJ
9274 struct objfile *objfile = cu->objfile;
9275 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
9276 int i;
9277 int size = blk->size;
fe1b8b76 9278 gdb_byte *data = blk->data;
c906108c
SS
9279 CORE_ADDR stack[64];
9280 int stacki;
9281 unsigned int bytes_read, unsnd;
fe1b8b76 9282 gdb_byte op;
c906108c
SS
9283
9284 i = 0;
9285 stacki = 0;
9286 stack[stacki] = 0;
c906108c
SS
9287
9288 while (i < size)
9289 {
c906108c
SS
9290 op = data[i++];
9291 switch (op)
9292 {
f1bea926
JM
9293 case DW_OP_lit0:
9294 case DW_OP_lit1:
9295 case DW_OP_lit2:
9296 case DW_OP_lit3:
9297 case DW_OP_lit4:
9298 case DW_OP_lit5:
9299 case DW_OP_lit6:
9300 case DW_OP_lit7:
9301 case DW_OP_lit8:
9302 case DW_OP_lit9:
9303 case DW_OP_lit10:
9304 case DW_OP_lit11:
9305 case DW_OP_lit12:
9306 case DW_OP_lit13:
9307 case DW_OP_lit14:
9308 case DW_OP_lit15:
9309 case DW_OP_lit16:
9310 case DW_OP_lit17:
9311 case DW_OP_lit18:
9312 case DW_OP_lit19:
9313 case DW_OP_lit20:
9314 case DW_OP_lit21:
9315 case DW_OP_lit22:
9316 case DW_OP_lit23:
9317 case DW_OP_lit24:
9318 case DW_OP_lit25:
9319 case DW_OP_lit26:
9320 case DW_OP_lit27:
9321 case DW_OP_lit28:
9322 case DW_OP_lit29:
9323 case DW_OP_lit30:
9324 case DW_OP_lit31:
9325 stack[++stacki] = op - DW_OP_lit0;
9326 break;
9327
c906108c
SS
9328 case DW_OP_reg0:
9329 case DW_OP_reg1:
9330 case DW_OP_reg2:
9331 case DW_OP_reg3:
9332 case DW_OP_reg4:
9333 case DW_OP_reg5:
9334 case DW_OP_reg6:
9335 case DW_OP_reg7:
9336 case DW_OP_reg8:
9337 case DW_OP_reg9:
9338 case DW_OP_reg10:
9339 case DW_OP_reg11:
9340 case DW_OP_reg12:
9341 case DW_OP_reg13:
9342 case DW_OP_reg14:
9343 case DW_OP_reg15:
9344 case DW_OP_reg16:
9345 case DW_OP_reg17:
9346 case DW_OP_reg18:
9347 case DW_OP_reg19:
9348 case DW_OP_reg20:
9349 case DW_OP_reg21:
9350 case DW_OP_reg22:
9351 case DW_OP_reg23:
9352 case DW_OP_reg24:
9353 case DW_OP_reg25:
9354 case DW_OP_reg26:
9355 case DW_OP_reg27:
9356 case DW_OP_reg28:
9357 case DW_OP_reg29:
9358 case DW_OP_reg30:
9359 case DW_OP_reg31:
c906108c 9360 stack[++stacki] = op - DW_OP_reg0;
4cecd739
DJ
9361 if (i < size)
9362 dwarf2_complex_location_expr_complaint ();
c906108c
SS
9363 break;
9364
9365 case DW_OP_regx:
c906108c
SS
9366 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
9367 i += bytes_read;
c906108c 9368 stack[++stacki] = unsnd;
4cecd739
DJ
9369 if (i < size)
9370 dwarf2_complex_location_expr_complaint ();
c906108c
SS
9371 break;
9372
9373 case DW_OP_addr:
107d2387 9374 stack[++stacki] = read_address (objfile->obfd, &data[i],
e7c27a73 9375 cu, &bytes_read);
107d2387 9376 i += bytes_read;
c906108c
SS
9377 break;
9378
9379 case DW_OP_const1u:
9380 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
9381 i += 1;
9382 break;
9383
9384 case DW_OP_const1s:
9385 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
9386 i += 1;
9387 break;
9388
9389 case DW_OP_const2u:
9390 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
9391 i += 2;
9392 break;
9393
9394 case DW_OP_const2s:
9395 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
9396 i += 2;
9397 break;
9398
9399 case DW_OP_const4u:
9400 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
9401 i += 4;
9402 break;
9403
9404 case DW_OP_const4s:
9405 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
9406 i += 4;
9407 break;
9408
9409 case DW_OP_constu:
9410 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
c5aa993b 9411 &bytes_read);
c906108c
SS
9412 i += bytes_read;
9413 break;
9414
9415 case DW_OP_consts:
9416 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
9417 i += bytes_read;
9418 break;
9419
f1bea926
JM
9420 case DW_OP_dup:
9421 stack[stacki + 1] = stack[stacki];
9422 stacki++;
9423 break;
9424
c906108c
SS
9425 case DW_OP_plus:
9426 stack[stacki - 1] += stack[stacki];
9427 stacki--;
9428 break;
9429
9430 case DW_OP_plus_uconst:
9431 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
9432 i += bytes_read;
9433 break;
9434
9435 case DW_OP_minus:
f1bea926 9436 stack[stacki - 1] -= stack[stacki];
c906108c
SS
9437 stacki--;
9438 break;
9439
7a292a7a 9440 case DW_OP_deref:
7a292a7a 9441 /* If we're not the last op, then we definitely can't encode
4cecd739
DJ
9442 this using GDB's address_class enum. This is valid for partial
9443 global symbols, although the variable's address will be bogus
9444 in the psymtab. */
7a292a7a 9445 if (i < size)
4d3c2250 9446 dwarf2_complex_location_expr_complaint ();
7a292a7a
SS
9447 break;
9448
9d774e44 9449 case DW_OP_GNU_push_tls_address:
9d774e44
EZ
9450 /* The top of the stack has the offset from the beginning
9451 of the thread control block at which the variable is located. */
9452 /* Nothing should follow this operator, so the top of stack would
9453 be returned. */
4cecd739
DJ
9454 /* This is valid for partial global symbols, but the variable's
9455 address will be bogus in the psymtab. */
9d774e44 9456 if (i < size)
4d3c2250 9457 dwarf2_complex_location_expr_complaint ();
9d774e44
EZ
9458 break;
9459
42be36b3
CT
9460 case DW_OP_GNU_uninit:
9461 break;
9462
c906108c 9463 default:
e2e0b3e5 9464 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
4d3c2250 9465 dwarf_stack_op_name (op));
c906108c
SS
9466 return (stack[stacki]);
9467 }
9468 }
9469 return (stack[stacki]);
9470}
9471
9472/* memory allocation interface */
9473
c906108c 9474static struct dwarf_block *
7b5a2f43 9475dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
9476{
9477 struct dwarf_block *blk;
9478
9479 blk = (struct dwarf_block *)
7b5a2f43 9480 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
9481 return (blk);
9482}
9483
9484static struct abbrev_info *
f3dd6933 9485dwarf_alloc_abbrev (struct dwarf2_cu *cu)
c906108c
SS
9486{
9487 struct abbrev_info *abbrev;
9488
f3dd6933
DJ
9489 abbrev = (struct abbrev_info *)
9490 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
c906108c
SS
9491 memset (abbrev, 0, sizeof (struct abbrev_info));
9492 return (abbrev);
9493}
9494
9495static struct die_info *
fba45db2 9496dwarf_alloc_die (void)
c906108c
SS
9497{
9498 struct die_info *die;
9499
9500 die = (struct die_info *) xmalloc (sizeof (struct die_info));
9501 memset (die, 0, sizeof (struct die_info));
9502 return (die);
9503}
2e276125
JB
9504
9505\f
9506/* Macro support. */
9507
9508
9509/* Return the full name of file number I in *LH's file name table.
9510 Use COMP_DIR as the name of the current directory of the
9511 compilation. The result is allocated using xmalloc; the caller is
9512 responsible for freeing it. */
9513static char *
9514file_full_name (int file, struct line_header *lh, const char *comp_dir)
9515{
6a83a1e6
EZ
9516 /* Is the file number a valid index into the line header's file name
9517 table? Remember that file numbers start with one, not zero. */
9518 if (1 <= file && file <= lh->num_file_names)
9519 {
9520 struct file_entry *fe = &lh->file_names[file - 1];
2e276125 9521
6a83a1e6
EZ
9522 if (IS_ABSOLUTE_PATH (fe->name))
9523 return xstrdup (fe->name);
9524 else
9525 {
9526 const char *dir;
9527 int dir_len;
9528 char *full_name;
9529
9530 if (fe->dir_index)
9531 dir = lh->include_dirs[fe->dir_index - 1];
9532 else
9533 dir = comp_dir;
9534
9535 if (dir)
9536 {
9537 dir_len = strlen (dir);
9538 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
9539 strcpy (full_name, dir);
9540 full_name[dir_len] = '/';
9541 strcpy (full_name + dir_len + 1, fe->name);
9542 return full_name;
9543 }
9544 else
9545 return xstrdup (fe->name);
9546 }
9547 }
2e276125
JB
9548 else
9549 {
6a83a1e6
EZ
9550 /* The compiler produced a bogus file number. We can at least
9551 record the macro definitions made in the file, even if we
9552 won't be able to find the file by name. */
9553 char fake_name[80];
9554 sprintf (fake_name, "<bad macro file number %d>", file);
2e276125 9555
6a83a1e6
EZ
9556 complaint (&symfile_complaints,
9557 _("bad file number in macro information (%d)"),
9558 file);
2e276125 9559
6a83a1e6 9560 return xstrdup (fake_name);
2e276125
JB
9561 }
9562}
9563
9564
9565static struct macro_source_file *
9566macro_start_file (int file, int line,
9567 struct macro_source_file *current_file,
9568 const char *comp_dir,
9569 struct line_header *lh, struct objfile *objfile)
9570{
9571 /* The full name of this source file. */
9572 char *full_name = file_full_name (file, lh, comp_dir);
9573
9574 /* We don't create a macro table for this compilation unit
9575 at all until we actually get a filename. */
9576 if (! pending_macros)
4a146b47 9577 pending_macros = new_macro_table (&objfile->objfile_obstack,
af5f3db6 9578 objfile->macro_cache);
2e276125
JB
9579
9580 if (! current_file)
9581 /* If we have no current file, then this must be the start_file
9582 directive for the compilation unit's main source file. */
9583 current_file = macro_set_main (pending_macros, full_name);
9584 else
9585 current_file = macro_include (current_file, line, full_name);
9586
9587 xfree (full_name);
9588
9589 return current_file;
9590}
9591
9592
9593/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
9594 followed by a null byte. */
9595static char *
9596copy_string (const char *buf, int len)
9597{
9598 char *s = xmalloc (len + 1);
9599 memcpy (s, buf, len);
9600 s[len] = '\0';
9601
9602 return s;
9603}
9604
9605
9606static const char *
9607consume_improper_spaces (const char *p, const char *body)
9608{
9609 if (*p == ' ')
9610 {
4d3c2250 9611 complaint (&symfile_complaints,
e2e0b3e5 9612 _("macro definition contains spaces in formal argument list:\n`%s'"),
4d3c2250 9613 body);
2e276125
JB
9614
9615 while (*p == ' ')
9616 p++;
9617 }
9618
9619 return p;
9620}
9621
9622
9623static void
9624parse_macro_definition (struct macro_source_file *file, int line,
9625 const char *body)
9626{
9627 const char *p;
9628
9629 /* The body string takes one of two forms. For object-like macro
9630 definitions, it should be:
9631
9632 <macro name> " " <definition>
9633
9634 For function-like macro definitions, it should be:
9635
9636 <macro name> "() " <definition>
9637 or
9638 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
9639
9640 Spaces may appear only where explicitly indicated, and in the
9641 <definition>.
9642
9643 The Dwarf 2 spec says that an object-like macro's name is always
9644 followed by a space, but versions of GCC around March 2002 omit
9645 the space when the macro's definition is the empty string.
9646
9647 The Dwarf 2 spec says that there should be no spaces between the
9648 formal arguments in a function-like macro's formal argument list,
9649 but versions of GCC around March 2002 include spaces after the
9650 commas. */
9651
9652
9653 /* Find the extent of the macro name. The macro name is terminated
9654 by either a space or null character (for an object-like macro) or
9655 an opening paren (for a function-like macro). */
9656 for (p = body; *p; p++)
9657 if (*p == ' ' || *p == '(')
9658 break;
9659
9660 if (*p == ' ' || *p == '\0')
9661 {
9662 /* It's an object-like macro. */
9663 int name_len = p - body;
9664 char *name = copy_string (body, name_len);
9665 const char *replacement;
9666
9667 if (*p == ' ')
9668 replacement = body + name_len + 1;
9669 else
9670 {
4d3c2250 9671 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9672 replacement = body + name_len;
9673 }
9674
9675 macro_define_object (file, line, name, replacement);
9676
9677 xfree (name);
9678 }
9679 else if (*p == '(')
9680 {
9681 /* It's a function-like macro. */
9682 char *name = copy_string (body, p - body);
9683 int argc = 0;
9684 int argv_size = 1;
9685 char **argv = xmalloc (argv_size * sizeof (*argv));
9686
9687 p++;
9688
9689 p = consume_improper_spaces (p, body);
9690
9691 /* Parse the formal argument list. */
9692 while (*p && *p != ')')
9693 {
9694 /* Find the extent of the current argument name. */
9695 const char *arg_start = p;
9696
9697 while (*p && *p != ',' && *p != ')' && *p != ' ')
9698 p++;
9699
9700 if (! *p || p == arg_start)
4d3c2250 9701 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9702 else
9703 {
9704 /* Make sure argv has room for the new argument. */
9705 if (argc >= argv_size)
9706 {
9707 argv_size *= 2;
9708 argv = xrealloc (argv, argv_size * sizeof (*argv));
9709 }
9710
9711 argv[argc++] = copy_string (arg_start, p - arg_start);
9712 }
9713
9714 p = consume_improper_spaces (p, body);
9715
9716 /* Consume the comma, if present. */
9717 if (*p == ',')
9718 {
9719 p++;
9720
9721 p = consume_improper_spaces (p, body);
9722 }
9723 }
9724
9725 if (*p == ')')
9726 {
9727 p++;
9728
9729 if (*p == ' ')
9730 /* Perfectly formed definition, no complaints. */
9731 macro_define_function (file, line, name,
9732 argc, (const char **) argv,
9733 p + 1);
9734 else if (*p == '\0')
9735 {
9736 /* Complain, but do define it. */
4d3c2250 9737 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9738 macro_define_function (file, line, name,
9739 argc, (const char **) argv,
9740 p);
9741 }
9742 else
9743 /* Just complain. */
4d3c2250 9744 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9745 }
9746 else
9747 /* Just complain. */
4d3c2250 9748 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9749
9750 xfree (name);
9751 {
9752 int i;
9753
9754 for (i = 0; i < argc; i++)
9755 xfree (argv[i]);
9756 }
9757 xfree (argv);
9758 }
9759 else
4d3c2250 9760 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9761}
9762
9763
9764static void
9765dwarf_decode_macros (struct line_header *lh, unsigned int offset,
9766 char *comp_dir, bfd *abfd,
e7c27a73 9767 struct dwarf2_cu *cu)
2e276125 9768{
fe1b8b76 9769 gdb_byte *mac_ptr, *mac_end;
2e276125
JB
9770 struct macro_source_file *current_file = 0;
9771
6502dd73 9772 if (dwarf2_per_objfile->macinfo_buffer == NULL)
2e276125 9773 {
e2e0b3e5 9774 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
2e276125
JB
9775 return;
9776 }
9777
6502dd73
DJ
9778 mac_ptr = dwarf2_per_objfile->macinfo_buffer + offset;
9779 mac_end = dwarf2_per_objfile->macinfo_buffer
9780 + dwarf2_per_objfile->macinfo_size;
2e276125
JB
9781
9782 for (;;)
9783 {
9784 enum dwarf_macinfo_record_type macinfo_type;
9785
9786 /* Do we at least have room for a macinfo type byte? */
9787 if (mac_ptr >= mac_end)
9788 {
4d3c2250 9789 dwarf2_macros_too_long_complaint ();
2e276125
JB
9790 return;
9791 }
9792
9793 macinfo_type = read_1_byte (abfd, mac_ptr);
9794 mac_ptr++;
9795
9796 switch (macinfo_type)
9797 {
9798 /* A zero macinfo type indicates the end of the macro
9799 information. */
9800 case 0:
9801 return;
9802
9803 case DW_MACINFO_define:
9804 case DW_MACINFO_undef:
9805 {
891d2f0b 9806 unsigned int bytes_read;
2e276125
JB
9807 int line;
9808 char *body;
9809
9810 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9811 mac_ptr += bytes_read;
9812 body = read_string (abfd, mac_ptr, &bytes_read);
9813 mac_ptr += bytes_read;
9814
9815 if (! current_file)
4d3c2250 9816 complaint (&symfile_complaints,
e2e0b3e5 9817 _("debug info gives macro %s outside of any file: %s"),
4d3c2250
KB
9818 macinfo_type ==
9819 DW_MACINFO_define ? "definition" : macinfo_type ==
9820 DW_MACINFO_undef ? "undefinition" :
9821 "something-or-other", body);
2e276125
JB
9822 else
9823 {
9824 if (macinfo_type == DW_MACINFO_define)
9825 parse_macro_definition (current_file, line, body);
9826 else if (macinfo_type == DW_MACINFO_undef)
9827 macro_undef (current_file, line, body);
9828 }
9829 }
9830 break;
9831
9832 case DW_MACINFO_start_file:
9833 {
891d2f0b 9834 unsigned int bytes_read;
2e276125
JB
9835 int line, file;
9836
9837 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9838 mac_ptr += bytes_read;
9839 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9840 mac_ptr += bytes_read;
9841
9842 current_file = macro_start_file (file, line,
9843 current_file, comp_dir,
e7c27a73 9844 lh, cu->objfile);
2e276125
JB
9845 }
9846 break;
9847
9848 case DW_MACINFO_end_file:
9849 if (! current_file)
4d3c2250 9850 complaint (&symfile_complaints,
e2e0b3e5 9851 _("macro debug info has an unmatched `close_file' directive"));
2e276125
JB
9852 else
9853 {
9854 current_file = current_file->included_by;
9855 if (! current_file)
9856 {
9857 enum dwarf_macinfo_record_type next_type;
9858
9859 /* GCC circa March 2002 doesn't produce the zero
9860 type byte marking the end of the compilation
9861 unit. Complain if it's not there, but exit no
9862 matter what. */
9863
9864 /* Do we at least have room for a macinfo type byte? */
9865 if (mac_ptr >= mac_end)
9866 {
4d3c2250 9867 dwarf2_macros_too_long_complaint ();
2e276125
JB
9868 return;
9869 }
9870
9871 /* We don't increment mac_ptr here, so this is just
9872 a look-ahead. */
9873 next_type = read_1_byte (abfd, mac_ptr);
9874 if (next_type != 0)
4d3c2250 9875 complaint (&symfile_complaints,
e2e0b3e5 9876 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
2e276125
JB
9877
9878 return;
9879 }
9880 }
9881 break;
9882
9883 case DW_MACINFO_vendor_ext:
9884 {
891d2f0b 9885 unsigned int bytes_read;
2e276125
JB
9886 int constant;
9887 char *string;
9888
9889 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9890 mac_ptr += bytes_read;
9891 string = read_string (abfd, mac_ptr, &bytes_read);
9892 mac_ptr += bytes_read;
9893
9894 /* We don't recognize any vendor extensions. */
9895 }
9896 break;
9897 }
9898 }
9899}
8e19ed76
PS
9900
9901/* Check if the attribute's form is a DW_FORM_block*
9902 if so return true else false. */
9903static int
9904attr_form_is_block (struct attribute *attr)
9905{
9906 return (attr == NULL ? 0 :
9907 attr->form == DW_FORM_block1
9908 || attr->form == DW_FORM_block2
9909 || attr->form == DW_FORM_block4
9910 || attr->form == DW_FORM_block);
9911}
4c2df51b 9912
c6a0999f
JB
9913/* Return non-zero if ATTR's value is a section offset --- classes
9914 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
9915 You may use DW_UNSND (attr) to retrieve such offsets.
9916
9917 Section 7.5.4, "Attribute Encodings", explains that no attribute
9918 may have a value that belongs to more than one of these classes; it
9919 would be ambiguous if we did, because we use the same forms for all
9920 of them. */
3690dd37
JB
9921static int
9922attr_form_is_section_offset (struct attribute *attr)
9923{
9924 return (attr->form == DW_FORM_data4
9925 || attr->form == DW_FORM_data8);
9926}
9927
9928
9929/* Return non-zero if ATTR's value falls in the 'constant' class, or
9930 zero otherwise. When this function returns true, you can apply
9931 dwarf2_get_attr_constant_value to it.
9932
9933 However, note that for some attributes you must check
9934 attr_form_is_section_offset before using this test. DW_FORM_data4
9935 and DW_FORM_data8 are members of both the constant class, and of
9936 the classes that contain offsets into other debug sections
9937 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
9938 that, if an attribute's can be either a constant or one of the
9939 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
9940 taken as section offsets, not constants. */
9941static int
9942attr_form_is_constant (struct attribute *attr)
9943{
9944 switch (attr->form)
9945 {
9946 case DW_FORM_sdata:
9947 case DW_FORM_udata:
9948 case DW_FORM_data1:
9949 case DW_FORM_data2:
9950 case DW_FORM_data4:
9951 case DW_FORM_data8:
9952 return 1;
9953 default:
9954 return 0;
9955 }
9956}
9957
4c2df51b
DJ
9958static void
9959dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
e7c27a73 9960 struct dwarf2_cu *cu)
4c2df51b 9961{
3690dd37 9962 if (attr_form_is_section_offset (attr)
99bcc461
DJ
9963 /* ".debug_loc" may not exist at all, or the offset may be outside
9964 the section. If so, fall through to the complaint in the
9965 other branch. */
9966 && DW_UNSND (attr) < dwarf2_per_objfile->loc_size)
4c2df51b 9967 {
0d53c4c4 9968 struct dwarf2_loclist_baton *baton;
4c2df51b 9969
4a146b47 9970 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 9971 sizeof (struct dwarf2_loclist_baton));
ae0d2f24
UW
9972 baton->per_cu = cu->per_cu;
9973 gdb_assert (baton->per_cu);
4c2df51b 9974
0d53c4c4
DJ
9975 /* We don't know how long the location list is, but make sure we
9976 don't run off the edge of the section. */
6502dd73
DJ
9977 baton->size = dwarf2_per_objfile->loc_size - DW_UNSND (attr);
9978 baton->data = dwarf2_per_objfile->loc_buffer + DW_UNSND (attr);
e7c27a73
DJ
9979 baton->base_address = cu->header.base_address;
9980 if (cu->header.base_known == 0)
0d53c4c4 9981 complaint (&symfile_complaints,
e2e0b3e5 9982 _("Location list used without specifying the CU base address."));
4c2df51b 9983
a67af2b9 9984 SYMBOL_OPS (sym) = &dwarf2_loclist_funcs;
0d53c4c4
DJ
9985 SYMBOL_LOCATION_BATON (sym) = baton;
9986 }
9987 else
9988 {
9989 struct dwarf2_locexpr_baton *baton;
9990
4a146b47 9991 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 9992 sizeof (struct dwarf2_locexpr_baton));
ae0d2f24
UW
9993 baton->per_cu = cu->per_cu;
9994 gdb_assert (baton->per_cu);
0d53c4c4
DJ
9995
9996 if (attr_form_is_block (attr))
9997 {
9998 /* Note that we're just copying the block's data pointer
9999 here, not the actual data. We're still pointing into the
6502dd73
DJ
10000 info_buffer for SYM's objfile; right now we never release
10001 that buffer, but when we do clean up properly this may
10002 need to change. */
0d53c4c4
DJ
10003 baton->size = DW_BLOCK (attr)->size;
10004 baton->data = DW_BLOCK (attr)->data;
10005 }
10006 else
10007 {
10008 dwarf2_invalid_attrib_class_complaint ("location description",
10009 SYMBOL_NATURAL_NAME (sym));
10010 baton->size = 0;
10011 baton->data = NULL;
10012 }
10013
a67af2b9 10014 SYMBOL_OPS (sym) = &dwarf2_locexpr_funcs;
0d53c4c4
DJ
10015 SYMBOL_LOCATION_BATON (sym) = baton;
10016 }
4c2df51b 10017}
6502dd73 10018
ae0d2f24
UW
10019/* Return the OBJFILE associated with the compilation unit CU. */
10020
10021struct objfile *
10022dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
10023{
10024 struct objfile *objfile = per_cu->psymtab->objfile;
10025
10026 /* Return the master objfile, so that we can report and look up the
10027 correct file containing this variable. */
10028 if (objfile->separate_debug_objfile_backlink)
10029 objfile = objfile->separate_debug_objfile_backlink;
10030
10031 return objfile;
10032}
10033
10034/* Return the address size given in the compilation unit header for CU. */
10035
10036CORE_ADDR
10037dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
10038{
10039 if (per_cu->cu)
10040 return per_cu->cu->header.addr_size;
10041 else
10042 {
10043 /* If the CU is not currently read in, we re-read its header. */
10044 struct objfile *objfile = per_cu->psymtab->objfile;
10045 struct dwarf2_per_objfile *per_objfile
10046 = objfile_data (objfile, dwarf2_objfile_data_key);
10047 gdb_byte *info_ptr = per_objfile->info_buffer + per_cu->offset;
10048
10049 struct comp_unit_head cu_header;
10050 memset (&cu_header, 0, sizeof cu_header);
10051 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
10052 return cu_header.addr_size;
10053 }
10054}
10055
ae038cb0 10056/* Locate the compilation unit from CU's objfile which contains the
10b3939b 10057 DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
10058
10059static struct dwarf2_per_cu_data *
10060dwarf2_find_containing_comp_unit (unsigned long offset,
10061 struct objfile *objfile)
10062{
10063 struct dwarf2_per_cu_data *this_cu;
10064 int low, high;
10065
ae038cb0
DJ
10066 low = 0;
10067 high = dwarf2_per_objfile->n_comp_units - 1;
10068 while (high > low)
10069 {
10070 int mid = low + (high - low) / 2;
10071 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
10072 high = mid;
10073 else
10074 low = mid + 1;
10075 }
10076 gdb_assert (low == high);
10077 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
10078 {
10b3939b 10079 if (low == 0)
8a3fe4f8
AC
10080 error (_("Dwarf Error: could not find partial DIE containing "
10081 "offset 0x%lx [in module %s]"),
10b3939b
DJ
10082 (long) offset, bfd_get_filename (objfile->obfd));
10083
ae038cb0
DJ
10084 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
10085 return dwarf2_per_objfile->all_comp_units[low-1];
10086 }
10087 else
10088 {
10089 this_cu = dwarf2_per_objfile->all_comp_units[low];
10090 if (low == dwarf2_per_objfile->n_comp_units - 1
10091 && offset >= this_cu->offset + this_cu->length)
8a3fe4f8 10092 error (_("invalid dwarf2 offset %ld"), offset);
ae038cb0
DJ
10093 gdb_assert (offset < this_cu->offset + this_cu->length);
10094 return this_cu;
10095 }
10096}
10097
10b3939b
DJ
10098/* Locate the compilation unit from OBJFILE which is located at exactly
10099 OFFSET. Raises an error on failure. */
10100
ae038cb0
DJ
10101static struct dwarf2_per_cu_data *
10102dwarf2_find_comp_unit (unsigned long offset, struct objfile *objfile)
10103{
10104 struct dwarf2_per_cu_data *this_cu;
10105 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
10106 if (this_cu->offset != offset)
8a3fe4f8 10107 error (_("no compilation unit with offset %ld."), offset);
ae038cb0
DJ
10108 return this_cu;
10109}
10110
10111/* Release one cached compilation unit, CU. We unlink it from the tree
10112 of compilation units, but we don't remove it from the read_in_chain;
10113 the caller is responsible for that. */
10114
10115static void
10116free_one_comp_unit (void *data)
10117{
10118 struct dwarf2_cu *cu = data;
10119
10120 if (cu->per_cu != NULL)
10121 cu->per_cu->cu = NULL;
10122 cu->per_cu = NULL;
10123
10124 obstack_free (&cu->comp_unit_obstack, NULL);
10b3939b
DJ
10125 if (cu->dies)
10126 free_die_list (cu->dies);
ae038cb0
DJ
10127
10128 xfree (cu);
10129}
10130
72bf9492 10131/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0
DJ
10132 when we're finished with it. We can't free the pointer itself, but be
10133 sure to unlink it from the cache. Also release any associated storage
10134 and perform cache maintenance.
72bf9492
DJ
10135
10136 Only used during partial symbol parsing. */
10137
10138static void
10139free_stack_comp_unit (void *data)
10140{
10141 struct dwarf2_cu *cu = data;
10142
10143 obstack_free (&cu->comp_unit_obstack, NULL);
10144 cu->partial_dies = NULL;
ae038cb0
DJ
10145
10146 if (cu->per_cu != NULL)
10147 {
10148 /* This compilation unit is on the stack in our caller, so we
10149 should not xfree it. Just unlink it. */
10150 cu->per_cu->cu = NULL;
10151 cu->per_cu = NULL;
10152
10153 /* If we had a per-cu pointer, then we may have other compilation
10154 units loaded, so age them now. */
10155 age_cached_comp_units ();
10156 }
10157}
10158
10159/* Free all cached compilation units. */
10160
10161static void
10162free_cached_comp_units (void *data)
10163{
10164 struct dwarf2_per_cu_data *per_cu, **last_chain;
10165
10166 per_cu = dwarf2_per_objfile->read_in_chain;
10167 last_chain = &dwarf2_per_objfile->read_in_chain;
10168 while (per_cu != NULL)
10169 {
10170 struct dwarf2_per_cu_data *next_cu;
10171
10172 next_cu = per_cu->cu->read_in_chain;
10173
10174 free_one_comp_unit (per_cu->cu);
10175 *last_chain = next_cu;
10176
10177 per_cu = next_cu;
10178 }
10179}
10180
10181/* Increase the age counter on each cached compilation unit, and free
10182 any that are too old. */
10183
10184static void
10185age_cached_comp_units (void)
10186{
10187 struct dwarf2_per_cu_data *per_cu, **last_chain;
10188
10189 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
10190 per_cu = dwarf2_per_objfile->read_in_chain;
10191 while (per_cu != NULL)
10192 {
10193 per_cu->cu->last_used ++;
10194 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
10195 dwarf2_mark (per_cu->cu);
10196 per_cu = per_cu->cu->read_in_chain;
10197 }
10198
10199 per_cu = dwarf2_per_objfile->read_in_chain;
10200 last_chain = &dwarf2_per_objfile->read_in_chain;
10201 while (per_cu != NULL)
10202 {
10203 struct dwarf2_per_cu_data *next_cu;
10204
10205 next_cu = per_cu->cu->read_in_chain;
10206
10207 if (!per_cu->cu->mark)
10208 {
10209 free_one_comp_unit (per_cu->cu);
10210 *last_chain = next_cu;
10211 }
10212 else
10213 last_chain = &per_cu->cu->read_in_chain;
10214
10215 per_cu = next_cu;
10216 }
10217}
10218
10219/* Remove a single compilation unit from the cache. */
10220
10221static void
10222free_one_cached_comp_unit (void *target_cu)
10223{
10224 struct dwarf2_per_cu_data *per_cu, **last_chain;
10225
10226 per_cu = dwarf2_per_objfile->read_in_chain;
10227 last_chain = &dwarf2_per_objfile->read_in_chain;
10228 while (per_cu != NULL)
10229 {
10230 struct dwarf2_per_cu_data *next_cu;
10231
10232 next_cu = per_cu->cu->read_in_chain;
10233
10234 if (per_cu->cu == target_cu)
10235 {
10236 free_one_comp_unit (per_cu->cu);
10237 *last_chain = next_cu;
10238 break;
10239 }
10240 else
10241 last_chain = &per_cu->cu->read_in_chain;
10242
10243 per_cu = next_cu;
10244 }
10245}
10246
fe3e1990
DJ
10247/* Release all extra memory associated with OBJFILE. */
10248
10249void
10250dwarf2_free_objfile (struct objfile *objfile)
10251{
10252 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
10253
10254 if (dwarf2_per_objfile == NULL)
10255 return;
10256
10257 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
10258 free_cached_comp_units (NULL);
10259
10260 /* Everything else should be on the objfile obstack. */
10261}
10262
1c379e20
DJ
10263/* A pair of DIE offset and GDB type pointer. We store these
10264 in a hash table separate from the DIEs, and preserve them
10265 when the DIEs are flushed out of cache. */
10266
10267struct dwarf2_offset_and_type
10268{
10269 unsigned int offset;
10270 struct type *type;
10271};
10272
10273/* Hash function for a dwarf2_offset_and_type. */
10274
10275static hashval_t
10276offset_and_type_hash (const void *item)
10277{
10278 const struct dwarf2_offset_and_type *ofs = item;
10279 return ofs->offset;
10280}
10281
10282/* Equality function for a dwarf2_offset_and_type. */
10283
10284static int
10285offset_and_type_eq (const void *item_lhs, const void *item_rhs)
10286{
10287 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
10288 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
10289 return ofs_lhs->offset == ofs_rhs->offset;
10290}
10291
10292/* Set the type associated with DIE to TYPE. Save it in CU's hash
f792889a 10293 table if necessary. For convenience, return TYPE. */
1c379e20 10294
f792889a 10295static struct type *
1c379e20
DJ
10296set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
10297{
10298 struct dwarf2_offset_and_type **slot, ofs;
10299
f792889a
DJ
10300 if (cu->type_hash == NULL)
10301 {
10302 gdb_assert (cu->per_cu != NULL);
10303 cu->per_cu->type_hash
10304 = htab_create_alloc_ex (cu->header.length / 24,
10305 offset_and_type_hash,
10306 offset_and_type_eq,
10307 NULL,
10308 &cu->objfile->objfile_obstack,
10309 hashtab_obstack_allocate,
10310 dummy_obstack_deallocate);
10311 cu->type_hash = cu->per_cu->type_hash;
10312 }
1c379e20
DJ
10313
10314 ofs.offset = die->offset;
10315 ofs.type = type;
10316 slot = (struct dwarf2_offset_and_type **)
f792889a 10317 htab_find_slot_with_hash (cu->type_hash, &ofs, ofs.offset, INSERT);
1c379e20
DJ
10318 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
10319 **slot = ofs;
f792889a 10320 return type;
1c379e20
DJ
10321}
10322
f792889a
DJ
10323/* Find the type for DIE in CU's type_hash, or return NULL if DIE does
10324 not have a saved type. */
1c379e20
DJ
10325
10326static struct type *
f792889a 10327get_die_type (struct die_info *die, struct dwarf2_cu *cu)
1c379e20
DJ
10328{
10329 struct dwarf2_offset_and_type *slot, ofs;
f792889a
DJ
10330 htab_t type_hash = cu->type_hash;
10331
10332 if (type_hash == NULL)
10333 return NULL;
1c379e20
DJ
10334
10335 ofs.offset = die->offset;
10336 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
10337 if (slot)
10338 return slot->type;
10339 else
10340 return NULL;
10341}
10342
10b3939b
DJ
10343/* Set the mark field in CU and in every other compilation unit in the
10344 cache that we must keep because we are keeping CU. */
10345
10346/* Add a dependence relationship from CU to REF_PER_CU. */
10347
10348static void
10349dwarf2_add_dependence (struct dwarf2_cu *cu,
10350 struct dwarf2_per_cu_data *ref_per_cu)
10351{
10352 void **slot;
10353
10354 if (cu->dependencies == NULL)
10355 cu->dependencies
10356 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
10357 NULL, &cu->comp_unit_obstack,
10358 hashtab_obstack_allocate,
10359 dummy_obstack_deallocate);
10360
10361 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
10362 if (*slot == NULL)
10363 *slot = ref_per_cu;
10364}
1c379e20 10365
ae038cb0
DJ
10366/* Set the mark field in CU and in every other compilation unit in the
10367 cache that we must keep because we are keeping CU. */
10368
10b3939b
DJ
10369static int
10370dwarf2_mark_helper (void **slot, void *data)
10371{
10372 struct dwarf2_per_cu_data *per_cu;
10373
10374 per_cu = (struct dwarf2_per_cu_data *) *slot;
10375 if (per_cu->cu->mark)
10376 return 1;
10377 per_cu->cu->mark = 1;
10378
10379 if (per_cu->cu->dependencies != NULL)
10380 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
10381
10382 return 1;
10383}
10384
ae038cb0
DJ
10385static void
10386dwarf2_mark (struct dwarf2_cu *cu)
10387{
10388 if (cu->mark)
10389 return;
10390 cu->mark = 1;
10b3939b
DJ
10391 if (cu->dependencies != NULL)
10392 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
10393}
10394
10395static void
10396dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
10397{
10398 while (per_cu)
10399 {
10400 per_cu->cu->mark = 0;
10401 per_cu = per_cu->cu->read_in_chain;
10402 }
72bf9492
DJ
10403}
10404
72bf9492
DJ
10405/* Trivial hash function for partial_die_info: the hash value of a DIE
10406 is its offset in .debug_info for this objfile. */
10407
10408static hashval_t
10409partial_die_hash (const void *item)
10410{
10411 const struct partial_die_info *part_die = item;
10412 return part_die->offset;
10413}
10414
10415/* Trivial comparison function for partial_die_info structures: two DIEs
10416 are equal if they have the same offset. */
10417
10418static int
10419partial_die_eq (const void *item_lhs, const void *item_rhs)
10420{
10421 const struct partial_die_info *part_die_lhs = item_lhs;
10422 const struct partial_die_info *part_die_rhs = item_rhs;
10423 return part_die_lhs->offset == part_die_rhs->offset;
10424}
10425
ae038cb0
DJ
10426static struct cmd_list_element *set_dwarf2_cmdlist;
10427static struct cmd_list_element *show_dwarf2_cmdlist;
10428
10429static void
10430set_dwarf2_cmd (char *args, int from_tty)
10431{
10432 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
10433}
10434
10435static void
10436show_dwarf2_cmd (char *args, int from_tty)
10437{
10438 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
10439}
10440
6502dd73
DJ
10441void _initialize_dwarf2_read (void);
10442
10443void
10444_initialize_dwarf2_read (void)
10445{
10446 dwarf2_objfile_data_key = register_objfile_data ();
ae038cb0 10447
1bedd215
AC
10448 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
10449Set DWARF 2 specific variables.\n\
10450Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
10451 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
10452 0/*allow-unknown*/, &maintenance_set_cmdlist);
10453
1bedd215
AC
10454 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
10455Show DWARF 2 specific variables\n\
10456Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
10457 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
10458 0/*allow-unknown*/, &maintenance_show_cmdlist);
10459
10460 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
10461 &dwarf2_max_cache_age, _("\
10462Set the upper bound on the age of cached dwarf2 compilation units."), _("\
10463Show the upper bound on the age of cached dwarf2 compilation units."), _("\
10464A higher limit means that cached compilation units will be stored\n\
10465in memory longer, and more total memory will be used. Zero disables\n\
10466caching, which can slow down startup."),
2c5b56ce 10467 NULL,
920d2a44 10468 show_dwarf2_max_cache_age,
2c5b56ce 10469 &set_dwarf2_cmdlist,
ae038cb0 10470 &show_dwarf2_cmdlist);
6502dd73 10471}
This page took 2.316616 seconds and 4 git commands to generate.