gdb: Handle ICC's unexpected void return type
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
e2882c85 3 Copyright (C) 1994-2018 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c 31#include "defs.h"
cd4fb1b2 32#include "dwarf2read.h"
87d6a7aa 33#include "dwarf-index-cache.h"
cd4fb1b2 34#include "dwarf-index-common.h"
c906108c 35#include "bfd.h"
80626a55 36#include "elf-bfd.h"
c906108c
SS
37#include "symtab.h"
38#include "gdbtypes.h"
c906108c 39#include "objfiles.h"
fa8f86ff 40#include "dwarf2.h"
804d2729 41#include "buildsym.h"
c906108c 42#include "demangle.h"
50f182aa 43#include "gdb-demangle.h"
c906108c 44#include "expression.h"
d5166ae1 45#include "filenames.h" /* for DOSish file names */
2e276125 46#include "macrotab.h"
c906108c
SS
47#include "language.h"
48#include "complaints.h"
357e46e7 49#include "bcache.h"
4c2df51b
DJ
50#include "dwarf2expr.h"
51#include "dwarf2loc.h"
9219021c 52#include "cp-support.h"
72bf9492 53#include "hashtab.h"
ae038cb0
DJ
54#include "command.h"
55#include "gdbcmd.h"
edb3359d 56#include "block.h"
ff013f42 57#include "addrmap.h"
94af9270 58#include "typeprint.h"
ccefe4c4 59#include "psympriv.h"
53ce3c39 60#include <sys/stat.h>
96d19272 61#include "completer.h"
34eaf542 62#include "vec.h"
98bfdba5 63#include "c-lang.h"
a766d390 64#include "go-lang.h"
98bfdba5 65#include "valprint.h"
3019eac3 66#include "gdbcore.h" /* for gnutarget */
156942c7 67#include "gdb/gdb-index.h"
60d5a603 68#include <ctype.h>
cbb099e8 69#include "gdb_bfd.h"
4357ac6c 70#include "f-lang.h"
05cba821 71#include "source.h"
614c279d 72#include "filestuff.h"
dc294be5 73#include "build-id.h"
22cee43f 74#include "namespace.h"
bef155c3 75#include "common/gdb_unlinker.h"
14bc53a8 76#include "common/function-view.h"
ecfb656c
PA
77#include "common/gdb_optional.h"
78#include "common/underlying.h"
d5722aa2 79#include "common/byte-vector.h"
927aa2e7 80#include "common/hash_enum.h"
bbf2f4df 81#include "filename-seen-cache.h"
b32b108a 82#include "producer.h"
c906108c 83#include <fcntl.h>
c906108c 84#include <sys/types.h>
325fac50 85#include <algorithm>
bc8f2430
JK
86#include <unordered_set>
87#include <unordered_map>
c62446b1 88#include "selftest.h"
437afbb8
JK
89#include <cmath>
90#include <set>
91#include <forward_list>
c9317f21 92#include "rust-lang.h"
b4987c95 93#include "common/pathstuff.h"
437afbb8 94
73be47f5
DE
95/* When == 1, print basic high level tracing messages.
96 When > 1, be more verbose.
b4f54984
DE
97 This is in contrast to the low level DIE reading of dwarf_die_debug. */
98static unsigned int dwarf_read_debug = 0;
45cfd468 99
d97bc12b 100/* When non-zero, dump DIEs after they are read in. */
b4f54984 101static unsigned int dwarf_die_debug = 0;
d97bc12b 102
27e0867f
DE
103/* When non-zero, dump line number entries as they are read in. */
104static unsigned int dwarf_line_debug = 0;
105
900e11f9
JK
106/* When non-zero, cross-check physname against demangler. */
107static int check_physname = 0;
108
481860b3 109/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 110static int use_deprecated_index_sections = 0;
481860b3 111
6502dd73
DJ
112static const struct objfile_data *dwarf2_objfile_data_key;
113
f1e6e072
TT
114/* The "aclass" indices for various kinds of computed DWARF symbols. */
115
116static int dwarf2_locexpr_index;
117static int dwarf2_loclist_index;
118static int dwarf2_locexpr_block_index;
119static int dwarf2_loclist_block_index;
120
3f563c84
PA
121/* An index into a (C++) symbol name component in a symbol name as
122 recorded in the mapped_index's symbol table. For each C++ symbol
123 in the symbol table, we record one entry for the start of each
124 component in the symbol in a table of name components, and then
125 sort the table, in order to be able to binary search symbol names,
126 ignoring leading namespaces, both completion and regular look up.
127 For example, for symbol "A::B::C", we'll have an entry that points
128 to "A::B::C", another that points to "B::C", and another for "C".
129 Note that function symbols in GDB index have no parameter
130 information, just the function/method names. You can convert a
131 name_component to a "const char *" using the
132 'mapped_index::symbol_name_at(offset_type)' method. */
133
134struct name_component
135{
136 /* Offset in the symbol name where the component starts. Stored as
137 a (32-bit) offset instead of a pointer to save memory and improve
138 locality on 64-bit architectures. */
139 offset_type name_offset;
140
141 /* The symbol's index in the symbol and constant pool tables of a
142 mapped_index. */
143 offset_type idx;
144};
145
44ed8f3e
PA
146/* Base class containing bits shared by both .gdb_index and
147 .debug_name indexes. */
148
149struct mapped_index_base
150{
22ca247e
TT
151 mapped_index_base () = default;
152 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
153
44ed8f3e
PA
154 /* The name_component table (a sorted vector). See name_component's
155 description above. */
156 std::vector<name_component> name_components;
157
158 /* How NAME_COMPONENTS is sorted. */
159 enum case_sensitivity name_components_casing;
160
161 /* Return the number of names in the symbol table. */
162 virtual size_t symbol_name_count () const = 0;
163
164 /* Get the name of the symbol at IDX in the symbol table. */
165 virtual const char *symbol_name_at (offset_type idx) const = 0;
166
167 /* Return whether the name at IDX in the symbol table should be
168 ignored. */
169 virtual bool symbol_name_slot_invalid (offset_type idx) const
170 {
171 return false;
172 }
173
174 /* Build the symbol name component sorted vector, if we haven't
175 yet. */
176 void build_name_components ();
177
178 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
179 possible matches for LN_NO_PARAMS in the name component
180 vector. */
181 std::pair<std::vector<name_component>::const_iterator,
182 std::vector<name_component>::const_iterator>
183 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
184
185 /* Prevent deleting/destroying via a base class pointer. */
186protected:
187 ~mapped_index_base() = default;
188};
189
9291a0cd
TT
190/* A description of the mapped index. The file format is described in
191 a comment by the code that writes the index. */
fc898b42 192struct mapped_index final : public mapped_index_base
9291a0cd 193{
f00a2de2
PA
194 /* A slot/bucket in the symbol table hash. */
195 struct symbol_table_slot
196 {
197 const offset_type name;
198 const offset_type vec;
199 };
200
559a7a62 201 /* Index data format version. */
3063847f 202 int version = 0;
559a7a62 203
f00a2de2
PA
204 /* The address table data. */
205 gdb::array_view<const gdb_byte> address_table;
b11b1f88 206
3876f04e 207 /* The symbol table, implemented as a hash table. */
f00a2de2 208 gdb::array_view<symbol_table_slot> symbol_table;
b11b1f88 209
9291a0cd 210 /* A pointer to the constant pool. */
3063847f 211 const char *constant_pool = nullptr;
3f563c84 212
44ed8f3e
PA
213 bool symbol_name_slot_invalid (offset_type idx) const override
214 {
215 const auto &bucket = this->symbol_table[idx];
216 return bucket.name == 0 && bucket.vec;
217 }
5c58de74 218
3f563c84
PA
219 /* Convenience method to get at the name of the symbol at IDX in the
220 symbol table. */
44ed8f3e 221 const char *symbol_name_at (offset_type idx) const override
f00a2de2 222 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
5c58de74 223
44ed8f3e
PA
224 size_t symbol_name_count () const override
225 { return this->symbol_table.size (); }
9291a0cd
TT
226};
227
927aa2e7
JK
228/* A description of the mapped .debug_names.
229 Uninitialized map has CU_COUNT 0. */
fc898b42 230struct mapped_debug_names final : public mapped_index_base
927aa2e7 231{
ed2dc618
SM
232 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
233 : dwarf2_per_objfile (dwarf2_per_objfile_)
234 {}
235
236 struct dwarf2_per_objfile *dwarf2_per_objfile;
927aa2e7
JK
237 bfd_endian dwarf5_byte_order;
238 bool dwarf5_is_dwarf64;
239 bool augmentation_is_gdb;
240 uint8_t offset_size;
241 uint32_t cu_count = 0;
242 uint32_t tu_count, bucket_count, name_count;
243 const gdb_byte *cu_table_reordered, *tu_table_reordered;
244 const uint32_t *bucket_table_reordered, *hash_table_reordered;
245 const gdb_byte *name_table_string_offs_reordered;
246 const gdb_byte *name_table_entry_offs_reordered;
247 const gdb_byte *entry_pool;
248
249 struct index_val
250 {
251 ULONGEST dwarf_tag;
252 struct attr
253 {
254 /* Attribute name DW_IDX_*. */
255 ULONGEST dw_idx;
256
257 /* Attribute form DW_FORM_*. */
258 ULONGEST form;
259
260 /* Value if FORM is DW_FORM_implicit_const. */
261 LONGEST implicit_const;
262 };
263 std::vector<attr> attr_vec;
264 };
265
266 std::unordered_map<ULONGEST, index_val> abbrev_map;
267
268 const char *namei_to_name (uint32_t namei) const;
44ed8f3e
PA
269
270 /* Implementation of the mapped_index_base virtual interface, for
271 the name_components cache. */
272
273 const char *symbol_name_at (offset_type idx) const override
274 { return namei_to_name (idx); }
275
276 size_t symbol_name_count () const override
277 { return this->name_count; }
927aa2e7
JK
278};
279
cd4fb1b2 280/* See dwarf2read.h. */
ed2dc618 281
cd4fb1b2 282dwarf2_per_objfile *
ed2dc618
SM
283get_dwarf2_per_objfile (struct objfile *objfile)
284{
285 return ((struct dwarf2_per_objfile *)
286 objfile_data (objfile, dwarf2_objfile_data_key));
287}
288
289/* Set the dwarf2_per_objfile associated to OBJFILE. */
290
291void
292set_dwarf2_per_objfile (struct objfile *objfile,
293 struct dwarf2_per_objfile *dwarf2_per_objfile)
294{
295 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
296 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
297}
c906108c 298
251d32d9 299/* Default names of the debugging sections. */
c906108c 300
233a11ab
CS
301/* Note that if the debugging section has been compressed, it might
302 have a name like .zdebug_info. */
303
9cdd5dbd
DE
304static const struct dwarf2_debug_sections dwarf2_elf_names =
305{
251d32d9
TG
306 { ".debug_info", ".zdebug_info" },
307 { ".debug_abbrev", ".zdebug_abbrev" },
308 { ".debug_line", ".zdebug_line" },
309 { ".debug_loc", ".zdebug_loc" },
43988095 310 { ".debug_loclists", ".zdebug_loclists" },
251d32d9 311 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 312 { ".debug_macro", ".zdebug_macro" },
251d32d9 313 { ".debug_str", ".zdebug_str" },
43988095 314 { ".debug_line_str", ".zdebug_line_str" },
251d32d9 315 { ".debug_ranges", ".zdebug_ranges" },
43988095 316 { ".debug_rnglists", ".zdebug_rnglists" },
251d32d9 317 { ".debug_types", ".zdebug_types" },
3019eac3 318 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
319 { ".debug_frame", ".zdebug_frame" },
320 { ".eh_frame", NULL },
24d3216f 321 { ".gdb_index", ".zgdb_index" },
927aa2e7
JK
322 { ".debug_names", ".zdebug_names" },
323 { ".debug_aranges", ".zdebug_aranges" },
24d3216f 324 23
251d32d9 325};
c906108c 326
80626a55 327/* List of DWO/DWP sections. */
3019eac3 328
80626a55 329static const struct dwop_section_names
3019eac3
DE
330{
331 struct dwarf2_section_names abbrev_dwo;
332 struct dwarf2_section_names info_dwo;
333 struct dwarf2_section_names line_dwo;
334 struct dwarf2_section_names loc_dwo;
43988095 335 struct dwarf2_section_names loclists_dwo;
09262596
DE
336 struct dwarf2_section_names macinfo_dwo;
337 struct dwarf2_section_names macro_dwo;
3019eac3
DE
338 struct dwarf2_section_names str_dwo;
339 struct dwarf2_section_names str_offsets_dwo;
340 struct dwarf2_section_names types_dwo;
80626a55
DE
341 struct dwarf2_section_names cu_index;
342 struct dwarf2_section_names tu_index;
3019eac3 343}
80626a55 344dwop_section_names =
3019eac3
DE
345{
346 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
347 { ".debug_info.dwo", ".zdebug_info.dwo" },
348 { ".debug_line.dwo", ".zdebug_line.dwo" },
349 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
43988095 350 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
09262596
DE
351 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
352 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
353 { ".debug_str.dwo", ".zdebug_str.dwo" },
354 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
355 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
356 { ".debug_cu_index", ".zdebug_cu_index" },
357 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
358};
359
c906108c
SS
360/* local data types */
361
107d2387
AC
362/* The data in a compilation unit header, after target2host
363 translation, looks like this. */
c906108c 364struct comp_unit_head
a738430d 365{
c764a876 366 unsigned int length;
a738430d 367 short version;
a738430d
MK
368 unsigned char addr_size;
369 unsigned char signed_addr_p;
9c541725 370 sect_offset abbrev_sect_off;
57349743 371
a738430d
MK
372 /* Size of file offsets; either 4 or 8. */
373 unsigned int offset_size;
57349743 374
a738430d
MK
375 /* Size of the length field; either 4 or 12. */
376 unsigned int initial_length_size;
57349743 377
43988095
JK
378 enum dwarf_unit_type unit_type;
379
a738430d
MK
380 /* Offset to the first byte of this compilation unit header in the
381 .debug_info section, for resolving relative reference dies. */
9c541725 382 sect_offset sect_off;
57349743 383
d00adf39
DE
384 /* Offset to first die in this cu from the start of the cu.
385 This will be the first byte following the compilation unit header. */
9c541725 386 cu_offset first_die_cu_offset;
43988095
JK
387
388 /* 64-bit signature of this type unit - it is valid only for
389 UNIT_TYPE DW_UT_type. */
390 ULONGEST signature;
391
392 /* For types, offset in the type's DIE of the type defined by this TU. */
9c541725 393 cu_offset type_cu_offset_in_tu;
a738430d 394};
c906108c 395
3da10d80
KS
396/* Type used for delaying computation of method physnames.
397 See comments for compute_delayed_physnames. */
398struct delayed_method_info
399{
400 /* The type to which the method is attached, i.e., its parent class. */
401 struct type *type;
402
403 /* The index of the method in the type's function fieldlists. */
404 int fnfield_index;
405
406 /* The index of the method in the fieldlist. */
407 int index;
408
409 /* The name of the DIE. */
410 const char *name;
411
412 /* The DIE associated with this method. */
413 struct die_info *die;
414};
415
e7c27a73
DJ
416/* Internal state when decoding a particular compilation unit. */
417struct dwarf2_cu
418{
fcd3b13d
SM
419 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
420 ~dwarf2_cu ();
421
422 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
423
d00adf39 424 /* The header of the compilation unit. */
fcd3b13d 425 struct comp_unit_head header {};
e142c38c 426
d00adf39 427 /* Base address of this compilation unit. */
fcd3b13d 428 CORE_ADDR base_address = 0;
d00adf39
DE
429
430 /* Non-zero if base_address has been set. */
fcd3b13d 431 int base_known = 0;
d00adf39 432
e142c38c 433 /* The language we are debugging. */
fcd3b13d
SM
434 enum language language = language_unknown;
435 const struct language_defn *language_defn = nullptr;
e142c38c 436
fcd3b13d 437 const char *producer = nullptr;
b0f35d58 438
804d2729
TT
439 /* The symtab builder for this CU. This is only non-NULL when full
440 symbols are being read. */
441 std::unique_ptr<buildsym_compunit> builder;
442
e142c38c
DJ
443 /* The generic symbol table building routines have separate lists for
444 file scope symbols and all all other scopes (local scopes). So
445 we need to select the right one to pass to add_symbol_to_list().
446 We do it by keeping a pointer to the correct list in list_in_scope.
447
448 FIXME: The original dwarf code just treated the file scope as the
449 first local scope, and all other local scopes as nested local
450 scopes, and worked fine. Check to see if we really need to
451 distinguish these in buildsym.c. */
fcd3b13d 452 struct pending **list_in_scope = nullptr;
e142c38c 453
b64f50a1
JK
454 /* Hash table holding all the loaded partial DIEs
455 with partial_die->offset.SECT_OFF as hash. */
fcd3b13d 456 htab_t partial_dies = nullptr;
72bf9492
DJ
457
458 /* Storage for things with the same lifetime as this read-in compilation
459 unit, including partial DIEs. */
fcd3b13d 460 auto_obstack comp_unit_obstack;
72bf9492 461
ae038cb0
DJ
462 /* When multiple dwarf2_cu structures are living in memory, this field
463 chains them all together, so that they can be released efficiently.
464 We will probably also want a generation counter so that most-recently-used
465 compilation units are cached... */
fcd3b13d 466 struct dwarf2_per_cu_data *read_in_chain = nullptr;
ae038cb0 467
69d751e3 468 /* Backlink to our per_cu entry. */
ae038cb0
DJ
469 struct dwarf2_per_cu_data *per_cu;
470
471 /* How many compilation units ago was this CU last referenced? */
fcd3b13d 472 int last_used = 0;
ae038cb0 473
b64f50a1
JK
474 /* A hash table of DIE cu_offset for following references with
475 die_info->offset.sect_off as hash. */
fcd3b13d 476 htab_t die_hash = nullptr;
10b3939b
DJ
477
478 /* Full DIEs if read in. */
fcd3b13d 479 struct die_info *dies = nullptr;
10b3939b
DJ
480
481 /* A set of pointers to dwarf2_per_cu_data objects for compilation
482 units referenced by this one. Only set during full symbol processing;
483 partial symbol tables do not have dependencies. */
fcd3b13d 484 htab_t dependencies = nullptr;
10b3939b 485
cb1df416 486 /* Header data from the line table, during full symbol processing. */
fcd3b13d 487 struct line_header *line_header = nullptr;
4c8aa72d
PA
488 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
489 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
490 this is the DW_TAG_compile_unit die for this CU. We'll hold on
491 to the line header as long as this DIE is being processed. See
492 process_die_scope. */
fcd3b13d 493 die_info *line_header_die_owner = nullptr;
cb1df416 494
3da10d80
KS
495 /* A list of methods which need to have physnames computed
496 after all type information has been read. */
c89b44cd 497 std::vector<delayed_method_info> method_list;
3da10d80 498
96408a79 499 /* To be copied to symtab->call_site_htab. */
fcd3b13d 500 htab_t call_site_htab = nullptr;
96408a79 501
034e5797
DE
502 /* Non-NULL if this CU came from a DWO file.
503 There is an invariant here that is important to remember:
504 Except for attributes copied from the top level DIE in the "main"
505 (or "stub") file in preparation for reading the DWO file
506 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
507 Either there isn't a DWO file (in which case this is NULL and the point
508 is moot), or there is and either we're not going to read it (in which
509 case this is NULL) or there is and we are reading it (in which case this
510 is non-NULL). */
fcd3b13d 511 struct dwo_unit *dwo_unit = nullptr;
3019eac3
DE
512
513 /* The DW_AT_addr_base attribute if present, zero otherwise
514 (zero is a valid value though).
1dbab08b 515 Note this value comes from the Fission stub CU/TU's DIE. */
fcd3b13d 516 ULONGEST addr_base = 0;
3019eac3 517
2e3cf129
DE
518 /* The DW_AT_ranges_base attribute if present, zero otherwise
519 (zero is a valid value though).
1dbab08b 520 Note this value comes from the Fission stub CU/TU's DIE.
2e3cf129 521 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
522 be used without needing to know whether DWO files are in use or not.
523 N.B. This does not apply to DW_AT_ranges appearing in
524 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
525 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
526 DW_AT_ranges_base *would* have to be applied, and we'd have to care
527 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
fcd3b13d 528 ULONGEST ranges_base = 0;
2e3cf129 529
c9317f21
TT
530 /* When reading debug info generated by older versions of rustc, we
531 have to rewrite some union types to be struct types with a
532 variant part. This rewriting must be done after the CU is fully
533 read in, because otherwise at the point of rewriting some struct
534 type might not have been fully processed. So, we keep a list of
535 all such types here and process them after expansion. */
536 std::vector<struct type *> rust_unions;
537
ae038cb0
DJ
538 /* Mark used when releasing cached dies. */
539 unsigned int mark : 1;
540
8be455d7
JK
541 /* This CU references .debug_loc. See the symtab->locations_valid field.
542 This test is imperfect as there may exist optimized debug code not using
543 any location list and still facing inlining issues if handled as
544 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 545 unsigned int has_loclist : 1;
ba919b58 546
1b80a9fa
JK
547 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
548 if all the producer_is_* fields are valid. This information is cached
549 because profiling CU expansion showed excessive time spent in
550 producer_is_gxx_lt_4_6. */
ba919b58
TT
551 unsigned int checked_producer : 1;
552 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 553 unsigned int producer_is_gcc_lt_4_3 : 1;
eb77c9df 554 bool producer_is_icc : 1;
5230b05a 555 unsigned int producer_is_icc_lt_14 : 1;
c258c396 556 bool producer_is_codewarrior : 1;
4d4ec4e5
TT
557
558 /* When set, the file that we're processing is known to have
559 debugging info for C++ namespaces. GCC 3.3.x did not produce
560 this information, but later versions do. */
561
562 unsigned int processing_has_namespace_info : 1;
d590ff25
YQ
563
564 struct partial_die_info *find_partial_die (sect_offset sect_off);
e7c27a73
DJ
565};
566
094b34ac
DE
567/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
568 This includes type_unit_group and quick_file_names. */
569
570struct stmt_list_hash
571{
572 /* The DWO unit this table is from or NULL if there is none. */
573 struct dwo_unit *dwo_unit;
574
575 /* Offset in .debug_line or .debug_line.dwo. */
9c541725 576 sect_offset line_sect_off;
094b34ac
DE
577};
578
f4dc4d17
DE
579/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
580 an object of this type. */
581
582struct type_unit_group
583{
0186c6a7 584 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
585 To simplify things we create an artificial CU that "includes" all the
586 type units using this stmt_list so that the rest of the code still has
587 a "per_cu" handle on the symtab.
588 This PER_CU is recognized by having no section. */
8a0459fd 589#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
590 struct dwarf2_per_cu_data per_cu;
591
0186c6a7
DE
592 /* The TUs that share this DW_AT_stmt_list entry.
593 This is added to while parsing type units to build partial symtabs,
594 and is deleted afterwards and not used again. */
595 VEC (sig_type_ptr) *tus;
f4dc4d17 596
43f3e411 597 /* The compunit symtab.
094b34ac 598 Type units in a group needn't all be defined in the same source file,
43f3e411
DE
599 so we create an essentially anonymous symtab as the compunit symtab. */
600 struct compunit_symtab *compunit_symtab;
f4dc4d17 601
094b34ac
DE
602 /* The data used to construct the hash key. */
603 struct stmt_list_hash hash;
f4dc4d17
DE
604
605 /* The number of symtabs from the line header.
606 The value here must match line_header.num_file_names. */
607 unsigned int num_symtabs;
608
609 /* The symbol tables for this TU (obtained from the files listed in
610 DW_AT_stmt_list).
611 WARNING: The order of entries here must match the order of entries
612 in the line header. After the first TU using this type_unit_group, the
613 line header for the subsequent TUs is recreated from this. This is done
614 because we need to use the same symtabs for each TU using the same
615 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
616 there's no guarantee the line header doesn't have duplicate entries. */
617 struct symtab **symtabs;
618};
619
73869dc2 620/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
621
622struct dwo_sections
623{
624 struct dwarf2_section_info abbrev;
3019eac3
DE
625 struct dwarf2_section_info line;
626 struct dwarf2_section_info loc;
43988095 627 struct dwarf2_section_info loclists;
09262596
DE
628 struct dwarf2_section_info macinfo;
629 struct dwarf2_section_info macro;
3019eac3
DE
630 struct dwarf2_section_info str;
631 struct dwarf2_section_info str_offsets;
80626a55
DE
632 /* In the case of a virtual DWO file, these two are unused. */
633 struct dwarf2_section_info info;
3019eac3
DE
634 VEC (dwarf2_section_info_def) *types;
635};
636
c88ee1f0 637/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
638
639struct dwo_unit
640{
641 /* Backlink to the containing struct dwo_file. */
642 struct dwo_file *dwo_file;
643
644 /* The "id" that distinguishes this CU/TU.
645 .debug_info calls this "dwo_id", .debug_types calls this "signature".
646 Since signatures came first, we stick with it for consistency. */
647 ULONGEST signature;
648
649 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 650 struct dwarf2_section_info *section;
3019eac3 651
9c541725
PA
652 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
653 sect_offset sect_off;
3019eac3
DE
654 unsigned int length;
655
656 /* For types, offset in the type's DIE of the type defined by this TU. */
657 cu_offset type_offset_in_tu;
658};
659
73869dc2
DE
660/* include/dwarf2.h defines the DWP section codes.
661 It defines a max value but it doesn't define a min value, which we
662 use for error checking, so provide one. */
663
664enum dwp_v2_section_ids
665{
666 DW_SECT_MIN = 1
667};
668
80626a55 669/* Data for one DWO file.
57d63ce2
DE
670
671 This includes virtual DWO files (a virtual DWO file is a DWO file as it
672 appears in a DWP file). DWP files don't really have DWO files per se -
673 comdat folding of types "loses" the DWO file they came from, and from
674 a high level view DWP files appear to contain a mass of random types.
675 However, to maintain consistency with the non-DWP case we pretend DWP
676 files contain virtual DWO files, and we assign each TU with one virtual
677 DWO file (generally based on the line and abbrev section offsets -
678 a heuristic that seems to work in practice). */
3019eac3
DE
679
680struct dwo_file
681{
0ac5b59e 682 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
683 For virtual DWO files the name is constructed from the section offsets
684 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
685 from related CU+TUs. */
0ac5b59e
DE
686 const char *dwo_name;
687
688 /* The DW_AT_comp_dir attribute. */
689 const char *comp_dir;
3019eac3 690
80626a55
DE
691 /* The bfd, when the file is open. Otherwise this is NULL.
692 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
693 bfd *dbfd;
3019eac3 694
73869dc2
DE
695 /* The sections that make up this DWO file.
696 Remember that for virtual DWO files in DWP V2, these are virtual
697 sections (for lack of a better name). */
3019eac3
DE
698 struct dwo_sections sections;
699
33c5cd75
DB
700 /* The CUs in the file.
701 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
702 an extension to handle LLVM's Link Time Optimization output (where
703 multiple source files may be compiled into a single object/dwo pair). */
704 htab_t cus;
3019eac3
DE
705
706 /* Table of TUs in the file.
707 Each element is a struct dwo_unit. */
708 htab_t tus;
709};
710
80626a55
DE
711/* These sections are what may appear in a DWP file. */
712
713struct dwp_sections
714{
73869dc2 715 /* These are used by both DWP version 1 and 2. */
80626a55
DE
716 struct dwarf2_section_info str;
717 struct dwarf2_section_info cu_index;
718 struct dwarf2_section_info tu_index;
73869dc2
DE
719
720 /* These are only used by DWP version 2 files.
721 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
722 sections are referenced by section number, and are not recorded here.
723 In DWP version 2 there is at most one copy of all these sections, each
724 section being (effectively) comprised of the concatenation of all of the
725 individual sections that exist in the version 1 format.
726 To keep the code simple we treat each of these concatenated pieces as a
727 section itself (a virtual section?). */
728 struct dwarf2_section_info abbrev;
729 struct dwarf2_section_info info;
730 struct dwarf2_section_info line;
731 struct dwarf2_section_info loc;
732 struct dwarf2_section_info macinfo;
733 struct dwarf2_section_info macro;
734 struct dwarf2_section_info str_offsets;
735 struct dwarf2_section_info types;
80626a55
DE
736};
737
73869dc2
DE
738/* These sections are what may appear in a virtual DWO file in DWP version 1.
739 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 740
73869dc2 741struct virtual_v1_dwo_sections
80626a55
DE
742{
743 struct dwarf2_section_info abbrev;
744 struct dwarf2_section_info line;
745 struct dwarf2_section_info loc;
746 struct dwarf2_section_info macinfo;
747 struct dwarf2_section_info macro;
748 struct dwarf2_section_info str_offsets;
749 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 750 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
751 struct dwarf2_section_info info_or_types;
752};
753
73869dc2
DE
754/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
755 In version 2, the sections of the DWO files are concatenated together
756 and stored in one section of that name. Thus each ELF section contains
757 several "virtual" sections. */
758
759struct virtual_v2_dwo_sections
760{
761 bfd_size_type abbrev_offset;
762 bfd_size_type abbrev_size;
763
764 bfd_size_type line_offset;
765 bfd_size_type line_size;
766
767 bfd_size_type loc_offset;
768 bfd_size_type loc_size;
769
770 bfd_size_type macinfo_offset;
771 bfd_size_type macinfo_size;
772
773 bfd_size_type macro_offset;
774 bfd_size_type macro_size;
775
776 bfd_size_type str_offsets_offset;
777 bfd_size_type str_offsets_size;
778
779 /* Each DWP hash table entry records one CU or one TU.
780 That is recorded here, and copied to dwo_unit.section. */
781 bfd_size_type info_or_types_offset;
782 bfd_size_type info_or_types_size;
783};
784
80626a55
DE
785/* Contents of DWP hash tables. */
786
787struct dwp_hash_table
788{
73869dc2 789 uint32_t version, nr_columns;
80626a55 790 uint32_t nr_units, nr_slots;
73869dc2
DE
791 const gdb_byte *hash_table, *unit_table;
792 union
793 {
794 struct
795 {
796 const gdb_byte *indices;
797 } v1;
798 struct
799 {
800 /* This is indexed by column number and gives the id of the section
801 in that column. */
802#define MAX_NR_V2_DWO_SECTIONS \
803 (1 /* .debug_info or .debug_types */ \
804 + 1 /* .debug_abbrev */ \
805 + 1 /* .debug_line */ \
806 + 1 /* .debug_loc */ \
807 + 1 /* .debug_str_offsets */ \
808 + 1 /* .debug_macro or .debug_macinfo */)
809 int section_ids[MAX_NR_V2_DWO_SECTIONS];
810 const gdb_byte *offsets;
811 const gdb_byte *sizes;
812 } v2;
813 } section_pool;
80626a55
DE
814};
815
816/* Data for one DWP file. */
817
818struct dwp_file
819{
400174b1
TT
820 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
821 : name (name_),
822 dbfd (std::move (abfd))
823 {
824 }
825
80626a55
DE
826 /* Name of the file. */
827 const char *name;
828
73869dc2 829 /* File format version. */
400174b1 830 int version = 0;
73869dc2 831
93417882 832 /* The bfd. */
400174b1 833 gdb_bfd_ref_ptr dbfd;
80626a55
DE
834
835 /* Section info for this file. */
400174b1 836 struct dwp_sections sections {};
80626a55 837
57d63ce2 838 /* Table of CUs in the file. */
400174b1 839 const struct dwp_hash_table *cus = nullptr;
80626a55
DE
840
841 /* Table of TUs in the file. */
400174b1 842 const struct dwp_hash_table *tus = nullptr;
80626a55 843
19ac8c2e 844 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
400174b1
TT
845 htab_t loaded_cus {};
846 htab_t loaded_tus {};
80626a55 847
73869dc2
DE
848 /* Table to map ELF section numbers to their sections.
849 This is only needed for the DWP V1 file format. */
400174b1
TT
850 unsigned int num_sections = 0;
851 asection **elf_sections = nullptr;
80626a55
DE
852};
853
36586728
TT
854/* This represents a '.dwz' file. */
855
856struct dwz_file
857{
7ff8cb8c
TT
858 dwz_file (gdb_bfd_ref_ptr &&bfd)
859 : dwz_bfd (std::move (bfd))
860 {
861 }
862
36586728 863 /* A dwz file can only contain a few sections. */
7ff8cb8c
TT
864 struct dwarf2_section_info abbrev {};
865 struct dwarf2_section_info info {};
866 struct dwarf2_section_info str {};
867 struct dwarf2_section_info line {};
868 struct dwarf2_section_info macro {};
869 struct dwarf2_section_info gdb_index {};
870 struct dwarf2_section_info debug_names {};
36586728
TT
871
872 /* The dwz's BFD. */
7ff8cb8c 873 gdb_bfd_ref_ptr dwz_bfd;
87d6a7aa
SM
874
875 /* If we loaded the index from an external file, this contains the
876 resources associated to the open file, memory mapping, etc. */
877 std::unique_ptr<index_cache_resource> index_cache_res;
36586728
TT
878};
879
0963b4bd
MS
880/* Struct used to pass misc. parameters to read_die_and_children, et
881 al. which are used for both .debug_info and .debug_types dies.
882 All parameters here are unchanging for the life of the call. This
dee91e82 883 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
884
885struct die_reader_specs
886{
a32a8923 887 /* The bfd of die_section. */
93311388
DE
888 bfd* abfd;
889
890 /* The CU of the DIE we are parsing. */
891 struct dwarf2_cu *cu;
892
80626a55 893 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
894 struct dwo_file *dwo_file;
895
dee91e82 896 /* The section the die comes from.
3019eac3 897 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
898 struct dwarf2_section_info *die_section;
899
900 /* die_section->buffer. */
d521ce57 901 const gdb_byte *buffer;
f664829e
DE
902
903 /* The end of the buffer. */
904 const gdb_byte *buffer_end;
a2ce51a0
DE
905
906 /* The value of the DW_AT_comp_dir attribute. */
907 const char *comp_dir;
685af9cd
TT
908
909 /* The abbreviation table to use when reading the DIEs. */
910 struct abbrev_table *abbrev_table;
93311388
DE
911};
912
fd820528 913/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 914typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 915 const gdb_byte *info_ptr,
dee91e82
DE
916 struct die_info *comp_unit_die,
917 int has_children,
918 void *data);
919
ecfb656c
PA
920/* A 1-based directory index. This is a strong typedef to prevent
921 accidentally using a directory index as a 0-based index into an
922 array/vector. */
923enum class dir_index : unsigned int {};
924
925/* Likewise, a 1-based file name index. */
926enum class file_name_index : unsigned int {};
927
52059ffd
TT
928struct file_entry
929{
fff8551c
PA
930 file_entry () = default;
931
ecfb656c 932 file_entry (const char *name_, dir_index d_index_,
fff8551c
PA
933 unsigned int mod_time_, unsigned int length_)
934 : name (name_),
ecfb656c 935 d_index (d_index_),
fff8551c
PA
936 mod_time (mod_time_),
937 length (length_)
938 {}
939
ecfb656c
PA
940 /* Return the include directory at D_INDEX stored in LH. Returns
941 NULL if D_INDEX is out of bounds. */
8c43009f
PA
942 const char *include_dir (const line_header *lh) const;
943
fff8551c
PA
944 /* The file name. Note this is an observing pointer. The memory is
945 owned by debug_line_buffer. */
946 const char *name {};
947
8c43009f 948 /* The directory index (1-based). */
ecfb656c 949 dir_index d_index {};
fff8551c
PA
950
951 unsigned int mod_time {};
952
953 unsigned int length {};
954
955 /* True if referenced by the Line Number Program. */
956 bool included_p {};
957
83769d0b 958 /* The associated symbol table, if any. */
fff8551c 959 struct symtab *symtab {};
52059ffd
TT
960};
961
debd256d
JB
962/* The line number information for a compilation unit (found in the
963 .debug_line section) begins with a "statement program header",
964 which contains the following information. */
965struct line_header
966{
fff8551c
PA
967 line_header ()
968 : offset_in_dwz {}
969 {}
970
971 /* Add an entry to the include directory table. */
972 void add_include_dir (const char *include_dir);
973
974 /* Add an entry to the file name table. */
ecfb656c 975 void add_file_name (const char *name, dir_index d_index,
fff8551c
PA
976 unsigned int mod_time, unsigned int length);
977
ecfb656c 978 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
8c43009f 979 is out of bounds. */
ecfb656c 980 const char *include_dir_at (dir_index index) const
8c43009f 981 {
ecfb656c
PA
982 /* Convert directory index number (1-based) to vector index
983 (0-based). */
984 size_t vec_index = to_underlying (index) - 1;
985
986 if (vec_index >= include_dirs.size ())
8c43009f 987 return NULL;
ecfb656c 988 return include_dirs[vec_index];
8c43009f
PA
989 }
990
ecfb656c 991 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
8c43009f 992 is out of bounds. */
ecfb656c 993 file_entry *file_name_at (file_name_index index)
8c43009f 994 {
ecfb656c
PA
995 /* Convert file name index number (1-based) to vector index
996 (0-based). */
997 size_t vec_index = to_underlying (index) - 1;
998
999 if (vec_index >= file_names.size ())
fff8551c 1000 return NULL;
ecfb656c 1001 return &file_names[vec_index];
fff8551c
PA
1002 }
1003
1004 /* Const version of the above. */
1005 const file_entry *file_name_at (unsigned int index) const
1006 {
1007 if (index >= file_names.size ())
8c43009f
PA
1008 return NULL;
1009 return &file_names[index];
1010 }
1011
527f3840 1012 /* Offset of line number information in .debug_line section. */
9c541725 1013 sect_offset sect_off {};
527f3840
JK
1014
1015 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
fff8551c
PA
1016 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1017
1018 unsigned int total_length {};
1019 unsigned short version {};
1020 unsigned int header_length {};
1021 unsigned char minimum_instruction_length {};
1022 unsigned char maximum_ops_per_instruction {};
1023 unsigned char default_is_stmt {};
1024 int line_base {};
1025 unsigned char line_range {};
1026 unsigned char opcode_base {};
debd256d
JB
1027
1028 /* standard_opcode_lengths[i] is the number of operands for the
1029 standard opcode whose value is i. This means that
1030 standard_opcode_lengths[0] is unused, and the last meaningful
1031 element is standard_opcode_lengths[opcode_base - 1]. */
fff8551c 1032 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
debd256d 1033
fff8551c
PA
1034 /* The include_directories table. Note these are observing
1035 pointers. The memory is owned by debug_line_buffer. */
1036 std::vector<const char *> include_dirs;
debd256d 1037
fff8551c
PA
1038 /* The file_names table. */
1039 std::vector<file_entry> file_names;
debd256d
JB
1040
1041 /* The start and end of the statement program following this
6502dd73 1042 header. These point into dwarf2_per_objfile->line_buffer. */
fff8551c 1043 const gdb_byte *statement_program_start {}, *statement_program_end {};
debd256d 1044};
c906108c 1045
fff8551c
PA
1046typedef std::unique_ptr<line_header> line_header_up;
1047
8c43009f
PA
1048const char *
1049file_entry::include_dir (const line_header *lh) const
1050{
ecfb656c 1051 return lh->include_dir_at (d_index);
8c43009f
PA
1052}
1053
c906108c 1054/* When we construct a partial symbol table entry we only
0963b4bd 1055 need this much information. */
6f06d47b 1056struct partial_die_info : public allocate_on_obstack
c906108c 1057 {
6f06d47b
YQ
1058 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1059
1060 /* Disable assign but still keep copy ctor, which is needed
1061 load_partial_dies. */
1062 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1063
52356b79
YQ
1064 /* Adjust the partial die before generating a symbol for it. This
1065 function may set the is_external flag or change the DIE's
1066 name. */
1067 void fixup (struct dwarf2_cu *cu);
1068
48fbe735
YQ
1069 /* Read a minimal amount of information into the minimal die
1070 structure. */
1071 const gdb_byte *read (const struct die_reader_specs *reader,
1072 const struct abbrev_info &abbrev,
1073 const gdb_byte *info_ptr);
1074
72bf9492 1075 /* Offset of this DIE. */
6f06d47b 1076 const sect_offset sect_off;
72bf9492
DJ
1077
1078 /* DWARF-2 tag for this DIE. */
6f06d47b 1079 const ENUM_BITFIELD(dwarf_tag) tag : 16;
72bf9492 1080
72bf9492 1081 /* Assorted flags describing the data found in this DIE. */
6f06d47b
YQ
1082 const unsigned int has_children : 1;
1083
72bf9492
DJ
1084 unsigned int is_external : 1;
1085 unsigned int is_declaration : 1;
1086 unsigned int has_type : 1;
1087 unsigned int has_specification : 1;
1088 unsigned int has_pc_info : 1;
481860b3 1089 unsigned int may_be_inlined : 1;
72bf9492 1090
0c1b455e
TT
1091 /* This DIE has been marked DW_AT_main_subprogram. */
1092 unsigned int main_subprogram : 1;
1093
72bf9492
DJ
1094 /* Flag set if the SCOPE field of this structure has been
1095 computed. */
1096 unsigned int scope_set : 1;
1097
fa4028e9
JB
1098 /* Flag set if the DIE has a byte_size attribute. */
1099 unsigned int has_byte_size : 1;
1100
ff908ebf
AW
1101 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1102 unsigned int has_const_value : 1;
1103
98bfdba5
PA
1104 /* Flag set if any of the DIE's children are template arguments. */
1105 unsigned int has_template_arguments : 1;
1106
52356b79 1107 /* Flag set if fixup has been called on this die. */
abc72ce4
DE
1108 unsigned int fixup_called : 1;
1109
36586728
TT
1110 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1111 unsigned int is_dwz : 1;
1112
1113 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1114 unsigned int spec_is_dwz : 1;
1115
72bf9492 1116 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1117 sometimes a default name for unnamed DIEs. */
6f06d47b 1118 const char *name = nullptr;
72bf9492 1119
abc72ce4 1120 /* The linkage name, if present. */
6f06d47b 1121 const char *linkage_name = nullptr;
abc72ce4 1122
72bf9492
DJ
1123 /* The scope to prepend to our children. This is generally
1124 allocated on the comp_unit_obstack, so will disappear
1125 when this compilation unit leaves the cache. */
6f06d47b 1126 const char *scope = nullptr;
72bf9492 1127
95554aad
TT
1128 /* Some data associated with the partial DIE. The tag determines
1129 which field is live. */
1130 union
1131 {
1132 /* The location description associated with this DIE, if any. */
1133 struct dwarf_block *locdesc;
1134 /* The offset of an import, for DW_TAG_imported_unit. */
9c541725 1135 sect_offset sect_off;
6f06d47b 1136 } d {};
72bf9492
DJ
1137
1138 /* If HAS_PC_INFO, the PC range associated with this DIE. */
6f06d47b
YQ
1139 CORE_ADDR lowpc = 0;
1140 CORE_ADDR highpc = 0;
72bf9492 1141
93311388 1142 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1143 DW_AT_sibling, if any. */
48fbe735
YQ
1144 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1145 could return DW_AT_sibling values to its caller load_partial_dies. */
6f06d47b 1146 const gdb_byte *sibling = nullptr;
72bf9492
DJ
1147
1148 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1149 DW_AT_specification (or DW_AT_abstract_origin or
1150 DW_AT_extension). */
6f06d47b 1151 sect_offset spec_offset {};
72bf9492
DJ
1152
1153 /* Pointers to this DIE's parent, first child, and next sibling,
1154 if any. */
6f06d47b
YQ
1155 struct partial_die_info *die_parent = nullptr;
1156 struct partial_die_info *die_child = nullptr;
1157 struct partial_die_info *die_sibling = nullptr;
1158
1159 friend struct partial_die_info *
1160 dwarf2_cu::find_partial_die (sect_offset sect_off);
1161
1162 private:
1163 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1164 partial_die_info (sect_offset sect_off)
1165 : partial_die_info (sect_off, DW_TAG_padding, 0)
1166 {
1167 }
1168
1169 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1170 int has_children_)
1171 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1172 {
1173 is_external = 0;
1174 is_declaration = 0;
1175 has_type = 0;
1176 has_specification = 0;
1177 has_pc_info = 0;
1178 may_be_inlined = 0;
1179 main_subprogram = 0;
1180 scope_set = 0;
1181 has_byte_size = 0;
1182 has_const_value = 0;
1183 has_template_arguments = 0;
1184 fixup_called = 0;
1185 is_dwz = 0;
1186 spec_is_dwz = 0;
1187 }
c906108c
SS
1188 };
1189
0963b4bd 1190/* This data structure holds the information of an abbrev. */
c906108c
SS
1191struct abbrev_info
1192 {
1193 unsigned int number; /* number identifying abbrev */
1194 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1195 unsigned short has_children; /* boolean */
1196 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1197 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1198 struct abbrev_info *next; /* next in chain */
1199 };
1200
1201struct attr_abbrev
1202 {
9d25dd43
DE
1203 ENUM_BITFIELD(dwarf_attribute) name : 16;
1204 ENUM_BITFIELD(dwarf_form) form : 16;
43988095
JK
1205
1206 /* It is valid only if FORM is DW_FORM_implicit_const. */
1207 LONGEST implicit_const;
c906108c
SS
1208 };
1209
433df2d4
DE
1210/* Size of abbrev_table.abbrev_hash_table. */
1211#define ABBREV_HASH_SIZE 121
1212
1213/* Top level data structure to contain an abbreviation table. */
1214
1215struct abbrev_table
1216{
685af9cd
TT
1217 explicit abbrev_table (sect_offset off)
1218 : sect_off (off)
1219 {
4a17f768 1220 m_abbrevs =
685af9cd 1221 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
4a17f768 1222 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
685af9cd
TT
1223 }
1224
1225 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1226
1227 /* Allocate space for a struct abbrev_info object in
1228 ABBREV_TABLE. */
1229 struct abbrev_info *alloc_abbrev ();
1230
1231 /* Add an abbreviation to the table. */
1232 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1233
1234 /* Look up an abbrev in the table.
1235 Returns NULL if the abbrev is not found. */
1236
1237 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1238
1239
f4dc4d17
DE
1240 /* Where the abbrev table came from.
1241 This is used as a sanity check when the table is used. */
685af9cd 1242 const sect_offset sect_off;
433df2d4
DE
1243
1244 /* Storage for the abbrev table. */
685af9cd 1245 auto_obstack abbrev_obstack;
433df2d4 1246
4a17f768
YQ
1247private:
1248
433df2d4
DE
1249 /* Hash table of abbrevs.
1250 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1251 It could be statically allocated, but the previous code didn't so we
1252 don't either. */
4a17f768 1253 struct abbrev_info **m_abbrevs;
433df2d4
DE
1254};
1255
685af9cd
TT
1256typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1257
0963b4bd 1258/* Attributes have a name and a value. */
b60c80d6
DJ
1259struct attribute
1260 {
9d25dd43 1261 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1262 ENUM_BITFIELD(dwarf_form) form : 15;
1263
1264 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1265 field should be in u.str (existing only for DW_STRING) but it is kept
1266 here for better struct attribute alignment. */
1267 unsigned int string_is_canonical : 1;
1268
b60c80d6
DJ
1269 union
1270 {
15d034d0 1271 const char *str;
b60c80d6 1272 struct dwarf_block *blk;
43bbcdc2
PH
1273 ULONGEST unsnd;
1274 LONGEST snd;
b60c80d6 1275 CORE_ADDR addr;
ac9ec31b 1276 ULONGEST signature;
b60c80d6
DJ
1277 }
1278 u;
1279 };
1280
0963b4bd 1281/* This data structure holds a complete die structure. */
c906108c
SS
1282struct die_info
1283 {
76815b17
DE
1284 /* DWARF-2 tag for this DIE. */
1285 ENUM_BITFIELD(dwarf_tag) tag : 16;
1286
1287 /* Number of attributes */
98bfdba5
PA
1288 unsigned char num_attrs;
1289
1290 /* True if we're presently building the full type name for the
1291 type derived from this DIE. */
1292 unsigned char building_fullname : 1;
76815b17 1293
adde2bff
DE
1294 /* True if this die is in process. PR 16581. */
1295 unsigned char in_process : 1;
1296
76815b17
DE
1297 /* Abbrev number */
1298 unsigned int abbrev;
1299
93311388 1300 /* Offset in .debug_info or .debug_types section. */
9c541725 1301 sect_offset sect_off;
78ba4af6
JB
1302
1303 /* The dies in a compilation unit form an n-ary tree. PARENT
1304 points to this die's parent; CHILD points to the first child of
1305 this node; and all the children of a given node are chained
4950bc1c 1306 together via their SIBLING fields. */
639d11d3
DC
1307 struct die_info *child; /* Its first child, if any. */
1308 struct die_info *sibling; /* Its next sibling, if any. */
1309 struct die_info *parent; /* Its parent, if any. */
c906108c 1310
b60c80d6
DJ
1311 /* An array of attributes, with NUM_ATTRS elements. There may be
1312 zero, but it's not common and zero-sized arrays are not
1313 sufficiently portable C. */
1314 struct attribute attrs[1];
c906108c
SS
1315 };
1316
0963b4bd 1317/* Get at parts of an attribute structure. */
c906108c
SS
1318
1319#define DW_STRING(attr) ((attr)->u.str)
8285870a 1320#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1321#define DW_UNSND(attr) ((attr)->u.unsnd)
1322#define DW_BLOCK(attr) ((attr)->u.blk)
1323#define DW_SND(attr) ((attr)->u.snd)
1324#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1325#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1326
0963b4bd 1327/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1328struct dwarf_block
1329 {
56eb65bd 1330 size_t size;
1d6edc3c
JK
1331
1332 /* Valid only if SIZE is not zero. */
d521ce57 1333 const gdb_byte *data;
c906108c
SS
1334 };
1335
c906108c
SS
1336#ifndef ATTR_ALLOC_CHUNK
1337#define ATTR_ALLOC_CHUNK 4
1338#endif
1339
c906108c
SS
1340/* Allocate fields for structs, unions and enums in this size. */
1341#ifndef DW_FIELD_ALLOC_CHUNK
1342#define DW_FIELD_ALLOC_CHUNK 4
1343#endif
1344
c906108c
SS
1345/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1346 but this would require a corresponding change in unpack_field_as_long
1347 and friends. */
1348static int bits_per_byte = 8;
1349
2ddeaf8a
TT
1350/* When reading a variant or variant part, we track a bit more
1351 information about the field, and store it in an object of this
1352 type. */
1353
1354struct variant_field
1355{
1356 /* If we see a DW_TAG_variant, then this will be the discriminant
1357 value. */
1358 ULONGEST discriminant_value;
1359 /* If we see a DW_TAG_variant, then this will be set if this is the
1360 default branch. */
1361 bool default_branch;
1362 /* While reading a DW_TAG_variant_part, this will be set if this
1363 field is the discriminant. */
1364 bool is_discriminant;
1365};
1366
52059ffd
TT
1367struct nextfield
1368{
be2daae6
TT
1369 int accessibility = 0;
1370 int virtuality = 0;
2ddeaf8a 1371 /* Extra information to describe a variant or variant part. */
be2daae6
TT
1372 struct variant_field variant {};
1373 struct field field {};
52059ffd
TT
1374};
1375
1376struct fnfieldlist
1377{
be2daae6
TT
1378 const char *name = nullptr;
1379 std::vector<struct fn_field> fnfields;
52059ffd
TT
1380};
1381
c906108c
SS
1382/* The routines that read and process dies for a C struct or C++ class
1383 pass lists of data member fields and lists of member function fields
1384 in an instance of a field_info structure, as defined below. */
1385struct field_info
c5aa993b 1386 {
0963b4bd 1387 /* List of data member and baseclasses fields. */
be2daae6
TT
1388 std::vector<struct nextfield> fields;
1389 std::vector<struct nextfield> baseclasses;
c906108c 1390
7d0ccb61 1391 /* Number of fields (including baseclasses). */
be2daae6 1392 int nfields = 0;
c906108c 1393
c5aa993b 1394 /* Set if the accesibility of one of the fields is not public. */
be2daae6 1395 int non_public_fields = 0;
c906108c 1396
c5aa993b
JM
1397 /* Member function fieldlist array, contains name of possibly overloaded
1398 member function, number of overloaded member functions and a pointer
1399 to the head of the member function field chain. */
be2daae6 1400 std::vector<struct fnfieldlist> fnfieldlists;
98751a41
JK
1401
1402 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1403 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
be2daae6 1404 std::vector<struct decl_field> typedef_field_list;
883fd55a
KS
1405
1406 /* Nested types defined by this class and the number of elements in this
1407 list. */
be2daae6 1408 std::vector<struct decl_field> nested_types_list;
c5aa993b 1409 };
c906108c 1410
10b3939b
DJ
1411/* One item on the queue of compilation units to read in full symbols
1412 for. */
1413struct dwarf2_queue_item
1414{
1415 struct dwarf2_per_cu_data *per_cu;
95554aad 1416 enum language pretend_language;
10b3939b
DJ
1417 struct dwarf2_queue_item *next;
1418};
1419
1420/* The current queue. */
1421static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1422
ae038cb0
DJ
1423/* Loaded secondary compilation units are kept in memory until they
1424 have not been referenced for the processing of this many
1425 compilation units. Set this to zero to disable caching. Cache
1426 sizes of up to at least twenty will improve startup time for
1427 typical inter-CU-reference binaries, at an obvious memory cost. */
b4f54984 1428static int dwarf_max_cache_age = 5;
920d2a44 1429static void
b4f54984
DE
1430show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1431 struct cmd_list_element *c, const char *value)
920d2a44 1432{
3e43a32a 1433 fprintf_filtered (file, _("The upper bound on the age of cached "
b4f54984 1434 "DWARF compilation units is %s.\n"),
920d2a44
AC
1435 value);
1436}
4390d890 1437\f
c906108c
SS
1438/* local function prototypes */
1439
a32a8923
DE
1440static const char *get_section_name (const struct dwarf2_section_info *);
1441
1442static const char *get_section_file_name (const struct dwarf2_section_info *);
1443
918dd910
JK
1444static void dwarf2_find_base_address (struct die_info *die,
1445 struct dwarf2_cu *cu);
1446
0018ea6f
DE
1447static struct partial_symtab *create_partial_symtab
1448 (struct dwarf2_per_cu_data *per_cu, const char *name);
1449
f1902523
JK
1450static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1451 const gdb_byte *info_ptr,
1452 struct die_info *type_unit_die,
1453 int has_children, void *data);
1454
ed2dc618
SM
1455static void dwarf2_build_psymtabs_hard
1456 (struct dwarf2_per_objfile *dwarf2_per_objfile);
c906108c 1457
72bf9492
DJ
1458static void scan_partial_symbols (struct partial_die_info *,
1459 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1460 int, struct dwarf2_cu *);
c906108c 1461
72bf9492
DJ
1462static void add_partial_symbol (struct partial_die_info *,
1463 struct dwarf2_cu *);
63d06c5c 1464
72bf9492
DJ
1465static void add_partial_namespace (struct partial_die_info *pdi,
1466 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 1467 int set_addrmap, struct dwarf2_cu *cu);
63d06c5c 1468
5d7cb8df 1469static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 1470 CORE_ADDR *highpc, int set_addrmap,
5d7cb8df
JK
1471 struct dwarf2_cu *cu);
1472
72bf9492
DJ
1473static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1474 struct dwarf2_cu *cu);
91c24f0a 1475
bc30ff58
JB
1476static void add_partial_subprogram (struct partial_die_info *pdi,
1477 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1478 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1479
257e7a09
YQ
1480static void dwarf2_read_symtab (struct partial_symtab *,
1481 struct objfile *);
c906108c 1482
a14ed312 1483static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1484
685af9cd 1485static abbrev_table_up abbrev_table_read_table
ed2dc618
SM
1486 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1487 sect_offset);
433df2d4 1488
d521ce57 1489static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1490
dee91e82 1491static struct partial_die_info *load_partial_dies
d521ce57 1492 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1493
36586728 1494static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1495 struct dwarf2_cu *);
72bf9492 1496
d521ce57
TT
1497static const gdb_byte *read_attribute (const struct die_reader_specs *,
1498 struct attribute *, struct attr_abbrev *,
1499 const gdb_byte *);
a8329558 1500
a1855c1d 1501static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1502
a1855c1d 1503static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1504
a1855c1d 1505static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1506
a1855c1d 1507static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1508
a1855c1d 1509static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1510
d521ce57 1511static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1512 unsigned int *);
c906108c 1513
d521ce57 1514static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1515
1516static LONGEST read_checked_initial_length_and_offset
d521ce57 1517 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1518 unsigned int *, unsigned int *);
613e1657 1519
d521ce57
TT
1520static LONGEST read_offset (bfd *, const gdb_byte *,
1521 const struct comp_unit_head *,
c764a876
DE
1522 unsigned int *);
1523
d521ce57 1524static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1525
ed2dc618
SM
1526static sect_offset read_abbrev_offset
1527 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1528 struct dwarf2_section_info *, sect_offset);
f4dc4d17 1529
d521ce57 1530static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1531
d521ce57 1532static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1533
ed2dc618
SM
1534static const char *read_indirect_string
1535 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1536 const struct comp_unit_head *, unsigned int *);
4bdf3d34 1537
ed2dc618
SM
1538static const char *read_indirect_line_string
1539 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1540 const struct comp_unit_head *, unsigned int *);
36586728 1541
ed2dc618
SM
1542static const char *read_indirect_string_at_offset
1543 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1544 LONGEST str_offset);
927aa2e7 1545
ed2dc618
SM
1546static const char *read_indirect_string_from_dwz
1547 (struct objfile *objfile, struct dwz_file *, LONGEST);
c906108c 1548
d521ce57 1549static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1550
d521ce57
TT
1551static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1552 const gdb_byte *,
3019eac3
DE
1553 unsigned int *);
1554
d521ce57 1555static const char *read_str_index (const struct die_reader_specs *reader,
342587c4 1556 ULONGEST str_index);
3019eac3 1557
e142c38c 1558static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1559
e142c38c
DJ
1560static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1561 struct dwarf2_cu *);
c906108c 1562
348e048f 1563static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1564 unsigned int);
348e048f 1565
7d45c7c3
KB
1566static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1567 struct dwarf2_cu *cu);
1568
05cf31d1
JB
1569static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1570 struct dwarf2_cu *cu);
1571
e142c38c 1572static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1573
e142c38c 1574static struct die_info *die_specification (struct die_info *die,
f2f0e013 1575 struct dwarf2_cu **);
63d06c5c 1576
9c541725 1577static line_header_up dwarf_decode_line_header (sect_offset sect_off,
fff8551c 1578 struct dwarf2_cu *cu);
debd256d 1579
f3f5162e 1580static void dwarf_decode_lines (struct line_header *, const char *,
c3b7b696 1581 struct dwarf2_cu *, struct partial_symtab *,
527f3840 1582 CORE_ADDR, int decode_mapping);
c906108c 1583
804d2729
TT
1584static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1585 const char *);
c906108c 1586
43f3e411
DE
1587static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1588 const char *, const char *,
1589 CORE_ADDR);
f4dc4d17 1590
a14ed312 1591static struct symbol *new_symbol (struct die_info *, struct type *,
5e2db402 1592 struct dwarf2_cu *, struct symbol * = NULL);
34eaf542 1593
ff39bb5e 1594static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1595 struct dwarf2_cu *);
c906108c 1596
ff39bb5e 1597static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1598 struct type *type,
1599 const char *name,
1600 struct obstack *obstack,
12df843f 1601 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1602 const gdb_byte **bytes,
98bfdba5 1603 struct dwarf2_locexpr_baton **baton);
2df3850c 1604
e7c27a73 1605static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1606
b4ba55a1
JB
1607static int need_gnat_info (struct dwarf2_cu *);
1608
3e43a32a
MS
1609static struct type *die_descriptive_type (struct die_info *,
1610 struct dwarf2_cu *);
b4ba55a1
JB
1611
1612static void set_descriptive_type (struct type *, struct die_info *,
1613 struct dwarf2_cu *);
1614
e7c27a73
DJ
1615static struct type *die_containing_type (struct die_info *,
1616 struct dwarf2_cu *);
c906108c 1617
ff39bb5e 1618static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1619 struct dwarf2_cu *);
c906108c 1620
f792889a 1621static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1622
673bfd45
DE
1623static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1624
0d5cff50 1625static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1626
6e70227d 1627static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1628 const char *suffix, int physname,
1629 struct dwarf2_cu *cu);
63d06c5c 1630
e7c27a73 1631static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1632
348e048f
DE
1633static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1634
e7c27a73 1635static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1636
e7c27a73 1637static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1638
96408a79
SA
1639static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1640
71a3c369
TT
1641static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1642
ff013f42
JK
1643static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1644 struct dwarf2_cu *, struct partial_symtab *);
1645
3a2b436a 1646/* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
e385593e 1647 values. Keep the items ordered with increasing constraints compliance. */
3a2b436a
JK
1648enum pc_bounds_kind
1649{
e385593e 1650 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
3a2b436a
JK
1651 PC_BOUNDS_NOT_PRESENT,
1652
e385593e
JK
1653 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1654 were present but they do not form a valid range of PC addresses. */
1655 PC_BOUNDS_INVALID,
1656
3a2b436a
JK
1657 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1658 PC_BOUNDS_RANGES,
1659
1660 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1661 PC_BOUNDS_HIGH_LOW,
1662};
1663
1664static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1665 CORE_ADDR *, CORE_ADDR *,
1666 struct dwarf2_cu *,
1667 struct partial_symtab *);
c906108c 1668
fae299cd
DC
1669static void get_scope_pc_bounds (struct die_info *,
1670 CORE_ADDR *, CORE_ADDR *,
1671 struct dwarf2_cu *);
1672
801e3a5b
JB
1673static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1674 CORE_ADDR, struct dwarf2_cu *);
1675
a14ed312 1676static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1677 struct dwarf2_cu *);
c906108c 1678
a14ed312 1679static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1680 struct type *, struct dwarf2_cu *);
c906108c 1681
a14ed312 1682static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1683 struct die_info *, struct type *,
e7c27a73 1684 struct dwarf2_cu *);
c906108c 1685
a14ed312 1686static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1687 struct type *,
1688 struct dwarf2_cu *);
c906108c 1689
134d01f1 1690static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1691
e7c27a73 1692static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1693
e7c27a73 1694static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1695
5d7cb8df
JK
1696static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1697
804d2729 1698static struct using_direct **using_directives (struct dwarf2_cu *cu);
22cee43f 1699
27aa8d6a
SW
1700static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1701
74921315
KS
1702static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1703
f55ee35c
JK
1704static struct type *read_module_type (struct die_info *die,
1705 struct dwarf2_cu *cu);
1706
38d518c9 1707static const char *namespace_name (struct die_info *die,
e142c38c 1708 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1709
134d01f1 1710static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1711
e7c27a73 1712static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1713
6e70227d 1714static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1715 struct dwarf2_cu *);
1716
bf6af496 1717static struct die_info *read_die_and_siblings_1
d521ce57 1718 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1719 struct die_info *);
639d11d3 1720
dee91e82 1721static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1722 const gdb_byte *info_ptr,
1723 const gdb_byte **new_info_ptr,
639d11d3
DC
1724 struct die_info *parent);
1725
d521ce57
TT
1726static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1727 struct die_info **, const gdb_byte *,
1728 int *, int);
3019eac3 1729
d521ce57
TT
1730static const gdb_byte *read_full_die (const struct die_reader_specs *,
1731 struct die_info **, const gdb_byte *,
1732 int *);
93311388 1733
e7c27a73 1734static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1735
15d034d0
TT
1736static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1737 struct obstack *);
71c25dea 1738
15d034d0 1739static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1740
15d034d0 1741static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1742 struct die_info *die,
1743 struct dwarf2_cu *cu);
1744
ca69b9e6
DE
1745static const char *dwarf2_physname (const char *name, struct die_info *die,
1746 struct dwarf2_cu *cu);
1747
e142c38c 1748static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1749 struct dwarf2_cu **);
9219021c 1750
f39c6ffd 1751static const char *dwarf_tag_name (unsigned int);
c906108c 1752
f39c6ffd 1753static const char *dwarf_attr_name (unsigned int);
c906108c 1754
f39c6ffd 1755static const char *dwarf_form_name (unsigned int);
c906108c 1756
a121b7c1 1757static const char *dwarf_bool_name (unsigned int);
c906108c 1758
f39c6ffd 1759static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1760
f9aca02d 1761static struct die_info *sibling_die (struct die_info *);
c906108c 1762
d97bc12b
DE
1763static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1764
1765static void dump_die_for_error (struct die_info *);
1766
1767static void dump_die_1 (struct ui_file *, int level, int max_level,
1768 struct die_info *);
c906108c 1769
d97bc12b 1770/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1771
51545339 1772static void store_in_ref_table (struct die_info *,
10b3939b 1773 struct dwarf2_cu *);
c906108c 1774
ff39bb5e 1775static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1776
ff39bb5e 1777static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1778
348e048f 1779static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1780 const struct attribute *,
348e048f
DE
1781 struct dwarf2_cu **);
1782
10b3939b 1783static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1784 const struct attribute *,
f2f0e013 1785 struct dwarf2_cu **);
c906108c 1786
348e048f 1787static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1788 const struct attribute *,
348e048f
DE
1789 struct dwarf2_cu **);
1790
ac9ec31b
DE
1791static struct type *get_signatured_type (struct die_info *, ULONGEST,
1792 struct dwarf2_cu *);
1793
1794static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1795 const struct attribute *,
ac9ec31b
DE
1796 struct dwarf2_cu *);
1797
e5fe5e75 1798static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1799
52dc124a 1800static void read_signatured_type (struct signatured_type *);
348e048f 1801
63e43d3a
PMR
1802static int attr_to_dynamic_prop (const struct attribute *attr,
1803 struct die_info *die, struct dwarf2_cu *cu,
1804 struct dynamic_prop *prop);
1805
c906108c
SS
1806/* memory allocation interface */
1807
7b5a2f43 1808static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1809
b60c80d6 1810static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1811
43f3e411 1812static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2e276125 1813
6e5a29e1 1814static int attr_form_is_block (const struct attribute *);
8e19ed76 1815
6e5a29e1 1816static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1817
6e5a29e1 1818static int attr_form_is_constant (const struct attribute *);
3690dd37 1819
6e5a29e1 1820static int attr_form_is_ref (const struct attribute *);
7771576e 1821
8cf6f0b1
TT
1822static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1823 struct dwarf2_loclist_baton *baton,
ff39bb5e 1824 const struct attribute *attr);
8cf6f0b1 1825
ff39bb5e 1826static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1827 struct symbol *sym,
f1e6e072
TT
1828 struct dwarf2_cu *cu,
1829 int is_block);
4c2df51b 1830
d521ce57
TT
1831static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1832 const gdb_byte *info_ptr,
1833 struct abbrev_info *abbrev);
4bb7a0a7 1834
72bf9492
DJ
1835static hashval_t partial_die_hash (const void *item);
1836
1837static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1838
ae038cb0 1839static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
ed2dc618
SM
1840 (sect_offset sect_off, unsigned int offset_in_dwz,
1841 struct dwarf2_per_objfile *dwarf2_per_objfile);
ae038cb0 1842
9816fde3 1843static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1844 struct die_info *comp_unit_die,
1845 enum language pretend_language);
93311388 1846
ed2dc618 1847static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
ae038cb0 1848
dee91e82 1849static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1850
f792889a
DJ
1851static struct type *set_die_type (struct die_info *, struct type *,
1852 struct dwarf2_cu *);
1c379e20 1853
ed2dc618 1854static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
ae038cb0 1855
ed2dc618 1856static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1fd400ff 1857
58f0c718 1858static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
95554aad 1859 enum language);
10b3939b 1860
95554aad
TT
1861static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1862 enum language);
10b3939b 1863
f4dc4d17
DE
1864static void process_full_type_unit (struct dwarf2_per_cu_data *,
1865 enum language);
1866
10b3939b
DJ
1867static void dwarf2_add_dependence (struct dwarf2_cu *,
1868 struct dwarf2_per_cu_data *);
1869
ae038cb0
DJ
1870static void dwarf2_mark (struct dwarf2_cu *);
1871
1872static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1873
b64f50a1 1874static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1875 struct dwarf2_per_cu_data *);
673bfd45 1876
f792889a 1877static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1878
95554aad
TT
1879static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1880 enum language pretend_language);
1881
ed2dc618 1882static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
9291a0cd 1883
b303c6f6
AB
1884/* Class, the destructor of which frees all allocated queue entries. This
1885 will only have work to do if an error was thrown while processing the
1886 dwarf. If no error was thrown then the queue entries should have all
1887 been processed, and freed, as we went along. */
1888
1889class dwarf2_queue_guard
1890{
1891public:
1892 dwarf2_queue_guard () = default;
1893
1894 /* Free any entries remaining on the queue. There should only be
1895 entries left if we hit an error while processing the dwarf. */
1896 ~dwarf2_queue_guard ()
1897 {
1898 struct dwarf2_queue_item *item, *last;
1899
1900 item = dwarf2_queue;
1901 while (item)
1902 {
1903 /* Anything still marked queued is likely to be in an
1904 inconsistent state, so discard it. */
1905 if (item->per_cu->queued)
1906 {
1907 if (item->per_cu->cu != NULL)
1908 free_one_cached_comp_unit (item->per_cu);
1909 item->per_cu->queued = 0;
1910 }
1911
1912 last = item;
1913 item = item->next;
1914 xfree (last);
1915 }
1916
1917 dwarf2_queue = dwarf2_queue_tail = NULL;
1918 }
1919};
1920
d721ba37
PA
1921/* The return type of find_file_and_directory. Note, the enclosed
1922 string pointers are only valid while this object is valid. */
1923
1924struct file_and_directory
1925{
1926 /* The filename. This is never NULL. */
1927 const char *name;
1928
1929 /* The compilation directory. NULL if not known. If we needed to
1930 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1931 points directly to the DW_AT_comp_dir string attribute owned by
1932 the obstack that owns the DIE. */
1933 const char *comp_dir;
1934
1935 /* If we needed to build a new string for comp_dir, this is what
1936 owns the storage. */
1937 std::string comp_dir_storage;
1938};
1939
1940static file_and_directory find_file_and_directory (struct die_info *die,
1941 struct dwarf2_cu *cu);
9291a0cd
TT
1942
1943static char *file_full_name (int file, struct line_header *lh,
1944 const char *comp_dir);
1945
43988095
JK
1946/* Expected enum dwarf_unit_type for read_comp_unit_head. */
1947enum class rcuh_kind { COMPILE, TYPE };
1948
d521ce57 1949static const gdb_byte *read_and_check_comp_unit_head
ed2dc618
SM
1950 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1951 struct comp_unit_head *header,
36586728 1952 struct dwarf2_section_info *section,
d521ce57 1953 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
43988095 1954 rcuh_kind section_kind);
36586728 1955
fd820528 1956static void init_cutu_and_read_dies
f4dc4d17 1957 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
58f0c718 1958 int use_existing_cu, int keep, bool skip_partial,
3019eac3
DE
1959 die_reader_func_ftype *die_reader_func, void *data);
1960
dee91e82
DE
1961static void init_cutu_and_read_dies_simple
1962 (struct dwarf2_per_cu_data *this_cu,
1963 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1964
673bfd45 1965static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1966
3019eac3
DE
1967static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1968
57d63ce2 1969static struct dwo_unit *lookup_dwo_unit_in_dwp
ed2dc618
SM
1970 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1971 struct dwp_file *dwp_file, const char *comp_dir,
57d63ce2 1972 ULONGEST signature, int is_debug_types);
a2ce51a0 1973
ed2dc618
SM
1974static struct dwp_file *get_dwp_file
1975 (struct dwarf2_per_objfile *dwarf2_per_objfile);
a2ce51a0 1976
3019eac3 1977static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1978 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1979
1980static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1981 (struct signatured_type *, const char *, const char *);
3019eac3 1982
89e63ee4
DE
1983static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1984
263db9a1 1985static void free_dwo_file (struct dwo_file *);
3019eac3 1986
263db9a1
TT
1987/* A unique_ptr helper to free a dwo_file. */
1988
1989struct dwo_file_deleter
ed2dc618 1990{
263db9a1
TT
1991 void operator() (struct dwo_file *df) const
1992 {
1993 free_dwo_file (df);
1994 }
ed2dc618
SM
1995};
1996
263db9a1
TT
1997/* A unique pointer to a dwo_file. */
1998
1999typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
2000
ed2dc618 2001static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
95554aad 2002
1b80a9fa 2003static void check_producer (struct dwarf2_cu *cu);
527f3840
JK
2004
2005static void free_line_header_voidp (void *arg);
4390d890
DE
2006\f
2007/* Various complaints about symbol reading that don't abort the process. */
2008
2009static void
2010dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2011{
b98664d3 2012 complaint (_("statement list doesn't fit in .debug_line section"));
4390d890
DE
2013}
2014
2015static void
2016dwarf2_debug_line_missing_file_complaint (void)
2017{
b98664d3 2018 complaint (_(".debug_line section has line data without a file"));
4390d890
DE
2019}
2020
2021static void
2022dwarf2_debug_line_missing_end_sequence_complaint (void)
2023{
b98664d3 2024 complaint (_(".debug_line section has line "
4390d890
DE
2025 "program sequence without an end"));
2026}
2027
2028static void
2029dwarf2_complex_location_expr_complaint (void)
2030{
b98664d3 2031 complaint (_("location expression too complex"));
4390d890
DE
2032}
2033
2034static void
2035dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2036 int arg3)
2037{
b98664d3 2038 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
4390d890
DE
2039 arg1, arg2, arg3);
2040}
2041
2042static void
2043dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2044{
b98664d3 2045 complaint (_("debug info runs off end of %s section"
4390d890 2046 " [in module %s]"),
a32a8923
DE
2047 get_section_name (section),
2048 get_section_file_name (section));
4390d890 2049}
1b80a9fa 2050
4390d890
DE
2051static void
2052dwarf2_macro_malformed_definition_complaint (const char *arg1)
2053{
b98664d3 2054 complaint (_("macro debug info contains a "
4390d890
DE
2055 "malformed macro definition:\n`%s'"),
2056 arg1);
2057}
2058
2059static void
2060dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2061{
b98664d3 2062 complaint (_("invalid attribute class or form for '%s' in '%s'"),
4390d890
DE
2063 arg1, arg2);
2064}
527f3840
JK
2065
2066/* Hash function for line_header_hash. */
2067
2068static hashval_t
2069line_header_hash (const struct line_header *ofs)
2070{
9c541725 2071 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
527f3840
JK
2072}
2073
2074/* Hash function for htab_create_alloc_ex for line_header_hash. */
2075
2076static hashval_t
2077line_header_hash_voidp (const void *item)
2078{
9a3c8263 2079 const struct line_header *ofs = (const struct line_header *) item;
527f3840
JK
2080
2081 return line_header_hash (ofs);
2082}
2083
2084/* Equality function for line_header_hash. */
2085
2086static int
2087line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2088{
9a3c8263
SM
2089 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2090 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
527f3840 2091
9c541725 2092 return (ofs_lhs->sect_off == ofs_rhs->sect_off
527f3840
JK
2093 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2094}
2095
4390d890 2096\f
9291a0cd 2097
31aa7e4e
JB
2098/* Read the given attribute value as an address, taking the attribute's
2099 form into account. */
2100
2101static CORE_ADDR
2102attr_value_as_address (struct attribute *attr)
2103{
2104 CORE_ADDR addr;
2105
2106 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2107 {
2108 /* Aside from a few clearly defined exceptions, attributes that
2109 contain an address must always be in DW_FORM_addr form.
2110 Unfortunately, some compilers happen to be violating this
2111 requirement by encoding addresses using other forms, such
2112 as DW_FORM_data4 for example. For those broken compilers,
2113 we try to do our best, without any guarantee of success,
2114 to interpret the address correctly. It would also be nice
2115 to generate a complaint, but that would require us to maintain
2116 a list of legitimate cases where a non-address form is allowed,
2117 as well as update callers to pass in at least the CU's DWARF
2118 version. This is more overhead than what we're willing to
2119 expand for a pretty rare case. */
2120 addr = DW_UNSND (attr);
2121 }
2122 else
2123 addr = DW_ADDR (attr);
2124
2125 return addr;
2126}
2127
330cdd98
PA
2128/* See declaration. */
2129
2130dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2131 const dwarf2_debug_sections *names)
2132 : objfile (objfile_)
2133{
2134 if (names == NULL)
2135 names = &dwarf2_elf_names;
2136
2137 bfd *obfd = objfile->obfd;
2138
2139 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2140 locate_sections (obfd, sec, *names);
2141}
2142
fc8e7e75
SM
2143static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2144
330cdd98
PA
2145dwarf2_per_objfile::~dwarf2_per_objfile ()
2146{
2147 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2148 free_cached_comp_units ();
2149
2150 if (quick_file_names_table)
2151 htab_delete (quick_file_names_table);
2152
2153 if (line_header_hash)
2154 htab_delete (line_header_hash);
2155
b76e467d
SM
2156 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2157 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
fc8e7e75 2158
b2bdb8cf
SM
2159 for (signatured_type *sig_type : all_type_units)
2160 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
fc8e7e75
SM
2161
2162 VEC_free (dwarf2_section_info_def, types);
2163
2164 if (dwo_files != NULL)
2165 free_dwo_files (dwo_files, objfile);
fc8e7e75 2166
330cdd98
PA
2167 /* Everything else should be on the objfile obstack. */
2168}
2169
2170/* See declaration. */
2171
2172void
2173dwarf2_per_objfile::free_cached_comp_units ()
2174{
2175 dwarf2_per_cu_data *per_cu = read_in_chain;
2176 dwarf2_per_cu_data **last_chain = &read_in_chain;
2177 while (per_cu != NULL)
2178 {
2179 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2180
fcd3b13d 2181 delete per_cu->cu;
330cdd98
PA
2182 *last_chain = next_cu;
2183 per_cu = next_cu;
2184 }
2185}
2186
11ed8cad
TT
2187/* A helper class that calls free_cached_comp_units on
2188 destruction. */
2189
2190class free_cached_comp_units
2191{
2192public:
2193
2194 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2195 : m_per_objfile (per_objfile)
2196 {
2197 }
2198
2199 ~free_cached_comp_units ()
2200 {
2201 m_per_objfile->free_cached_comp_units ();
2202 }
2203
2204 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2205
2206private:
2207
2208 dwarf2_per_objfile *m_per_objfile;
2209};
2210
c906108c 2211/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
2212 information and return true if we have enough to do something.
2213 NAMES points to the dwarf2 section names, or is NULL if the standard
2214 ELF names are used. */
c906108c
SS
2215
2216int
251d32d9
TG
2217dwarf2_has_info (struct objfile *objfile,
2218 const struct dwarf2_debug_sections *names)
c906108c 2219{
97cbe998
SDJ
2220 if (objfile->flags & OBJF_READNEVER)
2221 return 0;
2222
ed2dc618
SM
2223 struct dwarf2_per_objfile *dwarf2_per_objfile
2224 = get_dwarf2_per_objfile (objfile);
2225
2226 if (dwarf2_per_objfile == NULL)
be391dca
TT
2227 {
2228 /* Initialize per-objfile state. */
fd90ace4
YQ
2229 dwarf2_per_objfile
2230 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2231 names);
ed2dc618 2232 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
be391dca 2233 }
73869dc2 2234 return (!dwarf2_per_objfile->info.is_virtual
049412e3 2235 && dwarf2_per_objfile->info.s.section != NULL
73869dc2 2236 && !dwarf2_per_objfile->abbrev.is_virtual
049412e3 2237 && dwarf2_per_objfile->abbrev.s.section != NULL);
73869dc2
DE
2238}
2239
2240/* Return the containing section of virtual section SECTION. */
2241
2242static struct dwarf2_section_info *
2243get_containing_section (const struct dwarf2_section_info *section)
2244{
2245 gdb_assert (section->is_virtual);
2246 return section->s.containing_section;
c906108c
SS
2247}
2248
a32a8923
DE
2249/* Return the bfd owner of SECTION. */
2250
2251static struct bfd *
2252get_section_bfd_owner (const struct dwarf2_section_info *section)
2253{
73869dc2
DE
2254 if (section->is_virtual)
2255 {
2256 section = get_containing_section (section);
2257 gdb_assert (!section->is_virtual);
2258 }
049412e3 2259 return section->s.section->owner;
a32a8923
DE
2260}
2261
2262/* Return the bfd section of SECTION.
2263 Returns NULL if the section is not present. */
2264
2265static asection *
2266get_section_bfd_section (const struct dwarf2_section_info *section)
2267{
73869dc2
DE
2268 if (section->is_virtual)
2269 {
2270 section = get_containing_section (section);
2271 gdb_assert (!section->is_virtual);
2272 }
049412e3 2273 return section->s.section;
a32a8923
DE
2274}
2275
2276/* Return the name of SECTION. */
2277
2278static const char *
2279get_section_name (const struct dwarf2_section_info *section)
2280{
2281 asection *sectp = get_section_bfd_section (section);
2282
2283 gdb_assert (sectp != NULL);
2284 return bfd_section_name (get_section_bfd_owner (section), sectp);
2285}
2286
2287/* Return the name of the file SECTION is in. */
2288
2289static const char *
2290get_section_file_name (const struct dwarf2_section_info *section)
2291{
2292 bfd *abfd = get_section_bfd_owner (section);
2293
2294 return bfd_get_filename (abfd);
2295}
2296
2297/* Return the id of SECTION.
2298 Returns 0 if SECTION doesn't exist. */
2299
2300static int
2301get_section_id (const struct dwarf2_section_info *section)
2302{
2303 asection *sectp = get_section_bfd_section (section);
2304
2305 if (sectp == NULL)
2306 return 0;
2307 return sectp->id;
2308}
2309
2310/* Return the flags of SECTION.
73869dc2 2311 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2312
2313static int
2314get_section_flags (const struct dwarf2_section_info *section)
2315{
2316 asection *sectp = get_section_bfd_section (section);
2317
2318 gdb_assert (sectp != NULL);
2319 return bfd_get_section_flags (sectp->owner, sectp);
2320}
2321
251d32d9
TG
2322/* When loading sections, we look either for uncompressed section or for
2323 compressed section names. */
233a11ab
CS
2324
2325static int
251d32d9
TG
2326section_is_p (const char *section_name,
2327 const struct dwarf2_section_names *names)
233a11ab 2328{
251d32d9
TG
2329 if (names->normal != NULL
2330 && strcmp (section_name, names->normal) == 0)
2331 return 1;
2332 if (names->compressed != NULL
2333 && strcmp (section_name, names->compressed) == 0)
2334 return 1;
2335 return 0;
233a11ab
CS
2336}
2337
330cdd98 2338/* See declaration. */
c906108c 2339
330cdd98
PA
2340void
2341dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2342 const dwarf2_debug_sections &names)
c906108c 2343{
dc7650b8 2344 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9 2345
dc7650b8
JK
2346 if ((aflag & SEC_HAS_CONTENTS) == 0)
2347 {
2348 }
330cdd98 2349 else if (section_is_p (sectp->name, &names.info))
c906108c 2350 {
330cdd98
PA
2351 this->info.s.section = sectp;
2352 this->info.size = bfd_get_section_size (sectp);
c906108c 2353 }
330cdd98 2354 else if (section_is_p (sectp->name, &names.abbrev))
c906108c 2355 {
330cdd98
PA
2356 this->abbrev.s.section = sectp;
2357 this->abbrev.size = bfd_get_section_size (sectp);
c906108c 2358 }
330cdd98 2359 else if (section_is_p (sectp->name, &names.line))
c906108c 2360 {
330cdd98
PA
2361 this->line.s.section = sectp;
2362 this->line.size = bfd_get_section_size (sectp);
c906108c 2363 }
330cdd98 2364 else if (section_is_p (sectp->name, &names.loc))
c906108c 2365 {
330cdd98
PA
2366 this->loc.s.section = sectp;
2367 this->loc.size = bfd_get_section_size (sectp);
c906108c 2368 }
330cdd98 2369 else if (section_is_p (sectp->name, &names.loclists))
43988095 2370 {
330cdd98
PA
2371 this->loclists.s.section = sectp;
2372 this->loclists.size = bfd_get_section_size (sectp);
43988095 2373 }
330cdd98 2374 else if (section_is_p (sectp->name, &names.macinfo))
c906108c 2375 {
330cdd98
PA
2376 this->macinfo.s.section = sectp;
2377 this->macinfo.size = bfd_get_section_size (sectp);
c906108c 2378 }
330cdd98 2379 else if (section_is_p (sectp->name, &names.macro))
cf2c3c16 2380 {
330cdd98
PA
2381 this->macro.s.section = sectp;
2382 this->macro.size = bfd_get_section_size (sectp);
cf2c3c16 2383 }
330cdd98 2384 else if (section_is_p (sectp->name, &names.str))
c906108c 2385 {
330cdd98
PA
2386 this->str.s.section = sectp;
2387 this->str.size = bfd_get_section_size (sectp);
c906108c 2388 }
330cdd98 2389 else if (section_is_p (sectp->name, &names.line_str))
43988095 2390 {
330cdd98
PA
2391 this->line_str.s.section = sectp;
2392 this->line_str.size = bfd_get_section_size (sectp);
43988095 2393 }
330cdd98 2394 else if (section_is_p (sectp->name, &names.addr))
3019eac3 2395 {
330cdd98
PA
2396 this->addr.s.section = sectp;
2397 this->addr.size = bfd_get_section_size (sectp);
3019eac3 2398 }
330cdd98 2399 else if (section_is_p (sectp->name, &names.frame))
b6af0555 2400 {
330cdd98
PA
2401 this->frame.s.section = sectp;
2402 this->frame.size = bfd_get_section_size (sectp);
b6af0555 2403 }
330cdd98 2404 else if (section_is_p (sectp->name, &names.eh_frame))
b6af0555 2405 {
330cdd98
PA
2406 this->eh_frame.s.section = sectp;
2407 this->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2408 }
330cdd98 2409 else if (section_is_p (sectp->name, &names.ranges))
af34e669 2410 {
330cdd98
PA
2411 this->ranges.s.section = sectp;
2412 this->ranges.size = bfd_get_section_size (sectp);
af34e669 2413 }
330cdd98 2414 else if (section_is_p (sectp->name, &names.rnglists))
43988095 2415 {
330cdd98
PA
2416 this->rnglists.s.section = sectp;
2417 this->rnglists.size = bfd_get_section_size (sectp);
43988095 2418 }
330cdd98 2419 else if (section_is_p (sectp->name, &names.types))
348e048f 2420 {
8b70b953
TT
2421 struct dwarf2_section_info type_section;
2422
2423 memset (&type_section, 0, sizeof (type_section));
049412e3 2424 type_section.s.section = sectp;
8b70b953
TT
2425 type_section.size = bfd_get_section_size (sectp);
2426
330cdd98 2427 VEC_safe_push (dwarf2_section_info_def, this->types,
8b70b953 2428 &type_section);
348e048f 2429 }
330cdd98 2430 else if (section_is_p (sectp->name, &names.gdb_index))
9291a0cd 2431 {
330cdd98
PA
2432 this->gdb_index.s.section = sectp;
2433 this->gdb_index.size = bfd_get_section_size (sectp);
9291a0cd 2434 }
927aa2e7
JK
2435 else if (section_is_p (sectp->name, &names.debug_names))
2436 {
2437 this->debug_names.s.section = sectp;
2438 this->debug_names.size = bfd_get_section_size (sectp);
2439 }
2440 else if (section_is_p (sectp->name, &names.debug_aranges))
2441 {
2442 this->debug_aranges.s.section = sectp;
2443 this->debug_aranges.size = bfd_get_section_size (sectp);
2444 }
dce234bc 2445
b4e1fd61 2446 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
72dca2f5 2447 && bfd_section_vma (abfd, sectp) == 0)
330cdd98 2448 this->has_section_at_zero = true;
c906108c
SS
2449}
2450
fceca515
DE
2451/* A helper function that decides whether a section is empty,
2452 or not present. */
9e0ac564
TT
2453
2454static int
19ac8c2e 2455dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2456{
73869dc2
DE
2457 if (section->is_virtual)
2458 return section->size == 0;
049412e3 2459 return section->s.section == NULL || section->size == 0;
9e0ac564
TT
2460}
2461
cd4fb1b2 2462/* See dwarf2read.h. */
c906108c 2463
cd4fb1b2
SM
2464void
2465dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
c906108c 2466{
a32a8923 2467 asection *sectp;
3019eac3 2468 bfd *abfd;
dce234bc 2469 gdb_byte *buf, *retbuf;
c906108c 2470
be391dca
TT
2471 if (info->readin)
2472 return;
dce234bc 2473 info->buffer = NULL;
be391dca 2474 info->readin = 1;
188dd5d6 2475
9e0ac564 2476 if (dwarf2_section_empty_p (info))
dce234bc 2477 return;
c906108c 2478
a32a8923 2479 sectp = get_section_bfd_section (info);
3019eac3 2480
73869dc2
DE
2481 /* If this is a virtual section we need to read in the real one first. */
2482 if (info->is_virtual)
2483 {
2484 struct dwarf2_section_info *containing_section =
2485 get_containing_section (info);
2486
2487 gdb_assert (sectp != NULL);
2488 if ((sectp->flags & SEC_RELOC) != 0)
2489 {
2490 error (_("Dwarf Error: DWP format V2 with relocations is not"
2491 " supported in section %s [in module %s]"),
2492 get_section_name (info), get_section_file_name (info));
2493 }
2494 dwarf2_read_section (objfile, containing_section);
2495 /* Other code should have already caught virtual sections that don't
2496 fit. */
2497 gdb_assert (info->virtual_offset + info->size
2498 <= containing_section->size);
2499 /* If the real section is empty or there was a problem reading the
2500 section we shouldn't get here. */
2501 gdb_assert (containing_section->buffer != NULL);
2502 info->buffer = containing_section->buffer + info->virtual_offset;
2503 return;
2504 }
2505
4bf44c1c
TT
2506 /* If the section has relocations, we must read it ourselves.
2507 Otherwise we attach it to the BFD. */
2508 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2509 {
d521ce57 2510 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2511 return;
dce234bc 2512 }
dce234bc 2513
224c3ddb 2514 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
4bf44c1c 2515 info->buffer = buf;
dce234bc
PP
2516
2517 /* When debugging .o files, we may need to apply relocations; see
2518 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2519 We never compress sections in .o files, so we only need to
2520 try this when the section is not compressed. */
ac8035ab 2521 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2522 if (retbuf != NULL)
2523 {
2524 info->buffer = retbuf;
2525 return;
2526 }
2527
a32a8923
DE
2528 abfd = get_section_bfd_owner (info);
2529 gdb_assert (abfd != NULL);
2530
dce234bc
PP
2531 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2532 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2533 {
2534 error (_("Dwarf Error: Can't read DWARF data"
2535 " in section %s [in module %s]"),
2536 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2537 }
dce234bc
PP
2538}
2539
9e0ac564
TT
2540/* A helper function that returns the size of a section in a safe way.
2541 If you are positive that the section has been read before using the
2542 size, then it is safe to refer to the dwarf2_section_info object's
2543 "size" field directly. In other cases, you must call this
2544 function, because for compressed sections the size field is not set
2545 correctly until the section has been read. */
2546
2547static bfd_size_type
2548dwarf2_section_size (struct objfile *objfile,
2549 struct dwarf2_section_info *info)
2550{
2551 if (!info->readin)
2552 dwarf2_read_section (objfile, info);
2553 return info->size;
2554}
2555
dce234bc 2556/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2557 SECTION_NAME. */
af34e669 2558
dce234bc 2559void
3017a003
TG
2560dwarf2_get_section_info (struct objfile *objfile,
2561 enum dwarf2_section_enum sect,
d521ce57 2562 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2563 bfd_size_type *sizep)
2564{
2565 struct dwarf2_per_objfile *data
9a3c8263
SM
2566 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2567 dwarf2_objfile_data_key);
dce234bc 2568 struct dwarf2_section_info *info;
a3b2a86b
TT
2569
2570 /* We may see an objfile without any DWARF, in which case we just
2571 return nothing. */
2572 if (data == NULL)
2573 {
2574 *sectp = NULL;
2575 *bufp = NULL;
2576 *sizep = 0;
2577 return;
2578 }
3017a003
TG
2579 switch (sect)
2580 {
2581 case DWARF2_DEBUG_FRAME:
2582 info = &data->frame;
2583 break;
2584 case DWARF2_EH_FRAME:
2585 info = &data->eh_frame;
2586 break;
2587 default:
2588 gdb_assert_not_reached ("unexpected section");
2589 }
dce234bc 2590
9e0ac564 2591 dwarf2_read_section (objfile, info);
dce234bc 2592
a32a8923 2593 *sectp = get_section_bfd_section (info);
dce234bc
PP
2594 *bufp = info->buffer;
2595 *sizep = info->size;
2596}
2597
36586728
TT
2598/* A helper function to find the sections for a .dwz file. */
2599
2600static void
2601locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2602{
9a3c8263 2603 struct dwz_file *dwz_file = (struct dwz_file *) arg;
36586728
TT
2604
2605 /* Note that we only support the standard ELF names, because .dwz
2606 is ELF-only (at the time of writing). */
2607 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2608 {
049412e3 2609 dwz_file->abbrev.s.section = sectp;
36586728
TT
2610 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2611 }
2612 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2613 {
049412e3 2614 dwz_file->info.s.section = sectp;
36586728
TT
2615 dwz_file->info.size = bfd_get_section_size (sectp);
2616 }
2617 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2618 {
049412e3 2619 dwz_file->str.s.section = sectp;
36586728
TT
2620 dwz_file->str.size = bfd_get_section_size (sectp);
2621 }
2622 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2623 {
049412e3 2624 dwz_file->line.s.section = sectp;
36586728
TT
2625 dwz_file->line.size = bfd_get_section_size (sectp);
2626 }
2627 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2628 {
049412e3 2629 dwz_file->macro.s.section = sectp;
36586728
TT
2630 dwz_file->macro.size = bfd_get_section_size (sectp);
2631 }
2ec9a5e0
TT
2632 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2633 {
049412e3 2634 dwz_file->gdb_index.s.section = sectp;
2ec9a5e0
TT
2635 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2636 }
927aa2e7
JK
2637 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2638 {
2639 dwz_file->debug_names.s.section = sectp;
2640 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2641 }
36586728
TT
2642}
2643
4db1a1dc
TT
2644/* Open the separate '.dwz' debug file, if needed. Return NULL if
2645 there is no .gnu_debugaltlink section in the file. Error if there
2646 is such a section but the file cannot be found. */
36586728
TT
2647
2648static struct dwz_file *
ed2dc618 2649dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
36586728 2650{
36586728 2651 const char *filename;
acd13123 2652 bfd_size_type buildid_len_arg;
dc294be5
TT
2653 size_t buildid_len;
2654 bfd_byte *buildid;
36586728
TT
2655
2656 if (dwarf2_per_objfile->dwz_file != NULL)
7ff8cb8c 2657 return dwarf2_per_objfile->dwz_file.get ();
36586728 2658
4db1a1dc 2659 bfd_set_error (bfd_error_no_error);
791afaa2
TT
2660 gdb::unique_xmalloc_ptr<char> data
2661 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2662 &buildid_len_arg, &buildid));
4db1a1dc
TT
2663 if (data == NULL)
2664 {
2665 if (bfd_get_error () == bfd_error_no_error)
2666 return NULL;
2667 error (_("could not read '.gnu_debugaltlink' section: %s"),
2668 bfd_errmsg (bfd_get_error ()));
2669 }
791afaa2
TT
2670
2671 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
36586728 2672
acd13123
TT
2673 buildid_len = (size_t) buildid_len_arg;
2674
791afaa2 2675 filename = data.get ();
d721ba37
PA
2676
2677 std::string abs_storage;
36586728
TT
2678 if (!IS_ABSOLUTE_PATH (filename))
2679 {
14278e1f
TT
2680 gdb::unique_xmalloc_ptr<char> abs
2681 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728 2682
14278e1f 2683 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
d721ba37 2684 filename = abs_storage.c_str ();
36586728
TT
2685 }
2686
dc294be5
TT
2687 /* First try the file name given in the section. If that doesn't
2688 work, try to use the build-id instead. */
192b62ce 2689 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
dc294be5 2690 if (dwz_bfd != NULL)
36586728 2691 {
192b62ce
TT
2692 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2693 dwz_bfd.release ();
36586728
TT
2694 }
2695
dc294be5
TT
2696 if (dwz_bfd == NULL)
2697 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2698
2699 if (dwz_bfd == NULL)
2700 error (_("could not find '.gnu_debugaltlink' file for %s"),
2701 objfile_name (dwarf2_per_objfile->objfile));
2702
7ff8cb8c
TT
2703 std::unique_ptr<struct dwz_file> result
2704 (new struct dwz_file (std::move (dwz_bfd)));
36586728 2705
7ff8cb8c
TT
2706 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2707 result.get ());
36586728 2708
7ff8cb8c
TT
2709 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2710 result->dwz_bfd.get ());
2711 dwarf2_per_objfile->dwz_file = std::move (result);
2712 return dwarf2_per_objfile->dwz_file.get ();
36586728 2713}
9291a0cd 2714\f
7b9f3c50
DE
2715/* DWARF quick_symbols_functions support. */
2716
2717/* TUs can share .debug_line entries, and there can be a lot more TUs than
2718 unique line tables, so we maintain a separate table of all .debug_line
2719 derived entries to support the sharing.
2720 All the quick functions need is the list of file names. We discard the
2721 line_header when we're done and don't need to record it here. */
2722struct quick_file_names
2723{
094b34ac
DE
2724 /* The data used to construct the hash key. */
2725 struct stmt_list_hash hash;
7b9f3c50
DE
2726
2727 /* The number of entries in file_names, real_names. */
2728 unsigned int num_file_names;
2729
2730 /* The file names from the line table, after being run through
2731 file_full_name. */
2732 const char **file_names;
2733
2734 /* The file names from the line table after being run through
2735 gdb_realpath. These are computed lazily. */
2736 const char **real_names;
2737};
2738
2739/* When using the index (and thus not using psymtabs), each CU has an
2740 object of this type. This is used to hold information needed by
2741 the various "quick" methods. */
2742struct dwarf2_per_cu_quick_data
2743{
2744 /* The file table. This can be NULL if there was no file table
2745 or it's currently not read in.
2746 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2747 struct quick_file_names *file_names;
2748
2749 /* The corresponding symbol table. This is NULL if symbols for this
2750 CU have not yet been read. */
43f3e411 2751 struct compunit_symtab *compunit_symtab;
7b9f3c50
DE
2752
2753 /* A temporary mark bit used when iterating over all CUs in
2754 expand_symtabs_matching. */
2755 unsigned int mark : 1;
2756
2757 /* True if we've tried to read the file table and found there isn't one.
2758 There will be no point in trying to read it again next time. */
2759 unsigned int no_file_data : 1;
2760};
2761
094b34ac
DE
2762/* Utility hash function for a stmt_list_hash. */
2763
2764static hashval_t
2765hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2766{
2767 hashval_t v = 0;
2768
2769 if (stmt_list_hash->dwo_unit != NULL)
2770 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
9c541725 2771 v += to_underlying (stmt_list_hash->line_sect_off);
094b34ac
DE
2772 return v;
2773}
2774
2775/* Utility equality function for a stmt_list_hash. */
2776
2777static int
2778eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2779 const struct stmt_list_hash *rhs)
2780{
2781 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2782 return 0;
2783 if (lhs->dwo_unit != NULL
2784 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2785 return 0;
2786
9c541725 2787 return lhs->line_sect_off == rhs->line_sect_off;
094b34ac
DE
2788}
2789
7b9f3c50
DE
2790/* Hash function for a quick_file_names. */
2791
2792static hashval_t
2793hash_file_name_entry (const void *e)
2794{
9a3c8263
SM
2795 const struct quick_file_names *file_data
2796 = (const struct quick_file_names *) e;
7b9f3c50 2797
094b34ac 2798 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2799}
2800
2801/* Equality function for a quick_file_names. */
2802
2803static int
2804eq_file_name_entry (const void *a, const void *b)
2805{
9a3c8263
SM
2806 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2807 const struct quick_file_names *eb = (const struct quick_file_names *) b;
7b9f3c50 2808
094b34ac 2809 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2810}
2811
2812/* Delete function for a quick_file_names. */
2813
2814static void
2815delete_file_name_entry (void *e)
2816{
9a3c8263 2817 struct quick_file_names *file_data = (struct quick_file_names *) e;
7b9f3c50
DE
2818 int i;
2819
2820 for (i = 0; i < file_data->num_file_names; ++i)
2821 {
2822 xfree ((void*) file_data->file_names[i]);
2823 if (file_data->real_names)
2824 xfree ((void*) file_data->real_names[i]);
2825 }
2826
2827 /* The space for the struct itself lives on objfile_obstack,
2828 so we don't free it here. */
2829}
2830
2831/* Create a quick_file_names hash table. */
2832
2833static htab_t
2834create_quick_file_names_table (unsigned int nr_initial_entries)
2835{
2836 return htab_create_alloc (nr_initial_entries,
2837 hash_file_name_entry, eq_file_name_entry,
2838 delete_file_name_entry, xcalloc, xfree);
2839}
9291a0cd 2840
918dd910
JK
2841/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2842 have to be created afterwards. You should call age_cached_comp_units after
2843 processing PER_CU->CU. dw2_setup must have been already called. */
2844
2845static void
58f0c718 2846load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
918dd910 2847{
3019eac3 2848 if (per_cu->is_debug_types)
e5fe5e75 2849 load_full_type_unit (per_cu);
918dd910 2850 else
58f0c718 2851 load_full_comp_unit (per_cu, skip_partial, language_minimal);
918dd910 2852
cc12ce38
DE
2853 if (per_cu->cu == NULL)
2854 return; /* Dummy CU. */
2dc860c0
DE
2855
2856 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2857}
2858
a0f42c21 2859/* Read in the symbols for PER_CU. */
2fdf6df6 2860
9291a0cd 2861static void
58f0c718 2862dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
9291a0cd 2863{
ed2dc618 2864 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
9291a0cd 2865
f4dc4d17
DE
2866 /* Skip type_unit_groups, reading the type units they contain
2867 is handled elsewhere. */
2868 if (IS_TYPE_UNIT_GROUP (per_cu))
2869 return;
2870
b303c6f6
AB
2871 /* The destructor of dwarf2_queue_guard frees any entries left on
2872 the queue. After this point we're guaranteed to leave this function
2873 with the dwarf queue empty. */
2874 dwarf2_queue_guard q_guard;
9291a0cd 2875
95554aad 2876 if (dwarf2_per_objfile->using_index
43f3e411 2877 ? per_cu->v.quick->compunit_symtab == NULL
95554aad
TT
2878 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2879 {
2880 queue_comp_unit (per_cu, language_minimal);
58f0c718 2881 load_cu (per_cu, skip_partial);
89e63ee4
DE
2882
2883 /* If we just loaded a CU from a DWO, and we're working with an index
2884 that may badly handle TUs, load all the TUs in that DWO as well.
2885 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2886 if (!per_cu->is_debug_types
cc12ce38 2887 && per_cu->cu != NULL
89e63ee4
DE
2888 && per_cu->cu->dwo_unit != NULL
2889 && dwarf2_per_objfile->index_table != NULL
2890 && dwarf2_per_objfile->index_table->version <= 7
2891 /* DWP files aren't supported yet. */
ed2dc618 2892 && get_dwp_file (dwarf2_per_objfile) == NULL)
89e63ee4 2893 queue_and_load_all_dwo_tus (per_cu);
95554aad 2894 }
9291a0cd 2895
ed2dc618 2896 process_queue (dwarf2_per_objfile);
9291a0cd
TT
2897
2898 /* Age the cache, releasing compilation units that have not
2899 been used recently. */
ed2dc618 2900 age_cached_comp_units (dwarf2_per_objfile);
9291a0cd
TT
2901}
2902
2903/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2904 the objfile from which this CU came. Returns the resulting symbol
2905 table. */
2fdf6df6 2906
43f3e411 2907static struct compunit_symtab *
58f0c718 2908dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
9291a0cd 2909{
ed2dc618
SM
2910 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2911
95554aad 2912 gdb_assert (dwarf2_per_objfile->using_index);
43f3e411 2913 if (!per_cu->v.quick->compunit_symtab)
9291a0cd 2914 {
11ed8cad 2915 free_cached_comp_units freer (dwarf2_per_objfile);
c83dd867 2916 scoped_restore decrementer = increment_reading_symtab ();
58f0c718 2917 dw2_do_instantiate_symtab (per_cu, skip_partial);
ed2dc618 2918 process_cu_includes (dwarf2_per_objfile);
9291a0cd 2919 }
f194fefb 2920
43f3e411 2921 return per_cu->v.quick->compunit_symtab;
9291a0cd
TT
2922}
2923
ff4c9fec 2924/* See declaration. */
f4dc4d17 2925
ff4c9fec
SM
2926dwarf2_per_cu_data *
2927dwarf2_per_objfile::get_cutu (int index)
2928{
b76e467d 2929 if (index >= this->all_comp_units.size ())
ff4c9fec 2930 {
b76e467d 2931 index -= this->all_comp_units.size ();
b2bdb8cf 2932 gdb_assert (index < this->all_type_units.size ());
ff4c9fec
SM
2933 return &this->all_type_units[index]->per_cu;
2934 }
f4dc4d17 2935
ff4c9fec
SM
2936 return this->all_comp_units[index];
2937}
f4dc4d17 2938
ff4c9fec 2939/* See declaration. */
2fdf6df6 2940
ff4c9fec
SM
2941dwarf2_per_cu_data *
2942dwarf2_per_objfile::get_cu (int index)
1fd400ff 2943{
b76e467d 2944 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
f4dc4d17 2945
ff4c9fec 2946 return this->all_comp_units[index];
f4dc4d17
DE
2947}
2948
ff4c9fec 2949/* See declaration. */
f4dc4d17 2950
ff4c9fec
SM
2951signatured_type *
2952dwarf2_per_objfile::get_tu (int index)
f4dc4d17 2953{
b2bdb8cf 2954 gdb_assert (index >= 0 && index < this->all_type_units.size ());
f4dc4d17 2955
ff4c9fec 2956 return this->all_type_units[index];
1fd400ff
TT
2957}
2958
4b514bc8
JK
2959/* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2960 objfile_obstack, and constructed with the specified field
2961 values. */
2962
2963static dwarf2_per_cu_data *
ed2dc618 2964create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
4b514bc8
JK
2965 struct dwarf2_section_info *section,
2966 int is_dwz,
2967 sect_offset sect_off, ULONGEST length)
2968{
ed2dc618 2969 struct objfile *objfile = dwarf2_per_objfile->objfile;
4b514bc8
JK
2970 dwarf2_per_cu_data *the_cu
2971 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2972 struct dwarf2_per_cu_data);
2973 the_cu->sect_off = sect_off;
2974 the_cu->length = length;
e3b94546 2975 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
4b514bc8
JK
2976 the_cu->section = section;
2977 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2978 struct dwarf2_per_cu_quick_data);
2979 the_cu->is_dwz = is_dwz;
2980 return the_cu;
2981}
2982
2ec9a5e0
TT
2983/* A helper for create_cus_from_index that handles a given list of
2984 CUs. */
2fdf6df6 2985
74a0d9f6 2986static void
12359b5e 2987create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2ec9a5e0
TT
2988 const gdb_byte *cu_list, offset_type n_elements,
2989 struct dwarf2_section_info *section,
b76e467d 2990 int is_dwz)
9291a0cd 2991{
12359b5e 2992 for (offset_type i = 0; i < n_elements; i += 2)
9291a0cd 2993 {
74a0d9f6 2994 gdb_static_assert (sizeof (ULONGEST) >= 8);
9c541725
PA
2995
2996 sect_offset sect_off
2997 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2998 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
2999 cu_list += 2 * 8;
3000
b76e467d 3001 dwarf2_per_cu_data *per_cu
ed2dc618
SM
3002 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3003 sect_off, length);
b76e467d 3004 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
9291a0cd 3005 }
9291a0cd
TT
3006}
3007
2ec9a5e0 3008/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 3009 the CU objects for this objfile. */
2ec9a5e0 3010
74a0d9f6 3011static void
12359b5e 3012create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2ec9a5e0
TT
3013 const gdb_byte *cu_list, offset_type cu_list_elements,
3014 const gdb_byte *dwz_list, offset_type dwz_elements)
3015{
b76e467d
SM
3016 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3017 dwarf2_per_objfile->all_comp_units.reserve
3018 ((cu_list_elements + dwz_elements) / 2);
2ec9a5e0 3019
12359b5e 3020 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
b76e467d 3021 &dwarf2_per_objfile->info, 0);
2ec9a5e0
TT
3022
3023 if (dwz_elements == 0)
74a0d9f6 3024 return;
2ec9a5e0 3025
12359b5e
SM
3026 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3027 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
b76e467d 3028 &dwz->info, 1);
2ec9a5e0
TT
3029}
3030
1fd400ff 3031/* Create the signatured type hash table from the index. */
673bfd45 3032
74a0d9f6 3033static void
12359b5e
SM
3034create_signatured_type_table_from_index
3035 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3036 struct dwarf2_section_info *section,
3037 const gdb_byte *bytes,
3038 offset_type elements)
1fd400ff 3039{
12359b5e 3040 struct objfile *objfile = dwarf2_per_objfile->objfile;
1fd400ff 3041
b2bdb8cf
SM
3042 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3043 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
1fd400ff 3044
12359b5e 3045 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff 3046
12359b5e 3047 for (offset_type i = 0; i < elements; i += 3)
1fd400ff 3048 {
52dc124a 3049 struct signatured_type *sig_type;
9c541725 3050 ULONGEST signature;
1fd400ff 3051 void **slot;
9c541725 3052 cu_offset type_offset_in_tu;
1fd400ff 3053
74a0d9f6 3054 gdb_static_assert (sizeof (ULONGEST) >= 8);
9c541725
PA
3055 sect_offset sect_off
3056 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3057 type_offset_in_tu
3058 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3059 BFD_ENDIAN_LITTLE);
1fd400ff
TT
3060 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3061 bytes += 3 * 8;
3062
52dc124a 3063 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 3064 struct signatured_type);
52dc124a 3065 sig_type->signature = signature;
9c541725 3066 sig_type->type_offset_in_tu = type_offset_in_tu;
3019eac3 3067 sig_type->per_cu.is_debug_types = 1;
8a0459fd 3068 sig_type->per_cu.section = section;
9c541725 3069 sig_type->per_cu.sect_off = sect_off;
e3b94546 3070 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
52dc124a 3071 sig_type->per_cu.v.quick
1fd400ff
TT
3072 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3073 struct dwarf2_per_cu_quick_data);
3074
52dc124a
DE
3075 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3076 *slot = sig_type;
1fd400ff 3077
b2bdb8cf 3078 dwarf2_per_objfile->all_type_units.push_back (sig_type);
1fd400ff
TT
3079 }
3080
673bfd45 3081 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
3082}
3083
927aa2e7
JK
3084/* Create the signatured type hash table from .debug_names. */
3085
3086static void
3087create_signatured_type_table_from_debug_names
ed2dc618 3088 (struct dwarf2_per_objfile *dwarf2_per_objfile,
927aa2e7
JK
3089 const mapped_debug_names &map,
3090 struct dwarf2_section_info *section,
3091 struct dwarf2_section_info *abbrev_section)
3092{
ed2dc618
SM
3093 struct objfile *objfile = dwarf2_per_objfile->objfile;
3094
927aa2e7
JK
3095 dwarf2_read_section (objfile, section);
3096 dwarf2_read_section (objfile, abbrev_section);
3097
b2bdb8cf
SM
3098 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3099 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
927aa2e7
JK
3100
3101 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3102
3103 for (uint32_t i = 0; i < map.tu_count; ++i)
3104 {
3105 struct signatured_type *sig_type;
927aa2e7 3106 void **slot;
927aa2e7
JK
3107
3108 sect_offset sect_off
3109 = (sect_offset) (extract_unsigned_integer
3110 (map.tu_table_reordered + i * map.offset_size,
3111 map.offset_size,
3112 map.dwarf5_byte_order));
3113
3114 comp_unit_head cu_header;
ed2dc618
SM
3115 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3116 abbrev_section,
927aa2e7
JK
3117 section->buffer + to_underlying (sect_off),
3118 rcuh_kind::TYPE);
3119
3120 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3121 struct signatured_type);
3122 sig_type->signature = cu_header.signature;
3123 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3124 sig_type->per_cu.is_debug_types = 1;
3125 sig_type->per_cu.section = section;
3126 sig_type->per_cu.sect_off = sect_off;
e3b94546 3127 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
927aa2e7
JK
3128 sig_type->per_cu.v.quick
3129 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3130 struct dwarf2_per_cu_quick_data);
3131
3132 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3133 *slot = sig_type;
3134
b2bdb8cf 3135 dwarf2_per_objfile->all_type_units.push_back (sig_type);
927aa2e7
JK
3136 }
3137
3138 dwarf2_per_objfile->signatured_types = sig_types_hash;
3139}
3140
9291a0cd
TT
3141/* Read the address map data from the mapped index, and use it to
3142 populate the objfile's psymtabs_addrmap. */
2fdf6df6 3143
9291a0cd 3144static void
ed2dc618
SM
3145create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3146 struct mapped_index *index)
9291a0cd 3147{
ed2dc618 3148 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 3149 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9291a0cd 3150 const gdb_byte *iter, *end;
9291a0cd 3151 struct addrmap *mutable_map;
9291a0cd
TT
3152 CORE_ADDR baseaddr;
3153
8268c778
PA
3154 auto_obstack temp_obstack;
3155
9291a0cd
TT
3156 mutable_map = addrmap_create_mutable (&temp_obstack);
3157
f00a2de2
PA
3158 iter = index->address_table.data ();
3159 end = iter + index->address_table.size ();
9291a0cd
TT
3160
3161 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3162
3163 while (iter < end)
3164 {
3165 ULONGEST hi, lo, cu_index;
3166 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3167 iter += 8;
3168 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3169 iter += 8;
3170 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3171 iter += 4;
f652bce2 3172
24a55014 3173 if (lo > hi)
f652bce2 3174 {
b98664d3 3175 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 3176 hex_string (lo), hex_string (hi));
24a55014 3177 continue;
f652bce2 3178 }
24a55014 3179
b76e467d 3180 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
f652bce2 3181 {
b98664d3 3182 complaint (_(".gdb_index address table has invalid CU number %u"),
f652bce2 3183 (unsigned) cu_index);
24a55014 3184 continue;
f652bce2 3185 }
24a55014 3186
79748972
TT
3187 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3188 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
ed2dc618 3189 addrmap_set_empty (mutable_map, lo, hi - 1,
ff4c9fec 3190 dwarf2_per_objfile->get_cu (cu_index));
9291a0cd
TT
3191 }
3192
3193 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3194 &objfile->objfile_obstack);
9291a0cd
TT
3195}
3196
927aa2e7
JK
3197/* Read the address map data from DWARF-5 .debug_aranges, and use it to
3198 populate the objfile's psymtabs_addrmap. */
3199
3200static void
ed2dc618 3201create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
927aa2e7
JK
3202 struct dwarf2_section_info *section)
3203{
ed2dc618 3204 struct objfile *objfile = dwarf2_per_objfile->objfile;
927aa2e7
JK
3205 bfd *abfd = objfile->obfd;
3206 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3207 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3208 SECT_OFF_TEXT (objfile));
3209
3210 auto_obstack temp_obstack;
3211 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3212
3213 std::unordered_map<sect_offset,
3214 dwarf2_per_cu_data *,
3215 gdb::hash_enum<sect_offset>>
3216 debug_info_offset_to_per_cu;
b76e467d 3217 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
927aa2e7 3218 {
927aa2e7
JK
3219 const auto insertpair
3220 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3221 if (!insertpair.second)
3222 {
3223 warning (_("Section .debug_aranges in %s has duplicate "
9d8780f0
SM
3224 "debug_info_offset %s, ignoring .debug_aranges."),
3225 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
927aa2e7
JK
3226 return;
3227 }
3228 }
3229
3230 dwarf2_read_section (objfile, section);
3231
3232 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3233
3234 const gdb_byte *addr = section->buffer;
3235
3236 while (addr < section->buffer + section->size)
3237 {
3238 const gdb_byte *const entry_addr = addr;
3239 unsigned int bytes_read;
3240
3241 const LONGEST entry_length = read_initial_length (abfd, addr,
3242 &bytes_read);
3243 addr += bytes_read;
3244
3245 const gdb_byte *const entry_end = addr + entry_length;
3246 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3247 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3248 if (addr + entry_length > section->buffer + section->size)
3249 {
3250 warning (_("Section .debug_aranges in %s entry at offset %zu "
3251 "length %s exceeds section length %s, "
3252 "ignoring .debug_aranges."),
3253 objfile_name (objfile), entry_addr - section->buffer,
3254 plongest (bytes_read + entry_length),
3255 pulongest (section->size));
3256 return;
3257 }
3258
3259 /* The version number. */
3260 const uint16_t version = read_2_bytes (abfd, addr);
3261 addr += 2;
3262 if (version != 2)
3263 {
3264 warning (_("Section .debug_aranges in %s entry at offset %zu "
3265 "has unsupported version %d, ignoring .debug_aranges."),
3266 objfile_name (objfile), entry_addr - section->buffer,
3267 version);
3268 return;
3269 }
3270
3271 const uint64_t debug_info_offset
3272 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3273 addr += offset_size;
3274 const auto per_cu_it
3275 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3276 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3277 {
3278 warning (_("Section .debug_aranges in %s entry at offset %zu "
3279 "debug_info_offset %s does not exists, "
3280 "ignoring .debug_aranges."),
3281 objfile_name (objfile), entry_addr - section->buffer,
3282 pulongest (debug_info_offset));
3283 return;
3284 }
3285 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3286
3287 const uint8_t address_size = *addr++;
3288 if (address_size < 1 || address_size > 8)
3289 {
3290 warning (_("Section .debug_aranges in %s entry at offset %zu "
3291 "address_size %u is invalid, ignoring .debug_aranges."),
3292 objfile_name (objfile), entry_addr - section->buffer,
3293 address_size);
3294 return;
3295 }
3296
3297 const uint8_t segment_selector_size = *addr++;
3298 if (segment_selector_size != 0)
3299 {
3300 warning (_("Section .debug_aranges in %s entry at offset %zu "
3301 "segment_selector_size %u is not supported, "
3302 "ignoring .debug_aranges."),
3303 objfile_name (objfile), entry_addr - section->buffer,
3304 segment_selector_size);
3305 return;
3306 }
3307
3308 /* Must pad to an alignment boundary that is twice the address
3309 size. It is undocumented by the DWARF standard but GCC does
3310 use it. */
3311 for (size_t padding = ((-(addr - section->buffer))
3312 & (2 * address_size - 1));
3313 padding > 0; padding--)
3314 if (*addr++ != 0)
3315 {
3316 warning (_("Section .debug_aranges in %s entry at offset %zu "
3317 "padding is not zero, ignoring .debug_aranges."),
3318 objfile_name (objfile), entry_addr - section->buffer);
3319 return;
3320 }
3321
3322 for (;;)
3323 {
3324 if (addr + 2 * address_size > entry_end)
3325 {
3326 warning (_("Section .debug_aranges in %s entry at offset %zu "
3327 "address list is not properly terminated, "
3328 "ignoring .debug_aranges."),
3329 objfile_name (objfile), entry_addr - section->buffer);
3330 return;
3331 }
3332 ULONGEST start = extract_unsigned_integer (addr, address_size,
3333 dwarf5_byte_order);
3334 addr += address_size;
3335 ULONGEST length = extract_unsigned_integer (addr, address_size,
3336 dwarf5_byte_order);
3337 addr += address_size;
3338 if (start == 0 && length == 0)
3339 break;
3340 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3341 {
3342 /* Symbol was eliminated due to a COMDAT group. */
3343 continue;
3344 }
3345 ULONGEST end = start + length;
79748972
TT
3346 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3347 - baseaddr);
3348 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3349 - baseaddr);
927aa2e7
JK
3350 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3351 }
3352 }
3353
3354 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3355 &objfile->objfile_obstack);
3356}
3357
9291a0cd
TT
3358/* Find a slot in the mapped index INDEX for the object named NAME.
3359 If NAME is found, set *VEC_OUT to point to the CU vector in the
109483d9
PA
3360 constant pool and return true. If NAME cannot be found, return
3361 false. */
2fdf6df6 3362
109483d9 3363static bool
9291a0cd
TT
3364find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3365 offset_type **vec_out)
3366{
0cf03b49 3367 offset_type hash;
9291a0cd 3368 offset_type slot, step;
559a7a62 3369 int (*cmp) (const char *, const char *);
9291a0cd 3370
791afaa2 3371 gdb::unique_xmalloc_ptr<char> without_params;
0cf03b49 3372 if (current_language->la_language == language_cplus
45280282
IB
3373 || current_language->la_language == language_fortran
3374 || current_language->la_language == language_d)
0cf03b49
JK
3375 {
3376 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3377 not contain any. */
a8719064 3378
72998fb3 3379 if (strchr (name, '(') != NULL)
0cf03b49 3380 {
109483d9 3381 without_params = cp_remove_params (name);
0cf03b49 3382
72998fb3 3383 if (without_params != NULL)
791afaa2 3384 name = without_params.get ();
0cf03b49
JK
3385 }
3386 }
3387
559a7a62 3388 /* Index version 4 did not support case insensitive searches. But the
feea76c2 3389 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
3390 simulate our NAME being searched is also lowercased. */
3391 hash = mapped_index_string_hash ((index->version == 4
3392 && case_sensitivity == case_sensitive_off
3393 ? 5 : index->version),
3394 name);
3395
f00a2de2
PA
3396 slot = hash & (index->symbol_table.size () - 1);
3397 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
559a7a62 3398 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
3399
3400 for (;;)
3401 {
9291a0cd 3402 const char *str;
f00a2de2
PA
3403
3404 const auto &bucket = index->symbol_table[slot];
3405 if (bucket.name == 0 && bucket.vec == 0)
109483d9 3406 return false;
9291a0cd 3407
f00a2de2 3408 str = index->constant_pool + MAYBE_SWAP (bucket.name);
559a7a62 3409 if (!cmp (name, str))
9291a0cd
TT
3410 {
3411 *vec_out = (offset_type *) (index->constant_pool
f00a2de2 3412 + MAYBE_SWAP (bucket.vec));
109483d9 3413 return true;
9291a0cd
TT
3414 }
3415
f00a2de2 3416 slot = (slot + step) & (index->symbol_table.size () - 1);
9291a0cd
TT
3417 }
3418}
3419
4485a1c1
SM
3420/* A helper function that reads the .gdb_index from BUFFER and fills
3421 in MAP. FILENAME is the name of the file containing the data;
d33bc52e 3422 it is used for error reporting. DEPRECATED_OK is true if it is
2ec9a5e0
TT
3423 ok to use deprecated sections.
3424
3425 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3426 out parameters that are filled in with information about the CU and
3427 TU lists in the section.
3428
4485a1c1 3429 Returns true if all went well, false otherwise. */
2fdf6df6 3430
d33bc52e 3431static bool
4485a1c1
SM
3432read_gdb_index_from_buffer (struct objfile *objfile,
3433 const char *filename,
3434 bool deprecated_ok,
3435 gdb::array_view<const gdb_byte> buffer,
3436 struct mapped_index *map,
3437 const gdb_byte **cu_list,
3438 offset_type *cu_list_elements,
3439 const gdb_byte **types_list,
3440 offset_type *types_list_elements)
3441{
3442 const gdb_byte *addr = &buffer[0];
82430852 3443
9291a0cd 3444 /* Version check. */
4485a1c1 3445 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3446 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3447 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3448 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3449 indices. */
831adc1f 3450 if (version < 4)
481860b3
GB
3451 {
3452 static int warning_printed = 0;
3453 if (!warning_printed)
3454 {
3455 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3456 filename);
481860b3
GB
3457 warning_printed = 1;
3458 }
3459 return 0;
3460 }
3461 /* Index version 4 uses a different hash function than index version
3462 5 and later.
3463
3464 Versions earlier than 6 did not emit psymbols for inlined
3465 functions. Using these files will cause GDB not to be able to
3466 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3467 indices unless the user has done
3468 "set use-deprecated-index-sections on". */
2ec9a5e0 3469 if (version < 6 && !deprecated_ok)
481860b3
GB
3470 {
3471 static int warning_printed = 0;
3472 if (!warning_printed)
3473 {
e615022a
DE
3474 warning (_("\
3475Skipping deprecated .gdb_index section in %s.\n\
3476Do \"set use-deprecated-index-sections on\" before the file is read\n\
3477to use the section anyway."),
2ec9a5e0 3478 filename);
481860b3
GB
3479 warning_printed = 1;
3480 }
3481 return 0;
3482 }
796a7ff8 3483 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3484 of the TU (for symbols coming from TUs),
3485 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3486 Plus gold-generated indices can have duplicate entries for global symbols,
3487 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3488 These are just performance bugs, and we can't distinguish gdb-generated
3489 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3490
481860b3 3491 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3492 longer backward compatible. */
796a7ff8 3493 if (version > 8)
594e8718 3494 return 0;
9291a0cd 3495
559a7a62 3496 map->version = version;
9291a0cd 3497
4485a1c1 3498 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff 3499
4485a1c1 3500 int i = 0;
2ec9a5e0
TT
3501 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3502 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3503 / 8);
1fd400ff
TT
3504 ++i;
3505
2ec9a5e0
TT
3506 *types_list = addr + MAYBE_SWAP (metadata[i]);
3507 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3508 - MAYBE_SWAP (metadata[i]))
3509 / 8);
987d643c 3510 ++i;
1fd400ff 3511
f00a2de2
PA
3512 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3513 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3514 map->address_table
3515 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
1fd400ff
TT
3516 ++i;
3517
f00a2de2
PA
3518 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3519 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3520 map->symbol_table
3521 = gdb::array_view<mapped_index::symbol_table_slot>
3522 ((mapped_index::symbol_table_slot *) symbol_table,
3523 (mapped_index::symbol_table_slot *) symbol_table_end);
9291a0cd 3524
f00a2de2 3525 ++i;
f9d83a0b 3526 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3527
2ec9a5e0
TT
3528 return 1;
3529}
3530
4485a1c1
SM
3531/* Callback types for dwarf2_read_gdb_index. */
3532
3533typedef gdb::function_view
3534 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3535 get_gdb_index_contents_ftype;
3536typedef gdb::function_view
3537 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3538 get_gdb_index_contents_dwz_ftype;
3539
927aa2e7 3540/* Read .gdb_index. If everything went ok, initialize the "quick"
2ec9a5e0
TT
3541 elements of all the CUs and return 1. Otherwise, return 0. */
3542
3543static int
4485a1c1
SM
3544dwarf2_read_gdb_index
3545 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3546 get_gdb_index_contents_ftype get_gdb_index_contents,
3547 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
2ec9a5e0 3548{
2ec9a5e0
TT
3549 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3550 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3551 struct dwz_file *dwz;
12359b5e 3552 struct objfile *objfile = dwarf2_per_objfile->objfile;
2ec9a5e0 3553
4485a1c1
SM
3554 gdb::array_view<const gdb_byte> main_index_contents
3555 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3556
3557 if (main_index_contents.empty ())
3558 return 0;
3559
3063847f 3560 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
4485a1c1
SM
3561 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3562 use_deprecated_index_sections,
3563 main_index_contents, map.get (), &cu_list,
3564 &cu_list_elements, &types_list,
3565 &types_list_elements))
2ec9a5e0
TT
3566 return 0;
3567
0fefef59 3568 /* Don't use the index if it's empty. */
3063847f 3569 if (map->symbol_table.empty ())
0fefef59
DE
3570 return 0;
3571
2ec9a5e0
TT
3572 /* If there is a .dwz file, read it so we can get its CU list as
3573 well. */
ed2dc618 3574 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
4db1a1dc 3575 if (dwz != NULL)
2ec9a5e0 3576 {
2ec9a5e0
TT
3577 struct mapped_index dwz_map;
3578 const gdb_byte *dwz_types_ignore;
3579 offset_type dwz_types_elements_ignore;
3580
4485a1c1
SM
3581 gdb::array_view<const gdb_byte> dwz_index_content
3582 = get_gdb_index_contents_dwz (objfile, dwz);
3583
3584 if (dwz_index_content.empty ())
3585 return 0;
3586
3587 if (!read_gdb_index_from_buffer (objfile,
3588 bfd_get_filename (dwz->dwz_bfd), 1,
3589 dwz_index_content, &dwz_map,
3590 &dwz_list, &dwz_list_elements,
3591 &dwz_types_ignore,
3592 &dwz_types_elements_ignore))
2ec9a5e0
TT
3593 {
3594 warning (_("could not read '.gdb_index' section from %s; skipping"),
3595 bfd_get_filename (dwz->dwz_bfd));
3596 return 0;
3597 }
3598 }
3599
12359b5e
SM
3600 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3601 dwz_list, dwz_list_elements);
1fd400ff 3602
8b70b953
TT
3603 if (types_list_elements)
3604 {
3605 struct dwarf2_section_info *section;
3606
3607 /* We can only handle a single .debug_types when we have an
3608 index. */
3609 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3610 return 0;
3611
3612 section = VEC_index (dwarf2_section_info_def,
3613 dwarf2_per_objfile->types, 0);
3614
12359b5e
SM
3615 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3616 types_list, types_list_elements);
8b70b953 3617 }
9291a0cd 3618
3063847f 3619 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
9291a0cd 3620
3063847f 3621 dwarf2_per_objfile->index_table = std::move (map);
9291a0cd 3622 dwarf2_per_objfile->using_index = 1;
7b9f3c50 3623 dwarf2_per_objfile->quick_file_names_table =
b76e467d 3624 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
9291a0cd
TT
3625
3626 return 1;
3627}
3628
dee91e82 3629/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3630
dee91e82
DE
3631static void
3632dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3633 const gdb_byte *info_ptr,
dee91e82
DE
3634 struct die_info *comp_unit_die,
3635 int has_children,
3636 void *data)
9291a0cd 3637{
dee91e82 3638 struct dwarf2_cu *cu = reader->cu;
ed2dc618 3639 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
518817b3
SM
3640 struct dwarf2_per_objfile *dwarf2_per_objfile
3641 = cu->per_cu->dwarf2_per_objfile;
dee91e82 3642 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3643 struct dwarf2_per_cu_data *lh_cu;
9291a0cd 3644 struct attribute *attr;
dee91e82 3645 int i;
7b9f3c50
DE
3646 void **slot;
3647 struct quick_file_names *qfn;
9291a0cd 3648
0186c6a7
DE
3649 gdb_assert (! this_cu->is_debug_types);
3650
07261596
TT
3651 /* Our callers never want to match partial units -- instead they
3652 will match the enclosing full CU. */
3653 if (comp_unit_die->tag == DW_TAG_partial_unit)
3654 {
3655 this_cu->v.quick->no_file_data = 1;
3656 return;
3657 }
3658
0186c6a7 3659 lh_cu = this_cu;
7b9f3c50 3660 slot = NULL;
dee91e82 3661
fff8551c 3662 line_header_up lh;
9c541725 3663 sect_offset line_offset {};
fff8551c 3664
dee91e82 3665 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3666 if (attr)
3667 {
7b9f3c50
DE
3668 struct quick_file_names find_entry;
3669
9c541725 3670 line_offset = (sect_offset) DW_UNSND (attr);
7b9f3c50
DE
3671
3672 /* We may have already read in this line header (TU line header sharing).
3673 If we have we're done. */
094b34ac 3674 find_entry.hash.dwo_unit = cu->dwo_unit;
9c541725 3675 find_entry.hash.line_sect_off = line_offset;
7b9f3c50
DE
3676 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3677 &find_entry, INSERT);
3678 if (*slot != NULL)
3679 {
9a3c8263 3680 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
dee91e82 3681 return;
7b9f3c50
DE
3682 }
3683
3019eac3 3684 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3685 }
3686 if (lh == NULL)
3687 {
094b34ac 3688 lh_cu->v.quick->no_file_data = 1;
dee91e82 3689 return;
9291a0cd
TT
3690 }
3691
8d749320 3692 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
094b34ac 3693 qfn->hash.dwo_unit = cu->dwo_unit;
9c541725 3694 qfn->hash.line_sect_off = line_offset;
7b9f3c50
DE
3695 gdb_assert (slot != NULL);
3696 *slot = qfn;
9291a0cd 3697
d721ba37 3698 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
9291a0cd 3699
fff8551c 3700 qfn->num_file_names = lh->file_names.size ();
8d749320 3701 qfn->file_names =
fff8551c
PA
3702 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3703 for (i = 0; i < lh->file_names.size (); ++i)
3704 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
7b9f3c50 3705 qfn->real_names = NULL;
9291a0cd 3706
094b34ac 3707 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3708}
3709
3710/* A helper for the "quick" functions which attempts to read the line
3711 table for THIS_CU. */
3712
3713static struct quick_file_names *
e4a48d9d 3714dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3715{
0186c6a7
DE
3716 /* This should never be called for TUs. */
3717 gdb_assert (! this_cu->is_debug_types);
3718 /* Nor type unit groups. */
3719 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3720
dee91e82
DE
3721 if (this_cu->v.quick->file_names != NULL)
3722 return this_cu->v.quick->file_names;
3723 /* If we know there is no line data, no point in looking again. */
3724 if (this_cu->v.quick->no_file_data)
3725 return NULL;
3726
0186c6a7 3727 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3728
3729 if (this_cu->v.quick->no_file_data)
3730 return NULL;
3731 return this_cu->v.quick->file_names;
9291a0cd
TT
3732}
3733
3734/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3735 real path for a given file name from the line table. */
2fdf6df6 3736
9291a0cd 3737static const char *
7b9f3c50
DE
3738dw2_get_real_path (struct objfile *objfile,
3739 struct quick_file_names *qfn, int index)
9291a0cd 3740{
7b9f3c50
DE
3741 if (qfn->real_names == NULL)
3742 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
26f2dc30 3743 qfn->num_file_names, const char *);
9291a0cd 3744
7b9f3c50 3745 if (qfn->real_names[index] == NULL)
14278e1f 3746 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
9291a0cd 3747
7b9f3c50 3748 return qfn->real_names[index];
9291a0cd
TT
3749}
3750
3751static struct symtab *
3752dw2_find_last_source_symtab (struct objfile *objfile)
3753{
ed2dc618
SM
3754 struct dwarf2_per_objfile *dwarf2_per_objfile
3755 = get_dwarf2_per_objfile (objfile);
b76e467d 3756 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
58f0c718 3757 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
ae2de4f8 3758
43f3e411
DE
3759 if (cust == NULL)
3760 return NULL;
ed2dc618 3761
43f3e411 3762 return compunit_primary_filetab (cust);
9291a0cd
TT
3763}
3764
7b9f3c50
DE
3765/* Traversal function for dw2_forget_cached_source_info. */
3766
3767static int
3768dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3769{
7b9f3c50 3770 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3771
7b9f3c50 3772 if (file_data->real_names)
9291a0cd 3773 {
7b9f3c50 3774 int i;
9291a0cd 3775
7b9f3c50 3776 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3777 {
7b9f3c50
DE
3778 xfree ((void*) file_data->real_names[i]);
3779 file_data->real_names[i] = NULL;
9291a0cd
TT
3780 }
3781 }
7b9f3c50
DE
3782
3783 return 1;
3784}
3785
3786static void
3787dw2_forget_cached_source_info (struct objfile *objfile)
3788{
ed2dc618
SM
3789 struct dwarf2_per_objfile *dwarf2_per_objfile
3790 = get_dwarf2_per_objfile (objfile);
7b9f3c50
DE
3791
3792 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3793 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3794}
3795
f8eba3c6
TT
3796/* Helper function for dw2_map_symtabs_matching_filename that expands
3797 the symtabs and calls the iterator. */
3798
3799static int
3800dw2_map_expand_apply (struct objfile *objfile,
3801 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3802 const char *name, const char *real_path,
14bc53a8 3803 gdb::function_view<bool (symtab *)> callback)
f8eba3c6 3804{
43f3e411 3805 struct compunit_symtab *last_made = objfile->compunit_symtabs;
f8eba3c6
TT
3806
3807 /* Don't visit already-expanded CUs. */
43f3e411 3808 if (per_cu->v.quick->compunit_symtab)
f8eba3c6
TT
3809 return 0;
3810
3811 /* This may expand more than one symtab, and we want to iterate over
3812 all of them. */
58f0c718 3813 dw2_instantiate_symtab (per_cu, false);
f8eba3c6 3814
14bc53a8
PA
3815 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3816 last_made, callback);
f8eba3c6
TT
3817}
3818
3819/* Implementation of the map_symtabs_matching_filename method. */
3820
14bc53a8
PA
3821static bool
3822dw2_map_symtabs_matching_filename
3823 (struct objfile *objfile, const char *name, const char *real_path,
3824 gdb::function_view<bool (symtab *)> callback)
9291a0cd 3825{
c011a4f4 3826 const char *name_basename = lbasename (name);
ed2dc618
SM
3827 struct dwarf2_per_objfile *dwarf2_per_objfile
3828 = get_dwarf2_per_objfile (objfile);
ae2de4f8 3829
848e3e78
DE
3830 /* The rule is CUs specify all the files, including those used by
3831 any TU, so there's no need to scan TUs here. */
f4dc4d17 3832
b76e467d 3833 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
9291a0cd 3834 {
3d7bb9d9 3835 /* We only need to look at symtabs not already expanded. */
43f3e411 3836 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3837 continue;
3838
b76e467d 3839 quick_file_names *file_data = dw2_get_file_names (per_cu);
7b9f3c50 3840 if (file_data == NULL)
9291a0cd
TT
3841 continue;
3842
b76e467d 3843 for (int j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3844 {
7b9f3c50 3845 const char *this_name = file_data->file_names[j];
da235a7c 3846 const char *this_real_name;
9291a0cd 3847
af529f8f 3848 if (compare_filenames_for_search (this_name, name))
9291a0cd 3849 {
f5b95b50 3850 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
14bc53a8
PA
3851 callback))
3852 return true;
288e77a7 3853 continue;
4aac40c8 3854 }
9291a0cd 3855
c011a4f4
DE
3856 /* Before we invoke realpath, which can get expensive when many
3857 files are involved, do a quick comparison of the basenames. */
3858 if (! basenames_may_differ
3859 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3860 continue;
3861
da235a7c
JK
3862 this_real_name = dw2_get_real_path (objfile, file_data, j);
3863 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3864 {
da235a7c 3865 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
14bc53a8
PA
3866 callback))
3867 return true;
288e77a7 3868 continue;
da235a7c 3869 }
9291a0cd 3870
da235a7c
JK
3871 if (real_path != NULL)
3872 {
af529f8f
JK
3873 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3874 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3875 if (this_real_name != NULL
af529f8f 3876 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3877 {
f5b95b50 3878 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
14bc53a8
PA
3879 callback))
3880 return true;
288e77a7 3881 continue;
9291a0cd
TT
3882 }
3883 }
3884 }
3885 }
3886
14bc53a8 3887 return false;
9291a0cd
TT
3888}
3889
da51c347
DE
3890/* Struct used to manage iterating over all CUs looking for a symbol. */
3891
3892struct dw2_symtab_iterator
9291a0cd 3893{
ed2dc618
SM
3894 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3895 struct dwarf2_per_objfile *dwarf2_per_objfile;
da51c347
DE
3896 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3897 int want_specific_block;
3898 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3899 Unused if !WANT_SPECIFIC_BLOCK. */
3900 int block_index;
3901 /* The kind of symbol we're looking for. */
3902 domain_enum domain;
3903 /* The list of CUs from the index entry of the symbol,
3904 or NULL if not found. */
3905 offset_type *vec;
3906 /* The next element in VEC to look at. */
3907 int next;
3908 /* The number of elements in VEC, or zero if there is no match. */
3909 int length;
8943b874
DE
3910 /* Have we seen a global version of the symbol?
3911 If so we can ignore all further global instances.
3912 This is to work around gold/15646, inefficient gold-generated
3913 indices. */
3914 int global_seen;
da51c347 3915};
9291a0cd 3916
da51c347
DE
3917/* Initialize the index symtab iterator ITER.
3918 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3919 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3920
9291a0cd 3921static void
da51c347 3922dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
ed2dc618 3923 struct dwarf2_per_objfile *dwarf2_per_objfile,
da51c347
DE
3924 int want_specific_block,
3925 int block_index,
3926 domain_enum domain,
3927 const char *name)
3928{
ed2dc618 3929 iter->dwarf2_per_objfile = dwarf2_per_objfile;
da51c347
DE
3930 iter->want_specific_block = want_specific_block;
3931 iter->block_index = block_index;
3932 iter->domain = domain;
3933 iter->next = 0;
8943b874 3934 iter->global_seen = 0;
da51c347 3935
3063847f 3936 mapped_index *index = dwarf2_per_objfile->index_table.get ();
ed2dc618
SM
3937
3938 /* index is NULL if OBJF_READNOW. */
3939 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
da51c347
DE
3940 iter->length = MAYBE_SWAP (*iter->vec);
3941 else
3942 {
3943 iter->vec = NULL;
3944 iter->length = 0;
3945 }
3946}
3947
3948/* Return the next matching CU or NULL if there are no more. */
3949
3950static struct dwarf2_per_cu_data *
3951dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3952{
ed2dc618
SM
3953 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3954
da51c347
DE
3955 for ( ; iter->next < iter->length; ++iter->next)
3956 {
3957 offset_type cu_index_and_attrs =
3958 MAYBE_SWAP (iter->vec[iter->next + 1]);
3959 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
da51c347
DE
3960 int want_static = iter->block_index != GLOBAL_BLOCK;
3961 /* This value is only valid for index versions >= 7. */
3962 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3963 gdb_index_symbol_kind symbol_kind =
3964 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3965 /* Only check the symbol attributes if they're present.
3966 Indices prior to version 7 don't record them,
3967 and indices >= 7 may elide them for certain symbols
3968 (gold does this). */
3969 int attrs_valid =
ed2dc618 3970 (dwarf2_per_objfile->index_table->version >= 7
da51c347
DE
3971 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3972
3190f0c6 3973 /* Don't crash on bad data. */
b76e467d 3974 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
b2bdb8cf 3975 + dwarf2_per_objfile->all_type_units.size ()))
3190f0c6 3976 {
b98664d3 3977 complaint (_(".gdb_index entry has bad CU index"
4262abfb
JK
3978 " [in module %s]"),
3979 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3980 continue;
3981 }
3982
ff4c9fec 3983 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3190f0c6 3984
da51c347 3985 /* Skip if already read in. */
43f3e411 3986 if (per_cu->v.quick->compunit_symtab)
da51c347
DE
3987 continue;
3988
8943b874
DE
3989 /* Check static vs global. */
3990 if (attrs_valid)
3991 {
3992 if (iter->want_specific_block
3993 && want_static != is_static)
3994 continue;
3995 /* Work around gold/15646. */
3996 if (!is_static && iter->global_seen)
3997 continue;
3998 if (!is_static)
3999 iter->global_seen = 1;
4000 }
da51c347
DE
4001
4002 /* Only check the symbol's kind if it has one. */
4003 if (attrs_valid)
4004 {
4005 switch (iter->domain)
4006 {
4007 case VAR_DOMAIN:
4008 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4009 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4010 /* Some types are also in VAR_DOMAIN. */
4011 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4012 continue;
4013 break;
4014 case STRUCT_DOMAIN:
4015 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4016 continue;
4017 break;
4018 case LABEL_DOMAIN:
4019 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4020 continue;
4021 break;
4022 default:
4023 break;
4024 }
4025 }
4026
4027 ++iter->next;
4028 return per_cu;
4029 }
4030
4031 return NULL;
4032}
4033
43f3e411 4034static struct compunit_symtab *
da51c347
DE
4035dw2_lookup_symbol (struct objfile *objfile, int block_index,
4036 const char *name, domain_enum domain)
9291a0cd 4037{
43f3e411 4038 struct compunit_symtab *stab_best = NULL;
ed2dc618
SM
4039 struct dwarf2_per_objfile *dwarf2_per_objfile
4040 = get_dwarf2_per_objfile (objfile);
9291a0cd 4041
b5ec771e
PA
4042 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4043
ed2dc618
SM
4044 struct dw2_symtab_iterator iter;
4045 struct dwarf2_per_cu_data *per_cu;
da51c347 4046
ed2dc618 4047 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
9291a0cd 4048
ed2dc618
SM
4049 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4050 {
4051 struct symbol *sym, *with_opaque = NULL;
58f0c718 4052 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
ed2dc618
SM
4053 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4054 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
da51c347 4055
ed2dc618
SM
4056 sym = block_find_symbol (block, name, domain,
4057 block_find_non_opaque_type_preferred,
4058 &with_opaque);
b2e2f908 4059
ed2dc618
SM
4060 /* Some caution must be observed with overloaded functions
4061 and methods, since the index will not contain any overload
4062 information (but NAME might contain it). */
da51c347 4063
ed2dc618
SM
4064 if (sym != NULL
4065 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4066 return stab;
4067 if (with_opaque != NULL
4068 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4069 stab_best = stab;
da51c347 4070
ed2dc618 4071 /* Keep looking through other CUs. */
9291a0cd 4072 }
9291a0cd 4073
da51c347 4074 return stab_best;
9291a0cd
TT
4075}
4076
4077static void
4078dw2_print_stats (struct objfile *objfile)
4079{
ed2dc618
SM
4080 struct dwarf2_per_objfile *dwarf2_per_objfile
4081 = get_dwarf2_per_objfile (objfile);
b76e467d 4082 int total = (dwarf2_per_objfile->all_comp_units.size ()
b2bdb8cf 4083 + dwarf2_per_objfile->all_type_units.size ());
ed2dc618 4084 int count = 0;
9291a0cd 4085
ed2dc618 4086 for (int i = 0; i < total; ++i)
9291a0cd 4087 {
ff4c9fec 4088 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
9291a0cd 4089
43f3e411 4090 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
4091 ++count;
4092 }
e4a48d9d 4093 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
4094 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4095}
4096
779bd270
DE
4097/* This dumps minimal information about the index.
4098 It is called via "mt print objfiles".
4099 One use is to verify .gdb_index has been loaded by the
4100 gdb.dwarf2/gdb-index.exp testcase. */
4101
9291a0cd
TT
4102static void
4103dw2_dump (struct objfile *objfile)
4104{
ed2dc618
SM
4105 struct dwarf2_per_objfile *dwarf2_per_objfile
4106 = get_dwarf2_per_objfile (objfile);
4107
779bd270
DE
4108 gdb_assert (dwarf2_per_objfile->using_index);
4109 printf_filtered (".gdb_index:");
4110 if (dwarf2_per_objfile->index_table != NULL)
4111 {
4112 printf_filtered (" version %d\n",
4113 dwarf2_per_objfile->index_table->version);
4114 }
4115 else
4116 printf_filtered (" faked for \"readnow\"\n");
4117 printf_filtered ("\n");
9291a0cd
TT
4118}
4119
9291a0cd
TT
4120static void
4121dw2_expand_symtabs_for_function (struct objfile *objfile,
4122 const char *func_name)
4123{
ed2dc618
SM
4124 struct dwarf2_per_objfile *dwarf2_per_objfile
4125 = get_dwarf2_per_objfile (objfile);
da51c347 4126
ed2dc618
SM
4127 struct dw2_symtab_iterator iter;
4128 struct dwarf2_per_cu_data *per_cu;
da51c347 4129
ed2dc618
SM
4130 /* Note: It doesn't matter what we pass for block_index here. */
4131 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4132 func_name);
da51c347 4133
ed2dc618 4134 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
58f0c718 4135 dw2_instantiate_symtab (per_cu, false);
da51c347 4136
9291a0cd
TT
4137}
4138
4139static void
4140dw2_expand_all_symtabs (struct objfile *objfile)
4141{
ed2dc618
SM
4142 struct dwarf2_per_objfile *dwarf2_per_objfile
4143 = get_dwarf2_per_objfile (objfile);
b76e467d 4144 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
b2bdb8cf 4145 + dwarf2_per_objfile->all_type_units.size ());
9291a0cd 4146
ed2dc618 4147 for (int i = 0; i < total_units; ++i)
9291a0cd 4148 {
ff4c9fec 4149 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
9291a0cd 4150
58f0c718
TT
4151 /* We don't want to directly expand a partial CU, because if we
4152 read it with the wrong language, then assertion failures can
4153 be triggered later on. See PR symtab/23010. So, tell
4154 dw2_instantiate_symtab to skip partial CUs -- any important
4155 partial CU will be read via DW_TAG_imported_unit anyway. */
4156 dw2_instantiate_symtab (per_cu, true);
9291a0cd
TT
4157 }
4158}
4159
4160static void
652a8996
JK
4161dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4162 const char *fullname)
9291a0cd 4163{
ed2dc618
SM
4164 struct dwarf2_per_objfile *dwarf2_per_objfile
4165 = get_dwarf2_per_objfile (objfile);
d4637a04
DE
4166
4167 /* We don't need to consider type units here.
4168 This is only called for examining code, e.g. expand_line_sal.
4169 There can be an order of magnitude (or more) more type units
4170 than comp units, and we avoid them if we can. */
4171
b76e467d 4172 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
9291a0cd 4173 {
3d7bb9d9 4174 /* We only need to look at symtabs not already expanded. */
43f3e411 4175 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
4176 continue;
4177
b76e467d 4178 quick_file_names *file_data = dw2_get_file_names (per_cu);
7b9f3c50 4179 if (file_data == NULL)
9291a0cd
TT
4180 continue;
4181
b76e467d 4182 for (int j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4183 {
652a8996
JK
4184 const char *this_fullname = file_data->file_names[j];
4185
4186 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 4187 {
58f0c718 4188 dw2_instantiate_symtab (per_cu, false);
9291a0cd
TT
4189 break;
4190 }
4191 }
4192 }
4193}
4194
9291a0cd 4195static void
ade7ed9e 4196dw2_map_matching_symbols (struct objfile *objfile,
fe978cb0 4197 const char * name, domain_enum domain,
ade7ed9e 4198 int global,
40658b94
PH
4199 int (*callback) (struct block *,
4200 struct symbol *, void *),
b5ec771e 4201 void *data, symbol_name_match_type match,
2edb89d3 4202 symbol_compare_ftype *ordered_compare)
9291a0cd 4203{
40658b94 4204 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
4205 current language is Ada for a non-Ada objfile using GNU index. As Ada
4206 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
4207}
4208
b5ec771e
PA
4209/* Symbol name matcher for .gdb_index names.
4210
4211 Symbol names in .gdb_index have a few particularities:
4212
4213 - There's no indication of which is the language of each symbol.
4214
4215 Since each language has its own symbol name matching algorithm,
4216 and we don't know which language is the right one, we must match
3f563c84
PA
4217 each symbol against all languages. This would be a potential
4218 performance problem if it were not mitigated by the
4219 mapped_index::name_components lookup table, which significantly
4220 reduces the number of times we need to call into this matcher,
4221 making it a non-issue.
b5ec771e
PA
4222
4223 - Symbol names in the index have no overload (parameter)
4224 information. I.e., in C++, "foo(int)" and "foo(long)" both
4225 appear as "foo" in the index, for example.
4226
4227 This means that the lookup names passed to the symbol name
4228 matcher functions must have no parameter information either
4229 because (e.g.) symbol search name "foo" does not match
4230 lookup-name "foo(int)" [while swapping search name for lookup
4231 name would match].
4232*/
4233class gdb_index_symbol_name_matcher
4234{
4235public:
4236 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4237 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4238
4239 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4240 Returns true if any matcher matches. */
4241 bool matches (const char *symbol_name);
4242
4243private:
4244 /* A reference to the lookup name we're matching against. */
4245 const lookup_name_info &m_lookup_name;
4246
4247 /* A vector holding all the different symbol name matchers, for all
4248 languages. */
4249 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4250};
4251
4252gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4253 (const lookup_name_info &lookup_name)
4254 : m_lookup_name (lookup_name)
4255{
4256 /* Prepare the vector of comparison functions upfront, to avoid
4257 doing the same work for each symbol. Care is taken to avoid
4258 matching with the same matcher more than once if/when multiple
4259 languages use the same matcher function. */
4260 auto &matchers = m_symbol_name_matcher_funcs;
4261 matchers.reserve (nr_languages);
4262
4263 matchers.push_back (default_symbol_name_matcher);
4264
4265 for (int i = 0; i < nr_languages; i++)
4266 {
4267 const language_defn *lang = language_def ((enum language) i);
c63d3e8d 4268 symbol_name_matcher_ftype *name_matcher
618daa93 4269 = get_symbol_name_matcher (lang, m_lookup_name);
c63d3e8d
PA
4270
4271 /* Don't insert the same comparison routine more than once.
4272 Note that we do this linear walk instead of a seemingly
4273 cheaper sorted insert, or use a std::set or something like
4274 that, because relative order of function addresses is not
4275 stable. This is not a problem in practice because the number
4276 of supported languages is low, and the cost here is tiny
4277 compared to the number of searches we'll do afterwards using
4278 this object. */
4279 if (name_matcher != default_symbol_name_matcher
4280 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4281 == matchers.end ()))
4282 matchers.push_back (name_matcher);
b5ec771e
PA
4283 }
4284}
4285
4286bool
4287gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4288{
4289 for (auto matches_name : m_symbol_name_matcher_funcs)
4290 if (matches_name (symbol_name, m_lookup_name, NULL))
4291 return true;
4292
4293 return false;
4294}
4295
e1ef7d7a
PA
4296/* Starting from a search name, return the string that finds the upper
4297 bound of all strings that start with SEARCH_NAME in a sorted name
4298 list. Returns the empty string to indicate that the upper bound is
4299 the end of the list. */
4300
4301static std::string
4302make_sort_after_prefix_name (const char *search_name)
4303{
4304 /* When looking to complete "func", we find the upper bound of all
4305 symbols that start with "func" by looking for where we'd insert
4306 the closest string that would follow "func" in lexicographical
4307 order. Usually, that's "func"-with-last-character-incremented,
4308 i.e. "fund". Mind non-ASCII characters, though. Usually those
4309 will be UTF-8 multi-byte sequences, but we can't be certain.
4310 Especially mind the 0xff character, which is a valid character in
4311 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4312 rule out compilers allowing it in identifiers. Note that
4313 conveniently, strcmp/strcasecmp are specified to compare
4314 characters interpreted as unsigned char. So what we do is treat
4315 the whole string as a base 256 number composed of a sequence of
4316 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4317 to 0, and carries 1 to the following more-significant position.
4318 If the very first character in SEARCH_NAME ends up incremented
4319 and carries/overflows, then the upper bound is the end of the
4320 list. The string after the empty string is also the empty
4321 string.
4322
4323 Some examples of this operation:
4324
4325 SEARCH_NAME => "+1" RESULT
4326
4327 "abc" => "abd"
4328 "ab\xff" => "ac"
4329 "\xff" "a" "\xff" => "\xff" "b"
4330 "\xff" => ""
4331 "\xff\xff" => ""
4332 "" => ""
4333
4334 Then, with these symbols for example:
4335
4336 func
4337 func1
4338 fund
4339
4340 completing "func" looks for symbols between "func" and
4341 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4342 which finds "func" and "func1", but not "fund".
4343
4344 And with:
4345
4346 funcÿ (Latin1 'ÿ' [0xff])
4347 funcÿ1
4348 fund
4349
4350 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4351 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4352
4353 And with:
4354
4355 ÿÿ (Latin1 'ÿ' [0xff])
4356 ÿÿ1
4357
4358 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4359 the end of the list.
4360 */
4361 std::string after = search_name;
4362 while (!after.empty () && (unsigned char) after.back () == 0xff)
4363 after.pop_back ();
4364 if (!after.empty ())
4365 after.back () = (unsigned char) after.back () + 1;
4366 return after;
4367}
4368
5c58de74 4369/* See declaration. */
61d96d7e 4370
5c58de74
PA
4371std::pair<std::vector<name_component>::const_iterator,
4372 std::vector<name_component>::const_iterator>
44ed8f3e 4373mapped_index_base::find_name_components_bounds
5c58de74 4374 (const lookup_name_info &lookup_name_without_params) const
3f563c84 4375{
5c58de74
PA
4376 auto *name_cmp
4377 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3f563c84
PA
4378
4379 const char *cplus
c62446b1 4380 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
9291a0cd 4381
3f563c84
PA
4382 /* Comparison function object for lower_bound that matches against a
4383 given symbol name. */
4384 auto lookup_compare_lower = [&] (const name_component &elem,
4385 const char *name)
4386 {
5c58de74 4387 const char *elem_qualified = this->symbol_name_at (elem.idx);
3f563c84
PA
4388 const char *elem_name = elem_qualified + elem.name_offset;
4389 return name_cmp (elem_name, name) < 0;
4390 };
4391
4392 /* Comparison function object for upper_bound that matches against a
4393 given symbol name. */
4394 auto lookup_compare_upper = [&] (const char *name,
4395 const name_component &elem)
4396 {
5c58de74 4397 const char *elem_qualified = this->symbol_name_at (elem.idx);
3f563c84
PA
4398 const char *elem_name = elem_qualified + elem.name_offset;
4399 return name_cmp (name, elem_name) < 0;
4400 };
4401
5c58de74
PA
4402 auto begin = this->name_components.begin ();
4403 auto end = this->name_components.end ();
3f563c84
PA
4404
4405 /* Find the lower bound. */
4406 auto lower = [&] ()
4407 {
5c58de74 4408 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
3f563c84
PA
4409 return begin;
4410 else
4411 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4412 } ();
4413
4414 /* Find the upper bound. */
4415 auto upper = [&] ()
4416 {
5c58de74 4417 if (lookup_name_without_params.completion_mode ())
3f563c84 4418 {
e1ef7d7a
PA
4419 /* In completion mode, we want UPPER to point past all
4420 symbols names that have the same prefix. I.e., with
4421 these symbols, and completing "func":
4422
4423 function << lower bound
4424 function1
4425 other_function << upper bound
4426
4427 We find the upper bound by looking for the insertion
4428 point of "func"-with-last-character-incremented,
4429 i.e. "fund". */
4430 std::string after = make_sort_after_prefix_name (cplus);
4431 if (after.empty ())
3f563c84 4432 return end;
e6b2f5ef
PA
4433 return std::lower_bound (lower, end, after.c_str (),
4434 lookup_compare_lower);
3f563c84
PA
4435 }
4436 else
4437 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4438 } ();
4439
5c58de74
PA
4440 return {lower, upper};
4441}
4442
4443/* See declaration. */
4444
4445void
44ed8f3e 4446mapped_index_base::build_name_components ()
5c58de74
PA
4447{
4448 if (!this->name_components.empty ())
4449 return;
4450
4451 this->name_components_casing = case_sensitivity;
4452 auto *name_cmp
4453 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4454
4455 /* The code below only knows how to break apart components of C++
4456 symbol names (and other languages that use '::' as
4457 namespace/module separator). If we add support for wild matching
4458 to some language that uses some other operator (E.g., Ada, Go and
4459 D use '.'), then we'll need to try splitting the symbol name
4460 according to that language too. Note that Ada does support wild
4461 matching, but doesn't currently support .gdb_index. */
44ed8f3e
PA
4462 auto count = this->symbol_name_count ();
4463 for (offset_type idx = 0; idx < count; idx++)
5c58de74 4464 {
44ed8f3e 4465 if (this->symbol_name_slot_invalid (idx))
5c58de74
PA
4466 continue;
4467
4468 const char *name = this->symbol_name_at (idx);
4469
4470 /* Add each name component to the name component table. */
4471 unsigned int previous_len = 0;
4472 for (unsigned int current_len = cp_find_first_component (name);
4473 name[current_len] != '\0';
4474 current_len += cp_find_first_component (name + current_len))
4475 {
4476 gdb_assert (name[current_len] == ':');
4477 this->name_components.push_back ({previous_len, idx});
4478 /* Skip the '::'. */
4479 current_len += 2;
4480 previous_len = current_len;
4481 }
4482 this->name_components.push_back ({previous_len, idx});
4483 }
4484
4485 /* Sort name_components elements by name. */
4486 auto name_comp_compare = [&] (const name_component &left,
4487 const name_component &right)
4488 {
4489 const char *left_qualified = this->symbol_name_at (left.idx);
4490 const char *right_qualified = this->symbol_name_at (right.idx);
4491
4492 const char *left_name = left_qualified + left.name_offset;
4493 const char *right_name = right_qualified + right.name_offset;
4494
4495 return name_cmp (left_name, right_name) < 0;
4496 };
4497
4498 std::sort (this->name_components.begin (),
4499 this->name_components.end (),
4500 name_comp_compare);
4501}
4502
4503/* Helper for dw2_expand_symtabs_matching that works with a
44ed8f3e
PA
4504 mapped_index_base instead of the containing objfile. This is split
4505 to a separate function in order to be able to unit test the
4506 name_components matching using a mock mapped_index_base. For each
5c58de74 4507 symbol name that matches, calls MATCH_CALLBACK, passing it the
44ed8f3e 4508 symbol's index in the mapped_index_base symbol table. */
5c58de74
PA
4509
4510static void
4511dw2_expand_symtabs_matching_symbol
44ed8f3e 4512 (mapped_index_base &index,
5c58de74
PA
4513 const lookup_name_info &lookup_name_in,
4514 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4515 enum search_domain kind,
4516 gdb::function_view<void (offset_type)> match_callback)
4517{
4518 lookup_name_info lookup_name_without_params
4519 = lookup_name_in.make_ignore_params ();
4520 gdb_index_symbol_name_matcher lookup_name_matcher
4521 (lookup_name_without_params);
4522
4523 /* Build the symbol name component sorted vector, if we haven't
4524 yet. */
4525 index.build_name_components ();
4526
4527 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4528
3f563c84
PA
4529 /* Now for each symbol name in range, check to see if we have a name
4530 match, and if so, call the MATCH_CALLBACK callback. */
4531
4532 /* The same symbol may appear more than once in the range though.
4533 E.g., if we're looking for symbols that complete "w", and we have
4534 a symbol named "w1::w2", we'll find the two name components for
4535 that same symbol in the range. To be sure we only call the
4536 callback once per symbol, we first collect the symbol name
4537 indexes that matched in a temporary vector and ignore
4538 duplicates. */
4539 std::vector<offset_type> matches;
5c58de74 4540 matches.reserve (std::distance (bounds.first, bounds.second));
3f563c84 4541
5c58de74 4542 for (; bounds.first != bounds.second; ++bounds.first)
3f563c84 4543 {
5c58de74 4544 const char *qualified = index.symbol_name_at (bounds.first->idx);
3f563c84
PA
4545
4546 if (!lookup_name_matcher.matches (qualified)
4547 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
9291a0cd
TT
4548 continue;
4549
5c58de74 4550 matches.push_back (bounds.first->idx);
3f563c84
PA
4551 }
4552
4553 std::sort (matches.begin (), matches.end ());
4554
4555 /* Finally call the callback, once per match. */
4556 ULONGEST prev = -1;
4557 for (offset_type idx : matches)
4558 {
4559 if (prev != idx)
4560 {
4561 match_callback (idx);
4562 prev = idx;
4563 }
4564 }
4565
4566 /* Above we use a type wider than idx's for 'prev', since 0 and
4567 (offset_type)-1 are both possible values. */
4568 static_assert (sizeof (prev) > sizeof (offset_type), "");
4569}
4570
c62446b1
PA
4571#if GDB_SELF_TEST
4572
4573namespace selftests { namespace dw2_expand_symtabs_matching {
4574
a3c5fafd
PA
4575/* A mock .gdb_index/.debug_names-like name index table, enough to
4576 exercise dw2_expand_symtabs_matching_symbol, which works with the
4577 mapped_index_base interface. Builds an index from the symbol list
4578 passed as parameter to the constructor. */
4579class mock_mapped_index : public mapped_index_base
c62446b1
PA
4580{
4581public:
a3c5fafd
PA
4582 mock_mapped_index (gdb::array_view<const char *> symbols)
4583 : m_symbol_table (symbols)
c62446b1
PA
4584 {}
4585
a3c5fafd 4586 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
c62446b1 4587
a3c5fafd 4588 /* Return the number of names in the symbol table. */
632e107b 4589 size_t symbol_name_count () const override
c62446b1 4590 {
a3c5fafd 4591 return m_symbol_table.size ();
c62446b1
PA
4592 }
4593
a3c5fafd 4594 /* Get the name of the symbol at IDX in the symbol table. */
632e107b 4595 const char *symbol_name_at (offset_type idx) const override
a3c5fafd
PA
4596 {
4597 return m_symbol_table[idx];
4598 }
c62446b1 4599
a3c5fafd
PA
4600private:
4601 gdb::array_view<const char *> m_symbol_table;
c62446b1
PA
4602};
4603
4604/* Convenience function that converts a NULL pointer to a "<null>"
4605 string, to pass to print routines. */
4606
4607static const char *
4608string_or_null (const char *str)
4609{
4610 return str != NULL ? str : "<null>";
4611}
4612
4613/* Check if a lookup_name_info built from
4614 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4615 index. EXPECTED_LIST is the list of expected matches, in expected
4616 matching order. If no match expected, then an empty list is
4617 specified. Returns true on success. On failure prints a warning
4618 indicating the file:line that failed, and returns false. */
4619
4620static bool
4621check_match (const char *file, int line,
4622 mock_mapped_index &mock_index,
4623 const char *name, symbol_name_match_type match_type,
4624 bool completion_mode,
4625 std::initializer_list<const char *> expected_list)
4626{
4627 lookup_name_info lookup_name (name, match_type, completion_mode);
4628
4629 bool matched = true;
4630
4631 auto mismatch = [&] (const char *expected_str,
4632 const char *got)
4633 {
4634 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4635 "expected=\"%s\", got=\"%s\"\n"),
4636 file, line,
4637 (match_type == symbol_name_match_type::FULL
4638 ? "FULL" : "WILD"),
4639 name, string_or_null (expected_str), string_or_null (got));
4640 matched = false;
4641 };
4642
4643 auto expected_it = expected_list.begin ();
4644 auto expected_end = expected_list.end ();
4645
a3c5fafd 4646 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
c62446b1
PA
4647 NULL, ALL_DOMAIN,
4648 [&] (offset_type idx)
4649 {
a3c5fafd 4650 const char *matched_name = mock_index.symbol_name_at (idx);
c62446b1
PA
4651 const char *expected_str
4652 = expected_it == expected_end ? NULL : *expected_it++;
4653
4654 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4655 mismatch (expected_str, matched_name);
4656 });
4657
4658 const char *expected_str
4659 = expected_it == expected_end ? NULL : *expected_it++;
4660 if (expected_str != NULL)
4661 mismatch (expected_str, NULL);
4662
4663 return matched;
4664}
4665
4666/* The symbols added to the mock mapped_index for testing (in
4667 canonical form). */
4668static const char *test_symbols[] = {
4669 "function",
4670 "std::bar",
4671 "std::zfunction",
4672 "std::zfunction2",
4673 "w1::w2",
4674 "ns::foo<char*>",
4675 "ns::foo<int>",
4676 "ns::foo<long>",
a20714ff
PA
4677 "ns2::tmpl<int>::foo2",
4678 "(anonymous namespace)::A::B::C",
c62446b1 4679
e1ef7d7a
PA
4680 /* These are used to check that the increment-last-char in the
4681 matching algorithm for completion doesn't match "t1_fund" when
4682 completing "t1_func". */
4683 "t1_func",
4684 "t1_func1",
4685 "t1_fund",
4686 "t1_fund1",
4687
4688 /* A UTF-8 name with multi-byte sequences to make sure that
4689 cp-name-parser understands this as a single identifier ("função"
4690 is "function" in PT). */
4691 u8"u8função",
4692
4693 /* \377 (0xff) is Latin1 'ÿ'. */
4694 "yfunc\377",
4695
4696 /* \377 (0xff) is Latin1 'ÿ'. */
4697 "\377",
4698 "\377\377123",
4699
c62446b1
PA
4700 /* A name with all sorts of complications. Starts with "z" to make
4701 it easier for the completion tests below. */
4702#define Z_SYM_NAME \
4703 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4704 "::tuple<(anonymous namespace)::ui*, " \
4705 "std::default_delete<(anonymous namespace)::ui>, void>"
4706
4707 Z_SYM_NAME
4708};
4709
a3c5fafd
PA
4710/* Returns true if the mapped_index_base::find_name_component_bounds
4711 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4712 in completion mode. */
5c58de74
PA
4713
4714static bool
a3c5fafd 4715check_find_bounds_finds (mapped_index_base &index,
5c58de74
PA
4716 const char *search_name,
4717 gdb::array_view<const char *> expected_syms)
4718{
4719 lookup_name_info lookup_name (search_name,
4720 symbol_name_match_type::FULL, true);
4721
4722 auto bounds = index.find_name_components_bounds (lookup_name);
4723
4724 size_t distance = std::distance (bounds.first, bounds.second);
4725 if (distance != expected_syms.size ())
4726 return false;
4727
4728 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4729 {
4730 auto nc_elem = bounds.first + exp_elem;
4731 const char *qualified = index.symbol_name_at (nc_elem->idx);
4732 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4733 return false;
4734 }
4735
4736 return true;
4737}
4738
4739/* Test the lower-level mapped_index::find_name_component_bounds
4740 method. */
4741
c62446b1 4742static void
5c58de74
PA
4743test_mapped_index_find_name_component_bounds ()
4744{
4745 mock_mapped_index mock_index (test_symbols);
4746
a3c5fafd 4747 mock_index.build_name_components ();
5c58de74
PA
4748
4749 /* Test the lower-level mapped_index::find_name_component_bounds
4750 method in completion mode. */
4751 {
4752 static const char *expected_syms[] = {
4753 "t1_func",
4754 "t1_func1",
5c58de74
PA
4755 };
4756
a3c5fafd 4757 SELF_CHECK (check_find_bounds_finds (mock_index,
5c58de74
PA
4758 "t1_func", expected_syms));
4759 }
4760
4761 /* Check that the increment-last-char in the name matching algorithm
4762 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4763 {
4764 static const char *expected_syms1[] = {
4765 "\377",
4766 "\377\377123",
4767 };
a3c5fafd 4768 SELF_CHECK (check_find_bounds_finds (mock_index,
5c58de74
PA
4769 "\377", expected_syms1));
4770
4771 static const char *expected_syms2[] = {
4772 "\377\377123",
4773 };
a3c5fafd 4774 SELF_CHECK (check_find_bounds_finds (mock_index,
5c58de74
PA
4775 "\377\377", expected_syms2));
4776 }
4777}
4778
4779/* Test dw2_expand_symtabs_matching_symbol. */
4780
4781static void
4782test_dw2_expand_symtabs_matching_symbol ()
c62446b1
PA
4783{
4784 mock_mapped_index mock_index (test_symbols);
4785
4786 /* We let all tests run until the end even if some fails, for debug
4787 convenience. */
4788 bool any_mismatch = false;
4789
4790 /* Create the expected symbols list (an initializer_list). Needed
4791 because lists have commas, and we need to pass them to CHECK,
4792 which is a macro. */
4793#define EXPECT(...) { __VA_ARGS__ }
4794
4795 /* Wrapper for check_match that passes down the current
4796 __FILE__/__LINE__. */
4797#define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4798 any_mismatch |= !check_match (__FILE__, __LINE__, \
4799 mock_index, \
4800 NAME, MATCH_TYPE, COMPLETION_MODE, \
4801 EXPECTED_LIST)
4802
4803 /* Identity checks. */
4804 for (const char *sym : test_symbols)
4805 {
4806 /* Should be able to match all existing symbols. */
4807 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4808 EXPECT (sym));
4809
4810 /* Should be able to match all existing symbols with
4811 parameters. */
4812 std::string with_params = std::string (sym) + "(int)";
4813 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4814 EXPECT (sym));
4815
4816 /* Should be able to match all existing symbols with
4817 parameters and qualifiers. */
4818 with_params = std::string (sym) + " ( int ) const";
4819 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4820 EXPECT (sym));
4821
4822 /* This should really find sym, but cp-name-parser.y doesn't
4823 know about lvalue/rvalue qualifiers yet. */
4824 with_params = std::string (sym) + " ( int ) &&";
4825 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4826 {});
4827 }
4828
e1ef7d7a
PA
4829 /* Check that the name matching algorithm for completion doesn't get
4830 confused with Latin1 'ÿ' / 0xff. */
4831 {
4832 static const char str[] = "\377";
4833 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4834 EXPECT ("\377", "\377\377123"));
4835 }
4836
4837 /* Check that the increment-last-char in the matching algorithm for
4838 completion doesn't match "t1_fund" when completing "t1_func". */
4839 {
4840 static const char str[] = "t1_func";
4841 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4842 EXPECT ("t1_func", "t1_func1"));
4843 }
4844
c62446b1
PA
4845 /* Check that completion mode works at each prefix of the expected
4846 symbol name. */
4847 {
4848 static const char str[] = "function(int)";
4849 size_t len = strlen (str);
4850 std::string lookup;
4851
4852 for (size_t i = 1; i < len; i++)
4853 {
4854 lookup.assign (str, i);
4855 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4856 EXPECT ("function"));
4857 }
4858 }
4859
4860 /* While "w" is a prefix of both components, the match function
4861 should still only be called once. */
4862 {
4863 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4864 EXPECT ("w1::w2"));
a20714ff
PA
4865 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4866 EXPECT ("w1::w2"));
c62446b1
PA
4867 }
4868
4869 /* Same, with a "complicated" symbol. */
4870 {
4871 static const char str[] = Z_SYM_NAME;
4872 size_t len = strlen (str);
4873 std::string lookup;
4874
4875 for (size_t i = 1; i < len; i++)
4876 {
4877 lookup.assign (str, i);
4878 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4879 EXPECT (Z_SYM_NAME));
4880 }
4881 }
4882
4883 /* In FULL mode, an incomplete symbol doesn't match. */
4884 {
4885 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4886 {});
4887 }
4888
4889 /* A complete symbol with parameters matches any overload, since the
4890 index has no overload info. */
4891 {
4892 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4893 EXPECT ("std::zfunction", "std::zfunction2"));
a20714ff
PA
4894 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4895 EXPECT ("std::zfunction", "std::zfunction2"));
4896 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4897 EXPECT ("std::zfunction", "std::zfunction2"));
c62446b1
PA
4898 }
4899
4900 /* Check that whitespace is ignored appropriately. A symbol with a
4901 template argument list. */
4902 {
4903 static const char expected[] = "ns::foo<int>";
4904 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4905 EXPECT (expected));
a20714ff
PA
4906 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4907 EXPECT (expected));
c62446b1
PA
4908 }
4909
4910 /* Check that whitespace is ignored appropriately. A symbol with a
4911 template argument list that includes a pointer. */
4912 {
4913 static const char expected[] = "ns::foo<char*>";
4914 /* Try both completion and non-completion modes. */
4915 static const bool completion_mode[2] = {false, true};
4916 for (size_t i = 0; i < 2; i++)
4917 {
4918 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4919 completion_mode[i], EXPECT (expected));
a20714ff
PA
4920 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4921 completion_mode[i], EXPECT (expected));
c62446b1
PA
4922
4923 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4924 completion_mode[i], EXPECT (expected));
a20714ff
PA
4925 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4926 completion_mode[i], EXPECT (expected));
c62446b1
PA
4927 }
4928 }
4929
4930 {
4931 /* Check method qualifiers are ignored. */
4932 static const char expected[] = "ns::foo<char*>";
4933 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4934 symbol_name_match_type::FULL, true, EXPECT (expected));
4935 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4936 symbol_name_match_type::FULL, true, EXPECT (expected));
a20714ff
PA
4937 CHECK_MATCH ("foo < char * > ( int ) const",
4938 symbol_name_match_type::WILD, true, EXPECT (expected));
4939 CHECK_MATCH ("foo < char * > ( int ) &&",
4940 symbol_name_match_type::WILD, true, EXPECT (expected));
c62446b1
PA
4941 }
4942
4943 /* Test lookup names that don't match anything. */
4944 {
a20714ff
PA
4945 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4946 {});
4947
c62446b1
PA
4948 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4949 {});
4950 }
4951
a20714ff
PA
4952 /* Some wild matching tests, exercising "(anonymous namespace)",
4953 which should not be confused with a parameter list. */
4954 {
4955 static const char *syms[] = {
4956 "A::B::C",
4957 "B::C",
4958 "C",
4959 "A :: B :: C ( int )",
4960 "B :: C ( int )",
4961 "C ( int )",
4962 };
4963
4964 for (const char *s : syms)
4965 {
4966 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4967 EXPECT ("(anonymous namespace)::A::B::C"));
4968 }
4969 }
4970
4971 {
4972 static const char expected[] = "ns2::tmpl<int>::foo2";
4973 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4974 EXPECT (expected));
4975 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4976 EXPECT (expected));
4977 }
4978
c62446b1
PA
4979 SELF_CHECK (!any_mismatch);
4980
4981#undef EXPECT
4982#undef CHECK_MATCH
4983}
4984
5c58de74
PA
4985static void
4986run_test ()
4987{
4988 test_mapped_index_find_name_component_bounds ();
4989 test_dw2_expand_symtabs_matching_symbol ();
4990}
4991
c62446b1
PA
4992}} // namespace selftests::dw2_expand_symtabs_matching
4993
4994#endif /* GDB_SELF_TEST */
4995
4b514bc8
JK
4996/* If FILE_MATCHER is NULL or if PER_CU has
4997 dwarf2_per_cu_quick_data::MARK set (see
4998 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4999 EXPANSION_NOTIFY on it. */
5000
5001static void
5002dw2_expand_symtabs_matching_one
5003 (struct dwarf2_per_cu_data *per_cu,
5004 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5005 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5006{
5007 if (file_matcher == NULL || per_cu->v.quick->mark)
5008 {
5009 bool symtab_was_null
5010 = (per_cu->v.quick->compunit_symtab == NULL);
5011
58f0c718 5012 dw2_instantiate_symtab (per_cu, false);
4b514bc8
JK
5013
5014 if (expansion_notify != NULL
5015 && symtab_was_null
5016 && per_cu->v.quick->compunit_symtab != NULL)
5017 expansion_notify (per_cu->v.quick->compunit_symtab);
5018 }
5019}
5020
3f563c84
PA
5021/* Helper for dw2_expand_matching symtabs. Called on each symbol
5022 matched, to expand corresponding CUs that were marked. IDX is the
5023 index of the symbol name that matched. */
5024
5025static void
5026dw2_expand_marked_cus
ed2dc618 5027 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
3f563c84
PA
5028 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5029 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5030 search_domain kind)
5031{
3f563c84
PA
5032 offset_type *vec, vec_len, vec_idx;
5033 bool global_seen = false;
ed2dc618 5034 mapped_index &index = *dwarf2_per_objfile->index_table;
3f563c84 5035
61920122 5036 vec = (offset_type *) (index.constant_pool
f00a2de2 5037 + MAYBE_SWAP (index.symbol_table[idx].vec));
61920122
PA
5038 vec_len = MAYBE_SWAP (vec[0]);
5039 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5040 {
61920122
PA
5041 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5042 /* This value is only valid for index versions >= 7. */
5043 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5044 gdb_index_symbol_kind symbol_kind =
5045 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5046 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5047 /* Only check the symbol attributes if they're present.
5048 Indices prior to version 7 don't record them,
5049 and indices >= 7 may elide them for certain symbols
5050 (gold does this). */
5051 int attrs_valid =
5052 (index.version >= 7
5053 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5054
5055 /* Work around gold/15646. */
5056 if (attrs_valid)
9291a0cd 5057 {
61920122
PA
5058 if (!is_static && global_seen)
5059 continue;
5060 if (!is_static)
5061 global_seen = true;
5062 }
3190f0c6 5063
61920122
PA
5064 /* Only check the symbol's kind if it has one. */
5065 if (attrs_valid)
5066 {
5067 switch (kind)
8943b874 5068 {
61920122
PA
5069 case VARIABLES_DOMAIN:
5070 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5071 continue;
5072 break;
5073 case FUNCTIONS_DOMAIN:
5074 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
8943b874 5075 continue;
61920122
PA
5076 break;
5077 case TYPES_DOMAIN:
5078 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5079 continue;
5080 break;
5081 default:
5082 break;
8943b874 5083 }
61920122 5084 }
8943b874 5085
61920122 5086 /* Don't crash on bad data. */
b76e467d 5087 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
b2bdb8cf 5088 + dwarf2_per_objfile->all_type_units.size ()))
61920122 5089 {
b98664d3 5090 complaint (_(".gdb_index entry has bad CU index"
ed2dc618
SM
5091 " [in module %s]"),
5092 objfile_name (dwarf2_per_objfile->objfile));
61920122
PA
5093 continue;
5094 }
5095
ff4c9fec 5096 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4b514bc8
JK
5097 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5098 expansion_notify);
61920122
PA
5099 }
5100}
5101
4b514bc8
JK
5102/* If FILE_MATCHER is non-NULL, set all the
5103 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5104 that match FILE_MATCHER. */
5105
61920122 5106static void
4b514bc8 5107dw_expand_symtabs_matching_file_matcher
ed2dc618
SM
5108 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5109 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
61920122 5110{
4b514bc8 5111 if (file_matcher == NULL)
61920122
PA
5112 return;
5113
4b514bc8
JK
5114 objfile *const objfile = dwarf2_per_objfile->objfile;
5115
5116 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5117 htab_eq_pointer,
5118 NULL, xcalloc, xfree));
5119 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
61920122
PA
5120 htab_eq_pointer,
5121 NULL, xcalloc, xfree));
61920122 5122
4b514bc8
JK
5123 /* The rule is CUs specify all the files, including those used by
5124 any TU, so there's no need to scan TUs here. */
61920122 5125
b76e467d 5126 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
927aa2e7 5127 {
927aa2e7
JK
5128 QUIT;
5129
5130 per_cu->v.quick->mark = 0;
5131
5132 /* We only need to look at symtabs not already expanded. */
5133 if (per_cu->v.quick->compunit_symtab)
5134 continue;
5135
b76e467d 5136 quick_file_names *file_data = dw2_get_file_names (per_cu);
927aa2e7
JK
5137 if (file_data == NULL)
5138 continue;
5139
5140 if (htab_find (visited_not_found.get (), file_data) != NULL)
5141 continue;
5142 else if (htab_find (visited_found.get (), file_data) != NULL)
5143 {
5144 per_cu->v.quick->mark = 1;
5145 continue;
5146 }
5147
b76e467d 5148 for (int j = 0; j < file_data->num_file_names; ++j)
927aa2e7
JK
5149 {
5150 const char *this_real_name;
5151
5152 if (file_matcher (file_data->file_names[j], false))
5153 {
5154 per_cu->v.quick->mark = 1;
5155 break;
5156 }
5157
5158 /* Before we invoke realpath, which can get expensive when many
5159 files are involved, do a quick comparison of the basenames. */
5160 if (!basenames_may_differ
5161 && !file_matcher (lbasename (file_data->file_names[j]),
5162 true))
5163 continue;
5164
5165 this_real_name = dw2_get_real_path (objfile, file_data, j);
5166 if (file_matcher (this_real_name, false))
5167 {
5168 per_cu->v.quick->mark = 1;
5169 break;
5170 }
5171 }
5172
b76e467d
SM
5173 void **slot = htab_find_slot (per_cu->v.quick->mark
5174 ? visited_found.get ()
5175 : visited_not_found.get (),
5176 file_data, INSERT);
927aa2e7
JK
5177 *slot = file_data;
5178 }
5179}
5180
5181static void
5182dw2_expand_symtabs_matching
5183 (struct objfile *objfile,
5184 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5185 const lookup_name_info &lookup_name,
5186 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5187 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5188 enum search_domain kind)
5189{
ed2dc618
SM
5190 struct dwarf2_per_objfile *dwarf2_per_objfile
5191 = get_dwarf2_per_objfile (objfile);
927aa2e7
JK
5192
5193 /* index_table is NULL if OBJF_READNOW. */
5194 if (!dwarf2_per_objfile->index_table)
5195 return;
5196
ed2dc618 5197 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
927aa2e7
JK
5198
5199 mapped_index &index = *dwarf2_per_objfile->index_table;
5200
5201 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5202 symbol_matcher,
5203 kind, [&] (offset_type idx)
5204 {
ed2dc618 5205 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
927aa2e7
JK
5206 expansion_notify, kind);
5207 });
5208}
5209
5210/* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5211 symtab. */
5212
5213static struct compunit_symtab *
5214recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5215 CORE_ADDR pc)
5216{
5217 int i;
5218
5219 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5220 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5221 return cust;
5222
5223 if (cust->includes == NULL)
5224 return NULL;
5225
5226 for (i = 0; cust->includes[i]; ++i)
5227 {
5228 struct compunit_symtab *s = cust->includes[i];
5229
5230 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5231 if (s != NULL)
5232 return s;
5233 }
5234
5235 return NULL;
5236}
5237
5238static struct compunit_symtab *
5239dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5240 struct bound_minimal_symbol msymbol,
5241 CORE_ADDR pc,
5242 struct obj_section *section,
5243 int warn_if_readin)
5244{
5245 struct dwarf2_per_cu_data *data;
5246 struct compunit_symtab *result;
5247
927aa2e7
JK
5248 if (!objfile->psymtabs_addrmap)
5249 return NULL;
5250
79748972
TT
5251 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5252 SECT_OFF_TEXT (objfile));
927aa2e7 5253 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
79748972 5254 pc - baseaddr);
927aa2e7
JK
5255 if (!data)
5256 return NULL;
5257
5258 if (warn_if_readin && data->v.quick->compunit_symtab)
5259 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5260 paddress (get_objfile_arch (objfile), pc));
5261
5262 result
58f0c718
TT
5263 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5264 false),
927aa2e7
JK
5265 pc);
5266 gdb_assert (result != NULL);
5267 return result;
5268}
5269
5270static void
5271dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5272 void *data, int need_fullname)
5273{
ed2dc618
SM
5274 struct dwarf2_per_objfile *dwarf2_per_objfile
5275 = get_dwarf2_per_objfile (objfile);
927aa2e7
JK
5276
5277 if (!dwarf2_per_objfile->filenames_cache)
5278 {
5279 dwarf2_per_objfile->filenames_cache.emplace ();
5280
5281 htab_up visited (htab_create_alloc (10,
5282 htab_hash_pointer, htab_eq_pointer,
5283 NULL, xcalloc, xfree));
5284
5285 /* The rule is CUs specify all the files, including those used
5286 by any TU, so there's no need to scan TUs here. We can
5287 ignore file names coming from already-expanded CUs. */
5288
b76e467d 5289 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
927aa2e7 5290 {
927aa2e7
JK
5291 if (per_cu->v.quick->compunit_symtab)
5292 {
5293 void **slot = htab_find_slot (visited.get (),
5294 per_cu->v.quick->file_names,
5295 INSERT);
5296
5297 *slot = per_cu->v.quick->file_names;
5298 }
5299 }
5300
b76e467d 5301 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
927aa2e7 5302 {
927aa2e7
JK
5303 /* We only need to look at symtabs not already expanded. */
5304 if (per_cu->v.quick->compunit_symtab)
5305 continue;
5306
b76e467d 5307 quick_file_names *file_data = dw2_get_file_names (per_cu);
927aa2e7
JK
5308 if (file_data == NULL)
5309 continue;
5310
b76e467d 5311 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
927aa2e7
JK
5312 if (*slot)
5313 {
5314 /* Already visited. */
5315 continue;
5316 }
5317 *slot = file_data;
5318
5319 for (int j = 0; j < file_data->num_file_names; ++j)
5320 {
5321 const char *filename = file_data->file_names[j];
5322 dwarf2_per_objfile->filenames_cache->seen (filename);
5323 }
5324 }
5325 }
5326
5327 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5328 {
5329 gdb::unique_xmalloc_ptr<char> this_real_name;
5330
5331 if (need_fullname)
5332 this_real_name = gdb_realpath (filename);
5333 (*fun) (filename, this_real_name.get (), data);
5334 });
5335}
5336
5337static int
5338dw2_has_symbols (struct objfile *objfile)
5339{
5340 return 1;
5341}
5342
5343const struct quick_symbol_functions dwarf2_gdb_index_functions =
5344{
5345 dw2_has_symbols,
5346 dw2_find_last_source_symtab,
5347 dw2_forget_cached_source_info,
5348 dw2_map_symtabs_matching_filename,
5349 dw2_lookup_symbol,
5350 dw2_print_stats,
5351 dw2_dump,
927aa2e7
JK
5352 dw2_expand_symtabs_for_function,
5353 dw2_expand_all_symtabs,
5354 dw2_expand_symtabs_with_fullname,
5355 dw2_map_matching_symbols,
5356 dw2_expand_symtabs_matching,
5357 dw2_find_pc_sect_compunit_symtab,
5358 NULL,
5359 dw2_map_symbol_filenames
5360};
5361
5362/* DWARF-5 debug_names reader. */
5363
5364/* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5365static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5366
5367/* A helper function that reads the .debug_names section in SECTION
5368 and fills in MAP. FILENAME is the name of the file containing the
5369 section; it is used for error reporting.
5370
5371 Returns true if all went well, false otherwise. */
5372
5373static bool
5374read_debug_names_from_section (struct objfile *objfile,
5375 const char *filename,
5376 struct dwarf2_section_info *section,
5377 mapped_debug_names &map)
5378{
5379 if (dwarf2_section_empty_p (section))
5380 return false;
5381
5382 /* Older elfutils strip versions could keep the section in the main
5383 executable while splitting it for the separate debug info file. */
5384 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5385 return false;
5386
5387 dwarf2_read_section (objfile, section);
5388
5389 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5390
5391 const gdb_byte *addr = section->buffer;
5392
5393 bfd *const abfd = get_section_bfd_owner (section);
5394
5395 unsigned int bytes_read;
5396 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5397 addr += bytes_read;
5398
5399 map.dwarf5_is_dwarf64 = bytes_read != 4;
5400 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5401 if (bytes_read + length != section->size)
5402 {
5403 /* There may be multiple per-CU indices. */
5404 warning (_("Section .debug_names in %s length %s does not match "
5405 "section length %s, ignoring .debug_names."),
5406 filename, plongest (bytes_read + length),
5407 pulongest (section->size));
5408 return false;
5409 }
5410
5411 /* The version number. */
5412 uint16_t version = read_2_bytes (abfd, addr);
5413 addr += 2;
5414 if (version != 5)
5415 {
5416 warning (_("Section .debug_names in %s has unsupported version %d, "
5417 "ignoring .debug_names."),
5418 filename, version);
5419 return false;
5420 }
5421
5422 /* Padding. */
5423 uint16_t padding = read_2_bytes (abfd, addr);
5424 addr += 2;
5425 if (padding != 0)
5426 {
5427 warning (_("Section .debug_names in %s has unsupported padding %d, "
5428 "ignoring .debug_names."),
5429 filename, padding);
5430 return false;
5431 }
5432
5433 /* comp_unit_count - The number of CUs in the CU list. */
5434 map.cu_count = read_4_bytes (abfd, addr);
5435 addr += 4;
5436
5437 /* local_type_unit_count - The number of TUs in the local TU
5438 list. */
5439 map.tu_count = read_4_bytes (abfd, addr);
5440 addr += 4;
5441
5442 /* foreign_type_unit_count - The number of TUs in the foreign TU
5443 list. */
5444 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5445 addr += 4;
5446 if (foreign_tu_count != 0)
5447 {
5448 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5449 "ignoring .debug_names."),
5450 filename, static_cast<unsigned long> (foreign_tu_count));
5451 return false;
5452 }
5453
5454 /* bucket_count - The number of hash buckets in the hash lookup
5455 table. */
5456 map.bucket_count = read_4_bytes (abfd, addr);
5457 addr += 4;
5458
5459 /* name_count - The number of unique names in the index. */
5460 map.name_count = read_4_bytes (abfd, addr);
5461 addr += 4;
5462
5463 /* abbrev_table_size - The size in bytes of the abbreviations
5464 table. */
5465 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5466 addr += 4;
5467
5468 /* augmentation_string_size - The size in bytes of the augmentation
5469 string. This value is rounded up to a multiple of 4. */
5470 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5471 addr += 4;
5472 map.augmentation_is_gdb = ((augmentation_string_size
5473 == sizeof (dwarf5_augmentation))
5474 && memcmp (addr, dwarf5_augmentation,
5475 sizeof (dwarf5_augmentation)) == 0);
5476 augmentation_string_size += (-augmentation_string_size) & 3;
5477 addr += augmentation_string_size;
5478
5479 /* List of CUs */
5480 map.cu_table_reordered = addr;
5481 addr += map.cu_count * map.offset_size;
5482
5483 /* List of Local TUs */
5484 map.tu_table_reordered = addr;
5485 addr += map.tu_count * map.offset_size;
5486
5487 /* Hash Lookup Table */
5488 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5489 addr += map.bucket_count * 4;
5490 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5491 addr += map.name_count * 4;
5492
5493 /* Name Table */
5494 map.name_table_string_offs_reordered = addr;
5495 addr += map.name_count * map.offset_size;
5496 map.name_table_entry_offs_reordered = addr;
5497 addr += map.name_count * map.offset_size;
5498
5499 const gdb_byte *abbrev_table_start = addr;
5500 for (;;)
5501 {
927aa2e7
JK
5502 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5503 addr += bytes_read;
5504 if (index_num == 0)
5505 break;
5506
5507 const auto insertpair
5508 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5509 if (!insertpair.second)
5510 {
5511 warning (_("Section .debug_names in %s has duplicate index %s, "
5512 "ignoring .debug_names."),
5513 filename, pulongest (index_num));
5514 return false;
5515 }
5516 mapped_debug_names::index_val &indexval = insertpair.first->second;
5517 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5518 addr += bytes_read;
5519
5520 for (;;)
5521 {
5522 mapped_debug_names::index_val::attr attr;
5523 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5524 addr += bytes_read;
5525 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5526 addr += bytes_read;
5527 if (attr.form == DW_FORM_implicit_const)
5528 {
5529 attr.implicit_const = read_signed_leb128 (abfd, addr,
5530 &bytes_read);
5531 addr += bytes_read;
5532 }
5533 if (attr.dw_idx == 0 && attr.form == 0)
5534 break;
5535 indexval.attr_vec.push_back (std::move (attr));
5536 }
5537 }
5538 if (addr != abbrev_table_start + abbrev_table_size)
5539 {
5540 warning (_("Section .debug_names in %s has abbreviation_table "
5541 "of size %zu vs. written as %u, ignoring .debug_names."),
5542 filename, addr - abbrev_table_start, abbrev_table_size);
5543 return false;
5544 }
5545 map.entry_pool = addr;
5546
5547 return true;
5548}
5549
5550/* A helper for create_cus_from_debug_names that handles the MAP's CU
5551 list. */
5552
5553static void
ed2dc618 5554create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
927aa2e7
JK
5555 const mapped_debug_names &map,
5556 dwarf2_section_info &section,
b76e467d 5557 bool is_dwz)
927aa2e7
JK
5558{
5559 sect_offset sect_off_prev;
5560 for (uint32_t i = 0; i <= map.cu_count; ++i)
5561 {
5562 sect_offset sect_off_next;
5563 if (i < map.cu_count)
5564 {
5565 sect_off_next
5566 = (sect_offset) (extract_unsigned_integer
5567 (map.cu_table_reordered + i * map.offset_size,
5568 map.offset_size,
5569 map.dwarf5_byte_order));
5570 }
5571 else
5572 sect_off_next = (sect_offset) section.size;
5573 if (i >= 1)
5574 {
5575 const ULONGEST length = sect_off_next - sect_off_prev;
b76e467d 5576 dwarf2_per_cu_data *per_cu
ed2dc618 5577 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
927aa2e7 5578 sect_off_prev, length);
b76e467d 5579 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
927aa2e7
JK
5580 }
5581 sect_off_prev = sect_off_next;
5582 }
5583}
5584
5585/* Read the CU list from the mapped index, and use it to create all
ed2dc618 5586 the CU objects for this dwarf2_per_objfile. */
927aa2e7
JK
5587
5588static void
ed2dc618 5589create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
927aa2e7
JK
5590 const mapped_debug_names &map,
5591 const mapped_debug_names &dwz_map)
5592{
b76e467d
SM
5593 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5594 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
927aa2e7 5595
ed2dc618
SM
5596 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5597 dwarf2_per_objfile->info,
b76e467d 5598 false /* is_dwz */);
927aa2e7
JK
5599
5600 if (dwz_map.cu_count == 0)
5601 return;
5602
ed2dc618
SM
5603 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5604 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
b76e467d 5605 true /* is_dwz */);
927aa2e7
JK
5606}
5607
5608/* Read .debug_names. If everything went ok, initialize the "quick"
5609 elements of all the CUs and return true. Otherwise, return false. */
5610
5611static bool
ed2dc618 5612dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
927aa2e7 5613{
22ca247e
TT
5614 std::unique_ptr<mapped_debug_names> map
5615 (new mapped_debug_names (dwarf2_per_objfile));
ed2dc618
SM
5616 mapped_debug_names dwz_map (dwarf2_per_objfile);
5617 struct objfile *objfile = dwarf2_per_objfile->objfile;
927aa2e7
JK
5618
5619 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5620 &dwarf2_per_objfile->debug_names,
22ca247e 5621 *map))
927aa2e7
JK
5622 return false;
5623
5624 /* Don't use the index if it's empty. */
22ca247e 5625 if (map->name_count == 0)
927aa2e7
JK
5626 return false;
5627
5628 /* If there is a .dwz file, read it so we can get its CU list as
5629 well. */
ed2dc618 5630 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
927aa2e7
JK
5631 if (dwz != NULL)
5632 {
5633 if (!read_debug_names_from_section (objfile,
5634 bfd_get_filename (dwz->dwz_bfd),
5635 &dwz->debug_names, dwz_map))
5636 {
5637 warning (_("could not read '.debug_names' section from %s; skipping"),
5638 bfd_get_filename (dwz->dwz_bfd));
5639 return false;
5640 }
5641 }
5642
22ca247e 5643 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
927aa2e7 5644
22ca247e 5645 if (map->tu_count != 0)
927aa2e7
JK
5646 {
5647 /* We can only handle a single .debug_types when we have an
5648 index. */
5649 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5650 return false;
5651
5652 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5653 dwarf2_per_objfile->types, 0);
5654
5655 create_signatured_type_table_from_debug_names
22ca247e 5656 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
927aa2e7
JK
5657 }
5658
ed2dc618
SM
5659 create_addrmap_from_aranges (dwarf2_per_objfile,
5660 &dwarf2_per_objfile->debug_aranges);
927aa2e7 5661
22ca247e 5662 dwarf2_per_objfile->debug_names_table = std::move (map);
927aa2e7
JK
5663 dwarf2_per_objfile->using_index = 1;
5664 dwarf2_per_objfile->quick_file_names_table =
b76e467d 5665 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
927aa2e7
JK
5666
5667 return true;
5668}
5669
927aa2e7
JK
5670/* Type used to manage iterating over all CUs looking for a symbol for
5671 .debug_names. */
5672
5673class dw2_debug_names_iterator
5674{
5675public:
5676 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5677 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5678 dw2_debug_names_iterator (const mapped_debug_names &map,
5679 bool want_specific_block,
5680 block_enum block_index, domain_enum domain,
5681 const char *name)
5682 : m_map (map), m_want_specific_block (want_specific_block),
5683 m_block_index (block_index), m_domain (domain),
5684 m_addr (find_vec_in_debug_names (map, name))
5685 {}
5686
5687 dw2_debug_names_iterator (const mapped_debug_names &map,
5688 search_domain search, uint32_t namei)
5689 : m_map (map),
5690 m_search (search),
5691 m_addr (find_vec_in_debug_names (map, namei))
5692 {}
5693
5694 /* Return the next matching CU or NULL if there are no more. */
5695 dwarf2_per_cu_data *next ();
5696
5697private:
5698 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5699 const char *name);
5700 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5701 uint32_t namei);
5702
5703 /* The internalized form of .debug_names. */
5704 const mapped_debug_names &m_map;
5705
5706 /* If true, only look for symbols that match BLOCK_INDEX. */
5707 const bool m_want_specific_block = false;
5708
5709 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5710 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5711 value. */
5712 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5713
5714 /* The kind of symbol we're looking for. */
5715 const domain_enum m_domain = UNDEF_DOMAIN;
5716 const search_domain m_search = ALL_DOMAIN;
5717
5718 /* The list of CUs from the index entry of the symbol, or NULL if
5719 not found. */
5720 const gdb_byte *m_addr;
5721};
5722
5723const char *
5724mapped_debug_names::namei_to_name (uint32_t namei) const
5725{
5726 const ULONGEST namei_string_offs
5727 = extract_unsigned_integer ((name_table_string_offs_reordered
5728 + namei * offset_size),
5729 offset_size,
5730 dwarf5_byte_order);
5731 return read_indirect_string_at_offset
ed2dc618 5732 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
927aa2e7
JK
5733}
5734
5735/* Find a slot in .debug_names for the object named NAME. If NAME is
5736 found, return pointer to its pool data. If NAME cannot be found,
5737 return NULL. */
5738
5739const gdb_byte *
5740dw2_debug_names_iterator::find_vec_in_debug_names
5741 (const mapped_debug_names &map, const char *name)
5742{
5743 int (*cmp) (const char *, const char *);
5744
5745 if (current_language->la_language == language_cplus
5746 || current_language->la_language == language_fortran
5747 || current_language->la_language == language_d)
5748 {
5749 /* NAME is already canonical. Drop any qualifiers as
5750 .debug_names does not contain any. */
5751
5752 if (strchr (name, '(') != NULL)
5753 {
5754 gdb::unique_xmalloc_ptr<char> without_params
5755 = cp_remove_params (name);
5756
5757 if (without_params != NULL)
5758 {
5759 name = without_params.get();
5760 }
5761 }
5762 }
5763
5764 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5765
5766 const uint32_t full_hash = dwarf5_djb_hash (name);
5767 uint32_t namei
5768 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5769 (map.bucket_table_reordered
5770 + (full_hash % map.bucket_count)), 4,
5771 map.dwarf5_byte_order);
5772 if (namei == 0)
5773 return NULL;
5774 --namei;
5775 if (namei >= map.name_count)
5776 {
b98664d3 5777 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
927aa2e7
JK
5778 "[in module %s]"),
5779 namei, map.name_count,
ed2dc618 5780 objfile_name (map.dwarf2_per_objfile->objfile));
927aa2e7
JK
5781 return NULL;
5782 }
5783
5784 for (;;)
5785 {
5786 const uint32_t namei_full_hash
5787 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5788 (map.hash_table_reordered + namei), 4,
5789 map.dwarf5_byte_order);
5790 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5791 return NULL;
5792
5793 if (full_hash == namei_full_hash)
5794 {
5795 const char *const namei_string = map.namei_to_name (namei);
5796
5797#if 0 /* An expensive sanity check. */
5798 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5799 {
b98664d3 5800 complaint (_("Wrong .debug_names hash for string at index %u "
927aa2e7
JK
5801 "[in module %s]"),
5802 namei, objfile_name (dwarf2_per_objfile->objfile));
5803 return NULL;
5804 }
5805#endif
5806
5807 if (cmp (namei_string, name) == 0)
5808 {
5809 const ULONGEST namei_entry_offs
5810 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5811 + namei * map.offset_size),
5812 map.offset_size, map.dwarf5_byte_order);
5813 return map.entry_pool + namei_entry_offs;
5814 }
5815 }
5816
5817 ++namei;
5818 if (namei >= map.name_count)
5819 return NULL;
5820 }
5821}
5822
5823const gdb_byte *
5824dw2_debug_names_iterator::find_vec_in_debug_names
5825 (const mapped_debug_names &map, uint32_t namei)
5826{
5827 if (namei >= map.name_count)
5828 {
b98664d3 5829 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
927aa2e7
JK
5830 "[in module %s]"),
5831 namei, map.name_count,
ed2dc618 5832 objfile_name (map.dwarf2_per_objfile->objfile));
927aa2e7
JK
5833 return NULL;
5834 }
5835
5836 const ULONGEST namei_entry_offs
5837 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5838 + namei * map.offset_size),
5839 map.offset_size, map.dwarf5_byte_order);
5840 return map.entry_pool + namei_entry_offs;
5841}
5842
5843/* See dw2_debug_names_iterator. */
5844
5845dwarf2_per_cu_data *
5846dw2_debug_names_iterator::next ()
5847{
5848 if (m_addr == NULL)
5849 return NULL;
5850
ed2dc618
SM
5851 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5852 struct objfile *objfile = dwarf2_per_objfile->objfile;
5853 bfd *const abfd = objfile->obfd;
927aa2e7
JK
5854
5855 again:
5856
5857 unsigned int bytes_read;
5858 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5859 m_addr += bytes_read;
5860 if (abbrev == 0)
5861 return NULL;
5862
5863 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5864 if (indexval_it == m_map.abbrev_map.cend ())
5865 {
b98664d3 5866 complaint (_("Wrong .debug_names undefined abbrev code %s "
927aa2e7 5867 "[in module %s]"),
ed2dc618 5868 pulongest (abbrev), objfile_name (objfile));
927aa2e7
JK
5869 return NULL;
5870 }
5871 const mapped_debug_names::index_val &indexval = indexval_it->second;
5872 bool have_is_static = false;
5873 bool is_static;
5874 dwarf2_per_cu_data *per_cu = NULL;
5875 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5876 {
5877 ULONGEST ull;
5878 switch (attr.form)
5879 {
5880 case DW_FORM_implicit_const:
5881 ull = attr.implicit_const;
5882 break;
5883 case DW_FORM_flag_present:
5884 ull = 1;
5885 break;
5886 case DW_FORM_udata:
5887 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5888 m_addr += bytes_read;
5889 break;
5890 default:
b98664d3 5891 complaint (_("Unsupported .debug_names form %s [in module %s]"),
927aa2e7 5892 dwarf_form_name (attr.form),
ed2dc618 5893 objfile_name (objfile));
927aa2e7
JK
5894 return NULL;
5895 }
5896 switch (attr.dw_idx)
5897 {
5898 case DW_IDX_compile_unit:
5899 /* Don't crash on bad data. */
b76e467d 5900 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
927aa2e7 5901 {
b98664d3 5902 complaint (_(".debug_names entry has bad CU index %s"
927aa2e7
JK
5903 " [in module %s]"),
5904 pulongest (ull),
5905 objfile_name (dwarf2_per_objfile->objfile));
5906 continue;
5907 }
ff4c9fec 5908 per_cu = dwarf2_per_objfile->get_cutu (ull);
927aa2e7 5909 break;
8af5c486
JK
5910 case DW_IDX_type_unit:
5911 /* Don't crash on bad data. */
b2bdb8cf 5912 if (ull >= dwarf2_per_objfile->all_type_units.size ())
8af5c486 5913 {
b98664d3 5914 complaint (_(".debug_names entry has bad TU index %s"
8af5c486
JK
5915 " [in module %s]"),
5916 pulongest (ull),
5917 objfile_name (dwarf2_per_objfile->objfile));
5918 continue;
5919 }
ff4c9fec 5920 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
8af5c486 5921 break;
927aa2e7
JK
5922 case DW_IDX_GNU_internal:
5923 if (!m_map.augmentation_is_gdb)
5924 break;
5925 have_is_static = true;
5926 is_static = true;
5927 break;
5928 case DW_IDX_GNU_external:
5929 if (!m_map.augmentation_is_gdb)
5930 break;
5931 have_is_static = true;
5932 is_static = false;
5933 break;
5934 }
5935 }
5936
5937 /* Skip if already read in. */
5938 if (per_cu->v.quick->compunit_symtab)
5939 goto again;
5940
5941 /* Check static vs global. */
5942 if (have_is_static)
5943 {
5944 const bool want_static = m_block_index != GLOBAL_BLOCK;
5945 if (m_want_specific_block && want_static != is_static)
5946 goto again;
5947 }
5948
5949 /* Match dw2_symtab_iter_next, symbol_kind
5950 and debug_names::psymbol_tag. */
5951 switch (m_domain)
5952 {
5953 case VAR_DOMAIN:
5954 switch (indexval.dwarf_tag)
5955 {
5956 case DW_TAG_variable:
5957 case DW_TAG_subprogram:
5958 /* Some types are also in VAR_DOMAIN. */
5959 case DW_TAG_typedef:
5960 case DW_TAG_structure_type:
5961 break;
5962 default:
5963 goto again;
5964 }
5965 break;
5966 case STRUCT_DOMAIN:
5967 switch (indexval.dwarf_tag)
5968 {
5969 case DW_TAG_typedef:
5970 case DW_TAG_structure_type:
5971 break;
5972 default:
5973 goto again;
5974 }
5975 break;
5976 case LABEL_DOMAIN:
5977 switch (indexval.dwarf_tag)
5978 {
5979 case 0:
5980 case DW_TAG_variable:
5981 break;
5982 default:
5983 goto again;
5984 }
5985 break;
5986 default:
5987 break;
5988 }
5989
5990 /* Match dw2_expand_symtabs_matching, symbol_kind and
5991 debug_names::psymbol_tag. */
5992 switch (m_search)
4b514bc8 5993 {
927aa2e7
JK
5994 case VARIABLES_DOMAIN:
5995 switch (indexval.dwarf_tag)
4b514bc8 5996 {
927aa2e7
JK
5997 case DW_TAG_variable:
5998 break;
5999 default:
6000 goto again;
4b514bc8 6001 }
927aa2e7
JK
6002 break;
6003 case FUNCTIONS_DOMAIN:
6004 switch (indexval.dwarf_tag)
4b514bc8 6005 {
927aa2e7
JK
6006 case DW_TAG_subprogram:
6007 break;
6008 default:
6009 goto again;
4b514bc8 6010 }
927aa2e7
JK
6011 break;
6012 case TYPES_DOMAIN:
6013 switch (indexval.dwarf_tag)
6014 {
6015 case DW_TAG_typedef:
6016 case DW_TAG_structure_type:
6017 break;
6018 default:
6019 goto again;
6020 }
6021 break;
6022 default:
6023 break;
4b514bc8 6024 }
927aa2e7
JK
6025
6026 return per_cu;
4b514bc8 6027}
61920122 6028
927aa2e7
JK
6029static struct compunit_symtab *
6030dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6031 const char *name, domain_enum domain)
4b514bc8 6032{
927aa2e7 6033 const block_enum block_index = static_cast<block_enum> (block_index_int);
ed2dc618
SM
6034 struct dwarf2_per_objfile *dwarf2_per_objfile
6035 = get_dwarf2_per_objfile (objfile);
61920122 6036
927aa2e7
JK
6037 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6038 if (!mapp)
61920122 6039 {
927aa2e7
JK
6040 /* index is NULL if OBJF_READNOW. */
6041 return NULL;
6042 }
6043 const auto &map = *mapp;
9291a0cd 6044
927aa2e7
JK
6045 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6046 block_index, domain, name);
9703b513 6047
927aa2e7
JK
6048 struct compunit_symtab *stab_best = NULL;
6049 struct dwarf2_per_cu_data *per_cu;
6050 while ((per_cu = iter.next ()) != NULL)
6051 {
6052 struct symbol *sym, *with_opaque = NULL;
58f0c718 6053 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
927aa2e7
JK
6054 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6055 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
9703b513 6056
927aa2e7
JK
6057 sym = block_find_symbol (block, name, domain,
6058 block_find_non_opaque_type_preferred,
6059 &with_opaque);
9703b513 6060
927aa2e7
JK
6061 /* Some caution must be observed with overloaded functions and
6062 methods, since the index will not contain any overload
6063 information (but NAME might contain it). */
a3ec0bb1 6064
927aa2e7
JK
6065 if (sym != NULL
6066 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6067 return stab;
6068 if (with_opaque != NULL
6069 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6070 stab_best = stab;
9703b513 6071
927aa2e7 6072 /* Keep looking through other CUs. */
9703b513
TT
6073 }
6074
927aa2e7 6075 return stab_best;
9703b513
TT
6076}
6077
927aa2e7
JK
6078/* This dumps minimal information about .debug_names. It is called
6079 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6080 uses this to verify that .debug_names has been loaded. */
9291a0cd 6081
927aa2e7
JK
6082static void
6083dw2_debug_names_dump (struct objfile *objfile)
6084{
ed2dc618
SM
6085 struct dwarf2_per_objfile *dwarf2_per_objfile
6086 = get_dwarf2_per_objfile (objfile);
6087
927aa2e7
JK
6088 gdb_assert (dwarf2_per_objfile->using_index);
6089 printf_filtered (".debug_names:");
6090 if (dwarf2_per_objfile->debug_names_table)
6091 printf_filtered (" exists\n");
6092 else
6093 printf_filtered (" faked for \"readnow\"\n");
6094 printf_filtered ("\n");
9291a0cd
TT
6095}
6096
9291a0cd 6097static void
927aa2e7
JK
6098dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6099 const char *func_name)
9291a0cd 6100{
ed2dc618
SM
6101 struct dwarf2_per_objfile *dwarf2_per_objfile
6102 = get_dwarf2_per_objfile (objfile);
ae2de4f8 6103
927aa2e7
JK
6104 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6105 if (dwarf2_per_objfile->debug_names_table)
24c79950 6106 {
927aa2e7 6107 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
24c79950 6108
927aa2e7
JK
6109 /* Note: It doesn't matter what we pass for block_index here. */
6110 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6111 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
24c79950 6112
927aa2e7
JK
6113 struct dwarf2_per_cu_data *per_cu;
6114 while ((per_cu = iter.next ()) != NULL)
58f0c718 6115 dw2_instantiate_symtab (per_cu, false);
927aa2e7
JK
6116 }
6117}
24c79950 6118
927aa2e7
JK
6119static void
6120dw2_debug_names_expand_symtabs_matching
6121 (struct objfile *objfile,
6122 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6123 const lookup_name_info &lookup_name,
6124 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6125 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6126 enum search_domain kind)
6127{
ed2dc618
SM
6128 struct dwarf2_per_objfile *dwarf2_per_objfile
6129 = get_dwarf2_per_objfile (objfile);
9291a0cd 6130
927aa2e7
JK
6131 /* debug_names_table is NULL if OBJF_READNOW. */
6132 if (!dwarf2_per_objfile->debug_names_table)
6133 return;
9291a0cd 6134
ed2dc618 6135 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
24c79950 6136
44ed8f3e 6137 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
bbf2f4df 6138
44ed8f3e
PA
6139 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6140 symbol_matcher,
6141 kind, [&] (offset_type namei)
927aa2e7 6142 {
927aa2e7
JK
6143 /* The name was matched, now expand corresponding CUs that were
6144 marked. */
6145 dw2_debug_names_iterator iter (map, kind, namei);
bbf2f4df 6146
927aa2e7
JK
6147 struct dwarf2_per_cu_data *per_cu;
6148 while ((per_cu = iter.next ()) != NULL)
6149 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6150 expansion_notify);
44ed8f3e 6151 });
9291a0cd
TT
6152}
6153
927aa2e7 6154const struct quick_symbol_functions dwarf2_debug_names_functions =
9291a0cd
TT
6155{
6156 dw2_has_symbols,
6157 dw2_find_last_source_symtab,
6158 dw2_forget_cached_source_info,
f8eba3c6 6159 dw2_map_symtabs_matching_filename,
927aa2e7 6160 dw2_debug_names_lookup_symbol,
9291a0cd 6161 dw2_print_stats,
927aa2e7 6162 dw2_debug_names_dump,
927aa2e7 6163 dw2_debug_names_expand_symtabs_for_function,
9291a0cd 6164 dw2_expand_all_symtabs,
652a8996 6165 dw2_expand_symtabs_with_fullname,
40658b94 6166 dw2_map_matching_symbols,
927aa2e7 6167 dw2_debug_names_expand_symtabs_matching,
43f3e411 6168 dw2_find_pc_sect_compunit_symtab,
71a3c369 6169 NULL,
9291a0cd
TT
6170 dw2_map_symbol_filenames
6171};
6172
4485a1c1
SM
6173/* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6174 to either a dwarf2_per_objfile or dwz_file object. */
6175
6176template <typename T>
6177static gdb::array_view<const gdb_byte>
6178get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6179{
6180 dwarf2_section_info *section = &section_owner->gdb_index;
6181
6182 if (dwarf2_section_empty_p (section))
6183 return {};
6184
6185 /* Older elfutils strip versions could keep the section in the main
6186 executable while splitting it for the separate debug info file. */
6187 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6188 return {};
6189
6190 dwarf2_read_section (obj, section);
6191
6192 return {section->buffer, section->size};
6193}
6194
87d6a7aa
SM
6195/* Lookup the index cache for the contents of the index associated to
6196 DWARF2_OBJ. */
6197
6198static gdb::array_view<const gdb_byte>
6199get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6200{
6201 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6202 if (build_id == nullptr)
6203 return {};
6204
6205 return global_index_cache.lookup_gdb_index (build_id,
6206 &dwarf2_obj->index_cache_res);
6207}
6208
6209/* Same as the above, but for DWZ. */
6210
6211static gdb::array_view<const gdb_byte>
6212get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6213{
6214 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6215 if (build_id == nullptr)
6216 return {};
6217
6218 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6219}
6220
3c0aa29a 6221/* See symfile.h. */
9291a0cd 6222
3c0aa29a
PA
6223bool
6224dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
9291a0cd 6225{
ed2dc618
SM
6226 struct dwarf2_per_objfile *dwarf2_per_objfile
6227 = get_dwarf2_per_objfile (objfile);
6228
9291a0cd
TT
6229 /* If we're about to read full symbols, don't bother with the
6230 indices. In this case we also don't care if some other debug
6231 format is making psymtabs, because they are all about to be
6232 expanded anyway. */
6233 if ((objfile->flags & OBJF_READNOW))
6234 {
9291a0cd 6235 dwarf2_per_objfile->using_index = 1;
ed2dc618
SM
6236 create_all_comp_units (dwarf2_per_objfile);
6237 create_all_type_units (dwarf2_per_objfile);
b76e467d
SM
6238 dwarf2_per_objfile->quick_file_names_table
6239 = create_quick_file_names_table
6240 (dwarf2_per_objfile->all_comp_units.size ());
9291a0cd 6241
b76e467d 6242 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
b2bdb8cf 6243 + dwarf2_per_objfile->all_type_units.size ()); ++i)
9291a0cd 6244 {
ff4c9fec 6245 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
9291a0cd 6246
e254ef6a
DE
6247 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6248 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
6249 }
6250
6251 /* Return 1 so that gdb sees the "quick" functions. However,
6252 these functions will be no-ops because we will have expanded
6253 all symtabs. */
3c0aa29a
PA
6254 *index_kind = dw_index_kind::GDB_INDEX;
6255 return true;
9291a0cd
TT
6256 }
6257
ed2dc618 6258 if (dwarf2_read_debug_names (dwarf2_per_objfile))
3c0aa29a
PA
6259 {
6260 *index_kind = dw_index_kind::DEBUG_NAMES;
6261 return true;
6262 }
927aa2e7 6263
4485a1c1
SM
6264 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6265 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6266 get_gdb_index_contents_from_section<dwz_file>))
3c0aa29a
PA
6267 {
6268 *index_kind = dw_index_kind::GDB_INDEX;
6269 return true;
6270 }
9291a0cd 6271
87d6a7aa
SM
6272 /* ... otherwise, try to find the index in the index cache. */
6273 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6274 get_gdb_index_contents_from_cache,
6275 get_gdb_index_contents_from_cache_dwz))
6276 {
6277 global_index_cache.hit ();
6278 *index_kind = dw_index_kind::GDB_INDEX;
6279 return true;
6280 }
6281
6282 global_index_cache.miss ();
3c0aa29a 6283 return false;
9291a0cd
TT
6284}
6285
6286\f
6287
dce234bc
PP
6288/* Build a partial symbol table. */
6289
6290void
f29dff0a 6291dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 6292{
ed2dc618
SM
6293 struct dwarf2_per_objfile *dwarf2_per_objfile
6294 = get_dwarf2_per_objfile (objfile);
c9bf0622 6295
af5bf4ad
SM
6296 if (objfile->global_psymbols.capacity () == 0
6297 && objfile->static_psymbols.capacity () == 0)
6298 init_psymbol_list (objfile, 1024);
c906108c 6299
492d29ea 6300 TRY
c9bf0622
TT
6301 {
6302 /* This isn't really ideal: all the data we allocate on the
6303 objfile's obstack is still uselessly kept around. However,
6304 freeing it seems unsafe. */
906768f9 6305 psymtab_discarder psymtabs (objfile);
ed2dc618 6306 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
906768f9 6307 psymtabs.keep ();
87d6a7aa
SM
6308
6309 /* (maybe) store an index in the cache. */
6310 global_index_cache.store (dwarf2_per_objfile);
c9bf0622 6311 }
492d29ea
PA
6312 CATCH (except, RETURN_MASK_ERROR)
6313 {
6314 exception_print (gdb_stderr, except);
6315 }
6316 END_CATCH
c906108c 6317}
c906108c 6318
1ce1cefd
DE
6319/* Return the total length of the CU described by HEADER. */
6320
6321static unsigned int
6322get_cu_length (const struct comp_unit_head *header)
6323{
6324 return header->initial_length_size + header->length;
6325}
6326
9c541725 6327/* Return TRUE if SECT_OFF is within CU_HEADER. */
45452591 6328
9c541725
PA
6329static inline bool
6330offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
45452591 6331{
9c541725
PA
6332 sect_offset bottom = cu_header->sect_off;
6333 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
9a619af0 6334
9c541725 6335 return sect_off >= bottom && sect_off < top;
45452591
DE
6336}
6337
3b80fe9b
DE
6338/* Find the base address of the compilation unit for range lists and
6339 location lists. It will normally be specified by DW_AT_low_pc.
6340 In DWARF-3 draft 4, the base address could be overridden by
6341 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6342 compilation units with discontinuous ranges. */
6343
6344static void
6345dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6346{
6347 struct attribute *attr;
6348
6349 cu->base_known = 0;
6350 cu->base_address = 0;
6351
6352 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6353 if (attr)
6354 {
31aa7e4e 6355 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
6356 cu->base_known = 1;
6357 }
6358 else
6359 {
6360 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6361 if (attr)
6362 {
31aa7e4e 6363 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
6364 cu->base_known = 1;
6365 }
6366 }
6367}
6368
93311388 6369/* Read in the comp unit header information from the debug_info at info_ptr.
43988095 6370 Use rcuh_kind::COMPILE as the default type if not known by the caller.
93311388
DE
6371 NOTE: This leaves members offset, first_die_offset to be filled in
6372 by the caller. */
107d2387 6373
d521ce57 6374static const gdb_byte *
107d2387 6375read_comp_unit_head (struct comp_unit_head *cu_header,
43988095
JK
6376 const gdb_byte *info_ptr,
6377 struct dwarf2_section_info *section,
6378 rcuh_kind section_kind)
107d2387
AC
6379{
6380 int signed_addr;
891d2f0b 6381 unsigned int bytes_read;
43988095
JK
6382 const char *filename = get_section_file_name (section);
6383 bfd *abfd = get_section_bfd_owner (section);
c764a876
DE
6384
6385 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6386 cu_header->initial_length_size = bytes_read;
6387 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 6388 info_ptr += bytes_read;
107d2387 6389 cu_header->version = read_2_bytes (abfd, info_ptr);
1ea5da02
TV
6390 if (cu_header->version < 2 || cu_header->version > 5)
6391 error (_("Dwarf Error: wrong version in compilation unit header "
6392 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6393 cu_header->version, filename);
107d2387 6394 info_ptr += 2;
43988095
JK
6395 if (cu_header->version < 5)
6396 switch (section_kind)
6397 {
6398 case rcuh_kind::COMPILE:
6399 cu_header->unit_type = DW_UT_compile;
6400 break;
6401 case rcuh_kind::TYPE:
6402 cu_header->unit_type = DW_UT_type;
6403 break;
6404 default:
6405 internal_error (__FILE__, __LINE__,
6406 _("read_comp_unit_head: invalid section_kind"));
6407 }
6408 else
6409 {
6410 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6411 (read_1_byte (abfd, info_ptr));
6412 info_ptr += 1;
6413 switch (cu_header->unit_type)
6414 {
6415 case DW_UT_compile:
6416 if (section_kind != rcuh_kind::COMPILE)
6417 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6418 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6419 filename);
6420 break;
6421 case DW_UT_type:
6422 section_kind = rcuh_kind::TYPE;
6423 break;
6424 default:
6425 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6426 "(is %d, should be %d or %d) [in module %s]"),
6427 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6428 }
6429
6430 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6431 info_ptr += 1;
6432 }
9c541725
PA
6433 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6434 cu_header,
6435 &bytes_read);
613e1657 6436 info_ptr += bytes_read;
43988095
JK
6437 if (cu_header->version < 5)
6438 {
6439 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6440 info_ptr += 1;
6441 }
107d2387
AC
6442 signed_addr = bfd_get_sign_extend_vma (abfd);
6443 if (signed_addr < 0)
8e65ff28 6444 internal_error (__FILE__, __LINE__,
e2e0b3e5 6445 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 6446 cu_header->signed_addr_p = signed_addr;
c764a876 6447
43988095
JK
6448 if (section_kind == rcuh_kind::TYPE)
6449 {
6450 LONGEST type_offset;
6451
6452 cu_header->signature = read_8_bytes (abfd, info_ptr);
6453 info_ptr += 8;
6454
6455 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6456 info_ptr += bytes_read;
9c541725
PA
6457 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6458 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
43988095
JK
6459 error (_("Dwarf Error: Too big type_offset in compilation unit "
6460 "header (is %s) [in module %s]"), plongest (type_offset),
6461 filename);
6462 }
6463
107d2387
AC
6464 return info_ptr;
6465}
6466
36586728
TT
6467/* Helper function that returns the proper abbrev section for
6468 THIS_CU. */
6469
6470static struct dwarf2_section_info *
6471get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6472{
6473 struct dwarf2_section_info *abbrev;
ed2dc618 6474 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
36586728
TT
6475
6476 if (this_cu->is_dwz)
ed2dc618 6477 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
36586728
TT
6478 else
6479 abbrev = &dwarf2_per_objfile->abbrev;
6480
6481 return abbrev;
6482}
6483
9ff913ba
DE
6484/* Subroutine of read_and_check_comp_unit_head and
6485 read_and_check_type_unit_head to simplify them.
6486 Perform various error checking on the header. */
6487
6488static void
ed2dc618
SM
6489error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6490 struct comp_unit_head *header,
4bdcc0c1
DE
6491 struct dwarf2_section_info *section,
6492 struct dwarf2_section_info *abbrev_section)
9ff913ba 6493{
a32a8923 6494 const char *filename = get_section_file_name (section);
9ff913ba 6495
9c541725 6496 if (to_underlying (header->abbrev_sect_off)
36586728 6497 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9d8780f0
SM
6498 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6499 "(offset %s + 6) [in module %s]"),
6500 sect_offset_str (header->abbrev_sect_off),
6501 sect_offset_str (header->sect_off),
9ff913ba
DE
6502 filename);
6503
9c541725 6504 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
9ff913ba 6505 avoid potential 32-bit overflow. */
9c541725 6506 if (((ULONGEST) header->sect_off + get_cu_length (header))
9ff913ba 6507 > section->size)
9c541725 6508 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
9d8780f0
SM
6509 "(offset %s + 0) [in module %s]"),
6510 header->length, sect_offset_str (header->sect_off),
9ff913ba
DE
6511 filename);
6512}
6513
6514/* Read in a CU/TU header and perform some basic error checking.
6515 The contents of the header are stored in HEADER.
6516 The result is a pointer to the start of the first DIE. */
adabb602 6517
d521ce57 6518static const gdb_byte *
ed2dc618
SM
6519read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6520 struct comp_unit_head *header,
9ff913ba 6521 struct dwarf2_section_info *section,
4bdcc0c1 6522 struct dwarf2_section_info *abbrev_section,
d521ce57 6523 const gdb_byte *info_ptr,
43988095 6524 rcuh_kind section_kind)
72bf9492 6525{
d521ce57 6526 const gdb_byte *beg_of_comp_unit = info_ptr;
72bf9492 6527
9c541725 6528 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
adabb602 6529
43988095 6530 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
9ff913ba 6531
9c541725 6532 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
348e048f 6533
ed2dc618
SM
6534 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6535 abbrev_section);
9ff913ba
DE
6536
6537 return info_ptr;
348e048f
DE
6538}
6539
f4dc4d17
DE
6540/* Fetch the abbreviation table offset from a comp or type unit header. */
6541
6542static sect_offset
ed2dc618
SM
6543read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6544 struct dwarf2_section_info *section,
9c541725 6545 sect_offset sect_off)
f4dc4d17 6546{
a32a8923 6547 bfd *abfd = get_section_bfd_owner (section);
d521ce57 6548 const gdb_byte *info_ptr;
ac298888 6549 unsigned int initial_length_size, offset_size;
43988095 6550 uint16_t version;
f4dc4d17
DE
6551
6552 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
9c541725 6553 info_ptr = section->buffer + to_underlying (sect_off);
ac298888 6554 read_initial_length (abfd, info_ptr, &initial_length_size);
f4dc4d17 6555 offset_size = initial_length_size == 4 ? 4 : 8;
43988095
JK
6556 info_ptr += initial_length_size;
6557
6558 version = read_2_bytes (abfd, info_ptr);
6559 info_ptr += 2;
6560 if (version >= 5)
6561 {
6562 /* Skip unit type and address size. */
6563 info_ptr += 2;
6564 }
6565
9c541725 6566 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
f4dc4d17
DE
6567}
6568
aaa75496
JB
6569/* Allocate a new partial symtab for file named NAME and mark this new
6570 partial symtab as being an include of PST. */
6571
6572static void
d521ce57 6573dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
6574 struct objfile *objfile)
6575{
6576 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6577
fbd9ab74
JK
6578 if (!IS_ABSOLUTE_PATH (subpst->filename))
6579 {
6580 /* It shares objfile->objfile_obstack. */
6581 subpst->dirname = pst->dirname;
6582 }
6583
8d749320
SM
6584 subpst->dependencies
6585 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
aaa75496
JB
6586 subpst->dependencies[0] = pst;
6587 subpst->number_of_dependencies = 1;
6588
6589 subpst->globals_offset = 0;
6590 subpst->n_global_syms = 0;
6591 subpst->statics_offset = 0;
6592 subpst->n_static_syms = 0;
43f3e411 6593 subpst->compunit_symtab = NULL;
aaa75496
JB
6594 subpst->read_symtab = pst->read_symtab;
6595 subpst->readin = 0;
6596
6597 /* No private part is necessary for include psymtabs. This property
6598 can be used to differentiate between such include psymtabs and
10b3939b 6599 the regular ones. */
58a9656e 6600 subpst->read_symtab_private = NULL;
aaa75496
JB
6601}
6602
6603/* Read the Line Number Program data and extract the list of files
6604 included by the source file represented by PST. Build an include
d85a05f0 6605 partial symtab for each of these included files. */
aaa75496
JB
6606
6607static void
6608dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
6609 struct die_info *die,
6610 struct partial_symtab *pst)
aaa75496 6611{
fff8551c 6612 line_header_up lh;
d85a05f0 6613 struct attribute *attr;
aaa75496 6614
d85a05f0
DJ
6615 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6616 if (attr)
9c541725 6617 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
aaa75496
JB
6618 if (lh == NULL)
6619 return; /* No linetable, so no includes. */
6620
79748972
TT
6621 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6622 that we pass in the raw text_low here; that is ok because we're
6623 only decoding the line table to make include partial symtabs, and
6624 so the addresses aren't really used. */
4ae976d1 6625 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
79748972 6626 pst->raw_text_low (), 1);
aaa75496
JB
6627}
6628
348e048f 6629static hashval_t
52dc124a 6630hash_signatured_type (const void *item)
348e048f 6631{
9a3c8263
SM
6632 const struct signatured_type *sig_type
6633 = (const struct signatured_type *) item;
9a619af0 6634
348e048f 6635 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 6636 return sig_type->signature;
348e048f
DE
6637}
6638
6639static int
52dc124a 6640eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f 6641{
9a3c8263
SM
6642 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6643 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
9a619af0 6644
348e048f
DE
6645 return lhs->signature == rhs->signature;
6646}
6647
1fd400ff
TT
6648/* Allocate a hash table for signatured types. */
6649
6650static htab_t
673bfd45 6651allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
6652{
6653 return htab_create_alloc_ex (41,
52dc124a
DE
6654 hash_signatured_type,
6655 eq_signatured_type,
1fd400ff
TT
6656 NULL,
6657 &objfile->objfile_obstack,
6658 hashtab_obstack_allocate,
6659 dummy_obstack_deallocate);
6660}
6661
d467dd73 6662/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
6663
6664static int
d467dd73 6665add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff 6666{
9a3c8263 6667 struct signatured_type *sigt = (struct signatured_type *) *slot;
b2bdb8cf
SM
6668 std::vector<signatured_type *> *all_type_units
6669 = (std::vector<signatured_type *> *) datum;
1fd400ff 6670
b2bdb8cf 6671 all_type_units->push_back (sigt);
1fd400ff
TT
6672
6673 return 1;
6674}
6675
78d4d2c5 6676/* A helper for create_debug_types_hash_table. Read types from SECTION
43988095
JK
6677 and fill them into TYPES_HTAB. It will process only type units,
6678 therefore DW_UT_type. */
c88ee1f0 6679
78d4d2c5 6680static void
ed2dc618
SM
6681create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6682 struct dwo_file *dwo_file,
43988095
JK
6683 dwarf2_section_info *section, htab_t &types_htab,
6684 rcuh_kind section_kind)
348e048f 6685{
3019eac3 6686 struct objfile *objfile = dwarf2_per_objfile->objfile;
4bdcc0c1 6687 struct dwarf2_section_info *abbrev_section;
78d4d2c5
JK
6688 bfd *abfd;
6689 const gdb_byte *info_ptr, *end_ptr;
348e048f 6690
4bdcc0c1
DE
6691 abbrev_section = (dwo_file != NULL
6692 ? &dwo_file->sections.abbrev
6693 : &dwarf2_per_objfile->abbrev);
6694
b4f54984 6695 if (dwarf_read_debug)
43988095
JK
6696 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6697 get_section_name (section),
a32a8923 6698 get_section_file_name (abbrev_section));
09406207 6699
78d4d2c5
JK
6700 dwarf2_read_section (objfile, section);
6701 info_ptr = section->buffer;
348e048f 6702
78d4d2c5
JK
6703 if (info_ptr == NULL)
6704 return;
348e048f 6705
78d4d2c5
JK
6706 /* We can't set abfd until now because the section may be empty or
6707 not present, in which case the bfd is unknown. */
6708 abfd = get_section_bfd_owner (section);
348e048f 6709
78d4d2c5
JK
6710 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6711 because we don't need to read any dies: the signature is in the
6712 header. */
3019eac3 6713
78d4d2c5
JK
6714 end_ptr = info_ptr + section->size;
6715 while (info_ptr < end_ptr)
6716 {
78d4d2c5
JK
6717 struct signatured_type *sig_type;
6718 struct dwo_unit *dwo_tu;
6719 void **slot;
6720 const gdb_byte *ptr = info_ptr;
6721 struct comp_unit_head header;
6722 unsigned int length;
8b70b953 6723
9c541725 6724 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
348e048f 6725
a49dd8dd
JK
6726 /* Initialize it due to a false compiler warning. */
6727 header.signature = -1;
9c541725 6728 header.type_cu_offset_in_tu = (cu_offset) -1;
a49dd8dd 6729
78d4d2c5
JK
6730 /* We need to read the type's signature in order to build the hash
6731 table, but we don't need anything else just yet. */
348e048f 6732
ed2dc618 6733 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
43988095 6734 abbrev_section, ptr, section_kind);
348e048f 6735
78d4d2c5 6736 length = get_cu_length (&header);
6caca83c 6737
78d4d2c5
JK
6738 /* Skip dummy type units. */
6739 if (ptr >= info_ptr + length
43988095
JK
6740 || peek_abbrev_code (abfd, ptr) == 0
6741 || header.unit_type != DW_UT_type)
78d4d2c5
JK
6742 {
6743 info_ptr += length;
6744 continue;
6745 }
dee91e82 6746
78d4d2c5
JK
6747 if (types_htab == NULL)
6748 {
6749 if (dwo_file)
6750 types_htab = allocate_dwo_unit_table (objfile);
6751 else
6752 types_htab = allocate_signatured_type_table (objfile);
6753 }
8b70b953 6754
78d4d2c5
JK
6755 if (dwo_file)
6756 {
6757 sig_type = NULL;
6758 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6759 struct dwo_unit);
6760 dwo_tu->dwo_file = dwo_file;
43988095 6761 dwo_tu->signature = header.signature;
9c541725 6762 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
78d4d2c5 6763 dwo_tu->section = section;
9c541725 6764 dwo_tu->sect_off = sect_off;
78d4d2c5
JK
6765 dwo_tu->length = length;
6766 }
6767 else
6768 {
6769 /* N.B.: type_offset is not usable if this type uses a DWO file.
6770 The real type_offset is in the DWO file. */
6771 dwo_tu = NULL;
6772 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6773 struct signatured_type);
43988095 6774 sig_type->signature = header.signature;
9c541725 6775 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
e3b94546 6776 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
78d4d2c5
JK
6777 sig_type->per_cu.is_debug_types = 1;
6778 sig_type->per_cu.section = section;
9c541725 6779 sig_type->per_cu.sect_off = sect_off;
78d4d2c5
JK
6780 sig_type->per_cu.length = length;
6781 }
6782
6783 slot = htab_find_slot (types_htab,
6784 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6785 INSERT);
6786 gdb_assert (slot != NULL);
6787 if (*slot != NULL)
6788 {
9c541725 6789 sect_offset dup_sect_off;
0349ea22 6790
3019eac3
DE
6791 if (dwo_file)
6792 {
78d4d2c5
JK
6793 const struct dwo_unit *dup_tu
6794 = (const struct dwo_unit *) *slot;
6795
9c541725 6796 dup_sect_off = dup_tu->sect_off;
3019eac3
DE
6797 }
6798 else
6799 {
78d4d2c5
JK
6800 const struct signatured_type *dup_tu
6801 = (const struct signatured_type *) *slot;
6802
9c541725 6803 dup_sect_off = dup_tu->per_cu.sect_off;
3019eac3 6804 }
8b70b953 6805
b98664d3 6806 complaint (_("debug type entry at offset %s is duplicate to"
9d8780f0
SM
6807 " the entry at offset %s, signature %s"),
6808 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
43988095 6809 hex_string (header.signature));
78d4d2c5
JK
6810 }
6811 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
3019eac3 6812
78d4d2c5 6813 if (dwarf_read_debug > 1)
9d8780f0
SM
6814 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6815 sect_offset_str (sect_off),
43988095 6816 hex_string (header.signature));
3019eac3 6817
78d4d2c5
JK
6818 info_ptr += length;
6819 }
6820}
3019eac3 6821
78d4d2c5
JK
6822/* Create the hash table of all entries in the .debug_types
6823 (or .debug_types.dwo) section(s).
6824 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6825 otherwise it is NULL.
b3c8eb43 6826
78d4d2c5 6827 The result is a pointer to the hash table or NULL if there are no types.
348e048f 6828
78d4d2c5 6829 Note: This function processes DWO files only, not DWP files. */
348e048f 6830
78d4d2c5 6831static void
ed2dc618
SM
6832create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6833 struct dwo_file *dwo_file,
78d4d2c5
JK
6834 VEC (dwarf2_section_info_def) *types,
6835 htab_t &types_htab)
6836{
6837 int ix;
6838 struct dwarf2_section_info *section;
6839
6840 if (VEC_empty (dwarf2_section_info_def, types))
6841 return;
348e048f 6842
78d4d2c5
JK
6843 for (ix = 0;
6844 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6845 ++ix)
ed2dc618
SM
6846 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6847 types_htab, rcuh_kind::TYPE);
3019eac3
DE
6848}
6849
6850/* Create the hash table of all entries in the .debug_types section,
6851 and initialize all_type_units.
6852 The result is zero if there is an error (e.g. missing .debug_types section),
6853 otherwise non-zero. */
6854
6855static int
ed2dc618 6856create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
3019eac3 6857{
78d4d2c5 6858 htab_t types_htab = NULL;
3019eac3 6859
ed2dc618
SM
6860 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6861 &dwarf2_per_objfile->info, types_htab,
43988095 6862 rcuh_kind::COMPILE);
ed2dc618
SM
6863 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6864 dwarf2_per_objfile->types, types_htab);
3019eac3
DE
6865 if (types_htab == NULL)
6866 {
6867 dwarf2_per_objfile->signatured_types = NULL;
6868 return 0;
6869 }
6870
348e048f
DE
6871 dwarf2_per_objfile->signatured_types = types_htab;
6872
b2bdb8cf
SM
6873 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6874 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6875
6876 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6877 &dwarf2_per_objfile->all_type_units);
1fd400ff 6878
348e048f
DE
6879 return 1;
6880}
6881
6aa5f3a6
DE
6882/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6883 If SLOT is non-NULL, it is the entry to use in the hash table.
6884 Otherwise we find one. */
6885
6886static struct signatured_type *
ed2dc618
SM
6887add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6888 void **slot)
6aa5f3a6
DE
6889{
6890 struct objfile *objfile = dwarf2_per_objfile->objfile;
6aa5f3a6 6891
b2bdb8cf
SM
6892 if (dwarf2_per_objfile->all_type_units.size ()
6893 == dwarf2_per_objfile->all_type_units.capacity ())
6894 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6aa5f3a6 6895
b2bdb8cf
SM
6896 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6897 struct signatured_type);
6898
6899 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6aa5f3a6
DE
6900 sig_type->signature = sig;
6901 sig_type->per_cu.is_debug_types = 1;
6902 if (dwarf2_per_objfile->using_index)
6903 {
6904 sig_type->per_cu.v.quick =
6905 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6906 struct dwarf2_per_cu_quick_data);
6907 }
6908
6909 if (slot == NULL)
6910 {
6911 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6912 sig_type, INSERT);
6913 }
6914 gdb_assert (*slot == NULL);
6915 *slot = sig_type;
6916 /* The rest of sig_type must be filled in by the caller. */
6917 return sig_type;
6918}
6919
a2ce51a0
DE
6920/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6921 Fill in SIG_ENTRY with DWO_ENTRY. */
6922
6923static void
ed2dc618 6924fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
a2ce51a0
DE
6925 struct signatured_type *sig_entry,
6926 struct dwo_unit *dwo_entry)
6927{
7ee85ab1 6928 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
6929 gdb_assert (! sig_entry->per_cu.queued);
6930 gdb_assert (sig_entry->per_cu.cu == NULL);
6aa5f3a6
DE
6931 if (dwarf2_per_objfile->using_index)
6932 {
6933 gdb_assert (sig_entry->per_cu.v.quick != NULL);
43f3e411 6934 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6aa5f3a6
DE
6935 }
6936 else
6937 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
a2ce51a0 6938 gdb_assert (sig_entry->signature == dwo_entry->signature);
9c541725 6939 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
a2ce51a0 6940 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
6941 gdb_assert (sig_entry->dwo_unit == NULL);
6942
6943 sig_entry->per_cu.section = dwo_entry->section;
9c541725 6944 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
7ee85ab1
DE
6945 sig_entry->per_cu.length = dwo_entry->length;
6946 sig_entry->per_cu.reading_dwo_directly = 1;
e3b94546 6947 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
a2ce51a0
DE
6948 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6949 sig_entry->dwo_unit = dwo_entry;
6950}
6951
6952/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
6953 If we haven't read the TU yet, create the signatured_type data structure
6954 for a TU to be read in directly from a DWO file, bypassing the stub.
6955 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6956 using .gdb_index, then when reading a CU we want to stay in the DWO file
6957 containing that CU. Otherwise we could end up reading several other DWO
6958 files (due to comdat folding) to process the transitive closure of all the
6959 mentioned TUs, and that can be slow. The current DWO file will have every
6960 type signature that it needs.
a2ce51a0
DE
6961 We only do this for .gdb_index because in the psymtab case we already have
6962 to read all the DWOs to build the type unit groups. */
6963
6964static struct signatured_type *
6965lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6966{
518817b3
SM
6967 struct dwarf2_per_objfile *dwarf2_per_objfile
6968 = cu->per_cu->dwarf2_per_objfile;
a2ce51a0
DE
6969 struct objfile *objfile = dwarf2_per_objfile->objfile;
6970 struct dwo_file *dwo_file;
6971 struct dwo_unit find_dwo_entry, *dwo_entry;
6972 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 6973 void **slot;
a2ce51a0
DE
6974
6975 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6976
6aa5f3a6
DE
6977 /* If TU skeletons have been removed then we may not have read in any
6978 TUs yet. */
6979 if (dwarf2_per_objfile->signatured_types == NULL)
6980 {
6981 dwarf2_per_objfile->signatured_types
6982 = allocate_signatured_type_table (objfile);
6983 }
a2ce51a0
DE
6984
6985 /* We only ever need to read in one copy of a signatured type.
6aa5f3a6
DE
6986 Use the global signatured_types array to do our own comdat-folding
6987 of types. If this is the first time we're reading this TU, and
6988 the TU has an entry in .gdb_index, replace the recorded data from
6989 .gdb_index with this TU. */
a2ce51a0 6990
a2ce51a0 6991 find_sig_entry.signature = sig;
6aa5f3a6
DE
6992 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6993 &find_sig_entry, INSERT);
9a3c8263 6994 sig_entry = (struct signatured_type *) *slot;
7ee85ab1
DE
6995
6996 /* We can get here with the TU already read, *or* in the process of being
6aa5f3a6
DE
6997 read. Don't reassign the global entry to point to this DWO if that's
6998 the case. Also note that if the TU is already being read, it may not
6999 have come from a DWO, the program may be a mix of Fission-compiled
7000 code and non-Fission-compiled code. */
7001
7002 /* Have we already tried to read this TU?
7003 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7004 needn't exist in the global table yet). */
7005 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
a2ce51a0
DE
7006 return sig_entry;
7007
6aa5f3a6
DE
7008 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7009 dwo_unit of the TU itself. */
7010 dwo_file = cu->dwo_unit->dwo_file;
7011
a2ce51a0
DE
7012 /* Ok, this is the first time we're reading this TU. */
7013 if (dwo_file->tus == NULL)
7014 return NULL;
7015 find_dwo_entry.signature = sig;
9a3c8263 7016 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
a2ce51a0
DE
7017 if (dwo_entry == NULL)
7018 return NULL;
7019
6aa5f3a6
DE
7020 /* If the global table doesn't have an entry for this TU, add one. */
7021 if (sig_entry == NULL)
ed2dc618 7022 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6aa5f3a6 7023
ed2dc618 7024 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
89e63ee4 7025 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
7026 return sig_entry;
7027}
7028
a2ce51a0
DE
7029/* Subroutine of lookup_signatured_type.
7030 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6aa5f3a6
DE
7031 then try the DWP file. If the TU stub (skeleton) has been removed then
7032 it won't be in .gdb_index. */
a2ce51a0
DE
7033
7034static struct signatured_type *
7035lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7036{
518817b3
SM
7037 struct dwarf2_per_objfile *dwarf2_per_objfile
7038 = cu->per_cu->dwarf2_per_objfile;
a2ce51a0 7039 struct objfile *objfile = dwarf2_per_objfile->objfile;
ed2dc618 7040 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
a2ce51a0
DE
7041 struct dwo_unit *dwo_entry;
7042 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 7043 void **slot;
a2ce51a0
DE
7044
7045 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7046 gdb_assert (dwp_file != NULL);
7047
6aa5f3a6
DE
7048 /* If TU skeletons have been removed then we may not have read in any
7049 TUs yet. */
7050 if (dwarf2_per_objfile->signatured_types == NULL)
a2ce51a0 7051 {
6aa5f3a6
DE
7052 dwarf2_per_objfile->signatured_types
7053 = allocate_signatured_type_table (objfile);
a2ce51a0
DE
7054 }
7055
6aa5f3a6
DE
7056 find_sig_entry.signature = sig;
7057 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7058 &find_sig_entry, INSERT);
9a3c8263 7059 sig_entry = (struct signatured_type *) *slot;
6aa5f3a6
DE
7060
7061 /* Have we already tried to read this TU?
7062 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7063 needn't exist in the global table yet). */
7064 if (sig_entry != NULL)
7065 return sig_entry;
7066
a2ce51a0
DE
7067 if (dwp_file->tus == NULL)
7068 return NULL;
ed2dc618 7069 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
57d63ce2 7070 sig, 1 /* is_debug_types */);
a2ce51a0
DE
7071 if (dwo_entry == NULL)
7072 return NULL;
7073
ed2dc618
SM
7074 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7075 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
a2ce51a0 7076
a2ce51a0
DE
7077 return sig_entry;
7078}
7079
380bca97 7080/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
7081 Returns NULL if signature SIG is not present in the table.
7082 It is up to the caller to complain about this. */
348e048f
DE
7083
7084static struct signatured_type *
a2ce51a0 7085lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 7086{
518817b3
SM
7087 struct dwarf2_per_objfile *dwarf2_per_objfile
7088 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 7089
a2ce51a0
DE
7090 if (cu->dwo_unit
7091 && dwarf2_per_objfile->using_index)
7092 {
7093 /* We're in a DWO/DWP file, and we're using .gdb_index.
7094 These cases require special processing. */
ed2dc618 7095 if (get_dwp_file (dwarf2_per_objfile) == NULL)
a2ce51a0
DE
7096 return lookup_dwo_signatured_type (cu, sig);
7097 else
7098 return lookup_dwp_signatured_type (cu, sig);
7099 }
7100 else
7101 {
7102 struct signatured_type find_entry, *entry;
348e048f 7103
a2ce51a0
DE
7104 if (dwarf2_per_objfile->signatured_types == NULL)
7105 return NULL;
7106 find_entry.signature = sig;
9a3c8263
SM
7107 entry = ((struct signatured_type *)
7108 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
a2ce51a0
DE
7109 return entry;
7110 }
348e048f 7111}
42e7ad6c
DE
7112\f
7113/* Low level DIE reading support. */
348e048f 7114
d85a05f0
DJ
7115/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7116
7117static void
7118init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 7119 struct dwarf2_cu *cu,
3019eac3 7120 struct dwarf2_section_info *section,
685af9cd
TT
7121 struct dwo_file *dwo_file,
7122 struct abbrev_table *abbrev_table)
d85a05f0 7123{
fceca515 7124 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 7125 reader->abfd = get_section_bfd_owner (section);
d85a05f0 7126 reader->cu = cu;
3019eac3 7127 reader->dwo_file = dwo_file;
dee91e82
DE
7128 reader->die_section = section;
7129 reader->buffer = section->buffer;
f664829e 7130 reader->buffer_end = section->buffer + section->size;
a2ce51a0 7131 reader->comp_dir = NULL;
685af9cd 7132 reader->abbrev_table = abbrev_table;
d85a05f0
DJ
7133}
7134
b0c7bfa9
DE
7135/* Subroutine of init_cutu_and_read_dies to simplify it.
7136 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7137 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7138 already.
7139
7140 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7141 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
7142 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7143 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
c54a1dd8
DE
7144 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7145 STUB_COMP_DIR may be non-NULL.
b0c7bfa9
DE
7146 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7147 are filled in with the info of the DIE from the DWO file.
685af9cd
TT
7148 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7149 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7150 kept around for at least as long as *RESULT_READER.
7151
b0c7bfa9
DE
7152 The result is non-zero if a valid (non-dummy) DIE was found. */
7153
7154static int
7155read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7156 struct dwo_unit *dwo_unit,
b0c7bfa9 7157 struct die_info *stub_comp_unit_die,
a2ce51a0 7158 const char *stub_comp_dir,
b0c7bfa9 7159 struct die_reader_specs *result_reader,
d521ce57 7160 const gdb_byte **result_info_ptr,
b0c7bfa9 7161 struct die_info **result_comp_unit_die,
685af9cd
TT
7162 int *result_has_children,
7163 abbrev_table_up *result_dwo_abbrev_table)
b0c7bfa9 7164{
ed2dc618 7165 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
b0c7bfa9
DE
7166 struct objfile *objfile = dwarf2_per_objfile->objfile;
7167 struct dwarf2_cu *cu = this_cu->cu;
b0c7bfa9 7168 bfd *abfd;
d521ce57 7169 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
7170 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7171 int i,num_extra_attrs;
7172 struct dwarf2_section_info *dwo_abbrev_section;
7173 struct attribute *attr;
7174 struct die_info *comp_unit_die;
7175
b0aeadb3
DE
7176 /* At most one of these may be provided. */
7177 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
a2ce51a0 7178
b0c7bfa9
DE
7179 /* These attributes aren't processed until later:
7180 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
0d60c288
DE
7181 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7182 referenced later. However, these attributes are found in the stub
7183 which we won't have later. In order to not impose this complication
7184 on the rest of the code, we read them here and copy them to the
7185 DWO CU/TU die. */
b0c7bfa9
DE
7186
7187 stmt_list = NULL;
7188 low_pc = NULL;
7189 high_pc = NULL;
7190 ranges = NULL;
7191 comp_dir = NULL;
7192
7193 if (stub_comp_unit_die != NULL)
7194 {
7195 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7196 DWO file. */
7197 if (! this_cu->is_debug_types)
7198 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7199 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7200 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7201 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7202 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7203
7204 /* There should be a DW_AT_addr_base attribute here (if needed).
7205 We need the value before we can process DW_FORM_GNU_addr_index. */
7206 cu->addr_base = 0;
7207 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7208 if (attr)
7209 cu->addr_base = DW_UNSND (attr);
7210
7211 /* There should be a DW_AT_ranges_base attribute here (if needed).
7212 We need the value before we can process DW_AT_ranges. */
7213 cu->ranges_base = 0;
7214 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7215 if (attr)
7216 cu->ranges_base = DW_UNSND (attr);
7217 }
a2ce51a0
DE
7218 else if (stub_comp_dir != NULL)
7219 {
7220 /* Reconstruct the comp_dir attribute to simplify the code below. */
8d749320 7221 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
a2ce51a0
DE
7222 comp_dir->name = DW_AT_comp_dir;
7223 comp_dir->form = DW_FORM_string;
7224 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7225 DW_STRING (comp_dir) = stub_comp_dir;
7226 }
b0c7bfa9
DE
7227
7228 /* Set up for reading the DWO CU/TU. */
7229 cu->dwo_unit = dwo_unit;
685af9cd 7230 dwarf2_section_info *section = dwo_unit->section;
b0c7bfa9 7231 dwarf2_read_section (objfile, section);
a32a8923 7232 abfd = get_section_bfd_owner (section);
9c541725
PA
7233 begin_info_ptr = info_ptr = (section->buffer
7234 + to_underlying (dwo_unit->sect_off));
b0c7bfa9 7235 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
b0c7bfa9
DE
7236
7237 if (this_cu->is_debug_types)
7238 {
b0c7bfa9
DE
7239 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7240
ed2dc618
SM
7241 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7242 &cu->header, section,
b0c7bfa9 7243 dwo_abbrev_section,
43988095 7244 info_ptr, rcuh_kind::TYPE);
a2ce51a0 7245 /* This is not an assert because it can be caused by bad debug info. */
43988095 7246 if (sig_type->signature != cu->header.signature)
a2ce51a0
DE
7247 {
7248 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
9d8780f0 7249 " TU at offset %s [in module %s]"),
a2ce51a0 7250 hex_string (sig_type->signature),
43988095 7251 hex_string (cu->header.signature),
9d8780f0 7252 sect_offset_str (dwo_unit->sect_off),
a2ce51a0
DE
7253 bfd_get_filename (abfd));
7254 }
9c541725 7255 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
b0c7bfa9
DE
7256 /* For DWOs coming from DWP files, we don't know the CU length
7257 nor the type's offset in the TU until now. */
7258 dwo_unit->length = get_cu_length (&cu->header);
9c541725 7259 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
b0c7bfa9
DE
7260
7261 /* Establish the type offset that can be used to lookup the type.
7262 For DWO files, we don't know it until now. */
9c541725
PA
7263 sig_type->type_offset_in_section
7264 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
b0c7bfa9
DE
7265 }
7266 else
7267 {
ed2dc618
SM
7268 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7269 &cu->header, section,
b0c7bfa9 7270 dwo_abbrev_section,
43988095 7271 info_ptr, rcuh_kind::COMPILE);
9c541725 7272 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
b0c7bfa9
DE
7273 /* For DWOs coming from DWP files, we don't know the CU length
7274 until now. */
7275 dwo_unit->length = get_cu_length (&cu->header);
7276 }
7277
685af9cd
TT
7278 *result_dwo_abbrev_table
7279 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7280 cu->header.abbrev_sect_off);
7281 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7282 result_dwo_abbrev_table->get ());
b0c7bfa9
DE
7283
7284 /* Read in the die, but leave space to copy over the attributes
7285 from the stub. This has the benefit of simplifying the rest of
7286 the code - all the work to maintain the illusion of a single
7287 DW_TAG_{compile,type}_unit DIE is done here. */
7288 num_extra_attrs = ((stmt_list != NULL)
7289 + (low_pc != NULL)
7290 + (high_pc != NULL)
7291 + (ranges != NULL)
7292 + (comp_dir != NULL));
7293 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7294 result_has_children, num_extra_attrs);
7295
7296 /* Copy over the attributes from the stub to the DIE we just read in. */
7297 comp_unit_die = *result_comp_unit_die;
7298 i = comp_unit_die->num_attrs;
7299 if (stmt_list != NULL)
7300 comp_unit_die->attrs[i++] = *stmt_list;
7301 if (low_pc != NULL)
7302 comp_unit_die->attrs[i++] = *low_pc;
7303 if (high_pc != NULL)
7304 comp_unit_die->attrs[i++] = *high_pc;
7305 if (ranges != NULL)
7306 comp_unit_die->attrs[i++] = *ranges;
7307 if (comp_dir != NULL)
7308 comp_unit_die->attrs[i++] = *comp_dir;
7309 comp_unit_die->num_attrs += num_extra_attrs;
7310
b4f54984 7311 if (dwarf_die_debug)
bf6af496
DE
7312 {
7313 fprintf_unfiltered (gdb_stdlog,
7314 "Read die from %s@0x%x of %s:\n",
a32a8923 7315 get_section_name (section),
bf6af496
DE
7316 (unsigned) (begin_info_ptr - section->buffer),
7317 bfd_get_filename (abfd));
b4f54984 7318 dump_die (comp_unit_die, dwarf_die_debug);
bf6af496
DE
7319 }
7320
a2ce51a0
DE
7321 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7322 TUs by skipping the stub and going directly to the entry in the DWO file.
7323 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7324 to get it via circuitous means. Blech. */
7325 if (comp_dir != NULL)
7326 result_reader->comp_dir = DW_STRING (comp_dir);
7327
b0c7bfa9
DE
7328 /* Skip dummy compilation units. */
7329 if (info_ptr >= begin_info_ptr + dwo_unit->length
7330 || peek_abbrev_code (abfd, info_ptr) == 0)
7331 return 0;
7332
7333 *result_info_ptr = info_ptr;
7334 return 1;
7335}
7336
7337/* Subroutine of init_cutu_and_read_dies to simplify it.
7338 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 7339 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
7340
7341static struct dwo_unit *
7342lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7343 struct die_info *comp_unit_die)
7344{
7345 struct dwarf2_cu *cu = this_cu->cu;
b0c7bfa9
DE
7346 ULONGEST signature;
7347 struct dwo_unit *dwo_unit;
7348 const char *comp_dir, *dwo_name;
7349
a2ce51a0
DE
7350 gdb_assert (cu != NULL);
7351
b0c7bfa9 7352 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7d45c7c3
KB
7353 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7354 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
b0c7bfa9
DE
7355
7356 if (this_cu->is_debug_types)
7357 {
7358 struct signatured_type *sig_type;
7359
7360 /* Since this_cu is the first member of struct signatured_type,
7361 we can go from a pointer to one to a pointer to the other. */
7362 sig_type = (struct signatured_type *) this_cu;
7363 signature = sig_type->signature;
7364 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7365 }
7366 else
7367 {
7368 struct attribute *attr;
7369
7370 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7371 if (! attr)
7372 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7373 " [in module %s]"),
e3b94546 7374 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
b0c7bfa9
DE
7375 signature = DW_UNSND (attr);
7376 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7377 signature);
7378 }
7379
b0c7bfa9
DE
7380 return dwo_unit;
7381}
7382
a2ce51a0 7383/* Subroutine of init_cutu_and_read_dies to simplify it.
6aa5f3a6 7384 See it for a description of the parameters.
fcd3b13d 7385 Read a TU directly from a DWO file, bypassing the stub. */
a2ce51a0
DE
7386
7387static void
6aa5f3a6
DE
7388init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7389 int use_existing_cu, int keep,
a2ce51a0
DE
7390 die_reader_func_ftype *die_reader_func,
7391 void *data)
7392{
fcd3b13d 7393 std::unique_ptr<dwarf2_cu> new_cu;
a2ce51a0 7394 struct signatured_type *sig_type;
a2ce51a0
DE
7395 struct die_reader_specs reader;
7396 const gdb_byte *info_ptr;
7397 struct die_info *comp_unit_die;
7398 int has_children;
ed2dc618 7399 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
a2ce51a0
DE
7400
7401 /* Verify we can do the following downcast, and that we have the
7402 data we need. */
7403 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7404 sig_type = (struct signatured_type *) this_cu;
7405 gdb_assert (sig_type->dwo_unit != NULL);
7406
6aa5f3a6
DE
7407 if (use_existing_cu && this_cu->cu != NULL)
7408 {
7409 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
6aa5f3a6
DE
7410 /* There's no need to do the rereading_dwo_cu handling that
7411 init_cutu_and_read_dies does since we don't read the stub. */
7412 }
7413 else
7414 {
7415 /* If !use_existing_cu, this_cu->cu must be NULL. */
7416 gdb_assert (this_cu->cu == NULL);
fcd3b13d 7417 new_cu.reset (new dwarf2_cu (this_cu));
6aa5f3a6
DE
7418 }
7419
7420 /* A future optimization, if needed, would be to use an existing
7421 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7422 could share abbrev tables. */
a2ce51a0 7423
685af9cd
TT
7424 /* The abbreviation table used by READER, this must live at least as long as
7425 READER. */
7426 abbrev_table_up dwo_abbrev_table;
7427
a2ce51a0 7428 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
a2ce51a0
DE
7429 NULL /* stub_comp_unit_die */,
7430 sig_type->dwo_unit->dwo_file->comp_dir,
7431 &reader, &info_ptr,
685af9cd
TT
7432 &comp_unit_die, &has_children,
7433 &dwo_abbrev_table) == 0)
a2ce51a0
DE
7434 {
7435 /* Dummy die. */
a2ce51a0
DE
7436 return;
7437 }
7438
7439 /* All the "real" work is done here. */
7440 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7441
6aa5f3a6 7442 /* This duplicates the code in init_cutu_and_read_dies,
a2ce51a0
DE
7443 but the alternative is making the latter more complex.
7444 This function is only for the special case of using DWO files directly:
7445 no point in overly complicating the general case just to handle this. */
fcd3b13d 7446 if (new_cu != NULL && keep)
a2ce51a0 7447 {
fcd3b13d
SM
7448 /* Link this CU into read_in_chain. */
7449 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7450 dwarf2_per_objfile->read_in_chain = this_cu;
7451 /* The chain owns it now. */
7452 new_cu.release ();
a2ce51a0 7453 }
a2ce51a0
DE
7454}
7455
fd820528 7456/* Initialize a CU (or TU) and read its DIEs.
3019eac3 7457 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 7458
f4dc4d17
DE
7459 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7460 Otherwise the table specified in the comp unit header is read in and used.
7461 This is an optimization for when we already have the abbrev table.
7462
dee91e82
DE
7463 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7464 Otherwise, a new CU is allocated with xmalloc.
7465
7466 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7467 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7468
7469 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 7470 linker) then DIE_READER_FUNC will not get called. */
aaa75496 7471
70221824 7472static void
fd820528 7473init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 7474 struct abbrev_table *abbrev_table,
fd820528 7475 int use_existing_cu, int keep,
58f0c718 7476 bool skip_partial,
fd820528
DE
7477 die_reader_func_ftype *die_reader_func,
7478 void *data)
c906108c 7479{
ed2dc618 7480 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
dee91e82 7481 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 7482 struct dwarf2_section_info *section = this_cu->section;
a32a8923 7483 bfd *abfd = get_section_bfd_owner (section);
dee91e82 7484 struct dwarf2_cu *cu;
d521ce57 7485 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 7486 struct die_reader_specs reader;
d85a05f0 7487 struct die_info *comp_unit_die;
dee91e82 7488 int has_children;
d85a05f0 7489 struct attribute *attr;
dee91e82 7490 struct signatured_type *sig_type = NULL;
4bdcc0c1 7491 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
7492 /* Non-zero if CU currently points to a DWO file and we need to
7493 reread it. When this happens we need to reread the skeleton die
a2ce51a0 7494 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 7495 int rereading_dwo_cu = 0;
c906108c 7496
b4f54984 7497 if (dwarf_die_debug)
9d8780f0 7498 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
09406207 7499 this_cu->is_debug_types ? "type" : "comp",
9d8780f0 7500 sect_offset_str (this_cu->sect_off));
09406207 7501
dee91e82
DE
7502 if (use_existing_cu)
7503 gdb_assert (keep);
23745b47 7504
a2ce51a0
DE
7505 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7506 file (instead of going through the stub), short-circuit all of this. */
7507 if (this_cu->reading_dwo_directly)
7508 {
7509 /* Narrow down the scope of possibilities to have to understand. */
7510 gdb_assert (this_cu->is_debug_types);
7511 gdb_assert (abbrev_table == NULL);
6aa5f3a6
DE
7512 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7513 die_reader_func, data);
a2ce51a0
DE
7514 return;
7515 }
7516
dee91e82
DE
7517 /* This is cheap if the section is already read in. */
7518 dwarf2_read_section (objfile, section);
7519
9c541725 7520 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
36586728
TT
7521
7522 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82 7523
fcd3b13d 7524 std::unique_ptr<dwarf2_cu> new_cu;
dee91e82
DE
7525 if (use_existing_cu && this_cu->cu != NULL)
7526 {
7527 cu = this_cu->cu;
42e7ad6c
DE
7528 /* If this CU is from a DWO file we need to start over, we need to
7529 refetch the attributes from the skeleton CU.
7530 This could be optimized by retrieving those attributes from when we
7531 were here the first time: the previous comp_unit_die was stored in
7532 comp_unit_obstack. But there's no data yet that we need this
7533 optimization. */
7534 if (cu->dwo_unit != NULL)
7535 rereading_dwo_cu = 1;
dee91e82
DE
7536 }
7537 else
7538 {
7539 /* If !use_existing_cu, this_cu->cu must be NULL. */
7540 gdb_assert (this_cu->cu == NULL);
fcd3b13d
SM
7541 new_cu.reset (new dwarf2_cu (this_cu));
7542 cu = new_cu.get ();
42e7ad6c 7543 }
dee91e82 7544
b0c7bfa9 7545 /* Get the header. */
9c541725 7546 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
42e7ad6c
DE
7547 {
7548 /* We already have the header, there's no need to read it in again. */
9c541725 7549 info_ptr += to_underlying (cu->header.first_die_cu_offset);
42e7ad6c
DE
7550 }
7551 else
7552 {
3019eac3 7553 if (this_cu->is_debug_types)
dee91e82 7554 {
ed2dc618
SM
7555 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7556 &cu->header, section,
4bdcc0c1 7557 abbrev_section, info_ptr,
43988095 7558 rcuh_kind::TYPE);
dee91e82 7559
42e7ad6c
DE
7560 /* Since per_cu is the first member of struct signatured_type,
7561 we can go from a pointer to one to a pointer to the other. */
7562 sig_type = (struct signatured_type *) this_cu;
43988095 7563 gdb_assert (sig_type->signature == cu->header.signature);
9c541725
PA
7564 gdb_assert (sig_type->type_offset_in_tu
7565 == cu->header.type_cu_offset_in_tu);
7566 gdb_assert (this_cu->sect_off == cu->header.sect_off);
dee91e82 7567
42e7ad6c
DE
7568 /* LENGTH has not been set yet for type units if we're
7569 using .gdb_index. */
1ce1cefd 7570 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
7571
7572 /* Establish the type offset that can be used to lookup the type. */
9c541725
PA
7573 sig_type->type_offset_in_section =
7574 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
43988095
JK
7575
7576 this_cu->dwarf_version = cu->header.version;
dee91e82
DE
7577 }
7578 else
7579 {
ed2dc618
SM
7580 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7581 &cu->header, section,
4bdcc0c1 7582 abbrev_section,
43988095
JK
7583 info_ptr,
7584 rcuh_kind::COMPILE);
dee91e82 7585
9c541725 7586 gdb_assert (this_cu->sect_off == cu->header.sect_off);
1ce1cefd 7587 gdb_assert (this_cu->length == get_cu_length (&cu->header));
43988095 7588 this_cu->dwarf_version = cu->header.version;
dee91e82
DE
7589 }
7590 }
10b3939b 7591
6caca83c 7592 /* Skip dummy compilation units. */
dee91e82 7593 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c 7594 || peek_abbrev_code (abfd, info_ptr) == 0)
fcd3b13d 7595 return;
6caca83c 7596
433df2d4
DE
7597 /* If we don't have them yet, read the abbrevs for this compilation unit.
7598 And if we need to read them now, make sure they're freed when we're
685af9cd
TT
7599 done (own the table through ABBREV_TABLE_HOLDER). */
7600 abbrev_table_up abbrev_table_holder;
f4dc4d17 7601 if (abbrev_table != NULL)
685af9cd
TT
7602 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7603 else
f4dc4d17 7604 {
685af9cd
TT
7605 abbrev_table_holder
7606 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7607 cu->header.abbrev_sect_off);
7608 abbrev_table = abbrev_table_holder.get ();
42e7ad6c 7609 }
af703f96 7610
dee91e82 7611 /* Read the top level CU/TU die. */
685af9cd 7612 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
dee91e82 7613 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 7614
58f0c718
TT
7615 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7616 return;
7617
b0c7bfa9 7618 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
685af9cd
TT
7619 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7620 table from the DWO file and pass the ownership over to us. It will be
7621 referenced from READER, so we must make sure to free it after we're done
7622 with READER.
7623
b0c7bfa9
DE
7624 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7625 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3 7626 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
685af9cd 7627 abbrev_table_up dwo_abbrev_table;
3019eac3
DE
7628 if (attr)
7629 {
3019eac3 7630 struct dwo_unit *dwo_unit;
b0c7bfa9 7631 struct die_info *dwo_comp_unit_die;
3019eac3
DE
7632
7633 if (has_children)
6a506a2d 7634 {
b98664d3 7635 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
9d8780f0
SM
7636 " has children (offset %s) [in module %s]"),
7637 sect_offset_str (this_cu->sect_off),
7638 bfd_get_filename (abfd));
6a506a2d 7639 }
b0c7bfa9 7640 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 7641 if (dwo_unit != NULL)
3019eac3 7642 {
6a506a2d 7643 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
a2ce51a0 7644 comp_unit_die, NULL,
6a506a2d 7645 &reader, &info_ptr,
685af9cd
TT
7646 &dwo_comp_unit_die, &has_children,
7647 &dwo_abbrev_table) == 0)
6a506a2d
DE
7648 {
7649 /* Dummy die. */
6a506a2d
DE
7650 return;
7651 }
7652 comp_unit_die = dwo_comp_unit_die;
7653 }
7654 else
7655 {
7656 /* Yikes, we couldn't find the rest of the DIE, we only have
7657 the stub. A complaint has already been logged. There's
7658 not much more we can do except pass on the stub DIE to
7659 die_reader_func. We don't want to throw an error on bad
7660 debug info. */
3019eac3
DE
7661 }
7662 }
7663
b0c7bfa9 7664 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
7665 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7666
b0c7bfa9 7667 /* Done, clean up. */
fcd3b13d 7668 if (new_cu != NULL && keep)
348e048f 7669 {
fcd3b13d
SM
7670 /* Link this CU into read_in_chain. */
7671 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7672 dwarf2_per_objfile->read_in_chain = this_cu;
7673 /* The chain owns it now. */
7674 new_cu.release ();
348e048f 7675 }
dee91e82
DE
7676}
7677
33e80786
DE
7678/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7679 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7680 to have already done the lookup to find the DWO file).
dee91e82
DE
7681
7682 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 7683 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
7684
7685 We fill in THIS_CU->length.
7686
7687 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7688 linker) then DIE_READER_FUNC will not get called.
7689
7690 THIS_CU->cu is always freed when done.
3019eac3
DE
7691 This is done in order to not leave THIS_CU->cu in a state where we have
7692 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
7693
7694static void
7695init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
3019eac3 7696 struct dwo_file *dwo_file,
dee91e82
DE
7697 die_reader_func_ftype *die_reader_func,
7698 void *data)
7699{
ed2dc618 7700 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
dee91e82 7701 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 7702 struct dwarf2_section_info *section = this_cu->section;
a32a8923 7703 bfd *abfd = get_section_bfd_owner (section);
33e80786 7704 struct dwarf2_section_info *abbrev_section;
d521ce57 7705 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 7706 struct die_reader_specs reader;
dee91e82
DE
7707 struct die_info *comp_unit_die;
7708 int has_children;
7709
b4f54984 7710 if (dwarf_die_debug)
9d8780f0 7711 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
09406207 7712 this_cu->is_debug_types ? "type" : "comp",
9d8780f0 7713 sect_offset_str (this_cu->sect_off));
09406207 7714
dee91e82
DE
7715 gdb_assert (this_cu->cu == NULL);
7716
33e80786
DE
7717 abbrev_section = (dwo_file != NULL
7718 ? &dwo_file->sections.abbrev
7719 : get_abbrev_section_for_cu (this_cu));
7720
dee91e82
DE
7721 /* This is cheap if the section is already read in. */
7722 dwarf2_read_section (objfile, section);
7723
fcd3b13d 7724 struct dwarf2_cu cu (this_cu);
dee91e82 7725
9c541725 7726 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
ed2dc618
SM
7727 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7728 &cu.header, section,
4bdcc0c1 7729 abbrev_section, info_ptr,
43988095
JK
7730 (this_cu->is_debug_types
7731 ? rcuh_kind::TYPE
7732 : rcuh_kind::COMPILE));
dee91e82 7733
1ce1cefd 7734 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
7735
7736 /* Skip dummy compilation units. */
7737 if (info_ptr >= begin_info_ptr + this_cu->length
7738 || peek_abbrev_code (abfd, info_ptr) == 0)
fcd3b13d 7739 return;
72bf9492 7740
685af9cd
TT
7741 abbrev_table_up abbrev_table
7742 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7743 cu.header.abbrev_sect_off);
dee91e82 7744
685af9cd 7745 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
dee91e82
DE
7746 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7747
7748 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
dee91e82
DE
7749}
7750
3019eac3
DE
7751/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7752 does not lookup the specified DWO file.
7753 This cannot be used to read DWO files.
dee91e82
DE
7754
7755 THIS_CU->cu is always freed when done.
3019eac3
DE
7756 This is done in order to not leave THIS_CU->cu in a state where we have
7757 to care whether it refers to the "main" CU or the DWO CU.
7758 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
7759
7760static void
7761init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7762 die_reader_func_ftype *die_reader_func,
7763 void *data)
7764{
33e80786 7765 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
dee91e82 7766}
0018ea6f
DE
7767\f
7768/* Type Unit Groups.
dee91e82 7769
0018ea6f
DE
7770 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7771 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7772 so that all types coming from the same compilation (.o file) are grouped
7773 together. A future step could be to put the types in the same symtab as
7774 the CU the types ultimately came from. */
ff013f42 7775
f4dc4d17
DE
7776static hashval_t
7777hash_type_unit_group (const void *item)
7778{
9a3c8263
SM
7779 const struct type_unit_group *tu_group
7780 = (const struct type_unit_group *) item;
f4dc4d17 7781
094b34ac 7782 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 7783}
348e048f
DE
7784
7785static int
f4dc4d17 7786eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 7787{
9a3c8263
SM
7788 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7789 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
348e048f 7790
094b34ac 7791 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 7792}
348e048f 7793
f4dc4d17
DE
7794/* Allocate a hash table for type unit groups. */
7795
7796static htab_t
ed2dc618 7797allocate_type_unit_groups_table (struct objfile *objfile)
f4dc4d17
DE
7798{
7799 return htab_create_alloc_ex (3,
7800 hash_type_unit_group,
7801 eq_type_unit_group,
7802 NULL,
ed2dc618 7803 &objfile->objfile_obstack,
f4dc4d17
DE
7804 hashtab_obstack_allocate,
7805 dummy_obstack_deallocate);
7806}
dee91e82 7807
f4dc4d17
DE
7808/* Type units that don't have DW_AT_stmt_list are grouped into their own
7809 partial symtabs. We combine several TUs per psymtab to not let the size
7810 of any one psymtab grow too big. */
7811#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7812#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 7813
094b34ac 7814/* Helper routine for get_type_unit_group.
f4dc4d17
DE
7815 Create the type_unit_group object used to hold one or more TUs. */
7816
7817static struct type_unit_group *
094b34ac 7818create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17 7819{
518817b3
SM
7820 struct dwarf2_per_objfile *dwarf2_per_objfile
7821 = cu->per_cu->dwarf2_per_objfile;
f4dc4d17 7822 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 7823 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 7824 struct type_unit_group *tu_group;
f4dc4d17
DE
7825
7826 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7827 struct type_unit_group);
094b34ac 7828 per_cu = &tu_group->per_cu;
518817b3 7829 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
f4dc4d17 7830
094b34ac
DE
7831 if (dwarf2_per_objfile->using_index)
7832 {
7833 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7834 struct dwarf2_per_cu_quick_data);
094b34ac
DE
7835 }
7836 else
7837 {
9c541725 7838 unsigned int line_offset = to_underlying (line_offset_struct);
094b34ac 7839 struct partial_symtab *pst;
528e1572 7840 std::string name;
094b34ac
DE
7841
7842 /* Give the symtab a useful name for debug purposes. */
7843 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
528e1572
SM
7844 name = string_printf ("<type_units_%d>",
7845 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
094b34ac 7846 else
528e1572 7847 name = string_printf ("<type_units_at_0x%x>", line_offset);
094b34ac 7848
528e1572 7849 pst = create_partial_symtab (per_cu, name.c_str ());
094b34ac 7850 pst->anonymous = 1;
094b34ac 7851 }
f4dc4d17 7852
094b34ac 7853 tu_group->hash.dwo_unit = cu->dwo_unit;
9c541725 7854 tu_group->hash.line_sect_off = line_offset_struct;
f4dc4d17
DE
7855
7856 return tu_group;
7857}
7858
094b34ac
DE
7859/* Look up the type_unit_group for type unit CU, and create it if necessary.
7860 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
7861
7862static struct type_unit_group *
ff39bb5e 7863get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17 7864{
518817b3
SM
7865 struct dwarf2_per_objfile *dwarf2_per_objfile
7866 = cu->per_cu->dwarf2_per_objfile;
f4dc4d17
DE
7867 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7868 struct type_unit_group *tu_group;
7869 void **slot;
7870 unsigned int line_offset;
7871 struct type_unit_group type_unit_group_for_lookup;
7872
7873 if (dwarf2_per_objfile->type_unit_groups == NULL)
7874 {
7875 dwarf2_per_objfile->type_unit_groups =
ed2dc618 7876 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
f4dc4d17
DE
7877 }
7878
7879 /* Do we need to create a new group, or can we use an existing one? */
7880
7881 if (stmt_list)
7882 {
7883 line_offset = DW_UNSND (stmt_list);
7884 ++tu_stats->nr_symtab_sharers;
7885 }
7886 else
7887 {
7888 /* Ugh, no stmt_list. Rare, but we have to handle it.
7889 We can do various things here like create one group per TU or
7890 spread them over multiple groups to split up the expansion work.
7891 To avoid worst case scenarios (too many groups or too large groups)
7892 we, umm, group them in bunches. */
7893 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7894 | (tu_stats->nr_stmt_less_type_units
7895 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7896 ++tu_stats->nr_stmt_less_type_units;
7897 }
7898
094b34ac 7899 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
9c541725 7900 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
f4dc4d17
DE
7901 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7902 &type_unit_group_for_lookup, INSERT);
7903 if (*slot != NULL)
7904 {
9a3c8263 7905 tu_group = (struct type_unit_group *) *slot;
f4dc4d17
DE
7906 gdb_assert (tu_group != NULL);
7907 }
7908 else
7909 {
9c541725 7910 sect_offset line_offset_struct = (sect_offset) line_offset;
094b34ac 7911 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
7912 *slot = tu_group;
7913 ++tu_stats->nr_symtabs;
7914 }
7915
7916 return tu_group;
7917}
0018ea6f
DE
7918\f
7919/* Partial symbol tables. */
7920
7921/* Create a psymtab named NAME and assign it to PER_CU.
7922
7923 The caller must fill in the following details:
7924 dirname, textlow, texthigh. */
7925
7926static struct partial_symtab *
7927create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7928{
e3b94546 7929 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
0018ea6f
DE
7930 struct partial_symtab *pst;
7931
18a94d75 7932 pst = start_psymtab_common (objfile, name, 0,
af5bf4ad
SM
7933 objfile->global_psymbols,
7934 objfile->static_psymbols);
0018ea6f
DE
7935
7936 pst->psymtabs_addrmap_supported = 1;
7937
7938 /* This is the glue that links PST into GDB's symbol API. */
7939 pst->read_symtab_private = per_cu;
7940 pst->read_symtab = dwarf2_read_symtab;
7941 per_cu->v.psymtab = pst;
7942
7943 return pst;
7944}
7945
b93601f3
TT
7946/* The DATA object passed to process_psymtab_comp_unit_reader has this
7947 type. */
7948
7949struct process_psymtab_comp_unit_data
7950{
7951 /* True if we are reading a DW_TAG_partial_unit. */
7952
7953 int want_partial_unit;
7954
7955 /* The "pretend" language that is used if the CU doesn't declare a
7956 language. */
7957
7958 enum language pretend_language;
7959};
7960
0018ea6f
DE
7961/* die_reader_func for process_psymtab_comp_unit. */
7962
7963static void
7964process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7965 const gdb_byte *info_ptr,
0018ea6f
DE
7966 struct die_info *comp_unit_die,
7967 int has_children,
7968 void *data)
7969{
7970 struct dwarf2_cu *cu = reader->cu;
518817b3 7971 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
3e29f34a 7972 struct gdbarch *gdbarch = get_objfile_arch (objfile);
0018ea6f 7973 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0018ea6f
DE
7974 CORE_ADDR baseaddr;
7975 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7976 struct partial_symtab *pst;
3a2b436a 7977 enum pc_bounds_kind cu_bounds_kind;
0018ea6f 7978 const char *filename;
9a3c8263
SM
7979 struct process_psymtab_comp_unit_data *info
7980 = (struct process_psymtab_comp_unit_data *) data;
0018ea6f 7981
b93601f3 7982 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
7983 return;
7984
7985 gdb_assert (! per_cu->is_debug_types);
7986
b93601f3 7987 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f 7988
0018ea6f 7989 /* Allocate a new partial symbol table structure. */
7d45c7c3
KB
7990 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7991 if (filename == NULL)
0018ea6f 7992 filename = "";
0018ea6f
DE
7993
7994 pst = create_partial_symtab (per_cu, filename);
7995
7996 /* This must be done before calling dwarf2_build_include_psymtabs. */
7d45c7c3 7997 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
0018ea6f
DE
7998
7999 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8000
8001 dwarf2_find_base_address (comp_unit_die, cu);
8002
8003 /* Possibly set the default values of LOWPC and HIGHPC from
8004 `DW_AT_ranges'. */
3a2b436a
JK
8005 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8006 &best_highpc, cu, pst);
8007 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
79748972
TT
8008 {
8009 CORE_ADDR low
8010 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
8011 - baseaddr);
8012 CORE_ADDR high
8013 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
8014 - baseaddr - 1);
8015 /* Store the contiguous range if it is not empty; it can be
8016 empty for CUs with no code. */
8017 addrmap_set_empty (objfile->psymtabs_addrmap, low, high, pst);
8018 }
0018ea6f
DE
8019
8020 /* Check if comp unit has_children.
8021 If so, read the rest of the partial symbols from this comp unit.
8022 If not, there's no more debug_info for this comp unit. */
8023 if (has_children)
8024 {
8025 struct partial_die_info *first_die;
8026 CORE_ADDR lowpc, highpc;
8027
8028 lowpc = ((CORE_ADDR) -1);
8029 highpc = ((CORE_ADDR) 0);
8030
8031 first_die = load_partial_dies (reader, info_ptr, 1);
8032
8033 scan_partial_symbols (first_die, &lowpc, &highpc,
e385593e 8034 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
0018ea6f
DE
8035
8036 /* If we didn't find a lowpc, set it to highpc to avoid
8037 complaints from `maint check'. */
8038 if (lowpc == ((CORE_ADDR) -1))
8039 lowpc = highpc;
8040
8041 /* If the compilation unit didn't have an explicit address range,
8042 then use the information extracted from its child dies. */
e385593e 8043 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
0018ea6f
DE
8044 {
8045 best_lowpc = lowpc;
8046 best_highpc = highpc;
8047 }
8048 }
4ae976d1 8049 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
79748972
TT
8050 best_lowpc + baseaddr)
8051 - baseaddr);
4ae976d1 8052 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
79748972
TT
8053 best_highpc + baseaddr)
8054 - baseaddr);
0018ea6f 8055
8763cede 8056 end_psymtab_common (objfile, pst);
0018ea6f
DE
8057
8058 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8059 {
8060 int i;
8061 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8062 struct dwarf2_per_cu_data *iter;
8063
8064 /* Fill in 'dependencies' here; we fill in 'users' in a
8065 post-pass. */
8066 pst->number_of_dependencies = len;
8d749320
SM
8067 pst->dependencies =
8068 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
0018ea6f
DE
8069 for (i = 0;
8070 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8071 i, iter);
8072 ++i)
8073 pst->dependencies[i] = iter->v.psymtab;
8074
8075 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8076 }
8077
8078 /* Get the list of files included in the current compilation unit,
8079 and build a psymtab for each of them. */
8080 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8081
b4f54984 8082 if (dwarf_read_debug)
b926417a
TT
8083 fprintf_unfiltered (gdb_stdlog,
8084 "Psymtab for %s unit @%s: %s - %s"
8085 ", %d global, %d static syms\n",
8086 per_cu->is_debug_types ? "type" : "comp",
8087 sect_offset_str (per_cu->sect_off),
8088 paddress (gdbarch, pst->text_low (objfile)),
8089 paddress (gdbarch, pst->text_high (objfile)),
8090 pst->n_global_syms, pst->n_static_syms);
0018ea6f
DE
8091}
8092
8093/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8094 Process compilation unit THIS_CU for a psymtab. */
8095
8096static void
8097process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
8098 int want_partial_unit,
8099 enum language pretend_language)
0018ea6f
DE
8100{
8101 /* If this compilation unit was already read in, free the
8102 cached copy in order to read it in again. This is
8103 necessary because we skipped some symbols when we first
8104 read in the compilation unit (see load_partial_dies).
8105 This problem could be avoided, but the benefit is unclear. */
8106 if (this_cu->cu != NULL)
8107 free_one_cached_comp_unit (this_cu);
8108
f1902523 8109 if (this_cu->is_debug_types)
58f0c718
TT
8110 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8111 build_type_psymtabs_reader, NULL);
f1902523
JK
8112 else
8113 {
8114 process_psymtab_comp_unit_data info;
8115 info.want_partial_unit = want_partial_unit;
8116 info.pretend_language = pretend_language;
58f0c718 8117 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
f1902523
JK
8118 process_psymtab_comp_unit_reader, &info);
8119 }
0018ea6f
DE
8120
8121 /* Age out any secondary CUs. */
ed2dc618 8122 age_cached_comp_units (this_cu->dwarf2_per_objfile);
0018ea6f 8123}
f4dc4d17
DE
8124
8125/* Reader function for build_type_psymtabs. */
8126
8127static void
8128build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 8129 const gdb_byte *info_ptr,
f4dc4d17
DE
8130 struct die_info *type_unit_die,
8131 int has_children,
8132 void *data)
8133{
ed2dc618 8134 struct dwarf2_per_objfile *dwarf2_per_objfile
518817b3 8135 = reader->cu->per_cu->dwarf2_per_objfile;
f4dc4d17
DE
8136 struct objfile *objfile = dwarf2_per_objfile->objfile;
8137 struct dwarf2_cu *cu = reader->cu;
8138 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 8139 struct signatured_type *sig_type;
f4dc4d17
DE
8140 struct type_unit_group *tu_group;
8141 struct attribute *attr;
8142 struct partial_die_info *first_die;
8143 CORE_ADDR lowpc, highpc;
8144 struct partial_symtab *pst;
8145
8146 gdb_assert (data == NULL);
0186c6a7
DE
8147 gdb_assert (per_cu->is_debug_types);
8148 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
8149
8150 if (! has_children)
8151 return;
8152
8153 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 8154 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 8155
0186c6a7 8156 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
8157
8158 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
f4dc4d17
DE
8159 pst = create_partial_symtab (per_cu, "");
8160 pst->anonymous = 1;
8161
8162 first_die = load_partial_dies (reader, info_ptr, 1);
8163
8164 lowpc = (CORE_ADDR) -1;
8165 highpc = (CORE_ADDR) 0;
8166 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8167
8763cede 8168 end_psymtab_common (objfile, pst);
f4dc4d17
DE
8169}
8170
73051182
DE
8171/* Struct used to sort TUs by their abbreviation table offset. */
8172
8173struct tu_abbrev_offset
8174{
b2bdb8cf
SM
8175 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8176 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8177 {}
8178
8179 signatured_type *sig_type;
73051182
DE
8180 sect_offset abbrev_offset;
8181};
8182
484cf504 8183/* Helper routine for build_type_psymtabs_1, passed to std::sort. */
73051182 8184
484cf504
TT
8185static bool
8186sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8187 const struct tu_abbrev_offset &b)
73051182 8188{
484cf504 8189 return a.abbrev_offset < b.abbrev_offset;
73051182
DE
8190}
8191
8192/* Efficiently read all the type units.
8193 This does the bulk of the work for build_type_psymtabs.
8194
8195 The efficiency is because we sort TUs by the abbrev table they use and
8196 only read each abbrev table once. In one program there are 200K TUs
8197 sharing 8K abbrev tables.
8198
8199 The main purpose of this function is to support building the
8200 dwarf2_per_objfile->type_unit_groups table.
8201 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8202 can collapse the search space by grouping them by stmt_list.
8203 The savings can be significant, in the same program from above the 200K TUs
8204 share 8K stmt_list tables.
8205
8206 FUNC is expected to call get_type_unit_group, which will create the
8207 struct type_unit_group if necessary and add it to
8208 dwarf2_per_objfile->type_unit_groups. */
8209
8210static void
ed2dc618 8211build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
73051182 8212{
73051182 8213 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
685af9cd 8214 abbrev_table_up abbrev_table;
73051182 8215 sect_offset abbrev_offset;
73051182
DE
8216
8217 /* It's up to the caller to not call us multiple times. */
8218 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8219
b2bdb8cf 8220 if (dwarf2_per_objfile->all_type_units.empty ())
73051182
DE
8221 return;
8222
8223 /* TUs typically share abbrev tables, and there can be way more TUs than
8224 abbrev tables. Sort by abbrev table to reduce the number of times we
8225 read each abbrev table in.
8226 Alternatives are to punt or to maintain a cache of abbrev tables.
8227 This is simpler and efficient enough for now.
8228
8229 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8230 symtab to use). Typically TUs with the same abbrev offset have the same
8231 stmt_list value too so in practice this should work well.
8232
8233 The basic algorithm here is:
8234
8235 sort TUs by abbrev table
8236 for each TU with same abbrev table:
8237 read abbrev table if first user
8238 read TU top level DIE
8239 [IWBN if DWO skeletons had DW_AT_stmt_list]
8240 call FUNC */
8241
b4f54984 8242 if (dwarf_read_debug)
73051182
DE
8243 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8244
8245 /* Sort in a separate table to maintain the order of all_type_units
8246 for .gdb_index: TU indices directly index all_type_units. */
b2bdb8cf
SM
8247 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8248 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8249
8250 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8251 sorted_by_abbrev.emplace_back
8252 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8253 sig_type->per_cu.section,
8254 sig_type->per_cu.sect_off));
73051182 8255
484cf504
TT
8256 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8257 sort_tu_by_abbrev_offset);
73051182 8258
9c541725 8259 abbrev_offset = (sect_offset) ~(unsigned) 0;
73051182 8260
b2bdb8cf 8261 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
73051182 8262 {
73051182
DE
8263 /* Switch to the next abbrev table if necessary. */
8264 if (abbrev_table == NULL
b2bdb8cf 8265 || tu.abbrev_offset != abbrev_offset)
73051182 8266 {
b2bdb8cf 8267 abbrev_offset = tu.abbrev_offset;
73051182 8268 abbrev_table =
ed2dc618
SM
8269 abbrev_table_read_table (dwarf2_per_objfile,
8270 &dwarf2_per_objfile->abbrev,
73051182
DE
8271 abbrev_offset);
8272 ++tu_stats->nr_uniq_abbrev_tables;
8273 }
8274
b2bdb8cf 8275 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
58f0c718 8276 0, 0, false, build_type_psymtabs_reader, NULL);
73051182 8277 }
6aa5f3a6 8278}
73051182 8279
6aa5f3a6
DE
8280/* Print collected type unit statistics. */
8281
8282static void
ed2dc618 8283print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
6aa5f3a6
DE
8284{
8285 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8286
8287 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
b2bdb8cf
SM
8288 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8289 dwarf2_per_objfile->all_type_units.size ());
6aa5f3a6
DE
8290 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8291 tu_stats->nr_uniq_abbrev_tables);
8292 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8293 tu_stats->nr_symtabs);
8294 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8295 tu_stats->nr_symtab_sharers);
8296 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8297 tu_stats->nr_stmt_less_type_units);
8298 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8299 tu_stats->nr_all_type_units_reallocs);
73051182
DE
8300}
8301
f4dc4d17
DE
8302/* Traversal function for build_type_psymtabs. */
8303
8304static int
8305build_type_psymtab_dependencies (void **slot, void *info)
8306{
ed2dc618
SM
8307 struct dwarf2_per_objfile *dwarf2_per_objfile
8308 = (struct dwarf2_per_objfile *) info;
f4dc4d17
DE
8309 struct objfile *objfile = dwarf2_per_objfile->objfile;
8310 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 8311 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 8312 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
8313 int len = VEC_length (sig_type_ptr, tu_group->tus);
8314 struct signatured_type *iter;
f4dc4d17
DE
8315 int i;
8316
8317 gdb_assert (len > 0);
0186c6a7 8318 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
8319
8320 pst->number_of_dependencies = len;
8d749320
SM
8321 pst->dependencies =
8322 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
f4dc4d17 8323 for (i = 0;
0186c6a7 8324 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
8325 ++i)
8326 {
0186c6a7
DE
8327 gdb_assert (iter->per_cu.is_debug_types);
8328 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 8329 iter->type_unit_group = tu_group;
f4dc4d17
DE
8330 }
8331
0186c6a7 8332 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
8333
8334 return 1;
8335}
8336
8337/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8338 Build partial symbol tables for the .debug_types comp-units. */
8339
8340static void
ed2dc618 8341build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
348e048f 8342{
ed2dc618 8343 if (! create_all_type_units (dwarf2_per_objfile))
348e048f
DE
8344 return;
8345
ed2dc618 8346 build_type_psymtabs_1 (dwarf2_per_objfile);
6aa5f3a6 8347}
f4dc4d17 8348
6aa5f3a6
DE
8349/* Traversal function for process_skeletonless_type_unit.
8350 Read a TU in a DWO file and build partial symbols for it. */
8351
8352static int
8353process_skeletonless_type_unit (void **slot, void *info)
8354{
8355 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
ed2dc618
SM
8356 struct dwarf2_per_objfile *dwarf2_per_objfile
8357 = (struct dwarf2_per_objfile *) info;
6aa5f3a6
DE
8358 struct signatured_type find_entry, *entry;
8359
8360 /* If this TU doesn't exist in the global table, add it and read it in. */
8361
8362 if (dwarf2_per_objfile->signatured_types == NULL)
8363 {
8364 dwarf2_per_objfile->signatured_types
ed2dc618 8365 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
6aa5f3a6
DE
8366 }
8367
8368 find_entry.signature = dwo_unit->signature;
8369 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8370 INSERT);
8371 /* If we've already seen this type there's nothing to do. What's happening
8372 is we're doing our own version of comdat-folding here. */
8373 if (*slot != NULL)
8374 return 1;
8375
8376 /* This does the job that create_all_type_units would have done for
8377 this TU. */
ed2dc618
SM
8378 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8379 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
6aa5f3a6
DE
8380 *slot = entry;
8381
8382 /* This does the job that build_type_psymtabs_1 would have done. */
58f0c718 8383 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
6aa5f3a6
DE
8384 build_type_psymtabs_reader, NULL);
8385
8386 return 1;
8387}
8388
8389/* Traversal function for process_skeletonless_type_units. */
8390
8391static int
8392process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8393{
8394 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8395
8396 if (dwo_file->tus != NULL)
8397 {
8398 htab_traverse_noresize (dwo_file->tus,
8399 process_skeletonless_type_unit, info);
8400 }
8401
8402 return 1;
8403}
8404
8405/* Scan all TUs of DWO files, verifying we've processed them.
8406 This is needed in case a TU was emitted without its skeleton.
8407 Note: This can't be done until we know what all the DWO files are. */
8408
8409static void
ed2dc618 8410process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6aa5f3a6
DE
8411{
8412 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
ed2dc618 8413 if (get_dwp_file (dwarf2_per_objfile) == NULL
6aa5f3a6
DE
8414 && dwarf2_per_objfile->dwo_files != NULL)
8415 {
8416 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8417 process_dwo_file_for_skeletonless_type_units,
ed2dc618 8418 dwarf2_per_objfile);
6aa5f3a6 8419 }
348e048f
DE
8420}
8421
ed2dc618 8422/* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
95554aad
TT
8423
8424static void
ed2dc618 8425set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
95554aad 8426{
b76e467d 8427 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
95554aad 8428 {
95554aad 8429 struct partial_symtab *pst = per_cu->v.psymtab;
95554aad 8430
36586728
TT
8431 if (pst == NULL)
8432 continue;
8433
b76e467d 8434 for (int j = 0; j < pst->number_of_dependencies; ++j)
95554aad
TT
8435 {
8436 /* Set the 'user' field only if it is not already set. */
8437 if (pst->dependencies[j]->user == NULL)
8438 pst->dependencies[j]->user = pst;
8439 }
8440 }
8441}
8442
93311388
DE
8443/* Build the partial symbol table by doing a quick pass through the
8444 .debug_info and .debug_abbrev sections. */
72bf9492 8445
93311388 8446static void
ed2dc618 8447dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
93311388 8448{
ed2dc618 8449 struct objfile *objfile = dwarf2_per_objfile->objfile;
93311388 8450
b4f54984 8451 if (dwarf_read_debug)
45cfd468
DE
8452 {
8453 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 8454 objfile_name (objfile));
45cfd468
DE
8455 }
8456
98bfdba5
PA
8457 dwarf2_per_objfile->reading_partial_symbols = 1;
8458
be391dca 8459 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 8460
93311388
DE
8461 /* Any cached compilation units will be linked by the per-objfile
8462 read_in_chain. Make sure to free them when we're done. */
11ed8cad 8463 free_cached_comp_units freer (dwarf2_per_objfile);
72bf9492 8464
ed2dc618 8465 build_type_psymtabs (dwarf2_per_objfile);
348e048f 8466
ed2dc618 8467 create_all_comp_units (dwarf2_per_objfile);
c906108c 8468
60606b2c
TT
8469 /* Create a temporary address map on a temporary obstack. We later
8470 copy this to the final obstack. */
8268c778 8471 auto_obstack temp_obstack;
791afaa2
TT
8472
8473 scoped_restore save_psymtabs_addrmap
8474 = make_scoped_restore (&objfile->psymtabs_addrmap,
8475 addrmap_create_mutable (&temp_obstack));
72bf9492 8476
b76e467d
SM
8477 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8478 process_psymtab_comp_unit (per_cu, 0, language_minimal);
ff013f42 8479
6aa5f3a6 8480 /* This has to wait until we read the CUs, we need the list of DWOs. */
ed2dc618 8481 process_skeletonless_type_units (dwarf2_per_objfile);
6aa5f3a6
DE
8482
8483 /* Now that all TUs have been processed we can fill in the dependencies. */
8484 if (dwarf2_per_objfile->type_unit_groups != NULL)
8485 {
8486 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
ed2dc618 8487 build_type_psymtab_dependencies, dwarf2_per_objfile);
6aa5f3a6
DE
8488 }
8489
b4f54984 8490 if (dwarf_read_debug)
ed2dc618 8491 print_tu_stats (dwarf2_per_objfile);
6aa5f3a6 8492
ed2dc618 8493 set_partial_user (dwarf2_per_objfile);
95554aad 8494
ff013f42
JK
8495 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8496 &objfile->objfile_obstack);
791afaa2
TT
8497 /* At this point we want to keep the address map. */
8498 save_psymtabs_addrmap.release ();
ff013f42 8499
b4f54984 8500 if (dwarf_read_debug)
45cfd468 8501 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 8502 objfile_name (objfile));
ae038cb0
DJ
8503}
8504
3019eac3 8505/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
8506
8507static void
dee91e82 8508load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 8509 const gdb_byte *info_ptr,
dee91e82
DE
8510 struct die_info *comp_unit_die,
8511 int has_children,
8512 void *data)
ae038cb0 8513{
dee91e82 8514 struct dwarf2_cu *cu = reader->cu;
ae038cb0 8515
95554aad 8516 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 8517
ae038cb0
DJ
8518 /* Check if comp unit has_children.
8519 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 8520 If not, there's no more debug_info for this comp unit. */
d85a05f0 8521 if (has_children)
dee91e82
DE
8522 load_partial_dies (reader, info_ptr, 0);
8523}
98bfdba5 8524
dee91e82
DE
8525/* Load the partial DIEs for a secondary CU into memory.
8526 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 8527
dee91e82
DE
8528static void
8529load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8530{
58f0c718 8531 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
f4dc4d17 8532 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
8533}
8534
ae038cb0 8535static void
ed2dc618 8536read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
36586728 8537 struct dwarf2_section_info *section,
f1902523 8538 struct dwarf2_section_info *abbrev_section,
b76e467d 8539 unsigned int is_dwz)
ae038cb0 8540{
d521ce57 8541 const gdb_byte *info_ptr;
ed2dc618 8542 struct objfile *objfile = dwarf2_per_objfile->objfile;
be391dca 8543
b4f54984 8544 if (dwarf_read_debug)
bf6af496 8545 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
8546 get_section_name (section),
8547 get_section_file_name (section));
bf6af496 8548
36586728 8549 dwarf2_read_section (objfile, section);
ae038cb0 8550
36586728 8551 info_ptr = section->buffer;
6e70227d 8552
36586728 8553 while (info_ptr < section->buffer + section->size)
ae038cb0 8554 {
ae038cb0 8555 struct dwarf2_per_cu_data *this_cu;
ae038cb0 8556
9c541725 8557 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
ae038cb0 8558
f1902523 8559 comp_unit_head cu_header;
ed2dc618
SM
8560 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8561 abbrev_section, info_ptr,
8562 rcuh_kind::COMPILE);
ae038cb0
DJ
8563
8564 /* Save the compilation unit for later lookup. */
f1902523
JK
8565 if (cu_header.unit_type != DW_UT_type)
8566 {
8567 this_cu = XOBNEW (&objfile->objfile_obstack,
8568 struct dwarf2_per_cu_data);
8569 memset (this_cu, 0, sizeof (*this_cu));
8570 }
8571 else
8572 {
8573 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8574 struct signatured_type);
8575 memset (sig_type, 0, sizeof (*sig_type));
8576 sig_type->signature = cu_header.signature;
8577 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8578 this_cu = &sig_type->per_cu;
8579 }
8580 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
9c541725 8581 this_cu->sect_off = sect_off;
f1902523 8582 this_cu->length = cu_header.length + cu_header.initial_length_size;
36586728 8583 this_cu->is_dwz = is_dwz;
e3b94546 8584 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8a0459fd 8585 this_cu->section = section;
ae038cb0 8586
b76e467d 8587 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
ae038cb0
DJ
8588
8589 info_ptr = info_ptr + this_cu->length;
8590 }
36586728
TT
8591}
8592
8593/* Create a list of all compilation units in OBJFILE.
8594 This is only done for -readnow and building partial symtabs. */
8595
8596static void
ed2dc618 8597create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
36586728 8598{
b76e467d 8599 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
ed2dc618 8600 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
b76e467d 8601 &dwarf2_per_objfile->abbrev, 0);
36586728 8602
b76e467d 8603 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
4db1a1dc 8604 if (dwz != NULL)
ed2dc618 8605 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
b76e467d 8606 1);
c906108c
SS
8607}
8608
5734ee8b 8609/* Process all loaded DIEs for compilation unit CU, starting at
cdc07690 8610 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
5734ee8b 8611 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
cdc07690
YQ
8612 DW_AT_ranges). See the comments of add_partial_subprogram on how
8613 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
c906108c 8614
72bf9492
DJ
8615static void
8616scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
cdc07690
YQ
8617 CORE_ADDR *highpc, int set_addrmap,
8618 struct dwarf2_cu *cu)
c906108c 8619{
72bf9492 8620 struct partial_die_info *pdi;
c906108c 8621
91c24f0a
DC
8622 /* Now, march along the PDI's, descending into ones which have
8623 interesting children but skipping the children of the other ones,
8624 until we reach the end of the compilation unit. */
c906108c 8625
72bf9492 8626 pdi = first_die;
91c24f0a 8627
72bf9492
DJ
8628 while (pdi != NULL)
8629 {
52356b79 8630 pdi->fixup (cu);
c906108c 8631
f55ee35c 8632 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
8633 children, so we need to look at them. Ditto for anonymous
8634 enums. */
933c6fe4 8635
72bf9492 8636 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad 8637 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
b1dc1806
XR
8638 || pdi->tag == DW_TAG_imported_unit
8639 || pdi->tag == DW_TAG_inlined_subroutine)
c906108c 8640 {
72bf9492 8641 switch (pdi->tag)
c906108c
SS
8642 {
8643 case DW_TAG_subprogram:
b1dc1806 8644 case DW_TAG_inlined_subroutine:
cdc07690 8645 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
c906108c 8646 break;
72929c62 8647 case DW_TAG_constant:
c906108c
SS
8648 case DW_TAG_variable:
8649 case DW_TAG_typedef:
91c24f0a 8650 case DW_TAG_union_type:
72bf9492 8651 if (!pdi->is_declaration)
63d06c5c 8652 {
72bf9492 8653 add_partial_symbol (pdi, cu);
63d06c5c
DC
8654 }
8655 break;
c906108c 8656 case DW_TAG_class_type:
680b30c7 8657 case DW_TAG_interface_type:
c906108c 8658 case DW_TAG_structure_type:
72bf9492 8659 if (!pdi->is_declaration)
c906108c 8660 {
72bf9492 8661 add_partial_symbol (pdi, cu);
c906108c 8662 }
b7fee5a3
KS
8663 if ((cu->language == language_rust
8664 || cu->language == language_cplus) && pdi->has_children)
e98c9e7c
TT
8665 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8666 set_addrmap, cu);
c906108c 8667 break;
91c24f0a 8668 case DW_TAG_enumeration_type:
72bf9492
DJ
8669 if (!pdi->is_declaration)
8670 add_partial_enumeration (pdi, cu);
c906108c
SS
8671 break;
8672 case DW_TAG_base_type:
a02abb62 8673 case DW_TAG_subrange_type:
c906108c 8674 /* File scope base type definitions are added to the partial
c5aa993b 8675 symbol table. */
72bf9492 8676 add_partial_symbol (pdi, cu);
c906108c 8677 break;
d9fa45fe 8678 case DW_TAG_namespace:
cdc07690 8679 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
91c24f0a 8680 break;
5d7cb8df 8681 case DW_TAG_module:
cdc07690 8682 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
5d7cb8df 8683 break;
95554aad
TT
8684 case DW_TAG_imported_unit:
8685 {
8686 struct dwarf2_per_cu_data *per_cu;
8687
f4dc4d17
DE
8688 /* For now we don't handle imported units in type units. */
8689 if (cu->per_cu->is_debug_types)
8690 {
8691 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8692 " supported in type units [in module %s]"),
518817b3 8693 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
f4dc4d17
DE
8694 }
8695
e3b94546
SM
8696 per_cu = dwarf2_find_containing_comp_unit
8697 (pdi->d.sect_off, pdi->is_dwz,
518817b3 8698 cu->per_cu->dwarf2_per_objfile);
95554aad
TT
8699
8700 /* Go read the partial unit, if needed. */
8701 if (per_cu->v.psymtab == NULL)
b93601f3 8702 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 8703
f4dc4d17 8704 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 8705 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
8706 }
8707 break;
74921315
KS
8708 case DW_TAG_imported_declaration:
8709 add_partial_symbol (pdi, cu);
8710 break;
c906108c
SS
8711 default:
8712 break;
8713 }
8714 }
8715
72bf9492
DJ
8716 /* If the die has a sibling, skip to the sibling. */
8717
8718 pdi = pdi->die_sibling;
8719 }
8720}
8721
8722/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 8723
72bf9492 8724 Normally, this is simple. For C++, the parent DIE's fully scoped
9c37b5ae 8725 name is concatenated with "::" and the partial DIE's name.
72bf9492
DJ
8726 Enumerators are an exception; they use the scope of their parent
8727 enumeration type, i.e. the name of the enumeration type is not
8728 prepended to the enumerator.
91c24f0a 8729
72bf9492
DJ
8730 There are two complexities. One is DW_AT_specification; in this
8731 case "parent" means the parent of the target of the specification,
8732 instead of the direct parent of the DIE. The other is compilers
8733 which do not emit DW_TAG_namespace; in this case we try to guess
8734 the fully qualified name of structure types from their members'
8735 linkage names. This must be done using the DIE's children rather
8736 than the children of any DW_AT_specification target. We only need
8737 to do this for structures at the top level, i.e. if the target of
8738 any DW_AT_specification (if any; otherwise the DIE itself) does not
8739 have a parent. */
8740
8741/* Compute the scope prefix associated with PDI's parent, in
8742 compilation unit CU. The result will be allocated on CU's
8743 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8744 field. NULL is returned if no prefix is necessary. */
15d034d0 8745static const char *
72bf9492
DJ
8746partial_die_parent_scope (struct partial_die_info *pdi,
8747 struct dwarf2_cu *cu)
8748{
15d034d0 8749 const char *grandparent_scope;
72bf9492 8750 struct partial_die_info *parent, *real_pdi;
91c24f0a 8751
72bf9492
DJ
8752 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8753 then this means the parent of the specification DIE. */
8754
8755 real_pdi = pdi;
72bf9492 8756 while (real_pdi->has_specification)
36586728
TT
8757 real_pdi = find_partial_die (real_pdi->spec_offset,
8758 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
8759
8760 parent = real_pdi->die_parent;
8761 if (parent == NULL)
8762 return NULL;
8763
8764 if (parent->scope_set)
8765 return parent->scope;
8766
52356b79 8767 parent->fixup (cu);
72bf9492 8768
10b3939b 8769 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 8770
acebe513
UW
8771 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8772 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8773 Work around this problem here. */
8774 if (cu->language == language_cplus
6e70227d 8775 && parent->tag == DW_TAG_namespace
acebe513
UW
8776 && strcmp (parent->name, "::") == 0
8777 && grandparent_scope == NULL)
8778 {
8779 parent->scope = NULL;
8780 parent->scope_set = 1;
8781 return NULL;
8782 }
8783
9c6c53f7
SA
8784 if (pdi->tag == DW_TAG_enumerator)
8785 /* Enumerators should not get the name of the enumeration as a prefix. */
8786 parent->scope = grandparent_scope;
8787 else if (parent->tag == DW_TAG_namespace
f55ee35c 8788 || parent->tag == DW_TAG_module
72bf9492
DJ
8789 || parent->tag == DW_TAG_structure_type
8790 || parent->tag == DW_TAG_class_type
680b30c7 8791 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
8792 || parent->tag == DW_TAG_union_type
8793 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
8794 {
8795 if (grandparent_scope == NULL)
8796 parent->scope = parent->name;
8797 else
3e43a32a
MS
8798 parent->scope = typename_concat (&cu->comp_unit_obstack,
8799 grandparent_scope,
f55ee35c 8800 parent->name, 0, cu);
72bf9492 8801 }
72bf9492
DJ
8802 else
8803 {
8804 /* FIXME drow/2004-04-01: What should we be doing with
8805 function-local names? For partial symbols, we should probably be
8806 ignoring them. */
b98664d3 8807 complaint (_("unhandled containing DIE tag %d for DIE at %s"),
9d8780f0 8808 parent->tag, sect_offset_str (pdi->sect_off));
72bf9492 8809 parent->scope = grandparent_scope;
c906108c
SS
8810 }
8811
72bf9492
DJ
8812 parent->scope_set = 1;
8813 return parent->scope;
8814}
8815
8816/* Return the fully scoped name associated with PDI, from compilation unit
8817 CU. The result will be allocated with malloc. */
4568ecf9 8818
72bf9492
DJ
8819static char *
8820partial_die_full_name (struct partial_die_info *pdi,
8821 struct dwarf2_cu *cu)
8822{
15d034d0 8823 const char *parent_scope;
72bf9492 8824
98bfdba5
PA
8825 /* If this is a template instantiation, we can not work out the
8826 template arguments from partial DIEs. So, unfortunately, we have
8827 to go through the full DIEs. At least any work we do building
8828 types here will be reused if full symbols are loaded later. */
8829 if (pdi->has_template_arguments)
8830 {
52356b79 8831 pdi->fixup (cu);
98bfdba5
PA
8832
8833 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8834 {
8835 struct die_info *die;
8836 struct attribute attr;
8837 struct dwarf2_cu *ref_cu = cu;
8838
b64f50a1 8839 /* DW_FORM_ref_addr is using section offset. */
b4069958 8840 attr.name = (enum dwarf_attribute) 0;
98bfdba5 8841 attr.form = DW_FORM_ref_addr;
9c541725 8842 attr.u.unsnd = to_underlying (pdi->sect_off);
98bfdba5
PA
8843 die = follow_die_ref (NULL, &attr, &ref_cu);
8844
8845 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8846 }
8847 }
8848
72bf9492
DJ
8849 parent_scope = partial_die_parent_scope (pdi, cu);
8850 if (parent_scope == NULL)
8851 return NULL;
8852 else
f55ee35c 8853 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
8854}
8855
8856static void
72bf9492 8857add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 8858{
518817b3
SM
8859 struct dwarf2_per_objfile *dwarf2_per_objfile
8860 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 8861 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 8862 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 8863 CORE_ADDR addr = 0;
15d034d0 8864 const char *actual_name = NULL;
e142c38c 8865 CORE_ADDR baseaddr;
15d034d0 8866 char *built_actual_name;
e142c38c
DJ
8867
8868 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 8869
15d034d0
TT
8870 built_actual_name = partial_die_full_name (pdi, cu);
8871 if (built_actual_name != NULL)
8872 actual_name = built_actual_name;
63d06c5c 8873
72bf9492
DJ
8874 if (actual_name == NULL)
8875 actual_name = pdi->name;
8876
c906108c
SS
8877 switch (pdi->tag)
8878 {
b1dc1806 8879 case DW_TAG_inlined_subroutine:
c906108c 8880 case DW_TAG_subprogram:
79748972
TT
8881 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8882 - baseaddr);
2cfa0c8d 8883 if (pdi->is_external || cu->language == language_ada)
c906108c 8884 {
2cfa0c8d
JB
8885 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8886 of the global scope. But in Ada, we want to be able to access
8887 nested procedures globally. So all Ada subprograms are stored
8888 in the global scope. */
f47fb265 8889 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 8890 built_actual_name != NULL,
f47fb265 8891 VAR_DOMAIN, LOC_BLOCK,
79748972 8892 SECT_OFF_TEXT (objfile),
f47fb265 8893 &objfile->global_psymbols,
79748972
TT
8894 addr,
8895 cu->language, objfile);
c906108c
SS
8896 }
8897 else
8898 {
f47fb265 8899 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 8900 built_actual_name != NULL,
f47fb265 8901 VAR_DOMAIN, LOC_BLOCK,
79748972 8902 SECT_OFF_TEXT (objfile),
f47fb265 8903 &objfile->static_psymbols,
1762568f 8904 addr, cu->language, objfile);
c906108c 8905 }
0c1b455e
TT
8906
8907 if (pdi->main_subprogram && actual_name != NULL)
8908 set_objfile_main_name (objfile, actual_name, cu->language);
c906108c 8909 break;
72929c62
JB
8910 case DW_TAG_constant:
8911 {
af5bf4ad 8912 std::vector<partial_symbol *> *list;
72929c62
JB
8913
8914 if (pdi->is_external)
8915 list = &objfile->global_psymbols;
8916 else
8917 list = &objfile->static_psymbols;
f47fb265 8918 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 8919 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
79748972 8920 -1, list, 0, cu->language, objfile);
72929c62
JB
8921 }
8922 break;
c906108c 8923 case DW_TAG_variable:
95554aad
TT
8924 if (pdi->d.locdesc)
8925 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 8926
95554aad 8927 if (pdi->d.locdesc
caac4577
JG
8928 && addr == 0
8929 && !dwarf2_per_objfile->has_section_at_zero)
8930 {
8931 /* A global or static variable may also have been stripped
8932 out by the linker if unused, in which case its address
8933 will be nullified; do not add such variables into partial
8934 symbol table then. */
8935 }
8936 else if (pdi->is_external)
c906108c
SS
8937 {
8938 /* Global Variable.
8939 Don't enter into the minimal symbol tables as there is
8940 a minimal symbol table entry from the ELF symbols already.
8941 Enter into partial symbol table if it has a location
8942 descriptor or a type.
8943 If the location descriptor is missing, new_symbol will create
8944 a LOC_UNRESOLVED symbol, the address of the variable will then
8945 be determined from the minimal symbol table whenever the variable
8946 is referenced.
8947 The address for the partial symbol table entry is not
8948 used by GDB, but it comes in handy for debugging partial symbol
8949 table building. */
8950
95554aad 8951 if (pdi->d.locdesc || pdi->has_type)
f47fb265 8952 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 8953 built_actual_name != NULL,
f47fb265 8954 VAR_DOMAIN, LOC_STATIC,
79748972 8955 SECT_OFF_TEXT (objfile),
f47fb265 8956 &objfile->global_psymbols,
79748972 8957 addr, cu->language, objfile);
c906108c
SS
8958 }
8959 else
8960 {
ff908ebf
AW
8961 int has_loc = pdi->d.locdesc != NULL;
8962
8963 /* Static Variable. Skip symbols whose value we cannot know (those
8964 without location descriptors or constant values). */
8965 if (!has_loc && !pdi->has_const_value)
decbce07 8966 {
15d034d0 8967 xfree (built_actual_name);
decbce07
MS
8968 return;
8969 }
ff908ebf 8970
f47fb265 8971 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 8972 built_actual_name != NULL,
f47fb265 8973 VAR_DOMAIN, LOC_STATIC,
79748972 8974 SECT_OFF_TEXT (objfile),
f47fb265 8975 &objfile->static_psymbols,
79748972 8976 has_loc ? addr : 0,
f47fb265 8977 cu->language, objfile);
c906108c
SS
8978 }
8979 break;
8980 case DW_TAG_typedef:
8981 case DW_TAG_base_type:
a02abb62 8982 case DW_TAG_subrange_type:
38d518c9 8983 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 8984 built_actual_name != NULL,
79748972 8985 VAR_DOMAIN, LOC_TYPEDEF, -1,
c906108c 8986 &objfile->static_psymbols,
1762568f 8987 0, cu->language, objfile);
c906108c 8988 break;
74921315 8989 case DW_TAG_imported_declaration:
72bf9492
DJ
8990 case DW_TAG_namespace:
8991 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 8992 built_actual_name != NULL,
79748972 8993 VAR_DOMAIN, LOC_TYPEDEF, -1,
72bf9492 8994 &objfile->global_psymbols,
1762568f 8995 0, cu->language, objfile);
72bf9492 8996 break;
530e8392
KB
8997 case DW_TAG_module:
8998 add_psymbol_to_list (actual_name, strlen (actual_name),
8999 built_actual_name != NULL,
79748972 9000 MODULE_DOMAIN, LOC_TYPEDEF, -1,
530e8392 9001 &objfile->global_psymbols,
1762568f 9002 0, cu->language, objfile);
530e8392 9003 break;
c906108c 9004 case DW_TAG_class_type:
680b30c7 9005 case DW_TAG_interface_type:
c906108c
SS
9006 case DW_TAG_structure_type:
9007 case DW_TAG_union_type:
9008 case DW_TAG_enumeration_type:
fa4028e9
JB
9009 /* Skip external references. The DWARF standard says in the section
9010 about "Structure, Union, and Class Type Entries": "An incomplete
9011 structure, union or class type is represented by a structure,
9012 union or class entry that does not have a byte size attribute
9013 and that has a DW_AT_declaration attribute." */
9014 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 9015 {
15d034d0 9016 xfree (built_actual_name);
decbce07
MS
9017 return;
9018 }
fa4028e9 9019
63d06c5c
DC
9020 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9021 static vs. global. */
38d518c9 9022 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 9023 built_actual_name != NULL,
79748972 9024 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9c37b5ae 9025 cu->language == language_cplus
63d06c5c
DC
9026 ? &objfile->global_psymbols
9027 : &objfile->static_psymbols,
1762568f 9028 0, cu->language, objfile);
c906108c 9029
c906108c
SS
9030 break;
9031 case DW_TAG_enumerator:
38d518c9 9032 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 9033 built_actual_name != NULL,
79748972 9034 VAR_DOMAIN, LOC_CONST, -1,
9c37b5ae 9035 cu->language == language_cplus
f6fe98ef
DJ
9036 ? &objfile->global_psymbols
9037 : &objfile->static_psymbols,
1762568f 9038 0, cu->language, objfile);
c906108c
SS
9039 break;
9040 default:
9041 break;
9042 }
5c4e30ca 9043
15d034d0 9044 xfree (built_actual_name);
c906108c
SS
9045}
9046
5c4e30ca
DC
9047/* Read a partial die corresponding to a namespace; also, add a symbol
9048 corresponding to that namespace to the symbol table. NAMESPACE is
9049 the name of the enclosing namespace. */
91c24f0a 9050
72bf9492
DJ
9051static void
9052add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 9053 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 9054 int set_addrmap, struct dwarf2_cu *cu)
91c24f0a 9055{
72bf9492 9056 /* Add a symbol for the namespace. */
e7c27a73 9057
72bf9492 9058 add_partial_symbol (pdi, cu);
5c4e30ca
DC
9059
9060 /* Now scan partial symbols in that namespace. */
9061
91c24f0a 9062 if (pdi->has_children)
cdc07690 9063 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
91c24f0a
DC
9064}
9065
5d7cb8df
JK
9066/* Read a partial die corresponding to a Fortran module. */
9067
9068static void
9069add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 9070 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
5d7cb8df 9071{
530e8392
KB
9072 /* Add a symbol for the namespace. */
9073
9074 add_partial_symbol (pdi, cu);
9075
f55ee35c 9076 /* Now scan partial symbols in that module. */
5d7cb8df
JK
9077
9078 if (pdi->has_children)
cdc07690 9079 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
5d7cb8df
JK
9080}
9081
b1dc1806
XR
9082/* Read a partial die corresponding to a subprogram or an inlined
9083 subprogram and create a partial symbol for that subprogram.
9084 When the CU language allows it, this routine also defines a partial
9085 symbol for each nested subprogram that this subprogram contains.
9086 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9087 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
6e70227d 9088
cdc07690
YQ
9089 PDI may also be a lexical block, in which case we simply search
9090 recursively for subprograms defined inside that lexical block.
bc30ff58
JB
9091 Again, this is only performed when the CU language allows this
9092 type of definitions. */
9093
9094static void
9095add_partial_subprogram (struct partial_die_info *pdi,
9096 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 9097 int set_addrmap, struct dwarf2_cu *cu)
bc30ff58 9098{
b1dc1806 9099 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
bc30ff58
JB
9100 {
9101 if (pdi->has_pc_info)
9102 {
9103 if (pdi->lowpc < *lowpc)
9104 *lowpc = pdi->lowpc;
9105 if (pdi->highpc > *highpc)
9106 *highpc = pdi->highpc;
cdc07690 9107 if (set_addrmap)
5734ee8b 9108 {
518817b3 9109 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
3e29f34a
MR
9110 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9111 CORE_ADDR baseaddr;
b926417a
TT
9112 CORE_ADDR this_highpc;
9113 CORE_ADDR this_lowpc;
5734ee8b
DJ
9114
9115 baseaddr = ANOFFSET (objfile->section_offsets,
9116 SECT_OFF_TEXT (objfile));
b926417a
TT
9117 this_lowpc
9118 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9119 pdi->lowpc + baseaddr)
9120 - baseaddr);
9121 this_highpc
9122 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9123 pdi->highpc + baseaddr)
9124 - baseaddr);
9125 addrmap_set_empty (objfile->psymtabs_addrmap,
9126 this_lowpc, this_highpc - 1,
9291a0cd 9127 cu->per_cu->v.psymtab);
5734ee8b 9128 }
481860b3
GB
9129 }
9130
9131 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9132 {
bc30ff58 9133 if (!pdi->is_declaration)
e8d05480
JB
9134 /* Ignore subprogram DIEs that do not have a name, they are
9135 illegal. Do not emit a complaint at this point, we will
9136 do so when we convert this psymtab into a symtab. */
9137 if (pdi->name)
9138 add_partial_symbol (pdi, cu);
bc30ff58
JB
9139 }
9140 }
6e70227d 9141
bc30ff58
JB
9142 if (! pdi->has_children)
9143 return;
9144
9145 if (cu->language == language_ada)
9146 {
9147 pdi = pdi->die_child;
9148 while (pdi != NULL)
9149 {
52356b79 9150 pdi->fixup (cu);
bc30ff58 9151 if (pdi->tag == DW_TAG_subprogram
b1dc1806 9152 || pdi->tag == DW_TAG_inlined_subroutine
bc30ff58 9153 || pdi->tag == DW_TAG_lexical_block)
cdc07690 9154 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
bc30ff58
JB
9155 pdi = pdi->die_sibling;
9156 }
9157 }
9158}
9159
91c24f0a
DC
9160/* Read a partial die corresponding to an enumeration type. */
9161
72bf9492
DJ
9162static void
9163add_partial_enumeration (struct partial_die_info *enum_pdi,
9164 struct dwarf2_cu *cu)
91c24f0a 9165{
72bf9492 9166 struct partial_die_info *pdi;
91c24f0a
DC
9167
9168 if (enum_pdi->name != NULL)
72bf9492
DJ
9169 add_partial_symbol (enum_pdi, cu);
9170
9171 pdi = enum_pdi->die_child;
9172 while (pdi)
91c24f0a 9173 {
72bf9492 9174 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
b98664d3 9175 complaint (_("malformed enumerator DIE ignored"));
91c24f0a 9176 else
72bf9492
DJ
9177 add_partial_symbol (pdi, cu);
9178 pdi = pdi->die_sibling;
91c24f0a 9179 }
91c24f0a
DC
9180}
9181
6caca83c
CC
9182/* Return the initial uleb128 in the die at INFO_PTR. */
9183
9184static unsigned int
d521ce57 9185peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
9186{
9187 unsigned int bytes_read;
9188
9189 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9190}
9191
685af9cd
TT
9192/* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9193 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9194
4bb7a0a7
DJ
9195 Return the corresponding abbrev, or NULL if the number is zero (indicating
9196 an empty DIE). In either case *BYTES_READ will be set to the length of
9197 the initial number. */
9198
9199static struct abbrev_info *
685af9cd
TT
9200peek_die_abbrev (const die_reader_specs &reader,
9201 const gdb_byte *info_ptr, unsigned int *bytes_read)
4bb7a0a7 9202{
685af9cd 9203 dwarf2_cu *cu = reader.cu;
518817b3 9204 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
685af9cd
TT
9205 unsigned int abbrev_number
9206 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
4bb7a0a7
DJ
9207
9208 if (abbrev_number == 0)
9209 return NULL;
9210
685af9cd 9211 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
4bb7a0a7
DJ
9212 if (!abbrev)
9213 {
422b9917 9214 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9d8780f0 9215 " at offset %s [in module %s]"),
422b9917 9216 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9d8780f0 9217 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
4bb7a0a7
DJ
9218 }
9219
9220 return abbrev;
9221}
9222
93311388
DE
9223/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9224 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
9225 DIE. Any children of the skipped DIEs will also be skipped. */
9226
d521ce57
TT
9227static const gdb_byte *
9228skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 9229{
4bb7a0a7
DJ
9230 while (1)
9231 {
685af9cd
TT
9232 unsigned int bytes_read;
9233 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9234
4bb7a0a7
DJ
9235 if (abbrev == NULL)
9236 return info_ptr + bytes_read;
9237 else
dee91e82 9238 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
9239 }
9240}
9241
93311388
DE
9242/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9243 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
9244 abbrev corresponding to that skipped uleb128 should be passed in
9245 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9246 children. */
9247
d521ce57
TT
9248static const gdb_byte *
9249skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 9250 struct abbrev_info *abbrev)
4bb7a0a7
DJ
9251{
9252 unsigned int bytes_read;
9253 struct attribute attr;
dee91e82
DE
9254 bfd *abfd = reader->abfd;
9255 struct dwarf2_cu *cu = reader->cu;
d521ce57 9256 const gdb_byte *buffer = reader->buffer;
f664829e 9257 const gdb_byte *buffer_end = reader->buffer_end;
4bb7a0a7
DJ
9258 unsigned int form, i;
9259
9260 for (i = 0; i < abbrev->num_attrs; i++)
9261 {
9262 /* The only abbrev we care about is DW_AT_sibling. */
9263 if (abbrev->attrs[i].name == DW_AT_sibling)
9264 {
dee91e82 9265 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 9266 if (attr.form == DW_FORM_ref_addr)
b98664d3 9267 complaint (_("ignoring absolute DW_AT_sibling"));
4bb7a0a7 9268 else
b9502d3f 9269 {
9c541725
PA
9270 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9271 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
b9502d3f
WN
9272
9273 if (sibling_ptr < info_ptr)
b98664d3 9274 complaint (_("DW_AT_sibling points backwards"));
22869d73
KS
9275 else if (sibling_ptr > reader->buffer_end)
9276 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
9277 else
9278 return sibling_ptr;
9279 }
4bb7a0a7
DJ
9280 }
9281
9282 /* If it isn't DW_AT_sibling, skip this attribute. */
9283 form = abbrev->attrs[i].form;
9284 skip_attribute:
9285 switch (form)
9286 {
4bb7a0a7 9287 case DW_FORM_ref_addr:
ae411497
TT
9288 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9289 and later it is offset sized. */
9290 if (cu->header.version == 2)
9291 info_ptr += cu->header.addr_size;
9292 else
9293 info_ptr += cu->header.offset_size;
9294 break;
36586728
TT
9295 case DW_FORM_GNU_ref_alt:
9296 info_ptr += cu->header.offset_size;
9297 break;
ae411497 9298 case DW_FORM_addr:
4bb7a0a7
DJ
9299 info_ptr += cu->header.addr_size;
9300 break;
9301 case DW_FORM_data1:
9302 case DW_FORM_ref1:
9303 case DW_FORM_flag:
9304 info_ptr += 1;
9305 break;
2dc7f7b3 9306 case DW_FORM_flag_present:
43988095 9307 case DW_FORM_implicit_const:
2dc7f7b3 9308 break;
4bb7a0a7
DJ
9309 case DW_FORM_data2:
9310 case DW_FORM_ref2:
9311 info_ptr += 2;
9312 break;
9313 case DW_FORM_data4:
9314 case DW_FORM_ref4:
9315 info_ptr += 4;
9316 break;
9317 case DW_FORM_data8:
9318 case DW_FORM_ref8:
55f1336d 9319 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
9320 info_ptr += 8;
9321 break;
0224619f
JK
9322 case DW_FORM_data16:
9323 info_ptr += 16;
9324 break;
4bb7a0a7 9325 case DW_FORM_string:
9b1c24c8 9326 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
9327 info_ptr += bytes_read;
9328 break;
2dc7f7b3 9329 case DW_FORM_sec_offset:
4bb7a0a7 9330 case DW_FORM_strp:
36586728 9331 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
9332 info_ptr += cu->header.offset_size;
9333 break;
2dc7f7b3 9334 case DW_FORM_exprloc:
4bb7a0a7
DJ
9335 case DW_FORM_block:
9336 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9337 info_ptr += bytes_read;
9338 break;
9339 case DW_FORM_block1:
9340 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9341 break;
9342 case DW_FORM_block2:
9343 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9344 break;
9345 case DW_FORM_block4:
9346 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9347 break;
9348 case DW_FORM_sdata:
9349 case DW_FORM_udata:
9350 case DW_FORM_ref_udata:
3019eac3
DE
9351 case DW_FORM_GNU_addr_index:
9352 case DW_FORM_GNU_str_index:
d521ce57 9353 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
9354 break;
9355 case DW_FORM_indirect:
9356 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9357 info_ptr += bytes_read;
9358 /* We need to continue parsing from here, so just go back to
9359 the top. */
9360 goto skip_attribute;
9361
9362 default:
3e43a32a
MS
9363 error (_("Dwarf Error: Cannot handle %s "
9364 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
9365 dwarf_form_name (form),
9366 bfd_get_filename (abfd));
9367 }
9368 }
9369
9370 if (abbrev->has_children)
dee91e82 9371 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
9372 else
9373 return info_ptr;
9374}
9375
93311388 9376/* Locate ORIG_PDI's sibling.
dee91e82 9377 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 9378
d521ce57 9379static const gdb_byte *
dee91e82
DE
9380locate_pdi_sibling (const struct die_reader_specs *reader,
9381 struct partial_die_info *orig_pdi,
d521ce57 9382 const gdb_byte *info_ptr)
91c24f0a
DC
9383{
9384 /* Do we know the sibling already? */
72bf9492 9385
91c24f0a
DC
9386 if (orig_pdi->sibling)
9387 return orig_pdi->sibling;
9388
9389 /* Are there any children to deal with? */
9390
9391 if (!orig_pdi->has_children)
9392 return info_ptr;
9393
4bb7a0a7 9394 /* Skip the children the long way. */
91c24f0a 9395
dee91e82 9396 return skip_children (reader, info_ptr);
91c24f0a
DC
9397}
9398
257e7a09 9399/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 9400 not NULL. */
c906108c
SS
9401
9402static void
257e7a09
YQ
9403dwarf2_read_symtab (struct partial_symtab *self,
9404 struct objfile *objfile)
c906108c 9405{
ed2dc618
SM
9406 struct dwarf2_per_objfile *dwarf2_per_objfile
9407 = get_dwarf2_per_objfile (objfile);
9408
257e7a09 9409 if (self->readin)
c906108c 9410 {
442e4d9c 9411 warning (_("bug: psymtab for %s is already read in."),
257e7a09 9412 self->filename);
442e4d9c
YQ
9413 }
9414 else
9415 {
9416 if (info_verbose)
c906108c 9417 {
442e4d9c 9418 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 9419 self->filename);
442e4d9c 9420 gdb_flush (gdb_stdout);
c906108c 9421 }
c906108c 9422
442e4d9c
YQ
9423 /* If this psymtab is constructed from a debug-only objfile, the
9424 has_section_at_zero flag will not necessarily be correct. We
9425 can get the correct value for this flag by looking at the data
9426 associated with the (presumably stripped) associated objfile. */
9427 if (objfile->separate_debug_objfile_backlink)
9428 {
9429 struct dwarf2_per_objfile *dpo_backlink
ed2dc618 9430 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9a619af0 9431
442e4d9c
YQ
9432 dwarf2_per_objfile->has_section_at_zero
9433 = dpo_backlink->has_section_at_zero;
9434 }
b2ab525c 9435
442e4d9c 9436 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 9437
257e7a09 9438 psymtab_to_symtab_1 (self);
c906108c 9439
442e4d9c
YQ
9440 /* Finish up the debug error message. */
9441 if (info_verbose)
9442 printf_filtered (_("done.\n"));
c906108c 9443 }
95554aad 9444
ed2dc618 9445 process_cu_includes (dwarf2_per_objfile);
c906108c 9446}
9cdd5dbd
DE
9447\f
9448/* Reading in full CUs. */
c906108c 9449
10b3939b
DJ
9450/* Add PER_CU to the queue. */
9451
9452static void
95554aad
TT
9453queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9454 enum language pretend_language)
10b3939b
DJ
9455{
9456 struct dwarf2_queue_item *item;
9457
9458 per_cu->queued = 1;
8d749320 9459 item = XNEW (struct dwarf2_queue_item);
10b3939b 9460 item->per_cu = per_cu;
95554aad 9461 item->pretend_language = pretend_language;
10b3939b
DJ
9462 item->next = NULL;
9463
9464 if (dwarf2_queue == NULL)
9465 dwarf2_queue = item;
9466 else
9467 dwarf2_queue_tail->next = item;
9468
9469 dwarf2_queue_tail = item;
9470}
9471
89e63ee4
DE
9472/* If PER_CU is not yet queued, add it to the queue.
9473 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9474 dependency.
0907af0c 9475 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
9476 meaning either PER_CU is already queued or it is already loaded.
9477
9478 N.B. There is an invariant here that if a CU is queued then it is loaded.
9479 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
9480
9481static int
89e63ee4 9482maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
9483 struct dwarf2_per_cu_data *per_cu,
9484 enum language pretend_language)
9485{
9486 /* We may arrive here during partial symbol reading, if we need full
9487 DIEs to process an unusual case (e.g. template arguments). Do
9488 not queue PER_CU, just tell our caller to load its DIEs. */
ed2dc618 9489 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
0907af0c
DE
9490 {
9491 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9492 return 1;
9493 return 0;
9494 }
9495
9496 /* Mark the dependence relation so that we don't flush PER_CU
9497 too early. */
89e63ee4
DE
9498 if (dependent_cu != NULL)
9499 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
9500
9501 /* If it's already on the queue, we have nothing to do. */
9502 if (per_cu->queued)
9503 return 0;
9504
9505 /* If the compilation unit is already loaded, just mark it as
9506 used. */
9507 if (per_cu->cu != NULL)
9508 {
9509 per_cu->cu->last_used = 0;
9510 return 0;
9511 }
9512
9513 /* Add it to the queue. */
9514 queue_comp_unit (per_cu, pretend_language);
9515
9516 return 1;
9517}
9518
10b3939b
DJ
9519/* Process the queue. */
9520
9521static void
ed2dc618 9522process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
10b3939b
DJ
9523{
9524 struct dwarf2_queue_item *item, *next_item;
9525
b4f54984 9526 if (dwarf_read_debug)
45cfd468
DE
9527 {
9528 fprintf_unfiltered (gdb_stdlog,
9529 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 9530 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
9531 }
9532
03dd20cc
DJ
9533 /* The queue starts out with one item, but following a DIE reference
9534 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
9535 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9536 {
cc12ce38
DE
9537 if ((dwarf2_per_objfile->using_index
9538 ? !item->per_cu->v.quick->compunit_symtab
9539 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9540 /* Skip dummy CUs. */
9541 && item->per_cu->cu != NULL)
f4dc4d17
DE
9542 {
9543 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 9544 unsigned int debug_print_threshold;
247f5c4f 9545 char buf[100];
f4dc4d17 9546
247f5c4f 9547 if (per_cu->is_debug_types)
f4dc4d17 9548 {
247f5c4f
DE
9549 struct signatured_type *sig_type =
9550 (struct signatured_type *) per_cu;
9551
9d8780f0 9552 sprintf (buf, "TU %s at offset %s",
73be47f5 9553 hex_string (sig_type->signature),
9d8780f0 9554 sect_offset_str (per_cu->sect_off));
73be47f5
DE
9555 /* There can be 100s of TUs.
9556 Only print them in verbose mode. */
9557 debug_print_threshold = 2;
f4dc4d17 9558 }
247f5c4f 9559 else
73be47f5 9560 {
9d8780f0
SM
9561 sprintf (buf, "CU at offset %s",
9562 sect_offset_str (per_cu->sect_off));
73be47f5
DE
9563 debug_print_threshold = 1;
9564 }
247f5c4f 9565
b4f54984 9566 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 9567 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
9568
9569 if (per_cu->is_debug_types)
9570 process_full_type_unit (per_cu, item->pretend_language);
9571 else
9572 process_full_comp_unit (per_cu, item->pretend_language);
9573
b4f54984 9574 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 9575 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 9576 }
10b3939b
DJ
9577
9578 item->per_cu->queued = 0;
9579 next_item = item->next;
9580 xfree (item);
9581 }
9582
9583 dwarf2_queue_tail = NULL;
45cfd468 9584
b4f54984 9585 if (dwarf_read_debug)
45cfd468
DE
9586 {
9587 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 9588 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 9589 }
10b3939b
DJ
9590}
9591
10b3939b
DJ
9592/* Read in full symbols for PST, and anything it depends on. */
9593
c906108c 9594static void
fba45db2 9595psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 9596{
10b3939b 9597 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
9598 int i;
9599
95554aad
TT
9600 if (pst->readin)
9601 return;
9602
aaa75496 9603 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
9604 if (!pst->dependencies[i]->readin
9605 && pst->dependencies[i]->user == NULL)
aaa75496
JB
9606 {
9607 /* Inform about additional files that need to be read in. */
9608 if (info_verbose)
9609 {
a3f17187 9610 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
9611 fputs_filtered (" ", gdb_stdout);
9612 wrap_here ("");
9613 fputs_filtered ("and ", gdb_stdout);
9614 wrap_here ("");
9615 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 9616 wrap_here (""); /* Flush output. */
aaa75496
JB
9617 gdb_flush (gdb_stdout);
9618 }
9619 psymtab_to_symtab_1 (pst->dependencies[i]);
9620 }
9621
9a3c8263 9622 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
10b3939b
DJ
9623
9624 if (per_cu == NULL)
aaa75496
JB
9625 {
9626 /* It's an include file, no symbols to read for it.
9627 Everything is in the parent symtab. */
9628 pst->readin = 1;
9629 return;
9630 }
c906108c 9631
58f0c718 9632 dw2_do_instantiate_symtab (per_cu, false);
10b3939b
DJ
9633}
9634
dee91e82
DE
9635/* Trivial hash function for die_info: the hash value of a DIE
9636 is its offset in .debug_info for this objfile. */
10b3939b 9637
dee91e82
DE
9638static hashval_t
9639die_hash (const void *item)
10b3939b 9640{
9a3c8263 9641 const struct die_info *die = (const struct die_info *) item;
6502dd73 9642
9c541725 9643 return to_underlying (die->sect_off);
dee91e82 9644}
63d06c5c 9645
dee91e82
DE
9646/* Trivial comparison function for die_info structures: two DIEs
9647 are equal if they have the same offset. */
98bfdba5 9648
dee91e82
DE
9649static int
9650die_eq (const void *item_lhs, const void *item_rhs)
9651{
9a3c8263
SM
9652 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9653 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
c906108c 9654
9c541725 9655 return die_lhs->sect_off == die_rhs->sect_off;
dee91e82 9656}
c906108c 9657
dee91e82
DE
9658/* die_reader_func for load_full_comp_unit.
9659 This is identical to read_signatured_type_reader,
9660 but is kept separate for now. */
c906108c 9661
dee91e82
DE
9662static void
9663load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 9664 const gdb_byte *info_ptr,
dee91e82
DE
9665 struct die_info *comp_unit_die,
9666 int has_children,
9667 void *data)
9668{
9669 struct dwarf2_cu *cu = reader->cu;
9a3c8263 9670 enum language *language_ptr = (enum language *) data;
6caca83c 9671
dee91e82
DE
9672 gdb_assert (cu->die_hash == NULL);
9673 cu->die_hash =
9674 htab_create_alloc_ex (cu->header.length / 12,
9675 die_hash,
9676 die_eq,
9677 NULL,
9678 &cu->comp_unit_obstack,
9679 hashtab_obstack_allocate,
9680 dummy_obstack_deallocate);
e142c38c 9681
dee91e82
DE
9682 if (has_children)
9683 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9684 &info_ptr, comp_unit_die);
9685 cu->dies = comp_unit_die;
9686 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
9687
9688 /* We try not to read any attributes in this function, because not
9cdd5dbd 9689 all CUs needed for references have been loaded yet, and symbol
10b3939b 9690 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
9691 or we won't be able to build types correctly.
9692 Similarly, if we do not read the producer, we can not apply
9693 producer-specific interpretation. */
95554aad 9694 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 9695}
10b3939b 9696
dee91e82 9697/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 9698
dee91e82 9699static void
95554aad 9700load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
58f0c718 9701 bool skip_partial,
95554aad 9702 enum language pretend_language)
dee91e82 9703{
3019eac3 9704 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 9705
58f0c718 9706 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
f4dc4d17 9707 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
9708}
9709
3da10d80
KS
9710/* Add a DIE to the delayed physname list. */
9711
9712static void
9713add_to_method_list (struct type *type, int fnfield_index, int index,
9714 const char *name, struct die_info *die,
9715 struct dwarf2_cu *cu)
9716{
9717 struct delayed_method_info mi;
9718 mi.type = type;
9719 mi.fnfield_index = fnfield_index;
9720 mi.index = index;
9721 mi.name = name;
9722 mi.die = die;
c89b44cd 9723 cu->method_list.push_back (mi);
3da10d80
KS
9724}
9725
3693fdb3
PA
9726/* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9727 "const" / "volatile". If so, decrements LEN by the length of the
9728 modifier and return true. Otherwise return false. */
9729
9730template<size_t N>
9731static bool
9732check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9733{
9734 size_t mod_len = sizeof (mod) - 1;
9735 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9736 {
9737 len -= mod_len;
9738 return true;
9739 }
9740 return false;
9741}
9742
3da10d80
KS
9743/* Compute the physnames of any methods on the CU's method list.
9744
9745 The computation of method physnames is delayed in order to avoid the
9746 (bad) condition that one of the method's formal parameters is of an as yet
9747 incomplete type. */
9748
9749static void
9750compute_delayed_physnames (struct dwarf2_cu *cu)
9751{
3693fdb3 9752 /* Only C++ delays computing physnames. */
c89b44cd 9753 if (cu->method_list.empty ())
3693fdb3
PA
9754 return;
9755 gdb_assert (cu->language == language_cplus);
9756
52941706 9757 for (const delayed_method_info &mi : cu->method_list)
3da10d80 9758 {
1d06ead6 9759 const char *physname;
3da10d80 9760 struct fn_fieldlist *fn_flp
c89b44cd
TT
9761 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9762 physname = dwarf2_physname (mi.name, mi.die, cu);
9763 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
005e54bb 9764 = physname ? physname : "";
3693fdb3
PA
9765
9766 /* Since there's no tag to indicate whether a method is a
9767 const/volatile overload, extract that information out of the
9768 demangled name. */
9769 if (physname != NULL)
9770 {
9771 size_t len = strlen (physname);
9772
9773 while (1)
9774 {
9775 if (physname[len] == ')') /* shortcut */
9776 break;
9777 else if (check_modifier (physname, len, " const"))
c89b44cd 9778 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
3693fdb3 9779 else if (check_modifier (physname, len, " volatile"))
c89b44cd 9780 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
3693fdb3
PA
9781 else
9782 break;
9783 }
9784 }
3da10d80 9785 }
c89b44cd
TT
9786
9787 /* The list is no longer needed. */
9788 cu->method_list.clear ();
3da10d80
KS
9789}
9790
380618d6
KS
9791/* A wrapper for add_symbol_to_list to ensure that SYMBOL's language is
9792 the same as all other symbols in LISTHEAD. If a new symbol is added
9793 with a different language, this function asserts. */
9794
9795static inline void
9796dw2_add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
9797{
9798 /* Only assert if LISTHEAD already contains symbols of a different
9799 language (dict_create_hashed/insert_symbol_hashed requires that all
9800 symbols in this list are of the same language). */
9801 gdb_assert ((*listhead) == NULL
9802 || (SYMBOL_LANGUAGE ((*listhead)->symbol[0])
9803 == SYMBOL_LANGUAGE (symbol)));
9804
9805 add_symbol_to_list (symbol, listhead);
9806}
9807
a766d390
DE
9808/* Go objects should be embedded in a DW_TAG_module DIE,
9809 and it's not clear if/how imported objects will appear.
9810 To keep Go support simple until that's worked out,
9811 go back through what we've read and create something usable.
9812 We could do this while processing each DIE, and feels kinda cleaner,
9813 but that way is more invasive.
9814 This is to, for example, allow the user to type "p var" or "b main"
9815 without having to specify the package name, and allow lookups
9816 of module.object to work in contexts that use the expression
9817 parser. */
9818
9819static void
9820fixup_go_packaging (struct dwarf2_cu *cu)
9821{
9822 char *package_name = NULL;
9823 struct pending *list;
9824 int i;
9825
804d2729
TT
9826 for (list = *cu->builder->get_global_symbols ();
9827 list != NULL;
9828 list = list->next)
a766d390
DE
9829 {
9830 for (i = 0; i < list->nsyms; ++i)
9831 {
9832 struct symbol *sym = list->symbol[i];
9833
9834 if (SYMBOL_LANGUAGE (sym) == language_go
9835 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9836 {
9837 char *this_package_name = go_symbol_package_name (sym);
9838
9839 if (this_package_name == NULL)
9840 continue;
9841 if (package_name == NULL)
9842 package_name = this_package_name;
9843 else
9844 {
518817b3
SM
9845 struct objfile *objfile
9846 = cu->per_cu->dwarf2_per_objfile->objfile;
a766d390 9847 if (strcmp (package_name, this_package_name) != 0)
b98664d3 9848 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
08be3fe3
DE
9849 (symbol_symtab (sym) != NULL
9850 ? symtab_to_filename_for_display
9851 (symbol_symtab (sym))
e3b94546 9852 : objfile_name (objfile)),
a766d390
DE
9853 this_package_name, package_name);
9854 xfree (this_package_name);
9855 }
9856 }
9857 }
9858 }
9859
9860 if (package_name != NULL)
9861 {
518817b3 9862 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
34a68019 9863 const char *saved_package_name
224c3ddb
SM
9864 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9865 package_name,
9866 strlen (package_name));
19f392bc
UW
9867 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9868 saved_package_name);
a766d390
DE
9869 struct symbol *sym;
9870
e623cf5d 9871 sym = allocate_symbol (objfile);
f85f34ed 9872 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
9873 SYMBOL_SET_NAMES (sym, saved_package_name,
9874 strlen (saved_package_name), 0, objfile);
a766d390
DE
9875 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9876 e.g., "main" finds the "main" module and not C's main(). */
9877 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 9878 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
9879 SYMBOL_TYPE (sym) = type;
9880
380618d6 9881 dw2_add_symbol_to_list (sym, cu->builder->get_global_symbols ());
a766d390
DE
9882
9883 xfree (package_name);
9884 }
9885}
9886
c9317f21
TT
9887/* Allocate a fully-qualified name consisting of the two parts on the
9888 obstack. */
9889
9890static const char *
9891rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9892{
9893 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9894}
9895
9896/* A helper that allocates a struct discriminant_info to attach to a
9897 union type. */
9898
9899static struct discriminant_info *
9900alloc_discriminant_info (struct type *type, int discriminant_index,
9901 int default_index)
9902{
9903 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
c7b15a66
TT
9904 gdb_assert (discriminant_index == -1
9905 || (discriminant_index >= 0
9906 && discriminant_index < TYPE_NFIELDS (type)));
c9317f21 9907 gdb_assert (default_index == -1
c7b15a66 9908 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
c9317f21
TT
9909
9910 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9911
9912 struct discriminant_info *disc
9913 = ((struct discriminant_info *)
9914 TYPE_ZALLOC (type,
9915 offsetof (struct discriminant_info, discriminants)
9916 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9917 disc->default_index = default_index;
9918 disc->discriminant_index = discriminant_index;
9919
9920 struct dynamic_prop prop;
9921 prop.kind = PROP_UNDEFINED;
9922 prop.data.baton = disc;
9923
9924 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9925
9926 return disc;
9927}
9928
9929/* Some versions of rustc emitted enums in an unusual way.
9930
9931 Ordinary enums were emitted as unions. The first element of each
9932 structure in the union was named "RUST$ENUM$DISR". This element
9933 held the discriminant.
9934
9935 These versions of Rust also implemented the "non-zero"
9936 optimization. When the enum had two values, and one is empty and
9937 the other holds a pointer that cannot be zero, the pointer is used
9938 as the discriminant, with a zero value meaning the empty variant.
9939 Here, the union's first member is of the form
9940 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9941 where the fieldnos are the indices of the fields that should be
9942 traversed in order to find the field (which may be several fields deep)
9943 and the variantname is the name of the variant of the case when the
9944 field is zero.
9945
9946 This function recognizes whether TYPE is of one of these forms,
9947 and, if so, smashes it to be a variant type. */
9948
9949static void
9950quirk_rust_enum (struct type *type, struct objfile *objfile)
9951{
9952 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9953
9954 /* We don't need to deal with empty enums. */
9955 if (TYPE_NFIELDS (type) == 0)
9956 return;
9957
9958#define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9959 if (TYPE_NFIELDS (type) == 1
9960 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9961 {
9962 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9963
9964 /* Decode the field name to find the offset of the
9965 discriminant. */
9966 ULONGEST bit_offset = 0;
9967 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9968 while (name[0] >= '0' && name[0] <= '9')
9969 {
9970 char *tail;
9971 unsigned long index = strtoul (name, &tail, 10);
9972 name = tail;
9973 if (*name != '$'
9974 || index >= TYPE_NFIELDS (field_type)
9975 || (TYPE_FIELD_LOC_KIND (field_type, index)
9976 != FIELD_LOC_KIND_BITPOS))
9977 {
b98664d3 9978 complaint (_("Could not parse Rust enum encoding string \"%s\""
c9317f21
TT
9979 "[in module %s]"),
9980 TYPE_FIELD_NAME (type, 0),
9981 objfile_name (objfile));
9982 return;
9983 }
9984 ++name;
9985
9986 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9987 field_type = TYPE_FIELD_TYPE (field_type, index);
9988 }
9989
9990 /* Make a union to hold the variants. */
9991 struct type *union_type = alloc_type (objfile);
9992 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9993 TYPE_NFIELDS (union_type) = 3;
9994 TYPE_FIELDS (union_type)
9995 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9996 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
2b4424c3 9997 set_type_align (union_type, TYPE_RAW_ALIGN (type));
c9317f21
TT
9998
9999 /* Put the discriminant must at index 0. */
10000 TYPE_FIELD_TYPE (union_type, 0) = field_type;
10001 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10002 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10003 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
10004
10005 /* The order of fields doesn't really matter, so put the real
10006 field at index 1 and the data-less field at index 2. */
10007 struct discriminant_info *disc
10008 = alloc_discriminant_info (union_type, 0, 1);
10009 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10010 TYPE_FIELD_NAME (union_type, 1)
10011 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10012 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10013 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10014 TYPE_FIELD_NAME (union_type, 1));
10015
10016 const char *dataless_name
10017 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10018 name);
10019 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10020 dataless_name);
10021 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10022 /* NAME points into the original discriminant name, which
10023 already has the correct lifetime. */
10024 TYPE_FIELD_NAME (union_type, 2) = name;
10025 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10026 disc->discriminants[2] = 0;
10027
10028 /* Smash this type to be a structure type. We have to do this
10029 because the type has already been recorded. */
10030 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10031 TYPE_NFIELDS (type) = 1;
10032 TYPE_FIELDS (type)
10033 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10034
10035 /* Install the variant part. */
10036 TYPE_FIELD_TYPE (type, 0) = union_type;
10037 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10038 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10039 }
10040 else if (TYPE_NFIELDS (type) == 1)
10041 {
10042 /* We assume that a union with a single field is a univariant
10043 enum. */
10044 /* Smash this type to be a structure type. We have to do this
10045 because the type has already been recorded. */
10046 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10047
10048 /* Make a union to hold the variants. */
10049 struct type *union_type = alloc_type (objfile);
10050 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10051 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10052 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
2b4424c3 10053 set_type_align (union_type, TYPE_RAW_ALIGN (type));
c9317f21
TT
10054 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10055
10056 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10057 const char *variant_name
10058 = rust_last_path_segment (TYPE_NAME (field_type));
10059 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10060 TYPE_NAME (field_type)
10061 = rust_fully_qualify (&objfile->objfile_obstack,
c7b15a66 10062 TYPE_NAME (type), variant_name);
c9317f21
TT
10063
10064 /* Install the union in the outer struct type. */
10065 TYPE_NFIELDS (type) = 1;
10066 TYPE_FIELDS (type)
10067 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10068 TYPE_FIELD_TYPE (type, 0) = union_type;
10069 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10070 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10071
10072 alloc_discriminant_info (union_type, -1, 0);
10073 }
10074 else
10075 {
10076 struct type *disr_type = nullptr;
10077 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10078 {
10079 disr_type = TYPE_FIELD_TYPE (type, i);
10080
a037790e
TT
10081 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10082 {
10083 /* All fields of a true enum will be structs. */
10084 return;
10085 }
10086 else if (TYPE_NFIELDS (disr_type) == 0)
c9317f21
TT
10087 {
10088 /* Could be data-less variant, so keep going. */
a037790e 10089 disr_type = nullptr;
c9317f21
TT
10090 }
10091 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10092 "RUST$ENUM$DISR") != 0)
10093 {
10094 /* Not a Rust enum. */
10095 return;
10096 }
10097 else
10098 {
10099 /* Found one. */
10100 break;
10101 }
10102 }
10103
10104 /* If we got here without a discriminant, then it's probably
10105 just a union. */
10106 if (disr_type == nullptr)
10107 return;
10108
10109 /* Smash this type to be a structure type. We have to do this
10110 because the type has already been recorded. */
10111 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10112
10113 /* Make a union to hold the variants. */
10114 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10115 struct type *union_type = alloc_type (objfile);
10116 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10117 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10118 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
2b4424c3 10119 set_type_align (union_type, TYPE_RAW_ALIGN (type));
c9317f21
TT
10120 TYPE_FIELDS (union_type)
10121 = (struct field *) TYPE_ZALLOC (union_type,
10122 (TYPE_NFIELDS (union_type)
10123 * sizeof (struct field)));
10124
10125 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10126 TYPE_NFIELDS (type) * sizeof (struct field));
10127
10128 /* Install the discriminant at index 0 in the union. */
10129 TYPE_FIELD (union_type, 0) = *disr_field;
10130 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10131 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10132
10133 /* Install the union in the outer struct type. */
10134 TYPE_FIELD_TYPE (type, 0) = union_type;
10135 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10136 TYPE_NFIELDS (type) = 1;
10137
10138 /* Set the size and offset of the union type. */
10139 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10140
10141 /* We need a way to find the correct discriminant given a
10142 variant name. For convenience we build a map here. */
10143 struct type *enum_type = FIELD_TYPE (*disr_field);
10144 std::unordered_map<std::string, ULONGEST> discriminant_map;
10145 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10146 {
10147 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10148 {
10149 const char *name
10150 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10151 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10152 }
10153 }
10154
10155 int n_fields = TYPE_NFIELDS (union_type);
10156 struct discriminant_info *disc
10157 = alloc_discriminant_info (union_type, 0, -1);
10158 /* Skip the discriminant here. */
10159 for (int i = 1; i < n_fields; ++i)
10160 {
10161 /* Find the final word in the name of this variant's type.
10162 That name can be used to look up the correct
10163 discriminant. */
10164 const char *variant_name
10165 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10166 i)));
10167
10168 auto iter = discriminant_map.find (variant_name);
10169 if (iter != discriminant_map.end ())
10170 disc->discriminants[i] = iter->second;
10171
bedda9ac 10172 /* Remove the discriminant field, if it exists. */
c9317f21 10173 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
bedda9ac
TT
10174 if (TYPE_NFIELDS (sub_type) > 0)
10175 {
10176 --TYPE_NFIELDS (sub_type);
10177 ++TYPE_FIELDS (sub_type);
10178 }
c9317f21
TT
10179 TYPE_FIELD_NAME (union_type, i) = variant_name;
10180 TYPE_NAME (sub_type)
10181 = rust_fully_qualify (&objfile->objfile_obstack,
10182 TYPE_NAME (type), variant_name);
10183 }
10184 }
10185}
10186
10187/* Rewrite some Rust unions to be structures with variants parts. */
10188
10189static void
10190rust_union_quirks (struct dwarf2_cu *cu)
10191{
10192 gdb_assert (cu->language == language_rust);
52941706
SM
10193 for (type *type_ : cu->rust_unions)
10194 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
2d79090e
TT
10195 /* We don't need this any more. */
10196 cu->rust_unions.clear ();
c9317f21
TT
10197}
10198
95554aad
TT
10199/* Return the symtab for PER_CU. This works properly regardless of
10200 whether we're using the index or psymtabs. */
10201
43f3e411
DE
10202static struct compunit_symtab *
10203get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
95554aad 10204{
ed2dc618 10205 return (per_cu->dwarf2_per_objfile->using_index
43f3e411
DE
10206 ? per_cu->v.quick->compunit_symtab
10207 : per_cu->v.psymtab->compunit_symtab);
95554aad
TT
10208}
10209
10210/* A helper function for computing the list of all symbol tables
10211 included by PER_CU. */
10212
10213static void
4c39bc03 10214recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
ec94af83 10215 htab_t all_children, htab_t all_type_symtabs,
f9125b6c 10216 struct dwarf2_per_cu_data *per_cu,
43f3e411 10217 struct compunit_symtab *immediate_parent)
95554aad
TT
10218{
10219 void **slot;
10220 int ix;
43f3e411 10221 struct compunit_symtab *cust;
95554aad
TT
10222 struct dwarf2_per_cu_data *iter;
10223
10224 slot = htab_find_slot (all_children, per_cu, INSERT);
10225 if (*slot != NULL)
10226 {
10227 /* This inclusion and its children have been processed. */
10228 return;
10229 }
10230
10231 *slot = per_cu;
10232 /* Only add a CU if it has a symbol table. */
43f3e411
DE
10233 cust = get_compunit_symtab (per_cu);
10234 if (cust != NULL)
ec94af83
DE
10235 {
10236 /* If this is a type unit only add its symbol table if we haven't
10237 seen it yet (type unit per_cu's can share symtabs). */
10238 if (per_cu->is_debug_types)
10239 {
43f3e411 10240 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
ec94af83
DE
10241 if (*slot == NULL)
10242 {
43f3e411 10243 *slot = cust;
4c39bc03 10244 result->push_back (cust);
43f3e411
DE
10245 if (cust->user == NULL)
10246 cust->user = immediate_parent;
ec94af83
DE
10247 }
10248 }
10249 else
f9125b6c 10250 {
4c39bc03 10251 result->push_back (cust);
43f3e411
DE
10252 if (cust->user == NULL)
10253 cust->user = immediate_parent;
f9125b6c 10254 }
ec94af83 10255 }
95554aad
TT
10256
10257 for (ix = 0;
796a7ff8 10258 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 10259 ++ix)
ec94af83
DE
10260 {
10261 recursively_compute_inclusions (result, all_children,
43f3e411 10262 all_type_symtabs, iter, cust);
ec94af83 10263 }
95554aad
TT
10264}
10265
43f3e411 10266/* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
95554aad
TT
10267 PER_CU. */
10268
10269static void
43f3e411 10270compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
95554aad 10271{
f4dc4d17
DE
10272 gdb_assert (! per_cu->is_debug_types);
10273
796a7ff8 10274 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
10275 {
10276 int ix, len;
ec94af83 10277 struct dwarf2_per_cu_data *per_cu_iter;
4c39bc03 10278 std::vector<compunit_symtab *> result_symtabs;
ec94af83 10279 htab_t all_children, all_type_symtabs;
43f3e411 10280 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
95554aad
TT
10281
10282 /* If we don't have a symtab, we can just skip this case. */
43f3e411 10283 if (cust == NULL)
95554aad
TT
10284 return;
10285
10286 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10287 NULL, xcalloc, xfree);
ec94af83
DE
10288 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10289 NULL, xcalloc, xfree);
95554aad
TT
10290
10291 for (ix = 0;
796a7ff8 10292 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 10293 ix, per_cu_iter);
95554aad 10294 ++ix)
ec94af83
DE
10295 {
10296 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c 10297 all_type_symtabs, per_cu_iter,
43f3e411 10298 cust);
ec94af83 10299 }
95554aad 10300
ec94af83 10301 /* Now we have a transitive closure of all the included symtabs. */
4c39bc03 10302 len = result_symtabs.size ();
43f3e411 10303 cust->includes
ed2dc618 10304 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
8d749320 10305 struct compunit_symtab *, len + 1);
4c39bc03
TT
10306 memcpy (cust->includes, result_symtabs.data (),
10307 len * sizeof (compunit_symtab *));
43f3e411 10308 cust->includes[len] = NULL;
95554aad 10309
95554aad 10310 htab_delete (all_children);
ec94af83 10311 htab_delete (all_type_symtabs);
95554aad
TT
10312 }
10313}
10314
10315/* Compute the 'includes' field for the symtabs of all the CUs we just
10316 read. */
10317
10318static void
ed2dc618 10319process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
95554aad 10320{
71b73764 10321 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
f4dc4d17
DE
10322 {
10323 if (! iter->is_debug_types)
43f3e411 10324 compute_compunit_symtab_includes (iter);
f4dc4d17 10325 }
95554aad 10326
c5d0225d 10327 dwarf2_per_objfile->just_read_cus.clear ();
95554aad
TT
10328}
10329
9cdd5dbd 10330/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
10331 already been loaded into memory. */
10332
10333static void
95554aad
TT
10334process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10335 enum language pretend_language)
10b3939b 10336{
10b3939b 10337 struct dwarf2_cu *cu = per_cu->cu;
ed2dc618
SM
10338 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10339 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 10340 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10b3939b 10341 CORE_ADDR lowpc, highpc;
43f3e411 10342 struct compunit_symtab *cust;
10b3939b 10343 CORE_ADDR baseaddr;
4359dff1 10344 struct block *static_block;
3e29f34a 10345 CORE_ADDR addr;
10b3939b
DJ
10346
10347 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10348
c89b44cd
TT
10349 /* Clear the list here in case something was left over. */
10350 cu->method_list.clear ();
10b3939b 10351
95554aad
TT
10352 cu->language = pretend_language;
10353 cu->language_defn = language_def (cu->language);
10354
c906108c 10355 /* Do line number decoding in read_file_scope () */
10b3939b 10356 process_die (cu->dies, cu);
c906108c 10357
a766d390
DE
10358 /* For now fudge the Go package. */
10359 if (cu->language == language_go)
10360 fixup_go_packaging (cu);
10361
3da10d80
KS
10362 /* Now that we have processed all the DIEs in the CU, all the types
10363 should be complete, and it should now be safe to compute all of the
10364 physnames. */
10365 compute_delayed_physnames (cu);
3da10d80 10366
c9317f21
TT
10367 if (cu->language == language_rust)
10368 rust_union_quirks (cu);
10369
fae299cd
DC
10370 /* Some compilers don't define a DW_AT_high_pc attribute for the
10371 compilation unit. If the DW_AT_high_pc is missing, synthesize
10372 it, by scanning the DIE's below the compilation unit. */
10b3939b 10373 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 10374
3e29f34a 10375 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
804d2729 10376 static_block = cu->builder->end_symtab_get_static_block (addr, 0, 1);
4359dff1
JK
10377
10378 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10379 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10380 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10381 addrmap to help ensure it has an accurate map of pc values belonging to
10382 this comp unit. */
10383 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10384
804d2729
TT
10385 cust = cu->builder->end_symtab_from_static_block (static_block,
10386 SECT_OFF_TEXT (objfile),
10387 0);
c906108c 10388
43f3e411 10389 if (cust != NULL)
c906108c 10390 {
df15bd07 10391 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 10392
8be455d7
JK
10393 /* Set symtab language to language from DW_AT_language. If the
10394 compilation is from a C file generated by language preprocessors, do
10395 not set the language if it was already deduced by start_subfile. */
43f3e411 10396 if (!(cu->language == language_c
40e3ad0e 10397 && COMPUNIT_FILETABS (cust)->language != language_unknown))
43f3e411 10398 COMPUNIT_FILETABS (cust)->language = cu->language;
8be455d7
JK
10399
10400 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10401 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
10402 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10403 there were bugs in prologue debug info, fixed later in GCC-4.5
10404 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
10405
10406 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10407 needed, it would be wrong due to missing DW_AT_producer there.
10408
10409 Still one can confuse GDB by using non-standard GCC compilation
10410 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10411 */
ab260dad 10412 if (cu->has_loclist && gcc_4_minor >= 5)
43f3e411 10413 cust->locations_valid = 1;
e0d00bc7
JK
10414
10415 if (gcc_4_minor >= 5)
43f3e411 10416 cust->epilogue_unwind_valid = 1;
96408a79 10417
43f3e411 10418 cust->call_site_htab = cu->call_site_htab;
c906108c 10419 }
9291a0cd
TT
10420
10421 if (dwarf2_per_objfile->using_index)
43f3e411 10422 per_cu->v.quick->compunit_symtab = cust;
9291a0cd
TT
10423 else
10424 {
10425 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 10426 pst->compunit_symtab = cust;
9291a0cd
TT
10427 pst->readin = 1;
10428 }
c906108c 10429
95554aad 10430 /* Push it for inclusion processing later. */
c5d0225d 10431 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
804d2729
TT
10432
10433 /* Not needed any more. */
10434 cu->builder.reset ();
f4dc4d17 10435}
45cfd468 10436
f4dc4d17
DE
10437/* Generate full symbol information for type unit PER_CU, whose DIEs have
10438 already been loaded into memory. */
10439
10440static void
10441process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10442 enum language pretend_language)
10443{
10444 struct dwarf2_cu *cu = per_cu->cu;
ed2dc618
SM
10445 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10446 struct objfile *objfile = dwarf2_per_objfile->objfile;
43f3e411 10447 struct compunit_symtab *cust;
0186c6a7
DE
10448 struct signatured_type *sig_type;
10449
10450 gdb_assert (per_cu->is_debug_types);
10451 sig_type = (struct signatured_type *) per_cu;
f4dc4d17 10452
c89b44cd
TT
10453 /* Clear the list here in case something was left over. */
10454 cu->method_list.clear ();
f4dc4d17 10455
f4dc4d17
DE
10456 cu->language = pretend_language;
10457 cu->language_defn = language_def (cu->language);
10458
10459 /* The symbol tables are set up in read_type_unit_scope. */
10460 process_die (cu->dies, cu);
10461
10462 /* For now fudge the Go package. */
10463 if (cu->language == language_go)
10464 fixup_go_packaging (cu);
10465
10466 /* Now that we have processed all the DIEs in the CU, all the types
10467 should be complete, and it should now be safe to compute all of the
10468 physnames. */
10469 compute_delayed_physnames (cu);
f4dc4d17 10470
c9317f21
TT
10471 if (cu->language == language_rust)
10472 rust_union_quirks (cu);
10473
f4dc4d17
DE
10474 /* TUs share symbol tables.
10475 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
10476 of it with end_expandable_symtab. Otherwise, complete the addition of
10477 this TU's symbols to the existing symtab. */
43f3e411 10478 if (sig_type->type_unit_group->compunit_symtab == NULL)
45cfd468 10479 {
804d2729 10480 cust = cu->builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
43f3e411 10481 sig_type->type_unit_group->compunit_symtab = cust;
f4dc4d17 10482
43f3e411 10483 if (cust != NULL)
f4dc4d17
DE
10484 {
10485 /* Set symtab language to language from DW_AT_language. If the
10486 compilation is from a C file generated by language preprocessors,
10487 do not set the language if it was already deduced by
10488 start_subfile. */
43f3e411
DE
10489 if (!(cu->language == language_c
10490 && COMPUNIT_FILETABS (cust)->language != language_c))
10491 COMPUNIT_FILETABS (cust)->language = cu->language;
f4dc4d17
DE
10492 }
10493 }
10494 else
10495 {
804d2729 10496 cu->builder->augment_type_symtab ();
43f3e411 10497 cust = sig_type->type_unit_group->compunit_symtab;
f4dc4d17
DE
10498 }
10499
10500 if (dwarf2_per_objfile->using_index)
43f3e411 10501 per_cu->v.quick->compunit_symtab = cust;
f4dc4d17
DE
10502 else
10503 {
10504 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 10505 pst->compunit_symtab = cust;
f4dc4d17 10506 pst->readin = 1;
45cfd468 10507 }
804d2729
TT
10508
10509 /* Not needed any more. */
10510 cu->builder.reset ();
c906108c
SS
10511}
10512
95554aad
TT
10513/* Process an imported unit DIE. */
10514
10515static void
10516process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10517{
10518 struct attribute *attr;
10519
f4dc4d17
DE
10520 /* For now we don't handle imported units in type units. */
10521 if (cu->per_cu->is_debug_types)
10522 {
10523 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10524 " supported in type units [in module %s]"),
518817b3 10525 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
f4dc4d17
DE
10526 }
10527
95554aad
TT
10528 attr = dwarf2_attr (die, DW_AT_import, cu);
10529 if (attr != NULL)
10530 {
9c541725
PA
10531 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10532 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10533 dwarf2_per_cu_data *per_cu
e3b94546 10534 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
518817b3 10535 cu->per_cu->dwarf2_per_objfile);
95554aad 10536
69d751e3 10537 /* If necessary, add it to the queue and load its DIEs. */
95554aad 10538 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
58f0c718 10539 load_full_comp_unit (per_cu, false, cu->language);
95554aad 10540
796a7ff8 10541 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
10542 per_cu);
10543 }
10544}
10545
4c8aa72d
PA
10546/* RAII object that represents a process_die scope: i.e.,
10547 starts/finishes processing a DIE. */
10548class process_die_scope
adde2bff 10549{
4c8aa72d
PA
10550public:
10551 process_die_scope (die_info *die, dwarf2_cu *cu)
10552 : m_die (die), m_cu (cu)
10553 {
10554 /* We should only be processing DIEs not already in process. */
10555 gdb_assert (!m_die->in_process);
10556 m_die->in_process = true;
10557 }
8c3cb9fa 10558
4c8aa72d
PA
10559 ~process_die_scope ()
10560 {
10561 m_die->in_process = false;
10562
10563 /* If we're done processing the DIE for the CU that owns the line
10564 header, we don't need the line header anymore. */
10565 if (m_cu->line_header_die_owner == m_die)
10566 {
10567 delete m_cu->line_header;
10568 m_cu->line_header = NULL;
10569 m_cu->line_header_die_owner = NULL;
10570 }
10571 }
10572
10573private:
10574 die_info *m_die;
10575 dwarf2_cu *m_cu;
10576};
adde2bff 10577
c906108c
SS
10578/* Process a die and its children. */
10579
10580static void
e7c27a73 10581process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 10582{
4c8aa72d 10583 process_die_scope scope (die, cu);
adde2bff 10584
c906108c
SS
10585 switch (die->tag)
10586 {
10587 case DW_TAG_padding:
10588 break;
10589 case DW_TAG_compile_unit:
95554aad 10590 case DW_TAG_partial_unit:
e7c27a73 10591 read_file_scope (die, cu);
c906108c 10592 break;
348e048f
DE
10593 case DW_TAG_type_unit:
10594 read_type_unit_scope (die, cu);
10595 break;
c906108c 10596 case DW_TAG_subprogram:
c906108c 10597 case DW_TAG_inlined_subroutine:
edb3359d 10598 read_func_scope (die, cu);
c906108c
SS
10599 break;
10600 case DW_TAG_lexical_block:
14898363
L
10601 case DW_TAG_try_block:
10602 case DW_TAG_catch_block:
e7c27a73 10603 read_lexical_block_scope (die, cu);
c906108c 10604 break;
216f72a1 10605 case DW_TAG_call_site:
96408a79
SA
10606 case DW_TAG_GNU_call_site:
10607 read_call_site_scope (die, cu);
10608 break;
c906108c 10609 case DW_TAG_class_type:
680b30c7 10610 case DW_TAG_interface_type:
c906108c
SS
10611 case DW_TAG_structure_type:
10612 case DW_TAG_union_type:
134d01f1 10613 process_structure_scope (die, cu);
c906108c
SS
10614 break;
10615 case DW_TAG_enumeration_type:
134d01f1 10616 process_enumeration_scope (die, cu);
c906108c 10617 break;
134d01f1 10618
f792889a
DJ
10619 /* These dies have a type, but processing them does not create
10620 a symbol or recurse to process the children. Therefore we can
10621 read them on-demand through read_type_die. */
c906108c 10622 case DW_TAG_subroutine_type:
72019c9c 10623 case DW_TAG_set_type:
c906108c 10624 case DW_TAG_array_type:
c906108c 10625 case DW_TAG_pointer_type:
c906108c 10626 case DW_TAG_ptr_to_member_type:
c906108c 10627 case DW_TAG_reference_type:
4297a3f0 10628 case DW_TAG_rvalue_reference_type:
c906108c 10629 case DW_TAG_string_type:
c906108c 10630 break;
134d01f1 10631
c906108c 10632 case DW_TAG_base_type:
a02abb62 10633 case DW_TAG_subrange_type:
cb249c71 10634 case DW_TAG_typedef:
134d01f1
DJ
10635 /* Add a typedef symbol for the type definition, if it has a
10636 DW_AT_name. */
f792889a 10637 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 10638 break;
c906108c 10639 case DW_TAG_common_block:
e7c27a73 10640 read_common_block (die, cu);
c906108c
SS
10641 break;
10642 case DW_TAG_common_inclusion:
10643 break;
d9fa45fe 10644 case DW_TAG_namespace:
4d4ec4e5 10645 cu->processing_has_namespace_info = 1;
e7c27a73 10646 read_namespace (die, cu);
d9fa45fe 10647 break;
5d7cb8df 10648 case DW_TAG_module:
4d4ec4e5 10649 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
10650 read_module (die, cu);
10651 break;
d9fa45fe 10652 case DW_TAG_imported_declaration:
74921315
KS
10653 cu->processing_has_namespace_info = 1;
10654 if (read_namespace_alias (die, cu))
10655 break;
86a73007
TT
10656 /* The declaration is not a global namespace alias. */
10657 /* Fall through. */
d9fa45fe 10658 case DW_TAG_imported_module:
4d4ec4e5 10659 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
10660 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10661 || cu->language != language_fortran))
b98664d3 10662 complaint (_("Tag '%s' has unexpected children"),
27aa8d6a
SW
10663 dwarf_tag_name (die->tag));
10664 read_import_statement (die, cu);
d9fa45fe 10665 break;
95554aad
TT
10666
10667 case DW_TAG_imported_unit:
10668 process_imported_unit_die (die, cu);
10669 break;
10670
71a3c369
TT
10671 case DW_TAG_variable:
10672 read_variable (die, cu);
10673 break;
10674
c906108c 10675 default:
e7c27a73 10676 new_symbol (die, NULL, cu);
c906108c
SS
10677 break;
10678 }
10679}
ca69b9e6
DE
10680\f
10681/* DWARF name computation. */
c906108c 10682
94af9270
KS
10683/* A helper function for dwarf2_compute_name which determines whether DIE
10684 needs to have the name of the scope prepended to the name listed in the
10685 die. */
10686
10687static int
10688die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10689{
1c809c68
TT
10690 struct attribute *attr;
10691
94af9270
KS
10692 switch (die->tag)
10693 {
10694 case DW_TAG_namespace:
10695 case DW_TAG_typedef:
10696 case DW_TAG_class_type:
10697 case DW_TAG_interface_type:
10698 case DW_TAG_structure_type:
10699 case DW_TAG_union_type:
10700 case DW_TAG_enumeration_type:
10701 case DW_TAG_enumerator:
10702 case DW_TAG_subprogram:
08a76f8a 10703 case DW_TAG_inlined_subroutine:
94af9270 10704 case DW_TAG_member:
74921315 10705 case DW_TAG_imported_declaration:
94af9270
KS
10706 return 1;
10707
10708 case DW_TAG_variable:
c2b0a229 10709 case DW_TAG_constant:
94af9270
KS
10710 /* We only need to prefix "globally" visible variables. These include
10711 any variable marked with DW_AT_external or any variable that
10712 lives in a namespace. [Variables in anonymous namespaces
10713 require prefixing, but they are not DW_AT_external.] */
10714
10715 if (dwarf2_attr (die, DW_AT_specification, cu))
10716 {
10717 struct dwarf2_cu *spec_cu = cu;
9a619af0 10718
94af9270
KS
10719 return die_needs_namespace (die_specification (die, &spec_cu),
10720 spec_cu);
10721 }
10722
1c809c68 10723 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
10724 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10725 && die->parent->tag != DW_TAG_module)
1c809c68
TT
10726 return 0;
10727 /* A variable in a lexical block of some kind does not need a
10728 namespace, even though in C++ such variables may be external
10729 and have a mangled name. */
10730 if (die->parent->tag == DW_TAG_lexical_block
10731 || die->parent->tag == DW_TAG_try_block
1054b214
TT
10732 || die->parent->tag == DW_TAG_catch_block
10733 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
10734 return 0;
10735 return 1;
94af9270
KS
10736
10737 default:
10738 return 0;
10739 }
10740}
10741
73b9be8b
KS
10742/* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10743 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10744 defined for the given DIE. */
10745
10746static struct attribute *
10747dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10748{
10749 struct attribute *attr;
10750
10751 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10752 if (attr == NULL)
10753 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10754
10755 return attr;
10756}
10757
10758/* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10759 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10760 defined for the given DIE. */
10761
10762static const char *
10763dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10764{
10765 const char *linkage_name;
10766
10767 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10768 if (linkage_name == NULL)
10769 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10770
10771 return linkage_name;
10772}
10773
94af9270 10774/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390 10775 compute the physname for the object, which include a method's:
9c37b5ae 10776 - formal parameters (C++),
a766d390 10777 - receiver type (Go),
a766d390
DE
10778
10779 The term "physname" is a bit confusing.
10780 For C++, for example, it is the demangled name.
10781 For Go, for example, it's the mangled name.
94af9270 10782
af6b7be1
JB
10783 For Ada, return the DIE's linkage name rather than the fully qualified
10784 name. PHYSNAME is ignored..
10785
94af9270
KS
10786 The result is allocated on the objfile_obstack and canonicalized. */
10787
10788static const char *
15d034d0
TT
10789dwarf2_compute_name (const char *name,
10790 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
10791 int physname)
10792{
518817b3 10793 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
bb5ed363 10794
94af9270
KS
10795 if (name == NULL)
10796 name = dwarf2_name (die, cu);
10797
2ee7123e
DE
10798 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10799 but otherwise compute it by typename_concat inside GDB.
10800 FIXME: Actually this is not really true, or at least not always true.
10801 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
5e2db402 10802 Fortran names because there is no mangling standard. So new_symbol
2ee7123e
DE
10803 will set the demangled name to the result of dwarf2_full_name, and it is
10804 the demangled name that GDB uses if it exists. */
f55ee35c
JK
10805 if (cu->language == language_ada
10806 || (cu->language == language_fortran && physname))
10807 {
10808 /* For Ada unit, we prefer the linkage name over the name, as
10809 the former contains the exported name, which the user expects
10810 to be able to reference. Ideally, we want the user to be able
10811 to reference this entity using either natural or linkage name,
10812 but we haven't started looking at this enhancement yet. */
73b9be8b 10813 const char *linkage_name = dw2_linkage_name (die, cu);
f55ee35c 10814
2ee7123e
DE
10815 if (linkage_name != NULL)
10816 return linkage_name;
f55ee35c
JK
10817 }
10818
94af9270
KS
10819 /* These are the only languages we know how to qualify names in. */
10820 if (name != NULL
9c37b5ae 10821 && (cu->language == language_cplus
c44af4eb
TT
10822 || cu->language == language_fortran || cu->language == language_d
10823 || cu->language == language_rust))
94af9270
KS
10824 {
10825 if (die_needs_namespace (die, cu))
10826 {
0d5cff50 10827 const char *prefix;
34a68019 10828 const char *canonical_name = NULL;
94af9270 10829
d7e74731
PA
10830 string_file buf;
10831
94af9270 10832 prefix = determine_prefix (die, cu);
94af9270
KS
10833 if (*prefix != '\0')
10834 {
f55ee35c
JK
10835 char *prefixed_name = typename_concat (NULL, prefix, name,
10836 physname, cu);
9a619af0 10837
d7e74731 10838 buf.puts (prefixed_name);
94af9270
KS
10839 xfree (prefixed_name);
10840 }
10841 else
d7e74731 10842 buf.puts (name);
94af9270 10843
98bfdba5
PA
10844 /* Template parameters may be specified in the DIE's DW_AT_name, or
10845 as children with DW_TAG_template_type_param or
10846 DW_TAG_value_type_param. If the latter, add them to the name
10847 here. If the name already has template parameters, then
10848 skip this step; some versions of GCC emit both, and
10849 it is more efficient to use the pre-computed name.
10850
10851 Something to keep in mind about this process: it is very
10852 unlikely, or in some cases downright impossible, to produce
10853 something that will match the mangled name of a function.
10854 If the definition of the function has the same debug info,
10855 we should be able to match up with it anyway. But fallbacks
10856 using the minimal symbol, for instance to find a method
10857 implemented in a stripped copy of libstdc++, will not work.
10858 If we do not have debug info for the definition, we will have to
10859 match them up some other way.
10860
10861 When we do name matching there is a related problem with function
10862 templates; two instantiated function templates are allowed to
10863 differ only by their return types, which we do not add here. */
10864
10865 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10866 {
10867 struct attribute *attr;
10868 struct die_info *child;
10869 int first = 1;
10870
10871 die->building_fullname = 1;
10872
10873 for (child = die->child; child != NULL; child = child->sibling)
10874 {
10875 struct type *type;
12df843f 10876 LONGEST value;
d521ce57 10877 const gdb_byte *bytes;
98bfdba5
PA
10878 struct dwarf2_locexpr_baton *baton;
10879 struct value *v;
10880
10881 if (child->tag != DW_TAG_template_type_param
10882 && child->tag != DW_TAG_template_value_param)
10883 continue;
10884
10885 if (first)
10886 {
d7e74731 10887 buf.puts ("<");
98bfdba5
PA
10888 first = 0;
10889 }
10890 else
d7e74731 10891 buf.puts (", ");
98bfdba5
PA
10892
10893 attr = dwarf2_attr (child, DW_AT_type, cu);
10894 if (attr == NULL)
10895 {
b98664d3 10896 complaint (_("template parameter missing DW_AT_type"));
d7e74731 10897 buf.puts ("UNKNOWN_TYPE");
98bfdba5
PA
10898 continue;
10899 }
10900 type = die_type (child, cu);
10901
10902 if (child->tag == DW_TAG_template_type_param)
10903 {
c1ec8cea
TT
10904 c_print_type (type, "", &buf, -1, 0, cu->language,
10905 &type_print_raw_options);
98bfdba5
PA
10906 continue;
10907 }
10908
10909 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10910 if (attr == NULL)
10911 {
b98664d3 10912 complaint (_("template parameter missing "
3e43a32a 10913 "DW_AT_const_value"));
d7e74731 10914 buf.puts ("UNKNOWN_VALUE");
98bfdba5
PA
10915 continue;
10916 }
10917
10918 dwarf2_const_value_attr (attr, type, name,
10919 &cu->comp_unit_obstack, cu,
10920 &value, &bytes, &baton);
10921
10922 if (TYPE_NOSIGN (type))
10923 /* GDB prints characters as NUMBER 'CHAR'. If that's
10924 changed, this can use value_print instead. */
d7e74731 10925 c_printchar (value, type, &buf);
98bfdba5
PA
10926 else
10927 {
10928 struct value_print_options opts;
10929
10930 if (baton != NULL)
10931 v = dwarf2_evaluate_loc_desc (type, NULL,
10932 baton->data,
10933 baton->size,
10934 baton->per_cu);
10935 else if (bytes != NULL)
10936 {
10937 v = allocate_value (type);
10938 memcpy (value_contents_writeable (v), bytes,
10939 TYPE_LENGTH (type));
10940 }
10941 else
10942 v = value_from_longest (type, value);
10943
3e43a32a
MS
10944 /* Specify decimal so that we do not depend on
10945 the radix. */
98bfdba5
PA
10946 get_formatted_print_options (&opts, 'd');
10947 opts.raw = 1;
d7e74731 10948 value_print (v, &buf, &opts);
98bfdba5 10949 release_value (v);
98bfdba5
PA
10950 }
10951 }
10952
10953 die->building_fullname = 0;
10954
10955 if (!first)
10956 {
10957 /* Close the argument list, with a space if necessary
10958 (nested templates). */
d7e74731
PA
10959 if (!buf.empty () && buf.string ().back () == '>')
10960 buf.puts (" >");
98bfdba5 10961 else
d7e74731 10962 buf.puts (">");
98bfdba5
PA
10963 }
10964 }
10965
9c37b5ae 10966 /* For C++ methods, append formal parameter type
94af9270 10967 information, if PHYSNAME. */
6e70227d 10968
94af9270 10969 if (physname && die->tag == DW_TAG_subprogram
9c37b5ae 10970 && cu->language == language_cplus)
94af9270
KS
10971 {
10972 struct type *type = read_type_die (die, cu);
10973
d7e74731 10974 c_type_print_args (type, &buf, 1, cu->language,
79d43c61 10975 &type_print_raw_options);
94af9270 10976
9c37b5ae 10977 if (cu->language == language_cplus)
94af9270 10978 {
60430eff
DJ
10979 /* Assume that an artificial first parameter is
10980 "this", but do not crash if it is not. RealView
10981 marks unnamed (and thus unused) parameters as
10982 artificial; there is no way to differentiate
10983 the two cases. */
94af9270
KS
10984 if (TYPE_NFIELDS (type) > 0
10985 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 10986 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
10987 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10988 0))))
d7e74731 10989 buf.puts (" const");
94af9270
KS
10990 }
10991 }
10992
d7e74731 10993 const std::string &intermediate_name = buf.string ();
94af9270
KS
10994
10995 if (cu->language == language_cplus)
34a68019 10996 canonical_name
322a8516 10997 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
34a68019
TT
10998 &objfile->per_bfd->storage_obstack);
10999
11000 /* If we only computed INTERMEDIATE_NAME, or if
11001 INTERMEDIATE_NAME is already canonical, then we need to
11002 copy it to the appropriate obstack. */
322a8516 11003 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
224c3ddb
SM
11004 name = ((const char *)
11005 obstack_copy0 (&objfile->per_bfd->storage_obstack,
322a8516
PA
11006 intermediate_name.c_str (),
11007 intermediate_name.length ()));
34a68019
TT
11008 else
11009 name = canonical_name;
94af9270
KS
11010 }
11011 }
11012
11013 return name;
11014}
11015
0114d602
DJ
11016/* Return the fully qualified name of DIE, based on its DW_AT_name.
11017 If scope qualifiers are appropriate they will be added. The result
34a68019 11018 will be allocated on the storage_obstack, or NULL if the DIE does
94af9270
KS
11019 not have a name. NAME may either be from a previous call to
11020 dwarf2_name or NULL.
11021
9c37b5ae 11022 The output string will be canonicalized (if C++). */
0114d602
DJ
11023
11024static const char *
15d034d0 11025dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 11026{
94af9270
KS
11027 return dwarf2_compute_name (name, die, cu, 0);
11028}
0114d602 11029
94af9270
KS
11030/* Construct a physname for the given DIE in CU. NAME may either be
11031 from a previous call to dwarf2_name or NULL. The result will be
11032 allocated on the objfile_objstack or NULL if the DIE does not have a
11033 name.
0114d602 11034
9c37b5ae 11035 The output string will be canonicalized (if C++). */
0114d602 11036
94af9270 11037static const char *
15d034d0 11038dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 11039{
518817b3 11040 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
900e11f9 11041 const char *retval, *mangled = NULL, *canon = NULL;
900e11f9
JK
11042 int need_copy = 1;
11043
11044 /* In this case dwarf2_compute_name is just a shortcut not building anything
11045 on its own. */
11046 if (!die_needs_namespace (die, cu))
11047 return dwarf2_compute_name (name, die, cu, 1);
11048
73b9be8b 11049 mangled = dw2_linkage_name (die, cu);
900e11f9 11050
e98c9e7c
TT
11051 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11052 See https://github.com/rust-lang/rust/issues/32925. */
11053 if (cu->language == language_rust && mangled != NULL
11054 && strchr (mangled, '{') != NULL)
11055 mangled = NULL;
11056
900e11f9
JK
11057 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11058 has computed. */
791afaa2 11059 gdb::unique_xmalloc_ptr<char> demangled;
7d45c7c3 11060 if (mangled != NULL)
900e11f9 11061 {
900e11f9 11062
59cc4834
JB
11063 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11064 {
11065 /* Do nothing (do not demangle the symbol name). */
11066 }
11067 else if (cu->language == language_go)
a766d390 11068 {
5e2db402
TT
11069 /* This is a lie, but we already lie to the caller new_symbol.
11070 new_symbol assumes we return the mangled name.
a766d390 11071 This just undoes that lie until things are cleaned up. */
a766d390
DE
11072 }
11073 else
11074 {
0eb876f5
JB
11075 /* Use DMGL_RET_DROP for C++ template functions to suppress
11076 their return type. It is easier for GDB users to search
11077 for such functions as `name(params)' than `long name(params)'.
11078 In such case the minimal symbol names do not match the full
11079 symbol names but for template functions there is never a need
11080 to look up their definition from their declaration so
11081 the only disadvantage remains the minimal symbol variant
11082 `long name(params)' does not have the proper inferior type. */
791afaa2
TT
11083 demangled.reset (gdb_demangle (mangled,
11084 (DMGL_PARAMS | DMGL_ANSI
11085 | DMGL_RET_DROP)));
a766d390 11086 }
900e11f9 11087 if (demangled)
791afaa2 11088 canon = demangled.get ();
900e11f9
JK
11089 else
11090 {
11091 canon = mangled;
11092 need_copy = 0;
11093 }
11094 }
11095
11096 if (canon == NULL || check_physname)
11097 {
11098 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11099
11100 if (canon != NULL && strcmp (physname, canon) != 0)
11101 {
11102 /* It may not mean a bug in GDB. The compiler could also
11103 compute DW_AT_linkage_name incorrectly. But in such case
11104 GDB would need to be bug-to-bug compatible. */
11105
b98664d3 11106 complaint (_("Computed physname <%s> does not match demangled <%s> "
9d8780f0
SM
11107 "(from linkage <%s>) - DIE at %s [in module %s]"),
11108 physname, canon, mangled, sect_offset_str (die->sect_off),
4262abfb 11109 objfile_name (objfile));
900e11f9
JK
11110
11111 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11112 is available here - over computed PHYSNAME. It is safer
11113 against both buggy GDB and buggy compilers. */
11114
11115 retval = canon;
11116 }
11117 else
11118 {
11119 retval = physname;
11120 need_copy = 0;
11121 }
11122 }
11123 else
11124 retval = canon;
11125
11126 if (need_copy)
224c3ddb
SM
11127 retval = ((const char *)
11128 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11129 retval, strlen (retval)));
900e11f9 11130
900e11f9 11131 return retval;
0114d602
DJ
11132}
11133
74921315
KS
11134/* Inspect DIE in CU for a namespace alias. If one exists, record
11135 a new symbol for it.
11136
11137 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11138
11139static int
11140read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11141{
11142 struct attribute *attr;
11143
11144 /* If the die does not have a name, this is not a namespace
11145 alias. */
11146 attr = dwarf2_attr (die, DW_AT_name, cu);
11147 if (attr != NULL)
11148 {
11149 int num;
11150 struct die_info *d = die;
11151 struct dwarf2_cu *imported_cu = cu;
11152
11153 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11154 keep inspecting DIEs until we hit the underlying import. */
11155#define MAX_NESTED_IMPORTED_DECLARATIONS 100
11156 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11157 {
11158 attr = dwarf2_attr (d, DW_AT_import, cu);
11159 if (attr == NULL)
11160 break;
11161
11162 d = follow_die_ref (d, attr, &imported_cu);
11163 if (d->tag != DW_TAG_imported_declaration)
11164 break;
11165 }
11166
11167 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11168 {
b98664d3 11169 complaint (_("DIE at %s has too many recursively imported "
9d8780f0 11170 "declarations"), sect_offset_str (d->sect_off));
74921315
KS
11171 return 0;
11172 }
11173
11174 if (attr != NULL)
11175 {
11176 struct type *type;
9c541725 11177 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
74921315 11178
9c541725 11179 type = get_die_type_at_offset (sect_off, cu->per_cu);
74921315
KS
11180 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11181 {
11182 /* This declaration is a global namespace alias. Add
11183 a symbol for it whose type is the aliased namespace. */
11184 new_symbol (die, type, cu);
11185 return 1;
11186 }
11187 }
11188 }
11189
11190 return 0;
11191}
11192
22cee43f 11193/* Return the using directives repository (global or local?) to use in the
804d2729 11194 current context for CU.
22cee43f
PMR
11195
11196 For Ada, imported declarations can materialize renamings, which *may* be
11197 global. However it is impossible (for now?) in DWARF to distinguish
11198 "external" imported declarations and "static" ones. As all imported
11199 declarations seem to be static in all other languages, make them all CU-wide
11200 global only in Ada. */
11201
11202static struct using_direct **
804d2729 11203using_directives (struct dwarf2_cu *cu)
22cee43f 11204{
804d2729
TT
11205 if (cu->language == language_ada && cu->builder->outermost_context_p ())
11206 return cu->builder->get_global_using_directives ();
22cee43f 11207 else
804d2729 11208 return cu->builder->get_local_using_directives ();
22cee43f
PMR
11209}
11210
27aa8d6a
SW
11211/* Read the import statement specified by the given die and record it. */
11212
11213static void
11214read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11215{
518817b3 11216 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
27aa8d6a 11217 struct attribute *import_attr;
32019081 11218 struct die_info *imported_die, *child_die;
de4affc9 11219 struct dwarf2_cu *imported_cu;
27aa8d6a 11220 const char *imported_name;
794684b6 11221 const char *imported_name_prefix;
13387711
SW
11222 const char *canonical_name;
11223 const char *import_alias;
11224 const char *imported_declaration = NULL;
794684b6 11225 const char *import_prefix;
eb1e02fd 11226 std::vector<const char *> excludes;
13387711 11227
27aa8d6a
SW
11228 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11229 if (import_attr == NULL)
11230 {
b98664d3 11231 complaint (_("Tag '%s' has no DW_AT_import"),
27aa8d6a
SW
11232 dwarf_tag_name (die->tag));
11233 return;
11234 }
11235
de4affc9
CC
11236 imported_cu = cu;
11237 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11238 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
11239 if (imported_name == NULL)
11240 {
11241 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11242
11243 The import in the following code:
11244 namespace A
11245 {
11246 typedef int B;
11247 }
11248
11249 int main ()
11250 {
11251 using A::B;
11252 B b;
11253 return b;
11254 }
11255
11256 ...
11257 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11258 <52> DW_AT_decl_file : 1
11259 <53> DW_AT_decl_line : 6
11260 <54> DW_AT_import : <0x75>
11261 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11262 <59> DW_AT_name : B
11263 <5b> DW_AT_decl_file : 1
11264 <5c> DW_AT_decl_line : 2
11265 <5d> DW_AT_type : <0x6e>
11266 ...
11267 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11268 <76> DW_AT_byte_size : 4
11269 <77> DW_AT_encoding : 5 (signed)
11270
11271 imports the wrong die ( 0x75 instead of 0x58 ).
11272 This case will be ignored until the gcc bug is fixed. */
11273 return;
11274 }
11275
82856980
SW
11276 /* Figure out the local name after import. */
11277 import_alias = dwarf2_name (die, cu);
27aa8d6a 11278
794684b6
SW
11279 /* Figure out where the statement is being imported to. */
11280 import_prefix = determine_prefix (die, cu);
11281
11282 /* Figure out what the scope of the imported die is and prepend it
11283 to the name of the imported die. */
de4affc9 11284 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 11285
f55ee35c
JK
11286 if (imported_die->tag != DW_TAG_namespace
11287 && imported_die->tag != DW_TAG_module)
794684b6 11288 {
13387711
SW
11289 imported_declaration = imported_name;
11290 canonical_name = imported_name_prefix;
794684b6 11291 }
13387711 11292 else if (strlen (imported_name_prefix) > 0)
12aaed36 11293 canonical_name = obconcat (&objfile->objfile_obstack,
45280282
IB
11294 imported_name_prefix,
11295 (cu->language == language_d ? "." : "::"),
11296 imported_name, (char *) NULL);
13387711
SW
11297 else
11298 canonical_name = imported_name;
794684b6 11299
32019081
JK
11300 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11301 for (child_die = die->child; child_die && child_die->tag;
11302 child_die = sibling_die (child_die))
11303 {
11304 /* DWARF-4: A Fortran use statement with a “rename list” may be
11305 represented by an imported module entry with an import attribute
11306 referring to the module and owned entries corresponding to those
11307 entities that are renamed as part of being imported. */
11308
11309 if (child_die->tag != DW_TAG_imported_declaration)
11310 {
b98664d3 11311 complaint (_("child DW_TAG_imported_declaration expected "
9d8780f0
SM
11312 "- DIE at %s [in module %s]"),
11313 sect_offset_str (child_die->sect_off),
11314 objfile_name (objfile));
32019081
JK
11315 continue;
11316 }
11317
11318 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11319 if (import_attr == NULL)
11320 {
b98664d3 11321 complaint (_("Tag '%s' has no DW_AT_import"),
32019081
JK
11322 dwarf_tag_name (child_die->tag));
11323 continue;
11324 }
11325
11326 imported_cu = cu;
11327 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11328 &imported_cu);
11329 imported_name = dwarf2_name (imported_die, imported_cu);
11330 if (imported_name == NULL)
11331 {
b98664d3 11332 complaint (_("child DW_TAG_imported_declaration has unknown "
9d8780f0
SM
11333 "imported name - DIE at %s [in module %s]"),
11334 sect_offset_str (child_die->sect_off),
11335 objfile_name (objfile));
32019081
JK
11336 continue;
11337 }
11338
eb1e02fd 11339 excludes.push_back (imported_name);
32019081
JK
11340
11341 process_die (child_die, cu);
11342 }
11343
804d2729 11344 add_using_directive (using_directives (cu),
22cee43f
PMR
11345 import_prefix,
11346 canonical_name,
11347 import_alias,
11348 imported_declaration,
11349 excludes,
11350 0,
11351 &objfile->objfile_obstack);
27aa8d6a
SW
11352}
11353
5230b05a
WT
11354/* ICC<14 does not output the required DW_AT_declaration on incomplete
11355 types, but gives them a size of zero. Starting with version 14,
11356 ICC is compatible with GCC. */
11357
11358static int
11359producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11360{
11361 if (!cu->checked_producer)
11362 check_producer (cu);
11363
11364 return cu->producer_is_icc_lt_14;
11365}
11366
eb77c9df
AB
11367/* ICC generates a DW_AT_type for C void functions. This was observed on
11368 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11369 which says that void functions should not have a DW_AT_type. */
11370
11371static bool
11372producer_is_icc (struct dwarf2_cu *cu)
11373{
11374 if (!cu->checked_producer)
11375 check_producer (cu);
11376
11377 return cu->producer_is_icc;
11378}
11379
1b80a9fa
JK
11380/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11381 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11382 this, it was first present in GCC release 4.3.0. */
11383
11384static int
11385producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11386{
11387 if (!cu->checked_producer)
11388 check_producer (cu);
11389
11390 return cu->producer_is_gcc_lt_4_3;
11391}
11392
d721ba37
PA
11393static file_and_directory
11394find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
9291a0cd 11395{
d721ba37
PA
11396 file_and_directory res;
11397
9291a0cd
TT
11398 /* Find the filename. Do not use dwarf2_name here, since the filename
11399 is not a source language identifier. */
d721ba37
PA
11400 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11401 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9291a0cd 11402
d721ba37
PA
11403 if (res.comp_dir == NULL
11404 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11405 && IS_ABSOLUTE_PATH (res.name))
9291a0cd 11406 {
d721ba37
PA
11407 res.comp_dir_storage = ldirname (res.name);
11408 if (!res.comp_dir_storage.empty ())
11409 res.comp_dir = res.comp_dir_storage.c_str ();
9291a0cd 11410 }
d721ba37 11411 if (res.comp_dir != NULL)
9291a0cd
TT
11412 {
11413 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11414 directory, get rid of it. */
d721ba37 11415 const char *cp = strchr (res.comp_dir, ':');
9291a0cd 11416
d721ba37
PA
11417 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11418 res.comp_dir = cp + 1;
9291a0cd
TT
11419 }
11420
d721ba37
PA
11421 if (res.name == NULL)
11422 res.name = "<unknown>";
11423
11424 return res;
9291a0cd
TT
11425}
11426
f4dc4d17
DE
11427/* Handle DW_AT_stmt_list for a compilation unit.
11428 DIE is the DW_TAG_compile_unit die for CU.
c3b7b696
YQ
11429 COMP_DIR is the compilation directory. LOWPC is passed to
11430 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
2ab95328
TT
11431
11432static void
11433handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
c3b7b696 11434 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
2ab95328 11435{
518817b3
SM
11436 struct dwarf2_per_objfile *dwarf2_per_objfile
11437 = cu->per_cu->dwarf2_per_objfile;
527f3840 11438 struct objfile *objfile = dwarf2_per_objfile->objfile;
2ab95328 11439 struct attribute *attr;
527f3840
JK
11440 struct line_header line_header_local;
11441 hashval_t line_header_local_hash;
527f3840
JK
11442 void **slot;
11443 int decode_mapping;
2ab95328 11444
f4dc4d17
DE
11445 gdb_assert (! cu->per_cu->is_debug_types);
11446
2ab95328 11447 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
527f3840
JK
11448 if (attr == NULL)
11449 return;
11450
9c541725 11451 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
527f3840
JK
11452
11453 /* The line header hash table is only created if needed (it exists to
11454 prevent redundant reading of the line table for partial_units).
11455 If we're given a partial_unit, we'll need it. If we're given a
11456 compile_unit, then use the line header hash table if it's already
11457 created, but don't create one just yet. */
11458
11459 if (dwarf2_per_objfile->line_header_hash == NULL
11460 && die->tag == DW_TAG_partial_unit)
2ab95328 11461 {
527f3840
JK
11462 dwarf2_per_objfile->line_header_hash
11463 = htab_create_alloc_ex (127, line_header_hash_voidp,
11464 line_header_eq_voidp,
11465 free_line_header_voidp,
11466 &objfile->objfile_obstack,
11467 hashtab_obstack_allocate,
11468 dummy_obstack_deallocate);
11469 }
2ab95328 11470
9c541725 11471 line_header_local.sect_off = line_offset;
527f3840
JK
11472 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11473 line_header_local_hash = line_header_hash (&line_header_local);
11474 if (dwarf2_per_objfile->line_header_hash != NULL)
11475 {
11476 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11477 &line_header_local,
11478 line_header_local_hash, NO_INSERT);
11479
11480 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11481 is not present in *SLOT (since if there is something in *SLOT then
11482 it will be for a partial_unit). */
11483 if (die->tag == DW_TAG_partial_unit && slot != NULL)
dee91e82 11484 {
527f3840 11485 gdb_assert (*slot != NULL);
9a3c8263 11486 cu->line_header = (struct line_header *) *slot;
527f3840 11487 return;
dee91e82 11488 }
2ab95328 11489 }
527f3840
JK
11490
11491 /* dwarf_decode_line_header does not yet provide sufficient information.
11492 We always have to call also dwarf_decode_lines for it. */
fff8551c
PA
11493 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11494 if (lh == NULL)
527f3840 11495 return;
4c8aa72d
PA
11496
11497 cu->line_header = lh.release ();
11498 cu->line_header_die_owner = die;
527f3840
JK
11499
11500 if (dwarf2_per_objfile->line_header_hash == NULL)
11501 slot = NULL;
11502 else
11503 {
11504 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11505 &line_header_local,
11506 line_header_local_hash, INSERT);
11507 gdb_assert (slot != NULL);
11508 }
11509 if (slot != NULL && *slot == NULL)
11510 {
11511 /* This newly decoded line number information unit will be owned
11512 by line_header_hash hash table. */
11513 *slot = cu->line_header;
4c8aa72d 11514 cu->line_header_die_owner = NULL;
527f3840
JK
11515 }
11516 else
11517 {
11518 /* We cannot free any current entry in (*slot) as that struct line_header
11519 may be already used by multiple CUs. Create only temporary decoded
11520 line_header for this CU - it may happen at most once for each line
11521 number information unit. And if we're not using line_header_hash
11522 then this is what we want as well. */
11523 gdb_assert (die->tag != DW_TAG_partial_unit);
527f3840
JK
11524 }
11525 decode_mapping = (die->tag != DW_TAG_partial_unit);
11526 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11527 decode_mapping);
fff8551c 11528
2ab95328
TT
11529}
11530
95554aad 11531/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 11532
c906108c 11533static void
e7c27a73 11534read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11535{
518817b3
SM
11536 struct dwarf2_per_objfile *dwarf2_per_objfile
11537 = cu->per_cu->dwarf2_per_objfile;
dee91e82 11538 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 11539 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2acceee2 11540 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
11541 CORE_ADDR highpc = ((CORE_ADDR) 0);
11542 struct attribute *attr;
c906108c 11543 struct die_info *child_die;
e142c38c 11544 CORE_ADDR baseaddr;
6e70227d 11545
380618d6 11546 prepare_one_comp_unit (cu, die, cu->language);
e142c38c 11547 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 11548
fae299cd 11549 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
11550
11551 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11552 from finish_block. */
2acceee2 11553 if (lowpc == ((CORE_ADDR) -1))
c906108c 11554 lowpc = highpc;
3e29f34a 11555 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
c906108c 11556
d721ba37 11557 file_and_directory fnd = find_file_and_directory (die, cu);
e1024ff1 11558
f4b8a18d
KW
11559 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11560 standardised yet. As a workaround for the language detection we fall
11561 back to the DW_AT_producer string. */
11562 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11563 cu->language = language_opencl;
11564
3019eac3
DE
11565 /* Similar hack for Go. */
11566 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11567 set_cu_language (DW_LANG_Go, cu);
11568
d721ba37 11569 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
3019eac3
DE
11570
11571 /* Decode line number information if present. We do this before
11572 processing child DIEs, so that the line header table is available
11573 for DW_AT_decl_file. */
d721ba37 11574 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
3019eac3
DE
11575
11576 /* Process all dies in compilation unit. */
11577 if (die->child != NULL)
11578 {
11579 child_die = die->child;
11580 while (child_die && child_die->tag)
11581 {
11582 process_die (child_die, cu);
11583 child_die = sibling_die (child_die);
11584 }
11585 }
11586
11587 /* Decode macro information, if present. Dwarf 2 macro information
11588 refers to information in the line number info statement program
11589 header, so we can only read it if we've read the header
11590 successfully. */
0af92d60
JK
11591 attr = dwarf2_attr (die, DW_AT_macros, cu);
11592 if (attr == NULL)
11593 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
3019eac3
DE
11594 if (attr && cu->line_header)
11595 {
11596 if (dwarf2_attr (die, DW_AT_macro_info, cu))
b98664d3 11597 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
3019eac3 11598
43f3e411 11599 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
3019eac3
DE
11600 }
11601 else
11602 {
11603 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11604 if (attr && cu->line_header)
11605 {
11606 unsigned int macro_offset = DW_UNSND (attr);
11607
43f3e411 11608 dwarf_decode_macros (cu, macro_offset, 0);
3019eac3
DE
11609 }
11610 }
3019eac3
DE
11611}
11612
f4dc4d17
DE
11613/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
11614 Create the set of symtabs used by this TU, or if this TU is sharing
11615 symtabs with another TU and the symtabs have already been created
11616 then restore those symtabs in the line header.
11617 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
11618
11619static void
f4dc4d17 11620setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 11621{
f4dc4d17
DE
11622 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
11623 struct type_unit_group *tu_group;
11624 int first_time;
3019eac3 11625 struct attribute *attr;
9c541725 11626 unsigned int i;
0186c6a7 11627 struct signatured_type *sig_type;
3019eac3 11628
f4dc4d17 11629 gdb_assert (per_cu->is_debug_types);
0186c6a7 11630 sig_type = (struct signatured_type *) per_cu;
3019eac3 11631
f4dc4d17 11632 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 11633
f4dc4d17 11634 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 11635 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
11636 if (sig_type->type_unit_group == NULL)
11637 sig_type->type_unit_group = get_type_unit_group (cu, attr);
11638 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
11639
11640 /* If we've already processed this stmt_list there's no real need to
11641 do it again, we could fake it and just recreate the part we need
11642 (file name,index -> symtab mapping). If data shows this optimization
11643 is useful we can do it then. */
43f3e411 11644 first_time = tu_group->compunit_symtab == NULL;
f4dc4d17
DE
11645
11646 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11647 debug info. */
fff8551c 11648 line_header_up lh;
f4dc4d17 11649 if (attr != NULL)
3019eac3 11650 {
9c541725 11651 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
f4dc4d17
DE
11652 lh = dwarf_decode_line_header (line_offset, cu);
11653 }
11654 if (lh == NULL)
11655 {
11656 if (first_time)
11657 dwarf2_start_symtab (cu, "", NULL, 0);
11658 else
11659 {
11660 gdb_assert (tu_group->symtabs == NULL);
804d2729
TT
11661 gdb_assert (cu->builder == nullptr);
11662 struct compunit_symtab *cust = tu_group->compunit_symtab;
11663 cu->builder.reset (new struct buildsym_compunit
11664 (COMPUNIT_OBJFILE (cust), "",
11665 COMPUNIT_DIRNAME (cust),
11666 compunit_language (cust),
11667 0, cust));
f4dc4d17 11668 }
f4dc4d17 11669 return;
3019eac3
DE
11670 }
11671
4c8aa72d
PA
11672 cu->line_header = lh.release ();
11673 cu->line_header_die_owner = die;
3019eac3 11674
f4dc4d17
DE
11675 if (first_time)
11676 {
43f3e411 11677 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 11678
1fd60fc0
DE
11679 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11680 still initializing it, and our caller (a few levels up)
11681 process_full_type_unit still needs to know if this is the first
11682 time. */
11683
4c8aa72d
PA
11684 tu_group->num_symtabs = cu->line_header->file_names.size ();
11685 tu_group->symtabs = XNEWVEC (struct symtab *,
11686 cu->line_header->file_names.size ());
3019eac3 11687
4c8aa72d 11688 for (i = 0; i < cu->line_header->file_names.size (); ++i)
f4dc4d17 11689 {
4c8aa72d 11690 file_entry &fe = cu->line_header->file_names[i];
3019eac3 11691
804d2729 11692 dwarf2_start_subfile (cu, fe.name, fe.include_dir (cu->line_header));
3019eac3 11693
804d2729 11694 if (cu->builder->get_current_subfile ()->symtab == NULL)
f4dc4d17 11695 {
4c8aa72d
PA
11696 /* NOTE: start_subfile will recognize when it's been
11697 passed a file it has already seen. So we can't
11698 assume there's a simple mapping from
11699 cu->line_header->file_names to subfiles, plus
11700 cu->line_header->file_names may contain dups. */
804d2729
TT
11701 cu->builder->get_current_subfile ()->symtab
11702 = allocate_symtab (cust,
11703 cu->builder->get_current_subfile ()->name);
f4dc4d17
DE
11704 }
11705
804d2729 11706 fe.symtab = cu->builder->get_current_subfile ()->symtab;
8c43009f 11707 tu_group->symtabs[i] = fe.symtab;
f4dc4d17
DE
11708 }
11709 }
11710 else
3019eac3 11711 {
804d2729
TT
11712 gdb_assert (cu->builder == nullptr);
11713 struct compunit_symtab *cust = tu_group->compunit_symtab;
11714 cu->builder.reset (new struct buildsym_compunit
11715 (COMPUNIT_OBJFILE (cust), "",
11716 COMPUNIT_DIRNAME (cust),
11717 compunit_language (cust),
11718 0, cust));
f4dc4d17 11719
4c8aa72d 11720 for (i = 0; i < cu->line_header->file_names.size (); ++i)
f4dc4d17 11721 {
4c8aa72d 11722 file_entry &fe = cu->line_header->file_names[i];
f4dc4d17 11723
4c8aa72d 11724 fe.symtab = tu_group->symtabs[i];
f4dc4d17 11725 }
3019eac3
DE
11726 }
11727
f4dc4d17
DE
11728 /* The main symtab is allocated last. Type units don't have DW_AT_name
11729 so they don't have a "real" (so to speak) symtab anyway.
11730 There is later code that will assign the main symtab to all symbols
11731 that don't have one. We need to handle the case of a symbol with a
11732 missing symtab (DW_AT_decl_file) anyway. */
11733}
3019eac3 11734
f4dc4d17
DE
11735/* Process DW_TAG_type_unit.
11736 For TUs we want to skip the first top level sibling if it's not the
11737 actual type being defined by this TU. In this case the first top
11738 level sibling is there to provide context only. */
3019eac3 11739
f4dc4d17
DE
11740static void
11741read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11742{
11743 struct die_info *child_die;
3019eac3 11744
f4dc4d17
DE
11745 prepare_one_comp_unit (cu, die, language_minimal);
11746
11747 /* Initialize (or reinitialize) the machinery for building symtabs.
11748 We do this before processing child DIEs, so that the line header table
11749 is available for DW_AT_decl_file. */
11750 setup_type_unit_groups (die, cu);
11751
11752 if (die->child != NULL)
11753 {
11754 child_die = die->child;
11755 while (child_die && child_die->tag)
11756 {
11757 process_die (child_die, cu);
11758 child_die = sibling_die (child_die);
11759 }
11760 }
3019eac3
DE
11761}
11762\f
80626a55
DE
11763/* DWO/DWP files.
11764
11765 http://gcc.gnu.org/wiki/DebugFission
11766 http://gcc.gnu.org/wiki/DebugFissionDWP
11767
11768 To simplify handling of both DWO files ("object" files with the DWARF info)
11769 and DWP files (a file with the DWOs packaged up into one file), we treat
11770 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
11771
11772static hashval_t
11773hash_dwo_file (const void *item)
11774{
9a3c8263 11775 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
a2ce51a0 11776 hashval_t hash;
3019eac3 11777
a2ce51a0
DE
11778 hash = htab_hash_string (dwo_file->dwo_name);
11779 if (dwo_file->comp_dir != NULL)
11780 hash += htab_hash_string (dwo_file->comp_dir);
11781 return hash;
3019eac3
DE
11782}
11783
11784static int
11785eq_dwo_file (const void *item_lhs, const void *item_rhs)
11786{
9a3c8263
SM
11787 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11788 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
3019eac3 11789
a2ce51a0
DE
11790 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11791 return 0;
11792 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11793 return lhs->comp_dir == rhs->comp_dir;
11794 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
11795}
11796
11797/* Allocate a hash table for DWO files. */
11798
11799static htab_t
ed2dc618 11800allocate_dwo_file_hash_table (struct objfile *objfile)
3019eac3 11801{
3019eac3
DE
11802 return htab_create_alloc_ex (41,
11803 hash_dwo_file,
11804 eq_dwo_file,
11805 NULL,
11806 &objfile->objfile_obstack,
11807 hashtab_obstack_allocate,
11808 dummy_obstack_deallocate);
11809}
11810
80626a55
DE
11811/* Lookup DWO file DWO_NAME. */
11812
11813static void **
ed2dc618
SM
11814lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11815 const char *dwo_name,
11816 const char *comp_dir)
80626a55
DE
11817{
11818 struct dwo_file find_entry;
11819 void **slot;
11820
11821 if (dwarf2_per_objfile->dwo_files == NULL)
ed2dc618
SM
11822 dwarf2_per_objfile->dwo_files
11823 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
80626a55
DE
11824
11825 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
11826 find_entry.dwo_name = dwo_name;
11827 find_entry.comp_dir = comp_dir;
80626a55
DE
11828 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11829
11830 return slot;
11831}
11832
3019eac3
DE
11833static hashval_t
11834hash_dwo_unit (const void *item)
11835{
9a3c8263 11836 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3
DE
11837
11838 /* This drops the top 32 bits of the id, but is ok for a hash. */
11839 return dwo_unit->signature;
11840}
11841
11842static int
11843eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11844{
9a3c8263
SM
11845 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11846 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
3019eac3
DE
11847
11848 /* The signature is assumed to be unique within the DWO file.
11849 So while object file CU dwo_id's always have the value zero,
11850 that's OK, assuming each object file DWO file has only one CU,
11851 and that's the rule for now. */
11852 return lhs->signature == rhs->signature;
11853}
11854
11855/* Allocate a hash table for DWO CUs,TUs.
11856 There is one of these tables for each of CUs,TUs for each DWO file. */
11857
11858static htab_t
11859allocate_dwo_unit_table (struct objfile *objfile)
11860{
11861 /* Start out with a pretty small number.
11862 Generally DWO files contain only one CU and maybe some TUs. */
11863 return htab_create_alloc_ex (3,
11864 hash_dwo_unit,
11865 eq_dwo_unit,
11866 NULL,
11867 &objfile->objfile_obstack,
11868 hashtab_obstack_allocate,
11869 dummy_obstack_deallocate);
11870}
11871
80626a55 11872/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 11873
19c3d4c9 11874struct create_dwo_cu_data
3019eac3
DE
11875{
11876 struct dwo_file *dwo_file;
19c3d4c9 11877 struct dwo_unit dwo_unit;
3019eac3
DE
11878};
11879
19c3d4c9 11880/* die_reader_func for create_dwo_cu. */
3019eac3
DE
11881
11882static void
19c3d4c9
DE
11883create_dwo_cu_reader (const struct die_reader_specs *reader,
11884 const gdb_byte *info_ptr,
11885 struct die_info *comp_unit_die,
11886 int has_children,
11887 void *datap)
3019eac3
DE
11888{
11889 struct dwarf2_cu *cu = reader->cu;
9c541725 11890 sect_offset sect_off = cu->per_cu->sect_off;
8a0459fd 11891 struct dwarf2_section_info *section = cu->per_cu->section;
9a3c8263 11892 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
3019eac3 11893 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 11894 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 11895 struct attribute *attr;
3019eac3
DE
11896
11897 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11898 if (attr == NULL)
11899 {
b98664d3 11900 complaint (_("Dwarf Error: debug entry at offset %s is missing"
19c3d4c9 11901 " its dwo_id [in module %s]"),
9d8780f0 11902 sect_offset_str (sect_off), dwo_file->dwo_name);
3019eac3
DE
11903 return;
11904 }
11905
3019eac3
DE
11906 dwo_unit->dwo_file = dwo_file;
11907 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 11908 dwo_unit->section = section;
9c541725 11909 dwo_unit->sect_off = sect_off;
3019eac3
DE
11910 dwo_unit->length = cu->per_cu->length;
11911
b4f54984 11912 if (dwarf_read_debug)
9d8780f0
SM
11913 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11914 sect_offset_str (sect_off),
9c541725 11915 hex_string (dwo_unit->signature));
3019eac3
DE
11916}
11917
33c5cd75 11918/* Create the dwo_units for the CUs in a DWO_FILE.
19c3d4c9 11919 Note: This function processes DWO files only, not DWP files. */
3019eac3 11920
33c5cd75 11921static void
ed2dc618
SM
11922create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11923 struct dwo_file &dwo_file, dwarf2_section_info &section,
33c5cd75 11924 htab_t &cus_htab)
3019eac3
DE
11925{
11926 struct objfile *objfile = dwarf2_per_objfile->objfile;
d521ce57 11927 const gdb_byte *info_ptr, *end_ptr;
3019eac3 11928
33c5cd75
DB
11929 dwarf2_read_section (objfile, &section);
11930 info_ptr = section.buffer;
3019eac3
DE
11931
11932 if (info_ptr == NULL)
33c5cd75 11933 return;
3019eac3 11934
b4f54984 11935 if (dwarf_read_debug)
19c3d4c9
DE
11936 {
11937 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
33c5cd75
DB
11938 get_section_name (&section),
11939 get_section_file_name (&section));
19c3d4c9 11940 }
3019eac3 11941
33c5cd75 11942 end_ptr = info_ptr + section.size;
3019eac3
DE
11943 while (info_ptr < end_ptr)
11944 {
11945 struct dwarf2_per_cu_data per_cu;
33c5cd75
DB
11946 struct create_dwo_cu_data create_dwo_cu_data;
11947 struct dwo_unit *dwo_unit;
11948 void **slot;
11949 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
3019eac3 11950
19c3d4c9
DE
11951 memset (&create_dwo_cu_data.dwo_unit, 0,
11952 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3 11953 memset (&per_cu, 0, sizeof (per_cu));
e3b94546 11954 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3019eac3 11955 per_cu.is_debug_types = 0;
33c5cd75
DB
11956 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11957 per_cu.section = &section;
c5ed0576 11958 create_dwo_cu_data.dwo_file = &dwo_file;
33c5cd75
DB
11959
11960 init_cutu_and_read_dies_no_follow (
11961 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11962 info_ptr += per_cu.length;
11963
11964 // If the unit could not be parsed, skip it.
11965 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11966 continue;
3019eac3 11967
33c5cd75
DB
11968 if (cus_htab == NULL)
11969 cus_htab = allocate_dwo_unit_table (objfile);
19c3d4c9 11970
33c5cd75
DB
11971 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11972 *dwo_unit = create_dwo_cu_data.dwo_unit;
11973 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11974 gdb_assert (slot != NULL);
11975 if (*slot != NULL)
19c3d4c9 11976 {
33c5cd75
DB
11977 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11978 sect_offset dup_sect_off = dup_cu->sect_off;
19c3d4c9 11979
b98664d3 11980 complaint (_("debug cu entry at offset %s is duplicate to"
9d8780f0
SM
11981 " the entry at offset %s, signature %s"),
11982 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
33c5cd75 11983 hex_string (dwo_unit->signature));
19c3d4c9 11984 }
33c5cd75 11985 *slot = (void *)dwo_unit;
3019eac3 11986 }
3019eac3
DE
11987}
11988
80626a55
DE
11989/* DWP file .debug_{cu,tu}_index section format:
11990 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11991
d2415c6c
DE
11992 DWP Version 1:
11993
80626a55
DE
11994 Both index sections have the same format, and serve to map a 64-bit
11995 signature to a set of section numbers. Each section begins with a header,
11996 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11997 indexes, and a pool of 32-bit section numbers. The index sections will be
11998 aligned at 8-byte boundaries in the file.
11999
d2415c6c
DE
12000 The index section header consists of:
12001
12002 V, 32 bit version number
12003 -, 32 bits unused
12004 N, 32 bit number of compilation units or type units in the index
12005 M, 32 bit number of slots in the hash table
80626a55 12006
d2415c6c 12007 Numbers are recorded using the byte order of the application binary.
80626a55 12008
d2415c6c
DE
12009 The hash table begins at offset 16 in the section, and consists of an array
12010 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12011 order of the application binary). Unused slots in the hash table are 0.
12012 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 12013
d2415c6c
DE
12014 The parallel table begins immediately after the hash table
12015 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12016 array of 32-bit indexes (using the byte order of the application binary),
12017 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12018 table contains a 32-bit index into the pool of section numbers. For unused
12019 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 12020
73869dc2
DE
12021 The pool of section numbers begins immediately following the hash table
12022 (at offset 16 + 12 * M from the beginning of the section). The pool of
12023 section numbers consists of an array of 32-bit words (using the byte order
12024 of the application binary). Each item in the array is indexed starting
12025 from 0. The hash table entry provides the index of the first section
12026 number in the set. Additional section numbers in the set follow, and the
12027 set is terminated by a 0 entry (section number 0 is not used in ELF).
12028
12029 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12030 section must be the first entry in the set, and the .debug_abbrev.dwo must
12031 be the second entry. Other members of the set may follow in any order.
12032
12033 ---
12034
12035 DWP Version 2:
12036
12037 DWP Version 2 combines all the .debug_info, etc. sections into one,
12038 and the entries in the index tables are now offsets into these sections.
12039 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12040 section.
12041
12042 Index Section Contents:
12043 Header
12044 Hash Table of Signatures dwp_hash_table.hash_table
12045 Parallel Table of Indices dwp_hash_table.unit_table
12046 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12047 Table of Section Sizes dwp_hash_table.v2.sizes
12048
12049 The index section header consists of:
12050
12051 V, 32 bit version number
12052 L, 32 bit number of columns in the table of section offsets
12053 N, 32 bit number of compilation units or type units in the index
12054 M, 32 bit number of slots in the hash table
12055
12056 Numbers are recorded using the byte order of the application binary.
12057
12058 The hash table has the same format as version 1.
12059 The parallel table of indices has the same format as version 1,
12060 except that the entries are origin-1 indices into the table of sections
12061 offsets and the table of section sizes.
12062
12063 The table of offsets begins immediately following the parallel table
12064 (at offset 16 + 12 * M from the beginning of the section). The table is
12065 a two-dimensional array of 32-bit words (using the byte order of the
12066 application binary), with L columns and N+1 rows, in row-major order.
12067 Each row in the array is indexed starting from 0. The first row provides
12068 a key to the remaining rows: each column in this row provides an identifier
12069 for a debug section, and the offsets in the same column of subsequent rows
12070 refer to that section. The section identifiers are:
12071
12072 DW_SECT_INFO 1 .debug_info.dwo
12073 DW_SECT_TYPES 2 .debug_types.dwo
12074 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12075 DW_SECT_LINE 4 .debug_line.dwo
12076 DW_SECT_LOC 5 .debug_loc.dwo
12077 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12078 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12079 DW_SECT_MACRO 8 .debug_macro.dwo
12080
12081 The offsets provided by the CU and TU index sections are the base offsets
12082 for the contributions made by each CU or TU to the corresponding section
12083 in the package file. Each CU and TU header contains an abbrev_offset
12084 field, used to find the abbreviations table for that CU or TU within the
12085 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12086 be interpreted as relative to the base offset given in the index section.
12087 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12088 should be interpreted as relative to the base offset for .debug_line.dwo,
12089 and offsets into other debug sections obtained from DWARF attributes should
12090 also be interpreted as relative to the corresponding base offset.
12091
12092 The table of sizes begins immediately following the table of offsets.
12093 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12094 with L columns and N rows, in row-major order. Each row in the array is
12095 indexed starting from 1 (row 0 is shared by the two tables).
12096
12097 ---
12098
12099 Hash table lookup is handled the same in version 1 and 2:
12100
12101 We assume that N and M will not exceed 2^32 - 1.
12102 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12103
d2415c6c
DE
12104 Given a 64-bit compilation unit signature or a type signature S, an entry
12105 in the hash table is located as follows:
80626a55 12106
d2415c6c
DE
12107 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12108 the low-order k bits all set to 1.
80626a55 12109
d2415c6c 12110 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 12111
d2415c6c
DE
12112 3) If the hash table entry at index H matches the signature, use that
12113 entry. If the hash table entry at index H is unused (all zeroes),
12114 terminate the search: the signature is not present in the table.
80626a55 12115
d2415c6c 12116 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 12117
d2415c6c 12118 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 12119 to stop at an unused slot or find the match. */
80626a55
DE
12120
12121/* Create a hash table to map DWO IDs to their CU/TU entry in
12122 .debug_{info,types}.dwo in DWP_FILE.
12123 Returns NULL if there isn't one.
12124 Note: This function processes DWP files only, not DWO files. */
12125
12126static struct dwp_hash_table *
ed2dc618
SM
12127create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12128 struct dwp_file *dwp_file, int is_debug_types)
80626a55
DE
12129{
12130 struct objfile *objfile = dwarf2_per_objfile->objfile;
400174b1 12131 bfd *dbfd = dwp_file->dbfd.get ();
948f8e3d 12132 const gdb_byte *index_ptr, *index_end;
80626a55 12133 struct dwarf2_section_info *index;
73869dc2 12134 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
12135 struct dwp_hash_table *htab;
12136
12137 if (is_debug_types)
12138 index = &dwp_file->sections.tu_index;
12139 else
12140 index = &dwp_file->sections.cu_index;
12141
12142 if (dwarf2_section_empty_p (index))
12143 return NULL;
12144 dwarf2_read_section (objfile, index);
12145
12146 index_ptr = index->buffer;
12147 index_end = index_ptr + index->size;
12148
12149 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
12150 index_ptr += 4;
12151 if (version == 2)
12152 nr_columns = read_4_bytes (dbfd, index_ptr);
12153 else
12154 nr_columns = 0;
12155 index_ptr += 4;
80626a55
DE
12156 nr_units = read_4_bytes (dbfd, index_ptr);
12157 index_ptr += 4;
12158 nr_slots = read_4_bytes (dbfd, index_ptr);
12159 index_ptr += 4;
12160
73869dc2 12161 if (version != 1 && version != 2)
80626a55 12162 {
21aa081e 12163 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 12164 " [in module %s]"),
21aa081e 12165 pulongest (version), dwp_file->name);
80626a55
DE
12166 }
12167 if (nr_slots != (nr_slots & -nr_slots))
12168 {
21aa081e 12169 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 12170 " is not power of 2 [in module %s]"),
21aa081e 12171 pulongest (nr_slots), dwp_file->name);
80626a55
DE
12172 }
12173
12174 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
12175 htab->version = version;
12176 htab->nr_columns = nr_columns;
80626a55
DE
12177 htab->nr_units = nr_units;
12178 htab->nr_slots = nr_slots;
12179 htab->hash_table = index_ptr;
12180 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
12181
12182 /* Exit early if the table is empty. */
12183 if (nr_slots == 0 || nr_units == 0
12184 || (version == 2 && nr_columns == 0))
12185 {
12186 /* All must be zero. */
12187 if (nr_slots != 0 || nr_units != 0
12188 || (version == 2 && nr_columns != 0))
12189 {
b98664d3 12190 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
73869dc2
DE
12191 " all zero [in modules %s]"),
12192 dwp_file->name);
12193 }
12194 return htab;
12195 }
12196
12197 if (version == 1)
12198 {
12199 htab->section_pool.v1.indices =
12200 htab->unit_table + sizeof (uint32_t) * nr_slots;
12201 /* It's harder to decide whether the section is too small in v1.
12202 V1 is deprecated anyway so we punt. */
12203 }
12204 else
12205 {
12206 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12207 int *ids = htab->section_pool.v2.section_ids;
04fd5eed 12208 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
73869dc2
DE
12209 /* Reverse map for error checking. */
12210 int ids_seen[DW_SECT_MAX + 1];
12211 int i;
12212
12213 if (nr_columns < 2)
12214 {
12215 error (_("Dwarf Error: bad DWP hash table, too few columns"
12216 " in section table [in module %s]"),
12217 dwp_file->name);
12218 }
12219 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12220 {
12221 error (_("Dwarf Error: bad DWP hash table, too many columns"
12222 " in section table [in module %s]"),
12223 dwp_file->name);
12224 }
04fd5eed
GB
12225 memset (ids, 255, sizeof_ids);
12226 memset (ids_seen, 255, sizeof (ids_seen));
73869dc2
DE
12227 for (i = 0; i < nr_columns; ++i)
12228 {
12229 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12230
12231 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12232 {
12233 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12234 " in section table [in module %s]"),
12235 id, dwp_file->name);
12236 }
12237 if (ids_seen[id] != -1)
12238 {
12239 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12240 " id %d in section table [in module %s]"),
12241 id, dwp_file->name);
12242 }
12243 ids_seen[id] = i;
12244 ids[i] = id;
12245 }
12246 /* Must have exactly one info or types section. */
12247 if (((ids_seen[DW_SECT_INFO] != -1)
12248 + (ids_seen[DW_SECT_TYPES] != -1))
12249 != 1)
12250 {
12251 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12252 " DWO info/types section [in module %s]"),
12253 dwp_file->name);
12254 }
12255 /* Must have an abbrev section. */
12256 if (ids_seen[DW_SECT_ABBREV] == -1)
12257 {
12258 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12259 " section [in module %s]"),
12260 dwp_file->name);
12261 }
12262 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12263 htab->section_pool.v2.sizes =
12264 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12265 * nr_units * nr_columns);
12266 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12267 * nr_units * nr_columns))
12268 > index_end)
12269 {
12270 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12271 " [in module %s]"),
12272 dwp_file->name);
12273 }
12274 }
80626a55
DE
12275
12276 return htab;
12277}
12278
12279/* Update SECTIONS with the data from SECTP.
12280
12281 This function is like the other "locate" section routines that are
12282 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 12283 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
12284
12285 The result is non-zero for success, or zero if an error was found. */
12286
12287static int
73869dc2
DE
12288locate_v1_virtual_dwo_sections (asection *sectp,
12289 struct virtual_v1_dwo_sections *sections)
80626a55
DE
12290{
12291 const struct dwop_section_names *names = &dwop_section_names;
12292
12293 if (section_is_p (sectp->name, &names->abbrev_dwo))
12294 {
12295 /* There can be only one. */
049412e3 12296 if (sections->abbrev.s.section != NULL)
80626a55 12297 return 0;
049412e3 12298 sections->abbrev.s.section = sectp;
80626a55
DE
12299 sections->abbrev.size = bfd_get_section_size (sectp);
12300 }
12301 else if (section_is_p (sectp->name, &names->info_dwo)
12302 || section_is_p (sectp->name, &names->types_dwo))
12303 {
12304 /* There can be only one. */
049412e3 12305 if (sections->info_or_types.s.section != NULL)
80626a55 12306 return 0;
049412e3 12307 sections->info_or_types.s.section = sectp;
80626a55
DE
12308 sections->info_or_types.size = bfd_get_section_size (sectp);
12309 }
12310 else if (section_is_p (sectp->name, &names->line_dwo))
12311 {
12312 /* There can be only one. */
049412e3 12313 if (sections->line.s.section != NULL)
80626a55 12314 return 0;
049412e3 12315 sections->line.s.section = sectp;
80626a55
DE
12316 sections->line.size = bfd_get_section_size (sectp);
12317 }
12318 else if (section_is_p (sectp->name, &names->loc_dwo))
12319 {
12320 /* There can be only one. */
049412e3 12321 if (sections->loc.s.section != NULL)
80626a55 12322 return 0;
049412e3 12323 sections->loc.s.section = sectp;
80626a55
DE
12324 sections->loc.size = bfd_get_section_size (sectp);
12325 }
12326 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12327 {
12328 /* There can be only one. */
049412e3 12329 if (sections->macinfo.s.section != NULL)
80626a55 12330 return 0;
049412e3 12331 sections->macinfo.s.section = sectp;
80626a55
DE
12332 sections->macinfo.size = bfd_get_section_size (sectp);
12333 }
12334 else if (section_is_p (sectp->name, &names->macro_dwo))
12335 {
12336 /* There can be only one. */
049412e3 12337 if (sections->macro.s.section != NULL)
80626a55 12338 return 0;
049412e3 12339 sections->macro.s.section = sectp;
80626a55
DE
12340 sections->macro.size = bfd_get_section_size (sectp);
12341 }
12342 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12343 {
12344 /* There can be only one. */
049412e3 12345 if (sections->str_offsets.s.section != NULL)
80626a55 12346 return 0;
049412e3 12347 sections->str_offsets.s.section = sectp;
80626a55
DE
12348 sections->str_offsets.size = bfd_get_section_size (sectp);
12349 }
12350 else
12351 {
12352 /* No other kind of section is valid. */
12353 return 0;
12354 }
12355
12356 return 1;
12357}
12358
73869dc2
DE
12359/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12360 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12361 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12362 This is for DWP version 1 files. */
80626a55
DE
12363
12364static struct dwo_unit *
ed2dc618
SM
12365create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12366 struct dwp_file *dwp_file,
73869dc2
DE
12367 uint32_t unit_index,
12368 const char *comp_dir,
12369 ULONGEST signature, int is_debug_types)
80626a55
DE
12370{
12371 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
12372 const struct dwp_hash_table *dwp_htab =
12373 is_debug_types ? dwp_file->tus : dwp_file->cus;
400174b1 12374 bfd *dbfd = dwp_file->dbfd.get ();
80626a55
DE
12375 const char *kind = is_debug_types ? "TU" : "CU";
12376 struct dwo_file *dwo_file;
12377 struct dwo_unit *dwo_unit;
73869dc2 12378 struct virtual_v1_dwo_sections sections;
80626a55 12379 void **dwo_file_slot;
80626a55
DE
12380 int i;
12381
73869dc2
DE
12382 gdb_assert (dwp_file->version == 1);
12383
b4f54984 12384 if (dwarf_read_debug)
80626a55 12385 {
73869dc2 12386 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 12387 kind,
73869dc2 12388 pulongest (unit_index), hex_string (signature),
80626a55
DE
12389 dwp_file->name);
12390 }
12391
19ac8c2e 12392 /* Fetch the sections of this DWO unit.
80626a55
DE
12393 Put a limit on the number of sections we look for so that bad data
12394 doesn't cause us to loop forever. */
12395
73869dc2 12396#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
12397 (1 /* .debug_info or .debug_types */ \
12398 + 1 /* .debug_abbrev */ \
12399 + 1 /* .debug_line */ \
12400 + 1 /* .debug_loc */ \
12401 + 1 /* .debug_str_offsets */ \
19ac8c2e 12402 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
12403 + 1 /* trailing zero */)
12404
12405 memset (&sections, 0, sizeof (sections));
80626a55 12406
73869dc2 12407 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
12408 {
12409 asection *sectp;
12410 uint32_t section_nr =
12411 read_4_bytes (dbfd,
73869dc2
DE
12412 dwp_htab->section_pool.v1.indices
12413 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
12414
12415 if (section_nr == 0)
12416 break;
12417 if (section_nr >= dwp_file->num_sections)
12418 {
12419 error (_("Dwarf Error: bad DWP hash table, section number too large"
12420 " [in module %s]"),
12421 dwp_file->name);
12422 }
12423
12424 sectp = dwp_file->elf_sections[section_nr];
73869dc2 12425 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
12426 {
12427 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12428 " [in module %s]"),
12429 dwp_file->name);
12430 }
12431 }
12432
12433 if (i < 2
a32a8923
DE
12434 || dwarf2_section_empty_p (&sections.info_or_types)
12435 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
12436 {
12437 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12438 " [in module %s]"),
12439 dwp_file->name);
12440 }
73869dc2 12441 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
12442 {
12443 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12444 " [in module %s]"),
12445 dwp_file->name);
12446 }
12447
12448 /* It's easier for the rest of the code if we fake a struct dwo_file and
12449 have dwo_unit "live" in that. At least for now.
12450
12451 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 12452 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
12453 file, we can combine them back into a virtual DWO file to save space
12454 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
12455 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12456
791afaa2
TT
12457 std::string virtual_dwo_name =
12458 string_printf ("virtual-dwo/%d-%d-%d-%d",
12459 get_section_id (&sections.abbrev),
12460 get_section_id (&sections.line),
12461 get_section_id (&sections.loc),
12462 get_section_id (&sections.str_offsets));
80626a55 12463 /* Can we use an existing virtual DWO file? */
ed2dc618
SM
12464 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12465 virtual_dwo_name.c_str (),
12466 comp_dir);
80626a55
DE
12467 /* Create one if necessary. */
12468 if (*dwo_file_slot == NULL)
12469 {
b4f54984 12470 if (dwarf_read_debug)
80626a55
DE
12471 {
12472 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
791afaa2 12473 virtual_dwo_name.c_str ());
80626a55
DE
12474 }
12475 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
12476 dwo_file->dwo_name
12477 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
791afaa2
TT
12478 virtual_dwo_name.c_str (),
12479 virtual_dwo_name.size ());
0ac5b59e 12480 dwo_file->comp_dir = comp_dir;
80626a55
DE
12481 dwo_file->sections.abbrev = sections.abbrev;
12482 dwo_file->sections.line = sections.line;
12483 dwo_file->sections.loc = sections.loc;
12484 dwo_file->sections.macinfo = sections.macinfo;
12485 dwo_file->sections.macro = sections.macro;
12486 dwo_file->sections.str_offsets = sections.str_offsets;
12487 /* The "str" section is global to the entire DWP file. */
12488 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 12489 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
12490 there's no need to record it in dwo_file.
12491 Also, we can't simply record type sections in dwo_file because
12492 we record a pointer into the vector in dwo_unit. As we collect more
12493 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
12494 for it, invalidating all copies of pointers into the previous
12495 contents. */
80626a55
DE
12496 *dwo_file_slot = dwo_file;
12497 }
12498 else
12499 {
b4f54984 12500 if (dwarf_read_debug)
80626a55
DE
12501 {
12502 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
791afaa2 12503 virtual_dwo_name.c_str ());
80626a55 12504 }
9a3c8263 12505 dwo_file = (struct dwo_file *) *dwo_file_slot;
80626a55 12506 }
80626a55
DE
12507
12508 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12509 dwo_unit->dwo_file = dwo_file;
12510 dwo_unit->signature = signature;
8d749320
SM
12511 dwo_unit->section =
12512 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
8a0459fd 12513 *dwo_unit->section = sections.info_or_types;
57d63ce2 12514 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
12515
12516 return dwo_unit;
12517}
12518
73869dc2
DE
12519/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12520 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12521 piece within that section used by a TU/CU, return a virtual section
12522 of just that piece. */
12523
12524static struct dwarf2_section_info
ed2dc618
SM
12525create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12526 struct dwarf2_section_info *section,
73869dc2
DE
12527 bfd_size_type offset, bfd_size_type size)
12528{
12529 struct dwarf2_section_info result;
12530 asection *sectp;
12531
12532 gdb_assert (section != NULL);
12533 gdb_assert (!section->is_virtual);
12534
12535 memset (&result, 0, sizeof (result));
12536 result.s.containing_section = section;
12537 result.is_virtual = 1;
12538
12539 if (size == 0)
12540 return result;
12541
12542 sectp = get_section_bfd_section (section);
12543
12544 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12545 bounds of the real section. This is a pretty-rare event, so just
12546 flag an error (easier) instead of a warning and trying to cope. */
12547 if (sectp == NULL
12548 || offset + size > bfd_get_section_size (sectp))
12549 {
73869dc2
DE
12550 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12551 " in section %s [in module %s]"),
12552 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12553 objfile_name (dwarf2_per_objfile->objfile));
12554 }
12555
12556 result.virtual_offset = offset;
12557 result.size = size;
12558 return result;
12559}
12560
12561/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12562 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12563 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12564 This is for DWP version 2 files. */
12565
12566static struct dwo_unit *
ed2dc618
SM
12567create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12568 struct dwp_file *dwp_file,
73869dc2
DE
12569 uint32_t unit_index,
12570 const char *comp_dir,
12571 ULONGEST signature, int is_debug_types)
12572{
12573 struct objfile *objfile = dwarf2_per_objfile->objfile;
12574 const struct dwp_hash_table *dwp_htab =
12575 is_debug_types ? dwp_file->tus : dwp_file->cus;
400174b1 12576 bfd *dbfd = dwp_file->dbfd.get ();
73869dc2
DE
12577 const char *kind = is_debug_types ? "TU" : "CU";
12578 struct dwo_file *dwo_file;
12579 struct dwo_unit *dwo_unit;
12580 struct virtual_v2_dwo_sections sections;
12581 void **dwo_file_slot;
73869dc2
DE
12582 int i;
12583
12584 gdb_assert (dwp_file->version == 2);
12585
b4f54984 12586 if (dwarf_read_debug)
73869dc2
DE
12587 {
12588 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12589 kind,
12590 pulongest (unit_index), hex_string (signature),
12591 dwp_file->name);
12592 }
12593
12594 /* Fetch the section offsets of this DWO unit. */
12595
12596 memset (&sections, 0, sizeof (sections));
73869dc2
DE
12597
12598 for (i = 0; i < dwp_htab->nr_columns; ++i)
12599 {
12600 uint32_t offset = read_4_bytes (dbfd,
12601 dwp_htab->section_pool.v2.offsets
12602 + (((unit_index - 1) * dwp_htab->nr_columns
12603 + i)
12604 * sizeof (uint32_t)));
12605 uint32_t size = read_4_bytes (dbfd,
12606 dwp_htab->section_pool.v2.sizes
12607 + (((unit_index - 1) * dwp_htab->nr_columns
12608 + i)
12609 * sizeof (uint32_t)));
12610
12611 switch (dwp_htab->section_pool.v2.section_ids[i])
12612 {
12613 case DW_SECT_INFO:
12614 case DW_SECT_TYPES:
12615 sections.info_or_types_offset = offset;
12616 sections.info_or_types_size = size;
12617 break;
12618 case DW_SECT_ABBREV:
12619 sections.abbrev_offset = offset;
12620 sections.abbrev_size = size;
12621 break;
12622 case DW_SECT_LINE:
12623 sections.line_offset = offset;
12624 sections.line_size = size;
12625 break;
12626 case DW_SECT_LOC:
12627 sections.loc_offset = offset;
12628 sections.loc_size = size;
12629 break;
12630 case DW_SECT_STR_OFFSETS:
12631 sections.str_offsets_offset = offset;
12632 sections.str_offsets_size = size;
12633 break;
12634 case DW_SECT_MACINFO:
12635 sections.macinfo_offset = offset;
12636 sections.macinfo_size = size;
12637 break;
12638 case DW_SECT_MACRO:
12639 sections.macro_offset = offset;
12640 sections.macro_size = size;
12641 break;
12642 }
12643 }
12644
12645 /* It's easier for the rest of the code if we fake a struct dwo_file and
12646 have dwo_unit "live" in that. At least for now.
12647
12648 The DWP file can be made up of a random collection of CUs and TUs.
12649 However, for each CU + set of TUs that came from the same original DWO
12650 file, we can combine them back into a virtual DWO file to save space
12651 (fewer struct dwo_file objects to allocate). Remember that for really
12652 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12653
791afaa2
TT
12654 std::string virtual_dwo_name =
12655 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12656 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12657 (long) (sections.line_size ? sections.line_offset : 0),
12658 (long) (sections.loc_size ? sections.loc_offset : 0),
12659 (long) (sections.str_offsets_size
12660 ? sections.str_offsets_offset : 0));
73869dc2 12661 /* Can we use an existing virtual DWO file? */
ed2dc618
SM
12662 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12663 virtual_dwo_name.c_str (),
12664 comp_dir);
73869dc2
DE
12665 /* Create one if necessary. */
12666 if (*dwo_file_slot == NULL)
12667 {
b4f54984 12668 if (dwarf_read_debug)
73869dc2
DE
12669 {
12670 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
791afaa2 12671 virtual_dwo_name.c_str ());
73869dc2
DE
12672 }
12673 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
12674 dwo_file->dwo_name
12675 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
791afaa2
TT
12676 virtual_dwo_name.c_str (),
12677 virtual_dwo_name.size ());
73869dc2
DE
12678 dwo_file->comp_dir = comp_dir;
12679 dwo_file->sections.abbrev =
ed2dc618 12680 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
73869dc2
DE
12681 sections.abbrev_offset, sections.abbrev_size);
12682 dwo_file->sections.line =
ed2dc618 12683 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
73869dc2
DE
12684 sections.line_offset, sections.line_size);
12685 dwo_file->sections.loc =
ed2dc618 12686 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
73869dc2
DE
12687 sections.loc_offset, sections.loc_size);
12688 dwo_file->sections.macinfo =
ed2dc618 12689 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
73869dc2
DE
12690 sections.macinfo_offset, sections.macinfo_size);
12691 dwo_file->sections.macro =
ed2dc618 12692 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
73869dc2
DE
12693 sections.macro_offset, sections.macro_size);
12694 dwo_file->sections.str_offsets =
ed2dc618
SM
12695 create_dwp_v2_section (dwarf2_per_objfile,
12696 &dwp_file->sections.str_offsets,
73869dc2
DE
12697 sections.str_offsets_offset,
12698 sections.str_offsets_size);
12699 /* The "str" section is global to the entire DWP file. */
12700 dwo_file->sections.str = dwp_file->sections.str;
12701 /* The info or types section is assigned below to dwo_unit,
12702 there's no need to record it in dwo_file.
12703 Also, we can't simply record type sections in dwo_file because
12704 we record a pointer into the vector in dwo_unit. As we collect more
12705 types we'll grow the vector and eventually have to reallocate space
12706 for it, invalidating all copies of pointers into the previous
12707 contents. */
12708 *dwo_file_slot = dwo_file;
12709 }
12710 else
12711 {
b4f54984 12712 if (dwarf_read_debug)
73869dc2
DE
12713 {
12714 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
791afaa2 12715 virtual_dwo_name.c_str ());
73869dc2 12716 }
9a3c8263 12717 dwo_file = (struct dwo_file *) *dwo_file_slot;
73869dc2 12718 }
73869dc2
DE
12719
12720 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12721 dwo_unit->dwo_file = dwo_file;
12722 dwo_unit->signature = signature;
8d749320
SM
12723 dwo_unit->section =
12724 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
ed2dc618
SM
12725 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12726 is_debug_types
73869dc2
DE
12727 ? &dwp_file->sections.types
12728 : &dwp_file->sections.info,
12729 sections.info_or_types_offset,
12730 sections.info_or_types_size);
12731 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12732
12733 return dwo_unit;
12734}
12735
57d63ce2
DE
12736/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12737 Returns NULL if the signature isn't found. */
80626a55
DE
12738
12739static struct dwo_unit *
ed2dc618
SM
12740lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12741 struct dwp_file *dwp_file, const char *comp_dir,
57d63ce2 12742 ULONGEST signature, int is_debug_types)
80626a55 12743{
57d63ce2
DE
12744 const struct dwp_hash_table *dwp_htab =
12745 is_debug_types ? dwp_file->tus : dwp_file->cus;
400174b1 12746 bfd *dbfd = dwp_file->dbfd.get ();
57d63ce2 12747 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
12748 uint32_t hash = signature & mask;
12749 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12750 unsigned int i;
12751 void **slot;
870f88f7 12752 struct dwo_unit find_dwo_cu;
80626a55
DE
12753
12754 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12755 find_dwo_cu.signature = signature;
19ac8c2e
DE
12756 slot = htab_find_slot (is_debug_types
12757 ? dwp_file->loaded_tus
12758 : dwp_file->loaded_cus,
12759 &find_dwo_cu, INSERT);
80626a55
DE
12760
12761 if (*slot != NULL)
9a3c8263 12762 return (struct dwo_unit *) *slot;
80626a55
DE
12763
12764 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 12765 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
12766 {
12767 ULONGEST signature_in_table;
12768
12769 signature_in_table =
57d63ce2 12770 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
12771 if (signature_in_table == signature)
12772 {
57d63ce2
DE
12773 uint32_t unit_index =
12774 read_4_bytes (dbfd,
12775 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 12776
73869dc2
DE
12777 if (dwp_file->version == 1)
12778 {
ed2dc618
SM
12779 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12780 dwp_file, unit_index,
73869dc2
DE
12781 comp_dir, signature,
12782 is_debug_types);
12783 }
12784 else
12785 {
ed2dc618
SM
12786 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12787 dwp_file, unit_index,
73869dc2
DE
12788 comp_dir, signature,
12789 is_debug_types);
12790 }
9a3c8263 12791 return (struct dwo_unit *) *slot;
80626a55
DE
12792 }
12793 if (signature_in_table == 0)
12794 return NULL;
12795 hash = (hash + hash2) & mask;
12796 }
12797
12798 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12799 " [in module %s]"),
12800 dwp_file->name);
12801}
12802
ab5088bf 12803/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
12804 Open the file specified by FILE_NAME and hand it off to BFD for
12805 preliminary analysis. Return a newly initialized bfd *, which
12806 includes a canonicalized copy of FILE_NAME.
80626a55 12807 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
12808 SEARCH_CWD is true if the current directory is to be searched.
12809 It will be searched before debug-file-directory.
13aaf454
DE
12810 If successful, the file is added to the bfd include table of the
12811 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 12812 If unable to find/open the file, return NULL.
3019eac3
DE
12813 NOTE: This function is derived from symfile_bfd_open. */
12814
192b62ce 12815static gdb_bfd_ref_ptr
ed2dc618
SM
12816try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12817 const char *file_name, int is_dwp, int search_cwd)
3019eac3 12818{
24b9144d 12819 int desc;
9c02c129
DE
12820 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12821 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12822 to debug_file_directory. */
e0cc99a6 12823 const char *search_path;
9c02c129
DE
12824 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12825
e0cc99a6 12826 gdb::unique_xmalloc_ptr<char> search_path_holder;
6ac97d4c
DE
12827 if (search_cwd)
12828 {
12829 if (*debug_file_directory != '\0')
e0cc99a6
TT
12830 {
12831 search_path_holder.reset (concat (".", dirname_separator_string,
12832 debug_file_directory,
12833 (char *) NULL));
12834 search_path = search_path_holder.get ();
12835 }
6ac97d4c 12836 else
e0cc99a6 12837 search_path = ".";
6ac97d4c 12838 }
9c02c129 12839 else
e0cc99a6 12840 search_path = debug_file_directory;
3019eac3 12841
24b9144d 12842 openp_flags flags = OPF_RETURN_REALPATH;
80626a55
DE
12843 if (is_dwp)
12844 flags |= OPF_SEARCH_IN_PATH;
e0cc99a6
TT
12845
12846 gdb::unique_xmalloc_ptr<char> absolute_name;
9c02c129 12847 desc = openp (search_path, flags, file_name,
3019eac3
DE
12848 O_RDONLY | O_BINARY, &absolute_name);
12849 if (desc < 0)
12850 return NULL;
12851
e0cc99a6
TT
12852 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12853 gnutarget, desc));
9c02c129
DE
12854 if (sym_bfd == NULL)
12855 return NULL;
192b62ce 12856 bfd_set_cacheable (sym_bfd.get (), 1);
3019eac3 12857
192b62ce
TT
12858 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12859 return NULL;
3019eac3 12860
13aaf454
DE
12861 /* Success. Record the bfd as having been included by the objfile's bfd.
12862 This is important because things like demangled_names_hash lives in the
12863 objfile's per_bfd space and may have references to things like symbol
12864 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
192b62ce 12865 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
13aaf454 12866
3019eac3
DE
12867 return sym_bfd;
12868}
12869
ab5088bf 12870/* Try to open DWO file FILE_NAME.
3019eac3
DE
12871 COMP_DIR is the DW_AT_comp_dir attribute.
12872 The result is the bfd handle of the file.
12873 If there is a problem finding or opening the file, return NULL.
12874 Upon success, the canonicalized path of the file is stored in the bfd,
12875 same as symfile_bfd_open. */
12876
192b62ce 12877static gdb_bfd_ref_ptr
ed2dc618
SM
12878open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12879 const char *file_name, const char *comp_dir)
3019eac3 12880{
80626a55 12881 if (IS_ABSOLUTE_PATH (file_name))
ed2dc618
SM
12882 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12883 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
12884
12885 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12886
12887 if (comp_dir != NULL)
12888 {
b36cec19
PA
12889 char *path_to_try = concat (comp_dir, SLASH_STRING,
12890 file_name, (char *) NULL);
3019eac3
DE
12891
12892 /* NOTE: If comp_dir is a relative path, this will also try the
12893 search path, which seems useful. */
ed2dc618
SM
12894 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12895 path_to_try,
12896 0 /*is_dwp*/,
192b62ce 12897 1 /*search_cwd*/));
3019eac3
DE
12898 xfree (path_to_try);
12899 if (abfd != NULL)
12900 return abfd;
12901 }
12902
12903 /* That didn't work, try debug-file-directory, which, despite its name,
12904 is a list of paths. */
12905
12906 if (*debug_file_directory == '\0')
12907 return NULL;
12908
ed2dc618
SM
12909 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12910 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
12911}
12912
80626a55
DE
12913/* This function is mapped across the sections and remembers the offset and
12914 size of each of the DWO debugging sections we are interested in. */
12915
12916static void
12917dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12918{
9a3c8263 12919 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
80626a55
DE
12920 const struct dwop_section_names *names = &dwop_section_names;
12921
12922 if (section_is_p (sectp->name, &names->abbrev_dwo))
12923 {
049412e3 12924 dwo_sections->abbrev.s.section = sectp;
80626a55
DE
12925 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12926 }
12927 else if (section_is_p (sectp->name, &names->info_dwo))
12928 {
049412e3 12929 dwo_sections->info.s.section = sectp;
80626a55
DE
12930 dwo_sections->info.size = bfd_get_section_size (sectp);
12931 }
12932 else if (section_is_p (sectp->name, &names->line_dwo))
12933 {
049412e3 12934 dwo_sections->line.s.section = sectp;
80626a55
DE
12935 dwo_sections->line.size = bfd_get_section_size (sectp);
12936 }
12937 else if (section_is_p (sectp->name, &names->loc_dwo))
12938 {
049412e3 12939 dwo_sections->loc.s.section = sectp;
80626a55
DE
12940 dwo_sections->loc.size = bfd_get_section_size (sectp);
12941 }
12942 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12943 {
049412e3 12944 dwo_sections->macinfo.s.section = sectp;
80626a55
DE
12945 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12946 }
12947 else if (section_is_p (sectp->name, &names->macro_dwo))
12948 {
049412e3 12949 dwo_sections->macro.s.section = sectp;
80626a55
DE
12950 dwo_sections->macro.size = bfd_get_section_size (sectp);
12951 }
12952 else if (section_is_p (sectp->name, &names->str_dwo))
12953 {
049412e3 12954 dwo_sections->str.s.section = sectp;
80626a55
DE
12955 dwo_sections->str.size = bfd_get_section_size (sectp);
12956 }
12957 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12958 {
049412e3 12959 dwo_sections->str_offsets.s.section = sectp;
80626a55
DE
12960 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12961 }
12962 else if (section_is_p (sectp->name, &names->types_dwo))
12963 {
12964 struct dwarf2_section_info type_section;
12965
12966 memset (&type_section, 0, sizeof (type_section));
049412e3 12967 type_section.s.section = sectp;
80626a55
DE
12968 type_section.size = bfd_get_section_size (sectp);
12969 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12970 &type_section);
12971 }
12972}
12973
ab5088bf 12974/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 12975 by PER_CU. This is for the non-DWP case.
80626a55 12976 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
12977
12978static struct dwo_file *
0ac5b59e
DE
12979open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12980 const char *dwo_name, const char *comp_dir)
3019eac3 12981{
ed2dc618 12982 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
3019eac3 12983 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 12984
ed2dc618 12985 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
80626a55
DE
12986 if (dbfd == NULL)
12987 {
b4f54984 12988 if (dwarf_read_debug)
80626a55
DE
12989 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12990 return NULL;
12991 }
263db9a1
TT
12992
12993 /* We use a unique pointer here, despite the obstack allocation,
12994 because a dwo_file needs some cleanup if it is abandoned. */
12995 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12996 struct dwo_file));
0ac5b59e
DE
12997 dwo_file->dwo_name = dwo_name;
12998 dwo_file->comp_dir = comp_dir;
192b62ce 12999 dwo_file->dbfd = dbfd.release ();
3019eac3 13000
192b62ce
TT
13001 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
13002 &dwo_file->sections);
3019eac3 13003
ed2dc618
SM
13004 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
13005 dwo_file->cus);
3019eac3 13006
263db9a1 13007 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
ed2dc618 13008 dwo_file->sections.types, dwo_file->tus);
3019eac3 13009
b4f54984 13010 if (dwarf_read_debug)
80626a55
DE
13011 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13012
263db9a1 13013 return dwo_file.release ();
3019eac3
DE
13014}
13015
80626a55 13016/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
13017 size of each of the DWP debugging sections common to version 1 and 2 that
13018 we are interested in. */
3019eac3 13019
80626a55 13020static void
73869dc2
DE
13021dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13022 void *dwp_file_ptr)
3019eac3 13023{
9a3c8263 13024 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
80626a55
DE
13025 const struct dwop_section_names *names = &dwop_section_names;
13026 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 13027
80626a55 13028 /* Record the ELF section number for later lookup: this is what the
73869dc2 13029 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
13030 gdb_assert (elf_section_nr < dwp_file->num_sections);
13031 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 13032
80626a55
DE
13033 /* Look for specific sections that we need. */
13034 if (section_is_p (sectp->name, &names->str_dwo))
13035 {
049412e3 13036 dwp_file->sections.str.s.section = sectp;
80626a55
DE
13037 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13038 }
13039 else if (section_is_p (sectp->name, &names->cu_index))
13040 {
049412e3 13041 dwp_file->sections.cu_index.s.section = sectp;
80626a55
DE
13042 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13043 }
13044 else if (section_is_p (sectp->name, &names->tu_index))
13045 {
049412e3 13046 dwp_file->sections.tu_index.s.section = sectp;
80626a55
DE
13047 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13048 }
13049}
3019eac3 13050
73869dc2
DE
13051/* This function is mapped across the sections and remembers the offset and
13052 size of each of the DWP version 2 debugging sections that we are interested
13053 in. This is split into a separate function because we don't know if we
13054 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13055
13056static void
13057dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13058{
9a3c8263 13059 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
73869dc2
DE
13060 const struct dwop_section_names *names = &dwop_section_names;
13061 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13062
13063 /* Record the ELF section number for later lookup: this is what the
13064 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13065 gdb_assert (elf_section_nr < dwp_file->num_sections);
13066 dwp_file->elf_sections[elf_section_nr] = sectp;
13067
13068 /* Look for specific sections that we need. */
13069 if (section_is_p (sectp->name, &names->abbrev_dwo))
13070 {
049412e3 13071 dwp_file->sections.abbrev.s.section = sectp;
73869dc2
DE
13072 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13073 }
13074 else if (section_is_p (sectp->name, &names->info_dwo))
13075 {
049412e3 13076 dwp_file->sections.info.s.section = sectp;
73869dc2
DE
13077 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13078 }
13079 else if (section_is_p (sectp->name, &names->line_dwo))
13080 {
049412e3 13081 dwp_file->sections.line.s.section = sectp;
73869dc2
DE
13082 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13083 }
13084 else if (section_is_p (sectp->name, &names->loc_dwo))
13085 {
049412e3 13086 dwp_file->sections.loc.s.section = sectp;
73869dc2
DE
13087 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13088 }
13089 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13090 {
049412e3 13091 dwp_file->sections.macinfo.s.section = sectp;
73869dc2
DE
13092 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13093 }
13094 else if (section_is_p (sectp->name, &names->macro_dwo))
13095 {
049412e3 13096 dwp_file->sections.macro.s.section = sectp;
73869dc2
DE
13097 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13098 }
13099 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13100 {
049412e3 13101 dwp_file->sections.str_offsets.s.section = sectp;
73869dc2
DE
13102 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13103 }
13104 else if (section_is_p (sectp->name, &names->types_dwo))
13105 {
049412e3 13106 dwp_file->sections.types.s.section = sectp;
73869dc2
DE
13107 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13108 }
13109}
13110
80626a55 13111/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 13112
80626a55
DE
13113static hashval_t
13114hash_dwp_loaded_cutus (const void *item)
13115{
9a3c8263 13116 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3 13117
80626a55
DE
13118 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13119 return dwo_unit->signature;
3019eac3
DE
13120}
13121
80626a55 13122/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 13123
80626a55
DE
13124static int
13125eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 13126{
9a3c8263
SM
13127 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13128 const struct dwo_unit *dub = (const struct dwo_unit *) b;
3019eac3 13129
80626a55
DE
13130 return dua->signature == dub->signature;
13131}
3019eac3 13132
80626a55 13133/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 13134
80626a55
DE
13135static htab_t
13136allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13137{
13138 return htab_create_alloc_ex (3,
13139 hash_dwp_loaded_cutus,
13140 eq_dwp_loaded_cutus,
13141 NULL,
13142 &objfile->objfile_obstack,
13143 hashtab_obstack_allocate,
13144 dummy_obstack_deallocate);
13145}
3019eac3 13146
ab5088bf
DE
13147/* Try to open DWP file FILE_NAME.
13148 The result is the bfd handle of the file.
13149 If there is a problem finding or opening the file, return NULL.
13150 Upon success, the canonicalized path of the file is stored in the bfd,
13151 same as symfile_bfd_open. */
13152
192b62ce 13153static gdb_bfd_ref_ptr
ed2dc618
SM
13154open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13155 const char *file_name)
ab5088bf 13156{
ed2dc618
SM
13157 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13158 1 /*is_dwp*/,
192b62ce 13159 1 /*search_cwd*/));
6ac97d4c
DE
13160 if (abfd != NULL)
13161 return abfd;
13162
13163 /* Work around upstream bug 15652.
13164 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13165 [Whether that's a "bug" is debatable, but it is getting in our way.]
13166 We have no real idea where the dwp file is, because gdb's realpath-ing
13167 of the executable's path may have discarded the needed info.
13168 [IWBN if the dwp file name was recorded in the executable, akin to
13169 .gnu_debuglink, but that doesn't exist yet.]
13170 Strip the directory from FILE_NAME and search again. */
13171 if (*debug_file_directory != '\0')
13172 {
13173 /* Don't implicitly search the current directory here.
13174 If the user wants to search "." to handle this case,
13175 it must be added to debug-file-directory. */
ed2dc618
SM
13176 return try_open_dwop_file (dwarf2_per_objfile,
13177 lbasename (file_name), 1 /*is_dwp*/,
6ac97d4c
DE
13178 0 /*search_cwd*/);
13179 }
13180
13181 return NULL;
ab5088bf
DE
13182}
13183
80626a55
DE
13184/* Initialize the use of the DWP file for the current objfile.
13185 By convention the name of the DWP file is ${objfile}.dwp.
13186 The result is NULL if it can't be found. */
a766d390 13187
400174b1 13188static std::unique_ptr<struct dwp_file>
ed2dc618 13189open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
80626a55
DE
13190{
13191 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55 13192
82bf32bc
JK
13193 /* Try to find first .dwp for the binary file before any symbolic links
13194 resolving. */
6c447423
DE
13195
13196 /* If the objfile is a debug file, find the name of the real binary
13197 file and get the name of dwp file from there. */
d721ba37 13198 std::string dwp_name;
6c447423
DE
13199 if (objfile->separate_debug_objfile_backlink != NULL)
13200 {
13201 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13202 const char *backlink_basename = lbasename (backlink->original_name);
6c447423 13203
d721ba37 13204 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
6c447423
DE
13205 }
13206 else
d721ba37
PA
13207 dwp_name = objfile->original_name;
13208
13209 dwp_name += ".dwp";
80626a55 13210
ed2dc618 13211 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
82bf32bc
JK
13212 if (dbfd == NULL
13213 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13214 {
13215 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
d721ba37
PA
13216 dwp_name = objfile_name (objfile);
13217 dwp_name += ".dwp";
ed2dc618 13218 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
82bf32bc
JK
13219 }
13220
80626a55
DE
13221 if (dbfd == NULL)
13222 {
b4f54984 13223 if (dwarf_read_debug)
d721ba37 13224 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
400174b1 13225 return std::unique_ptr<dwp_file> ();
3019eac3 13226 }
400174b1
TT
13227
13228 const char *name = bfd_get_filename (dbfd.get ());
13229 std::unique_ptr<struct dwp_file> dwp_file
13230 (new struct dwp_file (name, std::move (dbfd)));
c906108c 13231
80626a55 13232 /* +1: section 0 is unused */
192b62ce 13233 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
80626a55
DE
13234 dwp_file->elf_sections =
13235 OBSTACK_CALLOC (&objfile->objfile_obstack,
13236 dwp_file->num_sections, asection *);
13237
400174b1
TT
13238 bfd_map_over_sections (dwp_file->dbfd.get (),
13239 dwarf2_locate_common_dwp_sections,
13240 dwp_file.get ());
80626a55 13241
400174b1
TT
13242 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13243 0);
80626a55 13244
400174b1
TT
13245 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13246 1);
80626a55 13247
73869dc2 13248 /* The DWP file version is stored in the hash table. Oh well. */
08302ed2
DE
13249 if (dwp_file->cus && dwp_file->tus
13250 && dwp_file->cus->version != dwp_file->tus->version)
73869dc2
DE
13251 {
13252 /* Technically speaking, we should try to limp along, but this is
fbcbc3fd 13253 pretty bizarre. We use pulongest here because that's the established
4d65956b 13254 portability solution (e.g, we cannot use %u for uint32_t). */
fbcbc3fd
DE
13255 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13256 " TU version %s [in DWP file %s]"),
13257 pulongest (dwp_file->cus->version),
d721ba37 13258 pulongest (dwp_file->tus->version), dwp_name.c_str ());
73869dc2 13259 }
08302ed2
DE
13260
13261 if (dwp_file->cus)
13262 dwp_file->version = dwp_file->cus->version;
13263 else if (dwp_file->tus)
13264 dwp_file->version = dwp_file->tus->version;
13265 else
13266 dwp_file->version = 2;
73869dc2
DE
13267
13268 if (dwp_file->version == 2)
400174b1
TT
13269 bfd_map_over_sections (dwp_file->dbfd.get (),
13270 dwarf2_locate_v2_dwp_sections,
13271 dwp_file.get ());
73869dc2 13272
19ac8c2e
DE
13273 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13274 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 13275
b4f54984 13276 if (dwarf_read_debug)
80626a55
DE
13277 {
13278 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13279 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
13280 " %s CUs, %s TUs\n",
13281 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13282 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
13283 }
13284
13285 return dwp_file;
3019eac3 13286}
c906108c 13287
ab5088bf
DE
13288/* Wrapper around open_and_init_dwp_file, only open it once. */
13289
13290static struct dwp_file *
ed2dc618 13291get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
ab5088bf
DE
13292{
13293 if (! dwarf2_per_objfile->dwp_checked)
13294 {
ed2dc618
SM
13295 dwarf2_per_objfile->dwp_file
13296 = open_and_init_dwp_file (dwarf2_per_objfile);
ab5088bf
DE
13297 dwarf2_per_objfile->dwp_checked = 1;
13298 }
400174b1 13299 return dwarf2_per_objfile->dwp_file.get ();
ab5088bf
DE
13300}
13301
80626a55
DE
13302/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13303 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13304 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 13305 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
13306 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13307
13308 This is called, for example, when wanting to read a variable with a
13309 complex location. Therefore we don't want to do file i/o for every call.
13310 Therefore we don't want to look for a DWO file on every call.
13311 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13312 then we check if we've already seen DWO_NAME, and only THEN do we check
13313 for a DWO file.
13314
1c658ad5 13315 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 13316 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 13317
3019eac3 13318static struct dwo_unit *
80626a55
DE
13319lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13320 const char *dwo_name, const char *comp_dir,
13321 ULONGEST signature, int is_debug_types)
3019eac3 13322{
ed2dc618 13323 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
3019eac3 13324 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
13325 const char *kind = is_debug_types ? "TU" : "CU";
13326 void **dwo_file_slot;
3019eac3 13327 struct dwo_file *dwo_file;
80626a55 13328 struct dwp_file *dwp_file;
cb1df416 13329
6a506a2d
DE
13330 /* First see if there's a DWP file.
13331 If we have a DWP file but didn't find the DWO inside it, don't
13332 look for the original DWO file. It makes gdb behave differently
13333 depending on whether one is debugging in the build tree. */
cf2c3c16 13334
ed2dc618 13335 dwp_file = get_dwp_file (dwarf2_per_objfile);
80626a55 13336 if (dwp_file != NULL)
cf2c3c16 13337 {
80626a55
DE
13338 const struct dwp_hash_table *dwp_htab =
13339 is_debug_types ? dwp_file->tus : dwp_file->cus;
13340
13341 if (dwp_htab != NULL)
13342 {
13343 struct dwo_unit *dwo_cutu =
ed2dc618 13344 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
57d63ce2 13345 signature, is_debug_types);
80626a55
DE
13346
13347 if (dwo_cutu != NULL)
13348 {
b4f54984 13349 if (dwarf_read_debug)
80626a55
DE
13350 {
13351 fprintf_unfiltered (gdb_stdlog,
13352 "Virtual DWO %s %s found: @%s\n",
13353 kind, hex_string (signature),
13354 host_address_to_string (dwo_cutu));
13355 }
13356 return dwo_cutu;
13357 }
13358 }
13359 }
6a506a2d 13360 else
80626a55 13361 {
6a506a2d 13362 /* No DWP file, look for the DWO file. */
80626a55 13363
ed2dc618
SM
13364 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13365 dwo_name, comp_dir);
6a506a2d 13366 if (*dwo_file_slot == NULL)
80626a55 13367 {
6a506a2d
DE
13368 /* Read in the file and build a table of the CUs/TUs it contains. */
13369 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 13370 }
6a506a2d 13371 /* NOTE: This will be NULL if unable to open the file. */
9a3c8263 13372 dwo_file = (struct dwo_file *) *dwo_file_slot;
3019eac3 13373
6a506a2d 13374 if (dwo_file != NULL)
19c3d4c9 13375 {
6a506a2d
DE
13376 struct dwo_unit *dwo_cutu = NULL;
13377
13378 if (is_debug_types && dwo_file->tus)
13379 {
13380 struct dwo_unit find_dwo_cutu;
13381
13382 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13383 find_dwo_cutu.signature = signature;
9a3c8263
SM
13384 dwo_cutu
13385 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
6a506a2d 13386 }
33c5cd75 13387 else if (!is_debug_types && dwo_file->cus)
80626a55 13388 {
33c5cd75
DB
13389 struct dwo_unit find_dwo_cutu;
13390
13391 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13392 find_dwo_cutu.signature = signature;
13393 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13394 &find_dwo_cutu);
6a506a2d
DE
13395 }
13396
13397 if (dwo_cutu != NULL)
13398 {
b4f54984 13399 if (dwarf_read_debug)
6a506a2d
DE
13400 {
13401 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13402 kind, dwo_name, hex_string (signature),
13403 host_address_to_string (dwo_cutu));
13404 }
13405 return dwo_cutu;
80626a55
DE
13406 }
13407 }
2e276125 13408 }
9cdd5dbd 13409
80626a55
DE
13410 /* We didn't find it. This could mean a dwo_id mismatch, or
13411 someone deleted the DWO/DWP file, or the search path isn't set up
13412 correctly to find the file. */
13413
b4f54984 13414 if (dwarf_read_debug)
80626a55
DE
13415 {
13416 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13417 kind, dwo_name, hex_string (signature));
13418 }
3019eac3 13419
6656a72d
DE
13420 /* This is a warning and not a complaint because it can be caused by
13421 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
13422 {
13423 /* Print the name of the DWP file if we looked there, helps the user
13424 better diagnose the problem. */
791afaa2 13425 std::string dwp_text;
43942612
DE
13426
13427 if (dwp_file != NULL)
791afaa2
TT
13428 dwp_text = string_printf (" [in DWP file %s]",
13429 lbasename (dwp_file->name));
43942612 13430
9d8780f0 13431 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
43942612
DE
13432 " [in module %s]"),
13433 kind, dwo_name, hex_string (signature),
791afaa2 13434 dwp_text.c_str (),
43942612 13435 this_unit->is_debug_types ? "TU" : "CU",
9d8780f0 13436 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
43942612 13437 }
3019eac3 13438 return NULL;
5fb290d7
DJ
13439}
13440
80626a55
DE
13441/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13442 See lookup_dwo_cutu_unit for details. */
13443
13444static struct dwo_unit *
13445lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13446 const char *dwo_name, const char *comp_dir,
13447 ULONGEST signature)
13448{
13449 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13450}
13451
13452/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13453 See lookup_dwo_cutu_unit for details. */
13454
13455static struct dwo_unit *
13456lookup_dwo_type_unit (struct signatured_type *this_tu,
13457 const char *dwo_name, const char *comp_dir)
13458{
13459 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13460}
13461
89e63ee4
DE
13462/* Traversal function for queue_and_load_all_dwo_tus. */
13463
13464static int
13465queue_and_load_dwo_tu (void **slot, void *info)
13466{
13467 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13468 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13469 ULONGEST signature = dwo_unit->signature;
13470 struct signatured_type *sig_type =
13471 lookup_dwo_signatured_type (per_cu->cu, signature);
13472
13473 if (sig_type != NULL)
13474 {
13475 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13476
13477 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13478 a real dependency of PER_CU on SIG_TYPE. That is detected later
13479 while processing PER_CU. */
13480 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13481 load_full_type_unit (sig_cu);
13482 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13483 }
13484
13485 return 1;
13486}
13487
13488/* Queue all TUs contained in the DWO of PER_CU to be read in.
13489 The DWO may have the only definition of the type, though it may not be
13490 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13491 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13492
13493static void
13494queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13495{
13496 struct dwo_unit *dwo_unit;
13497 struct dwo_file *dwo_file;
13498
13499 gdb_assert (!per_cu->is_debug_types);
ed2dc618 13500 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
89e63ee4
DE
13501 gdb_assert (per_cu->cu != NULL);
13502
13503 dwo_unit = per_cu->cu->dwo_unit;
13504 gdb_assert (dwo_unit != NULL);
13505
13506 dwo_file = dwo_unit->dwo_file;
13507 if (dwo_file->tus != NULL)
13508 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13509}
13510
3019eac3 13511/* Free all resources associated with DWO_FILE.
5dafb3d1 13512 Close the DWO file and munmap the sections. */
348e048f
DE
13513
13514static void
5dafb3d1 13515free_dwo_file (struct dwo_file *dwo_file)
348e048f 13516{
5c6fa7ab 13517 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 13518 gdb_bfd_unref (dwo_file->dbfd);
348e048f 13519
3019eac3
DE
13520 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13521}
348e048f 13522
3019eac3 13523/* Traversal function for free_dwo_files. */
2ab95328 13524
3019eac3
DE
13525static int
13526free_dwo_file_from_slot (void **slot, void *info)
13527{
13528 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
348e048f 13529
5dafb3d1 13530 free_dwo_file (dwo_file);
348e048f 13531
3019eac3
DE
13532 return 1;
13533}
348e048f 13534
3019eac3 13535/* Free all resources associated with DWO_FILES. */
348e048f 13536
3019eac3
DE
13537static void
13538free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13539{
13540 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 13541}
3019eac3
DE
13542\f
13543/* Read in various DIEs. */
348e048f 13544
d389af10 13545/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
13546 Inherit only the children of the DW_AT_abstract_origin DIE not being
13547 already referenced by DW_AT_abstract_origin from the children of the
13548 current DIE. */
d389af10
JK
13549
13550static void
13551inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13552{
13553 struct die_info *child_die;
791afaa2 13554 sect_offset *offsetp;
d389af10
JK
13555 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13556 struct die_info *origin_die;
13557 /* Iterator of the ORIGIN_DIE children. */
13558 struct die_info *origin_child_die;
d389af10 13559 struct attribute *attr;
cd02d79d
PA
13560 struct dwarf2_cu *origin_cu;
13561 struct pending **origin_previous_list_in_scope;
d389af10
JK
13562
13563 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13564 if (!attr)
13565 return;
13566
cd02d79d
PA
13567 /* Note that following die references may follow to a die in a
13568 different cu. */
13569
13570 origin_cu = cu;
13571 origin_die = follow_die_ref (die, attr, &origin_cu);
13572
13573 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13574 symbols in. */
13575 origin_previous_list_in_scope = origin_cu->list_in_scope;
13576 origin_cu->list_in_scope = cu->list_in_scope;
13577
edb3359d
DJ
13578 if (die->tag != origin_die->tag
13579 && !(die->tag == DW_TAG_inlined_subroutine
13580 && origin_die->tag == DW_TAG_subprogram))
b98664d3 13581 complaint (_("DIE %s and its abstract origin %s have different tags"),
9d8780f0
SM
13582 sect_offset_str (die->sect_off),
13583 sect_offset_str (origin_die->sect_off));
d389af10 13584
791afaa2 13585 std::vector<sect_offset> offsets;
d389af10 13586
3ea89b92
PMR
13587 for (child_die = die->child;
13588 child_die && child_die->tag;
13589 child_die = sibling_die (child_die))
13590 {
13591 struct die_info *child_origin_die;
13592 struct dwarf2_cu *child_origin_cu;
13593
13594 /* We are trying to process concrete instance entries:
216f72a1 13595 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
3ea89b92
PMR
13596 it's not relevant to our analysis here. i.e. detecting DIEs that are
13597 present in the abstract instance but not referenced in the concrete
13598 one. */
216f72a1
JK
13599 if (child_die->tag == DW_TAG_call_site
13600 || child_die->tag == DW_TAG_GNU_call_site)
3ea89b92
PMR
13601 continue;
13602
c38f313d
DJ
13603 /* For each CHILD_DIE, find the corresponding child of
13604 ORIGIN_DIE. If there is more than one layer of
13605 DW_AT_abstract_origin, follow them all; there shouldn't be,
13606 but GCC versions at least through 4.4 generate this (GCC PR
13607 40573). */
3ea89b92
PMR
13608 child_origin_die = child_die;
13609 child_origin_cu = cu;
c38f313d
DJ
13610 while (1)
13611 {
cd02d79d
PA
13612 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13613 child_origin_cu);
c38f313d
DJ
13614 if (attr == NULL)
13615 break;
cd02d79d
PA
13616 child_origin_die = follow_die_ref (child_origin_die, attr,
13617 &child_origin_cu);
c38f313d
DJ
13618 }
13619
d389af10
JK
13620 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13621 counterpart may exist. */
c38f313d 13622 if (child_origin_die != child_die)
d389af10 13623 {
edb3359d
DJ
13624 if (child_die->tag != child_origin_die->tag
13625 && !(child_die->tag == DW_TAG_inlined_subroutine
13626 && child_origin_die->tag == DW_TAG_subprogram))
b98664d3 13627 complaint (_("Child DIE %s and its abstract origin %s have "
9c541725 13628 "different tags"),
9d8780f0
SM
13629 sect_offset_str (child_die->sect_off),
13630 sect_offset_str (child_origin_die->sect_off));
c38f313d 13631 if (child_origin_die->parent != origin_die)
b98664d3 13632 complaint (_("Child DIE %s and its abstract origin %s have "
9c541725 13633 "different parents"),
9d8780f0
SM
13634 sect_offset_str (child_die->sect_off),
13635 sect_offset_str (child_origin_die->sect_off));
c38f313d 13636 else
791afaa2 13637 offsets.push_back (child_origin_die->sect_off);
d389af10 13638 }
d389af10 13639 }
791afaa2
TT
13640 std::sort (offsets.begin (), offsets.end ());
13641 sect_offset *offsets_end = offsets.data () + offsets.size ();
13642 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
9c541725 13643 if (offsetp[-1] == *offsetp)
b98664d3 13644 complaint (_("Multiple children of DIE %s refer "
9d8780f0
SM
13645 "to DIE %s as their abstract origin"),
13646 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
d389af10 13647
791afaa2 13648 offsetp = offsets.data ();
d389af10
JK
13649 origin_child_die = origin_die->child;
13650 while (origin_child_die && origin_child_die->tag)
13651 {
13652 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1 13653 while (offsetp < offsets_end
9c541725 13654 && *offsetp < origin_child_die->sect_off)
d389af10 13655 offsetp++;
b64f50a1 13656 if (offsetp >= offsets_end
9c541725 13657 || *offsetp > origin_child_die->sect_off)
d389af10 13658 {
adde2bff
DE
13659 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13660 Check whether we're already processing ORIGIN_CHILD_DIE.
13661 This can happen with mutually referenced abstract_origins.
13662 PR 16581. */
13663 if (!origin_child_die->in_process)
13664 process_die (origin_child_die, origin_cu);
d389af10
JK
13665 }
13666 origin_child_die = sibling_die (origin_child_die);
13667 }
cd02d79d 13668 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
13669}
13670
c906108c 13671static void
e7c27a73 13672read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13673{
518817b3 13674 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
3e29f34a 13675 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 13676 struct context_stack *newobj;
c906108c
SS
13677 CORE_ADDR lowpc;
13678 CORE_ADDR highpc;
13679 struct die_info *child_die;
edb3359d 13680 struct attribute *attr, *call_line, *call_file;
15d034d0 13681 const char *name;
e142c38c 13682 CORE_ADDR baseaddr;
801e3a5b 13683 struct block *block;
edb3359d 13684 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
2f4732b0 13685 std::vector<struct symbol *> template_args;
34eaf542 13686 struct template_symbol *templ_func = NULL;
edb3359d
DJ
13687
13688 if (inlined_func)
13689 {
13690 /* If we do not have call site information, we can't show the
13691 caller of this inlined function. That's too confusing, so
13692 only use the scope for local variables. */
13693 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13694 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13695 if (call_line == NULL || call_file == NULL)
13696 {
13697 read_lexical_block_scope (die, cu);
13698 return;
13699 }
13700 }
c906108c 13701
e142c38c
DJ
13702 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13703
94af9270 13704 name = dwarf2_name (die, cu);
c906108c 13705
e8d05480
JB
13706 /* Ignore functions with missing or empty names. These are actually
13707 illegal according to the DWARF standard. */
13708 if (name == NULL)
13709 {
b98664d3 13710 complaint (_("missing name for subprogram DIE at %s"),
9d8780f0 13711 sect_offset_str (die->sect_off));
e8d05480
JB
13712 return;
13713 }
13714
13715 /* Ignore functions with missing or invalid low and high pc attributes. */
3a2b436a 13716 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
e385593e 13717 <= PC_BOUNDS_INVALID)
e8d05480 13718 {
ae4d0c03
PM
13719 attr = dwarf2_attr (die, DW_AT_external, cu);
13720 if (!attr || !DW_UNSND (attr))
b98664d3 13721 complaint (_("cannot get low and high bounds "
9d8780f0
SM
13722 "for subprogram DIE at %s"),
13723 sect_offset_str (die->sect_off));
e8d05480
JB
13724 return;
13725 }
c906108c 13726
3e29f34a
MR
13727 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13728 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c 13729
34eaf542
TT
13730 /* If we have any template arguments, then we must allocate a
13731 different sort of symbol. */
13732 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13733 {
13734 if (child_die->tag == DW_TAG_template_type_param
13735 || child_die->tag == DW_TAG_template_value_param)
13736 {
e623cf5d 13737 templ_func = allocate_template_symbol (objfile);
cf724bc9 13738 templ_func->subclass = SYMBOL_TEMPLATE;
34eaf542
TT
13739 break;
13740 }
13741 }
13742
804d2729 13743 newobj = cu->builder->push_context (0, lowpc);
5e2db402
TT
13744 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13745 (struct symbol *) templ_func);
4c2df51b 13746
4cecd739
DJ
13747 /* If there is a location expression for DW_AT_frame_base, record
13748 it. */
e142c38c 13749 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 13750 if (attr)
fe978cb0 13751 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
4c2df51b 13752
63e43d3a
PMR
13753 /* If there is a location for the static link, record it. */
13754 newobj->static_link = NULL;
13755 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13756 if (attr)
13757 {
224c3ddb
SM
13758 newobj->static_link
13759 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
63e43d3a
PMR
13760 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13761 }
13762
804d2729 13763 cu->list_in_scope = cu->builder->get_local_symbols ();
c906108c 13764
639d11d3 13765 if (die->child != NULL)
c906108c 13766 {
639d11d3 13767 child_die = die->child;
c906108c
SS
13768 while (child_die && child_die->tag)
13769 {
34eaf542
TT
13770 if (child_die->tag == DW_TAG_template_type_param
13771 || child_die->tag == DW_TAG_template_value_param)
13772 {
13773 struct symbol *arg = new_symbol (child_die, NULL, cu);
13774
f1078f66 13775 if (arg != NULL)
2f4732b0 13776 template_args.push_back (arg);
34eaf542
TT
13777 }
13778 else
13779 process_die (child_die, cu);
c906108c
SS
13780 child_die = sibling_die (child_die);
13781 }
13782 }
13783
d389af10
JK
13784 inherit_abstract_dies (die, cu);
13785
4a811a97
UW
13786 /* If we have a DW_AT_specification, we might need to import using
13787 directives from the context of the specification DIE. See the
13788 comment in determine_prefix. */
13789 if (cu->language == language_cplus
13790 && dwarf2_attr (die, DW_AT_specification, cu))
13791 {
13792 struct dwarf2_cu *spec_cu = cu;
13793 struct die_info *spec_die = die_specification (die, &spec_cu);
13794
13795 while (spec_die)
13796 {
13797 child_die = spec_die->child;
13798 while (child_die && child_die->tag)
13799 {
13800 if (child_die->tag == DW_TAG_imported_module)
13801 process_die (child_die, spec_cu);
13802 child_die = sibling_die (child_die);
13803 }
13804
13805 /* In some cases, GCC generates specification DIEs that
13806 themselves contain DW_AT_specification attributes. */
13807 spec_die = die_specification (spec_die, &spec_cu);
13808 }
13809 }
13810
804d2729 13811 struct context_stack cstk = cu->builder->pop_context ();
c906108c 13812 /* Make a block for the local symbols within. */
804d2729
TT
13813 block = cu->builder->finish_block (cstk.name, cstk.old_blocks,
13814 cstk.static_link, lowpc, highpc);
801e3a5b 13815
df8a16a1 13816 /* For C++, set the block's scope. */
45280282
IB
13817 if ((cu->language == language_cplus
13818 || cu->language == language_fortran
c44af4eb
TT
13819 || cu->language == language_d
13820 || cu->language == language_rust)
4d4ec4e5 13821 && cu->processing_has_namespace_info)
195a3f6c
TT
13822 block_set_scope (block, determine_prefix (die, cu),
13823 &objfile->objfile_obstack);
df8a16a1 13824
801e3a5b
JB
13825 /* If we have address ranges, record them. */
13826 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 13827
a60f3166 13828 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
3e29f34a 13829
34eaf542 13830 /* Attach template arguments to function. */
2f4732b0 13831 if (!template_args.empty ())
34eaf542
TT
13832 {
13833 gdb_assert (templ_func != NULL);
13834
2f4732b0 13835 templ_func->n_template_arguments = template_args.size ();
34eaf542 13836 templ_func->template_arguments
8d749320
SM
13837 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13838 templ_func->n_template_arguments);
34eaf542 13839 memcpy (templ_func->template_arguments,
2f4732b0 13840 template_args.data (),
34eaf542 13841 (templ_func->n_template_arguments * sizeof (struct symbol *)));
3e1d3d8c
TT
13842
13843 /* Make sure that the symtab is set on the new symbols. Even
13844 though they don't appear in this symtab directly, other parts
13845 of gdb assume that symbols do, and this is reasonably
13846 true. */
8634679f 13847 for (symbol *sym : template_args)
3e1d3d8c 13848 symbol_set_symtab (sym, symbol_symtab (templ_func));
34eaf542
TT
13849 }
13850
208d8187
JB
13851 /* In C++, we can have functions nested inside functions (e.g., when
13852 a function declares a class that has methods). This means that
13853 when we finish processing a function scope, we may need to go
13854 back to building a containing block's symbol lists. */
804d2729
TT
13855 *cu->builder->get_local_symbols () = cstk.locals;
13856 cu->builder->set_local_using_directives (cstk.local_using_directives);
208d8187 13857
921e78cf
JB
13858 /* If we've finished processing a top-level function, subsequent
13859 symbols go in the file symbol list. */
804d2729
TT
13860 if (cu->builder->outermost_context_p ())
13861 cu->list_in_scope = cu->builder->get_file_symbols ();
c906108c
SS
13862}
13863
13864/* Process all the DIES contained within a lexical block scope. Start
13865 a new scope, process the dies, and then close the scope. */
13866
13867static void
e7c27a73 13868read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13869{
518817b3 13870 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
3e29f34a 13871 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
13872 CORE_ADDR lowpc, highpc;
13873 struct die_info *child_die;
e142c38c
DJ
13874 CORE_ADDR baseaddr;
13875
13876 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
13877
13878 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
13879 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13880 as multiple lexical blocks? Handling children in a sane way would
6e70227d 13881 be nasty. Might be easier to properly extend generic blocks to
af34e669 13882 describe ranges. */
e385593e
JK
13883 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13884 {
13885 case PC_BOUNDS_NOT_PRESENT:
13886 /* DW_TAG_lexical_block has no attributes, process its children as if
13887 there was no wrapping by that DW_TAG_lexical_block.
13888 GCC does no longer produces such DWARF since GCC r224161. */
13889 for (child_die = die->child;
13890 child_die != NULL && child_die->tag;
13891 child_die = sibling_die (child_die))
13892 process_die (child_die, cu);
13893 return;
13894 case PC_BOUNDS_INVALID:
13895 return;
13896 }
3e29f34a
MR
13897 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13898 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c 13899
804d2729 13900 cu->builder->push_context (0, lowpc);
639d11d3 13901 if (die->child != NULL)
c906108c 13902 {
639d11d3 13903 child_die = die->child;
c906108c
SS
13904 while (child_die && child_die->tag)
13905 {
e7c27a73 13906 process_die (child_die, cu);
c906108c
SS
13907 child_die = sibling_die (child_die);
13908 }
13909 }
3ea89b92 13910 inherit_abstract_dies (die, cu);
804d2729 13911 struct context_stack cstk = cu->builder->pop_context ();
c906108c 13912
804d2729
TT
13913 if (*cu->builder->get_local_symbols () != NULL
13914 || (*cu->builder->get_local_using_directives ()) != NULL)
c906108c 13915 {
801e3a5b 13916 struct block *block
804d2729
TT
13917 = cu->builder->finish_block (0, cstk.old_blocks, NULL,
13918 cstk.start_addr, highpc);
801e3a5b
JB
13919
13920 /* Note that recording ranges after traversing children, as we
13921 do here, means that recording a parent's ranges entails
13922 walking across all its children's ranges as they appear in
13923 the address map, which is quadratic behavior.
13924
13925 It would be nicer to record the parent's ranges before
13926 traversing its children, simply overriding whatever you find
13927 there. But since we don't even decide whether to create a
13928 block until after we've traversed its children, that's hard
13929 to do. */
13930 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c 13931 }
804d2729
TT
13932 *cu->builder->get_local_symbols () = cstk.locals;
13933 cu->builder->set_local_using_directives (cstk.local_using_directives);
c906108c
SS
13934}
13935
216f72a1 13936/* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
96408a79
SA
13937
13938static void
13939read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13940{
518817b3 13941 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
96408a79
SA
13942 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13943 CORE_ADDR pc, baseaddr;
13944 struct attribute *attr;
13945 struct call_site *call_site, call_site_local;
13946 void **slot;
13947 int nparams;
13948 struct die_info *child_die;
13949
13950 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13951
216f72a1
JK
13952 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13953 if (attr == NULL)
13954 {
13955 /* This was a pre-DWARF-5 GNU extension alias
13956 for DW_AT_call_return_pc. */
13957 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13958 }
96408a79
SA
13959 if (!attr)
13960 {
b98664d3 13961 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
9d8780f0
SM
13962 "DIE %s [in module %s]"),
13963 sect_offset_str (die->sect_off), objfile_name (objfile));
96408a79
SA
13964 return;
13965 }
31aa7e4e 13966 pc = attr_value_as_address (attr) + baseaddr;
3e29f34a 13967 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
96408a79
SA
13968
13969 if (cu->call_site_htab == NULL)
13970 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13971 NULL, &objfile->objfile_obstack,
13972 hashtab_obstack_allocate, NULL);
13973 call_site_local.pc = pc;
13974 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13975 if (*slot != NULL)
13976 {
b98664d3 13977 complaint (_("Duplicate PC %s for DW_TAG_call_site "
9d8780f0
SM
13978 "DIE %s [in module %s]"),
13979 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
4262abfb 13980 objfile_name (objfile));
96408a79
SA
13981 return;
13982 }
13983
13984 /* Count parameters at the caller. */
13985
13986 nparams = 0;
13987 for (child_die = die->child; child_die && child_die->tag;
13988 child_die = sibling_die (child_die))
13989 {
216f72a1
JK
13990 if (child_die->tag != DW_TAG_call_site_parameter
13991 && child_die->tag != DW_TAG_GNU_call_site_parameter)
96408a79 13992 {
b98664d3 13993 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
9d8780f0
SM
13994 "DW_TAG_call_site child DIE %s [in module %s]"),
13995 child_die->tag, sect_offset_str (child_die->sect_off),
4262abfb 13996 objfile_name (objfile));
96408a79
SA
13997 continue;
13998 }
13999
14000 nparams++;
14001 }
14002
224c3ddb
SM
14003 call_site
14004 = ((struct call_site *)
14005 obstack_alloc (&objfile->objfile_obstack,
14006 sizeof (*call_site)
14007 + (sizeof (*call_site->parameter) * (nparams - 1))));
96408a79
SA
14008 *slot = call_site;
14009 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14010 call_site->pc = pc;
14011
216f72a1
JK
14012 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14013 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
96408a79
SA
14014 {
14015 struct die_info *func_die;
14016
14017 /* Skip also over DW_TAG_inlined_subroutine. */
14018 for (func_die = die->parent;
14019 func_die && func_die->tag != DW_TAG_subprogram
14020 && func_die->tag != DW_TAG_subroutine_type;
14021 func_die = func_die->parent);
14022
216f72a1
JK
14023 /* DW_AT_call_all_calls is a superset
14024 of DW_AT_call_all_tail_calls. */
96408a79 14025 if (func_die
216f72a1 14026 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
96408a79 14027 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
216f72a1 14028 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
96408a79
SA
14029 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14030 {
14031 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14032 not complete. But keep CALL_SITE for look ups via call_site_htab,
14033 both the initial caller containing the real return address PC and
14034 the final callee containing the current PC of a chain of tail
14035 calls do not need to have the tail call list complete. But any
14036 function candidate for a virtual tail call frame searched via
14037 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14038 determined unambiguously. */
14039 }
14040 else
14041 {
14042 struct type *func_type = NULL;
14043
14044 if (func_die)
14045 func_type = get_die_type (func_die, cu);
14046 if (func_type != NULL)
14047 {
14048 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14049
14050 /* Enlist this call site to the function. */
14051 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14052 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14053 }
14054 else
b98664d3 14055 complaint (_("Cannot find function owning DW_TAG_call_site "
9d8780f0
SM
14056 "DIE %s [in module %s]"),
14057 sect_offset_str (die->sect_off), objfile_name (objfile));
96408a79
SA
14058 }
14059 }
14060
216f72a1
JK
14061 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14062 if (attr == NULL)
14063 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14064 if (attr == NULL)
14065 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
96408a79 14066 if (attr == NULL)
216f72a1
JK
14067 {
14068 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14069 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14070 }
96408a79
SA
14071 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14072 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14073 /* Keep NULL DWARF_BLOCK. */;
14074 else if (attr_form_is_block (attr))
14075 {
14076 struct dwarf2_locexpr_baton *dlbaton;
14077
8d749320 14078 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
96408a79
SA
14079 dlbaton->data = DW_BLOCK (attr)->data;
14080 dlbaton->size = DW_BLOCK (attr)->size;
14081 dlbaton->per_cu = cu->per_cu;
14082
14083 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14084 }
7771576e 14085 else if (attr_form_is_ref (attr))
96408a79 14086 {
96408a79
SA
14087 struct dwarf2_cu *target_cu = cu;
14088 struct die_info *target_die;
14089
ac9ec31b 14090 target_die = follow_die_ref (die, attr, &target_cu);
518817b3 14091 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
96408a79
SA
14092 if (die_is_declaration (target_die, target_cu))
14093 {
7d45c7c3 14094 const char *target_physname;
9112db09
JK
14095
14096 /* Prefer the mangled name; otherwise compute the demangled one. */
73b9be8b 14097 target_physname = dw2_linkage_name (target_die, target_cu);
7d45c7c3 14098 if (target_physname == NULL)
9112db09 14099 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79 14100 if (target_physname == NULL)
b98664d3 14101 complaint (_("DW_AT_call_target target DIE has invalid "
9d8780f0
SM
14102 "physname, for referencing DIE %s [in module %s]"),
14103 sect_offset_str (die->sect_off), objfile_name (objfile));
96408a79 14104 else
7d455152 14105 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
14106 }
14107 else
14108 {
14109 CORE_ADDR lowpc;
14110
14111 /* DW_AT_entry_pc should be preferred. */
3a2b436a 14112 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
e385593e 14113 <= PC_BOUNDS_INVALID)
b98664d3 14114 complaint (_("DW_AT_call_target target DIE has invalid "
9d8780f0
SM
14115 "low pc, for referencing DIE %s [in module %s]"),
14116 sect_offset_str (die->sect_off), objfile_name (objfile));
96408a79 14117 else
3e29f34a
MR
14118 {
14119 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14120 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14121 }
96408a79
SA
14122 }
14123 }
14124 else
b98664d3 14125 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
9d8780f0
SM
14126 "block nor reference, for DIE %s [in module %s]"),
14127 sect_offset_str (die->sect_off), objfile_name (objfile));
96408a79
SA
14128
14129 call_site->per_cu = cu->per_cu;
14130
14131 for (child_die = die->child;
14132 child_die && child_die->tag;
14133 child_die = sibling_die (child_die))
14134 {
96408a79 14135 struct call_site_parameter *parameter;
1788b2d3 14136 struct attribute *loc, *origin;
96408a79 14137
216f72a1
JK
14138 if (child_die->tag != DW_TAG_call_site_parameter
14139 && child_die->tag != DW_TAG_GNU_call_site_parameter)
96408a79
SA
14140 {
14141 /* Already printed the complaint above. */
14142 continue;
14143 }
14144
14145 gdb_assert (call_site->parameter_count < nparams);
14146 parameter = &call_site->parameter[call_site->parameter_count];
14147
1788b2d3
JK
14148 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14149 specifies DW_TAG_formal_parameter. Value of the data assumed for the
216f72a1 14150 register is contained in DW_AT_call_value. */
96408a79 14151
24c5c679 14152 loc = dwarf2_attr (child_die, DW_AT_location, cu);
216f72a1
JK
14153 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14154 if (origin == NULL)
14155 {
14156 /* This was a pre-DWARF-5 GNU extension alias
14157 for DW_AT_call_parameter. */
14158 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14159 }
7771576e 14160 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3 14161 {
1788b2d3 14162 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
9c541725
PA
14163
14164 sect_offset sect_off
14165 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14166 if (!offset_in_cu_p (&cu->header, sect_off))
d76b7dbc
JK
14167 {
14168 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14169 binding can be done only inside one CU. Such referenced DIE
14170 therefore cannot be even moved to DW_TAG_partial_unit. */
b98664d3 14171 complaint (_("DW_AT_call_parameter offset is not in CU for "
9d8780f0
SM
14172 "DW_TAG_call_site child DIE %s [in module %s]"),
14173 sect_offset_str (child_die->sect_off),
9c541725 14174 objfile_name (objfile));
d76b7dbc
JK
14175 continue;
14176 }
9c541725
PA
14177 parameter->u.param_cu_off
14178 = (cu_offset) (sect_off - cu->header.sect_off);
1788b2d3
JK
14179 }
14180 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79 14181 {
b98664d3 14182 complaint (_("No DW_FORM_block* DW_AT_location for "
9d8780f0
SM
14183 "DW_TAG_call_site child DIE %s [in module %s]"),
14184 sect_offset_str (child_die->sect_off), objfile_name (objfile));
96408a79
SA
14185 continue;
14186 }
24c5c679 14187 else
96408a79 14188 {
24c5c679
JK
14189 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14190 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14191 if (parameter->u.dwarf_reg != -1)
14192 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14193 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14194 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14195 &parameter->u.fb_offset))
14196 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14197 else
14198 {
b98664d3 14199 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
24c5c679 14200 "for DW_FORM_block* DW_AT_location is supported for "
9d8780f0 14201 "DW_TAG_call_site child DIE %s "
24c5c679 14202 "[in module %s]"),
9d8780f0 14203 sect_offset_str (child_die->sect_off),
9c541725 14204 objfile_name (objfile));
24c5c679
JK
14205 continue;
14206 }
96408a79
SA
14207 }
14208
216f72a1
JK
14209 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14210 if (attr == NULL)
14211 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
96408a79
SA
14212 if (!attr_form_is_block (attr))
14213 {
b98664d3 14214 complaint (_("No DW_FORM_block* DW_AT_call_value for "
9d8780f0
SM
14215 "DW_TAG_call_site child DIE %s [in module %s]"),
14216 sect_offset_str (child_die->sect_off),
9c541725 14217 objfile_name (objfile));
96408a79
SA
14218 continue;
14219 }
14220 parameter->value = DW_BLOCK (attr)->data;
14221 parameter->value_size = DW_BLOCK (attr)->size;
14222
14223 /* Parameters are not pre-cleared by memset above. */
14224 parameter->data_value = NULL;
14225 parameter->data_value_size = 0;
14226 call_site->parameter_count++;
14227
216f72a1
JK
14228 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14229 if (attr == NULL)
14230 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
96408a79
SA
14231 if (attr)
14232 {
14233 if (!attr_form_is_block (attr))
b98664d3 14234 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
9d8780f0
SM
14235 "DW_TAG_call_site child DIE %s [in module %s]"),
14236 sect_offset_str (child_die->sect_off),
9c541725 14237 objfile_name (objfile));
96408a79
SA
14238 else
14239 {
14240 parameter->data_value = DW_BLOCK (attr)->data;
14241 parameter->data_value_size = DW_BLOCK (attr)->size;
14242 }
14243 }
14244 }
14245}
14246
71a3c369
TT
14247/* Helper function for read_variable. If DIE represents a virtual
14248 table, then return the type of the concrete object that is
14249 associated with the virtual table. Otherwise, return NULL. */
14250
14251static struct type *
14252rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14253{
14254 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14255 if (attr == NULL)
14256 return NULL;
14257
14258 /* Find the type DIE. */
14259 struct die_info *type_die = NULL;
14260 struct dwarf2_cu *type_cu = cu;
14261
14262 if (attr_form_is_ref (attr))
14263 type_die = follow_die_ref (die, attr, &type_cu);
14264 if (type_die == NULL)
14265 return NULL;
14266
14267 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14268 return NULL;
14269 return die_containing_type (type_die, type_cu);
14270}
14271
14272/* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14273
14274static void
14275read_variable (struct die_info *die, struct dwarf2_cu *cu)
14276{
14277 struct rust_vtable_symbol *storage = NULL;
14278
14279 if (cu->language == language_rust)
14280 {
14281 struct type *containing_type = rust_containing_type (die, cu);
14282
14283 if (containing_type != NULL)
14284 {
518817b3 14285 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
71a3c369
TT
14286
14287 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14288 struct rust_vtable_symbol);
14289 initialize_objfile_symbol (storage);
14290 storage->concrete_type = containing_type;
cf724bc9 14291 storage->subclass = SYMBOL_RUST_VTABLE;
71a3c369
TT
14292 }
14293 }
14294
e4a62c65
TV
14295 struct symbol *res = new_symbol (die, NULL, cu, storage);
14296 struct attribute *abstract_origin
14297 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14298 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14299 if (res == NULL && loc && abstract_origin)
14300 {
14301 /* We have a variable without a name, but with a location and an abstract
14302 origin. This may be a concrete instance of an abstract variable
14303 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14304 later. */
14305 struct dwarf2_cu *origin_cu = cu;
14306 struct die_info *origin_die
14307 = follow_die_ref (die, abstract_origin, &origin_cu);
14308 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14309 dpo->abstract_to_concrete[origin_die].push_back (die);
14310 }
71a3c369
TT
14311}
14312
43988095
JK
14313/* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14314 reading .debug_rnglists.
14315 Callback's type should be:
14316 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14317 Return true if the attributes are present and valid, otherwise,
14318 return false. */
14319
14320template <typename Callback>
14321static bool
14322dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14323 Callback &&callback)
14324{
ed2dc618 14325 struct dwarf2_per_objfile *dwarf2_per_objfile
518817b3 14326 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 14327 struct objfile *objfile = dwarf2_per_objfile->objfile;
43988095 14328 bfd *obfd = objfile->obfd;
43988095
JK
14329 /* Base address selection entry. */
14330 CORE_ADDR base;
14331 int found_base;
43988095 14332 const gdb_byte *buffer;
43988095
JK
14333 CORE_ADDR baseaddr;
14334 bool overflow = false;
14335
14336 found_base = cu->base_known;
14337 base = cu->base_address;
14338
14339 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14340 if (offset >= dwarf2_per_objfile->rnglists.size)
14341 {
b98664d3 14342 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
43988095
JK
14343 offset);
14344 return false;
14345 }
14346 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14347
14348 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14349
14350 while (1)
14351 {
7814882a
JK
14352 /* Initialize it due to a false compiler warning. */
14353 CORE_ADDR range_beginning = 0, range_end = 0;
43988095
JK
14354 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14355 + dwarf2_per_objfile->rnglists.size);
14356 unsigned int bytes_read;
14357
14358 if (buffer == buf_end)
14359 {
14360 overflow = true;
14361 break;
14362 }
14363 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14364 switch (rlet)
14365 {
14366 case DW_RLE_end_of_list:
14367 break;
14368 case DW_RLE_base_address:
14369 if (buffer + cu->header.addr_size > buf_end)
14370 {
14371 overflow = true;
14372 break;
14373 }
14374 base = read_address (obfd, buffer, cu, &bytes_read);
14375 found_base = 1;
14376 buffer += bytes_read;
14377 break;
14378 case DW_RLE_start_length:
14379 if (buffer + cu->header.addr_size > buf_end)
14380 {
14381 overflow = true;
14382 break;
14383 }
14384 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14385 buffer += bytes_read;
14386 range_end = (range_beginning
14387 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14388 buffer += bytes_read;
14389 if (buffer > buf_end)
14390 {
14391 overflow = true;
14392 break;
14393 }
14394 break;
14395 case DW_RLE_offset_pair:
14396 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14397 buffer += bytes_read;
14398 if (buffer > buf_end)
14399 {
14400 overflow = true;
14401 break;
14402 }
14403 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14404 buffer += bytes_read;
14405 if (buffer > buf_end)
14406 {
14407 overflow = true;
14408 break;
14409 }
14410 break;
14411 case DW_RLE_start_end:
14412 if (buffer + 2 * cu->header.addr_size > buf_end)
14413 {
14414 overflow = true;
14415 break;
14416 }
14417 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14418 buffer += bytes_read;
14419 range_end = read_address (obfd, buffer, cu, &bytes_read);
14420 buffer += bytes_read;
14421 break;
14422 default:
b98664d3 14423 complaint (_("Invalid .debug_rnglists data (no base address)"));
43988095
JK
14424 return false;
14425 }
14426 if (rlet == DW_RLE_end_of_list || overflow)
14427 break;
14428 if (rlet == DW_RLE_base_address)
14429 continue;
14430
14431 if (!found_base)
14432 {
14433 /* We have no valid base address for the ranges
14434 data. */
b98664d3 14435 complaint (_("Invalid .debug_rnglists data (no base address)"));
43988095
JK
14436 return false;
14437 }
14438
14439 if (range_beginning > range_end)
14440 {
14441 /* Inverted range entries are invalid. */
b98664d3 14442 complaint (_("Invalid .debug_rnglists data (inverted range)"));
43988095
JK
14443 return false;
14444 }
14445
14446 /* Empty range entries have no effect. */
14447 if (range_beginning == range_end)
14448 continue;
14449
14450 range_beginning += base;
14451 range_end += base;
14452
14453 /* A not-uncommon case of bad debug info.
14454 Don't pollute the addrmap with bad data. */
14455 if (range_beginning + baseaddr == 0
14456 && !dwarf2_per_objfile->has_section_at_zero)
14457 {
b98664d3 14458 complaint (_(".debug_rnglists entry has start address of zero"
43988095
JK
14459 " [in module %s]"), objfile_name (objfile));
14460 continue;
14461 }
14462
14463 callback (range_beginning, range_end);
14464 }
14465
14466 if (overflow)
14467 {
b98664d3 14468 complaint (_("Offset %d is not terminated "
43988095
JK
14469 "for DW_AT_ranges attribute"),
14470 offset);
14471 return false;
14472 }
14473
14474 return true;
14475}
14476
14477/* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14478 Callback's type should be:
14479 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
5f46c5a5 14480 Return 1 if the attributes are present and valid, otherwise, return 0. */
43039443 14481
43988095 14482template <typename Callback>
43039443 14483static int
5f46c5a5 14484dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
43988095 14485 Callback &&callback)
43039443 14486{
ed2dc618 14487 struct dwarf2_per_objfile *dwarf2_per_objfile
518817b3 14488 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 14489 struct objfile *objfile = dwarf2_per_objfile->objfile;
43039443
JK
14490 struct comp_unit_head *cu_header = &cu->header;
14491 bfd *obfd = objfile->obfd;
14492 unsigned int addr_size = cu_header->addr_size;
14493 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14494 /* Base address selection entry. */
14495 CORE_ADDR base;
14496 int found_base;
14497 unsigned int dummy;
d521ce57 14498 const gdb_byte *buffer;
ff013f42 14499 CORE_ADDR baseaddr;
43039443 14500
43988095
JK
14501 if (cu_header->version >= 5)
14502 return dwarf2_rnglists_process (offset, cu, callback);
14503
d00adf39
DE
14504 found_base = cu->base_known;
14505 base = cu->base_address;
43039443 14506
be391dca 14507 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 14508 if (offset >= dwarf2_per_objfile->ranges.size)
43039443 14509 {
b98664d3 14510 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
43039443
JK
14511 offset);
14512 return 0;
14513 }
dce234bc 14514 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443 14515
e7030f15 14516 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 14517
43039443
JK
14518 while (1)
14519 {
14520 CORE_ADDR range_beginning, range_end;
14521
14522 range_beginning = read_address (obfd, buffer, cu, &dummy);
14523 buffer += addr_size;
14524 range_end = read_address (obfd, buffer, cu, &dummy);
14525 buffer += addr_size;
14526 offset += 2 * addr_size;
14527
14528 /* An end of list marker is a pair of zero addresses. */
14529 if (range_beginning == 0 && range_end == 0)
14530 /* Found the end of list entry. */
14531 break;
14532
14533 /* Each base address selection entry is a pair of 2 values.
14534 The first is the largest possible address, the second is
14535 the base address. Check for a base address here. */
14536 if ((range_beginning & mask) == mask)
14537 {
28d2bfb9
AB
14538 /* If we found the largest possible address, then we already
14539 have the base address in range_end. */
14540 base = range_end;
43039443
JK
14541 found_base = 1;
14542 continue;
14543 }
14544
14545 if (!found_base)
14546 {
14547 /* We have no valid base address for the ranges
14548 data. */
b98664d3 14549 complaint (_("Invalid .debug_ranges data (no base address)"));
43039443
JK
14550 return 0;
14551 }
14552
9277c30c
UW
14553 if (range_beginning > range_end)
14554 {
14555 /* Inverted range entries are invalid. */
b98664d3 14556 complaint (_("Invalid .debug_ranges data (inverted range)"));
9277c30c
UW
14557 return 0;
14558 }
14559
14560 /* Empty range entries have no effect. */
14561 if (range_beginning == range_end)
14562 continue;
14563
43039443
JK
14564 range_beginning += base;
14565 range_end += base;
14566
01093045
DE
14567 /* A not-uncommon case of bad debug info.
14568 Don't pollute the addrmap with bad data. */
14569 if (range_beginning + baseaddr == 0
14570 && !dwarf2_per_objfile->has_section_at_zero)
14571 {
b98664d3 14572 complaint (_(".debug_ranges entry has start address of zero"
4262abfb 14573 " [in module %s]"), objfile_name (objfile));
01093045
DE
14574 continue;
14575 }
14576
5f46c5a5
JK
14577 callback (range_beginning, range_end);
14578 }
14579
14580 return 1;
14581}
14582
14583/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14584 Return 1 if the attributes are present and valid, otherwise, return 0.
14585 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14586
14587static int
14588dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14589 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14590 struct partial_symtab *ranges_pst)
14591{
518817b3 14592 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
5f46c5a5
JK
14593 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14594 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14595 SECT_OFF_TEXT (objfile));
14596 int low_set = 0;
14597 CORE_ADDR low = 0;
14598 CORE_ADDR high = 0;
14599 int retval;
14600
14601 retval = dwarf2_ranges_process (offset, cu,
14602 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14603 {
9277c30c 14604 if (ranges_pst != NULL)
3e29f34a
MR
14605 {
14606 CORE_ADDR lowpc;
14607 CORE_ADDR highpc;
14608
79748972
TT
14609 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14610 range_beginning + baseaddr)
14611 - baseaddr);
14612 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14613 range_end + baseaddr)
14614 - baseaddr);
3e29f34a
MR
14615 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
14616 ranges_pst);
14617 }
ff013f42 14618
43039443
JK
14619 /* FIXME: This is recording everything as a low-high
14620 segment of consecutive addresses. We should have a
14621 data structure for discontiguous block ranges
14622 instead. */
14623 if (! low_set)
14624 {
14625 low = range_beginning;
14626 high = range_end;
14627 low_set = 1;
14628 }
14629 else
14630 {
14631 if (range_beginning < low)
14632 low = range_beginning;
14633 if (range_end > high)
14634 high = range_end;
14635 }
5f46c5a5
JK
14636 });
14637 if (!retval)
14638 return 0;
43039443
JK
14639
14640 if (! low_set)
14641 /* If the first entry is an end-of-list marker, the range
14642 describes an empty scope, i.e. no instructions. */
14643 return 0;
14644
14645 if (low_return)
14646 *low_return = low;
14647 if (high_return)
14648 *high_return = high;
14649 return 1;
14650}
14651
3a2b436a
JK
14652/* Get low and high pc attributes from a die. See enum pc_bounds_kind
14653 definition for the return value. *LOWPC and *HIGHPC are set iff
e385593e 14654 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
380bca97 14655
3a2b436a 14656static enum pc_bounds_kind
af34e669 14657dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
14658 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14659 struct partial_symtab *pst)
c906108c 14660{
518817b3
SM
14661 struct dwarf2_per_objfile *dwarf2_per_objfile
14662 = cu->per_cu->dwarf2_per_objfile;
c906108c 14663 struct attribute *attr;
91da1414 14664 struct attribute *attr_high;
af34e669
DJ
14665 CORE_ADDR low = 0;
14666 CORE_ADDR high = 0;
e385593e 14667 enum pc_bounds_kind ret;
c906108c 14668
91da1414
MW
14669 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14670 if (attr_high)
af34e669 14671 {
e142c38c 14672 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 14673 if (attr)
91da1414 14674 {
31aa7e4e
JB
14675 low = attr_value_as_address (attr);
14676 high = attr_value_as_address (attr_high);
14677 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14678 high += low;
91da1414 14679 }
af34e669
DJ
14680 else
14681 /* Found high w/o low attribute. */
e385593e 14682 return PC_BOUNDS_INVALID;
af34e669
DJ
14683
14684 /* Found consecutive range of addresses. */
3a2b436a 14685 ret = PC_BOUNDS_HIGH_LOW;
af34e669 14686 }
c906108c 14687 else
af34e669 14688 {
e142c38c 14689 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
14690 if (attr != NULL)
14691 {
ab435259
DE
14692 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14693 We take advantage of the fact that DW_AT_ranges does not appear
14694 in DW_TAG_compile_unit of DWO files. */
14695 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14696 unsigned int ranges_offset = (DW_UNSND (attr)
14697 + (need_ranges_base
14698 ? cu->ranges_base
14699 : 0));
2e3cf129 14700
af34e669 14701 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 14702 .debug_ranges section. */
2e3cf129 14703 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
e385593e 14704 return PC_BOUNDS_INVALID;
43039443 14705 /* Found discontinuous range of addresses. */
3a2b436a 14706 ret = PC_BOUNDS_RANGES;
af34e669 14707 }
e385593e
JK
14708 else
14709 return PC_BOUNDS_NOT_PRESENT;
af34e669 14710 }
c906108c 14711
48fbe735 14712 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
9373cf26 14713 if (high <= low)
e385593e 14714 return PC_BOUNDS_INVALID;
c906108c
SS
14715
14716 /* When using the GNU linker, .gnu.linkonce. sections are used to
14717 eliminate duplicate copies of functions and vtables and such.
14718 The linker will arbitrarily choose one and discard the others.
14719 The AT_*_pc values for such functions refer to local labels in
14720 these sections. If the section from that file was discarded, the
14721 labels are not in the output, so the relocs get a value of 0.
14722 If this is a discarded function, mark the pc bounds as invalid,
14723 so that GDB will ignore it. */
72dca2f5 14724 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
e385593e 14725 return PC_BOUNDS_INVALID;
c906108c
SS
14726
14727 *lowpc = low;
96408a79
SA
14728 if (highpc)
14729 *highpc = high;
af34e669 14730 return ret;
c906108c
SS
14731}
14732
b084d499
JB
14733/* Assuming that DIE represents a subprogram DIE or a lexical block, get
14734 its low and high PC addresses. Do nothing if these addresses could not
14735 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14736 and HIGHPC to the high address if greater than HIGHPC. */
14737
14738static void
14739dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14740 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14741 struct dwarf2_cu *cu)
14742{
14743 CORE_ADDR low, high;
14744 struct die_info *child = die->child;
14745
e385593e 14746 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
b084d499 14747 {
325fac50
PA
14748 *lowpc = std::min (*lowpc, low);
14749 *highpc = std::max (*highpc, high);
b084d499
JB
14750 }
14751
14752 /* If the language does not allow nested subprograms (either inside
14753 subprograms or lexical blocks), we're done. */
14754 if (cu->language != language_ada)
14755 return;
6e70227d 14756
b084d499
JB
14757 /* Check all the children of the given DIE. If it contains nested
14758 subprograms, then check their pc bounds. Likewise, we need to
14759 check lexical blocks as well, as they may also contain subprogram
14760 definitions. */
14761 while (child && child->tag)
14762 {
14763 if (child->tag == DW_TAG_subprogram
14764 || child->tag == DW_TAG_lexical_block)
14765 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14766 child = sibling_die (child);
14767 }
14768}
14769
fae299cd
DC
14770/* Get the low and high pc's represented by the scope DIE, and store
14771 them in *LOWPC and *HIGHPC. If the correct values can't be
14772 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14773
14774static void
14775get_scope_pc_bounds (struct die_info *die,
14776 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14777 struct dwarf2_cu *cu)
14778{
14779 CORE_ADDR best_low = (CORE_ADDR) -1;
14780 CORE_ADDR best_high = (CORE_ADDR) 0;
14781 CORE_ADDR current_low, current_high;
14782
3a2b436a 14783 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
e385593e 14784 >= PC_BOUNDS_RANGES)
fae299cd
DC
14785 {
14786 best_low = current_low;
14787 best_high = current_high;
14788 }
14789 else
14790 {
14791 struct die_info *child = die->child;
14792
14793 while (child && child->tag)
14794 {
14795 switch (child->tag) {
14796 case DW_TAG_subprogram:
b084d499 14797 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
14798 break;
14799 case DW_TAG_namespace:
f55ee35c 14800 case DW_TAG_module:
fae299cd
DC
14801 /* FIXME: carlton/2004-01-16: Should we do this for
14802 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14803 that current GCC's always emit the DIEs corresponding
14804 to definitions of methods of classes as children of a
14805 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14806 the DIEs giving the declarations, which could be
14807 anywhere). But I don't see any reason why the
14808 standards says that they have to be there. */
14809 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14810
14811 if (current_low != ((CORE_ADDR) -1))
14812 {
325fac50
PA
14813 best_low = std::min (best_low, current_low);
14814 best_high = std::max (best_high, current_high);
fae299cd
DC
14815 }
14816 break;
14817 default:
0963b4bd 14818 /* Ignore. */
fae299cd
DC
14819 break;
14820 }
14821
14822 child = sibling_die (child);
14823 }
14824 }
14825
14826 *lowpc = best_low;
14827 *highpc = best_high;
14828}
14829
801e3a5b
JB
14830/* Record the address ranges for BLOCK, offset by BASEADDR, as given
14831 in DIE. */
380bca97 14832
801e3a5b
JB
14833static void
14834dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14835 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14836{
518817b3 14837 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
3e29f34a 14838 struct gdbarch *gdbarch = get_objfile_arch (objfile);
801e3a5b 14839 struct attribute *attr;
91da1414 14840 struct attribute *attr_high;
801e3a5b 14841
91da1414
MW
14842 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14843 if (attr_high)
801e3a5b 14844 {
801e3a5b
JB
14845 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14846 if (attr)
14847 {
31aa7e4e
JB
14848 CORE_ADDR low = attr_value_as_address (attr);
14849 CORE_ADDR high = attr_value_as_address (attr_high);
14850
14851 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14852 high += low;
9a619af0 14853
3e29f34a
MR
14854 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14855 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
804d2729 14856 cu->builder->record_block_range (block, low, high - 1);
801e3a5b
JB
14857 }
14858 }
14859
14860 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14861 if (attr)
14862 {
ab435259
DE
14863 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14864 We take advantage of the fact that DW_AT_ranges does not appear
14865 in DW_TAG_compile_unit of DWO files. */
14866 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
14867
14868 /* The value of the DW_AT_ranges attribute is the offset of the
14869 address range list in the .debug_ranges section. */
ab435259
DE
14870 unsigned long offset = (DW_UNSND (attr)
14871 + (need_ranges_base ? cu->ranges_base : 0));
801e3a5b 14872
2d5f09ec 14873 std::vector<blockrange> blockvec;
5f46c5a5
JK
14874 dwarf2_ranges_process (offset, cu,
14875 [&] (CORE_ADDR start, CORE_ADDR end)
14876 {
58fdfd2c
JK
14877 start += baseaddr;
14878 end += baseaddr;
5f46c5a5
JK
14879 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14880 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
804d2729 14881 cu->builder->record_block_range (block, start, end - 1);
2d5f09ec 14882 blockvec.emplace_back (start, end);
5f46c5a5 14883 });
2d5f09ec
KB
14884
14885 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
801e3a5b
JB
14886 }
14887}
14888
685b1105
JK
14889/* Check whether the producer field indicates either of GCC < 4.6, or the
14890 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 14891
685b1105
JK
14892static void
14893check_producer (struct dwarf2_cu *cu)
60d5a603 14894{
38360086 14895 int major, minor;
60d5a603
JK
14896
14897 if (cu->producer == NULL)
14898 {
14899 /* For unknown compilers expect their behavior is DWARF version
14900 compliant.
14901
14902 GCC started to support .debug_types sections by -gdwarf-4 since
14903 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14904 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14905 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14906 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 14907 }
b1ffba5a 14908 else if (producer_is_gcc (cu->producer, &major, &minor))
60d5a603 14909 {
38360086
MW
14910 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14911 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
685b1105 14912 }
5230b05a 14913 else if (producer_is_icc (cu->producer, &major, &minor))
eb77c9df
AB
14914 {
14915 cu->producer_is_icc = true;
14916 cu->producer_is_icc_lt_14 = major < 14;
14917 }
c258c396
JD
14918 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14919 cu->producer_is_codewarrior = true;
685b1105
JK
14920 else
14921 {
14922 /* For other non-GCC compilers, expect their behavior is DWARF version
14923 compliant. */
60d5a603
JK
14924 }
14925
ba919b58 14926 cu->checked_producer = 1;
685b1105 14927}
ba919b58 14928
685b1105
JK
14929/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14930 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14931 during 4.6.0 experimental. */
14932
14933static int
14934producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14935{
14936 if (!cu->checked_producer)
14937 check_producer (cu);
14938
14939 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
14940}
14941
c258c396
JD
14942
14943/* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14944 with incorrect is_stmt attributes. */
14945
14946static bool
14947producer_is_codewarrior (struct dwarf2_cu *cu)
14948{
14949 if (!cu->checked_producer)
14950 check_producer (cu);
14951
14952 return cu->producer_is_codewarrior;
14953}
14954
60d5a603
JK
14955/* Return the default accessibility type if it is not overriden by
14956 DW_AT_accessibility. */
14957
14958static enum dwarf_access_attribute
14959dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14960{
14961 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14962 {
14963 /* The default DWARF 2 accessibility for members is public, the default
14964 accessibility for inheritance is private. */
14965
14966 if (die->tag != DW_TAG_inheritance)
14967 return DW_ACCESS_public;
14968 else
14969 return DW_ACCESS_private;
14970 }
14971 else
14972 {
14973 /* DWARF 3+ defines the default accessibility a different way. The same
14974 rules apply now for DW_TAG_inheritance as for the members and it only
14975 depends on the container kind. */
14976
14977 if (die->parent->tag == DW_TAG_class_type)
14978 return DW_ACCESS_private;
14979 else
14980 return DW_ACCESS_public;
14981 }
14982}
14983
74ac6d43
TT
14984/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14985 offset. If the attribute was not found return 0, otherwise return
14986 1. If it was found but could not properly be handled, set *OFFSET
14987 to 0. */
14988
14989static int
14990handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14991 LONGEST *offset)
14992{
14993 struct attribute *attr;
14994
14995 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14996 if (attr != NULL)
14997 {
14998 *offset = 0;
14999
15000 /* Note that we do not check for a section offset first here.
15001 This is because DW_AT_data_member_location is new in DWARF 4,
15002 so if we see it, we can assume that a constant form is really
15003 a constant and not a section offset. */
15004 if (attr_form_is_constant (attr))
15005 *offset = dwarf2_get_attr_constant_value (attr, 0);
15006 else if (attr_form_is_section_offset (attr))
15007 dwarf2_complex_location_expr_complaint ();
15008 else if (attr_form_is_block (attr))
15009 *offset = decode_locdesc (DW_BLOCK (attr), cu);
15010 else
15011 dwarf2_complex_location_expr_complaint ();
15012
15013 return 1;
15014 }
15015
15016 return 0;
15017}
15018
c906108c
SS
15019/* Add an aggregate field to the field list. */
15020
15021static void
107d2387 15022dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 15023 struct dwarf2_cu *cu)
6e70227d 15024{
518817b3 15025 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
5e2b427d 15026 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
15027 struct nextfield *new_field;
15028 struct attribute *attr;
15029 struct field *fp;
15d034d0 15030 const char *fieldname = "";
c906108c 15031
7d0ccb61
DJ
15032 if (die->tag == DW_TAG_inheritance)
15033 {
be2daae6
TT
15034 fip->baseclasses.emplace_back ();
15035 new_field = &fip->baseclasses.back ();
7d0ccb61
DJ
15036 }
15037 else
15038 {
be2daae6
TT
15039 fip->fields.emplace_back ();
15040 new_field = &fip->fields.back ();
7d0ccb61 15041 }
be2daae6 15042
c906108c
SS
15043 fip->nfields++;
15044
e142c38c 15045 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
15046 if (attr)
15047 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
15048 else
15049 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
15050 if (new_field->accessibility != DW_ACCESS_public)
15051 fip->non_public_fields = 1;
60d5a603 15052
e142c38c 15053 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
15054 if (attr)
15055 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
15056 else
15057 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
15058
15059 fp = &new_field->field;
a9a9bd0f 15060
e142c38c 15061 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 15062 {
74ac6d43
TT
15063 LONGEST offset;
15064
a9a9bd0f 15065 /* Data member other than a C++ static data member. */
6e70227d 15066
c906108c 15067 /* Get type of field. */
e7c27a73 15068 fp->type = die_type (die, cu);
c906108c 15069
d6a843b5 15070 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 15071
c906108c 15072 /* Get bit size of field (zero if none). */
e142c38c 15073 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
15074 if (attr)
15075 {
15076 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15077 }
15078 else
15079 {
15080 FIELD_BITSIZE (*fp) = 0;
15081 }
15082
15083 /* Get bit offset of field. */
74ac6d43
TT
15084 if (handle_data_member_location (die, cu, &offset))
15085 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 15086 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
15087 if (attr)
15088 {
5e2b427d 15089 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
15090 {
15091 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
15092 additional bit offset from the MSB of the containing
15093 anonymous object to the MSB of the field. We don't
15094 have to do anything special since we don't need to
15095 know the size of the anonymous object. */
f41f5e61 15096 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
15097 }
15098 else
15099 {
15100 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
15101 MSB of the anonymous object, subtract off the number of
15102 bits from the MSB of the field to the MSB of the
15103 object, and then subtract off the number of bits of
15104 the field itself. The result is the bit offset of
15105 the LSB of the field. */
c906108c
SS
15106 int anonymous_size;
15107 int bit_offset = DW_UNSND (attr);
15108
e142c38c 15109 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
15110 if (attr)
15111 {
15112 /* The size of the anonymous object containing
15113 the bit field is explicit, so use the
15114 indicated size (in bytes). */
15115 anonymous_size = DW_UNSND (attr);
15116 }
15117 else
15118 {
15119 /* The size of the anonymous object containing
15120 the bit field must be inferred from the type
15121 attribute of the data member containing the
15122 bit field. */
15123 anonymous_size = TYPE_LENGTH (fp->type);
15124 }
f41f5e61
PA
15125 SET_FIELD_BITPOS (*fp,
15126 (FIELD_BITPOS (*fp)
15127 + anonymous_size * bits_per_byte
15128 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
15129 }
15130 }
da5b30da
AA
15131 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15132 if (attr != NULL)
15133 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15134 + dwarf2_get_attr_constant_value (attr, 0)));
c906108c
SS
15135
15136 /* Get name of field. */
39cbfefa
DJ
15137 fieldname = dwarf2_name (die, cu);
15138 if (fieldname == NULL)
15139 fieldname = "";
d8151005
DJ
15140
15141 /* The name is already allocated along with this objfile, so we don't
15142 need to duplicate it for the type. */
15143 fp->name = fieldname;
c906108c
SS
15144
15145 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 15146 pointer or virtual base class pointer) to private. */
e142c38c 15147 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 15148 {
d48cc9dd 15149 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
15150 new_field->accessibility = DW_ACCESS_private;
15151 fip->non_public_fields = 1;
15152 }
15153 }
a9a9bd0f 15154 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 15155 {
a9a9bd0f
DC
15156 /* C++ static member. */
15157
15158 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15159 is a declaration, but all versions of G++ as of this writing
15160 (so through at least 3.2.1) incorrectly generate
15161 DW_TAG_variable tags. */
6e70227d 15162
ff355380 15163 const char *physname;
c906108c 15164
a9a9bd0f 15165 /* Get name of field. */
39cbfefa
DJ
15166 fieldname = dwarf2_name (die, cu);
15167 if (fieldname == NULL)
c906108c
SS
15168 return;
15169
254e6b9e 15170 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
15171 if (attr
15172 /* Only create a symbol if this is an external value.
15173 new_symbol checks this and puts the value in the global symbol
15174 table, which we want. If it is not external, new_symbol
15175 will try to put the value in cu->list_in_scope which is wrong. */
15176 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
15177 {
15178 /* A static const member, not much different than an enum as far as
15179 we're concerned, except that we can support more types. */
15180 new_symbol (die, NULL, cu);
15181 }
15182
2df3850c 15183 /* Get physical name. */
ff355380 15184 physname = dwarf2_physname (fieldname, die, cu);
c906108c 15185
d8151005
DJ
15186 /* The name is already allocated along with this objfile, so we don't
15187 need to duplicate it for the type. */
15188 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 15189 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 15190 FIELD_NAME (*fp) = fieldname;
c906108c
SS
15191 }
15192 else if (die->tag == DW_TAG_inheritance)
15193 {
74ac6d43 15194 LONGEST offset;
d4b96c9a 15195
74ac6d43
TT
15196 /* C++ base class field. */
15197 if (handle_data_member_location (die, cu, &offset))
15198 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 15199 FIELD_BITSIZE (*fp) = 0;
e7c27a73 15200 FIELD_TYPE (*fp) = die_type (die, cu);
a737d952 15201 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
c906108c 15202 }
2ddeaf8a
TT
15203 else if (die->tag == DW_TAG_variant_part)
15204 {
15205 /* process_structure_scope will treat this DIE as a union. */
15206 process_structure_scope (die, cu);
15207
15208 /* The variant part is relative to the start of the enclosing
15209 structure. */
15210 SET_FIELD_BITPOS (*fp, 0);
15211 fp->type = get_die_type (die, cu);
15212 fp->artificial = 1;
15213 fp->name = "<<variant>>";
c8c81635
TT
15214
15215 /* Normally a DW_TAG_variant_part won't have a size, but our
15216 representation requires one, so set it to the maximum of the
15217 child sizes. */
15218 if (TYPE_LENGTH (fp->type) == 0)
15219 {
15220 unsigned max = 0;
15221 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15222 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15223 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15224 TYPE_LENGTH (fp->type) = max;
15225 }
2ddeaf8a
TT
15226 }
15227 else
15228 gdb_assert_not_reached ("missing case in dwarf2_add_field");
c906108c
SS
15229}
15230
883fd55a
KS
15231/* Can the type given by DIE define another type? */
15232
15233static bool
15234type_can_define_types (const struct die_info *die)
15235{
15236 switch (die->tag)
15237 {
15238 case DW_TAG_typedef:
15239 case DW_TAG_class_type:
15240 case DW_TAG_structure_type:
15241 case DW_TAG_union_type:
15242 case DW_TAG_enumeration_type:
15243 return true;
15244
15245 default:
15246 return false;
15247 }
15248}
15249
15250/* Add a type definition defined in the scope of the FIP's class. */
98751a41
JK
15251
15252static void
883fd55a
KS
15253dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15254 struct dwarf2_cu *cu)
6e70227d 15255{
be2daae6
TT
15256 struct decl_field fp;
15257 memset (&fp, 0, sizeof (fp));
98751a41 15258
883fd55a 15259 gdb_assert (type_can_define_types (die));
98751a41 15260
883fd55a 15261 /* Get name of field. NULL is okay here, meaning an anonymous type. */
be2daae6
TT
15262 fp.name = dwarf2_name (die, cu);
15263 fp.type = read_type_die (die, cu);
98751a41 15264
c191a687
KS
15265 /* Save accessibility. */
15266 enum dwarf_access_attribute accessibility;
15267 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15268 if (attr != NULL)
15269 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15270 else
15271 accessibility = dwarf2_default_access_attribute (die, cu);
15272 switch (accessibility)
15273 {
15274 case DW_ACCESS_public:
15275 /* The assumed value if neither private nor protected. */
15276 break;
15277 case DW_ACCESS_private:
be2daae6 15278 fp.is_private = 1;
c191a687
KS
15279 break;
15280 case DW_ACCESS_protected:
be2daae6 15281 fp.is_protected = 1;
c191a687
KS
15282 break;
15283 default:
b98664d3 15284 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
c191a687
KS
15285 }
15286
883fd55a 15287 if (die->tag == DW_TAG_typedef)
be2daae6 15288 fip->typedef_field_list.push_back (fp);
883fd55a 15289 else
be2daae6 15290 fip->nested_types_list.push_back (fp);
98751a41
JK
15291}
15292
c906108c
SS
15293/* Create the vector of fields, and attach it to the type. */
15294
15295static void
fba45db2 15296dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 15297 struct dwarf2_cu *cu)
c906108c
SS
15298{
15299 int nfields = fip->nfields;
15300
15301 /* Record the field count, allocate space for the array of fields,
15302 and create blank accessibility bitfields if necessary. */
15303 TYPE_NFIELDS (type) = nfields;
15304 TYPE_FIELDS (type) = (struct field *)
be2daae6 15305 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
c906108c 15306
b4ba55a1 15307 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
15308 {
15309 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15310
15311 TYPE_FIELD_PRIVATE_BITS (type) =
15312 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15313 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15314
15315 TYPE_FIELD_PROTECTED_BITS (type) =
15316 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15317 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15318
774b6a14
TT
15319 TYPE_FIELD_IGNORE_BITS (type) =
15320 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15321 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
15322 }
15323
15324 /* If the type has baseclasses, allocate and clear a bit vector for
15325 TYPE_FIELD_VIRTUAL_BITS. */
be2daae6 15326 if (!fip->baseclasses.empty () && cu->language != language_ada)
c906108c 15327 {
be2daae6 15328 int num_bytes = B_BYTES (fip->baseclasses.size ());
fe1b8b76 15329 unsigned char *pointer;
c906108c
SS
15330
15331 ALLOCATE_CPLUS_STRUCT_TYPE (type);
224c3ddb 15332 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
fe1b8b76 15333 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
be2daae6
TT
15334 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15335 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
c906108c
SS
15336 }
15337
2ddeaf8a
TT
15338 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15339 {
15340 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15341
be2daae6 15342 for (int index = 0; index < nfields; ++index)
2ddeaf8a 15343 {
be2daae6
TT
15344 struct nextfield &field = fip->fields[index];
15345
15346 if (field.variant.is_discriminant)
2ddeaf8a 15347 di->discriminant_index = index;
be2daae6 15348 else if (field.variant.default_branch)
2ddeaf8a
TT
15349 di->default_index = index;
15350 else
be2daae6 15351 di->discriminants[index] = field.variant.discriminant_value;
2ddeaf8a
TT
15352 }
15353 }
15354
be2daae6
TT
15355 /* Copy the saved-up fields into the field vector. */
15356 for (int i = 0; i < nfields; ++i)
c906108c 15357 {
be2daae6
TT
15358 struct nextfield &field
15359 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15360 : fip->fields[i - fip->baseclasses.size ()]);
7d0ccb61 15361
be2daae6
TT
15362 TYPE_FIELD (type, i) = field.field;
15363 switch (field.accessibility)
c906108c 15364 {
c5aa993b 15365 case DW_ACCESS_private:
b4ba55a1 15366 if (cu->language != language_ada)
be2daae6 15367 SET_TYPE_FIELD_PRIVATE (type, i);
c5aa993b 15368 break;
c906108c 15369
c5aa993b 15370 case DW_ACCESS_protected:
b4ba55a1 15371 if (cu->language != language_ada)
be2daae6 15372 SET_TYPE_FIELD_PROTECTED (type, i);
c5aa993b 15373 break;
c906108c 15374
c5aa993b
JM
15375 case DW_ACCESS_public:
15376 break;
c906108c 15377
c5aa993b
JM
15378 default:
15379 /* Unknown accessibility. Complain and treat it as public. */
15380 {
b98664d3 15381 complaint (_("unsupported accessibility %d"),
be2daae6 15382 field.accessibility);
c5aa993b
JM
15383 }
15384 break;
c906108c 15385 }
be2daae6 15386 if (i < fip->baseclasses.size ())
c906108c 15387 {
be2daae6 15388 switch (field.virtuality)
c906108c 15389 {
c5aa993b
JM
15390 case DW_VIRTUALITY_virtual:
15391 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 15392 if (cu->language == language_ada)
a73c6dcd 15393 error (_("unexpected virtuality in component of Ada type"));
be2daae6 15394 SET_TYPE_FIELD_VIRTUAL (type, i);
c5aa993b 15395 break;
c906108c
SS
15396 }
15397 }
c906108c
SS
15398 }
15399}
15400
7d27a96d
TT
15401/* Return true if this member function is a constructor, false
15402 otherwise. */
15403
15404static int
15405dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15406{
15407 const char *fieldname;
fe978cb0 15408 const char *type_name;
7d27a96d
TT
15409 int len;
15410
15411 if (die->parent == NULL)
15412 return 0;
15413
15414 if (die->parent->tag != DW_TAG_structure_type
15415 && die->parent->tag != DW_TAG_union_type
15416 && die->parent->tag != DW_TAG_class_type)
15417 return 0;
15418
15419 fieldname = dwarf2_name (die, cu);
fe978cb0
PA
15420 type_name = dwarf2_name (die->parent, cu);
15421 if (fieldname == NULL || type_name == NULL)
7d27a96d
TT
15422 return 0;
15423
15424 len = strlen (fieldname);
fe978cb0
PA
15425 return (strncmp (fieldname, type_name, len) == 0
15426 && (type_name[len] == '\0' || type_name[len] == '<'));
7d27a96d
TT
15427}
15428
c906108c
SS
15429/* Add a member function to the proper fieldlist. */
15430
15431static void
107d2387 15432dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 15433 struct type *type, struct dwarf2_cu *cu)
c906108c 15434{
518817b3 15435 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
c906108c 15436 struct attribute *attr;
c906108c 15437 int i;
be2daae6 15438 struct fnfieldlist *flp = nullptr;
c906108c 15439 struct fn_field *fnp;
15d034d0 15440 const char *fieldname;
f792889a 15441 struct type *this_type;
60d5a603 15442 enum dwarf_access_attribute accessibility;
c906108c 15443
b4ba55a1 15444 if (cu->language == language_ada)
a73c6dcd 15445 error (_("unexpected member function in Ada type"));
b4ba55a1 15446
2df3850c 15447 /* Get name of member function. */
39cbfefa
DJ
15448 fieldname = dwarf2_name (die, cu);
15449 if (fieldname == NULL)
2df3850c 15450 return;
c906108c 15451
c906108c 15452 /* Look up member function name in fieldlist. */
be2daae6 15453 for (i = 0; i < fip->fnfieldlists.size (); i++)
c906108c 15454 {
27bfe10e 15455 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
be2daae6
TT
15456 {
15457 flp = &fip->fnfieldlists[i];
15458 break;
15459 }
c906108c
SS
15460 }
15461
be2daae6
TT
15462 /* Create a new fnfieldlist if necessary. */
15463 if (flp == nullptr)
c906108c 15464 {
be2daae6
TT
15465 fip->fnfieldlists.emplace_back ();
15466 flp = &fip->fnfieldlists.back ();
c906108c 15467 flp->name = fieldname;
be2daae6 15468 i = fip->fnfieldlists.size () - 1;
c906108c
SS
15469 }
15470
be2daae6
TT
15471 /* Create a new member function field and add it to the vector of
15472 fnfieldlists. */
15473 flp->fnfields.emplace_back ();
15474 fnp = &flp->fnfields.back ();
3da10d80
KS
15475
15476 /* Delay processing of the physname until later. */
9c37b5ae 15477 if (cu->language == language_cplus)
be2daae6
TT
15478 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15479 die, cu);
3da10d80
KS
15480 else
15481 {
1d06ead6 15482 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
15483 fnp->physname = physname ? physname : "";
15484 }
15485
c906108c 15486 fnp->type = alloc_type (objfile);
f792889a
DJ
15487 this_type = read_type_die (die, cu);
15488 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 15489 {
f792889a 15490 int nparams = TYPE_NFIELDS (this_type);
c906108c 15491
f792889a 15492 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
15493 of the method itself (TYPE_CODE_METHOD). */
15494 smash_to_method_type (fnp->type, type,
f792889a
DJ
15495 TYPE_TARGET_TYPE (this_type),
15496 TYPE_FIELDS (this_type),
15497 TYPE_NFIELDS (this_type),
15498 TYPE_VARARGS (this_type));
c906108c
SS
15499
15500 /* Handle static member functions.
c5aa993b 15501 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
15502 member functions. G++ helps GDB by marking the first
15503 parameter for non-static member functions (which is the this
15504 pointer) as artificial. We obtain this information from
15505 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 15506 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
15507 fnp->voffset = VOFFSET_STATIC;
15508 }
15509 else
b98664d3 15510 complaint (_("member function type missing for '%s'"),
3da10d80 15511 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
15512
15513 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 15514 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 15515 fnp->fcontext = die_containing_type (die, cu);
c906108c 15516
3e43a32a
MS
15517 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15518 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
15519
15520 /* Get accessibility. */
e142c38c 15521 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 15522 if (attr)
aead7601 15523 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
60d5a603
JK
15524 else
15525 accessibility = dwarf2_default_access_attribute (die, cu);
15526 switch (accessibility)
c906108c 15527 {
60d5a603
JK
15528 case DW_ACCESS_private:
15529 fnp->is_private = 1;
15530 break;
15531 case DW_ACCESS_protected:
15532 fnp->is_protected = 1;
15533 break;
c906108c
SS
15534 }
15535
b02dede2 15536 /* Check for artificial methods. */
e142c38c 15537 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
15538 if (attr && DW_UNSND (attr) != 0)
15539 fnp->is_artificial = 1;
15540
7d27a96d
TT
15541 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15542
0d564a31 15543 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
15544 function. For older versions of GCC, this is an offset in the
15545 appropriate virtual table, as specified by DW_AT_containing_type.
15546 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
15547 to the object address. */
15548
e142c38c 15549 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 15550 if (attr)
8e19ed76 15551 {
aec5aa8b 15552 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 15553 {
aec5aa8b
TT
15554 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15555 {
15556 /* Old-style GCC. */
15557 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15558 }
15559 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15560 || (DW_BLOCK (attr)->size > 1
15561 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15562 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15563 {
aec5aa8b
TT
15564 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15565 if ((fnp->voffset % cu->header.addr_size) != 0)
15566 dwarf2_complex_location_expr_complaint ();
15567 else
15568 fnp->voffset /= cu->header.addr_size;
15569 fnp->voffset += 2;
15570 }
15571 else
15572 dwarf2_complex_location_expr_complaint ();
15573
15574 if (!fnp->fcontext)
7e993ebf
KS
15575 {
15576 /* If there is no `this' field and no DW_AT_containing_type,
15577 we cannot actually find a base class context for the
15578 vtable! */
15579 if (TYPE_NFIELDS (this_type) == 0
15580 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15581 {
b98664d3 15582 complaint (_("cannot determine context for virtual member "
9d8780f0
SM
15583 "function \"%s\" (offset %s)"),
15584 fieldname, sect_offset_str (die->sect_off));
7e993ebf
KS
15585 }
15586 else
15587 {
15588 fnp->fcontext
15589 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15590 }
15591 }
aec5aa8b 15592 }
3690dd37 15593 else if (attr_form_is_section_offset (attr))
8e19ed76 15594 {
4d3c2250 15595 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
15596 }
15597 else
15598 {
4d3c2250
KB
15599 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15600 fieldname);
8e19ed76 15601 }
0d564a31 15602 }
d48cc9dd
DJ
15603 else
15604 {
15605 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15606 if (attr && DW_UNSND (attr))
15607 {
15608 /* GCC does this, as of 2008-08-25; PR debug/37237. */
b98664d3 15609 complaint (_("Member function \"%s\" (offset %s) is virtual "
3e43a32a 15610 "but the vtable offset is not specified"),
9d8780f0 15611 fieldname, sect_offset_str (die->sect_off));
9655fd1a 15612 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
15613 TYPE_CPLUS_DYNAMIC (type) = 1;
15614 }
15615 }
c906108c
SS
15616}
15617
15618/* Create the vector of member function fields, and attach it to the type. */
15619
15620static void
fba45db2 15621dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 15622 struct dwarf2_cu *cu)
c906108c 15623{
b4ba55a1 15624 if (cu->language == language_ada)
a73c6dcd 15625 error (_("unexpected member functions in Ada type"));
b4ba55a1 15626
c906108c
SS
15627 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15628 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
be2daae6
TT
15629 TYPE_ALLOC (type,
15630 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
c906108c 15631
be2daae6 15632 for (int i = 0; i < fip->fnfieldlists.size (); i++)
c906108c 15633 {
be2daae6 15634 struct fnfieldlist &nf = fip->fnfieldlists[i];
c906108c 15635 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
c906108c 15636
be2daae6
TT
15637 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15638 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
c906108c 15639 fn_flp->fn_fields = (struct fn_field *)
be2daae6
TT
15640 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15641
15642 for (int k = 0; k < nf.fnfields.size (); ++k)
15643 fn_flp->fn_fields[k] = nf.fnfields[k];
c906108c
SS
15644 }
15645
be2daae6 15646 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
c906108c
SS
15647}
15648
1168df01
JB
15649/* Returns non-zero if NAME is the name of a vtable member in CU's
15650 language, zero otherwise. */
15651static int
15652is_vtable_name (const char *name, struct dwarf2_cu *cu)
15653{
15654 static const char vptr[] = "_vptr";
15655
9c37b5ae
TT
15656 /* Look for the C++ form of the vtable. */
15657 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
1168df01
JB
15658 return 1;
15659
15660 return 0;
15661}
15662
c0dd20ea 15663/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
15664 functions, with the ABI-specified layout. If TYPE describes
15665 such a structure, smash it into a member function type.
61049d3b
DJ
15666
15667 GCC shouldn't do this; it should just output pointer to member DIEs.
15668 This is GCC PR debug/28767. */
c0dd20ea 15669
0b92b5bb
TT
15670static void
15671quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 15672{
09e2d7c7 15673 struct type *pfn_type, *self_type, *new_type;
c0dd20ea
DJ
15674
15675 /* Check for a structure with no name and two children. */
0b92b5bb
TT
15676 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15677 return;
c0dd20ea
DJ
15678
15679 /* Check for __pfn and __delta members. */
0b92b5bb
TT
15680 if (TYPE_FIELD_NAME (type, 0) == NULL
15681 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15682 || TYPE_FIELD_NAME (type, 1) == NULL
15683 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15684 return;
c0dd20ea
DJ
15685
15686 /* Find the type of the method. */
0b92b5bb 15687 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
15688 if (pfn_type == NULL
15689 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15690 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 15691 return;
c0dd20ea
DJ
15692
15693 /* Look for the "this" argument. */
15694 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15695 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 15696 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 15697 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 15698 return;
c0dd20ea 15699
09e2d7c7 15700 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb 15701 new_type = alloc_type (objfile);
09e2d7c7 15702 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
15703 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15704 TYPE_VARARGS (pfn_type));
0b92b5bb 15705 smash_to_methodptr_type (type, new_type);
c0dd20ea 15706}
1168df01 15707
2b4424c3
TT
15708/* If the DIE has a DW_AT_alignment attribute, return its value, doing
15709 appropriate error checking and issuing complaints if there is a
15710 problem. */
15711
15712static ULONGEST
15713get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15714{
15715 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15716
15717 if (attr == nullptr)
15718 return 0;
15719
15720 if (!attr_form_is_constant (attr))
15721 {
b98664d3 15722 complaint (_("DW_AT_alignment must have constant form"
2b4424c3
TT
15723 " - DIE at %s [in module %s]"),
15724 sect_offset_str (die->sect_off),
15725 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15726 return 0;
15727 }
15728
15729 ULONGEST align;
15730 if (attr->form == DW_FORM_sdata)
15731 {
15732 LONGEST val = DW_SND (attr);
15733 if (val < 0)
15734 {
b98664d3 15735 complaint (_("DW_AT_alignment value must not be negative"
2b4424c3
TT
15736 " - DIE at %s [in module %s]"),
15737 sect_offset_str (die->sect_off),
15738 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15739 return 0;
15740 }
15741 align = val;
15742 }
15743 else
15744 align = DW_UNSND (attr);
15745
15746 if (align == 0)
15747 {
b98664d3 15748 complaint (_("DW_AT_alignment value must not be zero"
2b4424c3
TT
15749 " - DIE at %s [in module %s]"),
15750 sect_offset_str (die->sect_off),
15751 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15752 return 0;
15753 }
15754 if ((align & (align - 1)) != 0)
15755 {
b98664d3 15756 complaint (_("DW_AT_alignment value must be a power of 2"
2b4424c3
TT
15757 " - DIE at %s [in module %s]"),
15758 sect_offset_str (die->sect_off),
15759 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15760 return 0;
15761 }
15762
15763 return align;
15764}
15765
15766/* If the DIE has a DW_AT_alignment attribute, use its value to set
15767 the alignment for TYPE. */
15768
15769static void
15770maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15771 struct type *type)
15772{
15773 if (!set_type_align (type, get_alignment (cu, die)))
b98664d3 15774 complaint (_("DW_AT_alignment value too large"
2b4424c3
TT
15775 " - DIE at %s [in module %s]"),
15776 sect_offset_str (die->sect_off),
15777 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15778}
685b1105 15779
c906108c 15780/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
15781 (definition) to create a type for the structure or union. Fill in
15782 the type's name and general properties; the members will not be
83655187
DE
15783 processed until process_structure_scope. A symbol table entry for
15784 the type will also not be done until process_structure_scope (assuming
15785 the type has a name).
c906108c 15786
c767944b
DJ
15787 NOTE: we need to call these functions regardless of whether or not the
15788 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c 15789 structure or union. This gets the type entered into our set of
83655187 15790 user defined types. */
c906108c 15791
f792889a 15792static struct type *
134d01f1 15793read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 15794{
518817b3 15795 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
c906108c
SS
15796 struct type *type;
15797 struct attribute *attr;
15d034d0 15798 const char *name;
c906108c 15799
348e048f
DE
15800 /* If the definition of this type lives in .debug_types, read that type.
15801 Don't follow DW_AT_specification though, that will take us back up
15802 the chain and we want to go down. */
45e58e77 15803 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
15804 if (attr)
15805 {
ac9ec31b 15806 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 15807
ac9ec31b 15808 /* The type's CU may not be the same as CU.
02142a6c 15809 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
15810 return set_die_type (die, type, cu);
15811 }
15812
c0dd20ea 15813 type = alloc_type (objfile);
c906108c 15814 INIT_CPLUS_SPECIFIC (type);
93311388 15815
39cbfefa
DJ
15816 name = dwarf2_name (die, cu);
15817 if (name != NULL)
c906108c 15818 {
987504bb 15819 if (cu->language == language_cplus
c44af4eb
TT
15820 || cu->language == language_d
15821 || cu->language == language_rust)
63d06c5c 15822 {
15d034d0 15823 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
15824
15825 /* dwarf2_full_name might have already finished building the DIE's
15826 type. If so, there is no need to continue. */
15827 if (get_die_type (die, cu) != NULL)
15828 return get_die_type (die, cu);
15829
e86ca25f 15830 TYPE_NAME (type) = full_name;
63d06c5c
DC
15831 }
15832 else
15833 {
d8151005
DJ
15834 /* The name is already allocated along with this objfile, so
15835 we don't need to duplicate it for the type. */
e86ca25f 15836 TYPE_NAME (type) = name;
63d06c5c 15837 }
c906108c
SS
15838 }
15839
15840 if (die->tag == DW_TAG_structure_type)
15841 {
15842 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15843 }
15844 else if (die->tag == DW_TAG_union_type)
15845 {
15846 TYPE_CODE (type) = TYPE_CODE_UNION;
15847 }
2ddeaf8a
TT
15848 else if (die->tag == DW_TAG_variant_part)
15849 {
15850 TYPE_CODE (type) = TYPE_CODE_UNION;
15851 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15852 }
c906108c
SS
15853 else
15854 {
4753d33b 15855 TYPE_CODE (type) = TYPE_CODE_STRUCT;
c906108c
SS
15856 }
15857
0cc2414c
TT
15858 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15859 TYPE_DECLARED_CLASS (type) = 1;
15860
e142c38c 15861 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
15862 if (attr)
15863 {
155bfbd3
JB
15864 if (attr_form_is_constant (attr))
15865 TYPE_LENGTH (type) = DW_UNSND (attr);
15866 else
15867 {
15868 /* For the moment, dynamic type sizes are not supported
15869 by GDB's struct type. The actual size is determined
15870 on-demand when resolving the type of a given object,
15871 so set the type's length to zero for now. Otherwise,
15872 we record an expression as the length, and that expression
15873 could lead to a very large value, which could eventually
15874 lead to us trying to allocate that much memory when creating
15875 a value of that type. */
15876 TYPE_LENGTH (type) = 0;
15877 }
c906108c
SS
15878 }
15879 else
15880 {
15881 TYPE_LENGTH (type) = 0;
15882 }
15883
2b4424c3
TT
15884 maybe_set_alignment (cu, die, type);
15885
5230b05a 15886 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
685b1105 15887 {
5230b05a
WT
15888 /* ICC<14 does not output the required DW_AT_declaration on
15889 incomplete types, but gives them a size of zero. */
422b1cb0 15890 TYPE_STUB (type) = 1;
685b1105
JK
15891 }
15892 else
15893 TYPE_STUB_SUPPORTED (type) = 1;
15894
dc718098 15895 if (die_is_declaration (die, cu))
876cecd0 15896 TYPE_STUB (type) = 1;
a6c727b2
DJ
15897 else if (attr == NULL && die->child == NULL
15898 && producer_is_realview (cu->producer))
15899 /* RealView does not output the required DW_AT_declaration
15900 on incomplete types. */
15901 TYPE_STUB (type) = 1;
dc718098 15902
c906108c
SS
15903 /* We need to add the type field to the die immediately so we don't
15904 infinitely recurse when dealing with pointers to the structure
0963b4bd 15905 type within the structure itself. */
1c379e20 15906 set_die_type (die, type, cu);
c906108c 15907
7e314c57
JK
15908 /* set_die_type should be already done. */
15909 set_descriptive_type (type, die, cu);
15910
c767944b
DJ
15911 return type;
15912}
15913
2ddeaf8a
TT
15914/* A helper for process_structure_scope that handles a single member
15915 DIE. */
15916
15917static void
15918handle_struct_member_die (struct die_info *child_die, struct type *type,
15919 struct field_info *fi,
15920 std::vector<struct symbol *> *template_args,
15921 struct dwarf2_cu *cu)
15922{
15923 if (child_die->tag == DW_TAG_member
15924 || child_die->tag == DW_TAG_variable
15925 || child_die->tag == DW_TAG_variant_part)
15926 {
15927 /* NOTE: carlton/2002-11-05: A C++ static data member
15928 should be a DW_TAG_member that is a declaration, but
15929 all versions of G++ as of this writing (so through at
15930 least 3.2.1) incorrectly generate DW_TAG_variable
15931 tags for them instead. */
15932 dwarf2_add_field (fi, child_die, cu);
15933 }
15934 else if (child_die->tag == DW_TAG_subprogram)
15935 {
15936 /* Rust doesn't have member functions in the C++ sense.
15937 However, it does emit ordinary functions as children
15938 of a struct DIE. */
15939 if (cu->language == language_rust)
15940 read_func_scope (child_die, cu);
15941 else
15942 {
15943 /* C++ member function. */
15944 dwarf2_add_member_fn (fi, child_die, type, cu);
15945 }
15946 }
15947 else if (child_die->tag == DW_TAG_inheritance)
15948 {
15949 /* C++ base class field. */
15950 dwarf2_add_field (fi, child_die, cu);
15951 }
15952 else if (type_can_define_types (child_die))
15953 dwarf2_add_type_defn (fi, child_die, cu);
15954 else if (child_die->tag == DW_TAG_template_type_param
15955 || child_die->tag == DW_TAG_template_value_param)
15956 {
15957 struct symbol *arg = new_symbol (child_die, NULL, cu);
15958
15959 if (arg != NULL)
15960 template_args->push_back (arg);
15961 }
15962 else if (child_die->tag == DW_TAG_variant)
15963 {
15964 /* In a variant we want to get the discriminant and also add a
15965 field for our sole member child. */
15966 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15967
15968 for (struct die_info *variant_child = child_die->child;
15969 variant_child != NULL;
15970 variant_child = sibling_die (variant_child))
15971 {
15972 if (variant_child->tag == DW_TAG_member)
15973 {
15974 handle_struct_member_die (variant_child, type, fi,
15975 template_args, cu);
15976 /* Only handle the one. */
15977 break;
15978 }
15979 }
15980
15981 /* We don't handle this but we might as well report it if we see
15982 it. */
15983 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
b98664d3 15984 complaint (_("DW_AT_discr_list is not supported yet"
2ddeaf8a
TT
15985 " - DIE at %s [in module %s]"),
15986 sect_offset_str (child_die->sect_off),
15987 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15988
15989 /* The first field was just added, so we can stash the
15990 discriminant there. */
be2daae6 15991 gdb_assert (!fi->fields.empty ());
2ddeaf8a 15992 if (discr == NULL)
be2daae6 15993 fi->fields.back ().variant.default_branch = true;
2ddeaf8a 15994 else
be2daae6 15995 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
2ddeaf8a
TT
15996 }
15997}
15998
c767944b
DJ
15999/* Finish creating a structure or union type, including filling in
16000 its members and creating a symbol for it. */
16001
16002static void
16003process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
16004{
518817b3 16005 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
ca040673 16006 struct die_info *child_die;
c767944b
DJ
16007 struct type *type;
16008
16009 type = get_die_type (die, cu);
16010 if (type == NULL)
16011 type = read_structure_type (die, cu);
16012
2ddeaf8a
TT
16013 /* When reading a DW_TAG_variant_part, we need to notice when we
16014 read the discriminant member, so we can record it later in the
16015 discriminant_info. */
16016 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
16017 sect_offset discr_offset;
3e1d3d8c 16018 bool has_template_parameters = false;
2ddeaf8a
TT
16019
16020 if (is_variant_part)
16021 {
16022 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
16023 if (discr == NULL)
16024 {
16025 /* Maybe it's a univariant form, an extension we support.
16026 In this case arrange not to check the offset. */
16027 is_variant_part = false;
16028 }
16029 else if (attr_form_is_ref (discr))
16030 {
16031 struct dwarf2_cu *target_cu = cu;
16032 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16033
16034 discr_offset = target_die->sect_off;
16035 }
16036 else
16037 {
b98664d3 16038 complaint (_("DW_AT_discr does not have DIE reference form"
2ddeaf8a
TT
16039 " - DIE at %s [in module %s]"),
16040 sect_offset_str (die->sect_off),
16041 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16042 is_variant_part = false;
16043 }
16044 }
16045
e142c38c 16046 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
16047 {
16048 struct field_info fi;
2f4732b0 16049 std::vector<struct symbol *> template_args;
c906108c 16050
639d11d3 16051 child_die = die->child;
c906108c
SS
16052
16053 while (child_die && child_die->tag)
16054 {
2ddeaf8a 16055 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
34eaf542 16056
2ddeaf8a 16057 if (is_variant_part && discr_offset == child_die->sect_off)
be2daae6 16058 fi.fields.back ().variant.is_discriminant = true;
34eaf542 16059
c906108c
SS
16060 child_die = sibling_die (child_die);
16061 }
16062
34eaf542 16063 /* Attach template arguments to type. */
2f4732b0 16064 if (!template_args.empty ())
34eaf542 16065 {
3e1d3d8c 16066 has_template_parameters = true;
34eaf542 16067 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2f4732b0 16068 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
34eaf542 16069 TYPE_TEMPLATE_ARGUMENTS (type)
8d749320
SM
16070 = XOBNEWVEC (&objfile->objfile_obstack,
16071 struct symbol *,
16072 TYPE_N_TEMPLATE_ARGUMENTS (type));
34eaf542 16073 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
2f4732b0 16074 template_args.data (),
34eaf542
TT
16075 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16076 * sizeof (struct symbol *)));
34eaf542
TT
16077 }
16078
c906108c
SS
16079 /* Attach fields and member functions to the type. */
16080 if (fi.nfields)
e7c27a73 16081 dwarf2_attach_fields_to_type (&fi, type, cu);
be2daae6 16082 if (!fi.fnfieldlists.empty ())
c906108c 16083 {
e7c27a73 16084 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 16085
c5aa993b 16086 /* Get the type which refers to the base class (possibly this
c906108c 16087 class itself) which contains the vtable pointer for the current
0d564a31
DJ
16088 class from the DW_AT_containing_type attribute. This use of
16089 DW_AT_containing_type is a GNU extension. */
c906108c 16090
e142c38c 16091 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 16092 {
e7c27a73 16093 struct type *t = die_containing_type (die, cu);
c906108c 16094
ae6ae975 16095 set_type_vptr_basetype (type, t);
c906108c
SS
16096 if (type == t)
16097 {
c906108c
SS
16098 int i;
16099
16100 /* Our own class provides vtbl ptr. */
16101 for (i = TYPE_NFIELDS (t) - 1;
16102 i >= TYPE_N_BASECLASSES (t);
16103 --i)
16104 {
0d5cff50 16105 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 16106
1168df01 16107 if (is_vtable_name (fieldname, cu))
c906108c 16108 {
ae6ae975 16109 set_type_vptr_fieldno (type, i);
c906108c
SS
16110 break;
16111 }
16112 }
16113
16114 /* Complain if virtual function table field not found. */
16115 if (i < TYPE_N_BASECLASSES (t))
b98664d3 16116 complaint (_("virtual function table pointer "
3e43a32a 16117 "not found when defining class '%s'"),
e86ca25f 16118 TYPE_NAME (type) ? TYPE_NAME (type) : "");
c906108c
SS
16119 }
16120 else
16121 {
ae6ae975 16122 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
c906108c
SS
16123 }
16124 }
f6235d4c 16125 else if (cu->producer
61012eef 16126 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
f6235d4c
EZ
16127 {
16128 /* The IBM XLC compiler does not provide direct indication
16129 of the containing type, but the vtable pointer is
16130 always named __vfp. */
16131
16132 int i;
16133
16134 for (i = TYPE_NFIELDS (type) - 1;
16135 i >= TYPE_N_BASECLASSES (type);
16136 --i)
16137 {
16138 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16139 {
ae6ae975
DE
16140 set_type_vptr_fieldno (type, i);
16141 set_type_vptr_basetype (type, type);
f6235d4c
EZ
16142 break;
16143 }
16144 }
16145 }
c906108c 16146 }
98751a41
JK
16147
16148 /* Copy fi.typedef_field_list linked list elements content into the
16149 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
be2daae6 16150 if (!fi.typedef_field_list.empty ())
98751a41 16151 {
be2daae6 16152 int count = fi.typedef_field_list.size ();
98751a41 16153
a0d7a4ff 16154 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41 16155 TYPE_TYPEDEF_FIELD_ARRAY (type)
883fd55a 16156 = ((struct decl_field *)
be2daae6
TT
16157 TYPE_ALLOC (type,
16158 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16159 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
6e70227d 16160
be2daae6
TT
16161 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16162 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
98751a41 16163 }
c767944b 16164
883fd55a
KS
16165 /* Copy fi.nested_types_list linked list elements content into the
16166 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
be2daae6 16167 if (!fi.nested_types_list.empty () && cu->language != language_ada)
883fd55a 16168 {
be2daae6 16169 int count = fi.nested_types_list.size ();
883fd55a
KS
16170
16171 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16172 TYPE_NESTED_TYPES_ARRAY (type)
16173 = ((struct decl_field *)
be2daae6
TT
16174 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16175 TYPE_NESTED_TYPES_COUNT (type) = count;
883fd55a 16176
be2daae6
TT
16177 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16178 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
883fd55a 16179 }
c906108c 16180 }
63d06c5c 16181
bb5ed363 16182 quirk_gcc_member_function_pointer (type, objfile);
c9317f21
TT
16183 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16184 cu->rust_unions.push_back (type);
0b92b5bb 16185
90aeadfc
DC
16186 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16187 snapshots) has been known to create a die giving a declaration
16188 for a class that has, as a child, a die giving a definition for a
16189 nested class. So we have to process our children even if the
16190 current die is a declaration. Normally, of course, a declaration
16191 won't have any children at all. */
134d01f1 16192
ca040673
DE
16193 child_die = die->child;
16194
90aeadfc
DC
16195 while (child_die != NULL && child_die->tag)
16196 {
16197 if (child_die->tag == DW_TAG_member
16198 || child_die->tag == DW_TAG_variable
34eaf542
TT
16199 || child_die->tag == DW_TAG_inheritance
16200 || child_die->tag == DW_TAG_template_value_param
16201 || child_die->tag == DW_TAG_template_type_param)
134d01f1 16202 {
90aeadfc 16203 /* Do nothing. */
134d01f1 16204 }
90aeadfc
DC
16205 else
16206 process_die (child_die, cu);
134d01f1 16207
90aeadfc 16208 child_die = sibling_die (child_die);
134d01f1
DJ
16209 }
16210
fa4028e9
JB
16211 /* Do not consider external references. According to the DWARF standard,
16212 these DIEs are identified by the fact that they have no byte_size
16213 attribute, and a declaration attribute. */
16214 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16215 || !die_is_declaration (die, cu))
3e1d3d8c
TT
16216 {
16217 struct symbol *sym = new_symbol (die, type, cu);
16218
16219 if (has_template_parameters)
16220 {
16221 /* Make sure that the symtab is set on the new symbols.
16222 Even though they don't appear in this symtab directly,
16223 other parts of gdb assume that symbols do, and this is
16224 reasonably true. */
16225 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16226 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i),
16227 symbol_symtab (sym));
16228 }
16229 }
134d01f1
DJ
16230}
16231
55426c9d
JB
16232/* Assuming DIE is an enumeration type, and TYPE is its associated type,
16233 update TYPE using some information only available in DIE's children. */
16234
16235static void
16236update_enumeration_type_from_children (struct die_info *die,
16237 struct type *type,
16238 struct dwarf2_cu *cu)
16239{
60f7655a 16240 struct die_info *child_die;
55426c9d
JB
16241 int unsigned_enum = 1;
16242 int flag_enum = 1;
16243 ULONGEST mask = 0;
55426c9d 16244
8268c778 16245 auto_obstack obstack;
55426c9d 16246
60f7655a
DE
16247 for (child_die = die->child;
16248 child_die != NULL && child_die->tag;
16249 child_die = sibling_die (child_die))
55426c9d
JB
16250 {
16251 struct attribute *attr;
16252 LONGEST value;
16253 const gdb_byte *bytes;
16254 struct dwarf2_locexpr_baton *baton;
16255 const char *name;
60f7655a 16256
55426c9d
JB
16257 if (child_die->tag != DW_TAG_enumerator)
16258 continue;
16259
16260 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16261 if (attr == NULL)
16262 continue;
16263
16264 name = dwarf2_name (child_die, cu);
16265 if (name == NULL)
16266 name = "<anonymous enumerator>";
16267
16268 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16269 &value, &bytes, &baton);
16270 if (value < 0)
16271 {
16272 unsigned_enum = 0;
16273 flag_enum = 0;
16274 }
16275 else if ((mask & value) != 0)
16276 flag_enum = 0;
16277 else
16278 mask |= value;
16279
16280 /* If we already know that the enum type is neither unsigned, nor
16281 a flag type, no need to look at the rest of the enumerates. */
16282 if (!unsigned_enum && !flag_enum)
16283 break;
55426c9d
JB
16284 }
16285
16286 if (unsigned_enum)
16287 TYPE_UNSIGNED (type) = 1;
16288 if (flag_enum)
16289 TYPE_FLAG_ENUM (type) = 1;
55426c9d
JB
16290}
16291
134d01f1
DJ
16292/* Given a DW_AT_enumeration_type die, set its type. We do not
16293 complete the type's fields yet, or create any symbols. */
c906108c 16294
f792889a 16295static struct type *
134d01f1 16296read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 16297{
518817b3 16298 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
c906108c 16299 struct type *type;
c906108c 16300 struct attribute *attr;
0114d602 16301 const char *name;
134d01f1 16302
348e048f
DE
16303 /* If the definition of this type lives in .debug_types, read that type.
16304 Don't follow DW_AT_specification though, that will take us back up
16305 the chain and we want to go down. */
45e58e77 16306 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
16307 if (attr)
16308 {
ac9ec31b 16309 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 16310
ac9ec31b 16311 /* The type's CU may not be the same as CU.
02142a6c 16312 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
16313 return set_die_type (die, type, cu);
16314 }
16315
c906108c
SS
16316 type = alloc_type (objfile);
16317
16318 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 16319 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 16320 if (name != NULL)
e86ca25f 16321 TYPE_NAME (type) = name;
c906108c 16322
0626fc76
TT
16323 attr = dwarf2_attr (die, DW_AT_type, cu);
16324 if (attr != NULL)
16325 {
16326 struct type *underlying_type = die_type (die, cu);
16327
16328 TYPE_TARGET_TYPE (type) = underlying_type;
16329 }
16330
e142c38c 16331 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
16332 if (attr)
16333 {
16334 TYPE_LENGTH (type) = DW_UNSND (attr);
16335 }
16336 else
16337 {
16338 TYPE_LENGTH (type) = 0;
16339 }
16340
2b4424c3
TT
16341 maybe_set_alignment (cu, die, type);
16342
137033e9
JB
16343 /* The enumeration DIE can be incomplete. In Ada, any type can be
16344 declared as private in the package spec, and then defined only
16345 inside the package body. Such types are known as Taft Amendment
16346 Types. When another package uses such a type, an incomplete DIE
16347 may be generated by the compiler. */
02eb380e 16348 if (die_is_declaration (die, cu))
876cecd0 16349 TYPE_STUB (type) = 1;
02eb380e 16350
0626fc76
TT
16351 /* Finish the creation of this type by using the enum's children.
16352 We must call this even when the underlying type has been provided
16353 so that we can determine if we're looking at a "flag" enum. */
55426c9d
JB
16354 update_enumeration_type_from_children (die, type, cu);
16355
0626fc76
TT
16356 /* If this type has an underlying type that is not a stub, then we
16357 may use its attributes. We always use the "unsigned" attribute
16358 in this situation, because ordinarily we guess whether the type
16359 is unsigned -- but the guess can be wrong and the underlying type
16360 can tell us the reality. However, we defer to a local size
16361 attribute if one exists, because this lets the compiler override
16362 the underlying type if needed. */
16363 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16364 {
16365 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16366 if (TYPE_LENGTH (type) == 0)
16367 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
2b4424c3
TT
16368 if (TYPE_RAW_ALIGN (type) == 0
16369 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16370 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
0626fc76
TT
16371 }
16372
3d567982
TT
16373 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16374
f792889a 16375 return set_die_type (die, type, cu);
134d01f1
DJ
16376}
16377
16378/* Given a pointer to a die which begins an enumeration, process all
16379 the dies that define the members of the enumeration, and create the
16380 symbol for the enumeration type.
16381
16382 NOTE: We reverse the order of the element list. */
16383
16384static void
16385process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16386{
f792889a 16387 struct type *this_type;
134d01f1 16388
f792889a
DJ
16389 this_type = get_die_type (die, cu);
16390 if (this_type == NULL)
16391 this_type = read_enumeration_type (die, cu);
9dc481d3 16392
639d11d3 16393 if (die->child != NULL)
c906108c 16394 {
9dc481d3
DE
16395 struct die_info *child_die;
16396 struct symbol *sym;
16397 struct field *fields = NULL;
16398 int num_fields = 0;
15d034d0 16399 const char *name;
9dc481d3 16400
639d11d3 16401 child_die = die->child;
c906108c
SS
16402 while (child_die && child_die->tag)
16403 {
16404 if (child_die->tag != DW_TAG_enumerator)
16405 {
e7c27a73 16406 process_die (child_die, cu);
c906108c
SS
16407 }
16408 else
16409 {
39cbfefa
DJ
16410 name = dwarf2_name (child_die, cu);
16411 if (name)
c906108c 16412 {
f792889a 16413 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
16414
16415 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16416 {
16417 fields = (struct field *)
16418 xrealloc (fields,
16419 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 16420 * sizeof (struct field));
c906108c
SS
16421 }
16422
3567439c 16423 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 16424 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 16425 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
16426 FIELD_BITSIZE (fields[num_fields]) = 0;
16427
16428 num_fields++;
16429 }
16430 }
16431
16432 child_die = sibling_die (child_die);
16433 }
16434
16435 if (num_fields)
16436 {
f792889a
DJ
16437 TYPE_NFIELDS (this_type) = num_fields;
16438 TYPE_FIELDS (this_type) = (struct field *)
16439 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16440 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 16441 sizeof (struct field) * num_fields);
b8c9b27d 16442 xfree (fields);
c906108c 16443 }
c906108c 16444 }
134d01f1 16445
6c83ed52
TT
16446 /* If we are reading an enum from a .debug_types unit, and the enum
16447 is a declaration, and the enum is not the signatured type in the
16448 unit, then we do not want to add a symbol for it. Adding a
16449 symbol would in some cases obscure the true definition of the
16450 enum, giving users an incomplete type when the definition is
16451 actually available. Note that we do not want to do this for all
16452 enums which are just declarations, because C++0x allows forward
16453 enum declarations. */
3019eac3 16454 if (cu->per_cu->is_debug_types
6c83ed52
TT
16455 && die_is_declaration (die, cu))
16456 {
52dc124a 16457 struct signatured_type *sig_type;
6c83ed52 16458
c0f78cd4 16459 sig_type = (struct signatured_type *) cu->per_cu;
9c541725
PA
16460 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16461 if (sig_type->type_offset_in_section != die->sect_off)
6c83ed52
TT
16462 return;
16463 }
16464
f792889a 16465 new_symbol (die, this_type, cu);
c906108c
SS
16466}
16467
16468/* Extract all information from a DW_TAG_array_type DIE and put it in
16469 the DIE's type field. For now, this only handles one dimensional
16470 arrays. */
16471
f792889a 16472static struct type *
e7c27a73 16473read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 16474{
518817b3 16475 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
c906108c 16476 struct die_info *child_die;
7e314c57 16477 struct type *type;
c906108c 16478 struct type *element_type, *range_type, *index_type;
c906108c 16479 struct attribute *attr;
15d034d0 16480 const char *name;
a405673c 16481 struct dynamic_prop *byte_stride_prop = NULL;
dc53a7ad 16482 unsigned int bit_stride = 0;
c906108c 16483
e7c27a73 16484 element_type = die_type (die, cu);
c906108c 16485
7e314c57
JK
16486 /* The die_type call above may have already set the type for this DIE. */
16487 type = get_die_type (die, cu);
16488 if (type)
16489 return type;
16490
dc53a7ad
JB
16491 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16492 if (attr != NULL)
a405673c
JB
16493 {
16494 int stride_ok;
16495
16496 byte_stride_prop
16497 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16498 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16499 if (!stride_ok)
16500 {
b98664d3 16501 complaint (_("unable to read array DW_AT_byte_stride "
9d8780f0
SM
16502 " - DIE at %s [in module %s]"),
16503 sect_offset_str (die->sect_off),
518817b3 16504 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
a405673c
JB
16505 /* Ignore this attribute. We will likely not be able to print
16506 arrays of this type correctly, but there is little we can do
16507 to help if we cannot read the attribute's value. */
16508 byte_stride_prop = NULL;
16509 }
16510 }
dc53a7ad
JB
16511
16512 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16513 if (attr != NULL)
16514 bit_stride = DW_UNSND (attr);
16515
c906108c
SS
16516 /* Irix 6.2 native cc creates array types without children for
16517 arrays with unspecified length. */
639d11d3 16518 if (die->child == NULL)
c906108c 16519 {
46bf5051 16520 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 16521 range_type = create_static_range_type (NULL, index_type, 0, -1);
dc53a7ad 16522 type = create_array_type_with_stride (NULL, element_type, range_type,
a405673c 16523 byte_stride_prop, bit_stride);
f792889a 16524 return set_die_type (die, type, cu);
c906108c
SS
16525 }
16526
791afaa2 16527 std::vector<struct type *> range_types;
639d11d3 16528 child_die = die->child;
c906108c
SS
16529 while (child_die && child_die->tag)
16530 {
16531 if (child_die->tag == DW_TAG_subrange_type)
16532 {
f792889a 16533 struct type *child_type = read_type_die (child_die, cu);
9a619af0 16534
f792889a 16535 if (child_type != NULL)
a02abb62 16536 {
0963b4bd
MS
16537 /* The range type was succesfully read. Save it for the
16538 array type creation. */
791afaa2 16539 range_types.push_back (child_type);
a02abb62 16540 }
c906108c
SS
16541 }
16542 child_die = sibling_die (child_die);
16543 }
16544
16545 /* Dwarf2 dimensions are output from left to right, create the
16546 necessary array types in backwards order. */
7ca2d3a3 16547
c906108c 16548 type = element_type;
7ca2d3a3
DL
16549
16550 if (read_array_order (die, cu) == DW_ORD_col_major)
16551 {
16552 int i = 0;
9a619af0 16553
791afaa2 16554 while (i < range_types.size ())
dc53a7ad 16555 type = create_array_type_with_stride (NULL, type, range_types[i++],
a405673c 16556 byte_stride_prop, bit_stride);
7ca2d3a3
DL
16557 }
16558 else
16559 {
791afaa2 16560 size_t ndim = range_types.size ();
7ca2d3a3 16561 while (ndim-- > 0)
dc53a7ad 16562 type = create_array_type_with_stride (NULL, type, range_types[ndim],
a405673c 16563 byte_stride_prop, bit_stride);
7ca2d3a3 16564 }
c906108c 16565
f5f8a009
EZ
16566 /* Understand Dwarf2 support for vector types (like they occur on
16567 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16568 array type. This is not part of the Dwarf2/3 standard yet, but a
16569 custom vendor extension. The main difference between a regular
16570 array and the vector variant is that vectors are passed by value
16571 to functions. */
e142c38c 16572 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 16573 if (attr)
ea37ba09 16574 make_vector_type (type);
f5f8a009 16575
dbc98a8b
KW
16576 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16577 implementation may choose to implement triple vectors using this
16578 attribute. */
16579 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16580 if (attr)
16581 {
16582 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16583 TYPE_LENGTH (type) = DW_UNSND (attr);
16584 else
b98664d3 16585 complaint (_("DW_AT_byte_size for array type smaller "
3e43a32a 16586 "than the total size of elements"));
dbc98a8b
KW
16587 }
16588
39cbfefa
DJ
16589 name = dwarf2_name (die, cu);
16590 if (name)
16591 TYPE_NAME (type) = name;
6e70227d 16592
2b4424c3
TT
16593 maybe_set_alignment (cu, die, type);
16594
0963b4bd 16595 /* Install the type in the die. */
7e314c57
JK
16596 set_die_type (die, type, cu);
16597
16598 /* set_die_type should be already done. */
b4ba55a1
JB
16599 set_descriptive_type (type, die, cu);
16600
7e314c57 16601 return type;
c906108c
SS
16602}
16603
7ca2d3a3 16604static enum dwarf_array_dim_ordering
6e70227d 16605read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
16606{
16607 struct attribute *attr;
16608
16609 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16610
aead7601
SM
16611 if (attr)
16612 return (enum dwarf_array_dim_ordering) DW_SND (attr);
7ca2d3a3 16613
0963b4bd
MS
16614 /* GNU F77 is a special case, as at 08/2004 array type info is the
16615 opposite order to the dwarf2 specification, but data is still
16616 laid out as per normal fortran.
7ca2d3a3 16617
0963b4bd
MS
16618 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16619 version checking. */
7ca2d3a3 16620
905e0470
PM
16621 if (cu->language == language_fortran
16622 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
16623 {
16624 return DW_ORD_row_major;
16625 }
16626
6e70227d 16627 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
16628 {
16629 case array_column_major:
16630 return DW_ORD_col_major;
16631 case array_row_major:
16632 default:
16633 return DW_ORD_row_major;
16634 };
16635}
16636
72019c9c 16637/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 16638 the DIE's type field. */
72019c9c 16639
f792889a 16640static struct type *
72019c9c
GM
16641read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16642{
7e314c57
JK
16643 struct type *domain_type, *set_type;
16644 struct attribute *attr;
f792889a 16645
7e314c57
JK
16646 domain_type = die_type (die, cu);
16647
16648 /* The die_type call above may have already set the type for this DIE. */
16649 set_type = get_die_type (die, cu);
16650 if (set_type)
16651 return set_type;
16652
16653 set_type = create_set_type (NULL, domain_type);
16654
16655 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
16656 if (attr)
16657 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 16658
2b4424c3
TT
16659 maybe_set_alignment (cu, die, set_type);
16660
f792889a 16661 return set_die_type (die, set_type, cu);
72019c9c 16662}
7ca2d3a3 16663
0971de02
TT
16664/* A helper for read_common_block that creates a locexpr baton.
16665 SYM is the symbol which we are marking as computed.
16666 COMMON_DIE is the DIE for the common block.
16667 COMMON_LOC is the location expression attribute for the common
16668 block itself.
16669 MEMBER_LOC is the location expression attribute for the particular
16670 member of the common block that we are processing.
16671 CU is the CU from which the above come. */
16672
16673static void
16674mark_common_block_symbol_computed (struct symbol *sym,
16675 struct die_info *common_die,
16676 struct attribute *common_loc,
16677 struct attribute *member_loc,
16678 struct dwarf2_cu *cu)
16679{
518817b3
SM
16680 struct dwarf2_per_objfile *dwarf2_per_objfile
16681 = cu->per_cu->dwarf2_per_objfile;
0971de02
TT
16682 struct objfile *objfile = dwarf2_per_objfile->objfile;
16683 struct dwarf2_locexpr_baton *baton;
16684 gdb_byte *ptr;
16685 unsigned int cu_off;
16686 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16687 LONGEST offset = 0;
16688
16689 gdb_assert (common_loc && member_loc);
16690 gdb_assert (attr_form_is_block (common_loc));
16691 gdb_assert (attr_form_is_block (member_loc)
16692 || attr_form_is_constant (member_loc));
16693
8d749320 16694 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
0971de02
TT
16695 baton->per_cu = cu->per_cu;
16696 gdb_assert (baton->per_cu);
16697
16698 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16699
16700 if (attr_form_is_constant (member_loc))
16701 {
16702 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16703 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16704 }
16705 else
16706 baton->size += DW_BLOCK (member_loc)->size;
16707
224c3ddb 16708 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
0971de02
TT
16709 baton->data = ptr;
16710
16711 *ptr++ = DW_OP_call4;
9c541725 16712 cu_off = common_die->sect_off - cu->per_cu->sect_off;
0971de02
TT
16713 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16714 ptr += 4;
16715
16716 if (attr_form_is_constant (member_loc))
16717 {
16718 *ptr++ = DW_OP_addr;
16719 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16720 ptr += cu->header.addr_size;
16721 }
16722 else
16723 {
16724 /* We have to copy the data here, because DW_OP_call4 will only
16725 use a DW_AT_location attribute. */
16726 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16727 ptr += DW_BLOCK (member_loc)->size;
16728 }
16729
16730 *ptr++ = DW_OP_plus;
16731 gdb_assert (ptr - baton->data == baton->size);
16732
0971de02 16733 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 16734 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
16735}
16736
4357ac6c
TT
16737/* Create appropriate locally-scoped variables for all the
16738 DW_TAG_common_block entries. Also create a struct common_block
16739 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16740 is used to sepate the common blocks name namespace from regular
16741 variable names. */
c906108c
SS
16742
16743static void
e7c27a73 16744read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 16745{
0971de02
TT
16746 struct attribute *attr;
16747
16748 attr = dwarf2_attr (die, DW_AT_location, cu);
16749 if (attr)
16750 {
16751 /* Support the .debug_loc offsets. */
16752 if (attr_form_is_block (attr))
16753 {
16754 /* Ok. */
16755 }
16756 else if (attr_form_is_section_offset (attr))
16757 {
16758 dwarf2_complex_location_expr_complaint ();
16759 attr = NULL;
16760 }
16761 else
16762 {
16763 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16764 "common block member");
16765 attr = NULL;
16766 }
16767 }
16768
639d11d3 16769 if (die->child != NULL)
c906108c 16770 {
518817b3 16771 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
4357ac6c
TT
16772 struct die_info *child_die;
16773 size_t n_entries = 0, size;
16774 struct common_block *common_block;
16775 struct symbol *sym;
74ac6d43 16776
4357ac6c
TT
16777 for (child_die = die->child;
16778 child_die && child_die->tag;
16779 child_die = sibling_die (child_die))
16780 ++n_entries;
16781
16782 size = (sizeof (struct common_block)
16783 + (n_entries - 1) * sizeof (struct symbol *));
224c3ddb
SM
16784 common_block
16785 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16786 size);
4357ac6c
TT
16787 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16788 common_block->n_entries = 0;
16789
16790 for (child_die = die->child;
16791 child_die && child_die->tag;
16792 child_die = sibling_die (child_die))
16793 {
16794 /* Create the symbol in the DW_TAG_common_block block in the current
16795 symbol scope. */
e7c27a73 16796 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
16797 if (sym != NULL)
16798 {
16799 struct attribute *member_loc;
16800
16801 common_block->contents[common_block->n_entries++] = sym;
16802
16803 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16804 cu);
16805 if (member_loc)
16806 {
16807 /* GDB has handled this for a long time, but it is
16808 not specified by DWARF. It seems to have been
16809 emitted by gfortran at least as recently as:
16810 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
b98664d3 16811 complaint (_("Variable in common block has "
0971de02 16812 "DW_AT_data_member_location "
9d8780f0
SM
16813 "- DIE at %s [in module %s]"),
16814 sect_offset_str (child_die->sect_off),
518817b3 16815 objfile_name (objfile));
0971de02
TT
16816
16817 if (attr_form_is_section_offset (member_loc))
16818 dwarf2_complex_location_expr_complaint ();
16819 else if (attr_form_is_constant (member_loc)
16820 || attr_form_is_block (member_loc))
16821 {
16822 if (attr)
16823 mark_common_block_symbol_computed (sym, die, attr,
16824 member_loc, cu);
16825 }
16826 else
16827 dwarf2_complex_location_expr_complaint ();
16828 }
16829 }
c906108c 16830 }
4357ac6c
TT
16831
16832 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16833 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
16834 }
16835}
16836
0114d602 16837/* Create a type for a C++ namespace. */
d9fa45fe 16838
0114d602
DJ
16839static struct type *
16840read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 16841{
518817b3 16842 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
0114d602 16843 const char *previous_prefix, *name;
9219021c 16844 int is_anonymous;
0114d602
DJ
16845 struct type *type;
16846
16847 /* For extensions, reuse the type of the original namespace. */
16848 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16849 {
16850 struct die_info *ext_die;
16851 struct dwarf2_cu *ext_cu = cu;
9a619af0 16852
0114d602
DJ
16853 ext_die = dwarf2_extension (die, &ext_cu);
16854 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
16855
16856 /* EXT_CU may not be the same as CU.
02142a6c 16857 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
16858 return set_die_type (die, type, cu);
16859 }
9219021c 16860
e142c38c 16861 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
16862
16863 /* Now build the name of the current namespace. */
16864
0114d602
DJ
16865 previous_prefix = determine_prefix (die, cu);
16866 if (previous_prefix[0] != '\0')
16867 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 16868 previous_prefix, name, 0, cu);
0114d602
DJ
16869
16870 /* Create the type. */
19f392bc 16871 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
0114d602 16872
60531b24 16873 return set_die_type (die, type, cu);
0114d602
DJ
16874}
16875
22cee43f 16876/* Read a namespace scope. */
0114d602
DJ
16877
16878static void
16879read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16880{
518817b3 16881 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
0114d602 16882 int is_anonymous;
9219021c 16883
5c4e30ca
DC
16884 /* Add a symbol associated to this if we haven't seen the namespace
16885 before. Also, add a using directive if it's an anonymous
16886 namespace. */
9219021c 16887
f2f0e013 16888 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
16889 {
16890 struct type *type;
16891
0114d602 16892 type = read_type_die (die, cu);
e7c27a73 16893 new_symbol (die, type, cu);
5c4e30ca 16894
e8e80198 16895 namespace_name (die, &is_anonymous, cu);
5c4e30ca 16896 if (is_anonymous)
0114d602
DJ
16897 {
16898 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 16899
eb1e02fd 16900 std::vector<const char *> excludes;
804d2729 16901 add_using_directive (using_directives (cu),
22cee43f 16902 previous_prefix, TYPE_NAME (type), NULL,
eb1e02fd 16903 NULL, excludes, 0, &objfile->objfile_obstack);
0114d602 16904 }
5c4e30ca 16905 }
9219021c 16906
639d11d3 16907 if (die->child != NULL)
d9fa45fe 16908 {
639d11d3 16909 struct die_info *child_die = die->child;
6e70227d 16910
d9fa45fe
DC
16911 while (child_die && child_die->tag)
16912 {
e7c27a73 16913 process_die (child_die, cu);
d9fa45fe
DC
16914 child_die = sibling_die (child_die);
16915 }
16916 }
38d518c9
EZ
16917}
16918
f55ee35c
JK
16919/* Read a Fortran module as type. This DIE can be only a declaration used for
16920 imported module. Still we need that type as local Fortran "use ... only"
16921 declaration imports depend on the created type in determine_prefix. */
16922
16923static struct type *
16924read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16925{
518817b3 16926 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15d034d0 16927 const char *module_name;
f55ee35c
JK
16928 struct type *type;
16929
16930 module_name = dwarf2_name (die, cu);
16931 if (!module_name)
b98664d3 16932 complaint (_("DW_TAG_module has no name, offset %s"),
9d8780f0 16933 sect_offset_str (die->sect_off));
19f392bc 16934 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
f55ee35c 16935
f55ee35c
JK
16936 return set_die_type (die, type, cu);
16937}
16938
5d7cb8df
JK
16939/* Read a Fortran module. */
16940
16941static void
16942read_module (struct die_info *die, struct dwarf2_cu *cu)
16943{
16944 struct die_info *child_die = die->child;
530e8392
KB
16945 struct type *type;
16946
16947 type = read_type_die (die, cu);
16948 new_symbol (die, type, cu);
5d7cb8df 16949
5d7cb8df
JK
16950 while (child_die && child_die->tag)
16951 {
16952 process_die (child_die, cu);
16953 child_die = sibling_die (child_die);
16954 }
16955}
16956
38d518c9
EZ
16957/* Return the name of the namespace represented by DIE. Set
16958 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16959 namespace. */
16960
16961static const char *
e142c38c 16962namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
16963{
16964 struct die_info *current_die;
16965 const char *name = NULL;
16966
16967 /* Loop through the extensions until we find a name. */
16968
16969 for (current_die = die;
16970 current_die != NULL;
f2f0e013 16971 current_die = dwarf2_extension (die, &cu))
38d518c9 16972 {
96553a0c
DE
16973 /* We don't use dwarf2_name here so that we can detect the absence
16974 of a name -> anonymous namespace. */
7d45c7c3 16975 name = dwarf2_string_attr (die, DW_AT_name, cu);
96553a0c 16976
38d518c9
EZ
16977 if (name != NULL)
16978 break;
16979 }
16980
16981 /* Is it an anonymous namespace? */
16982
16983 *is_anonymous = (name == NULL);
16984 if (*is_anonymous)
2b1dbab0 16985 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
16986
16987 return name;
d9fa45fe
DC
16988}
16989
c906108c
SS
16990/* Extract all information from a DW_TAG_pointer_type DIE and add to
16991 the user defined type vector. */
16992
f792889a 16993static struct type *
e7c27a73 16994read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 16995{
518817b3
SM
16996 struct gdbarch *gdbarch
16997 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
e7c27a73 16998 struct comp_unit_head *cu_header = &cu->header;
c906108c 16999 struct type *type;
8b2dbe47
KB
17000 struct attribute *attr_byte_size;
17001 struct attribute *attr_address_class;
17002 int byte_size, addr_class;
7e314c57
JK
17003 struct type *target_type;
17004
17005 target_type = die_type (die, cu);
c906108c 17006
7e314c57
JK
17007 /* The die_type call above may have already set the type for this DIE. */
17008 type = get_die_type (die, cu);
17009 if (type)
17010 return type;
17011
17012 type = lookup_pointer_type (target_type);
8b2dbe47 17013
e142c38c 17014 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
17015 if (attr_byte_size)
17016 byte_size = DW_UNSND (attr_byte_size);
c906108c 17017 else
8b2dbe47
KB
17018 byte_size = cu_header->addr_size;
17019
e142c38c 17020 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
17021 if (attr_address_class)
17022 addr_class = DW_UNSND (attr_address_class);
17023 else
17024 addr_class = DW_ADDR_none;
17025
2b4424c3
TT
17026 ULONGEST alignment = get_alignment (cu, die);
17027
17028 /* If the pointer size, alignment, or address class is different
17029 than the default, create a type variant marked as such and set
17030 the length accordingly. */
17031 if (TYPE_LENGTH (type) != byte_size
17032 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17033 && alignment != TYPE_RAW_ALIGN (type))
17034 || addr_class != DW_ADDR_none)
c906108c 17035 {
5e2b427d 17036 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
17037 {
17038 int type_flags;
17039
849957d9 17040 type_flags = gdbarch_address_class_type_flags
5e2b427d 17041 (gdbarch, byte_size, addr_class);
876cecd0
TT
17042 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17043 == 0);
8b2dbe47
KB
17044 type = make_type_with_address_space (type, type_flags);
17045 }
17046 else if (TYPE_LENGTH (type) != byte_size)
17047 {
b98664d3 17048 complaint (_("invalid pointer size %d"), byte_size);
8b2dbe47 17049 }
2b4424c3
TT
17050 else if (TYPE_RAW_ALIGN (type) != alignment)
17051 {
b98664d3 17052 complaint (_("Invalid DW_AT_alignment"
2b4424c3
TT
17053 " - DIE at %s [in module %s]"),
17054 sect_offset_str (die->sect_off),
17055 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17056 }
6e70227d 17057 else
9a619af0
MS
17058 {
17059 /* Should we also complain about unhandled address classes? */
17060 }
c906108c 17061 }
8b2dbe47
KB
17062
17063 TYPE_LENGTH (type) = byte_size;
2b4424c3 17064 set_type_align (type, alignment);
f792889a 17065 return set_die_type (die, type, cu);
c906108c
SS
17066}
17067
17068/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17069 the user defined type vector. */
17070
f792889a 17071static struct type *
e7c27a73 17072read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
17073{
17074 struct type *type;
17075 struct type *to_type;
17076 struct type *domain;
17077
e7c27a73
DJ
17078 to_type = die_type (die, cu);
17079 domain = die_containing_type (die, cu);
0d5de010 17080
7e314c57
JK
17081 /* The calls above may have already set the type for this DIE. */
17082 type = get_die_type (die, cu);
17083 if (type)
17084 return type;
17085
0d5de010
DJ
17086 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17087 type = lookup_methodptr_type (to_type);
7078baeb
TT
17088 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17089 {
518817b3
SM
17090 struct type *new_type
17091 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
7078baeb
TT
17092
17093 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17094 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17095 TYPE_VARARGS (to_type));
17096 type = lookup_methodptr_type (new_type);
17097 }
0d5de010
DJ
17098 else
17099 type = lookup_memberptr_type (to_type, domain);
c906108c 17100
f792889a 17101 return set_die_type (die, type, cu);
c906108c
SS
17102}
17103
4297a3f0 17104/* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
c906108c
SS
17105 the user defined type vector. */
17106
f792889a 17107static struct type *
4297a3f0
AV
17108read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17109 enum type_code refcode)
c906108c 17110{
e7c27a73 17111 struct comp_unit_head *cu_header = &cu->header;
7e314c57 17112 struct type *type, *target_type;
c906108c
SS
17113 struct attribute *attr;
17114
4297a3f0
AV
17115 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17116
7e314c57
JK
17117 target_type = die_type (die, cu);
17118
17119 /* The die_type call above may have already set the type for this DIE. */
17120 type = get_die_type (die, cu);
17121 if (type)
17122 return type;
17123
4297a3f0 17124 type = lookup_reference_type (target_type, refcode);
e142c38c 17125 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
17126 if (attr)
17127 {
17128 TYPE_LENGTH (type) = DW_UNSND (attr);
17129 }
17130 else
17131 {
107d2387 17132 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 17133 }
2b4424c3 17134 maybe_set_alignment (cu, die, type);
f792889a 17135 return set_die_type (die, type, cu);
c906108c
SS
17136}
17137
cf363f18
MW
17138/* Add the given cv-qualifiers to the element type of the array. GCC
17139 outputs DWARF type qualifiers that apply to an array, not the
17140 element type. But GDB relies on the array element type to carry
17141 the cv-qualifiers. This mimics section 6.7.3 of the C99
17142 specification. */
17143
17144static struct type *
17145add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17146 struct type *base_type, int cnst, int voltl)
17147{
17148 struct type *el_type, *inner_array;
17149
17150 base_type = copy_type (base_type);
17151 inner_array = base_type;
17152
17153 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17154 {
17155 TYPE_TARGET_TYPE (inner_array) =
17156 copy_type (TYPE_TARGET_TYPE (inner_array));
17157 inner_array = TYPE_TARGET_TYPE (inner_array);
17158 }
17159
17160 el_type = TYPE_TARGET_TYPE (inner_array);
17161 cnst |= TYPE_CONST (el_type);
17162 voltl |= TYPE_VOLATILE (el_type);
17163 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17164
17165 return set_die_type (die, base_type, cu);
17166}
17167
f792889a 17168static struct type *
e7c27a73 17169read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17170{
f792889a 17171 struct type *base_type, *cv_type;
c906108c 17172
e7c27a73 17173 base_type = die_type (die, cu);
7e314c57
JK
17174
17175 /* The die_type call above may have already set the type for this DIE. */
17176 cv_type = get_die_type (die, cu);
17177 if (cv_type)
17178 return cv_type;
17179
2f608a3a
KW
17180 /* In case the const qualifier is applied to an array type, the element type
17181 is so qualified, not the array type (section 6.7.3 of C99). */
17182 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
cf363f18 17183 return add_array_cv_type (die, cu, base_type, 1, 0);
2f608a3a 17184
f792889a
DJ
17185 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17186 return set_die_type (die, cv_type, cu);
c906108c
SS
17187}
17188
f792889a 17189static struct type *
e7c27a73 17190read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17191{
f792889a 17192 struct type *base_type, *cv_type;
c906108c 17193
e7c27a73 17194 base_type = die_type (die, cu);
7e314c57
JK
17195
17196 /* The die_type call above may have already set the type for this DIE. */
17197 cv_type = get_die_type (die, cu);
17198 if (cv_type)
17199 return cv_type;
17200
cf363f18
MW
17201 /* In case the volatile qualifier is applied to an array type, the
17202 element type is so qualified, not the array type (section 6.7.3
17203 of C99). */
17204 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17205 return add_array_cv_type (die, cu, base_type, 0, 1);
17206
f792889a
DJ
17207 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17208 return set_die_type (die, cv_type, cu);
c906108c
SS
17209}
17210
06d66ee9
TT
17211/* Handle DW_TAG_restrict_type. */
17212
17213static struct type *
17214read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17215{
17216 struct type *base_type, *cv_type;
17217
17218 base_type = die_type (die, cu);
17219
17220 /* The die_type call above may have already set the type for this DIE. */
17221 cv_type = get_die_type (die, cu);
17222 if (cv_type)
17223 return cv_type;
17224
17225 cv_type = make_restrict_type (base_type);
17226 return set_die_type (die, cv_type, cu);
17227}
17228
a2c2acaf
MW
17229/* Handle DW_TAG_atomic_type. */
17230
17231static struct type *
17232read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17233{
17234 struct type *base_type, *cv_type;
17235
17236 base_type = die_type (die, cu);
17237
17238 /* The die_type call above may have already set the type for this DIE. */
17239 cv_type = get_die_type (die, cu);
17240 if (cv_type)
17241 return cv_type;
17242
17243 cv_type = make_atomic_type (base_type);
17244 return set_die_type (die, cv_type, cu);
17245}
17246
c906108c
SS
17247/* Extract all information from a DW_TAG_string_type DIE and add to
17248 the user defined type vector. It isn't really a user defined type,
17249 but it behaves like one, with other DIE's using an AT_user_def_type
17250 attribute to reference it. */
17251
f792889a 17252static struct type *
e7c27a73 17253read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17254{
518817b3 17255 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
3b7538c0 17256 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
17257 struct type *type, *range_type, *index_type, *char_type;
17258 struct attribute *attr;
17259 unsigned int length;
17260
e142c38c 17261 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
17262 if (attr)
17263 {
17264 length = DW_UNSND (attr);
17265 }
17266 else
17267 {
0963b4bd 17268 /* Check for the DW_AT_byte_size attribute. */
e142c38c 17269 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
17270 if (attr)
17271 {
17272 length = DW_UNSND (attr);
17273 }
17274 else
17275 {
17276 length = 1;
17277 }
c906108c 17278 }
6ccb9162 17279
46bf5051 17280 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 17281 range_type = create_static_range_type (NULL, index_type, 1, length);
3b7538c0
UW
17282 char_type = language_string_char_type (cu->language_defn, gdbarch);
17283 type = create_string_type (NULL, char_type, range_type);
6ccb9162 17284
f792889a 17285 return set_die_type (die, type, cu);
c906108c
SS
17286}
17287
4d804846
JB
17288/* Assuming that DIE corresponds to a function, returns nonzero
17289 if the function is prototyped. */
17290
17291static int
17292prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17293{
17294 struct attribute *attr;
17295
17296 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17297 if (attr && (DW_UNSND (attr) != 0))
17298 return 1;
17299
17300 /* The DWARF standard implies that the DW_AT_prototyped attribute
17301 is only meaninful for C, but the concept also extends to other
17302 languages that allow unprototyped functions (Eg: Objective C).
17303 For all other languages, assume that functions are always
17304 prototyped. */
17305 if (cu->language != language_c
17306 && cu->language != language_objc
17307 && cu->language != language_opencl)
17308 return 1;
17309
17310 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17311 prototyped and unprototyped functions; default to prototyped,
17312 since that is more common in modern code (and RealView warns
17313 about unprototyped functions). */
17314 if (producer_is_realview (cu->producer))
17315 return 1;
17316
17317 return 0;
17318}
17319
c906108c
SS
17320/* Handle DIES due to C code like:
17321
17322 struct foo
c5aa993b
JM
17323 {
17324 int (*funcp)(int a, long l);
17325 int b;
17326 };
c906108c 17327
0963b4bd 17328 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 17329
f792889a 17330static struct type *
e7c27a73 17331read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17332{
518817b3 17333 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
0963b4bd
MS
17334 struct type *type; /* Type that this function returns. */
17335 struct type *ftype; /* Function that returns above type. */
c906108c
SS
17336 struct attribute *attr;
17337
e7c27a73 17338 type = die_type (die, cu);
7e314c57
JK
17339
17340 /* The die_type call above may have already set the type for this DIE. */
17341 ftype = get_die_type (die, cu);
17342 if (ftype)
17343 return ftype;
17344
0c8b41f1 17345 ftype = lookup_function_type (type);
c906108c 17346
4d804846 17347 if (prototyped_function_p (die, cu))
a6c727b2 17348 TYPE_PROTOTYPED (ftype) = 1;
c906108c 17349
c055b101
CV
17350 /* Store the calling convention in the type if it's available in
17351 the subroutine die. Otherwise set the calling convention to
17352 the default value DW_CC_normal. */
17353 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
17354 if (attr)
17355 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17356 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17357 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17358 else
17359 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2 17360
743649fd
MW
17361 /* Record whether the function returns normally to its caller or not
17362 if the DWARF producer set that information. */
17363 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17364 if (attr && (DW_UNSND (attr) != 0))
17365 TYPE_NO_RETURN (ftype) = 1;
17366
76c10ea2
GM
17367 /* We need to add the subroutine type to the die immediately so
17368 we don't infinitely recurse when dealing with parameters
0963b4bd 17369 declared as the same subroutine type. */
76c10ea2 17370 set_die_type (die, ftype, cu);
6e70227d 17371
639d11d3 17372 if (die->child != NULL)
c906108c 17373 {
bb5ed363 17374 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 17375 struct die_info *child_die;
8072405b 17376 int nparams, iparams;
c906108c
SS
17377
17378 /* Count the number of parameters.
17379 FIXME: GDB currently ignores vararg functions, but knows about
17380 vararg member functions. */
8072405b 17381 nparams = 0;
639d11d3 17382 child_die = die->child;
c906108c
SS
17383 while (child_die && child_die->tag)
17384 {
17385 if (child_die->tag == DW_TAG_formal_parameter)
17386 nparams++;
17387 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 17388 TYPE_VARARGS (ftype) = 1;
c906108c
SS
17389 child_die = sibling_die (child_die);
17390 }
17391
17392 /* Allocate storage for parameters and fill them in. */
17393 TYPE_NFIELDS (ftype) = nparams;
17394 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 17395 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 17396
8072405b
JK
17397 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17398 even if we error out during the parameters reading below. */
17399 for (iparams = 0; iparams < nparams; iparams++)
17400 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17401
17402 iparams = 0;
639d11d3 17403 child_die = die->child;
c906108c
SS
17404 while (child_die && child_die->tag)
17405 {
17406 if (child_die->tag == DW_TAG_formal_parameter)
17407 {
3ce3b1ba
PA
17408 struct type *arg_type;
17409
17410 /* DWARF version 2 has no clean way to discern C++
17411 static and non-static member functions. G++ helps
17412 GDB by marking the first parameter for non-static
17413 member functions (which is the this pointer) as
17414 artificial. We pass this information to
17415 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17416
17417 DWARF version 3 added DW_AT_object_pointer, which GCC
17418 4.5 does not yet generate. */
e142c38c 17419 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
17420 if (attr)
17421 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17422 else
9c37b5ae 17423 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
3ce3b1ba
PA
17424 arg_type = die_type (child_die, cu);
17425
17426 /* RealView does not mark THIS as const, which the testsuite
17427 expects. GCC marks THIS as const in method definitions,
17428 but not in the class specifications (GCC PR 43053). */
17429 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17430 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17431 {
17432 int is_this = 0;
17433 struct dwarf2_cu *arg_cu = cu;
17434 const char *name = dwarf2_name (child_die, cu);
17435
17436 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17437 if (attr)
17438 {
17439 /* If the compiler emits this, use it. */
17440 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17441 is_this = 1;
17442 }
17443 else if (name && strcmp (name, "this") == 0)
17444 /* Function definitions will have the argument names. */
17445 is_this = 1;
17446 else if (name == NULL && iparams == 0)
17447 /* Declarations may not have the names, so like
17448 elsewhere in GDB, assume an artificial first
17449 argument is "this". */
17450 is_this = 1;
17451
17452 if (is_this)
17453 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17454 arg_type, 0);
17455 }
17456
17457 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
17458 iparams++;
17459 }
17460 child_die = sibling_die (child_die);
17461 }
17462 }
17463
76c10ea2 17464 return ftype;
c906108c
SS
17465}
17466
f792889a 17467static struct type *
e7c27a73 17468read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17469{
518817b3 17470 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
0114d602 17471 const char *name = NULL;
3c8e0968 17472 struct type *this_type, *target_type;
c906108c 17473
94af9270 17474 name = dwarf2_full_name (NULL, die, cu);
19f392bc
UW
17475 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17476 TYPE_TARGET_STUB (this_type) = 1;
f792889a 17477 set_die_type (die, this_type, cu);
3c8e0968
DE
17478 target_type = die_type (die, cu);
17479 if (target_type != this_type)
17480 TYPE_TARGET_TYPE (this_type) = target_type;
17481 else
17482 {
17483 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17484 spec and cause infinite loops in GDB. */
b98664d3 17485 complaint (_("Self-referential DW_TAG_typedef "
9d8780f0
SM
17486 "- DIE at %s [in module %s]"),
17487 sect_offset_str (die->sect_off), objfile_name (objfile));
3c8e0968
DE
17488 TYPE_TARGET_TYPE (this_type) = NULL;
17489 }
f792889a 17490 return this_type;
c906108c
SS
17491}
17492
9b790ce7
UW
17493/* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17494 (which may be different from NAME) to the architecture back-end to allow
17495 it to guess the correct format if necessary. */
17496
17497static struct type *
17498dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17499 const char *name_hint)
17500{
17501 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17502 const struct floatformat **format;
17503 struct type *type;
17504
17505 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17506 if (format)
17507 type = init_float_type (objfile, bits, name, format);
17508 else
77b7c781 17509 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
9b790ce7
UW
17510
17511 return type;
17512}
17513
eb77c9df
AB
17514/* Allocate an integer type of size BITS and name NAME. */
17515
17516static struct type *
17517dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17518 int bits, int unsigned_p, const char *name)
17519{
17520 struct type *type;
17521
17522 /* Versions of Intel's C Compiler generate an integer type called "void"
17523 instead of using DW_TAG_unspecified_type. This has been seen on
17524 at least versions 14, 17, and 18. */
17525 if (bits == 0 && producer_is_icc (cu) && strcmp (name, "void") == 0)
17526 type = objfile_type (objfile)->builtin_void;
17527 else
17528 type = init_integer_type (objfile, bits, unsigned_p, name);
17529
17530 return type;
17531}
17532
c906108c
SS
17533/* Find a representation of a given base type and install
17534 it in the TYPE field of the die. */
17535
f792889a 17536static struct type *
e7c27a73 17537read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17538{
518817b3 17539 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
c906108c
SS
17540 struct type *type;
17541 struct attribute *attr;
19f392bc 17542 int encoding = 0, bits = 0;
15d034d0 17543 const char *name;
c906108c 17544
e142c38c 17545 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
17546 if (attr)
17547 {
17548 encoding = DW_UNSND (attr);
17549 }
e142c38c 17550 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
17551 if (attr)
17552 {
19f392bc 17553 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
c906108c 17554 }
39cbfefa 17555 name = dwarf2_name (die, cu);
6ccb9162 17556 if (!name)
c906108c 17557 {
b98664d3 17558 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
c906108c 17559 }
6ccb9162
UW
17560
17561 switch (encoding)
c906108c 17562 {
6ccb9162
UW
17563 case DW_ATE_address:
17564 /* Turn DW_ATE_address into a void * pointer. */
77b7c781 17565 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
19f392bc 17566 type = init_pointer_type (objfile, bits, name, type);
6ccb9162
UW
17567 break;
17568 case DW_ATE_boolean:
19f392bc 17569 type = init_boolean_type (objfile, bits, 1, name);
6ccb9162
UW
17570 break;
17571 case DW_ATE_complex_float:
9b790ce7 17572 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
19f392bc 17573 type = init_complex_type (objfile, name, type);
6ccb9162
UW
17574 break;
17575 case DW_ATE_decimal_float:
19f392bc 17576 type = init_decfloat_type (objfile, bits, name);
6ccb9162
UW
17577 break;
17578 case DW_ATE_float:
9b790ce7 17579 type = dwarf2_init_float_type (objfile, bits, name, name);
6ccb9162
UW
17580 break;
17581 case DW_ATE_signed:
eb77c9df 17582 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
6ccb9162
UW
17583 break;
17584 case DW_ATE_unsigned:
3b2b8fea
TT
17585 if (cu->language == language_fortran
17586 && name
61012eef 17587 && startswith (name, "character("))
19f392bc
UW
17588 type = init_character_type (objfile, bits, 1, name);
17589 else
eb77c9df 17590 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
6ccb9162
UW
17591 break;
17592 case DW_ATE_signed_char:
6e70227d 17593 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
17594 || cu->language == language_pascal
17595 || cu->language == language_fortran)
19f392bc
UW
17596 type = init_character_type (objfile, bits, 0, name);
17597 else
eb77c9df 17598 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
6ccb9162
UW
17599 break;
17600 case DW_ATE_unsigned_char:
868a0084 17601 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea 17602 || cu->language == language_pascal
c44af4eb
TT
17603 || cu->language == language_fortran
17604 || cu->language == language_rust)
19f392bc
UW
17605 type = init_character_type (objfile, bits, 1, name);
17606 else
eb77c9df 17607 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
6ccb9162 17608 break;
75079b2b 17609 case DW_ATE_UTF:
53e710ac
PA
17610 {
17611 gdbarch *arch = get_objfile_arch (objfile);
17612
17613 if (bits == 16)
17614 type = builtin_type (arch)->builtin_char16;
17615 else if (bits == 32)
17616 type = builtin_type (arch)->builtin_char32;
17617 else
17618 {
b98664d3 17619 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
53e710ac 17620 bits);
eb77c9df 17621 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
53e710ac
PA
17622 }
17623 return set_die_type (die, type, cu);
17624 }
75079b2b
TT
17625 break;
17626
6ccb9162 17627 default:
b98664d3 17628 complaint (_("unsupported DW_AT_encoding: '%s'"),
6ccb9162 17629 dwarf_type_encoding_name (encoding));
77b7c781 17630 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
6ccb9162 17631 break;
c906108c 17632 }
6ccb9162 17633
0114d602 17634 if (name && strcmp (name, "char") == 0)
876cecd0 17635 TYPE_NOSIGN (type) = 1;
0114d602 17636
2b4424c3
TT
17637 maybe_set_alignment (cu, die, type);
17638
f792889a 17639 return set_die_type (die, type, cu);
c906108c
SS
17640}
17641
80180f79
SA
17642/* Parse dwarf attribute if it's a block, reference or constant and put the
17643 resulting value of the attribute into struct bound_prop.
17644 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17645
17646static int
17647attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17648 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17649{
17650 struct dwarf2_property_baton *baton;
518817b3
SM
17651 struct obstack *obstack
17652 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
80180f79
SA
17653
17654 if (attr == NULL || prop == NULL)
17655 return 0;
17656
17657 if (attr_form_is_block (attr))
17658 {
8d749320 17659 baton = XOBNEW (obstack, struct dwarf2_property_baton);
80180f79
SA
17660 baton->referenced_type = NULL;
17661 baton->locexpr.per_cu = cu->per_cu;
17662 baton->locexpr.size = DW_BLOCK (attr)->size;
17663 baton->locexpr.data = DW_BLOCK (attr)->data;
17664 prop->data.baton = baton;
17665 prop->kind = PROP_LOCEXPR;
17666 gdb_assert (prop->data.baton != NULL);
17667 }
17668 else if (attr_form_is_ref (attr))
17669 {
17670 struct dwarf2_cu *target_cu = cu;
17671 struct die_info *target_die;
17672 struct attribute *target_attr;
17673
17674 target_die = follow_die_ref (die, attr, &target_cu);
17675 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
df25ebbd
JB
17676 if (target_attr == NULL)
17677 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17678 target_cu);
80180f79
SA
17679 if (target_attr == NULL)
17680 return 0;
17681
df25ebbd 17682 switch (target_attr->name)
80180f79 17683 {
df25ebbd
JB
17684 case DW_AT_location:
17685 if (attr_form_is_section_offset (target_attr))
17686 {
8d749320 17687 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
17688 baton->referenced_type = die_type (target_die, target_cu);
17689 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17690 prop->data.baton = baton;
17691 prop->kind = PROP_LOCLIST;
17692 gdb_assert (prop->data.baton != NULL);
17693 }
17694 else if (attr_form_is_block (target_attr))
17695 {
8d749320 17696 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
17697 baton->referenced_type = die_type (target_die, target_cu);
17698 baton->locexpr.per_cu = cu->per_cu;
17699 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17700 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17701 prop->data.baton = baton;
17702 prop->kind = PROP_LOCEXPR;
17703 gdb_assert (prop->data.baton != NULL);
17704 }
17705 else
17706 {
17707 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17708 "dynamic property");
17709 return 0;
17710 }
17711 break;
17712 case DW_AT_data_member_location:
17713 {
17714 LONGEST offset;
17715
17716 if (!handle_data_member_location (target_die, target_cu,
17717 &offset))
17718 return 0;
17719
8d749320 17720 baton = XOBNEW (obstack, struct dwarf2_property_baton);
6ad395a7
JB
17721 baton->referenced_type = read_type_die (target_die->parent,
17722 target_cu);
df25ebbd
JB
17723 baton->offset_info.offset = offset;
17724 baton->offset_info.type = die_type (target_die, target_cu);
17725 prop->data.baton = baton;
17726 prop->kind = PROP_ADDR_OFFSET;
17727 break;
17728 }
80180f79
SA
17729 }
17730 }
17731 else if (attr_form_is_constant (attr))
17732 {
17733 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17734 prop->kind = PROP_CONST;
17735 }
17736 else
17737 {
17738 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17739 dwarf2_name (die, cu));
17740 return 0;
17741 }
17742
17743 return 1;
17744}
17745
a02abb62
JB
17746/* Read the given DW_AT_subrange DIE. */
17747
f792889a 17748static struct type *
a02abb62
JB
17749read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17750{
4c9ad8c2 17751 struct type *base_type, *orig_base_type;
a02abb62
JB
17752 struct type *range_type;
17753 struct attribute *attr;
729efb13 17754 struct dynamic_prop low, high;
4fae6e18 17755 int low_default_is_valid;
c451ebe5 17756 int high_bound_is_count = 0;
15d034d0 17757 const char *name;
d359392f 17758 ULONGEST negative_mask;
e77813c8 17759
4c9ad8c2
TT
17760 orig_base_type = die_type (die, cu);
17761 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17762 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17763 creating the range type, but we use the result of check_typedef
17764 when examining properties of the type. */
17765 base_type = check_typedef (orig_base_type);
a02abb62 17766
7e314c57
JK
17767 /* The die_type call above may have already set the type for this DIE. */
17768 range_type = get_die_type (die, cu);
17769 if (range_type)
17770 return range_type;
17771
729efb13
SA
17772 low.kind = PROP_CONST;
17773 high.kind = PROP_CONST;
17774 high.data.const_val = 0;
17775
4fae6e18
JK
17776 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17777 omitting DW_AT_lower_bound. */
17778 switch (cu->language)
6e70227d 17779 {
4fae6e18
JK
17780 case language_c:
17781 case language_cplus:
729efb13 17782 low.data.const_val = 0;
4fae6e18
JK
17783 low_default_is_valid = 1;
17784 break;
17785 case language_fortran:
729efb13 17786 low.data.const_val = 1;
4fae6e18
JK
17787 low_default_is_valid = 1;
17788 break;
17789 case language_d:
4fae6e18 17790 case language_objc:
c44af4eb 17791 case language_rust:
729efb13 17792 low.data.const_val = 0;
4fae6e18
JK
17793 low_default_is_valid = (cu->header.version >= 4);
17794 break;
17795 case language_ada:
17796 case language_m2:
17797 case language_pascal:
729efb13 17798 low.data.const_val = 1;
4fae6e18
JK
17799 low_default_is_valid = (cu->header.version >= 4);
17800 break;
17801 default:
729efb13 17802 low.data.const_val = 0;
4fae6e18
JK
17803 low_default_is_valid = 0;
17804 break;
a02abb62
JB
17805 }
17806
e142c38c 17807 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 17808 if (attr)
11c1ba78 17809 attr_to_dynamic_prop (attr, die, cu, &low);
4fae6e18 17810 else if (!low_default_is_valid)
b98664d3 17811 complaint (_("Missing DW_AT_lower_bound "
9d8780f0
SM
17812 "- DIE at %s [in module %s]"),
17813 sect_offset_str (die->sect_off),
518817b3 17814 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
a02abb62 17815
506f5c41
TV
17816 struct attribute *attr_ub, *attr_count;
17817 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
80180f79 17818 if (!attr_to_dynamic_prop (attr, die, cu, &high))
e77813c8 17819 {
506f5c41 17820 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
c451ebe5 17821 if (attr_to_dynamic_prop (attr, die, cu, &high))
6b662e19 17822 {
c451ebe5
SA
17823 /* If bounds are constant do the final calculation here. */
17824 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17825 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17826 else
17827 high_bound_is_count = 1;
c2ff108b 17828 }
506f5c41
TV
17829 else
17830 {
17831 if (attr_ub != NULL)
17832 complaint (_("Unresolved DW_AT_upper_bound "
17833 "- DIE at %s [in module %s]"),
17834 sect_offset_str (die->sect_off),
17835 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17836 if (attr_count != NULL)
17837 complaint (_("Unresolved DW_AT_count "
17838 "- DIE at %s [in module %s]"),
17839 sect_offset_str (die->sect_off),
17840 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17841 }
17842
e77813c8
PM
17843 }
17844
17845 /* Dwarf-2 specifications explicitly allows to create subrange types
17846 without specifying a base type.
17847 In that case, the base type must be set to the type of
17848 the lower bound, upper bound or count, in that order, if any of these
17849 three attributes references an object that has a type.
17850 If no base type is found, the Dwarf-2 specifications say that
17851 a signed integer type of size equal to the size of an address should
17852 be used.
17853 For the following C code: `extern char gdb_int [];'
17854 GCC produces an empty range DIE.
17855 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 17856 high bound or count are not yet handled by this code. */
e77813c8
PM
17857 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17858 {
518817b3 17859 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
e77813c8
PM
17860 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17861 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17862 struct type *int_type = objfile_type (objfile)->builtin_int;
17863
17864 /* Test "int", "long int", and "long long int" objfile types,
17865 and select the first one having a size above or equal to the
17866 architecture address size. */
17867 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17868 base_type = int_type;
17869 else
17870 {
17871 int_type = objfile_type (objfile)->builtin_long;
17872 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17873 base_type = int_type;
17874 else
17875 {
17876 int_type = objfile_type (objfile)->builtin_long_long;
17877 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17878 base_type = int_type;
17879 }
17880 }
17881 }
a02abb62 17882
dbb9c2b1
JB
17883 /* Normally, the DWARF producers are expected to use a signed
17884 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17885 But this is unfortunately not always the case, as witnessed
17886 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17887 is used instead. To work around that ambiguity, we treat
17888 the bounds as signed, and thus sign-extend their values, when
17889 the base type is signed. */
6e70227d 17890 negative_mask =
d359392f 17891 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
729efb13
SA
17892 if (low.kind == PROP_CONST
17893 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17894 low.data.const_val |= negative_mask;
17895 if (high.kind == PROP_CONST
17896 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17897 high.data.const_val |= negative_mask;
43bbcdc2 17898
729efb13 17899 range_type = create_range_type (NULL, orig_base_type, &low, &high);
a02abb62 17900
c451ebe5
SA
17901 if (high_bound_is_count)
17902 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17903
c2ff108b
JK
17904 /* Ada expects an empty array on no boundary attributes. */
17905 if (attr == NULL && cu->language != language_ada)
729efb13 17906 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
c2ff108b 17907
39cbfefa
DJ
17908 name = dwarf2_name (die, cu);
17909 if (name)
17910 TYPE_NAME (range_type) = name;
6e70227d 17911
e142c38c 17912 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
17913 if (attr)
17914 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17915
2b4424c3
TT
17916 maybe_set_alignment (cu, die, range_type);
17917
7e314c57
JK
17918 set_die_type (die, range_type, cu);
17919
17920 /* set_die_type should be already done. */
b4ba55a1
JB
17921 set_descriptive_type (range_type, die, cu);
17922
7e314c57 17923 return range_type;
a02abb62 17924}
6e70227d 17925
f792889a 17926static struct type *
81a17f79
JB
17927read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17928{
17929 struct type *type;
81a17f79 17930
518817b3
SM
17931 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17932 NULL);
0114d602 17933 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 17934
74a2f8ff
JB
17935 /* In Ada, an unspecified type is typically used when the description
17936 of the type is defered to a different unit. When encountering
17937 such a type, we treat it as a stub, and try to resolve it later on,
17938 when needed. */
17939 if (cu->language == language_ada)
17940 TYPE_STUB (type) = 1;
17941
f792889a 17942 return set_die_type (die, type, cu);
81a17f79 17943}
a02abb62 17944
639d11d3
DC
17945/* Read a single die and all its descendents. Set the die's sibling
17946 field to NULL; set other fields in the die correctly, and set all
17947 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17948 location of the info_ptr after reading all of those dies. PARENT
17949 is the parent of the die in question. */
17950
17951static struct die_info *
dee91e82 17952read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
17953 const gdb_byte *info_ptr,
17954 const gdb_byte **new_info_ptr,
dee91e82 17955 struct die_info *parent)
639d11d3
DC
17956{
17957 struct die_info *die;
d521ce57 17958 const gdb_byte *cur_ptr;
639d11d3
DC
17959 int has_children;
17960
bf6af496 17961 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
17962 if (die == NULL)
17963 {
17964 *new_info_ptr = cur_ptr;
17965 return NULL;
17966 }
93311388 17967 store_in_ref_table (die, reader->cu);
639d11d3
DC
17968
17969 if (has_children)
bf6af496 17970 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
17971 else
17972 {
17973 die->child = NULL;
17974 *new_info_ptr = cur_ptr;
17975 }
17976
17977 die->sibling = NULL;
17978 die->parent = parent;
17979 return die;
17980}
17981
17982/* Read a die, all of its descendents, and all of its siblings; set
17983 all of the fields of all of the dies correctly. Arguments are as
17984 in read_die_and_children. */
17985
17986static struct die_info *
bf6af496 17987read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
17988 const gdb_byte *info_ptr,
17989 const gdb_byte **new_info_ptr,
bf6af496 17990 struct die_info *parent)
639d11d3
DC
17991{
17992 struct die_info *first_die, *last_sibling;
d521ce57 17993 const gdb_byte *cur_ptr;
639d11d3 17994
c906108c 17995 cur_ptr = info_ptr;
639d11d3
DC
17996 first_die = last_sibling = NULL;
17997
17998 while (1)
c906108c 17999 {
639d11d3 18000 struct die_info *die
dee91e82 18001 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 18002
1d325ec1 18003 if (die == NULL)
c906108c 18004 {
639d11d3
DC
18005 *new_info_ptr = cur_ptr;
18006 return first_die;
c906108c 18007 }
1d325ec1
DJ
18008
18009 if (!first_die)
18010 first_die = die;
c906108c 18011 else
1d325ec1
DJ
18012 last_sibling->sibling = die;
18013
18014 last_sibling = die;
c906108c 18015 }
c906108c
SS
18016}
18017
bf6af496
DE
18018/* Read a die, all of its descendents, and all of its siblings; set
18019 all of the fields of all of the dies correctly. Arguments are as
18020 in read_die_and_children.
18021 This the main entry point for reading a DIE and all its children. */
18022
18023static struct die_info *
18024read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
18025 const gdb_byte *info_ptr,
18026 const gdb_byte **new_info_ptr,
bf6af496
DE
18027 struct die_info *parent)
18028{
18029 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18030 new_info_ptr, parent);
18031
b4f54984 18032 if (dwarf_die_debug)
bf6af496
DE
18033 {
18034 fprintf_unfiltered (gdb_stdlog,
18035 "Read die from %s@0x%x of %s:\n",
a32a8923 18036 get_section_name (reader->die_section),
bf6af496
DE
18037 (unsigned) (info_ptr - reader->die_section->buffer),
18038 bfd_get_filename (reader->abfd));
b4f54984 18039 dump_die (die, dwarf_die_debug);
bf6af496
DE
18040 }
18041
18042 return die;
18043}
18044
3019eac3
DE
18045/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18046 attributes.
18047 The caller is responsible for filling in the extra attributes
18048 and updating (*DIEP)->num_attrs.
18049 Set DIEP to point to a newly allocated die with its information,
18050 except for its child, sibling, and parent fields.
18051 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 18052
d521ce57 18053static const gdb_byte *
3019eac3 18054read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 18055 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 18056 int *has_children, int num_extra_attrs)
93311388 18057{
b64f50a1 18058 unsigned int abbrev_number, bytes_read, i;
93311388
DE
18059 struct abbrev_info *abbrev;
18060 struct die_info *die;
18061 struct dwarf2_cu *cu = reader->cu;
18062 bfd *abfd = reader->abfd;
18063
9c541725 18064 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
93311388
DE
18065 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18066 info_ptr += bytes_read;
18067 if (!abbrev_number)
18068 {
18069 *diep = NULL;
18070 *has_children = 0;
18071 return info_ptr;
18072 }
18073
685af9cd 18074 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
93311388 18075 if (!abbrev)
348e048f
DE
18076 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18077 abbrev_number,
18078 bfd_get_filename (abfd));
18079
3019eac3 18080 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
9c541725 18081 die->sect_off = sect_off;
93311388
DE
18082 die->tag = abbrev->tag;
18083 die->abbrev = abbrev_number;
18084
3019eac3
DE
18085 /* Make the result usable.
18086 The caller needs to update num_attrs after adding the extra
18087 attributes. */
93311388
DE
18088 die->num_attrs = abbrev->num_attrs;
18089
18090 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
18091 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18092 info_ptr);
93311388
DE
18093
18094 *diep = die;
18095 *has_children = abbrev->has_children;
18096 return info_ptr;
18097}
18098
3019eac3
DE
18099/* Read a die and all its attributes.
18100 Set DIEP to point to a newly allocated die with its information,
18101 except for its child, sibling, and parent fields.
18102 Set HAS_CHILDREN to tell whether the die has children or not. */
18103
d521ce57 18104static const gdb_byte *
3019eac3 18105read_full_die (const struct die_reader_specs *reader,
d521ce57 18106 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
18107 int *has_children)
18108{
d521ce57 18109 const gdb_byte *result;
bf6af496
DE
18110
18111 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18112
b4f54984 18113 if (dwarf_die_debug)
bf6af496
DE
18114 {
18115 fprintf_unfiltered (gdb_stdlog,
18116 "Read die from %s@0x%x of %s:\n",
a32a8923 18117 get_section_name (reader->die_section),
bf6af496
DE
18118 (unsigned) (info_ptr - reader->die_section->buffer),
18119 bfd_get_filename (reader->abfd));
b4f54984 18120 dump_die (*diep, dwarf_die_debug);
bf6af496
DE
18121 }
18122
18123 return result;
3019eac3 18124}
433df2d4
DE
18125\f
18126/* Abbreviation tables.
3019eac3 18127
433df2d4 18128 In DWARF version 2, the description of the debugging information is
c906108c
SS
18129 stored in a separate .debug_abbrev section. Before we read any
18130 dies from a section we read in all abbreviations and install them
433df2d4
DE
18131 in a hash table. */
18132
18133/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18134
685af9cd
TT
18135struct abbrev_info *
18136abbrev_table::alloc_abbrev ()
433df2d4
DE
18137{
18138 struct abbrev_info *abbrev;
18139
685af9cd 18140 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
433df2d4 18141 memset (abbrev, 0, sizeof (struct abbrev_info));
8d749320 18142
433df2d4
DE
18143 return abbrev;
18144}
18145
18146/* Add an abbreviation to the table. */
c906108c 18147
685af9cd
TT
18148void
18149abbrev_table::add_abbrev (unsigned int abbrev_number,
18150 struct abbrev_info *abbrev)
433df2d4
DE
18151{
18152 unsigned int hash_number;
18153
18154 hash_number = abbrev_number % ABBREV_HASH_SIZE;
4a17f768
YQ
18155 abbrev->next = m_abbrevs[hash_number];
18156 m_abbrevs[hash_number] = abbrev;
433df2d4 18157}
dee91e82 18158
433df2d4
DE
18159/* Look up an abbrev in the table.
18160 Returns NULL if the abbrev is not found. */
18161
685af9cd
TT
18162struct abbrev_info *
18163abbrev_table::lookup_abbrev (unsigned int abbrev_number)
c906108c 18164{
433df2d4
DE
18165 unsigned int hash_number;
18166 struct abbrev_info *abbrev;
18167
18168 hash_number = abbrev_number % ABBREV_HASH_SIZE;
4a17f768 18169 abbrev = m_abbrevs[hash_number];
433df2d4
DE
18170
18171 while (abbrev)
18172 {
18173 if (abbrev->number == abbrev_number)
18174 return abbrev;
18175 abbrev = abbrev->next;
18176 }
18177 return NULL;
18178}
18179
18180/* Read in an abbrev table. */
18181
685af9cd 18182static abbrev_table_up
ed2dc618
SM
18183abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18184 struct dwarf2_section_info *section,
9c541725 18185 sect_offset sect_off)
433df2d4
DE
18186{
18187 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 18188 bfd *abfd = get_section_bfd_owner (section);
d521ce57 18189 const gdb_byte *abbrev_ptr;
c906108c
SS
18190 struct abbrev_info *cur_abbrev;
18191 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 18192 unsigned int abbrev_form;
f3dd6933
DJ
18193 struct attr_abbrev *cur_attrs;
18194 unsigned int allocated_attrs;
c906108c 18195
685af9cd 18196 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
c906108c 18197
433df2d4 18198 dwarf2_read_section (objfile, section);
9c541725 18199 abbrev_ptr = section->buffer + to_underlying (sect_off);
c906108c
SS
18200 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18201 abbrev_ptr += bytes_read;
18202
f3dd6933 18203 allocated_attrs = ATTR_ALLOC_CHUNK;
8d749320 18204 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
6e70227d 18205
0963b4bd 18206 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
18207 while (abbrev_number)
18208 {
685af9cd 18209 cur_abbrev = abbrev_table->alloc_abbrev ();
c906108c
SS
18210
18211 /* read in abbrev header */
18212 cur_abbrev->number = abbrev_number;
aead7601
SM
18213 cur_abbrev->tag
18214 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
c906108c
SS
18215 abbrev_ptr += bytes_read;
18216 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18217 abbrev_ptr += 1;
18218
18219 /* now read in declarations */
22d2f3ab 18220 for (;;)
c906108c 18221 {
43988095
JK
18222 LONGEST implicit_const;
18223
22d2f3ab
JK
18224 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18225 abbrev_ptr += bytes_read;
18226 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18227 abbrev_ptr += bytes_read;
43988095
JK
18228 if (abbrev_form == DW_FORM_implicit_const)
18229 {
18230 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18231 &bytes_read);
18232 abbrev_ptr += bytes_read;
18233 }
18234 else
18235 {
18236 /* Initialize it due to a false compiler warning. */
18237 implicit_const = -1;
18238 }
22d2f3ab
JK
18239
18240 if (abbrev_name == 0)
18241 break;
18242
f3dd6933 18243 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 18244 {
f3dd6933
DJ
18245 allocated_attrs += ATTR_ALLOC_CHUNK;
18246 cur_attrs
224c3ddb 18247 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
c906108c 18248 }
ae038cb0 18249
aead7601
SM
18250 cur_attrs[cur_abbrev->num_attrs].name
18251 = (enum dwarf_attribute) abbrev_name;
22d2f3ab 18252 cur_attrs[cur_abbrev->num_attrs].form
aead7601 18253 = (enum dwarf_form) abbrev_form;
43988095 18254 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
22d2f3ab 18255 ++cur_abbrev->num_attrs;
c906108c
SS
18256 }
18257
8d749320
SM
18258 cur_abbrev->attrs =
18259 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18260 cur_abbrev->num_attrs);
f3dd6933
DJ
18261 memcpy (cur_abbrev->attrs, cur_attrs,
18262 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18263
685af9cd 18264 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
c906108c
SS
18265
18266 /* Get next abbreviation.
18267 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
18268 always properly terminated with an abbrev number of 0.
18269 Exit loop if we encounter an abbreviation which we have
18270 already read (which means we are about to read the abbreviations
18271 for the next compile unit) or if the end of the abbreviation
18272 table is reached. */
433df2d4 18273 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
18274 break;
18275 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18276 abbrev_ptr += bytes_read;
685af9cd 18277 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
c906108c
SS
18278 break;
18279 }
f3dd6933
DJ
18280
18281 xfree (cur_attrs);
433df2d4 18282 return abbrev_table;
c906108c
SS
18283}
18284
72bf9492
DJ
18285/* Returns nonzero if TAG represents a type that we might generate a partial
18286 symbol for. */
18287
18288static int
18289is_type_tag_for_partial (int tag)
18290{
18291 switch (tag)
18292 {
18293#if 0
18294 /* Some types that would be reasonable to generate partial symbols for,
18295 that we don't at present. */
18296 case DW_TAG_array_type:
18297 case DW_TAG_file_type:
18298 case DW_TAG_ptr_to_member_type:
18299 case DW_TAG_set_type:
18300 case DW_TAG_string_type:
18301 case DW_TAG_subroutine_type:
18302#endif
18303 case DW_TAG_base_type:
18304 case DW_TAG_class_type:
680b30c7 18305 case DW_TAG_interface_type:
72bf9492
DJ
18306 case DW_TAG_enumeration_type:
18307 case DW_TAG_structure_type:
18308 case DW_TAG_subrange_type:
18309 case DW_TAG_typedef:
18310 case DW_TAG_union_type:
18311 return 1;
18312 default:
18313 return 0;
18314 }
18315}
18316
18317/* Load all DIEs that are interesting for partial symbols into memory. */
18318
18319static struct partial_die_info *
dee91e82 18320load_partial_dies (const struct die_reader_specs *reader,
d521ce57 18321 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 18322{
dee91e82 18323 struct dwarf2_cu *cu = reader->cu;
518817b3 18324 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
72bf9492 18325 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
72bf9492 18326 unsigned int bytes_read;
5afb4e99 18327 unsigned int load_all = 0;
72bf9492
DJ
18328 int nesting_level = 1;
18329
18330 parent_die = NULL;
18331 last_die = NULL;
18332
7adf1e79
DE
18333 gdb_assert (cu->per_cu != NULL);
18334 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
18335 load_all = 1;
18336
72bf9492
DJ
18337 cu->partial_dies
18338 = htab_create_alloc_ex (cu->header.length / 12,
18339 partial_die_hash,
18340 partial_die_eq,
18341 NULL,
18342 &cu->comp_unit_obstack,
18343 hashtab_obstack_allocate,
18344 dummy_obstack_deallocate);
18345
72bf9492
DJ
18346 while (1)
18347 {
685af9cd 18348 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
72bf9492
DJ
18349
18350 /* A NULL abbrev means the end of a series of children. */
18351 if (abbrev == NULL)
18352 {
18353 if (--nesting_level == 0)
cd9983dd
YQ
18354 return first_die;
18355
72bf9492
DJ
18356 info_ptr += bytes_read;
18357 last_die = parent_die;
18358 parent_die = parent_die->die_parent;
18359 continue;
18360 }
18361
98bfdba5
PA
18362 /* Check for template arguments. We never save these; if
18363 they're seen, we just mark the parent, and go on our way. */
18364 if (parent_die != NULL
18365 && cu->language == language_cplus
18366 && (abbrev->tag == DW_TAG_template_type_param
18367 || abbrev->tag == DW_TAG_template_value_param))
18368 {
18369 parent_die->has_template_arguments = 1;
18370
18371 if (!load_all)
18372 {
18373 /* We don't need a partial DIE for the template argument. */
dee91e82 18374 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
18375 continue;
18376 }
18377 }
18378
0d99eb77 18379 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
18380 Skip their other children. */
18381 if (!load_all
18382 && cu->language == language_cplus
18383 && parent_die != NULL
18384 && parent_die->tag == DW_TAG_subprogram)
18385 {
dee91e82 18386 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
18387 continue;
18388 }
18389
5afb4e99
DJ
18390 /* Check whether this DIE is interesting enough to save. Normally
18391 we would not be interested in members here, but there may be
18392 later variables referencing them via DW_AT_specification (for
18393 static members). */
18394 if (!load_all
18395 && !is_type_tag_for_partial (abbrev->tag)
72929c62 18396 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
18397 && abbrev->tag != DW_TAG_enumerator
18398 && abbrev->tag != DW_TAG_subprogram
b1dc1806 18399 && abbrev->tag != DW_TAG_inlined_subroutine
bc30ff58 18400 && abbrev->tag != DW_TAG_lexical_block
72bf9492 18401 && abbrev->tag != DW_TAG_variable
5afb4e99 18402 && abbrev->tag != DW_TAG_namespace
f55ee35c 18403 && abbrev->tag != DW_TAG_module
95554aad 18404 && abbrev->tag != DW_TAG_member
74921315
KS
18405 && abbrev->tag != DW_TAG_imported_unit
18406 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
18407 {
18408 /* Otherwise we skip to the next sibling, if any. */
dee91e82 18409 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
18410 continue;
18411 }
18412
6f06d47b
YQ
18413 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18414 abbrev);
cd9983dd 18415
48fbe735 18416 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
72bf9492
DJ
18417
18418 /* This two-pass algorithm for processing partial symbols has a
18419 high cost in cache pressure. Thus, handle some simple cases
18420 here which cover the majority of C partial symbols. DIEs
18421 which neither have specification tags in them, nor could have
18422 specification tags elsewhere pointing at them, can simply be
18423 processed and discarded.
18424
18425 This segment is also optional; scan_partial_symbols and
18426 add_partial_symbol will handle these DIEs if we chain
18427 them in normally. When compilers which do not emit large
18428 quantities of duplicate debug information are more common,
18429 this code can probably be removed. */
18430
18431 /* Any complete simple types at the top level (pretty much all
18432 of them, for a language without namespaces), can be processed
18433 directly. */
18434 if (parent_die == NULL
cd9983dd
YQ
18435 && pdi.has_specification == 0
18436 && pdi.is_declaration == 0
18437 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18438 || pdi.tag == DW_TAG_base_type
18439 || pdi.tag == DW_TAG_subrange_type))
72bf9492 18440 {
cd9983dd
YQ
18441 if (building_psymtab && pdi.name != NULL)
18442 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
79748972 18443 VAR_DOMAIN, LOC_TYPEDEF, -1,
bb5ed363 18444 &objfile->static_psymbols,
1762568f 18445 0, cu->language, objfile);
cd9983dd 18446 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
72bf9492
DJ
18447 continue;
18448 }
18449
d8228535
JK
18450 /* The exception for DW_TAG_typedef with has_children above is
18451 a workaround of GCC PR debug/47510. In the case of this complaint
a737d952 18452 type_name_or_error will error on such types later.
d8228535
JK
18453
18454 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18455 it could not find the child DIEs referenced later, this is checked
18456 above. In correct DWARF DW_TAG_typedef should have no children. */
18457
cd9983dd 18458 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
b98664d3 18459 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
9d8780f0 18460 "- DIE at %s [in module %s]"),
cd9983dd 18461 sect_offset_str (pdi.sect_off), objfile_name (objfile));
d8228535 18462
72bf9492
DJ
18463 /* If we're at the second level, and we're an enumerator, and
18464 our parent has no specification (meaning possibly lives in a
18465 namespace elsewhere), then we can add the partial symbol now
18466 instead of queueing it. */
cd9983dd 18467 if (pdi.tag == DW_TAG_enumerator
72bf9492
DJ
18468 && parent_die != NULL
18469 && parent_die->die_parent == NULL
18470 && parent_die->tag == DW_TAG_enumeration_type
18471 && parent_die->has_specification == 0)
18472 {
cd9983dd 18473 if (pdi.name == NULL)
b98664d3 18474 complaint (_("malformed enumerator DIE ignored"));
72bf9492 18475 else if (building_psymtab)
cd9983dd 18476 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
79748972 18477 VAR_DOMAIN, LOC_CONST, -1,
9c37b5ae 18478 cu->language == language_cplus
bb5ed363
DE
18479 ? &objfile->global_psymbols
18480 : &objfile->static_psymbols,
1762568f 18481 0, cu->language, objfile);
72bf9492 18482
cd9983dd 18483 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
72bf9492
DJ
18484 continue;
18485 }
18486
cd9983dd 18487 struct partial_die_info *part_die
6f06d47b 18488 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
cd9983dd 18489
72bf9492
DJ
18490 /* We'll save this DIE so link it in. */
18491 part_die->die_parent = parent_die;
18492 part_die->die_sibling = NULL;
18493 part_die->die_child = NULL;
18494
18495 if (last_die && last_die == parent_die)
18496 last_die->die_child = part_die;
18497 else if (last_die)
18498 last_die->die_sibling = part_die;
18499
18500 last_die = part_die;
18501
18502 if (first_die == NULL)
18503 first_die = part_die;
18504
18505 /* Maybe add the DIE to the hash table. Not all DIEs that we
18506 find interesting need to be in the hash table, because we
18507 also have the parent/sibling/child chains; only those that we
18508 might refer to by offset later during partial symbol reading.
18509
18510 For now this means things that might have be the target of a
18511 DW_AT_specification, DW_AT_abstract_origin, or
18512 DW_AT_extension. DW_AT_extension will refer only to
18513 namespaces; DW_AT_abstract_origin refers to functions (and
18514 many things under the function DIE, but we do not recurse
18515 into function DIEs during partial symbol reading) and
18516 possibly variables as well; DW_AT_specification refers to
18517 declarations. Declarations ought to have the DW_AT_declaration
18518 flag. It happens that GCC forgets to put it in sometimes, but
18519 only for functions, not for types.
18520
18521 Adding more things than necessary to the hash table is harmless
18522 except for the performance cost. Adding too few will result in
5afb4e99
DJ
18523 wasted time in find_partial_die, when we reread the compilation
18524 unit with load_all_dies set. */
72bf9492 18525
5afb4e99 18526 if (load_all
72929c62 18527 || abbrev->tag == DW_TAG_constant
5afb4e99 18528 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
18529 || abbrev->tag == DW_TAG_variable
18530 || abbrev->tag == DW_TAG_namespace
18531 || part_die->is_declaration)
18532 {
18533 void **slot;
18534
18535 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
9c541725
PA
18536 to_underlying (part_die->sect_off),
18537 INSERT);
72bf9492
DJ
18538 *slot = part_die;
18539 }
18540
72bf9492 18541 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 18542 we have no reason to follow the children of structures; for other
98bfdba5
PA
18543 languages we have to, so that we can get at method physnames
18544 to infer fully qualified class names, for DW_AT_specification,
18545 and for C++ template arguments. For C++, we also look one level
18546 inside functions to find template arguments (if the name of the
18547 function does not already contain the template arguments).
bc30ff58
JB
18548
18549 For Ada, we need to scan the children of subprograms and lexical
18550 blocks as well because Ada allows the definition of nested
18551 entities that could be interesting for the debugger, such as
18552 nested subprograms for instance. */
72bf9492 18553 if (last_die->has_children
5afb4e99
DJ
18554 && (load_all
18555 || last_die->tag == DW_TAG_namespace
f55ee35c 18556 || last_die->tag == DW_TAG_module
72bf9492 18557 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
18558 || (cu->language == language_cplus
18559 && last_die->tag == DW_TAG_subprogram
18560 && (last_die->name == NULL
18561 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
18562 || (cu->language != language_c
18563 && (last_die->tag == DW_TAG_class_type
680b30c7 18564 || last_die->tag == DW_TAG_interface_type
72bf9492 18565 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
18566 || last_die->tag == DW_TAG_union_type))
18567 || (cu->language == language_ada
18568 && (last_die->tag == DW_TAG_subprogram
18569 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
18570 {
18571 nesting_level++;
18572 parent_die = last_die;
18573 continue;
18574 }
18575
18576 /* Otherwise we skip to the next sibling, if any. */
dee91e82 18577 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
18578
18579 /* Back to the top, do it again. */
18580 }
18581}
18582
6f06d47b
YQ
18583partial_die_info::partial_die_info (sect_offset sect_off_,
18584 struct abbrev_info *abbrev)
18585 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18586{
18587}
18588
35cc7ed7
YQ
18589/* Read a minimal amount of information into the minimal die structure.
18590 INFO_PTR should point just after the initial uleb128 of a DIE. */
c906108c 18591
48fbe735
YQ
18592const gdb_byte *
18593partial_die_info::read (const struct die_reader_specs *reader,
18594 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
c906108c 18595{
dee91e82 18596 struct dwarf2_cu *cu = reader->cu;
518817b3
SM
18597 struct dwarf2_per_objfile *dwarf2_per_objfile
18598 = cu->per_cu->dwarf2_per_objfile;
fa238c03 18599 unsigned int i;
c5aa993b 18600 int has_low_pc_attr = 0;
c906108c 18601 int has_high_pc_attr = 0;
91da1414 18602 int high_pc_relative = 0;
c906108c 18603
fd0a254f 18604 for (i = 0; i < abbrev.num_attrs; ++i)
c906108c 18605 {
48fbe735
YQ
18606 struct attribute attr;
18607
fd0a254f 18608 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
c906108c
SS
18609
18610 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 18611 partial symbol table. */
c906108c
SS
18612 switch (attr.name)
18613 {
18614 case DW_AT_name:
48fbe735 18615 switch (tag)
71c25dea
TT
18616 {
18617 case DW_TAG_compile_unit:
95554aad 18618 case DW_TAG_partial_unit:
348e048f 18619 case DW_TAG_type_unit:
71c25dea
TT
18620 /* Compilation units have a DW_AT_name that is a filename, not
18621 a source language identifier. */
18622 case DW_TAG_enumeration_type:
18623 case DW_TAG_enumerator:
18624 /* These tags always have simple identifiers already; no need
18625 to canonicalize them. */
48fbe735 18626 name = DW_STRING (&attr);
71c25dea
TT
18627 break;
18628 default:
48fbe735
YQ
18629 {
18630 struct objfile *objfile = dwarf2_per_objfile->objfile;
18631
18632 name
18633 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18634 &objfile->per_bfd->storage_obstack);
18635 }
71c25dea
TT
18636 break;
18637 }
c906108c 18638 break;
31ef98ae 18639 case DW_AT_linkage_name:
c906108c 18640 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
18641 /* Note that both forms of linkage name might appear. We
18642 assume they will be the same, and we only store the last
18643 one we see. */
94af9270 18644 if (cu->language == language_ada)
48fbe735
YQ
18645 name = DW_STRING (&attr);
18646 linkage_name = DW_STRING (&attr);
c906108c
SS
18647 break;
18648 case DW_AT_low_pc:
18649 has_low_pc_attr = 1;
48fbe735 18650 lowpc = attr_value_as_address (&attr);
c906108c
SS
18651 break;
18652 case DW_AT_high_pc:
18653 has_high_pc_attr = 1;
48fbe735 18654 highpc = attr_value_as_address (&attr);
31aa7e4e
JB
18655 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18656 high_pc_relative = 1;
c906108c
SS
18657 break;
18658 case DW_AT_location:
0963b4bd 18659 /* Support the .debug_loc offsets. */
8e19ed76
PS
18660 if (attr_form_is_block (&attr))
18661 {
48fbe735 18662 d.locdesc = DW_BLOCK (&attr);
8e19ed76 18663 }
3690dd37 18664 else if (attr_form_is_section_offset (&attr))
8e19ed76 18665 {
4d3c2250 18666 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
18667 }
18668 else
18669 {
4d3c2250
KB
18670 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18671 "partial symbol information");
8e19ed76 18672 }
c906108c 18673 break;
c906108c 18674 case DW_AT_external:
48fbe735 18675 is_external = DW_UNSND (&attr);
c906108c
SS
18676 break;
18677 case DW_AT_declaration:
48fbe735 18678 is_declaration = DW_UNSND (&attr);
c906108c
SS
18679 break;
18680 case DW_AT_type:
48fbe735 18681 has_type = 1;
c906108c
SS
18682 break;
18683 case DW_AT_abstract_origin:
18684 case DW_AT_specification:
72bf9492 18685 case DW_AT_extension:
48fbe735
YQ
18686 has_specification = 1;
18687 spec_offset = dwarf2_get_ref_die_offset (&attr);
18688 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
36586728 18689 || cu->per_cu->is_dwz);
c906108c
SS
18690 break;
18691 case DW_AT_sibling:
18692 /* Ignore absolute siblings, they might point outside of
18693 the current compile unit. */
18694 if (attr.form == DW_FORM_ref_addr)
b98664d3 18695 complaint (_("ignoring absolute DW_AT_sibling"));
c906108c 18696 else
b9502d3f 18697 {
48fbe735 18698 const gdb_byte *buffer = reader->buffer;
9c541725
PA
18699 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18700 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
b9502d3f
WN
18701
18702 if (sibling_ptr < info_ptr)
b98664d3 18703 complaint (_("DW_AT_sibling points backwards"));
22869d73
KS
18704 else if (sibling_ptr > reader->buffer_end)
18705 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f 18706 else
48fbe735 18707 sibling = sibling_ptr;
b9502d3f 18708 }
c906108c 18709 break;
fa4028e9 18710 case DW_AT_byte_size:
48fbe735 18711 has_byte_size = 1;
fa4028e9 18712 break;
ff908ebf 18713 case DW_AT_const_value:
48fbe735 18714 has_const_value = 1;
ff908ebf 18715 break;
68511cec
CES
18716 case DW_AT_calling_convention:
18717 /* DWARF doesn't provide a way to identify a program's source-level
18718 entry point. DW_AT_calling_convention attributes are only meant
18719 to describe functions' calling conventions.
18720
18721 However, because it's a necessary piece of information in
0c1b455e
TT
18722 Fortran, and before DWARF 4 DW_CC_program was the only
18723 piece of debugging information whose definition refers to
18724 a 'main program' at all, several compilers marked Fortran
18725 main programs with DW_CC_program --- even when those
18726 functions use the standard calling conventions.
18727
18728 Although DWARF now specifies a way to provide this
18729 information, we support this practice for backward
18730 compatibility. */
68511cec 18731 if (DW_UNSND (&attr) == DW_CC_program
0c1b455e 18732 && cu->language == language_fortran)
48fbe735 18733 main_subprogram = 1;
68511cec 18734 break;
481860b3
GB
18735 case DW_AT_inline:
18736 if (DW_UNSND (&attr) == DW_INL_inlined
18737 || DW_UNSND (&attr) == DW_INL_declared_inlined)
48fbe735 18738 may_be_inlined = 1;
481860b3 18739 break;
95554aad
TT
18740
18741 case DW_AT_import:
48fbe735 18742 if (tag == DW_TAG_imported_unit)
36586728 18743 {
48fbe735
YQ
18744 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18745 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
36586728
TT
18746 || cu->per_cu->is_dwz);
18747 }
95554aad
TT
18748 break;
18749
0c1b455e 18750 case DW_AT_main_subprogram:
48fbe735 18751 main_subprogram = DW_UNSND (&attr);
0c1b455e
TT
18752 break;
18753
c906108c
SS
18754 default:
18755 break;
18756 }
18757 }
18758
91da1414 18759 if (high_pc_relative)
48fbe735 18760 highpc += lowpc;
91da1414 18761
9373cf26
JK
18762 if (has_low_pc_attr && has_high_pc_attr)
18763 {
18764 /* When using the GNU linker, .gnu.linkonce. sections are used to
18765 eliminate duplicate copies of functions and vtables and such.
18766 The linker will arbitrarily choose one and discard the others.
18767 The AT_*_pc values for such functions refer to local labels in
18768 these sections. If the section from that file was discarded, the
18769 labels are not in the output, so the relocs get a value of 0.
18770 If this is a discarded function, mark the pc bounds as invalid,
18771 so that GDB will ignore it. */
48fbe735 18772 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
9373cf26 18773 {
48fbe735 18774 struct objfile *objfile = dwarf2_per_objfile->objfile;
bb5ed363 18775 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26 18776
b98664d3 18777 complaint (_("DW_AT_low_pc %s is zero "
9d8780f0 18778 "for DIE at %s [in module %s]"),
48fbe735
YQ
18779 paddress (gdbarch, lowpc),
18780 sect_offset_str (sect_off),
9d8780f0 18781 objfile_name (objfile));
9373cf26
JK
18782 }
18783 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
48fbe735 18784 else if (lowpc >= highpc)
9373cf26 18785 {
48fbe735 18786 struct objfile *objfile = dwarf2_per_objfile->objfile;
bb5ed363 18787 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26 18788
b98664d3 18789 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
9d8780f0 18790 "for DIE at %s [in module %s]"),
48fbe735
YQ
18791 paddress (gdbarch, lowpc),
18792 paddress (gdbarch, highpc),
18793 sect_offset_str (sect_off),
9c541725 18794 objfile_name (objfile));
9373cf26
JK
18795 }
18796 else
48fbe735 18797 has_pc_info = 1;
9373cf26 18798 }
85cbf3d3 18799
c906108c
SS
18800 return info_ptr;
18801}
18802
72bf9492
DJ
18803/* Find a cached partial DIE at OFFSET in CU. */
18804
d590ff25
YQ
18805struct partial_die_info *
18806dwarf2_cu::find_partial_die (sect_offset sect_off)
72bf9492
DJ
18807{
18808 struct partial_die_info *lookup_die = NULL;
6f06d47b 18809 struct partial_die_info part_die (sect_off);
72bf9492 18810
9a3c8263 18811 lookup_die = ((struct partial_die_info *)
d590ff25 18812 htab_find_with_hash (partial_dies, &part_die,
9c541725 18813 to_underlying (sect_off)));
72bf9492 18814
72bf9492
DJ
18815 return lookup_die;
18816}
18817
348e048f
DE
18818/* Find a partial DIE at OFFSET, which may or may not be in CU,
18819 except in the case of .debug_types DIEs which do not reference
18820 outside their CU (they do however referencing other types via
55f1336d 18821 DW_FORM_ref_sig8). */
72bf9492
DJ
18822
18823static struct partial_die_info *
9c541725 18824find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 18825{
518817b3
SM
18826 struct dwarf2_per_objfile *dwarf2_per_objfile
18827 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 18828 struct objfile *objfile = dwarf2_per_objfile->objfile;
5afb4e99
DJ
18829 struct dwarf2_per_cu_data *per_cu = NULL;
18830 struct partial_die_info *pd = NULL;
72bf9492 18831
36586728 18832 if (offset_in_dwz == cu->per_cu->is_dwz
9c541725 18833 && offset_in_cu_p (&cu->header, sect_off))
5afb4e99 18834 {
d590ff25 18835 pd = cu->find_partial_die (sect_off);
5afb4e99
DJ
18836 if (pd != NULL)
18837 return pd;
0d99eb77
DE
18838 /* We missed recording what we needed.
18839 Load all dies and try again. */
18840 per_cu = cu->per_cu;
5afb4e99 18841 }
0d99eb77
DE
18842 else
18843 {
18844 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 18845 if (cu->per_cu->is_debug_types)
0d99eb77 18846 {
9d8780f0
SM
18847 error (_("Dwarf Error: Type Unit at offset %s contains"
18848 " external reference to offset %s [in module %s].\n"),
18849 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
0d99eb77
DE
18850 bfd_get_filename (objfile->obfd));
18851 }
9c541725 18852 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
ed2dc618 18853 dwarf2_per_objfile);
72bf9492 18854
0d99eb77
DE
18855 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18856 load_partial_comp_unit (per_cu);
ae038cb0 18857
0d99eb77 18858 per_cu->cu->last_used = 0;
d590ff25 18859 pd = per_cu->cu->find_partial_die (sect_off);
0d99eb77 18860 }
5afb4e99 18861
dee91e82
DE
18862 /* If we didn't find it, and not all dies have been loaded,
18863 load them all and try again. */
18864
5afb4e99
DJ
18865 if (pd == NULL && per_cu->load_all_dies == 0)
18866 {
5afb4e99 18867 per_cu->load_all_dies = 1;
fd820528
DE
18868
18869 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18870 THIS_CU->cu may already be in use. So we can't just free it and
18871 replace its DIEs with the ones we read in. Instead, we leave those
18872 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18873 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18874 set. */
dee91e82 18875 load_partial_comp_unit (per_cu);
5afb4e99 18876
d590ff25 18877 pd = per_cu->cu->find_partial_die (sect_off);
5afb4e99
DJ
18878 }
18879
18880 if (pd == NULL)
18881 internal_error (__FILE__, __LINE__,
9d8780f0 18882 _("could not find partial DIE %s "
3e43a32a 18883 "in cache [from module %s]\n"),
9d8780f0 18884 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
5afb4e99 18885 return pd;
72bf9492
DJ
18886}
18887
abc72ce4
DE
18888/* See if we can figure out if the class lives in a namespace. We do
18889 this by looking for a member function; its demangled name will
18890 contain namespace info, if there is any. */
18891
18892static void
18893guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18894 struct dwarf2_cu *cu)
18895{
18896 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18897 what template types look like, because the demangler
18898 frequently doesn't give the same name as the debug info. We
18899 could fix this by only using the demangled name to get the
18900 prefix (but see comment in read_structure_type). */
18901
18902 struct partial_die_info *real_pdi;
18903 struct partial_die_info *child_pdi;
18904
18905 /* If this DIE (this DIE's specification, if any) has a parent, then
18906 we should not do this. We'll prepend the parent's fully qualified
18907 name when we create the partial symbol. */
18908
18909 real_pdi = struct_pdi;
18910 while (real_pdi->has_specification)
36586728
TT
18911 real_pdi = find_partial_die (real_pdi->spec_offset,
18912 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
18913
18914 if (real_pdi->die_parent != NULL)
18915 return;
18916
18917 for (child_pdi = struct_pdi->die_child;
18918 child_pdi != NULL;
18919 child_pdi = child_pdi->die_sibling)
18920 {
18921 if (child_pdi->tag == DW_TAG_subprogram
18922 && child_pdi->linkage_name != NULL)
18923 {
18924 char *actual_class_name
18925 = language_class_name_from_physname (cu->language_defn,
18926 child_pdi->linkage_name);
18927 if (actual_class_name != NULL)
18928 {
518817b3 18929 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
abc72ce4 18930 struct_pdi->name
224c3ddb 18931 = ((const char *)
e3b94546 18932 obstack_copy0 (&objfile->per_bfd->storage_obstack,
224c3ddb
SM
18933 actual_class_name,
18934 strlen (actual_class_name)));
abc72ce4
DE
18935 xfree (actual_class_name);
18936 }
18937 break;
18938 }
18939 }
18940}
18941
52356b79
YQ
18942void
18943partial_die_info::fixup (struct dwarf2_cu *cu)
72bf9492 18944{
abc72ce4
DE
18945 /* Once we've fixed up a die, there's no point in doing so again.
18946 This also avoids a memory leak if we were to call
18947 guess_partial_die_structure_name multiple times. */
52356b79 18948 if (fixup_called)
abc72ce4
DE
18949 return;
18950
72bf9492
DJ
18951 /* If we found a reference attribute and the DIE has no name, try
18952 to find a name in the referred to DIE. */
18953
52356b79 18954 if (name == NULL && has_specification)
72bf9492
DJ
18955 {
18956 struct partial_die_info *spec_die;
72bf9492 18957
52356b79 18958 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
72bf9492 18959
52356b79 18960 spec_die->fixup (cu);
72bf9492
DJ
18961
18962 if (spec_die->name)
18963 {
52356b79 18964 name = spec_die->name;
72bf9492
DJ
18965
18966 /* Copy DW_AT_external attribute if it is set. */
18967 if (spec_die->is_external)
52356b79 18968 is_external = spec_die->is_external;
72bf9492
DJ
18969 }
18970 }
18971
18972 /* Set default names for some unnamed DIEs. */
72bf9492 18973
52356b79
YQ
18974 if (name == NULL && tag == DW_TAG_namespace)
18975 name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 18976
abc72ce4
DE
18977 /* If there is no parent die to provide a namespace, and there are
18978 children, see if we can determine the namespace from their linkage
122d1940 18979 name. */
abc72ce4 18980 if (cu->language == language_cplus
518817b3
SM
18981 && !VEC_empty (dwarf2_section_info_def,
18982 cu->per_cu->dwarf2_per_objfile->types)
52356b79
YQ
18983 && die_parent == NULL
18984 && has_children
18985 && (tag == DW_TAG_class_type
18986 || tag == DW_TAG_structure_type
18987 || tag == DW_TAG_union_type))
18988 guess_partial_die_structure_name (this, cu);
abc72ce4 18989
53832f31
TT
18990 /* GCC might emit a nameless struct or union that has a linkage
18991 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
52356b79
YQ
18992 if (name == NULL
18993 && (tag == DW_TAG_class_type
18994 || tag == DW_TAG_interface_type
18995 || tag == DW_TAG_structure_type
18996 || tag == DW_TAG_union_type)
18997 && linkage_name != NULL)
53832f31
TT
18998 {
18999 char *demangled;
19000
52356b79 19001 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
53832f31
TT
19002 if (demangled)
19003 {
96408a79
SA
19004 const char *base;
19005
19006 /* Strip any leading namespaces/classes, keep only the base name.
19007 DW_AT_name for named DIEs does not contain the prefixes. */
19008 base = strrchr (demangled, ':');
19009 if (base && base > demangled && base[-1] == ':')
19010 base++;
19011 else
19012 base = demangled;
19013
518817b3 19014 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
52356b79 19015 name
224c3ddb 19016 = ((const char *)
e3b94546 19017 obstack_copy0 (&objfile->per_bfd->storage_obstack,
224c3ddb 19018 base, strlen (base)));
53832f31
TT
19019 xfree (demangled);
19020 }
19021 }
19022
52356b79 19023 fixup_called = 1;
72bf9492
DJ
19024}
19025
a8329558 19026/* Read an attribute value described by an attribute form. */
c906108c 19027
d521ce57 19028static const gdb_byte *
dee91e82
DE
19029read_attribute_value (const struct die_reader_specs *reader,
19030 struct attribute *attr, unsigned form,
43988095 19031 LONGEST implicit_const, const gdb_byte *info_ptr)
c906108c 19032{
dee91e82 19033 struct dwarf2_cu *cu = reader->cu;
518817b3
SM
19034 struct dwarf2_per_objfile *dwarf2_per_objfile
19035 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 19036 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 19037 struct gdbarch *gdbarch = get_objfile_arch (objfile);
dee91e82 19038 bfd *abfd = reader->abfd;
e7c27a73 19039 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
19040 unsigned int bytes_read;
19041 struct dwarf_block *blk;
19042
aead7601 19043 attr->form = (enum dwarf_form) form;
a8329558 19044 switch (form)
c906108c 19045 {
c906108c 19046 case DW_FORM_ref_addr:
ae411497 19047 if (cu->header.version == 2)
4568ecf9 19048 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 19049 else
4568ecf9
DE
19050 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19051 &cu->header, &bytes_read);
ae411497
TT
19052 info_ptr += bytes_read;
19053 break;
36586728
TT
19054 case DW_FORM_GNU_ref_alt:
19055 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19056 info_ptr += bytes_read;
19057 break;
ae411497 19058 case DW_FORM_addr:
e7c27a73 19059 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
3e29f34a 19060 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
107d2387 19061 info_ptr += bytes_read;
c906108c
SS
19062 break;
19063 case DW_FORM_block2:
7b5a2f43 19064 blk = dwarf_alloc_block (cu);
c906108c
SS
19065 blk->size = read_2_bytes (abfd, info_ptr);
19066 info_ptr += 2;
19067 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19068 info_ptr += blk->size;
19069 DW_BLOCK (attr) = blk;
19070 break;
19071 case DW_FORM_block4:
7b5a2f43 19072 blk = dwarf_alloc_block (cu);
c906108c
SS
19073 blk->size = read_4_bytes (abfd, info_ptr);
19074 info_ptr += 4;
19075 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19076 info_ptr += blk->size;
19077 DW_BLOCK (attr) = blk;
19078 break;
19079 case DW_FORM_data2:
19080 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19081 info_ptr += 2;
19082 break;
19083 case DW_FORM_data4:
19084 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19085 info_ptr += 4;
19086 break;
19087 case DW_FORM_data8:
19088 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19089 info_ptr += 8;
19090 break;
0224619f
JK
19091 case DW_FORM_data16:
19092 blk = dwarf_alloc_block (cu);
19093 blk->size = 16;
19094 blk->data = read_n_bytes (abfd, info_ptr, 16);
19095 info_ptr += 16;
19096 DW_BLOCK (attr) = blk;
19097 break;
2dc7f7b3
TT
19098 case DW_FORM_sec_offset:
19099 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19100 info_ptr += bytes_read;
19101 break;
c906108c 19102 case DW_FORM_string:
9b1c24c8 19103 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 19104 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
19105 info_ptr += bytes_read;
19106 break;
4bdf3d34 19107 case DW_FORM_strp:
36586728
TT
19108 if (!cu->per_cu->is_dwz)
19109 {
ed2dc618
SM
19110 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19111 abfd, info_ptr, cu_header,
36586728
TT
19112 &bytes_read);
19113 DW_STRING_IS_CANONICAL (attr) = 0;
19114 info_ptr += bytes_read;
19115 break;
19116 }
19117 /* FALLTHROUGH */
43988095
JK
19118 case DW_FORM_line_strp:
19119 if (!cu->per_cu->is_dwz)
19120 {
ed2dc618
SM
19121 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19122 abfd, info_ptr,
43988095
JK
19123 cu_header, &bytes_read);
19124 DW_STRING_IS_CANONICAL (attr) = 0;
19125 info_ptr += bytes_read;
19126 break;
19127 }
19128 /* FALLTHROUGH */
36586728
TT
19129 case DW_FORM_GNU_strp_alt:
19130 {
ed2dc618 19131 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
36586728
TT
19132 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19133 &bytes_read);
19134
ed2dc618
SM
19135 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19136 dwz, str_offset);
36586728
TT
19137 DW_STRING_IS_CANONICAL (attr) = 0;
19138 info_ptr += bytes_read;
19139 }
4bdf3d34 19140 break;
2dc7f7b3 19141 case DW_FORM_exprloc:
c906108c 19142 case DW_FORM_block:
7b5a2f43 19143 blk = dwarf_alloc_block (cu);
c906108c
SS
19144 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19145 info_ptr += bytes_read;
19146 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19147 info_ptr += blk->size;
19148 DW_BLOCK (attr) = blk;
19149 break;
19150 case DW_FORM_block1:
7b5a2f43 19151 blk = dwarf_alloc_block (cu);
c906108c
SS
19152 blk->size = read_1_byte (abfd, info_ptr);
19153 info_ptr += 1;
19154 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19155 info_ptr += blk->size;
19156 DW_BLOCK (attr) = blk;
19157 break;
19158 case DW_FORM_data1:
19159 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19160 info_ptr += 1;
19161 break;
19162 case DW_FORM_flag:
19163 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19164 info_ptr += 1;
19165 break;
2dc7f7b3
TT
19166 case DW_FORM_flag_present:
19167 DW_UNSND (attr) = 1;
19168 break;
c906108c
SS
19169 case DW_FORM_sdata:
19170 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19171 info_ptr += bytes_read;
19172 break;
19173 case DW_FORM_udata:
19174 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19175 info_ptr += bytes_read;
19176 break;
19177 case DW_FORM_ref1:
9c541725 19178 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 19179 + read_1_byte (abfd, info_ptr));
c906108c
SS
19180 info_ptr += 1;
19181 break;
19182 case DW_FORM_ref2:
9c541725 19183 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 19184 + read_2_bytes (abfd, info_ptr));
c906108c
SS
19185 info_ptr += 2;
19186 break;
19187 case DW_FORM_ref4:
9c541725 19188 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 19189 + read_4_bytes (abfd, info_ptr));
c906108c
SS
19190 info_ptr += 4;
19191 break;
613e1657 19192 case DW_FORM_ref8:
9c541725 19193 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 19194 + read_8_bytes (abfd, info_ptr));
613e1657
KB
19195 info_ptr += 8;
19196 break;
55f1336d 19197 case DW_FORM_ref_sig8:
ac9ec31b 19198 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
19199 info_ptr += 8;
19200 break;
c906108c 19201 case DW_FORM_ref_udata:
9c541725 19202 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 19203 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
19204 info_ptr += bytes_read;
19205 break;
c906108c 19206 case DW_FORM_indirect:
a8329558
KW
19207 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19208 info_ptr += bytes_read;
43988095
JK
19209 if (form == DW_FORM_implicit_const)
19210 {
19211 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19212 info_ptr += bytes_read;
19213 }
19214 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19215 info_ptr);
19216 break;
19217 case DW_FORM_implicit_const:
19218 DW_SND (attr) = implicit_const;
a8329558 19219 break;
3019eac3
DE
19220 case DW_FORM_GNU_addr_index:
19221 if (reader->dwo_file == NULL)
19222 {
19223 /* For now flag a hard error.
19224 Later we can turn this into a complaint. */
19225 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19226 dwarf_form_name (form),
19227 bfd_get_filename (abfd));
19228 }
19229 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19230 info_ptr += bytes_read;
19231 break;
19232 case DW_FORM_GNU_str_index:
19233 if (reader->dwo_file == NULL)
19234 {
19235 /* For now flag a hard error.
19236 Later we can turn this into a complaint if warranted. */
19237 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19238 dwarf_form_name (form),
19239 bfd_get_filename (abfd));
19240 }
19241 {
19242 ULONGEST str_index =
19243 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19244
342587c4 19245 DW_STRING (attr) = read_str_index (reader, str_index);
3019eac3
DE
19246 DW_STRING_IS_CANONICAL (attr) = 0;
19247 info_ptr += bytes_read;
19248 }
19249 break;
c906108c 19250 default:
8a3fe4f8 19251 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
19252 dwarf_form_name (form),
19253 bfd_get_filename (abfd));
c906108c 19254 }
28e94949 19255
36586728 19256 /* Super hack. */
7771576e 19257 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
19258 attr->form = DW_FORM_GNU_ref_alt;
19259
28e94949
JB
19260 /* We have seen instances where the compiler tried to emit a byte
19261 size attribute of -1 which ended up being encoded as an unsigned
19262 0xffffffff. Although 0xffffffff is technically a valid size value,
19263 an object of this size seems pretty unlikely so we can relatively
19264 safely treat these cases as if the size attribute was invalid and
19265 treat them as zero by default. */
19266 if (attr->name == DW_AT_byte_size
19267 && form == DW_FORM_data4
19268 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
19269 {
19270 complaint
b98664d3 19271 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
43bbcdc2 19272 hex_string (DW_UNSND (attr)));
01c66ae6
JB
19273 DW_UNSND (attr) = 0;
19274 }
28e94949 19275
c906108c
SS
19276 return info_ptr;
19277}
19278
a8329558
KW
19279/* Read an attribute described by an abbreviated attribute. */
19280
d521ce57 19281static const gdb_byte *
dee91e82
DE
19282read_attribute (const struct die_reader_specs *reader,
19283 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 19284 const gdb_byte *info_ptr)
a8329558
KW
19285{
19286 attr->name = abbrev->name;
43988095
JK
19287 return read_attribute_value (reader, attr, abbrev->form,
19288 abbrev->implicit_const, info_ptr);
a8329558
KW
19289}
19290
0963b4bd 19291/* Read dwarf information from a buffer. */
c906108c
SS
19292
19293static unsigned int
a1855c1d 19294read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 19295{
fe1b8b76 19296 return bfd_get_8 (abfd, buf);
c906108c
SS
19297}
19298
19299static int
a1855c1d 19300read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 19301{
fe1b8b76 19302 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
19303}
19304
19305static unsigned int
a1855c1d 19306read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 19307{
fe1b8b76 19308 return bfd_get_16 (abfd, buf);
c906108c
SS
19309}
19310
21ae7a4d 19311static int
a1855c1d 19312read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
19313{
19314 return bfd_get_signed_16 (abfd, buf);
19315}
19316
c906108c 19317static unsigned int
a1855c1d 19318read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 19319{
fe1b8b76 19320 return bfd_get_32 (abfd, buf);
c906108c
SS
19321}
19322
21ae7a4d 19323static int
a1855c1d 19324read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
19325{
19326 return bfd_get_signed_32 (abfd, buf);
19327}
19328
93311388 19329static ULONGEST
a1855c1d 19330read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 19331{
fe1b8b76 19332 return bfd_get_64 (abfd, buf);
c906108c
SS
19333}
19334
19335static CORE_ADDR
d521ce57 19336read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 19337 unsigned int *bytes_read)
c906108c 19338{
e7c27a73 19339 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
19340 CORE_ADDR retval = 0;
19341
107d2387 19342 if (cu_header->signed_addr_p)
c906108c 19343 {
107d2387
AC
19344 switch (cu_header->addr_size)
19345 {
19346 case 2:
fe1b8b76 19347 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
19348 break;
19349 case 4:
fe1b8b76 19350 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
19351 break;
19352 case 8:
fe1b8b76 19353 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
19354 break;
19355 default:
8e65ff28 19356 internal_error (__FILE__, __LINE__,
e2e0b3e5 19357 _("read_address: bad switch, signed [in module %s]"),
659b0389 19358 bfd_get_filename (abfd));
107d2387
AC
19359 }
19360 }
19361 else
19362 {
19363 switch (cu_header->addr_size)
19364 {
19365 case 2:
fe1b8b76 19366 retval = bfd_get_16 (abfd, buf);
107d2387
AC
19367 break;
19368 case 4:
fe1b8b76 19369 retval = bfd_get_32 (abfd, buf);
107d2387
AC
19370 break;
19371 case 8:
fe1b8b76 19372 retval = bfd_get_64 (abfd, buf);
107d2387
AC
19373 break;
19374 default:
8e65ff28 19375 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
19376 _("read_address: bad switch, "
19377 "unsigned [in module %s]"),
659b0389 19378 bfd_get_filename (abfd));
107d2387 19379 }
c906108c 19380 }
64367e0a 19381
107d2387
AC
19382 *bytes_read = cu_header->addr_size;
19383 return retval;
c906108c
SS
19384}
19385
f7ef9339 19386/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
19387 specification allows the initial length to take up either 4 bytes
19388 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19389 bytes describe the length and all offsets will be 8 bytes in length
19390 instead of 4.
19391
f7ef9339
KB
19392 An older, non-standard 64-bit format is also handled by this
19393 function. The older format in question stores the initial length
19394 as an 8-byte quantity without an escape value. Lengths greater
19395 than 2^32 aren't very common which means that the initial 4 bytes
19396 is almost always zero. Since a length value of zero doesn't make
19397 sense for the 32-bit format, this initial zero can be considered to
19398 be an escape value which indicates the presence of the older 64-bit
19399 format. As written, the code can't detect (old format) lengths
917c78fc
MK
19400 greater than 4GB. If it becomes necessary to handle lengths
19401 somewhat larger than 4GB, we could allow other small values (such
19402 as the non-sensical values of 1, 2, and 3) to also be used as
19403 escape values indicating the presence of the old format.
f7ef9339 19404
917c78fc
MK
19405 The value returned via bytes_read should be used to increment the
19406 relevant pointer after calling read_initial_length().
c764a876 19407
613e1657
KB
19408 [ Note: read_initial_length() and read_offset() are based on the
19409 document entitled "DWARF Debugging Information Format", revision
f7ef9339 19410 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
19411 from:
19412
f7ef9339 19413 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 19414
613e1657
KB
19415 This document is only a draft and is subject to change. (So beware.)
19416
f7ef9339 19417 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
19418 determined empirically by examining 64-bit ELF files produced by
19419 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
19420
19421 - Kevin, July 16, 2002
613e1657
KB
19422 ] */
19423
19424static LONGEST
d521ce57 19425read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 19426{
fe1b8b76 19427 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 19428
dd373385 19429 if (length == 0xffffffff)
613e1657 19430 {
fe1b8b76 19431 length = bfd_get_64 (abfd, buf + 4);
613e1657 19432 *bytes_read = 12;
613e1657 19433 }
dd373385 19434 else if (length == 0)
f7ef9339 19435 {
dd373385 19436 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 19437 length = bfd_get_64 (abfd, buf);
f7ef9339 19438 *bytes_read = 8;
f7ef9339 19439 }
613e1657
KB
19440 else
19441 {
19442 *bytes_read = 4;
613e1657
KB
19443 }
19444
c764a876
DE
19445 return length;
19446}
dd373385 19447
c764a876
DE
19448/* Cover function for read_initial_length.
19449 Returns the length of the object at BUF, and stores the size of the
19450 initial length in *BYTES_READ and stores the size that offsets will be in
19451 *OFFSET_SIZE.
19452 If the initial length size is not equivalent to that specified in
19453 CU_HEADER then issue a complaint.
19454 This is useful when reading non-comp-unit headers. */
dd373385 19455
c764a876 19456static LONGEST
d521ce57 19457read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
19458 const struct comp_unit_head *cu_header,
19459 unsigned int *bytes_read,
19460 unsigned int *offset_size)
19461{
19462 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19463
19464 gdb_assert (cu_header->initial_length_size == 4
19465 || cu_header->initial_length_size == 8
19466 || cu_header->initial_length_size == 12);
19467
19468 if (cu_header->initial_length_size != *bytes_read)
b98664d3 19469 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 19470
c764a876 19471 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 19472 return length;
613e1657
KB
19473}
19474
19475/* Read an offset from the data stream. The size of the offset is
917c78fc 19476 given by cu_header->offset_size. */
613e1657
KB
19477
19478static LONGEST
d521ce57
TT
19479read_offset (bfd *abfd, const gdb_byte *buf,
19480 const struct comp_unit_head *cu_header,
891d2f0b 19481 unsigned int *bytes_read)
c764a876
DE
19482{
19483 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 19484
c764a876
DE
19485 *bytes_read = cu_header->offset_size;
19486 return offset;
19487}
19488
19489/* Read an offset from the data stream. */
19490
19491static LONGEST
d521ce57 19492read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
19493{
19494 LONGEST retval = 0;
19495
c764a876 19496 switch (offset_size)
613e1657
KB
19497 {
19498 case 4:
fe1b8b76 19499 retval = bfd_get_32 (abfd, buf);
613e1657
KB
19500 break;
19501 case 8:
fe1b8b76 19502 retval = bfd_get_64 (abfd, buf);
613e1657
KB
19503 break;
19504 default:
8e65ff28 19505 internal_error (__FILE__, __LINE__,
c764a876 19506 _("read_offset_1: bad switch [in module %s]"),
659b0389 19507 bfd_get_filename (abfd));
613e1657
KB
19508 }
19509
917c78fc 19510 return retval;
613e1657
KB
19511}
19512
d521ce57
TT
19513static const gdb_byte *
19514read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
19515{
19516 /* If the size of a host char is 8 bits, we can return a pointer
19517 to the buffer, otherwise we have to copy the data to a buffer
19518 allocated on the temporary obstack. */
4bdf3d34 19519 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 19520 return buf;
c906108c
SS
19521}
19522
d521ce57
TT
19523static const char *
19524read_direct_string (bfd *abfd, const gdb_byte *buf,
19525 unsigned int *bytes_read_ptr)
c906108c
SS
19526{
19527 /* If the size of a host char is 8 bits, we can return a pointer
19528 to the string, otherwise we have to copy the string to a buffer
19529 allocated on the temporary obstack. */
4bdf3d34 19530 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
19531 if (*buf == '\0')
19532 {
19533 *bytes_read_ptr = 1;
19534 return NULL;
19535 }
d521ce57
TT
19536 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19537 return (const char *) buf;
4bdf3d34
JJ
19538}
19539
43988095
JK
19540/* Return pointer to string at section SECT offset STR_OFFSET with error
19541 reporting strings FORM_NAME and SECT_NAME. */
19542
d521ce57 19543static const char *
ed2dc618
SM
19544read_indirect_string_at_offset_from (struct objfile *objfile,
19545 bfd *abfd, LONGEST str_offset,
43988095
JK
19546 struct dwarf2_section_info *sect,
19547 const char *form_name,
19548 const char *sect_name)
19549{
ed2dc618 19550 dwarf2_read_section (objfile, sect);
43988095
JK
19551 if (sect->buffer == NULL)
19552 error (_("%s used without %s section [in module %s]"),
19553 form_name, sect_name, bfd_get_filename (abfd));
19554 if (str_offset >= sect->size)
19555 error (_("%s pointing outside of %s section [in module %s]"),
19556 form_name, sect_name, bfd_get_filename (abfd));
4bdf3d34 19557 gdb_assert (HOST_CHAR_BIT == 8);
43988095 19558 if (sect->buffer[str_offset] == '\0')
4bdf3d34 19559 return NULL;
43988095
JK
19560 return (const char *) (sect->buffer + str_offset);
19561}
19562
19563/* Return pointer to string at .debug_str offset STR_OFFSET. */
19564
19565static const char *
ed2dc618
SM
19566read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19567 bfd *abfd, LONGEST str_offset)
43988095 19568{
ed2dc618
SM
19569 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19570 abfd, str_offset,
43988095
JK
19571 &dwarf2_per_objfile->str,
19572 "DW_FORM_strp", ".debug_str");
19573}
19574
19575/* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19576
19577static const char *
ed2dc618
SM
19578read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19579 bfd *abfd, LONGEST str_offset)
43988095 19580{
ed2dc618
SM
19581 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19582 abfd, str_offset,
43988095
JK
19583 &dwarf2_per_objfile->line_str,
19584 "DW_FORM_line_strp",
19585 ".debug_line_str");
c906108c
SS
19586}
19587
36586728
TT
19588/* Read a string at offset STR_OFFSET in the .debug_str section from
19589 the .dwz file DWZ. Throw an error if the offset is too large. If
19590 the string consists of a single NUL byte, return NULL; otherwise
19591 return a pointer to the string. */
19592
d521ce57 19593static const char *
ed2dc618
SM
19594read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19595 LONGEST str_offset)
36586728 19596{
ed2dc618 19597 dwarf2_read_section (objfile, &dwz->str);
36586728
TT
19598
19599 if (dwz->str.buffer == NULL)
19600 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19601 "section [in module %s]"),
19602 bfd_get_filename (dwz->dwz_bfd));
19603 if (str_offset >= dwz->str.size)
19604 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19605 ".debug_str section [in module %s]"),
19606 bfd_get_filename (dwz->dwz_bfd));
19607 gdb_assert (HOST_CHAR_BIT == 8);
19608 if (dwz->str.buffer[str_offset] == '\0')
19609 return NULL;
d521ce57 19610 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
19611}
19612
43988095
JK
19613/* Return pointer to string at .debug_str offset as read from BUF.
19614 BUF is assumed to be in a compilation unit described by CU_HEADER.
19615 Return *BYTES_READ_PTR count of bytes read from BUF. */
19616
d521ce57 19617static const char *
ed2dc618
SM
19618read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19619 const gdb_byte *buf,
cf2c3c16
TT
19620 const struct comp_unit_head *cu_header,
19621 unsigned int *bytes_read_ptr)
19622{
19623 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19624
ed2dc618 19625 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
cf2c3c16
TT
19626}
19627
43988095
JK
19628/* Return pointer to string at .debug_line_str offset as read from BUF.
19629 BUF is assumed to be in a compilation unit described by CU_HEADER.
19630 Return *BYTES_READ_PTR count of bytes read from BUF. */
19631
19632static const char *
ed2dc618
SM
19633read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19634 bfd *abfd, const gdb_byte *buf,
43988095
JK
19635 const struct comp_unit_head *cu_header,
19636 unsigned int *bytes_read_ptr)
19637{
19638 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19639
ed2dc618
SM
19640 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19641 str_offset);
43988095
JK
19642}
19643
19644ULONGEST
d521ce57 19645read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
43988095 19646 unsigned int *bytes_read_ptr)
c906108c 19647{
12df843f 19648 ULONGEST result;
ce5d95e1 19649 unsigned int num_read;
870f88f7 19650 int shift;
c906108c
SS
19651 unsigned char byte;
19652
19653 result = 0;
19654 shift = 0;
19655 num_read = 0;
c906108c
SS
19656 while (1)
19657 {
fe1b8b76 19658 byte = bfd_get_8 (abfd, buf);
c906108c
SS
19659 buf++;
19660 num_read++;
12df843f 19661 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
19662 if ((byte & 128) == 0)
19663 {
19664 break;
19665 }
19666 shift += 7;
19667 }
19668 *bytes_read_ptr = num_read;
19669 return result;
19670}
19671
12df843f 19672static LONGEST
d521ce57
TT
19673read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19674 unsigned int *bytes_read_ptr)
c906108c 19675{
4dd1b460 19676 ULONGEST result;
870f88f7 19677 int shift, num_read;
c906108c
SS
19678 unsigned char byte;
19679
19680 result = 0;
19681 shift = 0;
c906108c 19682 num_read = 0;
c906108c
SS
19683 while (1)
19684 {
fe1b8b76 19685 byte = bfd_get_8 (abfd, buf);
c906108c
SS
19686 buf++;
19687 num_read++;
4dd1b460 19688 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
19689 shift += 7;
19690 if ((byte & 128) == 0)
19691 {
19692 break;
19693 }
19694 }
77e0b926 19695 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
4dd1b460 19696 result |= -(((ULONGEST) 1) << shift);
c906108c
SS
19697 *bytes_read_ptr = num_read;
19698 return result;
19699}
19700
3019eac3
DE
19701/* Given index ADDR_INDEX in .debug_addr, fetch the value.
19702 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19703 ADDR_SIZE is the size of addresses from the CU header. */
19704
19705static CORE_ADDR
ed2dc618
SM
19706read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19707 unsigned int addr_index, ULONGEST addr_base, int addr_size)
3019eac3
DE
19708{
19709 struct objfile *objfile = dwarf2_per_objfile->objfile;
19710 bfd *abfd = objfile->obfd;
19711 const gdb_byte *info_ptr;
19712
19713 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19714 if (dwarf2_per_objfile->addr.buffer == NULL)
19715 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 19716 objfile_name (objfile));
3019eac3
DE
19717 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19718 error (_("DW_FORM_addr_index pointing outside of "
19719 ".debug_addr section [in module %s]"),
4262abfb 19720 objfile_name (objfile));
3019eac3
DE
19721 info_ptr = (dwarf2_per_objfile->addr.buffer
19722 + addr_base + addr_index * addr_size);
19723 if (addr_size == 4)
19724 return bfd_get_32 (abfd, info_ptr);
19725 else
19726 return bfd_get_64 (abfd, info_ptr);
19727}
19728
19729/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19730
19731static CORE_ADDR
19732read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19733{
518817b3
SM
19734 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19735 cu->addr_base, cu->header.addr_size);
3019eac3
DE
19736}
19737
19738/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19739
19740static CORE_ADDR
d521ce57 19741read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
19742 unsigned int *bytes_read)
19743{
518817b3 19744 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
3019eac3
DE
19745 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19746
19747 return read_addr_index (cu, addr_index);
19748}
19749
19750/* Data structure to pass results from dwarf2_read_addr_index_reader
19751 back to dwarf2_read_addr_index. */
19752
19753struct dwarf2_read_addr_index_data
19754{
19755 ULONGEST addr_base;
19756 int addr_size;
19757};
19758
19759/* die_reader_func for dwarf2_read_addr_index. */
19760
19761static void
19762dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 19763 const gdb_byte *info_ptr,
3019eac3
DE
19764 struct die_info *comp_unit_die,
19765 int has_children,
19766 void *data)
19767{
19768 struct dwarf2_cu *cu = reader->cu;
19769 struct dwarf2_read_addr_index_data *aidata =
19770 (struct dwarf2_read_addr_index_data *) data;
19771
19772 aidata->addr_base = cu->addr_base;
19773 aidata->addr_size = cu->header.addr_size;
19774}
19775
19776/* Given an index in .debug_addr, fetch the value.
19777 NOTE: This can be called during dwarf expression evaluation,
19778 long after the debug information has been read, and thus per_cu->cu
19779 may no longer exist. */
19780
19781CORE_ADDR
19782dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19783 unsigned int addr_index)
19784{
ed2dc618 19785 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
3019eac3
DE
19786 struct dwarf2_cu *cu = per_cu->cu;
19787 ULONGEST addr_base;
19788 int addr_size;
19789
3019eac3
DE
19790 /* We need addr_base and addr_size.
19791 If we don't have PER_CU->cu, we have to get it.
19792 Nasty, but the alternative is storing the needed info in PER_CU,
19793 which at this point doesn't seem justified: it's not clear how frequently
19794 it would get used and it would increase the size of every PER_CU.
19795 Entry points like dwarf2_per_cu_addr_size do a similar thing
19796 so we're not in uncharted territory here.
19797 Alas we need to be a bit more complicated as addr_base is contained
19798 in the DIE.
19799
19800 We don't need to read the entire CU(/TU).
19801 We just need the header and top level die.
a1b64ce1 19802
3019eac3 19803 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 19804 For now we skip this optimization. */
3019eac3
DE
19805
19806 if (cu != NULL)
19807 {
19808 addr_base = cu->addr_base;
19809 addr_size = cu->header.addr_size;
19810 }
19811 else
19812 {
19813 struct dwarf2_read_addr_index_data aidata;
19814
a1b64ce1
DE
19815 /* Note: We can't use init_cutu_and_read_dies_simple here,
19816 we need addr_base. */
58f0c718 19817 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
a1b64ce1 19818 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
19819 addr_base = aidata.addr_base;
19820 addr_size = aidata.addr_size;
19821 }
19822
ed2dc618
SM
19823 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19824 addr_size);
3019eac3
DE
19825}
19826
57d63ce2
DE
19827/* Given a DW_FORM_GNU_str_index, fetch the string.
19828 This is only used by the Fission support. */
3019eac3 19829
d521ce57 19830static const char *
342587c4 19831read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
3019eac3 19832{
ed2dc618 19833 struct dwarf2_cu *cu = reader->cu;
518817b3
SM
19834 struct dwarf2_per_objfile *dwarf2_per_objfile
19835 = cu->per_cu->dwarf2_per_objfile;
3019eac3 19836 struct objfile *objfile = dwarf2_per_objfile->objfile;
c5164cbc 19837 const char *objf_name = objfile_name (objfile);
3019eac3 19838 bfd *abfd = objfile->obfd;
73869dc2
DE
19839 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19840 struct dwarf2_section_info *str_offsets_section =
19841 &reader->dwo_file->sections.str_offsets;
d521ce57 19842 const gdb_byte *info_ptr;
3019eac3 19843 ULONGEST str_offset;
57d63ce2 19844 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 19845
73869dc2
DE
19846 dwarf2_read_section (objfile, str_section);
19847 dwarf2_read_section (objfile, str_offsets_section);
19848 if (str_section->buffer == NULL)
57d63ce2 19849 error (_("%s used without .debug_str.dwo section"
9d8780f0
SM
19850 " in CU at offset %s [in module %s]"),
19851 form_name, sect_offset_str (cu->header.sect_off), objf_name);
73869dc2 19852 if (str_offsets_section->buffer == NULL)
57d63ce2 19853 error (_("%s used without .debug_str_offsets.dwo section"
9d8780f0
SM
19854 " in CU at offset %s [in module %s]"),
19855 form_name, sect_offset_str (cu->header.sect_off), objf_name);
73869dc2 19856 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 19857 error (_("%s pointing outside of .debug_str_offsets.dwo"
9d8780f0
SM
19858 " section in CU at offset %s [in module %s]"),
19859 form_name, sect_offset_str (cu->header.sect_off), objf_name);
73869dc2 19860 info_ptr = (str_offsets_section->buffer
3019eac3
DE
19861 + str_index * cu->header.offset_size);
19862 if (cu->header.offset_size == 4)
19863 str_offset = bfd_get_32 (abfd, info_ptr);
19864 else
19865 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 19866 if (str_offset >= str_section->size)
57d63ce2 19867 error (_("Offset from %s pointing outside of"
9d8780f0
SM
19868 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19869 form_name, sect_offset_str (cu->header.sect_off), objf_name);
73869dc2 19870 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
19871}
19872
3019eac3
DE
19873/* Return the length of an LEB128 number in BUF. */
19874
19875static int
19876leb128_size (const gdb_byte *buf)
19877{
19878 const gdb_byte *begin = buf;
19879 gdb_byte byte;
19880
19881 while (1)
19882 {
19883 byte = *buf++;
19884 if ((byte & 128) == 0)
19885 return buf - begin;
19886 }
19887}
19888
c906108c 19889static void
e142c38c 19890set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
19891{
19892 switch (lang)
19893 {
19894 case DW_LANG_C89:
76bee0cc 19895 case DW_LANG_C99:
0cfd832f 19896 case DW_LANG_C11:
c906108c 19897 case DW_LANG_C:
d1be3247 19898 case DW_LANG_UPC:
e142c38c 19899 cu->language = language_c;
c906108c 19900 break;
9c37b5ae 19901 case DW_LANG_Java:
c906108c 19902 case DW_LANG_C_plus_plus:
0cfd832f
MW
19903 case DW_LANG_C_plus_plus_11:
19904 case DW_LANG_C_plus_plus_14:
e142c38c 19905 cu->language = language_cplus;
c906108c 19906 break;
6aecb9c2
JB
19907 case DW_LANG_D:
19908 cu->language = language_d;
19909 break;
c906108c
SS
19910 case DW_LANG_Fortran77:
19911 case DW_LANG_Fortran90:
b21b22e0 19912 case DW_LANG_Fortran95:
f7de9aab
MW
19913 case DW_LANG_Fortran03:
19914 case DW_LANG_Fortran08:
e142c38c 19915 cu->language = language_fortran;
c906108c 19916 break;
a766d390
DE
19917 case DW_LANG_Go:
19918 cu->language = language_go;
19919 break;
c906108c 19920 case DW_LANG_Mips_Assembler:
e142c38c 19921 cu->language = language_asm;
c906108c
SS
19922 break;
19923 case DW_LANG_Ada83:
8aaf0b47 19924 case DW_LANG_Ada95:
bc5f45f8
JB
19925 cu->language = language_ada;
19926 break;
72019c9c
GM
19927 case DW_LANG_Modula2:
19928 cu->language = language_m2;
19929 break;
fe8e67fd
PM
19930 case DW_LANG_Pascal83:
19931 cu->language = language_pascal;
19932 break;
22566fbd
DJ
19933 case DW_LANG_ObjC:
19934 cu->language = language_objc;
19935 break;
c44af4eb
TT
19936 case DW_LANG_Rust:
19937 case DW_LANG_Rust_old:
19938 cu->language = language_rust;
19939 break;
c906108c
SS
19940 case DW_LANG_Cobol74:
19941 case DW_LANG_Cobol85:
c906108c 19942 default:
e142c38c 19943 cu->language = language_minimal;
c906108c
SS
19944 break;
19945 }
e142c38c 19946 cu->language_defn = language_def (cu->language);
c906108c
SS
19947}
19948
19949/* Return the named attribute or NULL if not there. */
19950
19951static struct attribute *
e142c38c 19952dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 19953{
a48e046c 19954 for (;;)
c906108c 19955 {
a48e046c
TT
19956 unsigned int i;
19957 struct attribute *spec = NULL;
19958
19959 for (i = 0; i < die->num_attrs; ++i)
19960 {
19961 if (die->attrs[i].name == name)
19962 return &die->attrs[i];
19963 if (die->attrs[i].name == DW_AT_specification
19964 || die->attrs[i].name == DW_AT_abstract_origin)
19965 spec = &die->attrs[i];
19966 }
19967
19968 if (!spec)
19969 break;
c906108c 19970
f2f0e013 19971 die = follow_die_ref (die, spec, &cu);
f2f0e013 19972 }
c5aa993b 19973
c906108c
SS
19974 return NULL;
19975}
19976
348e048f
DE
19977/* Return the named attribute or NULL if not there,
19978 but do not follow DW_AT_specification, etc.
19979 This is for use in contexts where we're reading .debug_types dies.
19980 Following DW_AT_specification, DW_AT_abstract_origin will take us
19981 back up the chain, and we want to go down. */
19982
19983static struct attribute *
45e58e77 19984dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
19985{
19986 unsigned int i;
19987
19988 for (i = 0; i < die->num_attrs; ++i)
19989 if (die->attrs[i].name == name)
19990 return &die->attrs[i];
19991
19992 return NULL;
19993}
19994
7d45c7c3
KB
19995/* Return the string associated with a string-typed attribute, or NULL if it
19996 is either not found or is of an incorrect type. */
19997
19998static const char *
19999dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20000{
20001 struct attribute *attr;
20002 const char *str = NULL;
20003
20004 attr = dwarf2_attr (die, name, cu);
20005
20006 if (attr != NULL)
20007 {
43988095 20008 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
b3340438
L
20009 || attr->form == DW_FORM_string
20010 || attr->form == DW_FORM_GNU_str_index
16eb6b2d 20011 || attr->form == DW_FORM_GNU_strp_alt)
7d45c7c3
KB
20012 str = DW_STRING (attr);
20013 else
b98664d3 20014 complaint (_("string type expected for attribute %s for "
9d8780f0
SM
20015 "DIE at %s in module %s"),
20016 dwarf_attr_name (name), sect_offset_str (die->sect_off),
518817b3 20017 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
7d45c7c3
KB
20018 }
20019
20020 return str;
20021}
20022
05cf31d1
JB
20023/* Return non-zero iff the attribute NAME is defined for the given DIE,
20024 and holds a non-zero value. This function should only be used for
2dc7f7b3 20025 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
20026
20027static int
20028dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20029{
20030 struct attribute *attr = dwarf2_attr (die, name, cu);
20031
20032 return (attr && DW_UNSND (attr));
20033}
20034
3ca72b44 20035static int
e142c38c 20036die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 20037{
05cf31d1
JB
20038 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20039 which value is non-zero. However, we have to be careful with
20040 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20041 (via dwarf2_flag_true_p) follows this attribute. So we may
20042 end up accidently finding a declaration attribute that belongs
20043 to a different DIE referenced by the specification attribute,
20044 even though the given DIE does not have a declaration attribute. */
20045 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20046 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
20047}
20048
63d06c5c 20049/* Return the die giving the specification for DIE, if there is
f2f0e013 20050 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
20051 containing the return value on output. If there is no
20052 specification, but there is an abstract origin, that is
20053 returned. */
63d06c5c
DC
20054
20055static struct die_info *
f2f0e013 20056die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 20057{
f2f0e013
DJ
20058 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20059 *spec_cu);
63d06c5c 20060
edb3359d
DJ
20061 if (spec_attr == NULL)
20062 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20063
63d06c5c
DC
20064 if (spec_attr == NULL)
20065 return NULL;
20066 else
f2f0e013 20067 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 20068}
c906108c 20069
527f3840
JK
20070/* Stub for free_line_header to match void * callback types. */
20071
20072static void
20073free_line_header_voidp (void *arg)
20074{
9a3c8263 20075 struct line_header *lh = (struct line_header *) arg;
527f3840 20076
fff8551c 20077 delete lh;
527f3840
JK
20078}
20079
fff8551c
PA
20080void
20081line_header::add_include_dir (const char *include_dir)
c906108c 20082{
27e0867f 20083 if (dwarf_line_debug >= 2)
fff8551c
PA
20084 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20085 include_dirs.size () + 1, include_dir);
27e0867f 20086
fff8551c 20087 include_dirs.push_back (include_dir);
debd256d 20088}
6e70227d 20089
fff8551c
PA
20090void
20091line_header::add_file_name (const char *name,
ecfb656c 20092 dir_index d_index,
fff8551c
PA
20093 unsigned int mod_time,
20094 unsigned int length)
debd256d 20095{
27e0867f
DE
20096 if (dwarf_line_debug >= 2)
20097 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
fff8551c 20098 (unsigned) file_names.size () + 1, name);
27e0867f 20099
ecfb656c 20100 file_names.emplace_back (name, d_index, mod_time, length);
debd256d 20101}
6e70227d 20102
83769d0b 20103/* A convenience function to find the proper .debug_line section for a CU. */
36586728
TT
20104
20105static struct dwarf2_section_info *
20106get_debug_line_section (struct dwarf2_cu *cu)
20107{
20108 struct dwarf2_section_info *section;
518817b3
SM
20109 struct dwarf2_per_objfile *dwarf2_per_objfile
20110 = cu->per_cu->dwarf2_per_objfile;
36586728
TT
20111
20112 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20113 DWO file. */
20114 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20115 section = &cu->dwo_unit->dwo_file->sections.line;
20116 else if (cu->per_cu->is_dwz)
20117 {
ed2dc618 20118 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
36586728
TT
20119
20120 section = &dwz->line;
20121 }
20122 else
20123 section = &dwarf2_per_objfile->line;
20124
20125 return section;
20126}
20127
43988095
JK
20128/* Read directory or file name entry format, starting with byte of
20129 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20130 entries count and the entries themselves in the described entry
20131 format. */
20132
20133static void
ed2dc618
SM
20134read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20135 bfd *abfd, const gdb_byte **bufp,
43988095
JK
20136 struct line_header *lh,
20137 const struct comp_unit_head *cu_header,
20138 void (*callback) (struct line_header *lh,
20139 const char *name,
ecfb656c 20140 dir_index d_index,
43988095
JK
20141 unsigned int mod_time,
20142 unsigned int length))
20143{
20144 gdb_byte format_count, formati;
20145 ULONGEST data_count, datai;
20146 const gdb_byte *buf = *bufp;
20147 const gdb_byte *format_header_data;
43988095
JK
20148 unsigned int bytes_read;
20149
20150 format_count = read_1_byte (abfd, buf);
20151 buf += 1;
20152 format_header_data = buf;
20153 for (formati = 0; formati < format_count; formati++)
20154 {
20155 read_unsigned_leb128 (abfd, buf, &bytes_read);
20156 buf += bytes_read;
20157 read_unsigned_leb128 (abfd, buf, &bytes_read);
20158 buf += bytes_read;
20159 }
20160
20161 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20162 buf += bytes_read;
20163 for (datai = 0; datai < data_count; datai++)
20164 {
20165 const gdb_byte *format = format_header_data;
20166 struct file_entry fe;
20167
43988095
JK
20168 for (formati = 0; formati < format_count; formati++)
20169 {
ecfb656c 20170 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
43988095 20171 format += bytes_read;
43988095 20172
ecfb656c 20173 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
43988095 20174 format += bytes_read;
ecfb656c
PA
20175
20176 gdb::optional<const char *> string;
20177 gdb::optional<unsigned int> uint;
20178
43988095
JK
20179 switch (form)
20180 {
20181 case DW_FORM_string:
ecfb656c 20182 string.emplace (read_direct_string (abfd, buf, &bytes_read));
43988095
JK
20183 buf += bytes_read;
20184 break;
20185
20186 case DW_FORM_line_strp:
ed2dc618
SM
20187 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20188 abfd, buf,
ecfb656c
PA
20189 cu_header,
20190 &bytes_read));
43988095
JK
20191 buf += bytes_read;
20192 break;
20193
20194 case DW_FORM_data1:
ecfb656c 20195 uint.emplace (read_1_byte (abfd, buf));
43988095
JK
20196 buf += 1;
20197 break;
20198
20199 case DW_FORM_data2:
ecfb656c 20200 uint.emplace (read_2_bytes (abfd, buf));
43988095
JK
20201 buf += 2;
20202 break;
20203
20204 case DW_FORM_data4:
ecfb656c 20205 uint.emplace (read_4_bytes (abfd, buf));
43988095
JK
20206 buf += 4;
20207 break;
20208
20209 case DW_FORM_data8:
ecfb656c 20210 uint.emplace (read_8_bytes (abfd, buf));
43988095
JK
20211 buf += 8;
20212 break;
20213
20214 case DW_FORM_udata:
ecfb656c 20215 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
43988095
JK
20216 buf += bytes_read;
20217 break;
20218
20219 case DW_FORM_block:
20220 /* It is valid only for DW_LNCT_timestamp which is ignored by
20221 current GDB. */
20222 break;
20223 }
ecfb656c
PA
20224
20225 switch (content_type)
20226 {
20227 case DW_LNCT_path:
20228 if (string.has_value ())
20229 fe.name = *string;
20230 break;
20231 case DW_LNCT_directory_index:
20232 if (uint.has_value ())
20233 fe.d_index = (dir_index) *uint;
20234 break;
20235 case DW_LNCT_timestamp:
20236 if (uint.has_value ())
20237 fe.mod_time = *uint;
20238 break;
20239 case DW_LNCT_size:
20240 if (uint.has_value ())
20241 fe.length = *uint;
20242 break;
20243 case DW_LNCT_MD5:
20244 break;
20245 default:
b98664d3 20246 complaint (_("Unknown format content type %s"),
ecfb656c
PA
20247 pulongest (content_type));
20248 }
43988095
JK
20249 }
20250
ecfb656c 20251 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
43988095
JK
20252 }
20253
20254 *bufp = buf;
20255}
20256
debd256d 20257/* Read the statement program header starting at OFFSET in
3019eac3 20258 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 20259 to a struct line_header, allocated using xmalloc.
cd366ee8
DE
20260 Returns NULL if there is a problem reading the header, e.g., if it
20261 has a version we don't understand.
debd256d
JB
20262
20263 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
20264 the returned object point into the dwarf line section buffer,
20265 and must not be freed. */
ae2de4f8 20266
fff8551c 20267static line_header_up
9c541725 20268dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
debd256d 20269{
d521ce57 20270 const gdb_byte *line_ptr;
c764a876 20271 unsigned int bytes_read, offset_size;
debd256d 20272 int i;
d521ce57 20273 const char *cur_dir, *cur_file;
3019eac3
DE
20274 struct dwarf2_section_info *section;
20275 bfd *abfd;
518817b3
SM
20276 struct dwarf2_per_objfile *dwarf2_per_objfile
20277 = cu->per_cu->dwarf2_per_objfile;
3019eac3 20278
36586728 20279 section = get_debug_line_section (cu);
3019eac3
DE
20280 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20281 if (section->buffer == NULL)
debd256d 20282 {
3019eac3 20283 if (cu->dwo_unit && cu->per_cu->is_debug_types)
b98664d3 20284 complaint (_("missing .debug_line.dwo section"));
3019eac3 20285 else
b98664d3 20286 complaint (_("missing .debug_line section"));
debd256d
JB
20287 return 0;
20288 }
20289
fceca515
DE
20290 /* We can't do this until we know the section is non-empty.
20291 Only then do we know we have such a section. */
a32a8923 20292 abfd = get_section_bfd_owner (section);
fceca515 20293
a738430d
MK
20294 /* Make sure that at least there's room for the total_length field.
20295 That could be 12 bytes long, but we're just going to fudge that. */
9c541725 20296 if (to_underlying (sect_off) + 4 >= section->size)
debd256d 20297 {
4d3c2250 20298 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
20299 return 0;
20300 }
20301
fff8551c 20302 line_header_up lh (new line_header ());
debd256d 20303
9c541725 20304 lh->sect_off = sect_off;
527f3840
JK
20305 lh->offset_in_dwz = cu->per_cu->is_dwz;
20306
9c541725 20307 line_ptr = section->buffer + to_underlying (sect_off);
debd256d 20308
a738430d 20309 /* Read in the header. */
6e70227d 20310 lh->total_length =
c764a876
DE
20311 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20312 &bytes_read, &offset_size);
debd256d 20313 line_ptr += bytes_read;
3019eac3 20314 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 20315 {
4d3c2250 20316 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
20317 return 0;
20318 }
20319 lh->statement_program_end = line_ptr + lh->total_length;
20320 lh->version = read_2_bytes (abfd, line_ptr);
20321 line_ptr += 2;
43988095 20322 if (lh->version > 5)
cd366ee8
DE
20323 {
20324 /* This is a version we don't understand. The format could have
20325 changed in ways we don't handle properly so just punt. */
b98664d3 20326 complaint (_("unsupported version in .debug_line section"));
cd366ee8
DE
20327 return NULL;
20328 }
43988095
JK
20329 if (lh->version >= 5)
20330 {
20331 gdb_byte segment_selector_size;
20332
20333 /* Skip address size. */
20334 read_1_byte (abfd, line_ptr);
20335 line_ptr += 1;
20336
20337 segment_selector_size = read_1_byte (abfd, line_ptr);
20338 line_ptr += 1;
20339 if (segment_selector_size != 0)
20340 {
b98664d3 20341 complaint (_("unsupported segment selector size %u "
43988095
JK
20342 "in .debug_line section"),
20343 segment_selector_size);
20344 return NULL;
20345 }
20346 }
c764a876
DE
20347 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20348 line_ptr += offset_size;
debd256d
JB
20349 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20350 line_ptr += 1;
2dc7f7b3
TT
20351 if (lh->version >= 4)
20352 {
20353 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20354 line_ptr += 1;
20355 }
20356 else
20357 lh->maximum_ops_per_instruction = 1;
20358
20359 if (lh->maximum_ops_per_instruction == 0)
20360 {
20361 lh->maximum_ops_per_instruction = 1;
b98664d3 20362 complaint (_("invalid maximum_ops_per_instruction "
3e43a32a 20363 "in `.debug_line' section"));
2dc7f7b3
TT
20364 }
20365
debd256d
JB
20366 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20367 line_ptr += 1;
20368 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20369 line_ptr += 1;
20370 lh->line_range = read_1_byte (abfd, line_ptr);
20371 line_ptr += 1;
20372 lh->opcode_base = read_1_byte (abfd, line_ptr);
20373 line_ptr += 1;
fff8551c 20374 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
debd256d
JB
20375
20376 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20377 for (i = 1; i < lh->opcode_base; ++i)
20378 {
20379 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20380 line_ptr += 1;
20381 }
20382
43988095 20383 if (lh->version >= 5)
debd256d 20384 {
43988095 20385 /* Read directory table. */
ed2dc618
SM
20386 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20387 &cu->header,
b926417a 20388 [] (struct line_header *header, const char *name,
ecfb656c 20389 dir_index d_index, unsigned int mod_time,
fff8551c
PA
20390 unsigned int length)
20391 {
b926417a 20392 header->add_include_dir (name);
fff8551c 20393 });
debd256d 20394
43988095 20395 /* Read file name table. */
ed2dc618
SM
20396 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20397 &cu->header,
b926417a 20398 [] (struct line_header *header, const char *name,
ecfb656c 20399 dir_index d_index, unsigned int mod_time,
fff8551c
PA
20400 unsigned int length)
20401 {
b926417a 20402 header->add_file_name (name, d_index, mod_time, length);
fff8551c 20403 });
43988095
JK
20404 }
20405 else
debd256d 20406 {
43988095
JK
20407 /* Read directory table. */
20408 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20409 {
20410 line_ptr += bytes_read;
fff8551c 20411 lh->add_include_dir (cur_dir);
43988095 20412 }
debd256d
JB
20413 line_ptr += bytes_read;
20414
43988095
JK
20415 /* Read file name table. */
20416 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20417 {
ecfb656c
PA
20418 unsigned int mod_time, length;
20419 dir_index d_index;
43988095
JK
20420
20421 line_ptr += bytes_read;
ecfb656c 20422 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
43988095
JK
20423 line_ptr += bytes_read;
20424 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20425 line_ptr += bytes_read;
20426 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20427 line_ptr += bytes_read;
20428
ecfb656c 20429 lh->add_file_name (cur_file, d_index, mod_time, length);
43988095
JK
20430 }
20431 line_ptr += bytes_read;
debd256d 20432 }
6e70227d 20433 lh->statement_program_start = line_ptr;
debd256d 20434
3019eac3 20435 if (line_ptr > (section->buffer + section->size))
b98664d3 20436 complaint (_("line number info header doesn't "
3e43a32a 20437 "fit in `.debug_line' section"));
debd256d 20438
debd256d
JB
20439 return lh;
20440}
c906108c 20441
c6da4cef
DE
20442/* Subroutine of dwarf_decode_lines to simplify it.
20443 Return the file name of the psymtab for included file FILE_INDEX
20444 in line header LH of PST.
20445 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
c89b44cd
TT
20446 If space for the result is malloc'd, *NAME_HOLDER will be set.
20447 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
c6da4cef 20448
d521ce57 20449static const char *
c6da4cef
DE
20450psymtab_include_file_name (const struct line_header *lh, int file_index,
20451 const struct partial_symtab *pst,
c89b44cd
TT
20452 const char *comp_dir,
20453 gdb::unique_xmalloc_ptr<char> *name_holder)
c6da4cef 20454{
8c43009f 20455 const file_entry &fe = lh->file_names[file_index];
d521ce57
TT
20456 const char *include_name = fe.name;
20457 const char *include_name_to_compare = include_name;
72b9f47f 20458 const char *pst_filename;
c6da4cef
DE
20459 int file_is_pst;
20460
8c43009f 20461 const char *dir_name = fe.include_dir (lh);
c6da4cef 20462
c89b44cd 20463 gdb::unique_xmalloc_ptr<char> hold_compare;
c6da4cef
DE
20464 if (!IS_ABSOLUTE_PATH (include_name)
20465 && (dir_name != NULL || comp_dir != NULL))
20466 {
20467 /* Avoid creating a duplicate psymtab for PST.
20468 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20469 Before we do the comparison, however, we need to account
20470 for DIR_NAME and COMP_DIR.
20471 First prepend dir_name (if non-NULL). If we still don't
20472 have an absolute path prepend comp_dir (if non-NULL).
20473 However, the directory we record in the include-file's
20474 psymtab does not contain COMP_DIR (to match the
20475 corresponding symtab(s)).
20476
20477 Example:
20478
20479 bash$ cd /tmp
20480 bash$ gcc -g ./hello.c
20481 include_name = "hello.c"
20482 dir_name = "."
20483 DW_AT_comp_dir = comp_dir = "/tmp"
5f52445b
YQ
20484 DW_AT_name = "./hello.c"
20485
20486 */
c6da4cef
DE
20487
20488 if (dir_name != NULL)
20489 {
c89b44cd
TT
20490 name_holder->reset (concat (dir_name, SLASH_STRING,
20491 include_name, (char *) NULL));
20492 include_name = name_holder->get ();
c6da4cef 20493 include_name_to_compare = include_name;
c6da4cef
DE
20494 }
20495 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20496 {
c89b44cd
TT
20497 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20498 include_name, (char *) NULL));
20499 include_name_to_compare = hold_compare.get ();
c6da4cef
DE
20500 }
20501 }
20502
20503 pst_filename = pst->filename;
c89b44cd 20504 gdb::unique_xmalloc_ptr<char> copied_name;
c6da4cef
DE
20505 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20506 {
c89b44cd
TT
20507 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20508 pst_filename, (char *) NULL));
20509 pst_filename = copied_name.get ();
c6da4cef
DE
20510 }
20511
1e3fad37 20512 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 20513
c6da4cef
DE
20514 if (file_is_pst)
20515 return NULL;
20516 return include_name;
20517}
20518
d9b3de22
DE
20519/* State machine to track the state of the line number program. */
20520
6f77053d 20521class lnp_state_machine
d9b3de22 20522{
6f77053d
PA
20523public:
20524 /* Initialize a machine state for the start of a line number
20525 program. */
804d2729
TT
20526 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20527 bool record_lines_p);
6f77053d 20528
8c43009f
PA
20529 file_entry *current_file ()
20530 {
20531 /* lh->file_names is 0-based, but the file name numbers in the
20532 statement program are 1-based. */
6f77053d
PA
20533 return m_line_header->file_name_at (m_file);
20534 }
20535
20536 /* Record the line in the state machine. END_SEQUENCE is true if
20537 we're processing the end of a sequence. */
20538 void record_line (bool end_sequence);
20539
7ab6656f
OJ
20540 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20541 nop-out rest of the lines in this sequence. */
6f77053d
PA
20542 void check_line_address (struct dwarf2_cu *cu,
20543 const gdb_byte *line_ptr,
7ab6656f 20544 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
6f77053d
PA
20545
20546 void handle_set_discriminator (unsigned int discriminator)
20547 {
20548 m_discriminator = discriminator;
20549 m_line_has_non_zero_discriminator |= discriminator != 0;
20550 }
20551
20552 /* Handle DW_LNE_set_address. */
20553 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20554 {
20555 m_op_index = 0;
20556 address += baseaddr;
20557 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20558 }
20559
20560 /* Handle DW_LNS_advance_pc. */
20561 void handle_advance_pc (CORE_ADDR adjust);
20562
20563 /* Handle a special opcode. */
20564 void handle_special_opcode (unsigned char op_code);
20565
20566 /* Handle DW_LNS_advance_line. */
20567 void handle_advance_line (int line_delta)
20568 {
20569 advance_line (line_delta);
20570 }
20571
20572 /* Handle DW_LNS_set_file. */
20573 void handle_set_file (file_name_index file);
20574
20575 /* Handle DW_LNS_negate_stmt. */
20576 void handle_negate_stmt ()
20577 {
20578 m_is_stmt = !m_is_stmt;
20579 }
20580
20581 /* Handle DW_LNS_const_add_pc. */
20582 void handle_const_add_pc ();
20583
20584 /* Handle DW_LNS_fixed_advance_pc. */
20585 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20586 {
20587 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20588 m_op_index = 0;
20589 }
20590
20591 /* Handle DW_LNS_copy. */
20592 void handle_copy ()
20593 {
20594 record_line (false);
20595 m_discriminator = 0;
20596 }
20597
20598 /* Handle DW_LNE_end_sequence. */
20599 void handle_end_sequence ()
20600 {
804d2729 20601 m_currently_recording_lines = true;
6f77053d
PA
20602 }
20603
20604private:
20605 /* Advance the line by LINE_DELTA. */
20606 void advance_line (int line_delta)
20607 {
20608 m_line += line_delta;
20609
20610 if (line_delta != 0)
20611 m_line_has_non_zero_discriminator = m_discriminator != 0;
8c43009f
PA
20612 }
20613
804d2729
TT
20614 struct dwarf2_cu *m_cu;
20615
6f77053d
PA
20616 gdbarch *m_gdbarch;
20617
20618 /* True if we're recording lines.
20619 Otherwise we're building partial symtabs and are just interested in
20620 finding include files mentioned by the line number program. */
20621 bool m_record_lines_p;
20622
8c43009f 20623 /* The line number header. */
6f77053d 20624 line_header *m_line_header;
8c43009f 20625
6f77053d
PA
20626 /* These are part of the standard DWARF line number state machine,
20627 and initialized according to the DWARF spec. */
d9b3de22 20628
6f77053d 20629 unsigned char m_op_index = 0;
8c43009f 20630 /* The line table index (1-based) of the current file. */
6f77053d
PA
20631 file_name_index m_file = (file_name_index) 1;
20632 unsigned int m_line = 1;
20633
20634 /* These are initialized in the constructor. */
20635
20636 CORE_ADDR m_address;
20637 bool m_is_stmt;
20638 unsigned int m_discriminator;
d9b3de22
DE
20639
20640 /* Additional bits of state we need to track. */
20641
20642 /* The last file that we called dwarf2_start_subfile for.
20643 This is only used for TLLs. */
6f77053d 20644 unsigned int m_last_file = 0;
d9b3de22 20645 /* The last file a line number was recorded for. */
6f77053d 20646 struct subfile *m_last_subfile = NULL;
d9b3de22 20647
804d2729
TT
20648 /* When true, record the lines we decode. */
20649 bool m_currently_recording_lines = false;
d9b3de22
DE
20650
20651 /* The last line number that was recorded, used to coalesce
20652 consecutive entries for the same line. This can happen, for
20653 example, when discriminators are present. PR 17276. */
6f77053d
PA
20654 unsigned int m_last_line = 0;
20655 bool m_line_has_non_zero_discriminator = false;
8c43009f 20656};
d9b3de22 20657
6f77053d
PA
20658void
20659lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20660{
20661 CORE_ADDR addr_adj = (((m_op_index + adjust)
20662 / m_line_header->maximum_ops_per_instruction)
20663 * m_line_header->minimum_instruction_length);
20664 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20665 m_op_index = ((m_op_index + adjust)
20666 % m_line_header->maximum_ops_per_instruction);
20667}
d9b3de22 20668
6f77053d
PA
20669void
20670lnp_state_machine::handle_special_opcode (unsigned char op_code)
d9b3de22 20671{
6f77053d
PA
20672 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20673 CORE_ADDR addr_adj = (((m_op_index
20674 + (adj_opcode / m_line_header->line_range))
20675 / m_line_header->maximum_ops_per_instruction)
20676 * m_line_header->minimum_instruction_length);
20677 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20678 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20679 % m_line_header->maximum_ops_per_instruction);
d9b3de22 20680
6f77053d
PA
20681 int line_delta = (m_line_header->line_base
20682 + (adj_opcode % m_line_header->line_range));
20683 advance_line (line_delta);
20684 record_line (false);
20685 m_discriminator = 0;
20686}
d9b3de22 20687
6f77053d
PA
20688void
20689lnp_state_machine::handle_set_file (file_name_index file)
20690{
20691 m_file = file;
20692
20693 const file_entry *fe = current_file ();
20694 if (fe == NULL)
20695 dwarf2_debug_line_missing_file_complaint ();
20696 else if (m_record_lines_p)
20697 {
20698 const char *dir = fe->include_dir (m_line_header);
20699
804d2729 20700 m_last_subfile = m_cu->builder->get_current_subfile ();
6f77053d 20701 m_line_has_non_zero_discriminator = m_discriminator != 0;
804d2729 20702 dwarf2_start_subfile (m_cu, fe->name, dir);
6f77053d
PA
20703 }
20704}
20705
20706void
20707lnp_state_machine::handle_const_add_pc ()
20708{
20709 CORE_ADDR adjust
20710 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20711
20712 CORE_ADDR addr_adj
20713 = (((m_op_index + adjust)
20714 / m_line_header->maximum_ops_per_instruction)
20715 * m_line_header->minimum_instruction_length);
20716
20717 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20718 m_op_index = ((m_op_index + adjust)
20719 % m_line_header->maximum_ops_per_instruction);
20720}
d9b3de22 20721
a05a36a5
DE
20722/* Return non-zero if we should add LINE to the line number table.
20723 LINE is the line to add, LAST_LINE is the last line that was added,
20724 LAST_SUBFILE is the subfile for LAST_LINE.
20725 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20726 had a non-zero discriminator.
20727
20728 We have to be careful in the presence of discriminators.
20729 E.g., for this line:
20730
20731 for (i = 0; i < 100000; i++);
20732
20733 clang can emit four line number entries for that one line,
20734 each with a different discriminator.
20735 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20736
20737 However, we want gdb to coalesce all four entries into one.
20738 Otherwise the user could stepi into the middle of the line and
20739 gdb would get confused about whether the pc really was in the
20740 middle of the line.
20741
20742 Things are further complicated by the fact that two consecutive
20743 line number entries for the same line is a heuristic used by gcc
20744 to denote the end of the prologue. So we can't just discard duplicate
20745 entries, we have to be selective about it. The heuristic we use is
20746 that we only collapse consecutive entries for the same line if at least
20747 one of those entries has a non-zero discriminator. PR 17276.
20748
20749 Note: Addresses in the line number state machine can never go backwards
20750 within one sequence, thus this coalescing is ok. */
20751
20752static int
804d2729
TT
20753dwarf_record_line_p (struct dwarf2_cu *cu,
20754 unsigned int line, unsigned int last_line,
a05a36a5
DE
20755 int line_has_non_zero_discriminator,
20756 struct subfile *last_subfile)
20757{
804d2729 20758 if (cu->builder->get_current_subfile () != last_subfile)
a05a36a5
DE
20759 return 1;
20760 if (line != last_line)
20761 return 1;
20762 /* Same line for the same file that we've seen already.
20763 As a last check, for pr 17276, only record the line if the line
20764 has never had a non-zero discriminator. */
20765 if (!line_has_non_zero_discriminator)
20766 return 1;
20767 return 0;
20768}
20769
804d2729
TT
20770/* Use the CU's builder to record line number LINE beginning at
20771 address ADDRESS in the line table of subfile SUBFILE. */
252a6764
DE
20772
20773static void
d9b3de22
DE
20774dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20775 unsigned int line, CORE_ADDR address,
804d2729 20776 struct dwarf2_cu *cu)
252a6764
DE
20777{
20778 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20779
27e0867f
DE
20780 if (dwarf_line_debug)
20781 {
20782 fprintf_unfiltered (gdb_stdlog,
20783 "Recording line %u, file %s, address %s\n",
20784 line, lbasename (subfile->name),
20785 paddress (gdbarch, address));
20786 }
20787
804d2729
TT
20788 if (cu != nullptr)
20789 cu->builder->record_line (subfile, line, addr);
252a6764
DE
20790}
20791
20792/* Subroutine of dwarf_decode_lines_1 to simplify it.
20793 Mark the end of a set of line number records.
d9b3de22 20794 The arguments are the same as for dwarf_record_line_1.
252a6764
DE
20795 If SUBFILE is NULL the request is ignored. */
20796
20797static void
20798dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
804d2729 20799 CORE_ADDR address, struct dwarf2_cu *cu)
252a6764 20800{
27e0867f
DE
20801 if (subfile == NULL)
20802 return;
20803
20804 if (dwarf_line_debug)
20805 {
20806 fprintf_unfiltered (gdb_stdlog,
20807 "Finishing current line, file %s, address %s\n",
20808 lbasename (subfile->name),
20809 paddress (gdbarch, address));
20810 }
20811
804d2729 20812 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
d9b3de22
DE
20813}
20814
6f77053d
PA
20815void
20816lnp_state_machine::record_line (bool end_sequence)
d9b3de22 20817{
d9b3de22
DE
20818 if (dwarf_line_debug)
20819 {
20820 fprintf_unfiltered (gdb_stdlog,
20821 "Processing actual line %u: file %u,"
20822 " address %s, is_stmt %u, discrim %u\n",
6f77053d
PA
20823 m_line, to_underlying (m_file),
20824 paddress (m_gdbarch, m_address),
20825 m_is_stmt, m_discriminator);
d9b3de22
DE
20826 }
20827
6f77053d 20828 file_entry *fe = current_file ();
8c43009f
PA
20829
20830 if (fe == NULL)
d9b3de22
DE
20831 dwarf2_debug_line_missing_file_complaint ();
20832 /* For now we ignore lines not starting on an instruction boundary.
20833 But not when processing end_sequence for compatibility with the
20834 previous version of the code. */
6f77053d 20835 else if (m_op_index == 0 || end_sequence)
d9b3de22 20836 {
8c43009f 20837 fe->included_p = 1;
c258c396 20838 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
d9b3de22 20839 {
804d2729
TT
20840 if (m_last_subfile != m_cu->builder->get_current_subfile ()
20841 || end_sequence)
d9b3de22 20842 {
804d2729
TT
20843 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20844 m_currently_recording_lines ? m_cu : nullptr);
d9b3de22
DE
20845 }
20846
20847 if (!end_sequence)
20848 {
804d2729 20849 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
6f77053d
PA
20850 m_line_has_non_zero_discriminator,
20851 m_last_subfile))
d9b3de22 20852 {
804d2729
TT
20853 dwarf_record_line_1 (m_gdbarch,
20854 m_cu->builder->get_current_subfile (),
6f77053d 20855 m_line, m_address,
804d2729 20856 m_currently_recording_lines ? m_cu : nullptr);
d9b3de22 20857 }
804d2729 20858 m_last_subfile = m_cu->builder->get_current_subfile ();
6f77053d 20859 m_last_line = m_line;
d9b3de22
DE
20860 }
20861 }
20862 }
20863}
20864
804d2729
TT
20865lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20866 line_header *lh, bool record_lines_p)
d9b3de22 20867{
804d2729 20868 m_cu = cu;
6f77053d
PA
20869 m_gdbarch = arch;
20870 m_record_lines_p = record_lines_p;
20871 m_line_header = lh;
d9b3de22 20872
804d2729 20873 m_currently_recording_lines = true;
d9b3de22 20874
d9b3de22
DE
20875 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20876 was a line entry for it so that the backend has a chance to adjust it
20877 and also record it in case it needs it. This is currently used by MIPS
20878 code, cf. `mips_adjust_dwarf2_line'. */
6f77053d
PA
20879 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20880 m_is_stmt = lh->default_is_stmt;
20881 m_discriminator = 0;
252a6764
DE
20882}
20883
6f77053d
PA
20884void
20885lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20886 const gdb_byte *line_ptr,
7ab6656f 20887 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
924c2928 20888{
7ab6656f
OJ
20889 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20890 the pc range of the CU. However, we restrict the test to only ADDRESS
20891 values of zero to preserve GDB's previous behaviour which is to handle
20892 the specific case of a function being GC'd by the linker. */
924c2928 20893
7ab6656f 20894 if (address == 0 && address < unrelocated_lowpc)
924c2928
DE
20895 {
20896 /* This line table is for a function which has been
20897 GCd by the linker. Ignore it. PR gdb/12528 */
20898
518817b3 20899 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
924c2928
DE
20900 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20901
b98664d3 20902 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
924c2928 20903 line_offset, objfile_name (objfile));
804d2729
TT
20904 m_currently_recording_lines = false;
20905 /* Note: m_currently_recording_lines is left as false until we see
20906 DW_LNE_end_sequence. */
924c2928
DE
20907 }
20908}
20909
f3f5162e 20910/* Subroutine of dwarf_decode_lines to simplify it.
d9b3de22
DE
20911 Process the line number information in LH.
20912 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20913 program in order to set included_p for every referenced header. */
debd256d 20914
c906108c 20915static void
43f3e411
DE
20916dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20917 const int decode_for_pst_p, CORE_ADDR lowpc)
c906108c 20918{
d521ce57
TT
20919 const gdb_byte *line_ptr, *extended_end;
20920 const gdb_byte *line_end;
a8c50c1f 20921 unsigned int bytes_read, extended_len;
699ca60a 20922 unsigned char op_code, extended_op;
e142c38c 20923 CORE_ADDR baseaddr;
518817b3 20924 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
f3f5162e 20925 bfd *abfd = objfile->obfd;
fbf65064 20926 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6f77053d
PA
20927 /* True if we're recording line info (as opposed to building partial
20928 symtabs and just interested in finding include files mentioned by
20929 the line number program). */
20930 bool record_lines_p = !decode_for_pst_p;
e142c38c
DJ
20931
20932 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 20933
debd256d
JB
20934 line_ptr = lh->statement_program_start;
20935 line_end = lh->statement_program_end;
c906108c
SS
20936
20937 /* Read the statement sequences until there's nothing left. */
20938 while (line_ptr < line_end)
20939 {
6f77053d
PA
20940 /* The DWARF line number program state machine. Reset the state
20941 machine at the start of each sequence. */
804d2729 20942 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
6f77053d 20943 bool end_sequence = false;
d9b3de22 20944
8c43009f 20945 if (record_lines_p)
c906108c 20946 {
8c43009f
PA
20947 /* Start a subfile for the current file of the state
20948 machine. */
20949 const file_entry *fe = state_machine.current_file ();
20950
20951 if (fe != NULL)
804d2729 20952 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
c906108c
SS
20953 }
20954
a738430d 20955 /* Decode the table. */
d9b3de22 20956 while (line_ptr < line_end && !end_sequence)
c906108c
SS
20957 {
20958 op_code = read_1_byte (abfd, line_ptr);
20959 line_ptr += 1;
9aa1fe7e 20960
debd256d 20961 if (op_code >= lh->opcode_base)
6e70227d 20962 {
8e07a239 20963 /* Special opcode. */
6f77053d 20964 state_machine.handle_special_opcode (op_code);
9aa1fe7e
GK
20965 }
20966 else switch (op_code)
c906108c
SS
20967 {
20968 case DW_LNS_extended_op:
3e43a32a
MS
20969 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20970 &bytes_read);
473b7be6 20971 line_ptr += bytes_read;
a8c50c1f 20972 extended_end = line_ptr + extended_len;
c906108c
SS
20973 extended_op = read_1_byte (abfd, line_ptr);
20974 line_ptr += 1;
20975 switch (extended_op)
20976 {
20977 case DW_LNE_end_sequence:
6f77053d
PA
20978 state_machine.handle_end_sequence ();
20979 end_sequence = true;
c906108c
SS
20980 break;
20981 case DW_LNE_set_address:
d9b3de22
DE
20982 {
20983 CORE_ADDR address
20984 = read_address (abfd, line_ptr, cu, &bytes_read);
d9b3de22 20985 line_ptr += bytes_read;
6f77053d
PA
20986
20987 state_machine.check_line_address (cu, line_ptr,
7ab6656f 20988 lowpc - baseaddr, address);
6f77053d 20989 state_machine.handle_set_address (baseaddr, address);
d9b3de22 20990 }
c906108c
SS
20991 break;
20992 case DW_LNE_define_file:
debd256d 20993 {
d521ce57 20994 const char *cur_file;
ecfb656c
PA
20995 unsigned int mod_time, length;
20996 dir_index dindex;
6e70227d 20997
3e43a32a
MS
20998 cur_file = read_direct_string (abfd, line_ptr,
20999 &bytes_read);
debd256d 21000 line_ptr += bytes_read;
ecfb656c 21001 dindex = (dir_index)
debd256d
JB
21002 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21003 line_ptr += bytes_read;
21004 mod_time =
21005 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21006 line_ptr += bytes_read;
21007 length =
21008 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21009 line_ptr += bytes_read;
ecfb656c 21010 lh->add_file_name (cur_file, dindex, mod_time, length);
debd256d 21011 }
c906108c 21012 break;
d0c6ba3d 21013 case DW_LNE_set_discriminator:
6f77053d
PA
21014 {
21015 /* The discriminator is not interesting to the
21016 debugger; just ignore it. We still need to
21017 check its value though:
21018 if there are consecutive entries for the same
21019 (non-prologue) line we want to coalesce them.
21020 PR 17276. */
21021 unsigned int discr
21022 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21023 line_ptr += bytes_read;
21024
21025 state_machine.handle_set_discriminator (discr);
21026 }
d0c6ba3d 21027 break;
c906108c 21028 default:
b98664d3 21029 complaint (_("mangled .debug_line section"));
debd256d 21030 return;
c906108c 21031 }
a8c50c1f
DJ
21032 /* Make sure that we parsed the extended op correctly. If e.g.
21033 we expected a different address size than the producer used,
21034 we may have read the wrong number of bytes. */
21035 if (line_ptr != extended_end)
21036 {
b98664d3 21037 complaint (_("mangled .debug_line section"));
a8c50c1f
DJ
21038 return;
21039 }
c906108c
SS
21040 break;
21041 case DW_LNS_copy:
6f77053d 21042 state_machine.handle_copy ();
c906108c
SS
21043 break;
21044 case DW_LNS_advance_pc:
2dc7f7b3
TT
21045 {
21046 CORE_ADDR adjust
21047 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
2dc7f7b3 21048 line_ptr += bytes_read;
6f77053d
PA
21049
21050 state_machine.handle_advance_pc (adjust);
2dc7f7b3 21051 }
c906108c
SS
21052 break;
21053 case DW_LNS_advance_line:
a05a36a5
DE
21054 {
21055 int line_delta
21056 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
a05a36a5 21057 line_ptr += bytes_read;
6f77053d
PA
21058
21059 state_machine.handle_advance_line (line_delta);
a05a36a5 21060 }
c906108c
SS
21061 break;
21062 case DW_LNS_set_file:
d9b3de22 21063 {
6f77053d 21064 file_name_index file
ecfb656c
PA
21065 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21066 &bytes_read);
d9b3de22 21067 line_ptr += bytes_read;
8c43009f 21068
6f77053d 21069 state_machine.handle_set_file (file);
d9b3de22 21070 }
c906108c
SS
21071 break;
21072 case DW_LNS_set_column:
0ad93d4f 21073 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
c906108c
SS
21074 line_ptr += bytes_read;
21075 break;
21076 case DW_LNS_negate_stmt:
6f77053d 21077 state_machine.handle_negate_stmt ();
c906108c
SS
21078 break;
21079 case DW_LNS_set_basic_block:
c906108c 21080 break;
c2c6d25f
JM
21081 /* Add to the address register of the state machine the
21082 address increment value corresponding to special opcode
a738430d
MK
21083 255. I.e., this value is scaled by the minimum
21084 instruction length since special opcode 255 would have
b021a221 21085 scaled the increment. */
c906108c 21086 case DW_LNS_const_add_pc:
6f77053d 21087 state_machine.handle_const_add_pc ();
c906108c
SS
21088 break;
21089 case DW_LNS_fixed_advance_pc:
3e29f34a 21090 {
6f77053d 21091 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
3e29f34a 21092 line_ptr += 2;
6f77053d
PA
21093
21094 state_machine.handle_fixed_advance_pc (addr_adj);
3e29f34a 21095 }
c906108c 21096 break;
9aa1fe7e 21097 default:
a738430d
MK
21098 {
21099 /* Unknown standard opcode, ignore it. */
9aa1fe7e 21100 int i;
a738430d 21101
debd256d 21102 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
21103 {
21104 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21105 line_ptr += bytes_read;
21106 }
21107 }
c906108c
SS
21108 }
21109 }
d9b3de22
DE
21110
21111 if (!end_sequence)
21112 dwarf2_debug_line_missing_end_sequence_complaint ();
21113
21114 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21115 in which case we still finish recording the last line). */
6f77053d 21116 state_machine.record_line (true);
c906108c 21117 }
f3f5162e
DE
21118}
21119
21120/* Decode the Line Number Program (LNP) for the given line_header
21121 structure and CU. The actual information extracted and the type
21122 of structures created from the LNP depends on the value of PST.
21123
21124 1. If PST is NULL, then this procedure uses the data from the program
21125 to create all necessary symbol tables, and their linetables.
21126
21127 2. If PST is not NULL, this procedure reads the program to determine
21128 the list of files included by the unit represented by PST, and
21129 builds all the associated partial symbol tables.
21130
21131 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21132 It is used for relative paths in the line table.
21133 NOTE: When processing partial symtabs (pst != NULL),
21134 comp_dir == pst->dirname.
21135
21136 NOTE: It is important that psymtabs have the same file name (via strcmp)
21137 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21138 symtab we don't use it in the name of the psymtabs we create.
21139 E.g. expand_line_sal requires this when finding psymtabs to expand.
c3b7b696
YQ
21140 A good testcase for this is mb-inline.exp.
21141
527f3840
JK
21142 LOWPC is the lowest address in CU (or 0 if not known).
21143
21144 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21145 for its PC<->lines mapping information. Otherwise only the filename
21146 table is read in. */
f3f5162e
DE
21147
21148static void
21149dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
c3b7b696 21150 struct dwarf2_cu *cu, struct partial_symtab *pst,
527f3840 21151 CORE_ADDR lowpc, int decode_mapping)
f3f5162e 21152{
518817b3 21153 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
f3f5162e 21154 const int decode_for_pst_p = (pst != NULL);
f3f5162e 21155
527f3840
JK
21156 if (decode_mapping)
21157 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
aaa75496
JB
21158
21159 if (decode_for_pst_p)
21160 {
21161 int file_index;
21162
21163 /* Now that we're done scanning the Line Header Program, we can
21164 create the psymtab of each included file. */
fff8551c 21165 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
aaa75496
JB
21166 if (lh->file_names[file_index].included_p == 1)
21167 {
c89b44cd 21168 gdb::unique_xmalloc_ptr<char> name_holder;
d521ce57 21169 const char *include_name =
c89b44cd
TT
21170 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21171 &name_holder);
c6da4cef 21172 if (include_name != NULL)
aaa75496
JB
21173 dwarf2_create_include_psymtab (include_name, pst, objfile);
21174 }
21175 }
cb1df416
DJ
21176 else
21177 {
21178 /* Make sure a symtab is created for every file, even files
21179 which contain only variables (i.e. no code with associated
21180 line numbers). */
804d2729 21181 struct compunit_symtab *cust = cu->builder->get_compunit_symtab ();
cb1df416 21182 int i;
cb1df416 21183
fff8551c 21184 for (i = 0; i < lh->file_names.size (); i++)
cb1df416 21185 {
8c43009f 21186 file_entry &fe = lh->file_names[i];
9a619af0 21187
804d2729 21188 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
cb1df416 21189
804d2729 21190 if (cu->builder->get_current_subfile ()->symtab == NULL)
43f3e411 21191 {
804d2729
TT
21192 cu->builder->get_current_subfile ()->symtab
21193 = allocate_symtab (cust,
21194 cu->builder->get_current_subfile ()->name);
43f3e411 21195 }
804d2729 21196 fe.symtab = cu->builder->get_current_subfile ()->symtab;
cb1df416
DJ
21197 }
21198 }
c906108c
SS
21199}
21200
21201/* Start a subfile for DWARF. FILENAME is the name of the file and
21202 DIRNAME the name of the source directory which contains FILENAME
4d663531 21203 or NULL if not known.
c906108c
SS
21204 This routine tries to keep line numbers from identical absolute and
21205 relative file names in a common subfile.
21206
21207 Using the `list' example from the GDB testsuite, which resides in
21208 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21209 of /srcdir/list0.c yields the following debugging information for list0.c:
21210
c5aa993b 21211 DW_AT_name: /srcdir/list0.c
4d663531 21212 DW_AT_comp_dir: /compdir
357e46e7 21213 files.files[0].name: list0.h
c5aa993b 21214 files.files[0].dir: /srcdir
357e46e7 21215 files.files[1].name: list0.c
c5aa993b 21216 files.files[1].dir: /srcdir
c906108c
SS
21217
21218 The line number information for list0.c has to end up in a single
4f1520fb
FR
21219 subfile, so that `break /srcdir/list0.c:1' works as expected.
21220 start_subfile will ensure that this happens provided that we pass the
21221 concatenation of files.files[1].dir and files.files[1].name as the
21222 subfile's name. */
c906108c
SS
21223
21224static void
804d2729
TT
21225dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21226 const char *dirname)
c906108c 21227{
d521ce57 21228 char *copy = NULL;
4f1520fb 21229
4d663531 21230 /* In order not to lose the line information directory,
4f1520fb
FR
21231 we concatenate it to the filename when it makes sense.
21232 Note that the Dwarf3 standard says (speaking of filenames in line
21233 information): ``The directory index is ignored for file names
21234 that represent full path names''. Thus ignoring dirname in the
21235 `else' branch below isn't an issue. */
c906108c 21236
d5166ae1 21237 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
21238 {
21239 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21240 filename = copy;
21241 }
c906108c 21242
804d2729 21243 cu->builder->start_subfile (filename);
4f1520fb 21244
d521ce57
TT
21245 if (copy != NULL)
21246 xfree (copy);
c906108c
SS
21247}
21248
804d2729
TT
21249/* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21250 buildsym_compunit constructor. */
f4dc4d17 21251
43f3e411 21252static struct compunit_symtab *
f4dc4d17 21253dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 21254 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17 21255{
804d2729 21256 gdb_assert (cu->builder == nullptr);
43f3e411 21257
804d2729
TT
21258 cu->builder.reset (new struct buildsym_compunit
21259 (cu->per_cu->dwarf2_per_objfile->objfile,
21260 name, comp_dir, cu->language, low_pc));
93b8bea4 21261
804d2729
TT
21262 cu->list_in_scope = cu->builder->get_file_symbols ();
21263
21264 cu->builder->record_debugformat ("DWARF 2");
21265 cu->builder->record_producer (cu->producer);
f4dc4d17 21266
4d4ec4e5 21267 cu->processing_has_namespace_info = 0;
43f3e411 21268
804d2729 21269 return cu->builder->get_compunit_symtab ();
f4dc4d17
DE
21270}
21271
4c2df51b
DJ
21272static void
21273var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 21274 struct dwarf2_cu *cu)
4c2df51b 21275{
518817b3 21276 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
e7c27a73
DJ
21277 struct comp_unit_head *cu_header = &cu->header;
21278
4c2df51b
DJ
21279 /* NOTE drow/2003-01-30: There used to be a comment and some special
21280 code here to turn a symbol with DW_AT_external and a
21281 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21282 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21283 with some versions of binutils) where shared libraries could have
21284 relocations against symbols in their debug information - the
21285 minimal symbol would have the right address, but the debug info
21286 would not. It's no longer necessary, because we will explicitly
21287 apply relocations when we read in the debug information now. */
21288
21289 /* A DW_AT_location attribute with no contents indicates that a
21290 variable has been optimized away. */
21291 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21292 {
f1e6e072 21293 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
21294 return;
21295 }
21296
21297 /* Handle one degenerate form of location expression specially, to
21298 preserve GDB's previous behavior when section offsets are
3019eac3
DE
21299 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21300 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
21301
21302 if (attr_form_is_block (attr)
3019eac3
DE
21303 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21304 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21305 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21306 && (DW_BLOCK (attr)->size
21307 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 21308 {
891d2f0b 21309 unsigned int dummy;
4c2df51b 21310
3019eac3
DE
21311 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21312 SYMBOL_VALUE_ADDRESS (sym) =
21313 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21314 else
21315 SYMBOL_VALUE_ADDRESS (sym) =
21316 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 21317 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
21318 fixup_symbol_section (sym, objfile);
21319 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21320 SYMBOL_SECTION (sym));
4c2df51b
DJ
21321 return;
21322 }
21323
21324 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21325 expression evaluator, and use LOC_COMPUTED only when necessary
21326 (i.e. when the value of a register or memory location is
21327 referenced, or a thread-local block, etc.). Then again, it might
21328 not be worthwhile. I'm assuming that it isn't unless performance
21329 or memory numbers show me otherwise. */
21330
f1e6e072 21331 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 21332
f1e6e072 21333 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 21334 cu->has_loclist = 1;
4c2df51b
DJ
21335}
21336
c906108c
SS
21337/* Given a pointer to a DWARF information entry, figure out if we need
21338 to make a symbol table entry for it, and if so, create a new entry
21339 and return a pointer to it.
21340 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
21341 used the passed type.
21342 If SPACE is not NULL, use it to hold the new symbol. If it is
21343 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
21344
21345static struct symbol *
5e2db402
TT
21346new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21347 struct symbol *space)
c906108c 21348{
518817b3
SM
21349 struct dwarf2_per_objfile *dwarf2_per_objfile
21350 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 21351 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 21352 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 21353 struct symbol *sym = NULL;
15d034d0 21354 const char *name;
c906108c
SS
21355 struct attribute *attr = NULL;
21356 struct attribute *attr2 = NULL;
e142c38c 21357 CORE_ADDR baseaddr;
e37fd15a
SW
21358 struct pending **list_to_add = NULL;
21359
edb3359d 21360 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
21361
21362 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 21363
94af9270 21364 name = dwarf2_name (die, cu);
c906108c
SS
21365 if (name)
21366 {
94af9270 21367 const char *linkagename;
34eaf542 21368 int suppress_add = 0;
94af9270 21369
34eaf542
TT
21370 if (space)
21371 sym = space;
21372 else
e623cf5d 21373 sym = allocate_symbol (objfile);
c906108c 21374 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
21375
21376 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 21377 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
21378 linkagename = dwarf2_physname (name, die, cu);
21379 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 21380
f55ee35c
JK
21381 /* Fortran does not have mangling standard and the mangling does differ
21382 between gfortran, iFort etc. */
21383 if (cu->language == language_fortran
b250c185 21384 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 21385 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 21386 dwarf2_full_name (name, die, cu),
29df156d 21387 NULL);
f55ee35c 21388
c906108c 21389 /* Default assumptions.
c5aa993b 21390 Use the passed type or decode it from the die. */
176620f1 21391 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 21392 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
21393 if (type != NULL)
21394 SYMBOL_TYPE (sym) = type;
21395 else
e7c27a73 21396 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
21397 attr = dwarf2_attr (die,
21398 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21399 cu);
c906108c
SS
21400 if (attr)
21401 {
21402 SYMBOL_LINE (sym) = DW_UNSND (attr);
21403 }
cb1df416 21404
edb3359d
DJ
21405 attr = dwarf2_attr (die,
21406 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21407 cu);
cb1df416
DJ
21408 if (attr)
21409 {
ecfb656c 21410 file_name_index file_index = (file_name_index) DW_UNSND (attr);
8c43009f 21411 struct file_entry *fe;
9a619af0 21412
ecfb656c
PA
21413 if (cu->line_header != NULL)
21414 fe = cu->line_header->file_name_at (file_index);
8c43009f
PA
21415 else
21416 fe = NULL;
21417
21418 if (fe == NULL)
b98664d3 21419 complaint (_("file index out of range"));
8c43009f
PA
21420 else
21421 symbol_set_symtab (sym, fe->symtab);
cb1df416
DJ
21422 }
21423
c906108c
SS
21424 switch (die->tag)
21425 {
21426 case DW_TAG_label:
e142c38c 21427 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c 21428 if (attr)
3e29f34a
MR
21429 {
21430 CORE_ADDR addr;
21431
21432 addr = attr_value_as_address (attr);
21433 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21434 SYMBOL_VALUE_ADDRESS (sym) = addr;
21435 }
0f5238ed
TT
21436 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21437 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 21438 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
380618d6 21439 dw2_add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
21440 break;
21441 case DW_TAG_subprogram:
21442 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21443 finish_block. */
f1e6e072 21444 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 21445 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
21446 if ((attr2 && (DW_UNSND (attr2) != 0))
21447 || cu->language == language_ada)
c906108c 21448 {
2cfa0c8d
JB
21449 /* Subprograms marked external are stored as a global symbol.
21450 Ada subprograms, whether marked external or not, are always
21451 stored as a global symbol, because we want to be able to
21452 access them globally. For instance, we want to be able
21453 to break on a nested subprogram without having to
21454 specify the context. */
804d2729 21455 list_to_add = cu->builder->get_global_symbols ();
c906108c
SS
21456 }
21457 else
21458 {
e37fd15a 21459 list_to_add = cu->list_in_scope;
c906108c
SS
21460 }
21461 break;
edb3359d
DJ
21462 case DW_TAG_inlined_subroutine:
21463 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21464 finish_block. */
f1e6e072 21465 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 21466 SYMBOL_INLINED (sym) = 1;
481860b3 21467 list_to_add = cu->list_in_scope;
edb3359d 21468 break;
34eaf542
TT
21469 case DW_TAG_template_value_param:
21470 suppress_add = 1;
21471 /* Fall through. */
72929c62 21472 case DW_TAG_constant:
c906108c 21473 case DW_TAG_variable:
254e6b9e 21474 case DW_TAG_member:
0963b4bd
MS
21475 /* Compilation with minimal debug info may result in
21476 variables with missing type entries. Change the
21477 misleading `void' type to something sensible. */
c906108c 21478 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
46a4882b 21479 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
64c50499 21480
e142c38c 21481 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
21482 /* In the case of DW_TAG_member, we should only be called for
21483 static const members. */
21484 if (die->tag == DW_TAG_member)
21485 {
3863f96c
DE
21486 /* dwarf2_add_field uses die_is_declaration,
21487 so we do the same. */
254e6b9e
DE
21488 gdb_assert (die_is_declaration (die, cu));
21489 gdb_assert (attr);
21490 }
c906108c
SS
21491 if (attr)
21492 {
e7c27a73 21493 dwarf2_const_value (attr, sym, cu);
e142c38c 21494 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 21495 if (!suppress_add)
34eaf542
TT
21496 {
21497 if (attr2 && (DW_UNSND (attr2) != 0))
804d2729 21498 list_to_add = cu->builder->get_global_symbols ();
34eaf542 21499 else
e37fd15a 21500 list_to_add = cu->list_in_scope;
34eaf542 21501 }
c906108c
SS
21502 break;
21503 }
e142c38c 21504 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
21505 if (attr)
21506 {
e7c27a73 21507 var_decode_location (attr, sym, cu);
e142c38c 21508 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
21509
21510 /* Fortran explicitly imports any global symbols to the local
21511 scope by DW_TAG_common_block. */
21512 if (cu->language == language_fortran && die->parent
21513 && die->parent->tag == DW_TAG_common_block)
21514 attr2 = NULL;
21515
caac4577
JG
21516 if (SYMBOL_CLASS (sym) == LOC_STATIC
21517 && SYMBOL_VALUE_ADDRESS (sym) == 0
21518 && !dwarf2_per_objfile->has_section_at_zero)
21519 {
21520 /* When a static variable is eliminated by the linker,
21521 the corresponding debug information is not stripped
21522 out, but the variable address is set to null;
21523 do not add such variables into symbol table. */
21524 }
21525 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 21526 {
f55ee35c
JK
21527 /* Workaround gfortran PR debug/40040 - it uses
21528 DW_AT_location for variables in -fPIC libraries which may
21529 get overriden by other libraries/executable and get
21530 a different address. Resolve it by the minimal symbol
21531 which may come from inferior's executable using copy
21532 relocation. Make this workaround only for gfortran as for
21533 other compilers GDB cannot guess the minimal symbol
21534 Fortran mangling kind. */
21535 if (cu->language == language_fortran && die->parent
21536 && die->parent->tag == DW_TAG_module
21537 && cu->producer
28586665 21538 && startswith (cu->producer, "GNU Fortran"))
f1e6e072 21539 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 21540
1c809c68
TT
21541 /* A variable with DW_AT_external is never static,
21542 but it may be block-scoped. */
804d2729
TT
21543 list_to_add
21544 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21545 ? cu->builder->get_global_symbols ()
21546 : cu->list_in_scope);
1c809c68 21547 }
c906108c 21548 else
e37fd15a 21549 list_to_add = cu->list_in_scope;
c906108c
SS
21550 }
21551 else
21552 {
21553 /* We do not know the address of this symbol.
c5aa993b
JM
21554 If it is an external symbol and we have type information
21555 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21556 The address of the variable will then be determined from
21557 the minimal symbol table whenever the variable is
21558 referenced. */
e142c38c 21559 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
21560
21561 /* Fortran explicitly imports any global symbols to the local
21562 scope by DW_TAG_common_block. */
21563 if (cu->language == language_fortran && die->parent
21564 && die->parent->tag == DW_TAG_common_block)
21565 {
21566 /* SYMBOL_CLASS doesn't matter here because
21567 read_common_block is going to reset it. */
21568 if (!suppress_add)
21569 list_to_add = cu->list_in_scope;
21570 }
21571 else if (attr2 && (DW_UNSND (attr2) != 0)
21572 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 21573 {
0fe7935b
DJ
21574 /* A variable with DW_AT_external is never static, but it
21575 may be block-scoped. */
804d2729
TT
21576 list_to_add
21577 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21578 ? cu->builder->get_global_symbols ()
21579 : cu->list_in_scope);
0fe7935b 21580
f1e6e072 21581 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 21582 }
442ddf59
JK
21583 else if (!die_is_declaration (die, cu))
21584 {
21585 /* Use the default LOC_OPTIMIZED_OUT class. */
21586 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
21587 if (!suppress_add)
21588 list_to_add = cu->list_in_scope;
442ddf59 21589 }
c906108c
SS
21590 }
21591 break;
21592 case DW_TAG_formal_parameter:
a60f3166
TT
21593 {
21594 /* If we are inside a function, mark this as an argument. If
21595 not, we might be looking at an argument to an inlined function
21596 when we do not have enough information to show inlined frames;
21597 pretend it's a local variable in that case so that the user can
21598 still see it. */
804d2729
TT
21599 struct context_stack *curr
21600 = cu->builder->get_current_context_stack ();
a60f3166
TT
21601 if (curr != nullptr && curr->name != nullptr)
21602 SYMBOL_IS_ARGUMENT (sym) = 1;
21603 attr = dwarf2_attr (die, DW_AT_location, cu);
21604 if (attr)
21605 {
21606 var_decode_location (attr, sym, cu);
21607 }
21608 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21609 if (attr)
21610 {
21611 dwarf2_const_value (attr, sym, cu);
21612 }
f346a30d 21613
a60f3166
TT
21614 list_to_add = cu->list_in_scope;
21615 }
c906108c
SS
21616 break;
21617 case DW_TAG_unspecified_parameters:
21618 /* From varargs functions; gdb doesn't seem to have any
21619 interest in this information, so just ignore it for now.
21620 (FIXME?) */
21621 break;
34eaf542
TT
21622 case DW_TAG_template_type_param:
21623 suppress_add = 1;
21624 /* Fall through. */
c906108c 21625 case DW_TAG_class_type:
680b30c7 21626 case DW_TAG_interface_type:
c906108c
SS
21627 case DW_TAG_structure_type:
21628 case DW_TAG_union_type:
72019c9c 21629 case DW_TAG_set_type:
c906108c 21630 case DW_TAG_enumeration_type:
f1e6e072 21631 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 21632 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 21633
63d06c5c 21634 {
9c37b5ae 21635 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
63d06c5c
DC
21636 really ever be static objects: otherwise, if you try
21637 to, say, break of a class's method and you're in a file
21638 which doesn't mention that class, it won't work unless
21639 the check for all static symbols in lookup_symbol_aux
21640 saves you. See the OtherFileClass tests in
21641 gdb.c++/namespace.exp. */
21642
e37fd15a 21643 if (!suppress_add)
34eaf542 21644 {
804d2729
TT
21645 list_to_add
21646 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21647 && cu->language == language_cplus
21648 ? cu->builder->get_global_symbols ()
21649 : cu->list_in_scope);
63d06c5c 21650
64382290 21651 /* The semantics of C++ state that "struct foo {
9c37b5ae 21652 ... }" also defines a typedef for "foo". */
64382290 21653 if (cu->language == language_cplus
45280282 21654 || cu->language == language_ada
c44af4eb
TT
21655 || cu->language == language_d
21656 || cu->language == language_rust)
64382290
TT
21657 {
21658 /* The symbol's name is already allocated along
21659 with this objfile, so we don't need to
21660 duplicate it for the type. */
21661 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21662 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21663 }
63d06c5c
DC
21664 }
21665 }
c906108c
SS
21666 break;
21667 case DW_TAG_typedef:
f1e6e072 21668 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 21669 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 21670 list_to_add = cu->list_in_scope;
63d06c5c 21671 break;
c906108c 21672 case DW_TAG_base_type:
a02abb62 21673 case DW_TAG_subrange_type:
f1e6e072 21674 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 21675 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 21676 list_to_add = cu->list_in_scope;
c906108c
SS
21677 break;
21678 case DW_TAG_enumerator:
e142c38c 21679 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
21680 if (attr)
21681 {
e7c27a73 21682 dwarf2_const_value (attr, sym, cu);
c906108c 21683 }
63d06c5c
DC
21684 {
21685 /* NOTE: carlton/2003-11-10: See comment above in the
21686 DW_TAG_class_type, etc. block. */
21687
804d2729
TT
21688 list_to_add
21689 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21690 && cu->language == language_cplus
21691 ? cu->builder->get_global_symbols ()
21692 : cu->list_in_scope);
63d06c5c 21693 }
c906108c 21694 break;
74921315 21695 case DW_TAG_imported_declaration:
5c4e30ca 21696 case DW_TAG_namespace:
f1e6e072 21697 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
804d2729 21698 list_to_add = cu->builder->get_global_symbols ();
5c4e30ca 21699 break;
530e8392
KB
21700 case DW_TAG_module:
21701 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21702 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
804d2729 21703 list_to_add = cu->builder->get_global_symbols ();
530e8392 21704 break;
4357ac6c 21705 case DW_TAG_common_block:
f1e6e072 21706 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c 21707 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
380618d6 21708 dw2_add_symbol_to_list (sym, cu->list_in_scope);
4357ac6c 21709 break;
c906108c
SS
21710 default:
21711 /* Not a tag we recognize. Hopefully we aren't processing
21712 trash data, but since we must specifically ignore things
21713 we don't recognize, there is nothing else we should do at
0963b4bd 21714 this point. */
b98664d3 21715 complaint (_("unsupported tag: '%s'"),
4d3c2250 21716 dwarf_tag_name (die->tag));
c906108c
SS
21717 break;
21718 }
df8a16a1 21719
e37fd15a
SW
21720 if (suppress_add)
21721 {
21722 sym->hash_next = objfile->template_symbols;
21723 objfile->template_symbols = sym;
21724 list_to_add = NULL;
21725 }
21726
21727 if (list_to_add != NULL)
380618d6 21728 dw2_add_symbol_to_list (sym, list_to_add);
e37fd15a 21729
df8a16a1
DJ
21730 /* For the benefit of old versions of GCC, check for anonymous
21731 namespaces based on the demangled name. */
4d4ec4e5 21732 if (!cu->processing_has_namespace_info
94af9270 21733 && cu->language == language_cplus)
804d2729 21734 cp_scan_for_anonymous_namespaces (cu->builder.get (), sym, objfile);
c906108c
SS
21735 }
21736 return (sym);
21737}
21738
98bfdba5
PA
21739/* Given an attr with a DW_FORM_dataN value in host byte order,
21740 zero-extend it as appropriate for the symbol's type. The DWARF
21741 standard (v4) is not entirely clear about the meaning of using
21742 DW_FORM_dataN for a constant with a signed type, where the type is
21743 wider than the data. The conclusion of a discussion on the DWARF
21744 list was that this is unspecified. We choose to always zero-extend
21745 because that is the interpretation long in use by GCC. */
c906108c 21746
98bfdba5 21747static gdb_byte *
ff39bb5e 21748dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 21749 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 21750{
518817b3 21751 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
e17a4113
UW
21752 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21753 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
21754 LONGEST l = DW_UNSND (attr);
21755
21756 if (bits < sizeof (*value) * 8)
21757 {
21758 l &= ((LONGEST) 1 << bits) - 1;
21759 *value = l;
21760 }
21761 else if (bits == sizeof (*value) * 8)
21762 *value = l;
21763 else
21764 {
224c3ddb 21765 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
98bfdba5
PA
21766 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21767 return bytes;
21768 }
21769
21770 return NULL;
21771}
21772
21773/* Read a constant value from an attribute. Either set *VALUE, or if
21774 the value does not fit in *VALUE, set *BYTES - either already
21775 allocated on the objfile obstack, or newly allocated on OBSTACK,
21776 or, set *BATON, if we translated the constant to a location
21777 expression. */
21778
21779static void
ff39bb5e 21780dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
21781 const char *name, struct obstack *obstack,
21782 struct dwarf2_cu *cu,
d521ce57 21783 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
21784 struct dwarf2_locexpr_baton **baton)
21785{
518817b3 21786 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
98bfdba5 21787 struct comp_unit_head *cu_header = &cu->header;
c906108c 21788 struct dwarf_block *blk;
98bfdba5
PA
21789 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21790 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21791
21792 *value = 0;
21793 *bytes = NULL;
21794 *baton = NULL;
c906108c
SS
21795
21796 switch (attr->form)
21797 {
21798 case DW_FORM_addr:
3019eac3 21799 case DW_FORM_GNU_addr_index:
ac56253d 21800 {
ac56253d
TT
21801 gdb_byte *data;
21802
98bfdba5
PA
21803 if (TYPE_LENGTH (type) != cu_header->addr_size)
21804 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 21805 cu_header->addr_size,
98bfdba5 21806 TYPE_LENGTH (type));
ac56253d
TT
21807 /* Symbols of this form are reasonably rare, so we just
21808 piggyback on the existing location code rather than writing
21809 a new implementation of symbol_computed_ops. */
8d749320 21810 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
98bfdba5
PA
21811 (*baton)->per_cu = cu->per_cu;
21812 gdb_assert ((*baton)->per_cu);
ac56253d 21813
98bfdba5 21814 (*baton)->size = 2 + cu_header->addr_size;
224c3ddb 21815 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
98bfdba5 21816 (*baton)->data = data;
ac56253d
TT
21817
21818 data[0] = DW_OP_addr;
21819 store_unsigned_integer (&data[1], cu_header->addr_size,
21820 byte_order, DW_ADDR (attr));
21821 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 21822 }
c906108c 21823 break;
4ac36638 21824 case DW_FORM_string:
93b5768b 21825 case DW_FORM_strp:
3019eac3 21826 case DW_FORM_GNU_str_index:
36586728 21827 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
21828 /* DW_STRING is already allocated on the objfile obstack, point
21829 directly to it. */
d521ce57 21830 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 21831 break;
c906108c
SS
21832 case DW_FORM_block1:
21833 case DW_FORM_block2:
21834 case DW_FORM_block4:
21835 case DW_FORM_block:
2dc7f7b3 21836 case DW_FORM_exprloc:
0224619f 21837 case DW_FORM_data16:
c906108c 21838 blk = DW_BLOCK (attr);
98bfdba5
PA
21839 if (TYPE_LENGTH (type) != blk->size)
21840 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21841 TYPE_LENGTH (type));
21842 *bytes = blk->data;
c906108c 21843 break;
2df3850c
JM
21844
21845 /* The DW_AT_const_value attributes are supposed to carry the
21846 symbol's value "represented as it would be on the target
21847 architecture." By the time we get here, it's already been
21848 converted to host endianness, so we just need to sign- or
21849 zero-extend it as appropriate. */
21850 case DW_FORM_data1:
3aef2284 21851 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 21852 break;
c906108c 21853 case DW_FORM_data2:
3aef2284 21854 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 21855 break;
c906108c 21856 case DW_FORM_data4:
3aef2284 21857 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 21858 break;
c906108c 21859 case DW_FORM_data8:
3aef2284 21860 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
21861 break;
21862
c906108c 21863 case DW_FORM_sdata:
663c44ac 21864 case DW_FORM_implicit_const:
98bfdba5 21865 *value = DW_SND (attr);
2df3850c
JM
21866 break;
21867
c906108c 21868 case DW_FORM_udata:
98bfdba5 21869 *value = DW_UNSND (attr);
c906108c 21870 break;
2df3850c 21871
c906108c 21872 default:
b98664d3 21873 complaint (_("unsupported const value attribute form: '%s'"),
4d3c2250 21874 dwarf_form_name (attr->form));
98bfdba5 21875 *value = 0;
c906108c
SS
21876 break;
21877 }
21878}
21879
2df3850c 21880
98bfdba5
PA
21881/* Copy constant value from an attribute to a symbol. */
21882
2df3850c 21883static void
ff39bb5e 21884dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 21885 struct dwarf2_cu *cu)
2df3850c 21886{
518817b3 21887 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
12df843f 21888 LONGEST value;
d521ce57 21889 const gdb_byte *bytes;
98bfdba5 21890 struct dwarf2_locexpr_baton *baton;
2df3850c 21891
98bfdba5
PA
21892 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21893 SYMBOL_PRINT_NAME (sym),
21894 &objfile->objfile_obstack, cu,
21895 &value, &bytes, &baton);
2df3850c 21896
98bfdba5
PA
21897 if (baton != NULL)
21898 {
98bfdba5 21899 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 21900 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
21901 }
21902 else if (bytes != NULL)
21903 {
21904 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 21905 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
21906 }
21907 else
21908 {
21909 SYMBOL_VALUE (sym) = value;
f1e6e072 21910 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 21911 }
2df3850c
JM
21912}
21913
c906108c
SS
21914/* Return the type of the die in question using its DW_AT_type attribute. */
21915
21916static struct type *
e7c27a73 21917die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 21918{
c906108c 21919 struct attribute *type_attr;
c906108c 21920
e142c38c 21921 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
21922 if (!type_attr)
21923 {
518817b3 21924 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
c906108c 21925 /* A missing DW_AT_type represents a void type. */
518817b3 21926 return objfile_type (objfile)->builtin_void;
c906108c 21927 }
348e048f 21928
673bfd45 21929 return lookup_die_type (die, type_attr, cu);
c906108c
SS
21930}
21931
b4ba55a1
JB
21932/* True iff CU's producer generates GNAT Ada auxiliary information
21933 that allows to find parallel types through that information instead
21934 of having to do expensive parallel lookups by type name. */
21935
21936static int
21937need_gnat_info (struct dwarf2_cu *cu)
21938{
de4cb04a
JB
21939 /* Assume that the Ada compiler was GNAT, which always produces
21940 the auxiliary information. */
21941 return (cu->language == language_ada);
b4ba55a1
JB
21942}
21943
b4ba55a1
JB
21944/* Return the auxiliary type of the die in question using its
21945 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21946 attribute is not present. */
21947
21948static struct type *
21949die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21950{
b4ba55a1 21951 struct attribute *type_attr;
b4ba55a1
JB
21952
21953 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21954 if (!type_attr)
21955 return NULL;
21956
673bfd45 21957 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
21958}
21959
21960/* If DIE has a descriptive_type attribute, then set the TYPE's
21961 descriptive type accordingly. */
21962
21963static void
21964set_descriptive_type (struct type *type, struct die_info *die,
21965 struct dwarf2_cu *cu)
21966{
21967 struct type *descriptive_type = die_descriptive_type (die, cu);
21968
21969 if (descriptive_type)
21970 {
21971 ALLOCATE_GNAT_AUX_TYPE (type);
21972 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21973 }
21974}
21975
c906108c
SS
21976/* Return the containing type of the die in question using its
21977 DW_AT_containing_type attribute. */
21978
21979static struct type *
e7c27a73 21980die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 21981{
c906108c 21982 struct attribute *type_attr;
518817b3 21983 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
c906108c 21984
e142c38c 21985 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
21986 if (!type_attr)
21987 error (_("Dwarf Error: Problem turning containing type into gdb type "
518817b3 21988 "[in module %s]"), objfile_name (objfile));
33ac96f0 21989
673bfd45 21990 return lookup_die_type (die, type_attr, cu);
c906108c
SS
21991}
21992
ac9ec31b
DE
21993/* Return an error marker type to use for the ill formed type in DIE/CU. */
21994
21995static struct type *
21996build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21997{
518817b3
SM
21998 struct dwarf2_per_objfile *dwarf2_per_objfile
21999 = cu->per_cu->dwarf2_per_objfile;
ac9ec31b 22000 struct objfile *objfile = dwarf2_per_objfile->objfile;
528e1572 22001 char *saved;
ac9ec31b 22002
528e1572
SM
22003 std::string message
22004 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22005 objfile_name (objfile),
22006 sect_offset_str (cu->header.sect_off),
22007 sect_offset_str (die->sect_off));
224c3ddb 22008 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
528e1572 22009 message.c_str (), message.length ());
ac9ec31b 22010
19f392bc 22011 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
ac9ec31b
DE
22012}
22013
673bfd45 22014/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
22015 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22016 DW_AT_containing_type.
673bfd45
DE
22017 If there is no type substitute an error marker. */
22018
c906108c 22019static struct type *
ff39bb5e 22020lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 22021 struct dwarf2_cu *cu)
c906108c 22022{
518817b3
SM
22023 struct dwarf2_per_objfile *dwarf2_per_objfile
22024 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 22025 struct objfile *objfile = dwarf2_per_objfile->objfile;
f792889a
DJ
22026 struct type *this_type;
22027
ac9ec31b
DE
22028 gdb_assert (attr->name == DW_AT_type
22029 || attr->name == DW_AT_GNAT_descriptive_type
22030 || attr->name == DW_AT_containing_type);
22031
673bfd45
DE
22032 /* First see if we have it cached. */
22033
36586728
TT
22034 if (attr->form == DW_FORM_GNU_ref_alt)
22035 {
22036 struct dwarf2_per_cu_data *per_cu;
9c541725 22037 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
36586728 22038
ed2dc618
SM
22039 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22040 dwarf2_per_objfile);
9c541725 22041 this_type = get_die_type_at_offset (sect_off, per_cu);
36586728 22042 }
7771576e 22043 else if (attr_form_is_ref (attr))
673bfd45 22044 {
9c541725 22045 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
673bfd45 22046
9c541725 22047 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
673bfd45 22048 }
55f1336d 22049 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 22050 {
ac9ec31b 22051 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 22052
ac9ec31b 22053 return get_signatured_type (die, signature, cu);
673bfd45
DE
22054 }
22055 else
22056 {
b98664d3 22057 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
9d8780f0
SM
22058 " at %s [in module %s]"),
22059 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
4262abfb 22060 objfile_name (objfile));
ac9ec31b 22061 return build_error_marker_type (cu, die);
673bfd45
DE
22062 }
22063
22064 /* If not cached we need to read it in. */
22065
22066 if (this_type == NULL)
22067 {
ac9ec31b 22068 struct die_info *type_die = NULL;
673bfd45
DE
22069 struct dwarf2_cu *type_cu = cu;
22070
7771576e 22071 if (attr_form_is_ref (attr))
ac9ec31b
DE
22072 type_die = follow_die_ref (die, attr, &type_cu);
22073 if (type_die == NULL)
22074 return build_error_marker_type (cu, die);
22075 /* If we find the type now, it's probably because the type came
3019eac3
DE
22076 from an inter-CU reference and the type's CU got expanded before
22077 ours. */
ac9ec31b 22078 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
22079 }
22080
22081 /* If we still don't have a type use an error marker. */
22082
22083 if (this_type == NULL)
ac9ec31b 22084 return build_error_marker_type (cu, die);
673bfd45 22085
f792889a 22086 return this_type;
c906108c
SS
22087}
22088
673bfd45
DE
22089/* Return the type in DIE, CU.
22090 Returns NULL for invalid types.
22091
02142a6c 22092 This first does a lookup in die_type_hash,
673bfd45
DE
22093 and only reads the die in if necessary.
22094
22095 NOTE: This can be called when reading in partial or full symbols. */
22096
f792889a 22097static struct type *
e7c27a73 22098read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 22099{
f792889a
DJ
22100 struct type *this_type;
22101
22102 this_type = get_die_type (die, cu);
22103 if (this_type)
22104 return this_type;
22105
673bfd45
DE
22106 return read_type_die_1 (die, cu);
22107}
22108
22109/* Read the type in DIE, CU.
22110 Returns NULL for invalid types. */
22111
22112static struct type *
22113read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22114{
22115 struct type *this_type = NULL;
22116
c906108c
SS
22117 switch (die->tag)
22118 {
22119 case DW_TAG_class_type:
680b30c7 22120 case DW_TAG_interface_type:
c906108c
SS
22121 case DW_TAG_structure_type:
22122 case DW_TAG_union_type:
f792889a 22123 this_type = read_structure_type (die, cu);
c906108c
SS
22124 break;
22125 case DW_TAG_enumeration_type:
f792889a 22126 this_type = read_enumeration_type (die, cu);
c906108c
SS
22127 break;
22128 case DW_TAG_subprogram:
22129 case DW_TAG_subroutine_type:
edb3359d 22130 case DW_TAG_inlined_subroutine:
f792889a 22131 this_type = read_subroutine_type (die, cu);
c906108c
SS
22132 break;
22133 case DW_TAG_array_type:
f792889a 22134 this_type = read_array_type (die, cu);
c906108c 22135 break;
72019c9c 22136 case DW_TAG_set_type:
f792889a 22137 this_type = read_set_type (die, cu);
72019c9c 22138 break;
c906108c 22139 case DW_TAG_pointer_type:
f792889a 22140 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
22141 break;
22142 case DW_TAG_ptr_to_member_type:
f792889a 22143 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
22144 break;
22145 case DW_TAG_reference_type:
4297a3f0
AV
22146 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22147 break;
22148 case DW_TAG_rvalue_reference_type:
22149 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
c906108c
SS
22150 break;
22151 case DW_TAG_const_type:
f792889a 22152 this_type = read_tag_const_type (die, cu);
c906108c
SS
22153 break;
22154 case DW_TAG_volatile_type:
f792889a 22155 this_type = read_tag_volatile_type (die, cu);
c906108c 22156 break;
06d66ee9
TT
22157 case DW_TAG_restrict_type:
22158 this_type = read_tag_restrict_type (die, cu);
22159 break;
c906108c 22160 case DW_TAG_string_type:
f792889a 22161 this_type = read_tag_string_type (die, cu);
c906108c
SS
22162 break;
22163 case DW_TAG_typedef:
f792889a 22164 this_type = read_typedef (die, cu);
c906108c 22165 break;
a02abb62 22166 case DW_TAG_subrange_type:
f792889a 22167 this_type = read_subrange_type (die, cu);
a02abb62 22168 break;
c906108c 22169 case DW_TAG_base_type:
f792889a 22170 this_type = read_base_type (die, cu);
c906108c 22171 break;
81a17f79 22172 case DW_TAG_unspecified_type:
f792889a 22173 this_type = read_unspecified_type (die, cu);
81a17f79 22174 break;
0114d602
DJ
22175 case DW_TAG_namespace:
22176 this_type = read_namespace_type (die, cu);
22177 break;
f55ee35c
JK
22178 case DW_TAG_module:
22179 this_type = read_module_type (die, cu);
22180 break;
a2c2acaf
MW
22181 case DW_TAG_atomic_type:
22182 this_type = read_tag_atomic_type (die, cu);
22183 break;
c906108c 22184 default:
b98664d3 22185 complaint (_("unexpected tag in read_type_die: '%s'"),
4d3c2250 22186 dwarf_tag_name (die->tag));
c906108c
SS
22187 break;
22188 }
63d06c5c 22189
f792889a 22190 return this_type;
63d06c5c
DC
22191}
22192
abc72ce4
DE
22193/* See if we can figure out if the class lives in a namespace. We do
22194 this by looking for a member function; its demangled name will
22195 contain namespace info, if there is any.
22196 Return the computed name or NULL.
22197 Space for the result is allocated on the objfile's obstack.
22198 This is the full-die version of guess_partial_die_structure_name.
22199 In this case we know DIE has no useful parent. */
22200
22201static char *
22202guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22203{
22204 struct die_info *spec_die;
22205 struct dwarf2_cu *spec_cu;
22206 struct die_info *child;
518817b3 22207 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
abc72ce4
DE
22208
22209 spec_cu = cu;
22210 spec_die = die_specification (die, &spec_cu);
22211 if (spec_die != NULL)
22212 {
22213 die = spec_die;
22214 cu = spec_cu;
22215 }
22216
22217 for (child = die->child;
22218 child != NULL;
22219 child = child->sibling)
22220 {
22221 if (child->tag == DW_TAG_subprogram)
22222 {
73b9be8b 22223 const char *linkage_name = dw2_linkage_name (child, cu);
abc72ce4 22224
7d45c7c3 22225 if (linkage_name != NULL)
abc72ce4
DE
22226 {
22227 char *actual_name
22228 = language_class_name_from_physname (cu->language_defn,
7d45c7c3 22229 linkage_name);
abc72ce4
DE
22230 char *name = NULL;
22231
22232 if (actual_name != NULL)
22233 {
15d034d0 22234 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
22235
22236 if (die_name != NULL
22237 && strcmp (die_name, actual_name) != 0)
22238 {
22239 /* Strip off the class name from the full name.
22240 We want the prefix. */
22241 int die_name_len = strlen (die_name);
22242 int actual_name_len = strlen (actual_name);
22243
22244 /* Test for '::' as a sanity check. */
22245 if (actual_name_len > die_name_len + 2
3e43a32a
MS
22246 && actual_name[actual_name_len
22247 - die_name_len - 1] == ':')
224c3ddb 22248 name = (char *) obstack_copy0 (
e3b94546 22249 &objfile->per_bfd->storage_obstack,
224c3ddb 22250 actual_name, actual_name_len - die_name_len - 2);
abc72ce4
DE
22251 }
22252 }
22253 xfree (actual_name);
22254 return name;
22255 }
22256 }
22257 }
22258
22259 return NULL;
22260}
22261
96408a79
SA
22262/* GCC might emit a nameless typedef that has a linkage name. Determine the
22263 prefix part in such case. See
22264 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22265
a121b7c1 22266static const char *
96408a79
SA
22267anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22268{
22269 struct attribute *attr;
e6a959d6 22270 const char *base;
96408a79
SA
22271
22272 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22273 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22274 return NULL;
22275
7d45c7c3 22276 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
96408a79
SA
22277 return NULL;
22278
73b9be8b 22279 attr = dw2_linkage_name_attr (die, cu);
96408a79
SA
22280 if (attr == NULL || DW_STRING (attr) == NULL)
22281 return NULL;
22282
22283 /* dwarf2_name had to be already called. */
22284 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22285
22286 /* Strip the base name, keep any leading namespaces/classes. */
22287 base = strrchr (DW_STRING (attr), ':');
22288 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22289 return "";
22290
518817b3 22291 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
e3b94546 22292 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
224c3ddb
SM
22293 DW_STRING (attr),
22294 &base[-1] - DW_STRING (attr));
96408a79
SA
22295}
22296
fdde2d81 22297/* Return the name of the namespace/class that DIE is defined within,
0114d602 22298 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 22299
0114d602
DJ
22300 For example, if we're within the method foo() in the following
22301 code:
22302
22303 namespace N {
22304 class C {
22305 void foo () {
22306 }
22307 };
22308 }
22309
22310 then determine_prefix on foo's die will return "N::C". */
fdde2d81 22311
0d5cff50 22312static const char *
e142c38c 22313determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 22314{
518817b3
SM
22315 struct dwarf2_per_objfile *dwarf2_per_objfile
22316 = cu->per_cu->dwarf2_per_objfile;
0114d602
DJ
22317 struct die_info *parent, *spec_die;
22318 struct dwarf2_cu *spec_cu;
22319 struct type *parent_type;
a121b7c1 22320 const char *retval;
63d06c5c 22321
9c37b5ae 22322 if (cu->language != language_cplus
c44af4eb
TT
22323 && cu->language != language_fortran && cu->language != language_d
22324 && cu->language != language_rust)
0114d602
DJ
22325 return "";
22326
96408a79
SA
22327 retval = anonymous_struct_prefix (die, cu);
22328 if (retval)
22329 return retval;
22330
0114d602
DJ
22331 /* We have to be careful in the presence of DW_AT_specification.
22332 For example, with GCC 3.4, given the code
22333
22334 namespace N {
22335 void foo() {
22336 // Definition of N::foo.
22337 }
22338 }
22339
22340 then we'll have a tree of DIEs like this:
22341
22342 1: DW_TAG_compile_unit
22343 2: DW_TAG_namespace // N
22344 3: DW_TAG_subprogram // declaration of N::foo
22345 4: DW_TAG_subprogram // definition of N::foo
22346 DW_AT_specification // refers to die #3
22347
22348 Thus, when processing die #4, we have to pretend that we're in
22349 the context of its DW_AT_specification, namely the contex of die
22350 #3. */
22351 spec_cu = cu;
22352 spec_die = die_specification (die, &spec_cu);
22353 if (spec_die == NULL)
22354 parent = die->parent;
22355 else
63d06c5c 22356 {
0114d602
DJ
22357 parent = spec_die->parent;
22358 cu = spec_cu;
63d06c5c 22359 }
0114d602
DJ
22360
22361 if (parent == NULL)
22362 return "";
98bfdba5
PA
22363 else if (parent->building_fullname)
22364 {
22365 const char *name;
22366 const char *parent_name;
22367
22368 /* It has been seen on RealView 2.2 built binaries,
22369 DW_TAG_template_type_param types actually _defined_ as
22370 children of the parent class:
22371
22372 enum E {};
22373 template class <class Enum> Class{};
22374 Class<enum E> class_e;
22375
22376 1: DW_TAG_class_type (Class)
22377 2: DW_TAG_enumeration_type (E)
22378 3: DW_TAG_enumerator (enum1:0)
22379 3: DW_TAG_enumerator (enum2:1)
22380 ...
22381 2: DW_TAG_template_type_param
22382 DW_AT_type DW_FORM_ref_udata (E)
22383
22384 Besides being broken debug info, it can put GDB into an
22385 infinite loop. Consider:
22386
22387 When we're building the full name for Class<E>, we'll start
22388 at Class, and go look over its template type parameters,
22389 finding E. We'll then try to build the full name of E, and
22390 reach here. We're now trying to build the full name of E,
22391 and look over the parent DIE for containing scope. In the
22392 broken case, if we followed the parent DIE of E, we'd again
22393 find Class, and once again go look at its template type
22394 arguments, etc., etc. Simply don't consider such parent die
22395 as source-level parent of this die (it can't be, the language
22396 doesn't allow it), and break the loop here. */
22397 name = dwarf2_name (die, cu);
22398 parent_name = dwarf2_name (parent, cu);
b98664d3 22399 complaint (_("template param type '%s' defined within parent '%s'"),
98bfdba5
PA
22400 name ? name : "<unknown>",
22401 parent_name ? parent_name : "<unknown>");
22402 return "";
22403 }
63d06c5c 22404 else
0114d602
DJ
22405 switch (parent->tag)
22406 {
63d06c5c 22407 case DW_TAG_namespace:
0114d602 22408 parent_type = read_type_die (parent, cu);
acebe513
UW
22409 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22410 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22411 Work around this problem here. */
22412 if (cu->language == language_cplus
e86ca25f 22413 && strcmp (TYPE_NAME (parent_type), "::") == 0)
acebe513 22414 return "";
0114d602 22415 /* We give a name to even anonymous namespaces. */
e86ca25f 22416 return TYPE_NAME (parent_type);
63d06c5c 22417 case DW_TAG_class_type:
680b30c7 22418 case DW_TAG_interface_type:
63d06c5c 22419 case DW_TAG_structure_type:
0114d602 22420 case DW_TAG_union_type:
f55ee35c 22421 case DW_TAG_module:
0114d602 22422 parent_type = read_type_die (parent, cu);
e86ca25f
TT
22423 if (TYPE_NAME (parent_type) != NULL)
22424 return TYPE_NAME (parent_type);
0114d602
DJ
22425 else
22426 /* An anonymous structure is only allowed non-static data
22427 members; no typedefs, no member functions, et cetera.
22428 So it does not need a prefix. */
22429 return "";
abc72ce4 22430 case DW_TAG_compile_unit:
95554aad 22431 case DW_TAG_partial_unit:
abc72ce4
DE
22432 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22433 if (cu->language == language_cplus
8b70b953 22434 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
22435 && die->child != NULL
22436 && (die->tag == DW_TAG_class_type
22437 || die->tag == DW_TAG_structure_type
22438 || die->tag == DW_TAG_union_type))
22439 {
22440 char *name = guess_full_die_structure_name (die, cu);
22441 if (name != NULL)
22442 return name;
22443 }
22444 return "";
3d567982
TT
22445 case DW_TAG_enumeration_type:
22446 parent_type = read_type_die (parent, cu);
22447 if (TYPE_DECLARED_CLASS (parent_type))
22448 {
e86ca25f
TT
22449 if (TYPE_NAME (parent_type) != NULL)
22450 return TYPE_NAME (parent_type);
3d567982
TT
22451 return "";
22452 }
22453 /* Fall through. */
63d06c5c 22454 default:
8176b9b8 22455 return determine_prefix (parent, cu);
63d06c5c 22456 }
63d06c5c
DC
22457}
22458
3e43a32a
MS
22459/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22460 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22461 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22462 an obconcat, otherwise allocate storage for the result. The CU argument is
22463 used to determine the language and hence, the appropriate separator. */
987504bb 22464
f55ee35c 22465#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
22466
22467static char *
f55ee35c
JK
22468typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22469 int physname, struct dwarf2_cu *cu)
63d06c5c 22470{
f55ee35c 22471 const char *lead = "";
5c315b68 22472 const char *sep;
63d06c5c 22473
3e43a32a
MS
22474 if (suffix == NULL || suffix[0] == '\0'
22475 || prefix == NULL || prefix[0] == '\0')
987504bb 22476 sep = "";
45280282
IB
22477 else if (cu->language == language_d)
22478 {
22479 /* For D, the 'main' function could be defined in any module, but it
22480 should never be prefixed. */
22481 if (strcmp (suffix, "D main") == 0)
22482 {
22483 prefix = "";
22484 sep = "";
22485 }
22486 else
22487 sep = ".";
22488 }
f55ee35c
JK
22489 else if (cu->language == language_fortran && physname)
22490 {
22491 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22492 DW_AT_MIPS_linkage_name is preferred and used instead. */
22493
22494 lead = "__";
22495 sep = "_MOD_";
22496 }
987504bb
JJ
22497 else
22498 sep = "::";
63d06c5c 22499
6dd47d34
DE
22500 if (prefix == NULL)
22501 prefix = "";
22502 if (suffix == NULL)
22503 suffix = "";
22504
987504bb
JJ
22505 if (obs == NULL)
22506 {
3e43a32a 22507 char *retval
224c3ddb
SM
22508 = ((char *)
22509 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
9a619af0 22510
f55ee35c
JK
22511 strcpy (retval, lead);
22512 strcat (retval, prefix);
6dd47d34
DE
22513 strcat (retval, sep);
22514 strcat (retval, suffix);
63d06c5c
DC
22515 return retval;
22516 }
987504bb
JJ
22517 else
22518 {
22519 /* We have an obstack. */
f55ee35c 22520 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 22521 }
63d06c5c
DC
22522}
22523
c906108c
SS
22524/* Return sibling of die, NULL if no sibling. */
22525
f9aca02d 22526static struct die_info *
fba45db2 22527sibling_die (struct die_info *die)
c906108c 22528{
639d11d3 22529 return die->sibling;
c906108c
SS
22530}
22531
71c25dea
TT
22532/* Get name of a die, return NULL if not found. */
22533
15d034d0
TT
22534static const char *
22535dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
22536 struct obstack *obstack)
22537{
22538 if (name && cu->language == language_cplus)
22539 {
2f408ecb 22540 std::string canon_name = cp_canonicalize_string (name);
71c25dea 22541
2f408ecb 22542 if (!canon_name.empty ())
71c25dea 22543 {
2f408ecb
PA
22544 if (canon_name != name)
22545 name = (const char *) obstack_copy0 (obstack,
22546 canon_name.c_str (),
22547 canon_name.length ());
71c25dea
TT
22548 }
22549 }
22550
22551 return name;
c906108c
SS
22552}
22553
96553a0c
DE
22554/* Get name of a die, return NULL if not found.
22555 Anonymous namespaces are converted to their magic string. */
9219021c 22556
15d034d0 22557static const char *
e142c38c 22558dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
22559{
22560 struct attribute *attr;
518817b3 22561 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9219021c 22562
e142c38c 22563 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31 22564 if ((!attr || !DW_STRING (attr))
96553a0c 22565 && die->tag != DW_TAG_namespace
53832f31
TT
22566 && die->tag != DW_TAG_class_type
22567 && die->tag != DW_TAG_interface_type
22568 && die->tag != DW_TAG_structure_type
22569 && die->tag != DW_TAG_union_type)
71c25dea
TT
22570 return NULL;
22571
22572 switch (die->tag)
22573 {
22574 case DW_TAG_compile_unit:
95554aad 22575 case DW_TAG_partial_unit:
71c25dea
TT
22576 /* Compilation units have a DW_AT_name that is a filename, not
22577 a source language identifier. */
22578 case DW_TAG_enumeration_type:
22579 case DW_TAG_enumerator:
22580 /* These tags always have simple identifiers already; no need
22581 to canonicalize them. */
22582 return DW_STRING (attr);
907af001 22583
96553a0c
DE
22584 case DW_TAG_namespace:
22585 if (attr != NULL && DW_STRING (attr) != NULL)
22586 return DW_STRING (attr);
22587 return CP_ANONYMOUS_NAMESPACE_STR;
22588
907af001
UW
22589 case DW_TAG_class_type:
22590 case DW_TAG_interface_type:
22591 case DW_TAG_structure_type:
22592 case DW_TAG_union_type:
22593 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22594 structures or unions. These were of the form "._%d" in GCC 4.1,
22595 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22596 and GCC 4.4. We work around this problem by ignoring these. */
53832f31 22597 if (attr && DW_STRING (attr)
61012eef
GB
22598 && (startswith (DW_STRING (attr), "._")
22599 || startswith (DW_STRING (attr), "<anonymous")))
907af001 22600 return NULL;
53832f31
TT
22601
22602 /* GCC might emit a nameless typedef that has a linkage name. See
22603 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22604 if (!attr || DW_STRING (attr) == NULL)
22605 {
df5c6c50 22606 char *demangled = NULL;
53832f31 22607
73b9be8b 22608 attr = dw2_linkage_name_attr (die, cu);
53832f31
TT
22609 if (attr == NULL || DW_STRING (attr) == NULL)
22610 return NULL;
22611
df5c6c50
JK
22612 /* Avoid demangling DW_STRING (attr) the second time on a second
22613 call for the same DIE. */
22614 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 22615 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
22616
22617 if (demangled)
22618 {
e6a959d6 22619 const char *base;
96408a79 22620
53832f31 22621 /* FIXME: we already did this for the partial symbol... */
34a68019 22622 DW_STRING (attr)
224c3ddb 22623 = ((const char *)
e3b94546 22624 obstack_copy0 (&objfile->per_bfd->storage_obstack,
224c3ddb 22625 demangled, strlen (demangled)));
53832f31
TT
22626 DW_STRING_IS_CANONICAL (attr) = 1;
22627 xfree (demangled);
96408a79
SA
22628
22629 /* Strip any leading namespaces/classes, keep only the base name.
22630 DW_AT_name for named DIEs does not contain the prefixes. */
22631 base = strrchr (DW_STRING (attr), ':');
22632 if (base && base > DW_STRING (attr) && base[-1] == ':')
22633 return &base[1];
22634 else
22635 return DW_STRING (attr);
53832f31
TT
22636 }
22637 }
907af001
UW
22638 break;
22639
71c25dea 22640 default:
907af001
UW
22641 break;
22642 }
22643
22644 if (!DW_STRING_IS_CANONICAL (attr))
22645 {
22646 DW_STRING (attr)
22647 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
e3b94546 22648 &objfile->per_bfd->storage_obstack);
907af001 22649 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 22650 }
907af001 22651 return DW_STRING (attr);
9219021c
DC
22652}
22653
22654/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
22655 is none. *EXT_CU is the CU containing DIE on input, and the CU
22656 containing the return value on output. */
9219021c
DC
22657
22658static struct die_info *
f2f0e013 22659dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
22660{
22661 struct attribute *attr;
9219021c 22662
f2f0e013 22663 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
22664 if (attr == NULL)
22665 return NULL;
22666
f2f0e013 22667 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
22668}
22669
c906108c
SS
22670/* Convert a DIE tag into its string name. */
22671
f39c6ffd 22672static const char *
aa1ee363 22673dwarf_tag_name (unsigned tag)
c906108c 22674{
f39c6ffd
TT
22675 const char *name = get_DW_TAG_name (tag);
22676
22677 if (name == NULL)
22678 return "DW_TAG_<unknown>";
22679
22680 return name;
c906108c
SS
22681}
22682
22683/* Convert a DWARF attribute code into its string name. */
22684
f39c6ffd 22685static const char *
aa1ee363 22686dwarf_attr_name (unsigned attr)
c906108c 22687{
f39c6ffd
TT
22688 const char *name;
22689
c764a876 22690#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
22691 if (attr == DW_AT_MIPS_fde)
22692 return "DW_AT_MIPS_fde";
22693#else
22694 if (attr == DW_AT_HP_block_index)
22695 return "DW_AT_HP_block_index";
c764a876 22696#endif
f39c6ffd
TT
22697
22698 name = get_DW_AT_name (attr);
22699
22700 if (name == NULL)
22701 return "DW_AT_<unknown>";
22702
22703 return name;
c906108c
SS
22704}
22705
22706/* Convert a DWARF value form code into its string name. */
22707
f39c6ffd 22708static const char *
aa1ee363 22709dwarf_form_name (unsigned form)
c906108c 22710{
f39c6ffd
TT
22711 const char *name = get_DW_FORM_name (form);
22712
22713 if (name == NULL)
22714 return "DW_FORM_<unknown>";
22715
22716 return name;
c906108c
SS
22717}
22718
a121b7c1 22719static const char *
fba45db2 22720dwarf_bool_name (unsigned mybool)
c906108c
SS
22721{
22722 if (mybool)
22723 return "TRUE";
22724 else
22725 return "FALSE";
22726}
22727
22728/* Convert a DWARF type code into its string name. */
22729
f39c6ffd 22730static const char *
aa1ee363 22731dwarf_type_encoding_name (unsigned enc)
c906108c 22732{
f39c6ffd 22733 const char *name = get_DW_ATE_name (enc);
c906108c 22734
f39c6ffd
TT
22735 if (name == NULL)
22736 return "DW_ATE_<unknown>";
c906108c 22737
f39c6ffd 22738 return name;
c906108c 22739}
c906108c 22740
f9aca02d 22741static void
d97bc12b 22742dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
22743{
22744 unsigned int i;
22745
d97bc12b 22746 print_spaces (indent, f);
9d8780f0 22747 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
9c541725 22748 dwarf_tag_name (die->tag), die->abbrev,
9d8780f0 22749 sect_offset_str (die->sect_off));
d97bc12b
DE
22750
22751 if (die->parent != NULL)
22752 {
22753 print_spaces (indent, f);
9d8780f0
SM
22754 fprintf_unfiltered (f, " parent at offset: %s\n",
22755 sect_offset_str (die->parent->sect_off));
d97bc12b
DE
22756 }
22757
22758 print_spaces (indent, f);
22759 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 22760 dwarf_bool_name (die->child != NULL));
c906108c 22761
d97bc12b
DE
22762 print_spaces (indent, f);
22763 fprintf_unfiltered (f, " attributes:\n");
22764
c906108c
SS
22765 for (i = 0; i < die->num_attrs; ++i)
22766 {
d97bc12b
DE
22767 print_spaces (indent, f);
22768 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
22769 dwarf_attr_name (die->attrs[i].name),
22770 dwarf_form_name (die->attrs[i].form));
d97bc12b 22771
c906108c
SS
22772 switch (die->attrs[i].form)
22773 {
c906108c 22774 case DW_FORM_addr:
3019eac3 22775 case DW_FORM_GNU_addr_index:
d97bc12b 22776 fprintf_unfiltered (f, "address: ");
5af949e3 22777 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
22778 break;
22779 case DW_FORM_block2:
22780 case DW_FORM_block4:
22781 case DW_FORM_block:
22782 case DW_FORM_block1:
56eb65bd
SP
22783 fprintf_unfiltered (f, "block: size %s",
22784 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 22785 break;
2dc7f7b3 22786 case DW_FORM_exprloc:
56eb65bd
SP
22787 fprintf_unfiltered (f, "expression: size %s",
22788 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 22789 break;
0224619f
JK
22790 case DW_FORM_data16:
22791 fprintf_unfiltered (f, "constant of 16 bytes");
22792 break;
4568ecf9
DE
22793 case DW_FORM_ref_addr:
22794 fprintf_unfiltered (f, "ref address: ");
22795 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22796 break;
36586728
TT
22797 case DW_FORM_GNU_ref_alt:
22798 fprintf_unfiltered (f, "alt ref address: ");
22799 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22800 break;
10b3939b
DJ
22801 case DW_FORM_ref1:
22802 case DW_FORM_ref2:
22803 case DW_FORM_ref4:
4568ecf9
DE
22804 case DW_FORM_ref8:
22805 case DW_FORM_ref_udata:
d97bc12b 22806 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 22807 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 22808 break;
c906108c
SS
22809 case DW_FORM_data1:
22810 case DW_FORM_data2:
22811 case DW_FORM_data4:
ce5d95e1 22812 case DW_FORM_data8:
c906108c
SS
22813 case DW_FORM_udata:
22814 case DW_FORM_sdata:
43bbcdc2
PH
22815 fprintf_unfiltered (f, "constant: %s",
22816 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 22817 break;
2dc7f7b3
TT
22818 case DW_FORM_sec_offset:
22819 fprintf_unfiltered (f, "section offset: %s",
22820 pulongest (DW_UNSND (&die->attrs[i])));
22821 break;
55f1336d 22822 case DW_FORM_ref_sig8:
ac9ec31b
DE
22823 fprintf_unfiltered (f, "signature: %s",
22824 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 22825 break;
c906108c 22826 case DW_FORM_string:
4bdf3d34 22827 case DW_FORM_strp:
43988095 22828 case DW_FORM_line_strp:
3019eac3 22829 case DW_FORM_GNU_str_index:
36586728 22830 case DW_FORM_GNU_strp_alt:
8285870a 22831 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 22832 DW_STRING (&die->attrs[i])
8285870a
JK
22833 ? DW_STRING (&die->attrs[i]) : "",
22834 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
22835 break;
22836 case DW_FORM_flag:
22837 if (DW_UNSND (&die->attrs[i]))
d97bc12b 22838 fprintf_unfiltered (f, "flag: TRUE");
c906108c 22839 else
d97bc12b 22840 fprintf_unfiltered (f, "flag: FALSE");
c906108c 22841 break;
2dc7f7b3
TT
22842 case DW_FORM_flag_present:
22843 fprintf_unfiltered (f, "flag: TRUE");
22844 break;
a8329558 22845 case DW_FORM_indirect:
0963b4bd
MS
22846 /* The reader will have reduced the indirect form to
22847 the "base form" so this form should not occur. */
3e43a32a
MS
22848 fprintf_unfiltered (f,
22849 "unexpected attribute form: DW_FORM_indirect");
a8329558 22850 break;
663c44ac
JK
22851 case DW_FORM_implicit_const:
22852 fprintf_unfiltered (f, "constant: %s",
22853 plongest (DW_SND (&die->attrs[i])));
22854 break;
c906108c 22855 default:
d97bc12b 22856 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 22857 die->attrs[i].form);
d97bc12b 22858 break;
c906108c 22859 }
d97bc12b 22860 fprintf_unfiltered (f, "\n");
c906108c
SS
22861 }
22862}
22863
f9aca02d 22864static void
d97bc12b 22865dump_die_for_error (struct die_info *die)
c906108c 22866{
d97bc12b
DE
22867 dump_die_shallow (gdb_stderr, 0, die);
22868}
22869
22870static void
22871dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22872{
22873 int indent = level * 4;
22874
22875 gdb_assert (die != NULL);
22876
22877 if (level >= max_level)
22878 return;
22879
22880 dump_die_shallow (f, indent, die);
22881
22882 if (die->child != NULL)
c906108c 22883 {
d97bc12b
DE
22884 print_spaces (indent, f);
22885 fprintf_unfiltered (f, " Children:");
22886 if (level + 1 < max_level)
22887 {
22888 fprintf_unfiltered (f, "\n");
22889 dump_die_1 (f, level + 1, max_level, die->child);
22890 }
22891 else
22892 {
3e43a32a
MS
22893 fprintf_unfiltered (f,
22894 " [not printed, max nesting level reached]\n");
d97bc12b
DE
22895 }
22896 }
22897
22898 if (die->sibling != NULL && level > 0)
22899 {
22900 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
22901 }
22902}
22903
d97bc12b
DE
22904/* This is called from the pdie macro in gdbinit.in.
22905 It's not static so gcc will keep a copy callable from gdb. */
22906
22907void
22908dump_die (struct die_info *die, int max_level)
22909{
22910 dump_die_1 (gdb_stdlog, 0, max_level, die);
22911}
22912
f9aca02d 22913static void
51545339 22914store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 22915{
51545339 22916 void **slot;
c906108c 22917
9c541725
PA
22918 slot = htab_find_slot_with_hash (cu->die_hash, die,
22919 to_underlying (die->sect_off),
b64f50a1 22920 INSERT);
51545339
DJ
22921
22922 *slot = die;
c906108c
SS
22923}
22924
b64f50a1
JK
22925/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22926 required kind. */
22927
22928static sect_offset
ff39bb5e 22929dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 22930{
7771576e 22931 if (attr_form_is_ref (attr))
9c541725 22932 return (sect_offset) DW_UNSND (attr);
93311388 22933
b98664d3 22934 complaint (_("unsupported die ref attribute form: '%s'"),
93311388 22935 dwarf_form_name (attr->form));
9c541725 22936 return {};
c906108c
SS
22937}
22938
43bbcdc2
PH
22939/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22940 * the value held by the attribute is not constant. */
a02abb62 22941
43bbcdc2 22942static LONGEST
ff39bb5e 22943dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62 22944{
663c44ac 22945 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
a02abb62
JB
22946 return DW_SND (attr);
22947 else if (attr->form == DW_FORM_udata
22948 || attr->form == DW_FORM_data1
22949 || attr->form == DW_FORM_data2
22950 || attr->form == DW_FORM_data4
22951 || attr->form == DW_FORM_data8)
22952 return DW_UNSND (attr);
22953 else
22954 {
0224619f 22955 /* For DW_FORM_data16 see attr_form_is_constant. */
b98664d3 22956 complaint (_("Attribute value is not a constant (%s)"),
a02abb62
JB
22957 dwarf_form_name (attr->form));
22958 return default_value;
22959 }
22960}
22961
348e048f
DE
22962/* Follow reference or signature attribute ATTR of SRC_DIE.
22963 On entry *REF_CU is the CU of SRC_DIE.
22964 On exit *REF_CU is the CU of the result. */
22965
22966static struct die_info *
ff39bb5e 22967follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
22968 struct dwarf2_cu **ref_cu)
22969{
22970 struct die_info *die;
22971
7771576e 22972 if (attr_form_is_ref (attr))
348e048f 22973 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 22974 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
22975 die = follow_die_sig (src_die, attr, ref_cu);
22976 else
22977 {
22978 dump_die_for_error (src_die);
22979 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
518817b3 22980 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
348e048f
DE
22981 }
22982
22983 return die;
03dd20cc
DJ
22984}
22985
5c631832 22986/* Follow reference OFFSET.
673bfd45
DE
22987 On entry *REF_CU is the CU of the source die referencing OFFSET.
22988 On exit *REF_CU is the CU of the result.
22989 Returns NULL if OFFSET is invalid. */
f504f079 22990
f9aca02d 22991static struct die_info *
9c541725 22992follow_die_offset (sect_offset sect_off, int offset_in_dwz,
36586728 22993 struct dwarf2_cu **ref_cu)
c906108c 22994{
10b3939b 22995 struct die_info temp_die;
f2f0e013 22996 struct dwarf2_cu *target_cu, *cu = *ref_cu;
518817b3
SM
22997 struct dwarf2_per_objfile *dwarf2_per_objfile
22998 = cu->per_cu->dwarf2_per_objfile;
10b3939b 22999
348e048f
DE
23000 gdb_assert (cu->per_cu != NULL);
23001
98bfdba5
PA
23002 target_cu = cu;
23003
3019eac3 23004 if (cu->per_cu->is_debug_types)
348e048f
DE
23005 {
23006 /* .debug_types CUs cannot reference anything outside their CU.
23007 If they need to, they have to reference a signatured type via
55f1336d 23008 DW_FORM_ref_sig8. */
9c541725 23009 if (!offset_in_cu_p (&cu->header, sect_off))
5c631832 23010 return NULL;
348e048f 23011 }
36586728 23012 else if (offset_in_dwz != cu->per_cu->is_dwz
9c541725 23013 || !offset_in_cu_p (&cu->header, sect_off))
10b3939b
DJ
23014 {
23015 struct dwarf2_per_cu_data *per_cu;
9a619af0 23016
9c541725 23017 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
ed2dc618 23018 dwarf2_per_objfile);
03dd20cc
DJ
23019
23020 /* If necessary, add it to the queue and load its DIEs. */
95554aad 23021 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
58f0c718 23022 load_full_comp_unit (per_cu, false, cu->language);
03dd20cc 23023
10b3939b
DJ
23024 target_cu = per_cu->cu;
23025 }
98bfdba5
PA
23026 else if (cu->dies == NULL)
23027 {
23028 /* We're loading full DIEs during partial symbol reading. */
23029 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
58f0c718 23030 load_full_comp_unit (cu->per_cu, false, language_minimal);
98bfdba5 23031 }
c906108c 23032
f2f0e013 23033 *ref_cu = target_cu;
9c541725 23034 temp_die.sect_off = sect_off;
9a3c8263 23035 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
9c541725
PA
23036 &temp_die,
23037 to_underlying (sect_off));
5c631832 23038}
10b3939b 23039
5c631832
JK
23040/* Follow reference attribute ATTR of SRC_DIE.
23041 On entry *REF_CU is the CU of SRC_DIE.
23042 On exit *REF_CU is the CU of the result. */
23043
23044static struct die_info *
ff39bb5e 23045follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
23046 struct dwarf2_cu **ref_cu)
23047{
9c541725 23048 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
5c631832
JK
23049 struct dwarf2_cu *cu = *ref_cu;
23050 struct die_info *die;
23051
9c541725 23052 die = follow_die_offset (sect_off,
36586728
TT
23053 (attr->form == DW_FORM_GNU_ref_alt
23054 || cu->per_cu->is_dwz),
23055 ref_cu);
5c631832 23056 if (!die)
9d8780f0
SM
23057 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23058 "at %s [in module %s]"),
23059 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
518817b3 23060 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
348e048f 23061
5c631832
JK
23062 return die;
23063}
23064
9c541725 23065/* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
d83e736b 23066 Returned value is intended for DW_OP_call*. Returned
e3b94546
SM
23067 dwarf2_locexpr_baton->data has lifetime of
23068 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
5c631832
JK
23069
23070struct dwarf2_locexpr_baton
9c541725 23071dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
8b9737bf
TT
23072 struct dwarf2_per_cu_data *per_cu,
23073 CORE_ADDR (*get_frame_pc) (void *baton),
e4a62c65 23074 void *baton, bool resolve_abstract_p)
5c631832 23075{
918dd910 23076 struct dwarf2_cu *cu;
5c631832
JK
23077 struct die_info *die;
23078 struct attribute *attr;
23079 struct dwarf2_locexpr_baton retval;
12359b5e
SM
23080 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23081 struct objfile *objfile = dwarf2_per_objfile->objfile;
8cf6f0b1 23082
918dd910 23083 if (per_cu->cu == NULL)
58f0c718 23084 load_cu (per_cu, false);
918dd910 23085 cu = per_cu->cu;
cc12ce38
DE
23086 if (cu == NULL)
23087 {
23088 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23089 Instead just throw an error, not much else we can do. */
9d8780f0
SM
23090 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23091 sect_offset_str (sect_off), objfile_name (objfile));
cc12ce38 23092 }
918dd910 23093
9c541725 23094 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
5c631832 23095 if (!die)
9d8780f0
SM
23096 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23097 sect_offset_str (sect_off), objfile_name (objfile));
5c631832
JK
23098
23099 attr = dwarf2_attr (die, DW_AT_location, cu);
e4a62c65
TV
23100 if (!attr && resolve_abstract_p
23101 && (dwarf2_per_objfile->abstract_to_concrete.find (die)
23102 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23103 {
23104 CORE_ADDR pc = (*get_frame_pc) (baton);
23105
23106 for (const auto &cand : dwarf2_per_objfile->abstract_to_concrete[die])
23107 {
23108 if (!cand->parent
23109 || cand->parent->tag != DW_TAG_subprogram)
23110 continue;
23111
23112 CORE_ADDR pc_low, pc_high;
23113 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23114 if (pc_low == ((CORE_ADDR) -1)
23115 || !(pc_low <= pc && pc < pc_high))
23116 continue;
23117
23118 die = cand;
23119 attr = dwarf2_attr (die, DW_AT_location, cu);
23120 break;
23121 }
23122 }
23123
5c631832
JK
23124 if (!attr)
23125 {
e103e986
JK
23126 /* DWARF: "If there is no such attribute, then there is no effect.".
23127 DATA is ignored if SIZE is 0. */
5c631832 23128
e103e986 23129 retval.data = NULL;
5c631832
JK
23130 retval.size = 0;
23131 }
8cf6f0b1
TT
23132 else if (attr_form_is_section_offset (attr))
23133 {
23134 struct dwarf2_loclist_baton loclist_baton;
23135 CORE_ADDR pc = (*get_frame_pc) (baton);
23136 size_t size;
23137
23138 fill_in_loclist_baton (cu, &loclist_baton, attr);
23139
23140 retval.data = dwarf2_find_location_expression (&loclist_baton,
23141 &size, pc);
23142 retval.size = size;
23143 }
5c631832
JK
23144 else
23145 {
23146 if (!attr_form_is_block (attr))
9d8780f0 23147 error (_("Dwarf Error: DIE at %s referenced in module %s "
5c631832 23148 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
9d8780f0 23149 sect_offset_str (sect_off), objfile_name (objfile));
5c631832
JK
23150
23151 retval.data = DW_BLOCK (attr)->data;
23152 retval.size = DW_BLOCK (attr)->size;
23153 }
23154 retval.per_cu = cu->per_cu;
918dd910 23155
ed2dc618 23156 age_cached_comp_units (dwarf2_per_objfile);
918dd910 23157
5c631832 23158 return retval;
348e048f
DE
23159}
23160
8b9737bf
TT
23161/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23162 offset. */
23163
23164struct dwarf2_locexpr_baton
23165dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23166 struct dwarf2_per_cu_data *per_cu,
23167 CORE_ADDR (*get_frame_pc) (void *baton),
23168 void *baton)
23169{
9c541725 23170 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
8b9737bf 23171
9c541725 23172 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
8b9737bf
TT
23173}
23174
b6807d98
TT
23175/* Write a constant of a given type as target-ordered bytes into
23176 OBSTACK. */
23177
23178static const gdb_byte *
23179write_constant_as_bytes (struct obstack *obstack,
23180 enum bfd_endian byte_order,
23181 struct type *type,
23182 ULONGEST value,
23183 LONGEST *len)
23184{
23185 gdb_byte *result;
23186
23187 *len = TYPE_LENGTH (type);
224c3ddb 23188 result = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
23189 store_unsigned_integer (result, *len, byte_order, value);
23190
23191 return result;
23192}
23193
23194/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23195 pointer to the constant bytes and set LEN to the length of the
23196 data. If memory is needed, allocate it on OBSTACK. If the DIE
23197 does not have a DW_AT_const_value, return NULL. */
23198
23199const gdb_byte *
9c541725 23200dwarf2_fetch_constant_bytes (sect_offset sect_off,
b6807d98
TT
23201 struct dwarf2_per_cu_data *per_cu,
23202 struct obstack *obstack,
23203 LONGEST *len)
23204{
23205 struct dwarf2_cu *cu;
23206 struct die_info *die;
23207 struct attribute *attr;
23208 const gdb_byte *result = NULL;
23209 struct type *type;
23210 LONGEST value;
23211 enum bfd_endian byte_order;
e3b94546 23212 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
b6807d98 23213
b6807d98 23214 if (per_cu->cu == NULL)
58f0c718 23215 load_cu (per_cu, false);
b6807d98 23216 cu = per_cu->cu;
cc12ce38
DE
23217 if (cu == NULL)
23218 {
23219 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23220 Instead just throw an error, not much else we can do. */
9d8780f0
SM
23221 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23222 sect_offset_str (sect_off), objfile_name (objfile));
cc12ce38 23223 }
b6807d98 23224
9c541725 23225 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
b6807d98 23226 if (!die)
9d8780f0
SM
23227 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23228 sect_offset_str (sect_off), objfile_name (objfile));
b6807d98
TT
23229
23230 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23231 if (attr == NULL)
23232 return NULL;
23233
e3b94546 23234 byte_order = (bfd_big_endian (objfile->obfd)
b6807d98
TT
23235 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23236
23237 switch (attr->form)
23238 {
23239 case DW_FORM_addr:
23240 case DW_FORM_GNU_addr_index:
23241 {
23242 gdb_byte *tem;
23243
23244 *len = cu->header.addr_size;
224c3ddb 23245 tem = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
23246 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23247 result = tem;
23248 }
23249 break;
23250 case DW_FORM_string:
23251 case DW_FORM_strp:
23252 case DW_FORM_GNU_str_index:
23253 case DW_FORM_GNU_strp_alt:
23254 /* DW_STRING is already allocated on the objfile obstack, point
23255 directly to it. */
23256 result = (const gdb_byte *) DW_STRING (attr);
23257 *len = strlen (DW_STRING (attr));
23258 break;
23259 case DW_FORM_block1:
23260 case DW_FORM_block2:
23261 case DW_FORM_block4:
23262 case DW_FORM_block:
23263 case DW_FORM_exprloc:
0224619f 23264 case DW_FORM_data16:
b6807d98
TT
23265 result = DW_BLOCK (attr)->data;
23266 *len = DW_BLOCK (attr)->size;
23267 break;
23268
23269 /* The DW_AT_const_value attributes are supposed to carry the
23270 symbol's value "represented as it would be on the target
23271 architecture." By the time we get here, it's already been
23272 converted to host endianness, so we just need to sign- or
23273 zero-extend it as appropriate. */
23274 case DW_FORM_data1:
23275 type = die_type (die, cu);
23276 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23277 if (result == NULL)
23278 result = write_constant_as_bytes (obstack, byte_order,
23279 type, value, len);
23280 break;
23281 case DW_FORM_data2:
23282 type = die_type (die, cu);
23283 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23284 if (result == NULL)
23285 result = write_constant_as_bytes (obstack, byte_order,
23286 type, value, len);
23287 break;
23288 case DW_FORM_data4:
23289 type = die_type (die, cu);
23290 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23291 if (result == NULL)
23292 result = write_constant_as_bytes (obstack, byte_order,
23293 type, value, len);
23294 break;
23295 case DW_FORM_data8:
23296 type = die_type (die, cu);
23297 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23298 if (result == NULL)
23299 result = write_constant_as_bytes (obstack, byte_order,
23300 type, value, len);
23301 break;
23302
23303 case DW_FORM_sdata:
663c44ac 23304 case DW_FORM_implicit_const:
b6807d98
TT
23305 type = die_type (die, cu);
23306 result = write_constant_as_bytes (obstack, byte_order,
23307 type, DW_SND (attr), len);
23308 break;
23309
23310 case DW_FORM_udata:
23311 type = die_type (die, cu);
23312 result = write_constant_as_bytes (obstack, byte_order,
23313 type, DW_UNSND (attr), len);
23314 break;
23315
23316 default:
b98664d3 23317 complaint (_("unsupported const value attribute form: '%s'"),
b6807d98
TT
23318 dwarf_form_name (attr->form));
23319 break;
23320 }
23321
23322 return result;
23323}
23324
7942e96e
AA
23325/* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23326 valid type for this die is found. */
23327
23328struct type *
9c541725 23329dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
7942e96e
AA
23330 struct dwarf2_per_cu_data *per_cu)
23331{
23332 struct dwarf2_cu *cu;
23333 struct die_info *die;
23334
7942e96e 23335 if (per_cu->cu == NULL)
58f0c718 23336 load_cu (per_cu, false);
7942e96e
AA
23337 cu = per_cu->cu;
23338 if (!cu)
23339 return NULL;
23340
9c541725 23341 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
7942e96e
AA
23342 if (!die)
23343 return NULL;
23344
23345 return die_type (die, cu);
23346}
23347
8a9b8146
TT
23348/* Return the type of the DIE at DIE_OFFSET in the CU named by
23349 PER_CU. */
23350
23351struct type *
b64f50a1 23352dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
23353 struct dwarf2_per_cu_data *per_cu)
23354{
9c541725 23355 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
b64f50a1 23356 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
23357}
23358
ac9ec31b 23359/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 23360 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
23361 On exit *REF_CU is the CU of the result.
23362 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
23363
23364static struct die_info *
ac9ec31b
DE
23365follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23366 struct dwarf2_cu **ref_cu)
348e048f 23367{
348e048f 23368 struct die_info temp_die;
348e048f
DE
23369 struct dwarf2_cu *sig_cu;
23370 struct die_info *die;
23371
ac9ec31b
DE
23372 /* While it might be nice to assert sig_type->type == NULL here,
23373 we can get here for DW_AT_imported_declaration where we need
23374 the DIE not the type. */
348e048f
DE
23375
23376 /* If necessary, add it to the queue and load its DIEs. */
23377
95554aad 23378 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 23379 read_signatured_type (sig_type);
348e048f 23380
348e048f 23381 sig_cu = sig_type->per_cu.cu;
69d751e3 23382 gdb_assert (sig_cu != NULL);
9c541725
PA
23383 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23384 temp_die.sect_off = sig_type->type_offset_in_section;
9a3c8263 23385 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
9c541725 23386 to_underlying (temp_die.sect_off));
348e048f
DE
23387 if (die)
23388 {
ed2dc618 23389 struct dwarf2_per_objfile *dwarf2_per_objfile
518817b3 23390 = (*ref_cu)->per_cu->dwarf2_per_objfile;
ed2dc618 23391
796a7ff8
DE
23392 /* For .gdb_index version 7 keep track of included TUs.
23393 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23394 if (dwarf2_per_objfile->index_table != NULL
23395 && dwarf2_per_objfile->index_table->version <= 7)
23396 {
23397 VEC_safe_push (dwarf2_per_cu_ptr,
23398 (*ref_cu)->per_cu->imported_symtabs,
23399 sig_cu->per_cu);
23400 }
23401
348e048f
DE
23402 *ref_cu = sig_cu;
23403 return die;
23404 }
23405
ac9ec31b
DE
23406 return NULL;
23407}
23408
23409/* Follow signatured type referenced by ATTR in SRC_DIE.
23410 On entry *REF_CU is the CU of SRC_DIE.
23411 On exit *REF_CU is the CU of the result.
23412 The result is the DIE of the type.
23413 If the referenced type cannot be found an error is thrown. */
23414
23415static struct die_info *
ff39bb5e 23416follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
23417 struct dwarf2_cu **ref_cu)
23418{
23419 ULONGEST signature = DW_SIGNATURE (attr);
23420 struct signatured_type *sig_type;
23421 struct die_info *die;
23422
23423 gdb_assert (attr->form == DW_FORM_ref_sig8);
23424
a2ce51a0 23425 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
23426 /* sig_type will be NULL if the signatured type is missing from
23427 the debug info. */
23428 if (sig_type == NULL)
23429 {
23430 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
9d8780f0
SM
23431 " from DIE at %s [in module %s]"),
23432 hex_string (signature), sect_offset_str (src_die->sect_off),
518817b3 23433 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
ac9ec31b
DE
23434 }
23435
23436 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23437 if (die == NULL)
23438 {
23439 dump_die_for_error (src_die);
23440 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
9d8780f0
SM
23441 " from DIE at %s [in module %s]"),
23442 hex_string (signature), sect_offset_str (src_die->sect_off),
518817b3 23443 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
ac9ec31b
DE
23444 }
23445
23446 return die;
23447}
23448
23449/* Get the type specified by SIGNATURE referenced in DIE/CU,
23450 reading in and processing the type unit if necessary. */
23451
23452static struct type *
23453get_signatured_type (struct die_info *die, ULONGEST signature,
23454 struct dwarf2_cu *cu)
23455{
518817b3
SM
23456 struct dwarf2_per_objfile *dwarf2_per_objfile
23457 = cu->per_cu->dwarf2_per_objfile;
ac9ec31b
DE
23458 struct signatured_type *sig_type;
23459 struct dwarf2_cu *type_cu;
23460 struct die_info *type_die;
23461 struct type *type;
23462
a2ce51a0 23463 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
23464 /* sig_type will be NULL if the signatured type is missing from
23465 the debug info. */
23466 if (sig_type == NULL)
23467 {
b98664d3 23468 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
9d8780f0
SM
23469 " from DIE at %s [in module %s]"),
23470 hex_string (signature), sect_offset_str (die->sect_off),
4262abfb 23471 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
23472 return build_error_marker_type (cu, die);
23473 }
23474
23475 /* If we already know the type we're done. */
23476 if (sig_type->type != NULL)
23477 return sig_type->type;
23478
23479 type_cu = cu;
23480 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23481 if (type_die != NULL)
23482 {
23483 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23484 is created. This is important, for example, because for c++ classes
23485 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23486 type = read_type_die (type_die, type_cu);
23487 if (type == NULL)
23488 {
b98664d3 23489 complaint (_("Dwarf Error: Cannot build signatured type %s"
9d8780f0
SM
23490 " referenced from DIE at %s [in module %s]"),
23491 hex_string (signature), sect_offset_str (die->sect_off),
4262abfb 23492 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
23493 type = build_error_marker_type (cu, die);
23494 }
23495 }
23496 else
23497 {
b98664d3 23498 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
9d8780f0
SM
23499 " from DIE at %s [in module %s]"),
23500 hex_string (signature), sect_offset_str (die->sect_off),
4262abfb 23501 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
23502 type = build_error_marker_type (cu, die);
23503 }
23504 sig_type->type = type;
23505
23506 return type;
23507}
23508
23509/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23510 reading in and processing the type unit if necessary. */
23511
23512static struct type *
ff39bb5e 23513get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 23514 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
23515{
23516 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 23517 if (attr_form_is_ref (attr))
ac9ec31b
DE
23518 {
23519 struct dwarf2_cu *type_cu = cu;
23520 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23521
23522 return read_type_die (type_die, type_cu);
23523 }
23524 else if (attr->form == DW_FORM_ref_sig8)
23525 {
23526 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23527 }
23528 else
23529 {
518817b3
SM
23530 struct dwarf2_per_objfile *dwarf2_per_objfile
23531 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 23532
b98664d3 23533 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
9d8780f0
SM
23534 " at %s [in module %s]"),
23535 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
4262abfb 23536 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
23537 return build_error_marker_type (cu, die);
23538 }
348e048f
DE
23539}
23540
e5fe5e75 23541/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
23542
23543static void
e5fe5e75 23544load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 23545{
52dc124a 23546 struct signatured_type *sig_type;
348e048f 23547
f4dc4d17
DE
23548 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23549 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23550
6721b2ec
DE
23551 /* We have the per_cu, but we need the signatured_type.
23552 Fortunately this is an easy translation. */
23553 gdb_assert (per_cu->is_debug_types);
23554 sig_type = (struct signatured_type *) per_cu;
348e048f 23555
6721b2ec 23556 gdb_assert (per_cu->cu == NULL);
348e048f 23557
52dc124a 23558 read_signatured_type (sig_type);
348e048f 23559
6721b2ec 23560 gdb_assert (per_cu->cu != NULL);
348e048f
DE
23561}
23562
dee91e82
DE
23563/* die_reader_func for read_signatured_type.
23564 This is identical to load_full_comp_unit_reader,
23565 but is kept separate for now. */
348e048f
DE
23566
23567static void
dee91e82 23568read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 23569 const gdb_byte *info_ptr,
dee91e82
DE
23570 struct die_info *comp_unit_die,
23571 int has_children,
23572 void *data)
348e048f 23573{
dee91e82 23574 struct dwarf2_cu *cu = reader->cu;
348e048f 23575
dee91e82
DE
23576 gdb_assert (cu->die_hash == NULL);
23577 cu->die_hash =
23578 htab_create_alloc_ex (cu->header.length / 12,
23579 die_hash,
23580 die_eq,
23581 NULL,
23582 &cu->comp_unit_obstack,
23583 hashtab_obstack_allocate,
23584 dummy_obstack_deallocate);
348e048f 23585
dee91e82
DE
23586 if (has_children)
23587 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23588 &info_ptr, comp_unit_die);
23589 cu->dies = comp_unit_die;
23590 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
23591
23592 /* We try not to read any attributes in this function, because not
9cdd5dbd 23593 all CUs needed for references have been loaded yet, and symbol
348e048f 23594 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
23595 or we won't be able to build types correctly.
23596 Similarly, if we do not read the producer, we can not apply
23597 producer-specific interpretation. */
95554aad 23598 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 23599}
348e048f 23600
3019eac3
DE
23601/* Read in a signatured type and build its CU and DIEs.
23602 If the type is a stub for the real type in a DWO file,
23603 read in the real type from the DWO file as well. */
dee91e82
DE
23604
23605static void
23606read_signatured_type (struct signatured_type *sig_type)
23607{
23608 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 23609
3019eac3 23610 gdb_assert (per_cu->is_debug_types);
dee91e82 23611 gdb_assert (per_cu->cu == NULL);
348e048f 23612
58f0c718 23613 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
f4dc4d17 23614 read_signatured_type_reader, NULL);
7ee85ab1 23615 sig_type->per_cu.tu_read = 1;
c906108c
SS
23616}
23617
c906108c
SS
23618/* Decode simple location descriptions.
23619 Given a pointer to a dwarf block that defines a location, compute
23620 the location and return the value.
23621
4cecd739
DJ
23622 NOTE drow/2003-11-18: This function is called in two situations
23623 now: for the address of static or global variables (partial symbols
23624 only) and for offsets into structures which are expected to be
23625 (more or less) constant. The partial symbol case should go away,
23626 and only the constant case should remain. That will let this
23627 function complain more accurately. A few special modes are allowed
23628 without complaint for global variables (for instance, global
23629 register values and thread-local values).
c906108c
SS
23630
23631 A location description containing no operations indicates that the
4cecd739 23632 object is optimized out. The return value is 0 for that case.
6b992462
DJ
23633 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23634 callers will only want a very basic result and this can become a
21ae7a4d
JK
23635 complaint.
23636
23637 Note that stack[0] is unused except as a default error return. */
c906108c
SS
23638
23639static CORE_ADDR
e7c27a73 23640decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 23641{
518817b3 23642 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
56eb65bd
SP
23643 size_t i;
23644 size_t size = blk->size;
d521ce57 23645 const gdb_byte *data = blk->data;
21ae7a4d
JK
23646 CORE_ADDR stack[64];
23647 int stacki;
23648 unsigned int bytes_read, unsnd;
23649 gdb_byte op;
c906108c 23650
21ae7a4d
JK
23651 i = 0;
23652 stacki = 0;
23653 stack[stacki] = 0;
23654 stack[++stacki] = 0;
23655
23656 while (i < size)
23657 {
23658 op = data[i++];
23659 switch (op)
23660 {
23661 case DW_OP_lit0:
23662 case DW_OP_lit1:
23663 case DW_OP_lit2:
23664 case DW_OP_lit3:
23665 case DW_OP_lit4:
23666 case DW_OP_lit5:
23667 case DW_OP_lit6:
23668 case DW_OP_lit7:
23669 case DW_OP_lit8:
23670 case DW_OP_lit9:
23671 case DW_OP_lit10:
23672 case DW_OP_lit11:
23673 case DW_OP_lit12:
23674 case DW_OP_lit13:
23675 case DW_OP_lit14:
23676 case DW_OP_lit15:
23677 case DW_OP_lit16:
23678 case DW_OP_lit17:
23679 case DW_OP_lit18:
23680 case DW_OP_lit19:
23681 case DW_OP_lit20:
23682 case DW_OP_lit21:
23683 case DW_OP_lit22:
23684 case DW_OP_lit23:
23685 case DW_OP_lit24:
23686 case DW_OP_lit25:
23687 case DW_OP_lit26:
23688 case DW_OP_lit27:
23689 case DW_OP_lit28:
23690 case DW_OP_lit29:
23691 case DW_OP_lit30:
23692 case DW_OP_lit31:
23693 stack[++stacki] = op - DW_OP_lit0;
23694 break;
f1bea926 23695
21ae7a4d
JK
23696 case DW_OP_reg0:
23697 case DW_OP_reg1:
23698 case DW_OP_reg2:
23699 case DW_OP_reg3:
23700 case DW_OP_reg4:
23701 case DW_OP_reg5:
23702 case DW_OP_reg6:
23703 case DW_OP_reg7:
23704 case DW_OP_reg8:
23705 case DW_OP_reg9:
23706 case DW_OP_reg10:
23707 case DW_OP_reg11:
23708 case DW_OP_reg12:
23709 case DW_OP_reg13:
23710 case DW_OP_reg14:
23711 case DW_OP_reg15:
23712 case DW_OP_reg16:
23713 case DW_OP_reg17:
23714 case DW_OP_reg18:
23715 case DW_OP_reg19:
23716 case DW_OP_reg20:
23717 case DW_OP_reg21:
23718 case DW_OP_reg22:
23719 case DW_OP_reg23:
23720 case DW_OP_reg24:
23721 case DW_OP_reg25:
23722 case DW_OP_reg26:
23723 case DW_OP_reg27:
23724 case DW_OP_reg28:
23725 case DW_OP_reg29:
23726 case DW_OP_reg30:
23727 case DW_OP_reg31:
23728 stack[++stacki] = op - DW_OP_reg0;
23729 if (i < size)
23730 dwarf2_complex_location_expr_complaint ();
23731 break;
c906108c 23732
21ae7a4d
JK
23733 case DW_OP_regx:
23734 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23735 i += bytes_read;
23736 stack[++stacki] = unsnd;
23737 if (i < size)
23738 dwarf2_complex_location_expr_complaint ();
23739 break;
c906108c 23740
21ae7a4d
JK
23741 case DW_OP_addr:
23742 stack[++stacki] = read_address (objfile->obfd, &data[i],
23743 cu, &bytes_read);
23744 i += bytes_read;
23745 break;
d53d4ac5 23746
21ae7a4d
JK
23747 case DW_OP_const1u:
23748 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23749 i += 1;
23750 break;
23751
23752 case DW_OP_const1s:
23753 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23754 i += 1;
23755 break;
23756
23757 case DW_OP_const2u:
23758 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23759 i += 2;
23760 break;
23761
23762 case DW_OP_const2s:
23763 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23764 i += 2;
23765 break;
d53d4ac5 23766
21ae7a4d
JK
23767 case DW_OP_const4u:
23768 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23769 i += 4;
23770 break;
23771
23772 case DW_OP_const4s:
23773 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23774 i += 4;
23775 break;
23776
585861ea
JK
23777 case DW_OP_const8u:
23778 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23779 i += 8;
23780 break;
23781
21ae7a4d
JK
23782 case DW_OP_constu:
23783 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23784 &bytes_read);
23785 i += bytes_read;
23786 break;
23787
23788 case DW_OP_consts:
23789 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23790 i += bytes_read;
23791 break;
23792
23793 case DW_OP_dup:
23794 stack[stacki + 1] = stack[stacki];
23795 stacki++;
23796 break;
23797
23798 case DW_OP_plus:
23799 stack[stacki - 1] += stack[stacki];
23800 stacki--;
23801 break;
23802
23803 case DW_OP_plus_uconst:
23804 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23805 &bytes_read);
23806 i += bytes_read;
23807 break;
23808
23809 case DW_OP_minus:
23810 stack[stacki - 1] -= stack[stacki];
23811 stacki--;
23812 break;
23813
23814 case DW_OP_deref:
23815 /* If we're not the last op, then we definitely can't encode
23816 this using GDB's address_class enum. This is valid for partial
23817 global symbols, although the variable's address will be bogus
23818 in the psymtab. */
23819 if (i < size)
23820 dwarf2_complex_location_expr_complaint ();
23821 break;
23822
23823 case DW_OP_GNU_push_tls_address:
4aa4e28b 23824 case DW_OP_form_tls_address:
21ae7a4d
JK
23825 /* The top of the stack has the offset from the beginning
23826 of the thread control block at which the variable is located. */
23827 /* Nothing should follow this operator, so the top of stack would
23828 be returned. */
23829 /* This is valid for partial global symbols, but the variable's
585861ea
JK
23830 address will be bogus in the psymtab. Make it always at least
23831 non-zero to not look as a variable garbage collected by linker
23832 which have DW_OP_addr 0. */
21ae7a4d
JK
23833 if (i < size)
23834 dwarf2_complex_location_expr_complaint ();
585861ea 23835 stack[stacki]++;
21ae7a4d
JK
23836 break;
23837
23838 case DW_OP_GNU_uninit:
23839 break;
23840
3019eac3 23841 case DW_OP_GNU_addr_index:
49f6c839 23842 case DW_OP_GNU_const_index:
3019eac3
DE
23843 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23844 &bytes_read);
23845 i += bytes_read;
23846 break;
23847
21ae7a4d
JK
23848 default:
23849 {
f39c6ffd 23850 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
23851
23852 if (name)
b98664d3 23853 complaint (_("unsupported stack op: '%s'"),
21ae7a4d
JK
23854 name);
23855 else
b98664d3 23856 complaint (_("unsupported stack op: '%02x'"),
21ae7a4d
JK
23857 op);
23858 }
23859
23860 return (stack[stacki]);
d53d4ac5 23861 }
3c6e0cb3 23862
21ae7a4d
JK
23863 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23864 outside of the allocated space. Also enforce minimum>0. */
23865 if (stacki >= ARRAY_SIZE (stack) - 1)
23866 {
b98664d3 23867 complaint (_("location description stack overflow"));
21ae7a4d
JK
23868 return 0;
23869 }
23870
23871 if (stacki <= 0)
23872 {
b98664d3 23873 complaint (_("location description stack underflow"));
21ae7a4d
JK
23874 return 0;
23875 }
23876 }
23877 return (stack[stacki]);
c906108c
SS
23878}
23879
23880/* memory allocation interface */
23881
c906108c 23882static struct dwarf_block *
7b5a2f43 23883dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c 23884{
8d749320 23885 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
c906108c
SS
23886}
23887
c906108c 23888static struct die_info *
b60c80d6 23889dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
23890{
23891 struct die_info *die;
b60c80d6
DJ
23892 size_t size = sizeof (struct die_info);
23893
23894 if (num_attrs > 1)
23895 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 23896
b60c80d6 23897 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
23898 memset (die, 0, sizeof (struct die_info));
23899 return (die);
23900}
2e276125
JB
23901
23902\f
23903/* Macro support. */
23904
233d95b5
JK
23905/* Return file name relative to the compilation directory of file number I in
23906 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 23907 responsible for freeing it. */
233d95b5 23908
2e276125 23909static char *
233d95b5 23910file_file_name (int file, struct line_header *lh)
2e276125 23911{
6a83a1e6
EZ
23912 /* Is the file number a valid index into the line header's file name
23913 table? Remember that file numbers start with one, not zero. */
fff8551c 23914 if (1 <= file && file <= lh->file_names.size ())
6a83a1e6 23915 {
8c43009f 23916 const file_entry &fe = lh->file_names[file - 1];
6e70227d 23917
8c43009f
PA
23918 if (!IS_ABSOLUTE_PATH (fe.name))
23919 {
23920 const char *dir = fe.include_dir (lh);
23921 if (dir != NULL)
23922 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23923 }
23924 return xstrdup (fe.name);
6a83a1e6 23925 }
2e276125
JB
23926 else
23927 {
6a83a1e6
EZ
23928 /* The compiler produced a bogus file number. We can at least
23929 record the macro definitions made in the file, even if we
23930 won't be able to find the file by name. */
23931 char fake_name[80];
9a619af0 23932
8c042590
PM
23933 xsnprintf (fake_name, sizeof (fake_name),
23934 "<bad macro file number %d>", file);
2e276125 23935
b98664d3 23936 complaint (_("bad file number in macro information (%d)"),
6a83a1e6 23937 file);
2e276125 23938
6a83a1e6 23939 return xstrdup (fake_name);
2e276125
JB
23940 }
23941}
23942
233d95b5
JK
23943/* Return the full name of file number I in *LH's file name table.
23944 Use COMP_DIR as the name of the current directory of the
23945 compilation. The result is allocated using xmalloc; the caller is
23946 responsible for freeing it. */
23947static char *
23948file_full_name (int file, struct line_header *lh, const char *comp_dir)
23949{
23950 /* Is the file number a valid index into the line header's file name
23951 table? Remember that file numbers start with one, not zero. */
fff8551c 23952 if (1 <= file && file <= lh->file_names.size ())
233d95b5
JK
23953 {
23954 char *relative = file_file_name (file, lh);
23955
23956 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23957 return relative;
b36cec19
PA
23958 return reconcat (relative, comp_dir, SLASH_STRING,
23959 relative, (char *) NULL);
233d95b5
JK
23960 }
23961 else
23962 return file_file_name (file, lh);
23963}
23964
2e276125
JB
23965
23966static struct macro_source_file *
804d2729
TT
23967macro_start_file (struct dwarf2_cu *cu,
23968 int file, int line,
2e276125 23969 struct macro_source_file *current_file,
43f3e411 23970 struct line_header *lh)
2e276125 23971{
233d95b5
JK
23972 /* File name relative to the compilation directory of this source file. */
23973 char *file_name = file_file_name (file, lh);
2e276125 23974
2e276125 23975 if (! current_file)
abc9d0dc 23976 {
fc474241
DE
23977 /* Note: We don't create a macro table for this compilation unit
23978 at all until we actually get a filename. */
804d2729 23979 struct macro_table *macro_table = cu->builder->get_macro_table ();
fc474241 23980
abc9d0dc
TT
23981 /* If we have no current file, then this must be the start_file
23982 directive for the compilation unit's main source file. */
fc474241
DE
23983 current_file = macro_set_main (macro_table, file_name);
23984 macro_define_special (macro_table);
abc9d0dc 23985 }
2e276125 23986 else
233d95b5 23987 current_file = macro_include (current_file, line, file_name);
2e276125 23988
233d95b5 23989 xfree (file_name);
6e70227d 23990
2e276125
JB
23991 return current_file;
23992}
23993
2e276125
JB
23994static const char *
23995consume_improper_spaces (const char *p, const char *body)
23996{
23997 if (*p == ' ')
23998 {
b98664d3 23999 complaint (_("macro definition contains spaces "
3e43a32a 24000 "in formal argument list:\n`%s'"),
4d3c2250 24001 body);
2e276125
JB
24002
24003 while (*p == ' ')
24004 p++;
24005 }
24006
24007 return p;
24008}
24009
24010
24011static void
24012parse_macro_definition (struct macro_source_file *file, int line,
24013 const char *body)
24014{
24015 const char *p;
24016
24017 /* The body string takes one of two forms. For object-like macro
24018 definitions, it should be:
24019
24020 <macro name> " " <definition>
24021
24022 For function-like macro definitions, it should be:
24023
24024 <macro name> "() " <definition>
24025 or
24026 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24027
24028 Spaces may appear only where explicitly indicated, and in the
24029 <definition>.
24030
24031 The Dwarf 2 spec says that an object-like macro's name is always
24032 followed by a space, but versions of GCC around March 2002 omit
6e70227d 24033 the space when the macro's definition is the empty string.
2e276125
JB
24034
24035 The Dwarf 2 spec says that there should be no spaces between the
24036 formal arguments in a function-like macro's formal argument list,
24037 but versions of GCC around March 2002 include spaces after the
24038 commas. */
24039
24040
24041 /* Find the extent of the macro name. The macro name is terminated
24042 by either a space or null character (for an object-like macro) or
24043 an opening paren (for a function-like macro). */
24044 for (p = body; *p; p++)
24045 if (*p == ' ' || *p == '(')
24046 break;
24047
24048 if (*p == ' ' || *p == '\0')
24049 {
24050 /* It's an object-like macro. */
24051 int name_len = p - body;
3f8a7804 24052 char *name = savestring (body, name_len);
2e276125
JB
24053 const char *replacement;
24054
24055 if (*p == ' ')
24056 replacement = body + name_len + 1;
24057 else
24058 {
4d3c2250 24059 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
24060 replacement = body + name_len;
24061 }
6e70227d 24062
2e276125
JB
24063 macro_define_object (file, line, name, replacement);
24064
24065 xfree (name);
24066 }
24067 else if (*p == '(')
24068 {
24069 /* It's a function-like macro. */
3f8a7804 24070 char *name = savestring (body, p - body);
2e276125
JB
24071 int argc = 0;
24072 int argv_size = 1;
8d749320 24073 char **argv = XNEWVEC (char *, argv_size);
2e276125
JB
24074
24075 p++;
24076
24077 p = consume_improper_spaces (p, body);
24078
24079 /* Parse the formal argument list. */
24080 while (*p && *p != ')')
24081 {
24082 /* Find the extent of the current argument name. */
24083 const char *arg_start = p;
24084
24085 while (*p && *p != ',' && *p != ')' && *p != ' ')
24086 p++;
24087
24088 if (! *p || p == arg_start)
4d3c2250 24089 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
24090 else
24091 {
24092 /* Make sure argv has room for the new argument. */
24093 if (argc >= argv_size)
24094 {
24095 argv_size *= 2;
224c3ddb 24096 argv = XRESIZEVEC (char *, argv, argv_size);
2e276125
JB
24097 }
24098
3f8a7804 24099 argv[argc++] = savestring (arg_start, p - arg_start);
2e276125
JB
24100 }
24101
24102 p = consume_improper_spaces (p, body);
24103
24104 /* Consume the comma, if present. */
24105 if (*p == ',')
24106 {
24107 p++;
24108
24109 p = consume_improper_spaces (p, body);
24110 }
24111 }
24112
24113 if (*p == ')')
24114 {
24115 p++;
24116
24117 if (*p == ' ')
24118 /* Perfectly formed definition, no complaints. */
24119 macro_define_function (file, line, name,
6e70227d 24120 argc, (const char **) argv,
2e276125
JB
24121 p + 1);
24122 else if (*p == '\0')
24123 {
24124 /* Complain, but do define it. */
4d3c2250 24125 dwarf2_macro_malformed_definition_complaint (body);
2e276125 24126 macro_define_function (file, line, name,
6e70227d 24127 argc, (const char **) argv,
2e276125
JB
24128 p);
24129 }
24130 else
24131 /* Just complain. */
4d3c2250 24132 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
24133 }
24134 else
24135 /* Just complain. */
4d3c2250 24136 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
24137
24138 xfree (name);
24139 {
24140 int i;
24141
24142 for (i = 0; i < argc; i++)
24143 xfree (argv[i]);
24144 }
24145 xfree (argv);
24146 }
24147 else
4d3c2250 24148 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
24149}
24150
cf2c3c16
TT
24151/* Skip some bytes from BYTES according to the form given in FORM.
24152 Returns the new pointer. */
2e276125 24153
d521ce57
TT
24154static const gdb_byte *
24155skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
24156 enum dwarf_form form,
24157 unsigned int offset_size,
24158 struct dwarf2_section_info *section)
2e276125 24159{
cf2c3c16 24160 unsigned int bytes_read;
2e276125 24161
cf2c3c16 24162 switch (form)
2e276125 24163 {
cf2c3c16
TT
24164 case DW_FORM_data1:
24165 case DW_FORM_flag:
24166 ++bytes;
24167 break;
24168
24169 case DW_FORM_data2:
24170 bytes += 2;
24171 break;
24172
24173 case DW_FORM_data4:
24174 bytes += 4;
24175 break;
24176
24177 case DW_FORM_data8:
24178 bytes += 8;
24179 break;
24180
0224619f
JK
24181 case DW_FORM_data16:
24182 bytes += 16;
24183 break;
24184
cf2c3c16
TT
24185 case DW_FORM_string:
24186 read_direct_string (abfd, bytes, &bytes_read);
24187 bytes += bytes_read;
24188 break;
24189
24190 case DW_FORM_sec_offset:
24191 case DW_FORM_strp:
36586728 24192 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
24193 bytes += offset_size;
24194 break;
24195
24196 case DW_FORM_block:
24197 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24198 bytes += bytes_read;
24199 break;
24200
24201 case DW_FORM_block1:
24202 bytes += 1 + read_1_byte (abfd, bytes);
24203 break;
24204 case DW_FORM_block2:
24205 bytes += 2 + read_2_bytes (abfd, bytes);
24206 break;
24207 case DW_FORM_block4:
24208 bytes += 4 + read_4_bytes (abfd, bytes);
24209 break;
24210
24211 case DW_FORM_sdata:
24212 case DW_FORM_udata:
3019eac3
DE
24213 case DW_FORM_GNU_addr_index:
24214 case DW_FORM_GNU_str_index:
d521ce57 24215 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
24216 if (bytes == NULL)
24217 {
24218 dwarf2_section_buffer_overflow_complaint (section);
24219 return NULL;
24220 }
cf2c3c16
TT
24221 break;
24222
663c44ac
JK
24223 case DW_FORM_implicit_const:
24224 break;
24225
cf2c3c16
TT
24226 default:
24227 {
b98664d3 24228 complaint (_("invalid form 0x%x in `%s'"),
a32a8923 24229 form, get_section_name (section));
cf2c3c16
TT
24230 return NULL;
24231 }
2e276125
JB
24232 }
24233
cf2c3c16
TT
24234 return bytes;
24235}
757a13d0 24236
cf2c3c16
TT
24237/* A helper for dwarf_decode_macros that handles skipping an unknown
24238 opcode. Returns an updated pointer to the macro data buffer; or,
24239 on error, issues a complaint and returns NULL. */
757a13d0 24240
d521ce57 24241static const gdb_byte *
cf2c3c16 24242skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
24243 const gdb_byte **opcode_definitions,
24244 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
24245 bfd *abfd,
24246 unsigned int offset_size,
24247 struct dwarf2_section_info *section)
24248{
24249 unsigned int bytes_read, i;
24250 unsigned long arg;
d521ce57 24251 const gdb_byte *defn;
2e276125 24252
cf2c3c16 24253 if (opcode_definitions[opcode] == NULL)
2e276125 24254 {
b98664d3 24255 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
cf2c3c16
TT
24256 opcode);
24257 return NULL;
24258 }
2e276125 24259
cf2c3c16
TT
24260 defn = opcode_definitions[opcode];
24261 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24262 defn += bytes_read;
2e276125 24263
cf2c3c16
TT
24264 for (i = 0; i < arg; ++i)
24265 {
aead7601
SM
24266 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24267 (enum dwarf_form) defn[i], offset_size,
f664829e 24268 section);
cf2c3c16
TT
24269 if (mac_ptr == NULL)
24270 {
24271 /* skip_form_bytes already issued the complaint. */
24272 return NULL;
24273 }
24274 }
757a13d0 24275
cf2c3c16
TT
24276 return mac_ptr;
24277}
757a13d0 24278
cf2c3c16
TT
24279/* A helper function which parses the header of a macro section.
24280 If the macro section is the extended (for now called "GNU") type,
24281 then this updates *OFFSET_SIZE. Returns a pointer to just after
24282 the header, or issues a complaint and returns NULL on error. */
757a13d0 24283
d521ce57
TT
24284static const gdb_byte *
24285dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 24286 bfd *abfd,
d521ce57 24287 const gdb_byte *mac_ptr,
cf2c3c16
TT
24288 unsigned int *offset_size,
24289 int section_is_gnu)
24290{
24291 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 24292
cf2c3c16
TT
24293 if (section_is_gnu)
24294 {
24295 unsigned int version, flags;
757a13d0 24296
cf2c3c16 24297 version = read_2_bytes (abfd, mac_ptr);
0af92d60 24298 if (version != 4 && version != 5)
cf2c3c16 24299 {
b98664d3 24300 complaint (_("unrecognized version `%d' in .debug_macro section"),
cf2c3c16
TT
24301 version);
24302 return NULL;
24303 }
24304 mac_ptr += 2;
757a13d0 24305
cf2c3c16
TT
24306 flags = read_1_byte (abfd, mac_ptr);
24307 ++mac_ptr;
24308 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 24309
cf2c3c16
TT
24310 if ((flags & 2) != 0)
24311 /* We don't need the line table offset. */
24312 mac_ptr += *offset_size;
757a13d0 24313
cf2c3c16
TT
24314 /* Vendor opcode descriptions. */
24315 if ((flags & 4) != 0)
24316 {
24317 unsigned int i, count;
757a13d0 24318
cf2c3c16
TT
24319 count = read_1_byte (abfd, mac_ptr);
24320 ++mac_ptr;
24321 for (i = 0; i < count; ++i)
24322 {
24323 unsigned int opcode, bytes_read;
24324 unsigned long arg;
24325
24326 opcode = read_1_byte (abfd, mac_ptr);
24327 ++mac_ptr;
24328 opcode_definitions[opcode] = mac_ptr;
24329 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24330 mac_ptr += bytes_read;
24331 mac_ptr += arg;
24332 }
757a13d0 24333 }
cf2c3c16 24334 }
757a13d0 24335
cf2c3c16
TT
24336 return mac_ptr;
24337}
757a13d0 24338
cf2c3c16 24339/* A helper for dwarf_decode_macros that handles the GNU extensions,
0af92d60 24340 including DW_MACRO_import. */
cf2c3c16
TT
24341
24342static void
804d2729 24343dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
ed2dc618 24344 bfd *abfd,
d521ce57 24345 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 24346 struct macro_source_file *current_file,
43f3e411 24347 struct line_header *lh,
cf2c3c16 24348 struct dwarf2_section_info *section,
36586728 24349 int section_is_gnu, int section_is_dwz,
cf2c3c16 24350 unsigned int offset_size,
8fc3fc34 24351 htab_t include_hash)
cf2c3c16 24352{
804d2729
TT
24353 struct dwarf2_per_objfile *dwarf2_per_objfile
24354 = cu->per_cu->dwarf2_per_objfile;
4d663531 24355 struct objfile *objfile = dwarf2_per_objfile->objfile;
cf2c3c16
TT
24356 enum dwarf_macro_record_type macinfo_type;
24357 int at_commandline;
d521ce57 24358 const gdb_byte *opcode_definitions[256];
757a13d0 24359
cf2c3c16
TT
24360 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24361 &offset_size, section_is_gnu);
24362 if (mac_ptr == NULL)
24363 {
24364 /* We already issued a complaint. */
24365 return;
24366 }
757a13d0
JK
24367
24368 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24369 GDB is still reading the definitions from command line. First
24370 DW_MACINFO_start_file will need to be ignored as it was already executed
24371 to create CURRENT_FILE for the main source holding also the command line
24372 definitions. On first met DW_MACINFO_start_file this flag is reset to
24373 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24374
24375 at_commandline = 1;
24376
24377 do
24378 {
24379 /* Do we at least have room for a macinfo type byte? */
24380 if (mac_ptr >= mac_end)
24381 {
f664829e 24382 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
24383 break;
24384 }
24385
aead7601 24386 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
757a13d0
JK
24387 mac_ptr++;
24388
cf2c3c16
TT
24389 /* Note that we rely on the fact that the corresponding GNU and
24390 DWARF constants are the same. */
132448f8
SM
24391 DIAGNOSTIC_PUSH
24392 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
757a13d0
JK
24393 switch (macinfo_type)
24394 {
24395 /* A zero macinfo type indicates the end of the macro
24396 information. */
24397 case 0:
24398 break;
2e276125 24399
0af92d60
JK
24400 case DW_MACRO_define:
24401 case DW_MACRO_undef:
24402 case DW_MACRO_define_strp:
24403 case DW_MACRO_undef_strp:
24404 case DW_MACRO_define_sup:
24405 case DW_MACRO_undef_sup:
2e276125 24406 {
891d2f0b 24407 unsigned int bytes_read;
2e276125 24408 int line;
d521ce57 24409 const char *body;
cf2c3c16 24410 int is_define;
2e276125 24411
cf2c3c16
TT
24412 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24413 mac_ptr += bytes_read;
24414
0af92d60
JK
24415 if (macinfo_type == DW_MACRO_define
24416 || macinfo_type == DW_MACRO_undef)
cf2c3c16
TT
24417 {
24418 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24419 mac_ptr += bytes_read;
24420 }
24421 else
24422 {
24423 LONGEST str_offset;
24424
24425 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24426 mac_ptr += offset_size;
2e276125 24427
0af92d60
JK
24428 if (macinfo_type == DW_MACRO_define_sup
24429 || macinfo_type == DW_MACRO_undef_sup
f7a35f02 24430 || section_is_dwz)
36586728 24431 {
ed2dc618
SM
24432 struct dwz_file *dwz
24433 = dwarf2_get_dwz_file (dwarf2_per_objfile);
36586728 24434
ed2dc618
SM
24435 body = read_indirect_string_from_dwz (objfile,
24436 dwz, str_offset);
36586728
TT
24437 }
24438 else
ed2dc618
SM
24439 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24440 abfd, str_offset);
cf2c3c16
TT
24441 }
24442
0af92d60
JK
24443 is_define = (macinfo_type == DW_MACRO_define
24444 || macinfo_type == DW_MACRO_define_strp
24445 || macinfo_type == DW_MACRO_define_sup);
2e276125 24446 if (! current_file)
757a13d0
JK
24447 {
24448 /* DWARF violation as no main source is present. */
b98664d3 24449 complaint (_("debug info with no main source gives macro %s "
757a13d0 24450 "on line %d: %s"),
cf2c3c16
TT
24451 is_define ? _("definition") : _("undefinition"),
24452 line, body);
757a13d0
JK
24453 break;
24454 }
3e43a32a
MS
24455 if ((line == 0 && !at_commandline)
24456 || (line != 0 && at_commandline))
b98664d3 24457 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
757a13d0 24458 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 24459 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
24460 line == 0 ? _("zero") : _("non-zero"), line, body);
24461
cf2c3c16 24462 if (is_define)
757a13d0 24463 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
24464 else
24465 {
0af92d60
JK
24466 gdb_assert (macinfo_type == DW_MACRO_undef
24467 || macinfo_type == DW_MACRO_undef_strp
24468 || macinfo_type == DW_MACRO_undef_sup);
cf2c3c16
TT
24469 macro_undef (current_file, line, body);
24470 }
2e276125
JB
24471 }
24472 break;
24473
0af92d60 24474 case DW_MACRO_start_file:
2e276125 24475 {
891d2f0b 24476 unsigned int bytes_read;
2e276125
JB
24477 int line, file;
24478
24479 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24480 mac_ptr += bytes_read;
24481 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24482 mac_ptr += bytes_read;
24483
3e43a32a
MS
24484 if ((line == 0 && !at_commandline)
24485 || (line != 0 && at_commandline))
b98664d3 24486 complaint (_("debug info gives source %d included "
757a13d0
JK
24487 "from %s at %s line %d"),
24488 file, at_commandline ? _("command-line") : _("file"),
24489 line == 0 ? _("zero") : _("non-zero"), line);
24490
24491 if (at_commandline)
24492 {
0af92d60 24493 /* This DW_MACRO_start_file was executed in the
cf2c3c16 24494 pass one. */
757a13d0
JK
24495 at_commandline = 0;
24496 }
24497 else
804d2729
TT
24498 current_file = macro_start_file (cu, file, line, current_file,
24499 lh);
2e276125
JB
24500 }
24501 break;
24502
0af92d60 24503 case DW_MACRO_end_file:
2e276125 24504 if (! current_file)
b98664d3 24505 complaint (_("macro debug info has an unmatched "
3e43a32a 24506 "`close_file' directive"));
2e276125
JB
24507 else
24508 {
24509 current_file = current_file->included_by;
24510 if (! current_file)
24511 {
cf2c3c16 24512 enum dwarf_macro_record_type next_type;
2e276125
JB
24513
24514 /* GCC circa March 2002 doesn't produce the zero
24515 type byte marking the end of the compilation
24516 unit. Complain if it's not there, but exit no
24517 matter what. */
24518
24519 /* Do we at least have room for a macinfo type byte? */
24520 if (mac_ptr >= mac_end)
24521 {
f664829e 24522 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
24523 return;
24524 }
24525
24526 /* We don't increment mac_ptr here, so this is just
24527 a look-ahead. */
aead7601
SM
24528 next_type
24529 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24530 mac_ptr);
2e276125 24531 if (next_type != 0)
b98664d3 24532 complaint (_("no terminating 0-type entry for "
3e43a32a 24533 "macros in `.debug_macinfo' section"));
2e276125
JB
24534
24535 return;
24536 }
24537 }
24538 break;
24539
0af92d60
JK
24540 case DW_MACRO_import:
24541 case DW_MACRO_import_sup:
cf2c3c16
TT
24542 {
24543 LONGEST offset;
8fc3fc34 24544 void **slot;
a036ba48
TT
24545 bfd *include_bfd = abfd;
24546 struct dwarf2_section_info *include_section = section;
d521ce57 24547 const gdb_byte *include_mac_end = mac_end;
a036ba48 24548 int is_dwz = section_is_dwz;
d521ce57 24549 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
24550
24551 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24552 mac_ptr += offset_size;
24553
0af92d60 24554 if (macinfo_type == DW_MACRO_import_sup)
a036ba48 24555 {
ed2dc618 24556 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
a036ba48 24557
4d663531 24558 dwarf2_read_section (objfile, &dwz->macro);
a036ba48 24559
a036ba48 24560 include_section = &dwz->macro;
a32a8923 24561 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
24562 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24563 is_dwz = 1;
24564 }
24565
24566 new_mac_ptr = include_section->buffer + offset;
24567 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24568
8fc3fc34
TT
24569 if (*slot != NULL)
24570 {
24571 /* This has actually happened; see
24572 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
b98664d3 24573 complaint (_("recursive DW_MACRO_import in "
8fc3fc34
TT
24574 ".debug_macro section"));
24575 }
24576 else
24577 {
d521ce57 24578 *slot = (void *) new_mac_ptr;
36586728 24579
804d2729 24580 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
43f3e411 24581 include_mac_end, current_file, lh,
36586728 24582 section, section_is_gnu, is_dwz,
4d663531 24583 offset_size, include_hash);
8fc3fc34 24584
d521ce57 24585 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 24586 }
cf2c3c16
TT
24587 }
24588 break;
24589
2e276125 24590 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
24591 if (!section_is_gnu)
24592 {
24593 unsigned int bytes_read;
2e276125 24594
ac298888
TT
24595 /* This reads the constant, but since we don't recognize
24596 any vendor extensions, we ignore it. */
24597 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
cf2c3c16
TT
24598 mac_ptr += bytes_read;
24599 read_direct_string (abfd, mac_ptr, &bytes_read);
24600 mac_ptr += bytes_read;
2e276125 24601
cf2c3c16
TT
24602 /* We don't recognize any vendor extensions. */
24603 break;
24604 }
24605 /* FALLTHROUGH */
24606
24607 default:
24608 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 24609 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
24610 section);
24611 if (mac_ptr == NULL)
24612 return;
24613 break;
2e276125 24614 }
132448f8 24615 DIAGNOSTIC_POP
757a13d0 24616 } while (macinfo_type != 0);
2e276125 24617}
8e19ed76 24618
cf2c3c16 24619static void
09262596 24620dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
43f3e411 24621 int section_is_gnu)
cf2c3c16 24622{
518817b3
SM
24623 struct dwarf2_per_objfile *dwarf2_per_objfile
24624 = cu->per_cu->dwarf2_per_objfile;
bb5ed363 24625 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
24626 struct line_header *lh = cu->line_header;
24627 bfd *abfd;
d521ce57 24628 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
24629 struct macro_source_file *current_file = 0;
24630 enum dwarf_macro_record_type macinfo_type;
24631 unsigned int offset_size = cu->header.offset_size;
d521ce57 24632 const gdb_byte *opcode_definitions[256];
8fc3fc34 24633 void **slot;
09262596
DE
24634 struct dwarf2_section_info *section;
24635 const char *section_name;
24636
24637 if (cu->dwo_unit != NULL)
24638 {
24639 if (section_is_gnu)
24640 {
24641 section = &cu->dwo_unit->dwo_file->sections.macro;
24642 section_name = ".debug_macro.dwo";
24643 }
24644 else
24645 {
24646 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24647 section_name = ".debug_macinfo.dwo";
24648 }
24649 }
24650 else
24651 {
24652 if (section_is_gnu)
24653 {
24654 section = &dwarf2_per_objfile->macro;
24655 section_name = ".debug_macro";
24656 }
24657 else
24658 {
24659 section = &dwarf2_per_objfile->macinfo;
24660 section_name = ".debug_macinfo";
24661 }
24662 }
cf2c3c16 24663
bb5ed363 24664 dwarf2_read_section (objfile, section);
cf2c3c16
TT
24665 if (section->buffer == NULL)
24666 {
b98664d3 24667 complaint (_("missing %s section"), section_name);
cf2c3c16
TT
24668 return;
24669 }
a32a8923 24670 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
24671
24672 /* First pass: Find the name of the base filename.
24673 This filename is needed in order to process all macros whose definition
24674 (or undefinition) comes from the command line. These macros are defined
24675 before the first DW_MACINFO_start_file entry, and yet still need to be
24676 associated to the base file.
24677
24678 To determine the base file name, we scan the macro definitions until we
24679 reach the first DW_MACINFO_start_file entry. We then initialize
24680 CURRENT_FILE accordingly so that any macro definition found before the
24681 first DW_MACINFO_start_file can still be associated to the base file. */
24682
24683 mac_ptr = section->buffer + offset;
24684 mac_end = section->buffer + section->size;
24685
24686 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24687 &offset_size, section_is_gnu);
24688 if (mac_ptr == NULL)
24689 {
24690 /* We already issued a complaint. */
24691 return;
24692 }
24693
24694 do
24695 {
24696 /* Do we at least have room for a macinfo type byte? */
24697 if (mac_ptr >= mac_end)
24698 {
24699 /* Complaint is printed during the second pass as GDB will probably
24700 stop the first pass earlier upon finding
24701 DW_MACINFO_start_file. */
24702 break;
24703 }
24704
aead7601 24705 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
cf2c3c16
TT
24706 mac_ptr++;
24707
24708 /* Note that we rely on the fact that the corresponding GNU and
24709 DWARF constants are the same. */
132448f8
SM
24710 DIAGNOSTIC_PUSH
24711 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
cf2c3c16
TT
24712 switch (macinfo_type)
24713 {
24714 /* A zero macinfo type indicates the end of the macro
24715 information. */
24716 case 0:
24717 break;
24718
0af92d60
JK
24719 case DW_MACRO_define:
24720 case DW_MACRO_undef:
cf2c3c16
TT
24721 /* Only skip the data by MAC_PTR. */
24722 {
24723 unsigned int bytes_read;
24724
24725 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24726 mac_ptr += bytes_read;
24727 read_direct_string (abfd, mac_ptr, &bytes_read);
24728 mac_ptr += bytes_read;
24729 }
24730 break;
24731
0af92d60 24732 case DW_MACRO_start_file:
cf2c3c16
TT
24733 {
24734 unsigned int bytes_read;
24735 int line, file;
24736
24737 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24738 mac_ptr += bytes_read;
24739 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24740 mac_ptr += bytes_read;
24741
804d2729 24742 current_file = macro_start_file (cu, file, line, current_file, lh);
cf2c3c16
TT
24743 }
24744 break;
24745
0af92d60 24746 case DW_MACRO_end_file:
cf2c3c16
TT
24747 /* No data to skip by MAC_PTR. */
24748 break;
24749
0af92d60
JK
24750 case DW_MACRO_define_strp:
24751 case DW_MACRO_undef_strp:
24752 case DW_MACRO_define_sup:
24753 case DW_MACRO_undef_sup:
cf2c3c16
TT
24754 {
24755 unsigned int bytes_read;
24756
24757 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24758 mac_ptr += bytes_read;
24759 mac_ptr += offset_size;
24760 }
24761 break;
24762
0af92d60
JK
24763 case DW_MACRO_import:
24764 case DW_MACRO_import_sup:
cf2c3c16 24765 /* Note that, according to the spec, a transparent include
0af92d60 24766 chain cannot call DW_MACRO_start_file. So, we can just
cf2c3c16
TT
24767 skip this opcode. */
24768 mac_ptr += offset_size;
24769 break;
24770
24771 case DW_MACINFO_vendor_ext:
24772 /* Only skip the data by MAC_PTR. */
24773 if (!section_is_gnu)
24774 {
24775 unsigned int bytes_read;
24776
24777 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24778 mac_ptr += bytes_read;
24779 read_direct_string (abfd, mac_ptr, &bytes_read);
24780 mac_ptr += bytes_read;
24781 }
24782 /* FALLTHROUGH */
24783
24784 default:
24785 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 24786 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
24787 section);
24788 if (mac_ptr == NULL)
24789 return;
24790 break;
24791 }
132448f8 24792 DIAGNOSTIC_POP
cf2c3c16
TT
24793 } while (macinfo_type != 0 && current_file == NULL);
24794
24795 /* Second pass: Process all entries.
24796
24797 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24798 command-line macro definitions/undefinitions. This flag is unset when we
24799 reach the first DW_MACINFO_start_file entry. */
24800
fc4007c9
TT
24801 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24802 htab_eq_pointer,
24803 NULL, xcalloc, xfree));
8fc3fc34 24804 mac_ptr = section->buffer + offset;
fc4007c9 24805 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
d521ce57 24806 *slot = (void *) mac_ptr;
804d2729 24807 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
43f3e411 24808 current_file, lh, section,
fc4007c9
TT
24809 section_is_gnu, 0, offset_size,
24810 include_hash.get ());
cf2c3c16
TT
24811}
24812
8e19ed76 24813/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 24814 if so return true else false. */
380bca97 24815
8e19ed76 24816static int
6e5a29e1 24817attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
24818{
24819 return (attr == NULL ? 0 :
24820 attr->form == DW_FORM_block1
24821 || attr->form == DW_FORM_block2
24822 || attr->form == DW_FORM_block4
2dc7f7b3
TT
24823 || attr->form == DW_FORM_block
24824 || attr->form == DW_FORM_exprloc);
8e19ed76 24825}
4c2df51b 24826
c6a0999f
JB
24827/* Return non-zero if ATTR's value is a section offset --- classes
24828 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24829 You may use DW_UNSND (attr) to retrieve such offsets.
24830
24831 Section 7.5.4, "Attribute Encodings", explains that no attribute
24832 may have a value that belongs to more than one of these classes; it
24833 would be ambiguous if we did, because we use the same forms for all
24834 of them. */
380bca97 24835
3690dd37 24836static int
6e5a29e1 24837attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
24838{
24839 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
24840 || attr->form == DW_FORM_data8
24841 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
24842}
24843
3690dd37
JB
24844/* Return non-zero if ATTR's value falls in the 'constant' class, or
24845 zero otherwise. When this function returns true, you can apply
24846 dwarf2_get_attr_constant_value to it.
24847
24848 However, note that for some attributes you must check
24849 attr_form_is_section_offset before using this test. DW_FORM_data4
24850 and DW_FORM_data8 are members of both the constant class, and of
24851 the classes that contain offsets into other debug sections
24852 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24853 that, if an attribute's can be either a constant or one of the
24854 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
0224619f
JK
24855 taken as section offsets, not constants.
24856
24857 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24858 cannot handle that. */
380bca97 24859
3690dd37 24860static int
6e5a29e1 24861attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
24862{
24863 switch (attr->form)
24864 {
24865 case DW_FORM_sdata:
24866 case DW_FORM_udata:
24867 case DW_FORM_data1:
24868 case DW_FORM_data2:
24869 case DW_FORM_data4:
24870 case DW_FORM_data8:
663c44ac 24871 case DW_FORM_implicit_const:
3690dd37
JB
24872 return 1;
24873 default:
24874 return 0;
24875 }
24876}
24877
7771576e
SA
24878
24879/* DW_ADDR is always stored already as sect_offset; despite for the forms
24880 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24881
24882static int
6e5a29e1 24883attr_form_is_ref (const struct attribute *attr)
7771576e
SA
24884{
24885 switch (attr->form)
24886 {
24887 case DW_FORM_ref_addr:
24888 case DW_FORM_ref1:
24889 case DW_FORM_ref2:
24890 case DW_FORM_ref4:
24891 case DW_FORM_ref8:
24892 case DW_FORM_ref_udata:
24893 case DW_FORM_GNU_ref_alt:
24894 return 1;
24895 default:
24896 return 0;
24897 }
24898}
24899
3019eac3
DE
24900/* Return the .debug_loc section to use for CU.
24901 For DWO files use .debug_loc.dwo. */
24902
24903static struct dwarf2_section_info *
24904cu_debug_loc_section (struct dwarf2_cu *cu)
24905{
518817b3
SM
24906 struct dwarf2_per_objfile *dwarf2_per_objfile
24907 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 24908
3019eac3 24909 if (cu->dwo_unit)
43988095
JK
24910 {
24911 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24912
24913 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24914 }
24915 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24916 : &dwarf2_per_objfile->loc);
3019eac3
DE
24917}
24918
8cf6f0b1
TT
24919/* A helper function that fills in a dwarf2_loclist_baton. */
24920
24921static void
24922fill_in_loclist_baton (struct dwarf2_cu *cu,
24923 struct dwarf2_loclist_baton *baton,
ff39bb5e 24924 const struct attribute *attr)
8cf6f0b1 24925{
518817b3
SM
24926 struct dwarf2_per_objfile *dwarf2_per_objfile
24927 = cu->per_cu->dwarf2_per_objfile;
3019eac3
DE
24928 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24929
24930 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
24931
24932 baton->per_cu = cu->per_cu;
24933 gdb_assert (baton->per_cu);
24934 /* We don't know how long the location list is, but make sure we
24935 don't run off the edge of the section. */
3019eac3
DE
24936 baton->size = section->size - DW_UNSND (attr);
24937 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 24938 baton->base_address = cu->base_address;
f664829e 24939 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
24940}
24941
4c2df51b 24942static void
ff39bb5e 24943dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 24944 struct dwarf2_cu *cu, int is_block)
4c2df51b 24945{
518817b3
SM
24946 struct dwarf2_per_objfile *dwarf2_per_objfile
24947 = cu->per_cu->dwarf2_per_objfile;
bb5ed363 24948 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 24949 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 24950
3690dd37 24951 if (attr_form_is_section_offset (attr)
3019eac3 24952 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
24953 the section. If so, fall through to the complaint in the
24954 other branch. */
3019eac3 24955 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 24956 {
0d53c4c4 24957 struct dwarf2_loclist_baton *baton;
4c2df51b 24958
8d749320 24959 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
4c2df51b 24960
8cf6f0b1 24961 fill_in_loclist_baton (cu, baton, attr);
be391dca 24962
d00adf39 24963 if (cu->base_known == 0)
b98664d3 24964 complaint (_("Location list used without "
3e43a32a 24965 "specifying the CU base address."));
4c2df51b 24966
f1e6e072
TT
24967 SYMBOL_ACLASS_INDEX (sym) = (is_block
24968 ? dwarf2_loclist_block_index
24969 : dwarf2_loclist_index);
0d53c4c4
DJ
24970 SYMBOL_LOCATION_BATON (sym) = baton;
24971 }
24972 else
24973 {
24974 struct dwarf2_locexpr_baton *baton;
24975
8d749320 24976 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
ae0d2f24
UW
24977 baton->per_cu = cu->per_cu;
24978 gdb_assert (baton->per_cu);
0d53c4c4
DJ
24979
24980 if (attr_form_is_block (attr))
24981 {
24982 /* Note that we're just copying the block's data pointer
24983 here, not the actual data. We're still pointing into the
6502dd73
DJ
24984 info_buffer for SYM's objfile; right now we never release
24985 that buffer, but when we do clean up properly this may
24986 need to change. */
0d53c4c4
DJ
24987 baton->size = DW_BLOCK (attr)->size;
24988 baton->data = DW_BLOCK (attr)->data;
24989 }
24990 else
24991 {
24992 dwarf2_invalid_attrib_class_complaint ("location description",
24993 SYMBOL_NATURAL_NAME (sym));
24994 baton->size = 0;
0d53c4c4 24995 }
6e70227d 24996
f1e6e072
TT
24997 SYMBOL_ACLASS_INDEX (sym) = (is_block
24998 ? dwarf2_locexpr_block_index
24999 : dwarf2_locexpr_index);
0d53c4c4
DJ
25000 SYMBOL_LOCATION_BATON (sym) = baton;
25001 }
4c2df51b 25002}
6502dd73 25003
9aa1f1e3
TT
25004/* Return the OBJFILE associated with the compilation unit CU. If CU
25005 came from a separate debuginfo file, then the master objfile is
25006 returned. */
ae0d2f24
UW
25007
25008struct objfile *
25009dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25010{
e3b94546 25011 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
ae0d2f24
UW
25012
25013 /* Return the master objfile, so that we can report and look up the
25014 correct file containing this variable. */
25015 if (objfile->separate_debug_objfile_backlink)
25016 objfile = objfile->separate_debug_objfile_backlink;
25017
25018 return objfile;
25019}
25020
96408a79
SA
25021/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25022 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25023 CU_HEADERP first. */
25024
25025static const struct comp_unit_head *
25026per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25027 struct dwarf2_per_cu_data *per_cu)
25028{
d521ce57 25029 const gdb_byte *info_ptr;
96408a79
SA
25030
25031 if (per_cu->cu)
25032 return &per_cu->cu->header;
25033
9c541725 25034 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
96408a79
SA
25035
25036 memset (cu_headerp, 0, sizeof (*cu_headerp));
43988095
JK
25037 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25038 rcuh_kind::COMPILE);
96408a79
SA
25039
25040 return cu_headerp;
25041}
25042
ae0d2f24
UW
25043/* Return the address size given in the compilation unit header for CU. */
25044
98714339 25045int
ae0d2f24
UW
25046dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25047{
96408a79
SA
25048 struct comp_unit_head cu_header_local;
25049 const struct comp_unit_head *cu_headerp;
c471e790 25050
96408a79
SA
25051 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25052
25053 return cu_headerp->addr_size;
ae0d2f24
UW
25054}
25055
9eae7c52
TT
25056/* Return the offset size given in the compilation unit header for CU. */
25057
25058int
25059dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25060{
96408a79
SA
25061 struct comp_unit_head cu_header_local;
25062 const struct comp_unit_head *cu_headerp;
9c6c53f7 25063
96408a79
SA
25064 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25065
25066 return cu_headerp->offset_size;
25067}
25068
25069/* See its dwarf2loc.h declaration. */
25070
25071int
25072dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25073{
25074 struct comp_unit_head cu_header_local;
25075 const struct comp_unit_head *cu_headerp;
25076
25077 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25078
25079 if (cu_headerp->version == 2)
25080 return cu_headerp->addr_size;
25081 else
25082 return cu_headerp->offset_size;
181cebd4
JK
25083}
25084
9aa1f1e3
TT
25085/* Return the text offset of the CU. The returned offset comes from
25086 this CU's objfile. If this objfile came from a separate debuginfo
25087 file, then the offset may be different from the corresponding
25088 offset in the parent objfile. */
25089
25090CORE_ADDR
25091dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25092{
e3b94546 25093 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
9aa1f1e3
TT
25094
25095 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25096}
25097
43988095
JK
25098/* Return DWARF version number of PER_CU. */
25099
25100short
25101dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25102{
25103 return per_cu->dwarf_version;
25104}
25105
348e048f
DE
25106/* Locate the .debug_info compilation unit from CU's objfile which contains
25107 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
25108
25109static struct dwarf2_per_cu_data *
9c541725 25110dwarf2_find_containing_comp_unit (sect_offset sect_off,
36586728 25111 unsigned int offset_in_dwz,
ed2dc618 25112 struct dwarf2_per_objfile *dwarf2_per_objfile)
ae038cb0
DJ
25113{
25114 struct dwarf2_per_cu_data *this_cu;
25115 int low, high;
36586728 25116 const sect_offset *cu_off;
ae038cb0 25117
ae038cb0 25118 low = 0;
b76e467d 25119 high = dwarf2_per_objfile->all_comp_units.size () - 1;
ae038cb0
DJ
25120 while (high > low)
25121 {
36586728 25122 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 25123 int mid = low + (high - low) / 2;
9a619af0 25124
36586728 25125 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
9c541725 25126 cu_off = &mid_cu->sect_off;
36586728 25127 if (mid_cu->is_dwz > offset_in_dwz
9c541725 25128 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
ae038cb0
DJ
25129 high = mid;
25130 else
25131 low = mid + 1;
25132 }
25133 gdb_assert (low == high);
36586728 25134 this_cu = dwarf2_per_objfile->all_comp_units[low];
9c541725
PA
25135 cu_off = &this_cu->sect_off;
25136 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
ae038cb0 25137 {
36586728 25138 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8 25139 error (_("Dwarf Error: could not find partial DIE containing "
9d8780f0
SM
25140 "offset %s [in module %s]"),
25141 sect_offset_str (sect_off),
ed2dc618 25142 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
10b3939b 25143
9c541725
PA
25144 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25145 <= sect_off);
ae038cb0
DJ
25146 return dwarf2_per_objfile->all_comp_units[low-1];
25147 }
25148 else
25149 {
25150 this_cu = dwarf2_per_objfile->all_comp_units[low];
b76e467d 25151 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
9c541725 25152 && sect_off >= this_cu->sect_off + this_cu->length)
9d8780f0 25153 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
9c541725 25154 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
ae038cb0
DJ
25155 return this_cu;
25156 }
25157}
25158
23745b47 25159/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 25160
fcd3b13d
SM
25161dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25162 : per_cu (per_cu_),
25163 mark (0),
25164 has_loclist (0),
25165 checked_producer (0),
25166 producer_is_gxx_lt_4_6 (0),
25167 producer_is_gcc_lt_4_3 (0),
eb77c9df 25168 producer_is_icc (false),
fcd3b13d 25169 producer_is_icc_lt_14 (0),
c258c396 25170 producer_is_codewarrior (false),
fcd3b13d 25171 processing_has_namespace_info (0)
93311388 25172{
fcd3b13d
SM
25173 per_cu->cu = this;
25174}
25175
25176/* Destroy a dwarf2_cu. */
25177
25178dwarf2_cu::~dwarf2_cu ()
25179{
25180 per_cu->cu = NULL;
9816fde3
JK
25181}
25182
25183/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25184
25185static void
95554aad
TT
25186prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25187 enum language pretend_language)
9816fde3
JK
25188{
25189 struct attribute *attr;
25190
25191 /* Set the language we're debugging. */
25192 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25193 if (attr)
25194 set_cu_language (DW_UNSND (attr), cu);
25195 else
9cded63f 25196 {
95554aad 25197 cu->language = pretend_language;
9cded63f
TT
25198 cu->language_defn = language_def (cu->language);
25199 }
dee91e82 25200
7d45c7c3 25201 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
93311388
DE
25202}
25203
ae038cb0
DJ
25204/* Increase the age counter on each cached compilation unit, and free
25205 any that are too old. */
25206
25207static void
ed2dc618 25208age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
ae038cb0
DJ
25209{
25210 struct dwarf2_per_cu_data *per_cu, **last_chain;
25211
25212 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25213 per_cu = dwarf2_per_objfile->read_in_chain;
25214 while (per_cu != NULL)
25215 {
25216 per_cu->cu->last_used ++;
b4f54984 25217 if (per_cu->cu->last_used <= dwarf_max_cache_age)
ae038cb0
DJ
25218 dwarf2_mark (per_cu->cu);
25219 per_cu = per_cu->cu->read_in_chain;
25220 }
25221
25222 per_cu = dwarf2_per_objfile->read_in_chain;
25223 last_chain = &dwarf2_per_objfile->read_in_chain;
25224 while (per_cu != NULL)
25225 {
25226 struct dwarf2_per_cu_data *next_cu;
25227
25228 next_cu = per_cu->cu->read_in_chain;
25229
25230 if (!per_cu->cu->mark)
25231 {
fcd3b13d 25232 delete per_cu->cu;
ae038cb0
DJ
25233 *last_chain = next_cu;
25234 }
25235 else
25236 last_chain = &per_cu->cu->read_in_chain;
25237
25238 per_cu = next_cu;
25239 }
25240}
25241
25242/* Remove a single compilation unit from the cache. */
25243
25244static void
dee91e82 25245free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
25246{
25247 struct dwarf2_per_cu_data *per_cu, **last_chain;
ed2dc618
SM
25248 struct dwarf2_per_objfile *dwarf2_per_objfile
25249 = target_per_cu->dwarf2_per_objfile;
ae038cb0
DJ
25250
25251 per_cu = dwarf2_per_objfile->read_in_chain;
25252 last_chain = &dwarf2_per_objfile->read_in_chain;
25253 while (per_cu != NULL)
25254 {
25255 struct dwarf2_per_cu_data *next_cu;
25256
25257 next_cu = per_cu->cu->read_in_chain;
25258
dee91e82 25259 if (per_cu == target_per_cu)
ae038cb0 25260 {
fcd3b13d 25261 delete per_cu->cu;
dee91e82 25262 per_cu->cu = NULL;
ae038cb0
DJ
25263 *last_chain = next_cu;
25264 break;
25265 }
25266 else
25267 last_chain = &per_cu->cu->read_in_chain;
25268
25269 per_cu = next_cu;
25270 }
25271}
25272
d95d3aef 25273/* Cleanup function for the dwarf2_per_objfile data. */
fe3e1990 25274
d95d3aef
TT
25275static void
25276dwarf2_free_objfile (struct objfile *objfile, void *datum)
fe3e1990 25277{
ed2dc618 25278 struct dwarf2_per_objfile *dwarf2_per_objfile
d95d3aef 25279 = static_cast<struct dwarf2_per_objfile *> (datum);
fe3e1990 25280
fd90ace4 25281 delete dwarf2_per_objfile;
fe3e1990
DJ
25282}
25283
dee91e82
DE
25284/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25285 We store these in a hash table separate from the DIEs, and preserve them
25286 when the DIEs are flushed out of cache.
25287
25288 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 25289 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
25290 or the type may come from a DWO file. Furthermore, while it's more logical
25291 to use per_cu->section+offset, with Fission the section with the data is in
25292 the DWO file but we don't know that section at the point we need it.
25293 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25294 because we can enter the lookup routine, get_die_type_at_offset, from
25295 outside this file, and thus won't necessarily have PER_CU->cu.
25296 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 25297
dee91e82 25298struct dwarf2_per_cu_offset_and_type
1c379e20 25299{
dee91e82 25300 const struct dwarf2_per_cu_data *per_cu;
9c541725 25301 sect_offset sect_off;
1c379e20
DJ
25302 struct type *type;
25303};
25304
dee91e82 25305/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
25306
25307static hashval_t
dee91e82 25308per_cu_offset_and_type_hash (const void *item)
1c379e20 25309{
9a3c8263
SM
25310 const struct dwarf2_per_cu_offset_and_type *ofs
25311 = (const struct dwarf2_per_cu_offset_and_type *) item;
9a619af0 25312
9c541725 25313 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
1c379e20
DJ
25314}
25315
dee91e82 25316/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
25317
25318static int
dee91e82 25319per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 25320{
9a3c8263
SM
25321 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25322 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25323 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25324 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
9a619af0 25325
dee91e82 25326 return (ofs_lhs->per_cu == ofs_rhs->per_cu
9c541725 25327 && ofs_lhs->sect_off == ofs_rhs->sect_off);
1c379e20
DJ
25328}
25329
25330/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
25331 table if necessary. For convenience, return TYPE.
25332
25333 The DIEs reading must have careful ordering to:
25334 * Not cause infite loops trying to read in DIEs as a prerequisite for
25335 reading current DIE.
25336 * Not trying to dereference contents of still incompletely read in types
25337 while reading in other DIEs.
25338 * Enable referencing still incompletely read in types just by a pointer to
25339 the type without accessing its fields.
25340
25341 Therefore caller should follow these rules:
25342 * Try to fetch any prerequisite types we may need to build this DIE type
25343 before building the type and calling set_die_type.
e71ec853 25344 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
25345 possible before fetching more types to complete the current type.
25346 * Make the type as complete as possible before fetching more types. */
1c379e20 25347
f792889a 25348static struct type *
1c379e20
DJ
25349set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25350{
518817b3
SM
25351 struct dwarf2_per_objfile *dwarf2_per_objfile
25352 = cu->per_cu->dwarf2_per_objfile;
dee91e82 25353 struct dwarf2_per_cu_offset_and_type **slot, ofs;
ed2dc618 25354 struct objfile *objfile = dwarf2_per_objfile->objfile;
3cdcd0ce
JB
25355 struct attribute *attr;
25356 struct dynamic_prop prop;
1c379e20 25357
b4ba55a1
JB
25358 /* For Ada types, make sure that the gnat-specific data is always
25359 initialized (if not already set). There are a few types where
25360 we should not be doing so, because the type-specific area is
25361 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25362 where the type-specific area is used to store the floatformat).
25363 But this is not a problem, because the gnat-specific information
25364 is actually not needed for these types. */
25365 if (need_gnat_info (cu)
25366 && TYPE_CODE (type) != TYPE_CODE_FUNC
25367 && TYPE_CODE (type) != TYPE_CODE_FLT
09e2d7c7
DE
25368 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25369 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25370 && TYPE_CODE (type) != TYPE_CODE_METHOD
b4ba55a1
JB
25371 && !HAVE_GNAT_AUX_INFO (type))
25372 INIT_GNAT_SPECIFIC (type);
25373
3f2f83dd
KB
25374 /* Read DW_AT_allocated and set in type. */
25375 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25376 if (attr_form_is_block (attr))
25377 {
25378 if (attr_to_dynamic_prop (attr, die, cu, &prop))
50a82047 25379 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
3f2f83dd
KB
25380 }
25381 else if (attr != NULL)
25382 {
b98664d3 25383 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
9c541725 25384 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
9d8780f0 25385 sect_offset_str (die->sect_off));
3f2f83dd
KB
25386 }
25387
25388 /* Read DW_AT_associated and set in type. */
25389 attr = dwarf2_attr (die, DW_AT_associated, cu);
25390 if (attr_form_is_block (attr))
25391 {
25392 if (attr_to_dynamic_prop (attr, die, cu, &prop))
50a82047 25393 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
3f2f83dd
KB
25394 }
25395 else if (attr != NULL)
25396 {
b98664d3 25397 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
9c541725 25398 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
9d8780f0 25399 sect_offset_str (die->sect_off));
3f2f83dd
KB
25400 }
25401
3cdcd0ce
JB
25402 /* Read DW_AT_data_location and set in type. */
25403 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25404 if (attr_to_dynamic_prop (attr, die, cu, &prop))
50a82047 25405 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
3cdcd0ce 25406
dee91e82 25407 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 25408 {
dee91e82
DE
25409 dwarf2_per_objfile->die_type_hash =
25410 htab_create_alloc_ex (127,
25411 per_cu_offset_and_type_hash,
25412 per_cu_offset_and_type_eq,
25413 NULL,
25414 &objfile->objfile_obstack,
25415 hashtab_obstack_allocate,
25416 dummy_obstack_deallocate);
f792889a 25417 }
1c379e20 25418
dee91e82 25419 ofs.per_cu = cu->per_cu;
9c541725 25420 ofs.sect_off = die->sect_off;
1c379e20 25421 ofs.type = type;
dee91e82
DE
25422 slot = (struct dwarf2_per_cu_offset_and_type **)
25423 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57 25424 if (*slot)
b98664d3 25425 complaint (_("A problem internal to GDB: DIE %s has type already set"),
9d8780f0 25426 sect_offset_str (die->sect_off));
8d749320
SM
25427 *slot = XOBNEW (&objfile->objfile_obstack,
25428 struct dwarf2_per_cu_offset_and_type);
1c379e20 25429 **slot = ofs;
f792889a 25430 return type;
1c379e20
DJ
25431}
25432
9c541725 25433/* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
02142a6c 25434 or return NULL if the die does not have a saved type. */
1c379e20
DJ
25435
25436static struct type *
9c541725 25437get_die_type_at_offset (sect_offset sect_off,
673bfd45 25438 struct dwarf2_per_cu_data *per_cu)
1c379e20 25439{
dee91e82 25440 struct dwarf2_per_cu_offset_and_type *slot, ofs;
ed2dc618 25441 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
f792889a 25442
dee91e82 25443 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 25444 return NULL;
1c379e20 25445
dee91e82 25446 ofs.per_cu = per_cu;
9c541725 25447 ofs.sect_off = sect_off;
9a3c8263
SM
25448 slot = ((struct dwarf2_per_cu_offset_and_type *)
25449 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
1c379e20
DJ
25450 if (slot)
25451 return slot->type;
25452 else
25453 return NULL;
25454}
25455
02142a6c 25456/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
25457 or return NULL if DIE does not have a saved type. */
25458
25459static struct type *
25460get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25461{
9c541725 25462 return get_die_type_at_offset (die->sect_off, cu->per_cu);
673bfd45
DE
25463}
25464
10b3939b
DJ
25465/* Add a dependence relationship from CU to REF_PER_CU. */
25466
25467static void
25468dwarf2_add_dependence (struct dwarf2_cu *cu,
25469 struct dwarf2_per_cu_data *ref_per_cu)
25470{
25471 void **slot;
25472
25473 if (cu->dependencies == NULL)
25474 cu->dependencies
25475 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25476 NULL, &cu->comp_unit_obstack,
25477 hashtab_obstack_allocate,
25478 dummy_obstack_deallocate);
25479
25480 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25481 if (*slot == NULL)
25482 *slot = ref_per_cu;
25483}
1c379e20 25484
f504f079
DE
25485/* Subroutine of dwarf2_mark to pass to htab_traverse.
25486 Set the mark field in every compilation unit in the
ae038cb0
DJ
25487 cache that we must keep because we are keeping CU. */
25488
10b3939b
DJ
25489static int
25490dwarf2_mark_helper (void **slot, void *data)
25491{
25492 struct dwarf2_per_cu_data *per_cu;
25493
25494 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
25495
25496 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25497 reading of the chain. As such dependencies remain valid it is not much
25498 useful to track and undo them during QUIT cleanups. */
25499 if (per_cu->cu == NULL)
25500 return 1;
25501
10b3939b
DJ
25502 if (per_cu->cu->mark)
25503 return 1;
25504 per_cu->cu->mark = 1;
25505
25506 if (per_cu->cu->dependencies != NULL)
25507 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25508
25509 return 1;
25510}
25511
f504f079
DE
25512/* Set the mark field in CU and in every other compilation unit in the
25513 cache that we must keep because we are keeping CU. */
25514
ae038cb0
DJ
25515static void
25516dwarf2_mark (struct dwarf2_cu *cu)
25517{
25518 if (cu->mark)
25519 return;
25520 cu->mark = 1;
10b3939b
DJ
25521 if (cu->dependencies != NULL)
25522 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
25523}
25524
25525static void
25526dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25527{
25528 while (per_cu)
25529 {
25530 per_cu->cu->mark = 0;
25531 per_cu = per_cu->cu->read_in_chain;
25532 }
72bf9492
DJ
25533}
25534
72bf9492
DJ
25535/* Trivial hash function for partial_die_info: the hash value of a DIE
25536 is its offset in .debug_info for this objfile. */
25537
25538static hashval_t
25539partial_die_hash (const void *item)
25540{
9a3c8263
SM
25541 const struct partial_die_info *part_die
25542 = (const struct partial_die_info *) item;
9a619af0 25543
9c541725 25544 return to_underlying (part_die->sect_off);
72bf9492
DJ
25545}
25546
25547/* Trivial comparison function for partial_die_info structures: two DIEs
25548 are equal if they have the same offset. */
25549
25550static int
25551partial_die_eq (const void *item_lhs, const void *item_rhs)
25552{
9a3c8263
SM
25553 const struct partial_die_info *part_die_lhs
25554 = (const struct partial_die_info *) item_lhs;
25555 const struct partial_die_info *part_die_rhs
25556 = (const struct partial_die_info *) item_rhs;
9a619af0 25557
9c541725 25558 return part_die_lhs->sect_off == part_die_rhs->sect_off;
72bf9492
DJ
25559}
25560
3c3bb058
AB
25561struct cmd_list_element *set_dwarf_cmdlist;
25562struct cmd_list_element *show_dwarf_cmdlist;
ae038cb0
DJ
25563
25564static void
981a3fb3 25565set_dwarf_cmd (const char *args, int from_tty)
ae038cb0 25566{
b4f54984 25567 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
635c7e8a 25568 gdb_stdout);
ae038cb0
DJ
25569}
25570
25571static void
981a3fb3 25572show_dwarf_cmd (const char *args, int from_tty)
6e70227d 25573{
b4f54984 25574 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
ae038cb0
DJ
25575}
25576
cd4fb1b2 25577int dwarf_always_disassemble;
437afbb8 25578
437afbb8 25579static void
cd4fb1b2
SM
25580show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25581 struct cmd_list_element *c, const char *value)
9291a0cd 25582{
cd4fb1b2
SM
25583 fprintf_filtered (file,
25584 _("Whether to always disassemble "
25585 "DWARF expressions is %s.\n"),
25586 value);
9291a0cd
TT
25587}
25588
9291a0cd 25589static void
cd4fb1b2
SM
25590show_check_physname (struct ui_file *file, int from_tty,
25591 struct cmd_list_element *c, const char *value)
9291a0cd 25592{
cd4fb1b2
SM
25593 fprintf_filtered (file,
25594 _("Whether to check \"physname\" is %s.\n"),
25595 value);
9291a0cd
TT
25596}
25597
cd4fb1b2
SM
25598void
25599_initialize_dwarf2_read (void)
9291a0cd 25600{
d95d3aef
TT
25601 dwarf2_objfile_data_key
25602 = register_objfile_data_with_cleanup (nullptr, dwarf2_free_objfile);
156942c7 25603
cd4fb1b2
SM
25604 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25605Set DWARF specific variables.\n\
25606Configure DWARF variables such as the cache size"),
25607 &set_dwarf_cmdlist, "maintenance set dwarf ",
25608 0/*allow-unknown*/, &maintenance_set_cmdlist);
156942c7 25609
cd4fb1b2
SM
25610 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25611Show DWARF specific variables\n\
25612Show DWARF variables such as the cache size"),
25613 &show_dwarf_cmdlist, "maintenance show dwarf ",
25614 0/*allow-unknown*/, &maintenance_show_cmdlist);
156942c7 25615
cd4fb1b2
SM
25616 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25617 &dwarf_max_cache_age, _("\
25618Set the upper bound on the age of cached DWARF compilation units."), _("\
25619Show the upper bound on the age of cached DWARF compilation units."), _("\
25620A higher limit means that cached compilation units will be stored\n\
25621in memory longer, and more total memory will be used. Zero disables\n\
25622caching, which can slow down startup."),
25623 NULL,
25624 show_dwarf_max_cache_age,
25625 &set_dwarf_cmdlist,
25626 &show_dwarf_cmdlist);
156942c7 25627
cd4fb1b2
SM
25628 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25629 &dwarf_always_disassemble, _("\
25630Set whether `info address' always disassembles DWARF expressions."), _("\
25631Show whether `info address' always disassembles DWARF expressions."), _("\
25632When enabled, DWARF expressions are always printed in an assembly-like\n\
25633syntax. When disabled, expressions will be printed in a more\n\
25634conversational style, when possible."),
25635 NULL,
25636 show_dwarf_always_disassemble,
25637 &set_dwarf_cmdlist,
25638 &show_dwarf_cmdlist);
9291a0cd 25639
cd4fb1b2
SM
25640 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25641Set debugging of the DWARF reader."), _("\
25642Show debugging of the DWARF reader."), _("\
25643When enabled (non-zero), debugging messages are printed during DWARF\n\
25644reading and symtab expansion. A value of 1 (one) provides basic\n\
25645information. A value greater than 1 provides more verbose information."),
25646 NULL,
25647 NULL,
25648 &setdebuglist, &showdebuglist);
9291a0cd 25649
cd4fb1b2
SM
25650 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25651Set debugging of the DWARF DIE reader."), _("\
25652Show debugging of the DWARF DIE reader."), _("\
25653When enabled (non-zero), DIEs are dumped after they are read in.\n\
25654The value is the maximum depth to print."),
25655 NULL,
25656 NULL,
25657 &setdebuglist, &showdebuglist);
9291a0cd 25658
cd4fb1b2
SM
25659 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25660Set debugging of the dwarf line reader."), _("\
25661Show debugging of the dwarf line reader."), _("\
25662When enabled (non-zero), line number entries are dumped as they are read in.\n\
25663A value of 1 (one) provides basic information.\n\
25664A value greater than 1 provides more verbose information."),
25665 NULL,
25666 NULL,
25667 &setdebuglist, &showdebuglist);
437afbb8 25668
cd4fb1b2
SM
25669 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25670Set cross-checking of \"physname\" code against demangler."), _("\
25671Show cross-checking of \"physname\" code against demangler."), _("\
25672When enabled, GDB's internal \"physname\" code is checked against\n\
25673the demangler."),
25674 NULL, show_check_physname,
25675 &setdebuglist, &showdebuglist);
900e11f9 25676
e615022a
DE
25677 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25678 no_class, &use_deprecated_index_sections, _("\
25679Set whether to use deprecated gdb_index sections."), _("\
25680Show whether to use deprecated gdb_index sections."), _("\
25681When enabled, deprecated .gdb_index sections are used anyway.\n\
25682Normally they are ignored either because of a missing feature or\n\
25683performance issue.\n\
25684Warning: This option must be enabled before gdb reads the file."),
25685 NULL,
25686 NULL,
25687 &setlist, &showlist);
25688
f1e6e072
TT
25689 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25690 &dwarf2_locexpr_funcs);
25691 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25692 &dwarf2_loclist_funcs);
25693
25694 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25695 &dwarf2_block_frame_base_locexpr_funcs);
25696 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25697 &dwarf2_block_frame_base_loclist_funcs);
c62446b1
PA
25698
25699#if GDB_SELF_TEST
25700 selftests::register_test ("dw2_expand_symtabs_matching",
25701 selftests::dw2_expand_symtabs_matching::run_test);
25702#endif
6502dd73 25703}
This page took 5.320537 seconds and 4 git commands to generate.