2004-05-07 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
CommitLineData
c906108c 1/* DWARF debugging format support for GDB.
1bac305b
AC
2
3 Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
b99607ea 4 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
1bac305b 5
c906108c
SS
6 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
7 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
c906108c 24
5ae7ca1d
MC
25/*
26 If you are looking for DWARF-2 support, you are in the wrong file.
013be872
MC
27 Go look in dwarf2read.c. This file is for the original DWARF,
28 also known as DWARF-1.
29
30 DWARF-1 is slowly headed for obsoletion.
31
b2a871dd 32 In gcc 3.4.0, support for dwarf-1 has been removed.
013be872
MC
33
34 In gcc 3.3.2, these targets prefer dwarf-1:
35
36 i[34567]86-sequent-ptx4*
37 i[34567]86-sequent-sysv4*
38 mips-sni-sysv4
39 sparc-hal-solaris2*
40
41 In gcc 3.2.2, these targets prefer dwarf-1:
42
43 i[34567]86-dg-dgux*
44 i[34567]86-sequent-ptx4*
45 i[34567]86-sequent-sysv4*
46 m88k-dg-dgux*
47 mips-sni-sysv4
48 sparc-hal-solaris2*
49
50 In gcc 2.95.3, these targets prefer dwarf-1:
51
52 i[34567]86-dg-dgux*
53 i[34567]86-ncr-sysv4*
54 i[34567]86-sequent-ptx4*
55 i[34567]86-sequent-sysv4*
56 i[34567]86-*-osf1*
57 i[34567]86-*-sco3.2v5*
58 i[34567]86-*-sysv4*
59 i860-alliant-*
60 i860-*-sysv4*
61 m68k-atari-sysv4*
62 m68k-cbm-sysv4*
63 m68k-*-sysv4*
64 m88k-dg-dgux*
65 m88k-*-sysv4*
66 mips-sni-sysv4
67 mips-*-gnu*
68 sh-*-elf*
69 sh-*-rtemself*
70 sparc-hal-solaris2*
71 sparc-*-sysv4*
72
73 Some non-gcc compilers produce dwarf-1:
74
75 PR gdb/1179 was from a user with Diab C++ 4.3.
b2a871dd
MC
76 On 2003-07-25 the gdb list received a report from a user
77 with Diab Compiler 4.4b.
013be872 78 Other users have also reported using Diab compilers with dwarf-1.
b2a871dd
MC
79
80 Diab Compiler Suite 5.0.1 supports dwarf-2/dwarf-3 for C and C++.
81 (Diab(tm) Compiler Suite 5.0.1 Release Notes, DOC-14691-ZD-00,
82 Wind River Systems, 2002-07-31).
83
013be872
MC
84 On 2003-06-09 the gdb list received a report from a user
85 with Absoft ProFortran f77 which is dwarf-1.
86
b2a871dd
MC
87 Absoft ProFortran Linux Fortran User Guide (no version,
88 but copyright dates are 1991-2001) says that Absoft ProFortran
89 supports -gdwarf1 and -gdwarf2.
90
91 -- chastain 2004-04-24
5ae7ca1d
MC
92*/
93
c906108c
SS
94/*
95
c5aa993b
JM
96 FIXME: Do we need to generate dependencies in partial symtabs?
97 (Perhaps we don't need to).
c906108c 98
c5aa993b
JM
99 FIXME: Resolve minor differences between what information we put in the
100 partial symbol table and what dbxread puts in. For example, we don't yet
101 put enum constants there. And dbxread seems to invent a lot of typedefs
102 we never see. Use the new printpsym command to see the partial symbol table
103 contents.
c906108c 104
c5aa993b
JM
105 FIXME: Figure out a better way to tell gdb about the name of the function
106 contain the user's entry point (I.E. main())
c906108c 107
c5aa993b
JM
108 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
109 other things to work on, if you get bored. :-)
c906108c 110
c5aa993b 111 */
c906108c
SS
112
113#include "defs.h"
114#include "symtab.h"
115#include "gdbtypes.h"
c906108c
SS
116#include "objfiles.h"
117#include "elf/dwarf.h"
118#include "buildsym.h"
119#include "demangle.h"
c5aa993b 120#include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
c906108c
SS
121#include "language.h"
122#include "complaints.h"
123
124#include <fcntl.h>
125#include "gdb_string.h"
126
127/* Some macros to provide DIE info for complaints. */
128
129#define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
130#define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
131
132/* Complaints that can be issued during DWARF debug info reading. */
133
23136709
KB
134static void
135bad_die_ref_complaint (int arg1, const char *arg2, int arg3)
c906108c 136{
23136709
KB
137 complaint (&symfile_complaints,
138 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit",
139 arg1, arg2, arg3);
140}
c906108c 141
23136709
KB
142static void
143unknown_attribute_form_complaint (int arg1, const char *arg2, int arg3)
c906108c 144{
23136709
KB
145 complaint (&symfile_complaints,
146 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", arg1, arg2,
147 arg3);
148}
c906108c 149
23136709
KB
150static void
151dup_user_type_definition_complaint (int arg1, const char *arg2)
c906108c 152{
23136709
KB
153 complaint (&symfile_complaints,
154 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition",
155 arg1, arg2);
156}
c906108c 157
23136709
KB
158static void
159bad_array_element_type_complaint (int arg1, const char *arg2, int arg3)
c906108c 160{
23136709
KB
161 complaint (&symfile_complaints,
162 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", arg1,
163 arg2, arg3);
164}
c906108c
SS
165
166typedef unsigned int DIE_REF; /* Reference to a DIE */
167
168#ifndef GCC_PRODUCER
169#define GCC_PRODUCER "GNU C "
170#endif
171
172#ifndef GPLUS_PRODUCER
173#define GPLUS_PRODUCER "GNU C++ "
174#endif
175
176#ifndef LCC_PRODUCER
177#define LCC_PRODUCER "NCR C/C++"
178#endif
179
c906108c
SS
180/* Flags to target_to_host() that tell whether or not the data object is
181 expected to be signed. Used, for example, when fetching a signed
182 integer in the target environment which is used as a signed integer
183 in the host environment, and the two environments have different sized
184 ints. In this case, *somebody* has to sign extend the smaller sized
185 int. */
186
187#define GET_UNSIGNED 0 /* No sign extension required */
188#define GET_SIGNED 1 /* Sign extension required */
189
190/* Defines for things which are specified in the document "DWARF Debugging
191 Information Format" published by UNIX International, Programming Languages
192 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
193
194#define SIZEOF_DIE_LENGTH 4
195#define SIZEOF_DIE_TAG 2
196#define SIZEOF_ATTRIBUTE 2
197#define SIZEOF_FORMAT_SPECIFIER 1
198#define SIZEOF_FMT_FT 2
199#define SIZEOF_LINETBL_LENGTH 4
200#define SIZEOF_LINETBL_LINENO 4
201#define SIZEOF_LINETBL_STMT 2
202#define SIZEOF_LINETBL_DELTA 4
203#define SIZEOF_LOC_ATOM_CODE 1
204
205#define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
206
207/* Macros that return the sizes of various types of data in the target
208 environment.
209
210 FIXME: Currently these are just compile time constants (as they are in
211 other parts of gdb as well). They need to be able to get the right size
212 either from the bfd or possibly from the DWARF info. It would be nice if
213 the DWARF producer inserted DIES that describe the fundamental types in
214 the target environment into the DWARF info, similar to the way dbx stabs
215 producers produce information about their fundamental types. */
216
217#define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
218#define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
219
220/* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
221 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
222 However, the Issue 2 DWARF specification from AT&T defines it as
223 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
224 For backwards compatibility with the AT&T compiler produced executables
225 we define AT_short_element_list for this variant. */
226
227#define AT_short_element_list (0x00f0|FORM_BLOCK2)
228
c906108c
SS
229/* The DWARF debugging information consists of two major pieces,
230 one is a block of DWARF Information Entries (DIE's) and the other
231 is a line number table. The "struct dieinfo" structure contains
232 the information for a single DIE, the one currently being processed.
233
234 In order to make it easier to randomly access the attribute fields
235 of the current DIE, which are specifically unordered within the DIE,
236 each DIE is scanned and an instance of the "struct dieinfo"
237 structure is initialized.
238
239 Initialization is done in two levels. The first, done by basicdieinfo(),
240 just initializes those fields that are vital to deciding whether or not
241 to use this DIE, how to skip past it, etc. The second, done by the
242 function completedieinfo(), fills in the rest of the information.
243
244 Attributes which have block forms are not interpreted at the time
245 the DIE is scanned, instead we just save pointers to the start
246 of their value fields.
247
248 Some fields have a flag <name>_p that is set when the value of the
249 field is valid (I.E. we found a matching attribute in the DIE). Since
250 we may want to test for the presence of some attributes in the DIE,
251 such as AT_low_pc, without restricting the values of the field,
252 we need someway to note that we found such an attribute.
c5aa993b 253
c906108c 254 */
c5aa993b 255
c906108c
SS
256typedef char BLOCK;
257
c5aa993b
JM
258struct dieinfo
259 {
260 char *die; /* Pointer to the raw DIE data */
261 unsigned long die_length; /* Length of the raw DIE data */
262 DIE_REF die_ref; /* Offset of this DIE */
263 unsigned short die_tag; /* Tag for this DIE */
264 unsigned long at_padding;
265 unsigned long at_sibling;
266 BLOCK *at_location;
267 char *at_name;
268 unsigned short at_fund_type;
269 BLOCK *at_mod_fund_type;
270 unsigned long at_user_def_type;
271 BLOCK *at_mod_u_d_type;
272 unsigned short at_ordering;
273 BLOCK *at_subscr_data;
274 unsigned long at_byte_size;
275 unsigned short at_bit_offset;
276 unsigned long at_bit_size;
277 BLOCK *at_element_list;
278 unsigned long at_stmt_list;
279 CORE_ADDR at_low_pc;
280 CORE_ADDR at_high_pc;
281 unsigned long at_language;
282 unsigned long at_member;
283 unsigned long at_discr;
284 BLOCK *at_discr_value;
285 BLOCK *at_string_length;
286 char *at_comp_dir;
287 char *at_producer;
288 unsigned long at_start_scope;
289 unsigned long at_stride_size;
290 unsigned long at_src_info;
291 char *at_prototyped;
292 unsigned int has_at_low_pc:1;
293 unsigned int has_at_stmt_list:1;
294 unsigned int has_at_byte_size:1;
295 unsigned int short_element_list:1;
296
297 /* Kludge to identify register variables */
298
299 unsigned int isreg;
300
301 /* Kludge to identify optimized out variables */
302
303 unsigned int optimized_out;
304
305 /* Kludge to identify basereg references.
306 Nonzero if we have an offset relative to a basereg. */
307
308 unsigned int offreg;
309
310 /* Kludge to identify which base register is it relative to. */
311
312 unsigned int basereg;
313 };
c906108c 314
c5aa993b 315static int diecount; /* Approximate count of dies for compilation unit */
c906108c
SS
316static struct dieinfo *curdie; /* For warnings and such */
317
c5aa993b
JM
318static char *dbbase; /* Base pointer to dwarf info */
319static int dbsize; /* Size of dwarf info in bytes */
320static int dbroff; /* Relative offset from start of .debug section */
321static char *lnbase; /* Base pointer to line section */
c906108c
SS
322
323/* This value is added to each symbol value. FIXME: Generalize to
324 the section_offsets structure used by dbxread (once this is done,
325 pass the appropriate section number to end_symtab). */
326static CORE_ADDR baseaddr; /* Add to each symbol value */
327
328/* The section offsets used in the current psymtab or symtab. FIXME,
329 only used to pass one value (baseaddr) at the moment. */
330static struct section_offsets *base_section_offsets;
331
332/* We put a pointer to this structure in the read_symtab_private field
333 of the psymtab. */
334
c5aa993b
JM
335struct dwfinfo
336 {
337 /* Always the absolute file offset to the start of the ".debug"
338 section for the file containing the DIE's being accessed. */
339 file_ptr dbfoff;
340 /* Relative offset from the start of the ".debug" section to the
341 first DIE to be accessed. When building the partial symbol
342 table, this value will be zero since we are accessing the
343 entire ".debug" section. When expanding a partial symbol
344 table entry, this value will be the offset to the first
345 DIE for the compilation unit containing the symbol that
346 triggers the expansion. */
347 int dbroff;
348 /* The size of the chunk of DIE's being examined, in bytes. */
349 int dblength;
350 /* The absolute file offset to the line table fragment. Ignored
351 when building partial symbol tables, but used when expanding
352 them, and contains the absolute file offset to the fragment
353 of the ".line" section containing the line numbers for the
354 current compilation unit. */
355 file_ptr lnfoff;
356 };
c906108c
SS
357
358#define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
359#define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
360#define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
361#define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
362
363/* The generic symbol table building routines have separate lists for
364 file scope symbols and all all other scopes (local scopes). So
365 we need to select the right one to pass to add_symbol_to_list().
366 We do it by keeping a pointer to the correct list in list_in_scope.
367
368 FIXME: The original dwarf code just treated the file scope as the first
369 local scope, and all other local scopes as nested local scopes, and worked
370 fine. Check to see if we really need to distinguish these in buildsym.c */
371
372struct pending **list_in_scope = &file_symbols;
373
374/* DIES which have user defined types or modified user defined types refer to
375 other DIES for the type information. Thus we need to associate the offset
376 of a DIE for a user defined type with a pointer to the type information.
377
378 Originally this was done using a simple but expensive algorithm, with an
379 array of unsorted structures, each containing an offset/type-pointer pair.
380 This array was scanned linearly each time a lookup was done. The result
381 was that gdb was spending over half it's startup time munging through this
382 array of pointers looking for a structure that had the right offset member.
383
384 The second attempt used the same array of structures, but the array was
385 sorted using qsort each time a new offset/type was recorded, and a binary
386 search was used to find the type pointer for a given DIE offset. This was
387 even slower, due to the overhead of sorting the array each time a new
388 offset/type pair was entered.
389
390 The third attempt uses a fixed size array of type pointers, indexed by a
391 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
392 we can divide any DIE offset by 4 to obtain a unique index into this fixed
393 size array. Since each element is a 4 byte pointer, it takes exactly as
394 much memory to hold this array as to hold the DWARF info for a given
395 compilation unit. But it gets freed as soon as we are done with it.
396 This has worked well in practice, as a reasonable tradeoff between memory
397 consumption and speed, without having to resort to much more complicated
398 algorithms. */
399
400static struct type **utypes; /* Pointer to array of user type pointers */
401static int numutypes; /* Max number of user type pointers */
402
403/* Maintain an array of referenced fundamental types for the current
404 compilation unit being read. For DWARF version 1, we have to construct
405 the fundamental types on the fly, since no information about the
406 fundamental types is supplied. Each such fundamental type is created by
407 calling a language dependent routine to create the type, and then a
408 pointer to that type is then placed in the array at the index specified
409 by it's FT_<TYPENAME> value. The array has a fixed size set by the
410 FT_NUM_MEMBERS compile time constant, which is the number of predefined
411 fundamental types gdb knows how to construct. */
412
c5aa993b 413static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
c906108c
SS
414
415/* Record the language for the compilation unit which is currently being
416 processed. We know it once we have seen the TAG_compile_unit DIE,
417 and we need it while processing the DIE's for that compilation unit.
418 It is eventually saved in the symtab structure, but we don't finalize
419 the symtab struct until we have processed all the DIE's for the
420 compilation unit. We also need to get and save a pointer to the
421 language struct for this language, so we can call the language
422 dependent routines for doing things such as creating fundamental
423 types. */
424
425static enum language cu_language;
426static const struct language_defn *cu_language_defn;
427
428/* Forward declarations of static functions so we don't have to worry
429 about ordering within this file. */
430
4efb68b1 431static void free_utypes (void *);
c906108c 432
a14ed312 433static int attribute_size (unsigned int);
c906108c 434
a14ed312 435static CORE_ADDR target_to_host (char *, int, int, struct objfile *);
c906108c 436
a14ed312 437static void add_enum_psymbol (struct dieinfo *, struct objfile *);
c906108c 438
a14ed312 439static void handle_producer (char *);
c906108c 440
570b8f7c
AC
441static void read_file_scope (struct dieinfo *, char *, char *,
442 struct objfile *);
c906108c 443
570b8f7c
AC
444static void read_func_scope (struct dieinfo *, char *, char *,
445 struct objfile *);
c906108c 446
570b8f7c
AC
447static void read_lexical_block_scope (struct dieinfo *, char *, char *,
448 struct objfile *);
c906108c 449
a14ed312 450static void scan_partial_symbols (char *, char *, struct objfile *);
c906108c 451
570b8f7c
AC
452static void scan_compilation_units (char *, char *, file_ptr, file_ptr,
453 struct objfile *);
c906108c 454
a14ed312 455static void add_partial_symbol (struct dieinfo *, struct objfile *);
c906108c 456
a14ed312 457static void basicdieinfo (struct dieinfo *, char *, struct objfile *);
c906108c 458
a14ed312 459static void completedieinfo (struct dieinfo *, struct objfile *);
c906108c 460
a14ed312 461static void dwarf_psymtab_to_symtab (struct partial_symtab *);
c906108c 462
a14ed312 463static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 464
a14ed312 465static void read_ofile_symtab (struct partial_symtab *);
c906108c 466
a14ed312 467static void process_dies (char *, char *, struct objfile *);
c906108c 468
570b8f7c
AC
469static void read_structure_scope (struct dieinfo *, char *, char *,
470 struct objfile *);
c906108c 471
a14ed312 472static struct type *decode_array_element_type (char *);
c906108c 473
a14ed312 474static struct type *decode_subscript_data_item (char *, char *);
c906108c 475
a14ed312 476static void dwarf_read_array_type (struct dieinfo *);
c906108c 477
a14ed312 478static void read_tag_pointer_type (struct dieinfo *dip);
c906108c 479
a14ed312 480static void read_tag_string_type (struct dieinfo *dip);
c906108c 481
a14ed312 482static void read_subroutine_type (struct dieinfo *, char *, char *);
c906108c 483
570b8f7c
AC
484static void read_enumeration (struct dieinfo *, char *, char *,
485 struct objfile *);
c906108c 486
a14ed312
KB
487static struct type *struct_type (struct dieinfo *, char *, char *,
488 struct objfile *);
c906108c 489
a14ed312 490static struct type *enum_type (struct dieinfo *, struct objfile *);
c906108c 491
a14ed312 492static void decode_line_numbers (char *);
c906108c 493
a14ed312 494static struct type *decode_die_type (struct dieinfo *);
c906108c 495
a14ed312 496static struct type *decode_mod_fund_type (char *);
c906108c 497
a14ed312 498static struct type *decode_mod_u_d_type (char *);
c906108c 499
a14ed312 500static struct type *decode_modified_type (char *, unsigned int, int);
c906108c 501
a14ed312 502static struct type *decode_fund_type (unsigned int);
c906108c 503
a14ed312 504static char *create_name (char *, struct obstack *);
c906108c 505
a14ed312 506static struct type *lookup_utype (DIE_REF);
c906108c 507
a14ed312 508static struct type *alloc_utype (DIE_REF, struct type *);
c906108c 509
a14ed312 510static struct symbol *new_symbol (struct dieinfo *, struct objfile *);
c906108c 511
570b8f7c
AC
512static void synthesize_typedef (struct dieinfo *, struct objfile *,
513 struct type *);
c906108c 514
a14ed312 515static int locval (struct dieinfo *);
c906108c 516
a14ed312 517static void set_cu_language (struct dieinfo *);
c906108c 518
a14ed312 519static struct type *dwarf_fundamental_type (struct objfile *, int);
c906108c
SS
520
521
522/*
523
c5aa993b 524 LOCAL FUNCTION
c906108c 525
c5aa993b 526 dwarf_fundamental_type -- lookup or create a fundamental type
c906108c 527
c5aa993b 528 SYNOPSIS
c906108c 529
c5aa993b
JM
530 struct type *
531 dwarf_fundamental_type (struct objfile *objfile, int typeid)
c906108c 532
c5aa993b 533 DESCRIPTION
c906108c 534
c5aa993b
JM
535 DWARF version 1 doesn't supply any fundamental type information,
536 so gdb has to construct such types. It has a fixed number of
537 fundamental types that it knows how to construct, which is the
538 union of all types that it knows how to construct for all languages
539 that it knows about. These are enumerated in gdbtypes.h.
c906108c 540
c5aa993b
JM
541 As an example, assume we find a DIE that references a DWARF
542 fundamental type of FT_integer. We first look in the ftypes
543 array to see if we already have such a type, indexed by the
544 gdb internal value of FT_INTEGER. If so, we simply return a
545 pointer to that type. If not, then we ask an appropriate
546 language dependent routine to create a type FT_INTEGER, using
547 defaults reasonable for the current target machine, and install
548 that type in ftypes for future reference.
c906108c 549
c5aa993b 550 RETURNS
c906108c 551
c5aa993b 552 Pointer to a fundamental type.
c906108c 553
c5aa993b 554 */
c906108c
SS
555
556static struct type *
fba45db2 557dwarf_fundamental_type (struct objfile *objfile, int typeid)
c906108c
SS
558{
559 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
560 {
561 error ("internal error - invalid fundamental type id %d", typeid);
562 }
563
564 /* Look for this particular type in the fundamental type vector. If one is
565 not found, create and install one appropriate for the current language
566 and the current target machine. */
567
568 if (ftypes[typeid] == NULL)
569 {
c5aa993b 570 ftypes[typeid] = cu_language_defn->la_fund_type (objfile, typeid);
c906108c
SS
571 }
572
573 return (ftypes[typeid]);
574}
575
576/*
577
c5aa993b 578 LOCAL FUNCTION
c906108c 579
c5aa993b 580 set_cu_language -- set local copy of language for compilation unit
c906108c 581
c5aa993b 582 SYNOPSIS
c906108c 583
c5aa993b
JM
584 void
585 set_cu_language (struct dieinfo *dip)
c906108c 586
c5aa993b 587 DESCRIPTION
c906108c 588
c5aa993b
JM
589 Decode the language attribute for a compilation unit DIE and
590 remember what the language was. We use this at various times
591 when processing DIE's for a given compilation unit.
c906108c 592
c5aa993b 593 RETURNS
c906108c 594
c5aa993b 595 No return value.
c906108c
SS
596
597 */
598
599static void
fba45db2 600set_cu_language (struct dieinfo *dip)
c906108c 601{
c5aa993b 602 switch (dip->at_language)
c906108c 603 {
c5aa993b
JM
604 case LANG_C89:
605 case LANG_C:
606 cu_language = language_c;
607 break;
608 case LANG_C_PLUS_PLUS:
609 cu_language = language_cplus;
610 break;
c5aa993b
JM
611 case LANG_MODULA2:
612 cu_language = language_m2;
613 break;
614 case LANG_FORTRAN77:
615 case LANG_FORTRAN90:
616 cu_language = language_fortran;
617 break;
618 case LANG_ADA83:
619 case LANG_COBOL74:
620 case LANG_COBOL85:
621 case LANG_PASCAL83:
622 /* We don't know anything special about these yet. */
623 cu_language = language_unknown;
624 break;
625 default:
626 /* If no at_language, try to deduce one from the filename */
627 cu_language = deduce_language_from_filename (dip->at_name);
628 break;
c906108c
SS
629 }
630 cu_language_defn = language_def (cu_language);
631}
632
633/*
634
c5aa993b 635 GLOBAL FUNCTION
c906108c 636
c5aa993b 637 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
c906108c 638
c5aa993b 639 SYNOPSIS
c906108c 640
c5aa993b 641 void dwarf_build_psymtabs (struct objfile *objfile,
c5aa993b
JM
642 int mainline, file_ptr dbfoff, unsigned int dbfsize,
643 file_ptr lnoffset, unsigned int lnsize)
c906108c 644
c5aa993b 645 DESCRIPTION
c906108c 646
c5aa993b
JM
647 This function is called upon to build partial symtabs from files
648 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
c906108c 649
c5aa993b
JM
650 It is passed a bfd* containing the DIES
651 and line number information, the corresponding filename for that
652 file, a base address for relocating the symbols, a flag indicating
653 whether or not this debugging information is from a "main symbol
654 table" rather than a shared library or dynamically linked file,
655 and file offset/size pairs for the DIE information and line number
656 information.
c906108c 657
c5aa993b 658 RETURNS
c906108c 659
c5aa993b 660 No return value.
c906108c
SS
661
662 */
663
664void
fba45db2
KB
665dwarf_build_psymtabs (struct objfile *objfile, int mainline, file_ptr dbfoff,
666 unsigned int dbfsize, file_ptr lnoffset,
667 unsigned int lnsize)
c906108c
SS
668{
669 bfd *abfd = objfile->obfd;
670 struct cleanup *back_to;
c5aa993b 671
c906108c
SS
672 current_objfile = objfile;
673 dbsize = dbfsize;
674 dbbase = xmalloc (dbsize);
675 dbroff = 0;
676 if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
3a42e9d0 677 (bfd_bread (dbbase, dbsize, abfd) != dbsize))
c906108c 678 {
b8c9b27d 679 xfree (dbbase);
c906108c
SS
680 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
681 }
b8c9b27d 682 back_to = make_cleanup (xfree, dbbase);
c5aa993b 683
c906108c
SS
684 /* If we are reinitializing, or if we have never loaded syms yet, init.
685 Since we have no idea how many DIES we are looking at, we just guess
686 some arbitrary value. */
c5aa993b 687
ef96bde8
EZ
688 if (mainline
689 || (objfile->global_psymbols.size == 0
690 && objfile->static_psymbols.size == 0))
c906108c
SS
691 {
692 init_psymbol_list (objfile, 1024);
693 }
c5aa993b 694
c906108c
SS
695 /* Save the relocation factor where everybody can see it. */
696
d4f3574e
SS
697 base_section_offsets = objfile->section_offsets;
698 baseaddr = ANOFFSET (objfile->section_offsets, 0);
c906108c
SS
699
700 /* Follow the compilation unit sibling chain, building a partial symbol
701 table entry for each one. Save enough information about each compilation
702 unit to locate the full DWARF information later. */
c5aa993b 703
c906108c 704 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
c5aa993b 705
c906108c
SS
706 do_cleanups (back_to);
707 current_objfile = NULL;
708}
709
710/*
711
c5aa993b 712 LOCAL FUNCTION
c906108c 713
c5aa993b 714 read_lexical_block_scope -- process all dies in a lexical block
c906108c 715
c5aa993b 716 SYNOPSIS
c906108c 717
c5aa993b
JM
718 static void read_lexical_block_scope (struct dieinfo *dip,
719 char *thisdie, char *enddie)
c906108c 720
c5aa993b 721 DESCRIPTION
c906108c 722
c5aa993b
JM
723 Process all the DIES contained within a lexical block scope.
724 Start a new scope, process the dies, and then close the scope.
c906108c
SS
725
726 */
727
728static void
fba45db2
KB
729read_lexical_block_scope (struct dieinfo *dip, char *thisdie, char *enddie,
730 struct objfile *objfile)
c906108c 731{
b59661bd 732 struct context_stack *new;
c906108c 733
c5aa993b
JM
734 push_context (0, dip->at_low_pc);
735 process_dies (thisdie + dip->die_length, enddie, objfile);
c906108c
SS
736 new = pop_context ();
737 if (local_symbols != NULL)
738 {
c5aa993b
JM
739 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
740 dip->at_high_pc, objfile);
c906108c 741 }
c5aa993b 742 local_symbols = new->locals;
c906108c
SS
743}
744
745/*
746
c5aa993b 747 LOCAL FUNCTION
c906108c 748
c5aa993b 749 lookup_utype -- look up a user defined type from die reference
c906108c 750
c5aa993b 751 SYNOPSIS
c906108c 752
c5aa993b 753 static type *lookup_utype (DIE_REF die_ref)
c906108c 754
c5aa993b 755 DESCRIPTION
c906108c 756
c5aa993b
JM
757 Given a DIE reference, lookup the user defined type associated with
758 that DIE, if it has been registered already. If not registered, then
759 return NULL. Alloc_utype() can be called to register an empty
760 type for this reference, which will be filled in later when the
761 actual referenced DIE is processed.
c906108c
SS
762 */
763
764static struct type *
fba45db2 765lookup_utype (DIE_REF die_ref)
c906108c
SS
766{
767 struct type *type = NULL;
768 int utypeidx;
c5aa993b 769
c906108c
SS
770 utypeidx = (die_ref - dbroff) / 4;
771 if ((utypeidx < 0) || (utypeidx >= numutypes))
772 {
23136709 773 bad_die_ref_complaint (DIE_ID, DIE_NAME, die_ref);
c906108c
SS
774 }
775 else
776 {
777 type = *(utypes + utypeidx);
778 }
779 return (type);
780}
781
782
783/*
784
c5aa993b 785 LOCAL FUNCTION
c906108c 786
c5aa993b 787 alloc_utype -- add a user defined type for die reference
c906108c 788
c5aa993b 789 SYNOPSIS
c906108c 790
c5aa993b 791 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
c906108c 792
c5aa993b 793 DESCRIPTION
c906108c 794
c5aa993b
JM
795 Given a die reference DIE_REF, and a possible pointer to a user
796 defined type UTYPEP, register that this reference has a user
797 defined type and either use the specified type in UTYPEP or
798 make a new empty type that will be filled in later.
c906108c 799
c5aa993b
JM
800 We should only be called after calling lookup_utype() to verify that
801 there is not currently a type registered for DIE_REF.
c906108c
SS
802 */
803
804static struct type *
fba45db2 805alloc_utype (DIE_REF die_ref, struct type *utypep)
c906108c
SS
806{
807 struct type **typep;
808 int utypeidx;
c5aa993b 809
c906108c
SS
810 utypeidx = (die_ref - dbroff) / 4;
811 typep = utypes + utypeidx;
812 if ((utypeidx < 0) || (utypeidx >= numutypes))
813 {
814 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
23136709 815 bad_die_ref_complaint (DIE_ID, DIE_NAME, die_ref);
c906108c
SS
816 }
817 else if (*typep != NULL)
818 {
819 utypep = *typep;
23136709
KB
820 complaint (&symfile_complaints,
821 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation",
822 DIE_ID, DIE_NAME);
c906108c
SS
823 }
824 else
825 {
826 if (utypep == NULL)
827 {
828 utypep = alloc_type (current_objfile);
829 }
830 *typep = utypep;
831 }
832 return (utypep);
833}
834
835/*
836
c5aa993b 837 LOCAL FUNCTION
c906108c 838
c5aa993b 839 free_utypes -- free the utypes array and reset pointer & count
c906108c 840
c5aa993b 841 SYNOPSIS
c906108c 842
4efb68b1 843 static void free_utypes (void *dummy)
c906108c 844
c5aa993b 845 DESCRIPTION
c906108c 846
c5aa993b
JM
847 Called via do_cleanups to free the utypes array, reset the pointer to NULL,
848 and set numutypes back to zero. This ensures that the utypes does not get
849 referenced after being freed.
c906108c
SS
850 */
851
852static void
4efb68b1 853free_utypes (void *dummy)
c906108c 854{
b8c9b27d 855 xfree (utypes);
c906108c
SS
856 utypes = NULL;
857 numutypes = 0;
858}
859
860
861/*
862
c5aa993b 863 LOCAL FUNCTION
c906108c 864
c5aa993b 865 decode_die_type -- return a type for a specified die
c906108c 866
c5aa993b 867 SYNOPSIS
c906108c 868
c5aa993b 869 static struct type *decode_die_type (struct dieinfo *dip)
c906108c 870
c5aa993b 871 DESCRIPTION
c906108c 872
c5aa993b
JM
873 Given a pointer to a die information structure DIP, decode the
874 type of the die and return a pointer to the decoded type. All
875 dies without specific types default to type int.
c906108c
SS
876 */
877
878static struct type *
fba45db2 879decode_die_type (struct dieinfo *dip)
c906108c
SS
880{
881 struct type *type = NULL;
c5aa993b
JM
882
883 if (dip->at_fund_type != 0)
c906108c 884 {
c5aa993b 885 type = decode_fund_type (dip->at_fund_type);
c906108c 886 }
c5aa993b 887 else if (dip->at_mod_fund_type != NULL)
c906108c 888 {
c5aa993b 889 type = decode_mod_fund_type (dip->at_mod_fund_type);
c906108c 890 }
c5aa993b 891 else if (dip->at_user_def_type)
c906108c 892 {
b59661bd
AC
893 type = lookup_utype (dip->at_user_def_type);
894 if (type == NULL)
c906108c 895 {
c5aa993b 896 type = alloc_utype (dip->at_user_def_type, NULL);
c906108c
SS
897 }
898 }
c5aa993b 899 else if (dip->at_mod_u_d_type)
c906108c 900 {
c5aa993b 901 type = decode_mod_u_d_type (dip->at_mod_u_d_type);
c906108c
SS
902 }
903 else
904 {
905 type = dwarf_fundamental_type (current_objfile, FT_VOID);
906 }
907 return (type);
908}
909
910/*
911
c5aa993b 912 LOCAL FUNCTION
c906108c 913
c5aa993b 914 struct_type -- compute and return the type for a struct or union
c906108c 915
c5aa993b 916 SYNOPSIS
c906108c 917
c5aa993b
JM
918 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
919 char *enddie, struct objfile *objfile)
c906108c 920
c5aa993b 921 DESCRIPTION
c906108c 922
c5aa993b
JM
923 Given pointer to a die information structure for a die which
924 defines a union or structure (and MUST define one or the other),
925 and pointers to the raw die data that define the range of dies which
926 define the members, compute and return the user defined type for the
927 structure or union.
c906108c
SS
928 */
929
930static struct type *
fba45db2
KB
931struct_type (struct dieinfo *dip, char *thisdie, char *enddie,
932 struct objfile *objfile)
c906108c
SS
933{
934 struct type *type;
c5aa993b
JM
935 struct nextfield
936 {
937 struct nextfield *next;
938 struct field field;
939 };
c906108c
SS
940 struct nextfield *list = NULL;
941 struct nextfield *new;
942 int nfields = 0;
943 int n;
944 struct dieinfo mbr;
945 char *nextdie;
946 int anonymous_size;
c5aa993b 947
b59661bd
AC
948 type = lookup_utype (dip->die_ref);
949 if (type == NULL)
c906108c
SS
950 {
951 /* No forward references created an empty type, so install one now */
c5aa993b 952 type = alloc_utype (dip->die_ref, NULL);
c906108c 953 }
c5aa993b
JM
954 INIT_CPLUS_SPECIFIC (type);
955 switch (dip->die_tag)
c906108c 956 {
c5aa993b
JM
957 case TAG_class_type:
958 TYPE_CODE (type) = TYPE_CODE_CLASS;
959 break;
960 case TAG_structure_type:
961 TYPE_CODE (type) = TYPE_CODE_STRUCT;
962 break;
963 case TAG_union_type:
964 TYPE_CODE (type) = TYPE_CODE_UNION;
965 break;
966 default:
967 /* Should never happen */
968 TYPE_CODE (type) = TYPE_CODE_UNDEF;
23136709
KB
969 complaint (&symfile_complaints,
970 "DIE @ 0x%x \"%s\", missing class, structure, or union tag",
971 DIE_ID, DIE_NAME);
c5aa993b 972 break;
c906108c
SS
973 }
974 /* Some compilers try to be helpful by inventing "fake" names for
975 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
976 Thanks, but no thanks... */
c5aa993b
JM
977 if (dip->at_name != NULL
978 && *dip->at_name != '~'
979 && *dip->at_name != '.')
c906108c 980 {
b99607ea 981 TYPE_TAG_NAME (type) = obconcat (&objfile->objfile_obstack,
c5aa993b 982 "", "", dip->at_name);
c906108c
SS
983 }
984 /* Use whatever size is known. Zero is a valid size. We might however
985 wish to check has_at_byte_size to make sure that some byte size was
986 given explicitly, but DWARF doesn't specify that explicit sizes of
987 zero have to present, so complaining about missing sizes should
988 probably not be the default. */
c5aa993b
JM
989 TYPE_LENGTH (type) = dip->at_byte_size;
990 thisdie += dip->die_length;
c906108c
SS
991 while (thisdie < enddie)
992 {
993 basicdieinfo (&mbr, thisdie, objfile);
994 completedieinfo (&mbr, objfile);
995 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
996 {
997 break;
998 }
999 else if (mbr.at_sibling != 0)
1000 {
1001 nextdie = dbbase + mbr.at_sibling - dbroff;
1002 }
1003 else
1004 {
1005 nextdie = thisdie + mbr.die_length;
1006 }
1007 switch (mbr.die_tag)
1008 {
1009 case TAG_member:
fba3138e
DJ
1010 /* Static fields can be either TAG_global_variable (GCC) or else
1011 TAG_member with no location (Diab). We could treat the latter like
1012 the former... but since we don't support the former, just avoid
1013 crashing on the latter for now. */
1014 if (mbr.at_location == NULL)
1015 break;
1016
c906108c
SS
1017 /* Get space to record the next field's data. */
1018 new = (struct nextfield *) alloca (sizeof (struct nextfield));
c5aa993b 1019 new->next = list;
c906108c
SS
1020 list = new;
1021 /* Save the data. */
c5aa993b
JM
1022 list->field.name =
1023 obsavestring (mbr.at_name, strlen (mbr.at_name),
b99607ea 1024 &objfile->objfile_obstack);
c906108c
SS
1025 FIELD_TYPE (list->field) = decode_die_type (&mbr);
1026 FIELD_BITPOS (list->field) = 8 * locval (&mbr);
01ad7f36 1027 FIELD_STATIC_KIND (list->field) = 0;
c906108c
SS
1028 /* Handle bit fields. */
1029 FIELD_BITSIZE (list->field) = mbr.at_bit_size;
1030 if (BITS_BIG_ENDIAN)
1031 {
1032 /* For big endian bits, the at_bit_offset gives the
c5aa993b
JM
1033 additional bit offset from the MSB of the containing
1034 anonymous object to the MSB of the field. We don't
1035 have to do anything special since we don't need to
1036 know the size of the anonymous object. */
c906108c
SS
1037 FIELD_BITPOS (list->field) += mbr.at_bit_offset;
1038 }
1039 else
1040 {
1041 /* For little endian bits, we need to have a non-zero
c5aa993b
JM
1042 at_bit_size, so that we know we are in fact dealing
1043 with a bitfield. Compute the bit offset to the MSB
1044 of the anonymous object, subtract off the number of
1045 bits from the MSB of the field to the MSB of the
1046 object, and then subtract off the number of bits of
1047 the field itself. The result is the bit offset of
1048 the LSB of the field. */
c906108c
SS
1049 if (mbr.at_bit_size > 0)
1050 {
1051 if (mbr.has_at_byte_size)
1052 {
1053 /* The size of the anonymous object containing
c5aa993b
JM
1054 the bit field is explicit, so use the
1055 indicated size (in bytes). */
c906108c
SS
1056 anonymous_size = mbr.at_byte_size;
1057 }
1058 else
1059 {
1060 /* The size of the anonymous object containing
c5aa993b
JM
1061 the bit field matches the size of an object
1062 of the bit field's type. DWARF allows
1063 at_byte_size to be left out in such cases, as
1064 a debug information size optimization. */
1065 anonymous_size = TYPE_LENGTH (list->field.type);
c906108c
SS
1066 }
1067 FIELD_BITPOS (list->field) +=
1068 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1069 }
1070 }
1071 nfields++;
1072 break;
1073 default:
1074 process_dies (thisdie, nextdie, objfile);
1075 break;
1076 }
1077 thisdie = nextdie;
1078 }
1079 /* Now create the vector of fields, and record how big it is. We may
1080 not even have any fields, if this DIE was generated due to a reference
1081 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1082 set, which clues gdb in to the fact that it needs to search elsewhere
1083 for the full structure definition. */
1084 if (nfields == 0)
1085 {
1086 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1087 }
1088 else
1089 {
1090 TYPE_NFIELDS (type) = nfields;
1091 TYPE_FIELDS (type) = (struct field *)
1092 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1093 /* Copy the saved-up fields into the field vector. */
c5aa993b 1094 for (n = nfields; list; list = list->next)
c906108c 1095 {
c5aa993b
JM
1096 TYPE_FIELD (type, --n) = list->field;
1097 }
c906108c
SS
1098 }
1099 return (type);
1100}
1101
1102/*
1103
c5aa993b 1104 LOCAL FUNCTION
c906108c 1105
c5aa993b 1106 read_structure_scope -- process all dies within struct or union
c906108c 1107
c5aa993b 1108 SYNOPSIS
c906108c 1109
c5aa993b
JM
1110 static void read_structure_scope (struct dieinfo *dip,
1111 char *thisdie, char *enddie, struct objfile *objfile)
c906108c 1112
c5aa993b 1113 DESCRIPTION
c906108c 1114
c5aa993b
JM
1115 Called when we find the DIE that starts a structure or union
1116 scope (definition) to process all dies that define the members
1117 of the structure or union. DIP is a pointer to the die info
1118 struct for the DIE that names the structure or union.
c906108c 1119
c5aa993b
JM
1120 NOTES
1121
1122 Note that we need to call struct_type regardless of whether or not
1123 the DIE has an at_name attribute, since it might be an anonymous
1124 structure or union. This gets the type entered into our set of
1125 user defined types.
1126
1127 However, if the structure is incomplete (an opaque struct/union)
1128 then suppress creating a symbol table entry for it since gdb only
1129 wants to find the one with the complete definition. Note that if
1130 it is complete, we just call new_symbol, which does it's own
1131 checking about whether the struct/union is anonymous or not (and
1132 suppresses creating a symbol table entry itself).
c906108c 1133
c906108c
SS
1134 */
1135
1136static void
fba45db2
KB
1137read_structure_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1138 struct objfile *objfile)
c906108c
SS
1139{
1140 struct type *type;
1141 struct symbol *sym;
c5aa993b 1142
c906108c 1143 type = struct_type (dip, thisdie, enddie, objfile);
74a9bb82 1144 if (!TYPE_STUB (type))
c906108c
SS
1145 {
1146 sym = new_symbol (dip, objfile);
1147 if (sym != NULL)
1148 {
1149 SYMBOL_TYPE (sym) = type;
1150 if (cu_language == language_cplus)
1151 {
1152 synthesize_typedef (dip, objfile, type);
1153 }
1154 }
1155 }
1156}
1157
1158/*
1159
c5aa993b 1160 LOCAL FUNCTION
c906108c 1161
c5aa993b 1162 decode_array_element_type -- decode type of the array elements
c906108c 1163
c5aa993b 1164 SYNOPSIS
c906108c 1165
c5aa993b 1166 static struct type *decode_array_element_type (char *scan, char *end)
c906108c 1167
c5aa993b 1168 DESCRIPTION
c906108c 1169
c5aa993b
JM
1170 As the last step in decoding the array subscript information for an
1171 array DIE, we need to decode the type of the array elements. We are
1172 passed a pointer to this last part of the subscript information and
1173 must return the appropriate type. If the type attribute is not
1174 recognized, just warn about the problem and return type int.
c906108c
SS
1175 */
1176
1177static struct type *
fba45db2 1178decode_array_element_type (char *scan)
c906108c
SS
1179{
1180 struct type *typep;
1181 DIE_REF die_ref;
1182 unsigned short attribute;
1183 unsigned short fundtype;
1184 int nbytes;
c5aa993b 1185
c906108c
SS
1186 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1187 current_objfile);
1188 scan += SIZEOF_ATTRIBUTE;
b59661bd
AC
1189 nbytes = attribute_size (attribute);
1190 if (nbytes == -1)
c906108c 1191 {
23136709 1192 bad_array_element_type_complaint (DIE_ID, DIE_NAME, attribute);
c906108c
SS
1193 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1194 }
1195 else
1196 {
1197 switch (attribute)
1198 {
c5aa993b
JM
1199 case AT_fund_type:
1200 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1201 current_objfile);
1202 typep = decode_fund_type (fundtype);
1203 break;
1204 case AT_mod_fund_type:
1205 typep = decode_mod_fund_type (scan);
1206 break;
1207 case AT_user_def_type:
1208 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1209 current_objfile);
b59661bd
AC
1210 typep = lookup_utype (die_ref);
1211 if (typep == NULL)
c5aa993b
JM
1212 {
1213 typep = alloc_utype (die_ref, NULL);
1214 }
1215 break;
1216 case AT_mod_u_d_type:
1217 typep = decode_mod_u_d_type (scan);
1218 break;
1219 default:
23136709 1220 bad_array_element_type_complaint (DIE_ID, DIE_NAME, attribute);
c5aa993b
JM
1221 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1222 break;
1223 }
c906108c
SS
1224 }
1225 return (typep);
1226}
1227
1228/*
1229
c5aa993b 1230 LOCAL FUNCTION
c906108c 1231
c5aa993b 1232 decode_subscript_data_item -- decode array subscript item
c906108c 1233
c5aa993b 1234 SYNOPSIS
c906108c 1235
c5aa993b
JM
1236 static struct type *
1237 decode_subscript_data_item (char *scan, char *end)
c906108c 1238
c5aa993b 1239 DESCRIPTION
c906108c 1240
c5aa993b
JM
1241 The array subscripts and the data type of the elements of an
1242 array are described by a list of data items, stored as a block
1243 of contiguous bytes. There is a data item describing each array
1244 dimension, and a final data item describing the element type.
1245 The data items are ordered the same as their appearance in the
1246 source (I.E. leftmost dimension first, next to leftmost second,
1247 etc).
c906108c 1248
c5aa993b
JM
1249 The data items describing each array dimension consist of four
1250 parts: (1) a format specifier, (2) type type of the subscript
1251 index, (3) a description of the low bound of the array dimension,
1252 and (4) a description of the high bound of the array dimension.
c906108c 1253
c5aa993b
JM
1254 The last data item is the description of the type of each of
1255 the array elements.
c906108c 1256
c5aa993b
JM
1257 We are passed a pointer to the start of the block of bytes
1258 containing the remaining data items, and a pointer to the first
1259 byte past the data. This function recursively decodes the
1260 remaining data items and returns a type.
c906108c 1261
c5aa993b
JM
1262 If we somehow fail to decode some data, we complain about it
1263 and return a type "array of int".
c906108c 1264
c5aa993b
JM
1265 BUGS
1266 FIXME: This code only implements the forms currently used
1267 by the AT&T and GNU C compilers.
c906108c 1268
c5aa993b
JM
1269 The end pointer is supplied for error checking, maybe we should
1270 use it for that...
c906108c
SS
1271 */
1272
1273static struct type *
fba45db2 1274decode_subscript_data_item (char *scan, char *end)
c906108c
SS
1275{
1276 struct type *typep = NULL; /* Array type we are building */
1277 struct type *nexttype; /* Type of each element (may be array) */
1278 struct type *indextype; /* Type of this index */
1279 struct type *rangetype;
1280 unsigned int format;
1281 unsigned short fundtype;
1282 unsigned long lowbound;
1283 unsigned long highbound;
1284 int nbytes;
c5aa993b 1285
c906108c
SS
1286 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1287 current_objfile);
1288 scan += SIZEOF_FORMAT_SPECIFIER;
1289 switch (format)
1290 {
1291 case FMT_ET:
1292 typep = decode_array_element_type (scan);
1293 break;
1294 case FMT_FT_C_C:
1295 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1296 current_objfile);
1297 indextype = decode_fund_type (fundtype);
1298 scan += SIZEOF_FMT_FT;
1299 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1300 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1301 scan += nbytes;
1302 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1303 scan += nbytes;
1304 nexttype = decode_subscript_data_item (scan, end);
1305 if (nexttype == NULL)
1306 {
1307 /* Munged subscript data or other problem, fake it. */
23136709
KB
1308 complaint (&symfile_complaints,
1309 "DIE @ 0x%x \"%s\", can't decode subscript data items",
1310 DIE_ID, DIE_NAME);
c906108c
SS
1311 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1312 }
1313 rangetype = create_range_type ((struct type *) NULL, indextype,
c5aa993b 1314 lowbound, highbound);
c906108c
SS
1315 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1316 break;
1317 case FMT_FT_C_X:
1318 case FMT_FT_X_C:
1319 case FMT_FT_X_X:
1320 case FMT_UT_C_C:
1321 case FMT_UT_C_X:
1322 case FMT_UT_X_C:
1323 case FMT_UT_X_X:
23136709
KB
1324 complaint (&symfile_complaints,
1325 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet",
1326 DIE_ID, DIE_NAME, format);
c906108c
SS
1327 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1328 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1329 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1330 break;
1331 default:
23136709
KB
1332 complaint (&symfile_complaints,
1333 "DIE @ 0x%x \"%s\", unknown array subscript format %x", DIE_ID,
1334 DIE_NAME, format);
c906108c
SS
1335 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1336 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1337 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1338 break;
1339 }
1340 return (typep);
1341}
1342
1343/*
1344
c5aa993b 1345 LOCAL FUNCTION
c906108c 1346
c5aa993b 1347 dwarf_read_array_type -- read TAG_array_type DIE
c906108c 1348
c5aa993b 1349 SYNOPSIS
c906108c 1350
c5aa993b 1351 static void dwarf_read_array_type (struct dieinfo *dip)
c906108c 1352
c5aa993b 1353 DESCRIPTION
c906108c 1354
c5aa993b
JM
1355 Extract all information from a TAG_array_type DIE and add to
1356 the user defined type vector.
c906108c
SS
1357 */
1358
1359static void
fba45db2 1360dwarf_read_array_type (struct dieinfo *dip)
c906108c
SS
1361{
1362 struct type *type;
1363 struct type *utype;
1364 char *sub;
1365 char *subend;
1366 unsigned short blocksz;
1367 int nbytes;
c5aa993b
JM
1368
1369 if (dip->at_ordering != ORD_row_major)
c906108c
SS
1370 {
1371 /* FIXME: Can gdb even handle column major arrays? */
23136709
KB
1372 complaint (&symfile_complaints,
1373 "DIE @ 0x%x \"%s\", array not row major; not handled correctly",
1374 DIE_ID, DIE_NAME);
c906108c 1375 }
b59661bd
AC
1376 sub = dip->at_subscr_data;
1377 if (sub != NULL)
c906108c
SS
1378 {
1379 nbytes = attribute_size (AT_subscr_data);
1380 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1381 subend = sub + nbytes + blocksz;
1382 sub += nbytes;
1383 type = decode_subscript_data_item (sub, subend);
b59661bd
AC
1384 utype = lookup_utype (dip->die_ref);
1385 if (utype == NULL)
c906108c
SS
1386 {
1387 /* Install user defined type that has not been referenced yet. */
c5aa993b 1388 alloc_utype (dip->die_ref, type);
c906108c
SS
1389 }
1390 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1391 {
1392 /* Ick! A forward ref has already generated a blank type in our
1393 slot, and this type probably already has things pointing to it
1394 (which is what caused it to be created in the first place).
1395 If it's just a place holder we can plop our fully defined type
1396 on top of it. We can't recover the space allocated for our
1397 new type since it might be on an obstack, but we could reuse
1398 it if we kept a list of them, but it might not be worth it
1399 (FIXME). */
1400 *utype = *type;
1401 }
1402 else
1403 {
1404 /* Double ick! Not only is a type already in our slot, but
1405 someone has decorated it. Complain and leave it alone. */
23136709 1406 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
c906108c
SS
1407 }
1408 }
1409}
1410
1411/*
1412
c5aa993b 1413 LOCAL FUNCTION
c906108c 1414
c5aa993b 1415 read_tag_pointer_type -- read TAG_pointer_type DIE
c906108c 1416
c5aa993b 1417 SYNOPSIS
c906108c 1418
c5aa993b 1419 static void read_tag_pointer_type (struct dieinfo *dip)
c906108c 1420
c5aa993b 1421 DESCRIPTION
c906108c 1422
c5aa993b
JM
1423 Extract all information from a TAG_pointer_type DIE and add to
1424 the user defined type vector.
c906108c
SS
1425 */
1426
1427static void
fba45db2 1428read_tag_pointer_type (struct dieinfo *dip)
c906108c
SS
1429{
1430 struct type *type;
1431 struct type *utype;
c5aa993b 1432
c906108c 1433 type = decode_die_type (dip);
b59661bd
AC
1434 utype = lookup_utype (dip->die_ref);
1435 if (utype == NULL)
c906108c
SS
1436 {
1437 utype = lookup_pointer_type (type);
c5aa993b 1438 alloc_utype (dip->die_ref, utype);
c906108c
SS
1439 }
1440 else
1441 {
1442 TYPE_TARGET_TYPE (utype) = type;
1443 TYPE_POINTER_TYPE (type) = utype;
1444
1445 /* We assume the machine has only one representation for pointers! */
1446 /* FIXME: Possably a poor assumption */
c5aa993b 1447 TYPE_LENGTH (utype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
c906108c
SS
1448 TYPE_CODE (utype) = TYPE_CODE_PTR;
1449 }
1450}
1451
1452/*
1453
c5aa993b 1454 LOCAL FUNCTION
c906108c 1455
c5aa993b 1456 read_tag_string_type -- read TAG_string_type DIE
c906108c 1457
c5aa993b 1458 SYNOPSIS
c906108c 1459
c5aa993b 1460 static void read_tag_string_type (struct dieinfo *dip)
c906108c 1461
c5aa993b 1462 DESCRIPTION
c906108c 1463
c5aa993b
JM
1464 Extract all information from a TAG_string_type DIE and add to
1465 the user defined type vector. It isn't really a user defined
1466 type, but it behaves like one, with other DIE's using an
1467 AT_user_def_type attribute to reference it.
c906108c
SS
1468 */
1469
1470static void
fba45db2 1471read_tag_string_type (struct dieinfo *dip)
c906108c
SS
1472{
1473 struct type *utype;
1474 struct type *indextype;
1475 struct type *rangetype;
1476 unsigned long lowbound = 0;
1477 unsigned long highbound;
1478
c5aa993b 1479 if (dip->has_at_byte_size)
c906108c
SS
1480 {
1481 /* A fixed bounds string */
c5aa993b 1482 highbound = dip->at_byte_size - 1;
c906108c
SS
1483 }
1484 else
1485 {
1486 /* A varying length string. Stub for now. (FIXME) */
1487 highbound = 1;
1488 }
1489 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1490 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1491 highbound);
c5aa993b
JM
1492
1493 utype = lookup_utype (dip->die_ref);
c906108c
SS
1494 if (utype == NULL)
1495 {
1496 /* No type defined, go ahead and create a blank one to use. */
c5aa993b 1497 utype = alloc_utype (dip->die_ref, (struct type *) NULL);
c906108c
SS
1498 }
1499 else
1500 {
1501 /* Already a type in our slot due to a forward reference. Make sure it
c5aa993b 1502 is a blank one. If not, complain and leave it alone. */
c906108c
SS
1503 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1504 {
23136709 1505 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
c906108c
SS
1506 return;
1507 }
1508 }
1509
1510 /* Create the string type using the blank type we either found or created. */
1511 utype = create_string_type (utype, rangetype);
1512}
1513
1514/*
1515
c5aa993b 1516 LOCAL FUNCTION
c906108c 1517
c5aa993b 1518 read_subroutine_type -- process TAG_subroutine_type dies
c906108c 1519
c5aa993b 1520 SYNOPSIS
c906108c 1521
c5aa993b
JM
1522 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1523 char *enddie)
c906108c 1524
c5aa993b 1525 DESCRIPTION
c906108c 1526
c5aa993b 1527 Handle DIES due to C code like:
c906108c 1528
c5aa993b
JM
1529 struct foo {
1530 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1531 int b;
1532 };
c906108c 1533
c5aa993b 1534 NOTES
c906108c 1535
c5aa993b
JM
1536 The parameter DIES are currently ignored. See if gdb has a way to
1537 include this info in it's type system, and decode them if so. Is
1538 this what the type structure's "arg_types" field is for? (FIXME)
c906108c
SS
1539 */
1540
1541static void
fba45db2 1542read_subroutine_type (struct dieinfo *dip, char *thisdie, char *enddie)
c906108c
SS
1543{
1544 struct type *type; /* Type that this function returns */
1545 struct type *ftype; /* Function that returns above type */
c5aa993b 1546
c906108c
SS
1547 /* Decode the type that this subroutine returns */
1548
1549 type = decode_die_type (dip);
1550
1551 /* Check to see if we already have a partially constructed user
1552 defined type for this DIE, from a forward reference. */
1553
b59661bd
AC
1554 ftype = lookup_utype (dip->die_ref);
1555 if (ftype == NULL)
c906108c
SS
1556 {
1557 /* This is the first reference to one of these types. Make
c5aa993b 1558 a new one and place it in the user defined types. */
c906108c 1559 ftype = lookup_function_type (type);
c5aa993b 1560 alloc_utype (dip->die_ref, ftype);
c906108c
SS
1561 }
1562 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1563 {
1564 /* We have an existing partially constructed type, so bash it
c5aa993b 1565 into the correct type. */
c906108c
SS
1566 TYPE_TARGET_TYPE (ftype) = type;
1567 TYPE_LENGTH (ftype) = 1;
1568 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1569 }
1570 else
1571 {
23136709 1572 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
c906108c
SS
1573 }
1574}
1575
1576/*
1577
c5aa993b 1578 LOCAL FUNCTION
c906108c 1579
c5aa993b 1580 read_enumeration -- process dies which define an enumeration
c906108c 1581
c5aa993b 1582 SYNOPSIS
c906108c 1583
c5aa993b
JM
1584 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1585 char *enddie, struct objfile *objfile)
c906108c 1586
c5aa993b 1587 DESCRIPTION
c906108c 1588
c5aa993b
JM
1589 Given a pointer to a die which begins an enumeration, process all
1590 the dies that define the members of the enumeration.
c906108c 1591
c5aa993b 1592 NOTES
c906108c 1593
c5aa993b
JM
1594 Note that we need to call enum_type regardless of whether or not we
1595 have a symbol, since we might have an enum without a tag name (thus
1596 no symbol for the tagname).
c906108c
SS
1597 */
1598
1599static void
fba45db2
KB
1600read_enumeration (struct dieinfo *dip, char *thisdie, char *enddie,
1601 struct objfile *objfile)
c906108c
SS
1602{
1603 struct type *type;
1604 struct symbol *sym;
c5aa993b 1605
c906108c
SS
1606 type = enum_type (dip, objfile);
1607 sym = new_symbol (dip, objfile);
1608 if (sym != NULL)
1609 {
1610 SYMBOL_TYPE (sym) = type;
1611 if (cu_language == language_cplus)
1612 {
1613 synthesize_typedef (dip, objfile, type);
1614 }
1615 }
1616}
1617
1618/*
1619
c5aa993b 1620 LOCAL FUNCTION
c906108c 1621
c5aa993b 1622 enum_type -- decode and return a type for an enumeration
c906108c 1623
c5aa993b 1624 SYNOPSIS
c906108c 1625
c5aa993b 1626 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
c906108c 1627
c5aa993b 1628 DESCRIPTION
c906108c 1629
c5aa993b
JM
1630 Given a pointer to a die information structure for the die which
1631 starts an enumeration, process all the dies that define the members
1632 of the enumeration and return a type pointer for the enumeration.
c906108c 1633
c5aa993b 1634 At the same time, for each member of the enumeration, create a
176620f1 1635 symbol for it with domain VAR_DOMAIN and class LOC_CONST,
c5aa993b 1636 and give it the type of the enumeration itself.
c906108c 1637
c5aa993b 1638 NOTES
c906108c 1639
c5aa993b
JM
1640 Note that the DWARF specification explicitly mandates that enum
1641 constants occur in reverse order from the source program order,
1642 for "consistency" and because this ordering is easier for many
1643 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1644 Entries). Because gdb wants to see the enum members in program
1645 source order, we have to ensure that the order gets reversed while
1646 we are processing them.
c906108c
SS
1647 */
1648
1649static struct type *
fba45db2 1650enum_type (struct dieinfo *dip, struct objfile *objfile)
c906108c
SS
1651{
1652 struct type *type;
c5aa993b
JM
1653 struct nextfield
1654 {
1655 struct nextfield *next;
1656 struct field field;
1657 };
c906108c
SS
1658 struct nextfield *list = NULL;
1659 struct nextfield *new;
1660 int nfields = 0;
1661 int n;
1662 char *scan;
1663 char *listend;
1664 unsigned short blocksz;
1665 struct symbol *sym;
1666 int nbytes;
1667 int unsigned_enum = 1;
c5aa993b 1668
b59661bd
AC
1669 type = lookup_utype (dip->die_ref);
1670 if (type == NULL)
c906108c
SS
1671 {
1672 /* No forward references created an empty type, so install one now */
c5aa993b 1673 type = alloc_utype (dip->die_ref, NULL);
c906108c
SS
1674 }
1675 TYPE_CODE (type) = TYPE_CODE_ENUM;
1676 /* Some compilers try to be helpful by inventing "fake" names for
1677 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1678 Thanks, but no thanks... */
c5aa993b
JM
1679 if (dip->at_name != NULL
1680 && *dip->at_name != '~'
1681 && *dip->at_name != '.')
c906108c 1682 {
b99607ea 1683 TYPE_TAG_NAME (type) = obconcat (&objfile->objfile_obstack,
c5aa993b 1684 "", "", dip->at_name);
c906108c 1685 }
c5aa993b 1686 if (dip->at_byte_size != 0)
c906108c 1687 {
c5aa993b 1688 TYPE_LENGTH (type) = dip->at_byte_size;
c906108c 1689 }
b59661bd
AC
1690 scan = dip->at_element_list;
1691 if (scan != NULL)
c906108c 1692 {
c5aa993b 1693 if (dip->short_element_list)
c906108c
SS
1694 {
1695 nbytes = attribute_size (AT_short_element_list);
1696 }
1697 else
1698 {
1699 nbytes = attribute_size (AT_element_list);
1700 }
1701 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1702 listend = scan + nbytes + blocksz;
1703 scan += nbytes;
1704 while (scan < listend)
1705 {
1706 new = (struct nextfield *) alloca (sizeof (struct nextfield));
c5aa993b 1707 new->next = list;
c906108c
SS
1708 list = new;
1709 FIELD_TYPE (list->field) = NULL;
1710 FIELD_BITSIZE (list->field) = 0;
01ad7f36 1711 FIELD_STATIC_KIND (list->field) = 0;
c906108c
SS
1712 FIELD_BITPOS (list->field) =
1713 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1714 objfile);
1715 scan += TARGET_FT_LONG_SIZE (objfile);
c5aa993b 1716 list->field.name = obsavestring (scan, strlen (scan),
b99607ea 1717 &objfile->objfile_obstack);
c906108c
SS
1718 scan += strlen (scan) + 1;
1719 nfields++;
1720 /* Handcraft a new symbol for this enum member. */
4a146b47 1721 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
1722 sizeof (struct symbol));
1723 memset (sym, 0, sizeof (struct symbol));
22abf04a 1724 DEPRECATED_SYMBOL_NAME (sym) = create_name (list->field.name,
4a146b47 1725 &objfile->objfile_obstack);
c906108c 1726 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
176620f1 1727 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1728 SYMBOL_CLASS (sym) = LOC_CONST;
1729 SYMBOL_TYPE (sym) = type;
1730 SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field);
1731 if (SYMBOL_VALUE (sym) < 0)
1732 unsigned_enum = 0;
1733 add_symbol_to_list (sym, list_in_scope);
1734 }
1735 /* Now create the vector of fields, and record how big it is. This is
c5aa993b
JM
1736 where we reverse the order, by pulling the members off the list in
1737 reverse order from how they were inserted. If we have no fields
1738 (this is apparently possible in C++) then skip building a field
1739 vector. */
c906108c
SS
1740 if (nfields > 0)
1741 {
1742 if (unsigned_enum)
1743 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
1744 TYPE_NFIELDS (type) = nfields;
1745 TYPE_FIELDS (type) = (struct field *)
4a146b47 1746 obstack_alloc (&objfile->objfile_obstack, sizeof (struct field) * nfields);
c906108c 1747 /* Copy the saved-up fields into the field vector. */
c5aa993b 1748 for (n = 0; (n < nfields) && (list != NULL); list = list->next)
c906108c 1749 {
c5aa993b
JM
1750 TYPE_FIELD (type, n++) = list->field;
1751 }
c906108c
SS
1752 }
1753 }
1754 return (type);
1755}
1756
1757/*
1758
c5aa993b 1759 LOCAL FUNCTION
c906108c 1760
c5aa993b 1761 read_func_scope -- process all dies within a function scope
c906108c 1762
c5aa993b 1763 DESCRIPTION
c906108c 1764
c5aa993b
JM
1765 Process all dies within a given function scope. We are passed
1766 a die information structure pointer DIP for the die which
1767 starts the function scope, and pointers into the raw die data
1768 that define the dies within the function scope.
1769
1770 For now, we ignore lexical block scopes within the function.
1771 The problem is that AT&T cc does not define a DWARF lexical
1772 block scope for the function itself, while gcc defines a
1773 lexical block scope for the function. We need to think about
1774 how to handle this difference, or if it is even a problem.
1775 (FIXME)
c906108c
SS
1776 */
1777
1778static void
fba45db2
KB
1779read_func_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1780 struct objfile *objfile)
c906108c 1781{
b59661bd 1782 struct context_stack *new;
c5aa993b 1783
c906108c
SS
1784 /* AT_name is absent if the function is described with an
1785 AT_abstract_origin tag.
1786 Ignore the function description for now to avoid GDB core dumps.
1787 FIXME: Add code to handle AT_abstract_origin tags properly. */
c5aa993b 1788 if (dip->at_name == NULL)
c906108c 1789 {
23136709
KB
1790 complaint (&symfile_complaints, "DIE @ 0x%x, AT_name tag missing",
1791 DIE_ID);
c906108c
SS
1792 return;
1793 }
1794
c5aa993b
JM
1795 if (objfile->ei.entry_point >= dip->at_low_pc &&
1796 objfile->ei.entry_point < dip->at_high_pc)
c906108c 1797 {
c5aa993b
JM
1798 objfile->ei.entry_func_lowpc = dip->at_low_pc;
1799 objfile->ei.entry_func_highpc = dip->at_high_pc;
c906108c 1800 }
c5aa993b
JM
1801 new = push_context (0, dip->at_low_pc);
1802 new->name = new_symbol (dip, objfile);
c906108c 1803 list_in_scope = &local_symbols;
c5aa993b 1804 process_dies (thisdie + dip->die_length, enddie, objfile);
c906108c
SS
1805 new = pop_context ();
1806 /* Make a block for the local symbols within. */
c5aa993b
JM
1807 finish_block (new->name, &local_symbols, new->old_blocks,
1808 new->start_addr, dip->at_high_pc, objfile);
c906108c
SS
1809 list_in_scope = &file_symbols;
1810}
1811
1812
1813/*
1814
c5aa993b 1815 LOCAL FUNCTION
c906108c 1816
c5aa993b 1817 handle_producer -- process the AT_producer attribute
c906108c 1818
c5aa993b 1819 DESCRIPTION
c906108c 1820
c5aa993b
JM
1821 Perform any operations that depend on finding a particular
1822 AT_producer attribute.
c906108c
SS
1823
1824 */
1825
1826static void
fba45db2 1827handle_producer (char *producer)
c906108c
SS
1828{
1829
1830 /* If this compilation unit was compiled with g++ or gcc, then set the
1831 processing_gcc_compilation flag. */
1832
cb137aa5 1833 if (DEPRECATED_STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER)))
c906108c
SS
1834 {
1835 char version = producer[strlen (GCC_PRODUCER)];
1836 processing_gcc_compilation = (version == '2' ? 2 : 1);
1837 }
1838 else
1839 {
1840 processing_gcc_compilation =
bf896cb0 1841 strncmp (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)) == 0;
c906108c
SS
1842 }
1843
1844 /* Select a demangling style if we can identify the producer and if
1845 the current style is auto. We leave the current style alone if it
1846 is not auto. We also leave the demangling style alone if we find a
1847 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1848
1849 if (AUTO_DEMANGLING)
1850 {
cb137aa5 1851 if (DEPRECATED_STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
c906108c 1852 {
8052a17a
JM
1853#if 0
1854 /* For now, stay with AUTO_DEMANGLING for g++ output, as we don't
1855 know whether it will use the old style or v3 mangling. */
c906108c 1856 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
8052a17a 1857#endif
c906108c 1858 }
cb137aa5 1859 else if (DEPRECATED_STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
c906108c
SS
1860 {
1861 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1862 }
1863 }
1864}
1865
1866
1867/*
1868
c5aa993b 1869 LOCAL FUNCTION
c906108c 1870
c5aa993b 1871 read_file_scope -- process all dies within a file scope
c906108c 1872
c5aa993b
JM
1873 DESCRIPTION
1874
1875 Process all dies within a given file scope. We are passed a
1876 pointer to the die information structure for the die which
1877 starts the file scope, and pointers into the raw die data which
1878 mark the range of dies within the file scope.
c906108c 1879
c5aa993b
JM
1880 When the partial symbol table is built, the file offset for the line
1881 number table for each compilation unit is saved in the partial symbol
1882 table entry for that compilation unit. As the symbols for each
1883 compilation unit are read, the line number table is read into memory
1884 and the variable lnbase is set to point to it. Thus all we have to
1885 do is use lnbase to access the line number table for the current
1886 compilation unit.
c906108c
SS
1887 */
1888
1889static void
fba45db2
KB
1890read_file_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1891 struct objfile *objfile)
c906108c
SS
1892{
1893 struct cleanup *back_to;
1894 struct symtab *symtab;
c5aa993b 1895
c906108c 1896 set_cu_language (dip);
c5aa993b 1897 if (dip->at_producer != NULL)
c906108c 1898 {
c5aa993b 1899 handle_producer (dip->at_producer);
c906108c
SS
1900 }
1901 numutypes = (enddie - thisdie) / 4;
1902 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1903 back_to = make_cleanup (free_utypes, NULL);
1904 memset (utypes, 0, numutypes * sizeof (struct type *));
1905 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
c5aa993b 1906 start_symtab (dip->at_name, dip->at_comp_dir, dip->at_low_pc);
c906108c
SS
1907 record_debugformat ("DWARF 1");
1908 decode_line_numbers (lnbase);
c5aa993b 1909 process_dies (thisdie + dip->die_length, enddie, objfile);
c906108c 1910
c5aa993b 1911 symtab = end_symtab (dip->at_high_pc, objfile, 0);
c906108c
SS
1912 if (symtab != NULL)
1913 {
c5aa993b
JM
1914 symtab->language = cu_language;
1915 }
c906108c
SS
1916 do_cleanups (back_to);
1917}
1918
1919/*
1920
c5aa993b 1921 LOCAL FUNCTION
c906108c 1922
c5aa993b 1923 process_dies -- process a range of DWARF Information Entries
c906108c 1924
c5aa993b 1925 SYNOPSIS
c906108c 1926
c5aa993b
JM
1927 static void process_dies (char *thisdie, char *enddie,
1928 struct objfile *objfile)
c906108c 1929
c5aa993b 1930 DESCRIPTION
c906108c 1931
c5aa993b
JM
1932 Process all DIE's in a specified range. May be (and almost
1933 certainly will be) called recursively.
c906108c
SS
1934 */
1935
1936static void
fba45db2 1937process_dies (char *thisdie, char *enddie, struct objfile *objfile)
c906108c
SS
1938{
1939 char *nextdie;
1940 struct dieinfo di;
c5aa993b 1941
c906108c
SS
1942 while (thisdie < enddie)
1943 {
1944 basicdieinfo (&di, thisdie, objfile);
1945 if (di.die_length < SIZEOF_DIE_LENGTH)
1946 {
1947 break;
1948 }
1949 else if (di.die_tag == TAG_padding)
1950 {
1951 nextdie = thisdie + di.die_length;
1952 }
1953 else
1954 {
1955 completedieinfo (&di, objfile);
1956 if (di.at_sibling != 0)
1957 {
1958 nextdie = dbbase + di.at_sibling - dbroff;
1959 }
1960 else
1961 {
1962 nextdie = thisdie + di.die_length;
1963 }
c906108c 1964 /* I think that these are always text, not data, addresses. */
181c1381
RE
1965 di.at_low_pc = SMASH_TEXT_ADDRESS (di.at_low_pc);
1966 di.at_high_pc = SMASH_TEXT_ADDRESS (di.at_high_pc);
c906108c
SS
1967 switch (di.die_tag)
1968 {
1969 case TAG_compile_unit:
1970 /* Skip Tag_compile_unit if we are already inside a compilation
c5aa993b
JM
1971 unit, we are unable to handle nested compilation units
1972 properly (FIXME). */
c906108c
SS
1973 if (current_subfile == NULL)
1974 read_file_scope (&di, thisdie, nextdie, objfile);
1975 else
1976 nextdie = thisdie + di.die_length;
1977 break;
1978 case TAG_global_subroutine:
1979 case TAG_subroutine:
1980 if (di.has_at_low_pc)
1981 {
1982 read_func_scope (&di, thisdie, nextdie, objfile);
1983 }
1984 break;
1985 case TAG_lexical_block:
1986 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
1987 break;
1988 case TAG_class_type:
1989 case TAG_structure_type:
1990 case TAG_union_type:
1991 read_structure_scope (&di, thisdie, nextdie, objfile);
1992 break;
1993 case TAG_enumeration_type:
1994 read_enumeration (&di, thisdie, nextdie, objfile);
1995 break;
1996 case TAG_subroutine_type:
1997 read_subroutine_type (&di, thisdie, nextdie);
1998 break;
1999 case TAG_array_type:
2000 dwarf_read_array_type (&di);
2001 break;
2002 case TAG_pointer_type:
2003 read_tag_pointer_type (&di);
2004 break;
2005 case TAG_string_type:
2006 read_tag_string_type (&di);
2007 break;
2008 default:
2009 new_symbol (&di, objfile);
2010 break;
2011 }
2012 }
2013 thisdie = nextdie;
2014 }
2015}
2016
2017/*
2018
c5aa993b 2019 LOCAL FUNCTION
c906108c 2020
c5aa993b 2021 decode_line_numbers -- decode a line number table fragment
c906108c 2022
c5aa993b 2023 SYNOPSIS
c906108c 2024
c5aa993b
JM
2025 static void decode_line_numbers (char *tblscan, char *tblend,
2026 long length, long base, long line, long pc)
c906108c 2027
c5aa993b 2028 DESCRIPTION
c906108c 2029
c5aa993b 2030 Translate the DWARF line number information to gdb form.
c906108c 2031
c5aa993b
JM
2032 The ".line" section contains one or more line number tables, one for
2033 each ".line" section from the objects that were linked.
c906108c 2034
c5aa993b
JM
2035 The AT_stmt_list attribute for each TAG_source_file entry in the
2036 ".debug" section contains the offset into the ".line" section for the
2037 start of the table for that file.
c906108c 2038
c5aa993b 2039 The table itself has the following structure:
c906108c 2040
c5aa993b
JM
2041 <table length><base address><source statement entry>
2042 4 bytes 4 bytes 10 bytes
c906108c 2043
c5aa993b
JM
2044 The table length is the total size of the table, including the 4 bytes
2045 for the length information.
c906108c 2046
c5aa993b
JM
2047 The base address is the address of the first instruction generated
2048 for the source file.
c906108c 2049
c5aa993b 2050 Each source statement entry has the following structure:
c906108c 2051
c5aa993b
JM
2052 <line number><statement position><address delta>
2053 4 bytes 2 bytes 4 bytes
c906108c 2054
c5aa993b
JM
2055 The line number is relative to the start of the file, starting with
2056 line 1.
c906108c 2057
c5aa993b
JM
2058 The statement position either -1 (0xFFFF) or the number of characters
2059 from the beginning of the line to the beginning of the statement.
c906108c 2060
c5aa993b
JM
2061 The address delta is the difference between the base address and
2062 the address of the first instruction for the statement.
c906108c 2063
c5aa993b
JM
2064 Note that we must copy the bytes from the packed table to our local
2065 variables before attempting to use them, to avoid alignment problems
2066 on some machines, particularly RISC processors.
c906108c 2067
c5aa993b 2068 BUGS
c906108c 2069
c5aa993b
JM
2070 Does gdb expect the line numbers to be sorted? They are now by
2071 chance/luck, but are not required to be. (FIXME)
c906108c 2072
c5aa993b
JM
2073 The line with number 0 is unused, gdb apparently can discover the
2074 span of the last line some other way. How? (FIXME)
c906108c
SS
2075 */
2076
2077static void
fba45db2 2078decode_line_numbers (char *linetable)
c906108c
SS
2079{
2080 char *tblscan;
2081 char *tblend;
2082 unsigned long length;
2083 unsigned long base;
2084 unsigned long line;
2085 unsigned long pc;
c5aa993b 2086
c906108c
SS
2087 if (linetable != NULL)
2088 {
2089 tblscan = tblend = linetable;
2090 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2091 current_objfile);
2092 tblscan += SIZEOF_LINETBL_LENGTH;
2093 tblend += length;
2094 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2095 GET_UNSIGNED, current_objfile);
2096 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2097 base += baseaddr;
2098 while (tblscan < tblend)
2099 {
2100 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2101 current_objfile);
2102 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2103 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2104 current_objfile);
2105 tblscan += SIZEOF_LINETBL_DELTA;
2106 pc += base;
2107 if (line != 0)
2108 {
2109 record_line (current_subfile, line, pc);
2110 }
2111 }
2112 }
2113}
2114
2115/*
2116
c5aa993b 2117 LOCAL FUNCTION
c906108c 2118
c5aa993b 2119 locval -- compute the value of a location attribute
c906108c 2120
c5aa993b 2121 SYNOPSIS
c906108c 2122
c5aa993b 2123 static int locval (struct dieinfo *dip)
c906108c 2124
c5aa993b 2125 DESCRIPTION
c906108c 2126
c5aa993b
JM
2127 Given pointer to a string of bytes that define a location, compute
2128 the location and return the value.
2129 A location description containing no atoms indicates that the
2130 object is optimized out. The optimized_out flag is set for those,
2131 the return value is meaningless.
c906108c 2132
c5aa993b
JM
2133 When computing values involving the current value of the frame pointer,
2134 the value zero is used, which results in a value relative to the frame
2135 pointer, rather than the absolute value. This is what GDB wants
2136 anyway.
c906108c 2137
c5aa993b
JM
2138 When the result is a register number, the isreg flag is set, otherwise
2139 it is cleared. This is a kludge until we figure out a better
2140 way to handle the problem. Gdb's design does not mesh well with the
2141 DWARF notion of a location computing interpreter, which is a shame
2142 because the flexibility goes unused.
2143
2144 NOTES
2145
2146 Note that stack[0] is unused except as a default error return.
2147 Note that stack overflow is not yet handled.
c906108c
SS
2148 */
2149
2150static int
fba45db2 2151locval (struct dieinfo *dip)
c906108c
SS
2152{
2153 unsigned short nbytes;
2154 unsigned short locsize;
2155 auto long stack[64];
2156 int stacki;
2157 char *loc;
2158 char *end;
2159 int loc_atom_code;
2160 int loc_value_size;
c5aa993b
JM
2161
2162 loc = dip->at_location;
c906108c
SS
2163 nbytes = attribute_size (AT_location);
2164 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2165 loc += nbytes;
2166 end = loc + locsize;
2167 stacki = 0;
2168 stack[stacki] = 0;
c5aa993b
JM
2169 dip->isreg = 0;
2170 dip->offreg = 0;
2171 dip->optimized_out = 1;
c906108c
SS
2172 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2173 while (loc < end)
2174 {
c5aa993b 2175 dip->optimized_out = 0;
c906108c
SS
2176 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2177 current_objfile);
2178 loc += SIZEOF_LOC_ATOM_CODE;
2179 switch (loc_atom_code)
2180 {
c5aa993b
JM
2181 case 0:
2182 /* error */
2183 loc = end;
2184 break;
2185 case OP_REG:
2186 /* push register (number) */
2187 stack[++stacki]
2188 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2189 GET_UNSIGNED,
2190 current_objfile));
2191 loc += loc_value_size;
2192 dip->isreg = 1;
2193 break;
2194 case OP_BASEREG:
2195 /* push value of register (number) */
2196 /* Actually, we compute the value as if register has 0, so the
2197 value ends up being the offset from that register. */
2198 dip->offreg = 1;
2199 dip->basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2200 current_objfile);
2201 loc += loc_value_size;
2202 stack[++stacki] = 0;
2203 break;
2204 case OP_ADDR:
2205 /* push address (relocated address) */
2206 stack[++stacki] = target_to_host (loc, loc_value_size,
2207 GET_UNSIGNED, current_objfile);
2208 loc += loc_value_size;
2209 break;
2210 case OP_CONST:
2211 /* push constant (number) FIXME: signed or unsigned! */
2212 stack[++stacki] = target_to_host (loc, loc_value_size,
2213 GET_SIGNED, current_objfile);
2214 loc += loc_value_size;
2215 break;
2216 case OP_DEREF2:
2217 /* pop, deref and push 2 bytes (as a long) */
23136709
KB
2218 complaint (&symfile_complaints,
2219 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%lx not handled",
2220 DIE_ID, DIE_NAME, stack[stacki]);
c5aa993b
JM
2221 break;
2222 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
23136709
KB
2223 complaint (&symfile_complaints,
2224 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%lx not handled",
2225 DIE_ID, DIE_NAME, stack[stacki]);
c5aa993b
JM
2226 break;
2227 case OP_ADD: /* pop top 2 items, add, push result */
2228 stack[stacki - 1] += stack[stacki];
2229 stacki--;
2230 break;
c906108c
SS
2231 }
2232 }
2233 return (stack[stacki]);
2234}
2235
2236/*
2237
c5aa993b 2238 LOCAL FUNCTION
c906108c 2239
c5aa993b 2240 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
c906108c 2241
c5aa993b 2242 SYNOPSIS
c906108c 2243
c5aa993b 2244 static void read_ofile_symtab (struct partial_symtab *pst)
c906108c 2245
c5aa993b 2246 DESCRIPTION
c906108c 2247
c5aa993b
JM
2248 When expanding a partial symbol table entry to a full symbol table
2249 entry, this is the function that gets called to read in the symbols
2250 for the compilation unit. A pointer to the newly constructed symtab,
2251 which is now the new first one on the objfile's symtab list, is
2252 stashed in the partial symbol table entry.
c906108c
SS
2253 */
2254
2255static void
fba45db2 2256read_ofile_symtab (struct partial_symtab *pst)
c906108c
SS
2257{
2258 struct cleanup *back_to;
2259 unsigned long lnsize;
2260 file_ptr foffset;
2261 bfd *abfd;
2262 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2263
c5aa993b
JM
2264 abfd = pst->objfile->obfd;
2265 current_objfile = pst->objfile;
c906108c
SS
2266
2267 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2268 unit, seek to the location in the file, and read in all the DIE's. */
2269
2270 diecount = 0;
2271 dbsize = DBLENGTH (pst);
2272 dbbase = xmalloc (dbsize);
c5aa993b
JM
2273 dbroff = DBROFF (pst);
2274 foffset = DBFOFF (pst) + dbroff;
c906108c
SS
2275 base_section_offsets = pst->section_offsets;
2276 baseaddr = ANOFFSET (pst->section_offsets, 0);
2277 if (bfd_seek (abfd, foffset, SEEK_SET) ||
3a42e9d0 2278 (bfd_bread (dbbase, dbsize, abfd) != dbsize))
c906108c 2279 {
b8c9b27d 2280 xfree (dbbase);
c906108c
SS
2281 error ("can't read DWARF data");
2282 }
b8c9b27d 2283 back_to = make_cleanup (xfree, dbbase);
c906108c
SS
2284
2285 /* If there is a line number table associated with this compilation unit
2286 then read the size of this fragment in bytes, from the fragment itself.
2287 Allocate a buffer for the fragment and read it in for future
2288 processing. */
2289
2290 lnbase = NULL;
2291 if (LNFOFF (pst))
2292 {
2293 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
4efb68b1 2294 (bfd_bread (lnsizedata, sizeof (lnsizedata), abfd)
3a42e9d0 2295 != sizeof (lnsizedata)))
c906108c
SS
2296 {
2297 error ("can't read DWARF line number table size");
2298 }
2299 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
c5aa993b 2300 GET_UNSIGNED, pst->objfile);
c906108c
SS
2301 lnbase = xmalloc (lnsize);
2302 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
3a42e9d0 2303 (bfd_bread (lnbase, lnsize, abfd) != lnsize))
c906108c 2304 {
b8c9b27d 2305 xfree (lnbase);
c906108c
SS
2306 error ("can't read DWARF line numbers");
2307 }
b8c9b27d 2308 make_cleanup (xfree, lnbase);
c906108c
SS
2309 }
2310
c5aa993b 2311 process_dies (dbbase, dbbase + dbsize, pst->objfile);
c906108c
SS
2312 do_cleanups (back_to);
2313 current_objfile = NULL;
c5aa993b 2314 pst->symtab = pst->objfile->symtabs;
c906108c
SS
2315}
2316
2317/*
2318
c5aa993b 2319 LOCAL FUNCTION
c906108c 2320
c5aa993b 2321 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
c906108c 2322
c5aa993b 2323 SYNOPSIS
c906108c 2324
c5aa993b 2325 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 2326
c5aa993b 2327 DESCRIPTION
c906108c 2328
c5aa993b
JM
2329 Called once for each partial symbol table entry that needs to be
2330 expanded into a full symbol table entry.
c906108c 2331
c5aa993b 2332 */
c906108c
SS
2333
2334static void
fba45db2 2335psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c
SS
2336{
2337 int i;
2338 struct cleanup *old_chain;
c5aa993b 2339
c906108c
SS
2340 if (pst != NULL)
2341 {
2342 if (pst->readin)
2343 {
2344 warning ("psymtab for %s already read in. Shouldn't happen.",
c5aa993b 2345 pst->filename);
c906108c
SS
2346 }
2347 else
2348 {
2349 /* Read in all partial symtabs on which this one is dependent */
c5aa993b 2350 for (i = 0; i < pst->number_of_dependencies; i++)
c906108c 2351 {
c5aa993b 2352 if (!pst->dependencies[i]->readin)
c906108c
SS
2353 {
2354 /* Inform about additional files that need to be read in. */
2355 if (info_verbose)
2356 {
2357 fputs_filtered (" ", gdb_stdout);
2358 wrap_here ("");
2359 fputs_filtered ("and ", gdb_stdout);
2360 wrap_here ("");
2361 printf_filtered ("%s...",
c5aa993b 2362 pst->dependencies[i]->filename);
c906108c 2363 wrap_here ("");
c5aa993b 2364 gdb_flush (gdb_stdout); /* Flush output */
c906108c 2365 }
c5aa993b 2366 psymtab_to_symtab_1 (pst->dependencies[i]);
c906108c 2367 }
c5aa993b
JM
2368 }
2369 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
c906108c
SS
2370 {
2371 buildsym_init ();
a0b3c4fd 2372 old_chain = make_cleanup (really_free_pendings, 0);
c906108c
SS
2373 read_ofile_symtab (pst);
2374 if (info_verbose)
2375 {
2376 printf_filtered ("%d DIE's, sorting...", diecount);
2377 wrap_here ("");
2378 gdb_flush (gdb_stdout);
2379 }
c906108c
SS
2380 do_cleanups (old_chain);
2381 }
c5aa993b 2382 pst->readin = 1;
c906108c
SS
2383 }
2384 }
2385}
2386
2387/*
2388
c5aa993b 2389 LOCAL FUNCTION
c906108c 2390
c5aa993b 2391 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
c906108c 2392
c5aa993b 2393 SYNOPSIS
c906108c 2394
c5aa993b 2395 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
c906108c 2396
c5aa993b 2397 DESCRIPTION
c906108c 2398
c5aa993b
JM
2399 This is the DWARF support entry point for building a full symbol
2400 table entry from a partial symbol table entry. We are passed a
2401 pointer to the partial symbol table entry that needs to be expanded.
c906108c 2402
c5aa993b 2403 */
c906108c
SS
2404
2405static void
fba45db2 2406dwarf_psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
2407{
2408
2409 if (pst != NULL)
2410 {
c5aa993b 2411 if (pst->readin)
c906108c
SS
2412 {
2413 warning ("psymtab for %s already read in. Shouldn't happen.",
c5aa993b 2414 pst->filename);
c906108c
SS
2415 }
2416 else
2417 {
c5aa993b 2418 if (DBLENGTH (pst) || pst->number_of_dependencies)
c906108c
SS
2419 {
2420 /* Print the message now, before starting serious work, to avoid
c5aa993b 2421 disconcerting pauses. */
c906108c
SS
2422 if (info_verbose)
2423 {
2424 printf_filtered ("Reading in symbols for %s...",
c5aa993b 2425 pst->filename);
c906108c
SS
2426 gdb_flush (gdb_stdout);
2427 }
c5aa993b 2428
c906108c 2429 psymtab_to_symtab_1 (pst);
c5aa993b
JM
2430
2431#if 0 /* FIXME: Check to see what dbxread is doing here and see if
2432 we need to do an equivalent or is this something peculiar to
2433 stabs/a.out format.
2434 Match with global symbols. This only needs to be done once,
2435 after all of the symtabs and dependencies have been read in.
2436 */
2437 scan_file_globals (pst->objfile);
c906108c 2438#endif
c5aa993b 2439
c906108c
SS
2440 /* Finish up the verbose info message. */
2441 if (info_verbose)
2442 {
2443 printf_filtered ("done.\n");
2444 gdb_flush (gdb_stdout);
2445 }
2446 }
2447 }
2448 }
2449}
2450
2451/*
2452
c5aa993b 2453 LOCAL FUNCTION
c906108c 2454
c5aa993b 2455 add_enum_psymbol -- add enumeration members to partial symbol table
c906108c 2456
c5aa993b 2457 DESCRIPTION
c906108c 2458
c5aa993b
JM
2459 Given pointer to a DIE that is known to be for an enumeration,
2460 extract the symbolic names of the enumeration members and add
2461 partial symbols for them.
2462 */
c906108c
SS
2463
2464static void
fba45db2 2465add_enum_psymbol (struct dieinfo *dip, struct objfile *objfile)
c906108c
SS
2466{
2467 char *scan;
2468 char *listend;
2469 unsigned short blocksz;
2470 int nbytes;
c5aa993b 2471
b59661bd
AC
2472 scan = dip->at_element_list;
2473 if (scan != NULL)
c906108c 2474 {
c5aa993b 2475 if (dip->short_element_list)
c906108c
SS
2476 {
2477 nbytes = attribute_size (AT_short_element_list);
2478 }
2479 else
2480 {
2481 nbytes = attribute_size (AT_element_list);
2482 }
2483 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2484 scan += nbytes;
2485 listend = scan + blocksz;
2486 while (scan < listend)
2487 {
2488 scan += TARGET_FT_LONG_SIZE (objfile);
176620f1 2489 add_psymbol_to_list (scan, strlen (scan), VAR_DOMAIN, LOC_CONST,
c5aa993b 2490 &objfile->static_psymbols, 0, 0, cu_language,
c906108c
SS
2491 objfile);
2492 scan += strlen (scan) + 1;
2493 }
2494 }
2495}
2496
2497/*
2498
c5aa993b 2499 LOCAL FUNCTION
c906108c 2500
c5aa993b 2501 add_partial_symbol -- add symbol to partial symbol table
c906108c 2502
c5aa993b 2503 DESCRIPTION
c906108c 2504
c5aa993b
JM
2505 Given a DIE, if it is one of the types that we want to
2506 add to a partial symbol table, finish filling in the die info
2507 and then add a partial symbol table entry for it.
c906108c 2508
c5aa993b 2509 NOTES
c906108c 2510
c5aa993b
JM
2511 The caller must ensure that the DIE has a valid name attribute.
2512 */
c906108c
SS
2513
2514static void
fba45db2 2515add_partial_symbol (struct dieinfo *dip, struct objfile *objfile)
c906108c 2516{
c5aa993b 2517 switch (dip->die_tag)
c906108c
SS
2518 {
2519 case TAG_global_subroutine:
c5aa993b 2520 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
176620f1 2521 VAR_DOMAIN, LOC_BLOCK,
c5aa993b
JM
2522 &objfile->global_psymbols,
2523 0, dip->at_low_pc, cu_language, objfile);
c906108c
SS
2524 break;
2525 case TAG_global_variable:
c5aa993b 2526 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
176620f1 2527 VAR_DOMAIN, LOC_STATIC,
c5aa993b 2528 &objfile->global_psymbols,
c906108c
SS
2529 0, 0, cu_language, objfile);
2530 break;
2531 case TAG_subroutine:
c5aa993b 2532 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
176620f1 2533 VAR_DOMAIN, LOC_BLOCK,
c5aa993b
JM
2534 &objfile->static_psymbols,
2535 0, dip->at_low_pc, cu_language, objfile);
c906108c
SS
2536 break;
2537 case TAG_local_variable:
c5aa993b 2538 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
176620f1 2539 VAR_DOMAIN, LOC_STATIC,
c5aa993b 2540 &objfile->static_psymbols,
c906108c
SS
2541 0, 0, cu_language, objfile);
2542 break;
2543 case TAG_typedef:
c5aa993b 2544 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
176620f1 2545 VAR_DOMAIN, LOC_TYPEDEF,
c5aa993b 2546 &objfile->static_psymbols,
c906108c
SS
2547 0, 0, cu_language, objfile);
2548 break;
2549 case TAG_class_type:
2550 case TAG_structure_type:
2551 case TAG_union_type:
2552 case TAG_enumeration_type:
2553 /* Do not add opaque aggregate definitions to the psymtab. */
c5aa993b 2554 if (!dip->has_at_byte_size)
c906108c 2555 break;
c5aa993b 2556 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
176620f1 2557 STRUCT_DOMAIN, LOC_TYPEDEF,
c5aa993b 2558 &objfile->static_psymbols,
c906108c
SS
2559 0, 0, cu_language, objfile);
2560 if (cu_language == language_cplus)
2561 {
2562 /* For C++, these implicitly act as typedefs as well. */
c5aa993b 2563 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
176620f1 2564 VAR_DOMAIN, LOC_TYPEDEF,
c5aa993b 2565 &objfile->static_psymbols,
c906108c
SS
2566 0, 0, cu_language, objfile);
2567 }
2568 break;
2569 }
2570}
9846de1b 2571/* *INDENT-OFF* */
c906108c
SS
2572/*
2573
2574LOCAL FUNCTION
2575
2576 scan_partial_symbols -- scan DIE's within a single compilation unit
2577
2578DESCRIPTION
2579
2580 Process the DIE's within a single compilation unit, looking for
2581 interesting DIE's that contribute to the partial symbol table entry
2582 for this compilation unit.
2583
2584NOTES
2585
2586 There are some DIE's that may appear both at file scope and within
2587 the scope of a function. We are only interested in the ones at file
2588 scope, and the only way to tell them apart is to keep track of the
2589 scope. For example, consider the test case:
2590
2591 static int i;
2592 main () { int j; }
2593
2594 for which the relevant DWARF segment has the structure:
2595
2596 0x51:
2597 0x23 global subrtn sibling 0x9b
2598 name main
2599 fund_type FT_integer
2600 low_pc 0x800004cc
2601 high_pc 0x800004d4
2602
2603 0x74:
2604 0x23 local var sibling 0x97
2605 name j
2606 fund_type FT_integer
2607 location OP_BASEREG 0xe
2608 OP_CONST 0xfffffffc
2609 OP_ADD
2610 0x97:
2611 0x4
2612
2613 0x9b:
2614 0x1d local var sibling 0xb8
2615 name i
2616 fund_type FT_integer
2617 location OP_ADDR 0x800025dc
2618
2619 0xb8:
2620 0x4
2621
2622 We want to include the symbol 'i' in the partial symbol table, but
2623 not the symbol 'j'. In essence, we want to skip all the dies within
2624 the scope of a TAG_global_subroutine DIE.
2625
2626 Don't attempt to add anonymous structures or unions since they have
2627 no name. Anonymous enumerations however are processed, because we
2628 want to extract their member names (the check for a tag name is
2629 done later).
2630
2631 Also, for variables and subroutines, check that this is the place
2632 where the actual definition occurs, rather than just a reference
2633 to an external.
2634 */
9846de1b 2635/* *INDENT-ON* */
c906108c 2636
c5aa993b
JM
2637
2638
c906108c 2639static void
fba45db2 2640scan_partial_symbols (char *thisdie, char *enddie, struct objfile *objfile)
c906108c
SS
2641{
2642 char *nextdie;
2643 char *temp;
2644 struct dieinfo di;
c5aa993b 2645
c906108c
SS
2646 while (thisdie < enddie)
2647 {
2648 basicdieinfo (&di, thisdie, objfile);
2649 if (di.die_length < SIZEOF_DIE_LENGTH)
2650 {
2651 break;
2652 }
2653 else
2654 {
2655 nextdie = thisdie + di.die_length;
2656 /* To avoid getting complete die information for every die, we
2657 only do it (below) for the cases we are interested in. */
2658 switch (di.die_tag)
2659 {
2660 case TAG_global_subroutine:
2661 case TAG_subroutine:
2662 completedieinfo (&di, objfile);
2663 if (di.at_name && (di.has_at_low_pc || di.at_location))
2664 {
2665 add_partial_symbol (&di, objfile);
2666 /* If there is a sibling attribute, adjust the nextdie
2667 pointer to skip the entire scope of the subroutine.
2668 Apply some sanity checking to make sure we don't
2669 overrun or underrun the range of remaining DIE's */
2670 if (di.at_sibling != 0)
2671 {
2672 temp = dbbase + di.at_sibling - dbroff;
2673 if ((temp < thisdie) || (temp >= enddie))
2674 {
23136709
KB
2675 bad_die_ref_complaint (DIE_ID, DIE_NAME,
2676 di.at_sibling);
c906108c
SS
2677 }
2678 else
2679 {
2680 nextdie = temp;
2681 }
2682 }
2683 }
2684 break;
2685 case TAG_global_variable:
2686 case TAG_local_variable:
2687 completedieinfo (&di, objfile);
2688 if (di.at_name && (di.has_at_low_pc || di.at_location))
2689 {
2690 add_partial_symbol (&di, objfile);
2691 }
2692 break;
2693 case TAG_typedef:
2694 case TAG_class_type:
2695 case TAG_structure_type:
2696 case TAG_union_type:
2697 completedieinfo (&di, objfile);
2698 if (di.at_name)
2699 {
2700 add_partial_symbol (&di, objfile);
2701 }
2702 break;
2703 case TAG_enumeration_type:
2704 completedieinfo (&di, objfile);
2705 if (di.at_name)
2706 {
2707 add_partial_symbol (&di, objfile);
2708 }
2709 add_enum_psymbol (&di, objfile);
2710 break;
2711 }
2712 }
2713 thisdie = nextdie;
2714 }
2715}
2716
2717/*
2718
c5aa993b 2719 LOCAL FUNCTION
c906108c 2720
c5aa993b 2721 scan_compilation_units -- build a psymtab entry for each compilation
c906108c 2722
c5aa993b 2723 DESCRIPTION
c906108c 2724
c5aa993b
JM
2725 This is the top level dwarf parsing routine for building partial
2726 symbol tables.
c906108c 2727
c5aa993b
JM
2728 It scans from the beginning of the DWARF table looking for the first
2729 TAG_compile_unit DIE, and then follows the sibling chain to locate
2730 each additional TAG_compile_unit DIE.
2731
2732 For each TAG_compile_unit DIE it creates a partial symtab structure,
2733 calls a subordinate routine to collect all the compilation unit's
2734 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2735 new partial symtab structure into the partial symbol table. It also
2736 records the appropriate information in the partial symbol table entry
2737 to allow the chunk of DIE's and line number table for this compilation
2738 unit to be located and re-read later, to generate a complete symbol
2739 table entry for the compilation unit.
2740
2741 Thus it effectively partitions up a chunk of DIE's for multiple
2742 compilation units into smaller DIE chunks and line number tables,
2743 and associates them with a partial symbol table entry.
2744
2745 NOTES
c906108c 2746
c5aa993b
JM
2747 If any compilation unit has no line number table associated with
2748 it for some reason (a missing at_stmt_list attribute, rather than
2749 just one with a value of zero, which is valid) then we ensure that
2750 the recorded file offset is zero so that the routine which later
2751 reads line number table fragments knows that there is no fragment
2752 to read.
c906108c 2753
c5aa993b 2754 RETURNS
c906108c 2755
c5aa993b 2756 Returns no value.
c906108c
SS
2757
2758 */
2759
2760static void
fba45db2
KB
2761scan_compilation_units (char *thisdie, char *enddie, file_ptr dbfoff,
2762 file_ptr lnoffset, struct objfile *objfile)
c906108c
SS
2763{
2764 char *nextdie;
2765 struct dieinfo di;
2766 struct partial_symtab *pst;
2767 int culength;
2768 int curoff;
2769 file_ptr curlnoffset;
2770
2771 while (thisdie < enddie)
2772 {
2773 basicdieinfo (&di, thisdie, objfile);
2774 if (di.die_length < SIZEOF_DIE_LENGTH)
2775 {
2776 break;
2777 }
2778 else if (di.die_tag != TAG_compile_unit)
2779 {
2780 nextdie = thisdie + di.die_length;
2781 }
2782 else
2783 {
2784 completedieinfo (&di, objfile);
2785 set_cu_language (&di);
2786 if (di.at_sibling != 0)
2787 {
2788 nextdie = dbbase + di.at_sibling - dbroff;
2789 }
2790 else
2791 {
2792 nextdie = thisdie + di.die_length;
2793 }
2794 curoff = thisdie - dbbase;
2795 culength = nextdie - thisdie;
2796 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2797
2798 /* First allocate a new partial symbol table structure */
2799
2800 pst = start_psymtab_common (objfile, base_section_offsets,
2801 di.at_name, di.at_low_pc,
c5aa993b
JM
2802 objfile->global_psymbols.next,
2803 objfile->static_psymbols.next);
c906108c 2804
c5aa993b
JM
2805 pst->texthigh = di.at_high_pc;
2806 pst->read_symtab_private = (char *)
8b92e4d5 2807 obstack_alloc (&objfile->objfile_obstack,
c5aa993b 2808 sizeof (struct dwfinfo));
c906108c
SS
2809 DBFOFF (pst) = dbfoff;
2810 DBROFF (pst) = curoff;
2811 DBLENGTH (pst) = culength;
c5aa993b
JM
2812 LNFOFF (pst) = curlnoffset;
2813 pst->read_symtab = dwarf_psymtab_to_symtab;
c906108c
SS
2814
2815 /* Now look for partial symbols */
2816
2817 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2818
c5aa993b
JM
2819 pst->n_global_syms = objfile->global_psymbols.next -
2820 (objfile->global_psymbols.list + pst->globals_offset);
2821 pst->n_static_syms = objfile->static_psymbols.next -
2822 (objfile->static_psymbols.list + pst->statics_offset);
c906108c
SS
2823 sort_pst_symbols (pst);
2824 /* If there is already a psymtab or symtab for a file of this name,
2825 remove it. (If there is a symtab, more drastic things also
2826 happen.) This happens in VxWorks. */
c5aa993b 2827 free_named_symtabs (pst->filename);
c906108c 2828 }
c5aa993b 2829 thisdie = nextdie;
c906108c
SS
2830 }
2831}
2832
2833/*
2834
c5aa993b 2835 LOCAL FUNCTION
c906108c 2836
c5aa993b 2837 new_symbol -- make a symbol table entry for a new symbol
c906108c 2838
c5aa993b 2839 SYNOPSIS
c906108c 2840
c5aa993b
JM
2841 static struct symbol *new_symbol (struct dieinfo *dip,
2842 struct objfile *objfile)
c906108c 2843
c5aa993b 2844 DESCRIPTION
c906108c 2845
c5aa993b
JM
2846 Given a pointer to a DWARF information entry, figure out if we need
2847 to make a symbol table entry for it, and if so, create a new entry
2848 and return a pointer to it.
c906108c
SS
2849 */
2850
2851static struct symbol *
fba45db2 2852new_symbol (struct dieinfo *dip, struct objfile *objfile)
c906108c
SS
2853{
2854 struct symbol *sym = NULL;
c5aa993b
JM
2855
2856 if (dip->at_name != NULL)
c906108c 2857 {
4a146b47 2858 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
2859 sizeof (struct symbol));
2860 OBJSTAT (objfile, n_syms++);
2861 memset (sym, 0, sizeof (struct symbol));
c906108c 2862 /* default assumptions */
176620f1 2863 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
2864 SYMBOL_CLASS (sym) = LOC_STATIC;
2865 SYMBOL_TYPE (sym) = decode_die_type (dip);
2866
2867 /* If this symbol is from a C++ compilation, then attempt to cache the
c5aa993b
JM
2868 demangled form for future reference. This is a typical time versus
2869 space tradeoff, that was decided in favor of time because it sped up
2870 C++ symbol lookups by a factor of about 20. */
c906108c
SS
2871
2872 SYMBOL_LANGUAGE (sym) = cu_language;
2de7ced7 2873 SYMBOL_SET_NAMES (sym, dip->at_name, strlen (dip->at_name), objfile);
c5aa993b 2874 switch (dip->die_tag)
c906108c
SS
2875 {
2876 case TAG_label:
c5aa993b 2877 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
c906108c
SS
2878 SYMBOL_CLASS (sym) = LOC_LABEL;
2879 break;
2880 case TAG_global_subroutine:
2881 case TAG_subroutine:
c5aa993b 2882 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
c906108c 2883 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
c5aa993b 2884 if (dip->at_prototyped)
c906108c
SS
2885 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
2886 SYMBOL_CLASS (sym) = LOC_BLOCK;
c5aa993b 2887 if (dip->die_tag == TAG_global_subroutine)
c906108c
SS
2888 {
2889 add_symbol_to_list (sym, &global_symbols);
2890 }
2891 else
2892 {
2893 add_symbol_to_list (sym, list_in_scope);
2894 }
2895 break;
2896 case TAG_global_variable:
c5aa993b 2897 if (dip->at_location != NULL)
c906108c
SS
2898 {
2899 SYMBOL_VALUE_ADDRESS (sym) = locval (dip);
2900 add_symbol_to_list (sym, &global_symbols);
2901 SYMBOL_CLASS (sym) = LOC_STATIC;
2902 SYMBOL_VALUE (sym) += baseaddr;
2903 }
2904 break;
2905 case TAG_local_variable:
c5aa993b 2906 if (dip->at_location != NULL)
c906108c
SS
2907 {
2908 int loc = locval (dip);
c5aa993b 2909 if (dip->optimized_out)
c906108c
SS
2910 {
2911 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
2912 }
c5aa993b 2913 else if (dip->isreg)
c906108c
SS
2914 {
2915 SYMBOL_CLASS (sym) = LOC_REGISTER;
2916 }
c5aa993b 2917 else if (dip->offreg)
c906108c
SS
2918 {
2919 SYMBOL_CLASS (sym) = LOC_BASEREG;
c5aa993b 2920 SYMBOL_BASEREG (sym) = dip->basereg;
c906108c
SS
2921 }
2922 else
2923 {
2924 SYMBOL_CLASS (sym) = LOC_STATIC;
2925 SYMBOL_VALUE (sym) += baseaddr;
2926 }
2927 if (SYMBOL_CLASS (sym) == LOC_STATIC)
2928 {
2929 /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS,
2930 which may store to a bigger location than SYMBOL_VALUE. */
2931 SYMBOL_VALUE_ADDRESS (sym) = loc;
2932 }
2933 else
2934 {
2935 SYMBOL_VALUE (sym) = loc;
2936 }
2937 add_symbol_to_list (sym, list_in_scope);
2938 }
2939 break;
2940 case TAG_formal_parameter:
c5aa993b 2941 if (dip->at_location != NULL)
c906108c
SS
2942 {
2943 SYMBOL_VALUE (sym) = locval (dip);
2944 }
2945 add_symbol_to_list (sym, list_in_scope);
c5aa993b 2946 if (dip->isreg)
c906108c
SS
2947 {
2948 SYMBOL_CLASS (sym) = LOC_REGPARM;
2949 }
c5aa993b 2950 else if (dip->offreg)
c906108c
SS
2951 {
2952 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
c5aa993b 2953 SYMBOL_BASEREG (sym) = dip->basereg;
c906108c
SS
2954 }
2955 else
2956 {
2957 SYMBOL_CLASS (sym) = LOC_ARG;
2958 }
2959 break;
2960 case TAG_unspecified_parameters:
2961 /* From varargs functions; gdb doesn't seem to have any interest in
2962 this information, so just ignore it for now. (FIXME?) */
2963 break;
2964 case TAG_class_type:
2965 case TAG_structure_type:
2966 case TAG_union_type:
2967 case TAG_enumeration_type:
2968 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 2969 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c
SS
2970 add_symbol_to_list (sym, list_in_scope);
2971 break;
2972 case TAG_typedef:
2973 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 2974 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
2975 add_symbol_to_list (sym, list_in_scope);
2976 break;
2977 default:
2978 /* Not a tag we recognize. Hopefully we aren't processing trash
2979 data, but since we must specifically ignore things we don't
2980 recognize, there is nothing else we should do at this point. */
2981 break;
2982 }
2983 }
2984 return (sym);
2985}
2986
2987/*
2988
c5aa993b 2989 LOCAL FUNCTION
c906108c 2990
c5aa993b 2991 synthesize_typedef -- make a symbol table entry for a "fake" typedef
c906108c 2992
c5aa993b 2993 SYNOPSIS
c906108c 2994
c5aa993b
JM
2995 static void synthesize_typedef (struct dieinfo *dip,
2996 struct objfile *objfile,
2997 struct type *type);
c906108c 2998
c5aa993b 2999 DESCRIPTION
c906108c 3000
c5aa993b
JM
3001 Given a pointer to a DWARF information entry, synthesize a typedef
3002 for the name in the DIE, using the specified type.
c906108c 3003
c5aa993b
JM
3004 This is used for C++ class, structs, unions, and enumerations to
3005 set up the tag name as a type.
c906108c
SS
3006
3007 */
3008
3009static void
fba45db2
KB
3010synthesize_typedef (struct dieinfo *dip, struct objfile *objfile,
3011 struct type *type)
c906108c
SS
3012{
3013 struct symbol *sym = NULL;
c5aa993b
JM
3014
3015 if (dip->at_name != NULL)
c906108c
SS
3016 {
3017 sym = (struct symbol *)
4a146b47 3018 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
c906108c
SS
3019 OBJSTAT (objfile, n_syms++);
3020 memset (sym, 0, sizeof (struct symbol));
22abf04a 3021 DEPRECATED_SYMBOL_NAME (sym) = create_name (dip->at_name,
4a146b47 3022 &objfile->objfile_obstack);
c906108c
SS
3023 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3024 SYMBOL_TYPE (sym) = type;
3025 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 3026 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
3027 add_symbol_to_list (sym, list_in_scope);
3028 }
3029}
3030
3031/*
3032
c5aa993b 3033 LOCAL FUNCTION
c906108c 3034
c5aa993b 3035 decode_mod_fund_type -- decode a modified fundamental type
c906108c 3036
c5aa993b 3037 SYNOPSIS
c906108c 3038
c5aa993b 3039 static struct type *decode_mod_fund_type (char *typedata)
c906108c 3040
c5aa993b 3041 DESCRIPTION
c906108c 3042
c5aa993b
JM
3043 Decode a block of data containing a modified fundamental
3044 type specification. TYPEDATA is a pointer to the block,
3045 which starts with a length containing the size of the rest
3046 of the block. At the end of the block is a fundmental type
3047 code value that gives the fundamental type. Everything
3048 in between are type modifiers.
c906108c 3049
c5aa993b
JM
3050 We simply compute the number of modifiers and call the general
3051 function decode_modified_type to do the actual work.
3052 */
c906108c
SS
3053
3054static struct type *
fba45db2 3055decode_mod_fund_type (char *typedata)
c906108c
SS
3056{
3057 struct type *typep = NULL;
3058 unsigned short modcount;
3059 int nbytes;
c5aa993b 3060
c906108c
SS
3061 /* Get the total size of the block, exclusive of the size itself */
3062
3063 nbytes = attribute_size (AT_mod_fund_type);
3064 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3065 typedata += nbytes;
3066
3067 /* Deduct the size of the fundamental type bytes at the end of the block. */
3068
3069 modcount -= attribute_size (AT_fund_type);
3070
3071 /* Now do the actual decoding */
3072
3073 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3074 return (typep);
3075}
3076
3077/*
3078
c5aa993b 3079 LOCAL FUNCTION
c906108c 3080
c5aa993b 3081 decode_mod_u_d_type -- decode a modified user defined type
c906108c 3082
c5aa993b 3083 SYNOPSIS
c906108c 3084
c5aa993b 3085 static struct type *decode_mod_u_d_type (char *typedata)
c906108c 3086
c5aa993b 3087 DESCRIPTION
c906108c 3088
c5aa993b
JM
3089 Decode a block of data containing a modified user defined
3090 type specification. TYPEDATA is a pointer to the block,
3091 which consists of a two byte length, containing the size
3092 of the rest of the block. At the end of the block is a
3093 four byte value that gives a reference to a user defined type.
3094 Everything in between are type modifiers.
c906108c 3095
c5aa993b
JM
3096 We simply compute the number of modifiers and call the general
3097 function decode_modified_type to do the actual work.
3098 */
c906108c
SS
3099
3100static struct type *
fba45db2 3101decode_mod_u_d_type (char *typedata)
c906108c
SS
3102{
3103 struct type *typep = NULL;
3104 unsigned short modcount;
3105 int nbytes;
c5aa993b 3106
c906108c
SS
3107 /* Get the total size of the block, exclusive of the size itself */
3108
3109 nbytes = attribute_size (AT_mod_u_d_type);
3110 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3111 typedata += nbytes;
3112
3113 /* Deduct the size of the reference type bytes at the end of the block. */
3114
3115 modcount -= attribute_size (AT_user_def_type);
3116
3117 /* Now do the actual decoding */
3118
3119 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3120 return (typep);
3121}
3122
3123/*
3124
c5aa993b 3125 LOCAL FUNCTION
c906108c 3126
c5aa993b 3127 decode_modified_type -- decode modified user or fundamental type
c906108c 3128
c5aa993b 3129 SYNOPSIS
c906108c 3130
c5aa993b
JM
3131 static struct type *decode_modified_type (char *modifiers,
3132 unsigned short modcount, int mtype)
c906108c 3133
c5aa993b 3134 DESCRIPTION
c906108c 3135
c5aa993b
JM
3136 Decode a modified type, either a modified fundamental type or
3137 a modified user defined type. MODIFIERS is a pointer to the
3138 block of bytes that define MODCOUNT modifiers. Immediately
3139 following the last modifier is a short containing the fundamental
3140 type or a long containing the reference to the user defined
3141 type. Which one is determined by MTYPE, which is either
3142 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3143 type we are generating.
c906108c 3144
c5aa993b
JM
3145 We call ourself recursively to generate each modified type,`
3146 until MODCOUNT reaches zero, at which point we have consumed
3147 all the modifiers and generate either the fundamental type or
3148 user defined type. When the recursion unwinds, each modifier
3149 is applied in turn to generate the full modified type.
3150
3151 NOTES
c906108c 3152
c5aa993b
JM
3153 If we find a modifier that we don't recognize, and it is not one
3154 of those reserved for application specific use, then we issue a
3155 warning and simply ignore the modifier.
c906108c 3156
c5aa993b 3157 BUGS
c906108c 3158
c5aa993b 3159 We currently ignore MOD_const and MOD_volatile. (FIXME)
c906108c
SS
3160
3161 */
3162
3163static struct type *
fba45db2 3164decode_modified_type (char *modifiers, unsigned int modcount, int mtype)
c906108c
SS
3165{
3166 struct type *typep = NULL;
3167 unsigned short fundtype;
3168 DIE_REF die_ref;
3169 char modifier;
3170 int nbytes;
c5aa993b 3171
c906108c
SS
3172 if (modcount == 0)
3173 {
3174 switch (mtype)
3175 {
3176 case AT_mod_fund_type:
3177 nbytes = attribute_size (AT_fund_type);
3178 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3179 current_objfile);
3180 typep = decode_fund_type (fundtype);
3181 break;
3182 case AT_mod_u_d_type:
3183 nbytes = attribute_size (AT_user_def_type);
3184 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3185 current_objfile);
b59661bd
AC
3186 typep = lookup_utype (die_ref);
3187 if (typep == NULL)
c906108c
SS
3188 {
3189 typep = alloc_utype (die_ref, NULL);
3190 }
3191 break;
3192 default:
23136709
KB
3193 complaint (&symfile_complaints,
3194 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)",
3195 DIE_ID, DIE_NAME, mtype);
c906108c
SS
3196 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3197 break;
3198 }
3199 }
3200 else
3201 {
3202 modifier = *modifiers++;
3203 typep = decode_modified_type (modifiers, --modcount, mtype);
3204 switch (modifier)
3205 {
c5aa993b
JM
3206 case MOD_pointer_to:
3207 typep = lookup_pointer_type (typep);
3208 break;
3209 case MOD_reference_to:
3210 typep = lookup_reference_type (typep);
3211 break;
3212 case MOD_const:
23136709
KB
3213 complaint (&symfile_complaints,
3214 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", DIE_ID,
3215 DIE_NAME); /* FIXME */
c5aa993b
JM
3216 break;
3217 case MOD_volatile:
23136709
KB
3218 complaint (&symfile_complaints,
3219 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored",
3220 DIE_ID, DIE_NAME); /* FIXME */
c5aa993b
JM
3221 break;
3222 default:
3cb3398d
EZ
3223 if (!(MOD_lo_user <= (unsigned char) modifier))
3224#if 0
3225/* This part of the test would always be true, and it triggers a compiler
3226 warning. */
c5aa993b 3227 && (unsigned char) modifier <= MOD_hi_user))
3cb3398d 3228#endif
c5aa993b 3229 {
23136709
KB
3230 complaint (&symfile_complaints,
3231 "DIE @ 0x%x \"%s\", unknown type modifier %u", DIE_ID,
3232 DIE_NAME, modifier);
c5aa993b
JM
3233 }
3234 break;
c906108c
SS
3235 }
3236 }
3237 return (typep);
3238}
3239
3240/*
3241
c5aa993b 3242 LOCAL FUNCTION
c906108c 3243
c5aa993b 3244 decode_fund_type -- translate basic DWARF type to gdb base type
c906108c 3245
c5aa993b 3246 DESCRIPTION
c906108c 3247
c5aa993b
JM
3248 Given an integer that is one of the fundamental DWARF types,
3249 translate it to one of the basic internal gdb types and return
3250 a pointer to the appropriate gdb type (a "struct type *").
c906108c 3251
c5aa993b 3252 NOTES
c906108c 3253
c5aa993b
JM
3254 For robustness, if we are asked to translate a fundamental
3255 type that we are unprepared to deal with, we return int so
3256 callers can always depend upon a valid type being returned,
3257 and so gdb may at least do something reasonable by default.
3258 If the type is not in the range of those types defined as
3259 application specific types, we also issue a warning.
3260 */
c906108c
SS
3261
3262static struct type *
fba45db2 3263decode_fund_type (unsigned int fundtype)
c906108c
SS
3264{
3265 struct type *typep = NULL;
c5aa993b 3266
c906108c
SS
3267 switch (fundtype)
3268 {
3269
3270 case FT_void:
3271 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3272 break;
c5aa993b 3273
c906108c
SS
3274 case FT_boolean: /* Was FT_set in AT&T version */
3275 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3276 break;
3277
3278 case FT_pointer: /* (void *) */
3279 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3280 typep = lookup_pointer_type (typep);
3281 break;
c5aa993b 3282
c906108c
SS
3283 case FT_char:
3284 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3285 break;
c5aa993b 3286
c906108c
SS
3287 case FT_signed_char:
3288 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3289 break;
3290
3291 case FT_unsigned_char:
3292 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3293 break;
c5aa993b 3294
c906108c
SS
3295 case FT_short:
3296 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3297 break;
3298
3299 case FT_signed_short:
3300 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3301 break;
c5aa993b 3302
c906108c
SS
3303 case FT_unsigned_short:
3304 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3305 break;
c5aa993b 3306
c906108c
SS
3307 case FT_integer:
3308 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3309 break;
3310
3311 case FT_signed_integer:
3312 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3313 break;
c5aa993b 3314
c906108c
SS
3315 case FT_unsigned_integer:
3316 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3317 break;
c5aa993b 3318
c906108c
SS
3319 case FT_long:
3320 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3321 break;
3322
3323 case FT_signed_long:
3324 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3325 break;
c5aa993b 3326
c906108c
SS
3327 case FT_unsigned_long:
3328 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3329 break;
c5aa993b 3330
c906108c
SS
3331 case FT_long_long:
3332 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3333 break;
3334
3335 case FT_signed_long_long:
3336 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3337 break;
3338
3339 case FT_unsigned_long_long:
3340 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3341 break;
3342
3343 case FT_float:
3344 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3345 break;
c5aa993b 3346
c906108c
SS
3347 case FT_dbl_prec_float:
3348 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3349 break;
c5aa993b 3350
c906108c
SS
3351 case FT_ext_prec_float:
3352 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3353 break;
c5aa993b 3354
c906108c
SS
3355 case FT_complex:
3356 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3357 break;
c5aa993b 3358
c906108c
SS
3359 case FT_dbl_prec_complex:
3360 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3361 break;
c5aa993b 3362
c906108c
SS
3363 case FT_ext_prec_complex:
3364 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3365 break;
c5aa993b 3366
c906108c
SS
3367 }
3368
3369 if (typep == NULL)
3370 {
3371 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3372 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3373 {
23136709
KB
3374 complaint (&symfile_complaints,
3375 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x",
3376 DIE_ID, DIE_NAME, fundtype);
c906108c
SS
3377 }
3378 }
c5aa993b 3379
c906108c
SS
3380 return (typep);
3381}
3382
3383/*
3384
c5aa993b 3385 LOCAL FUNCTION
c906108c 3386
c5aa993b 3387 create_name -- allocate a fresh copy of a string on an obstack
c906108c 3388
c5aa993b 3389 DESCRIPTION
c906108c 3390
c5aa993b
JM
3391 Given a pointer to a string and a pointer to an obstack, allocates
3392 a fresh copy of the string on the specified obstack.
c906108c 3393
c5aa993b 3394 */
c906108c
SS
3395
3396static char *
fba45db2 3397create_name (char *name, struct obstack *obstackp)
c906108c
SS
3398{
3399 int length;
3400 char *newname;
3401
3402 length = strlen (name) + 1;
3403 newname = (char *) obstack_alloc (obstackp, length);
3404 strcpy (newname, name);
3405 return (newname);
3406}
3407
3408/*
3409
c5aa993b 3410 LOCAL FUNCTION
c906108c 3411
c5aa993b 3412 basicdieinfo -- extract the minimal die info from raw die data
c906108c 3413
c5aa993b 3414 SYNOPSIS
c906108c 3415
c5aa993b
JM
3416 void basicdieinfo (char *diep, struct dieinfo *dip,
3417 struct objfile *objfile)
c906108c 3418
c5aa993b 3419 DESCRIPTION
c906108c 3420
c5aa993b
JM
3421 Given a pointer to raw DIE data, and a pointer to an instance of a
3422 die info structure, this function extracts the basic information
3423 from the DIE data required to continue processing this DIE, along
3424 with some bookkeeping information about the DIE.
c906108c 3425
c5aa993b
JM
3426 The information we absolutely must have includes the DIE tag,
3427 and the DIE length. If we need the sibling reference, then we
3428 will have to call completedieinfo() to process all the remaining
3429 DIE information.
c906108c 3430
c5aa993b
JM
3431 Note that since there is no guarantee that the data is properly
3432 aligned in memory for the type of access required (indirection
3433 through anything other than a char pointer), and there is no
3434 guarantee that it is in the same byte order as the gdb host,
3435 we call a function which deals with both alignment and byte
3436 swapping issues. Possibly inefficient, but quite portable.
c906108c 3437
c5aa993b
JM
3438 We also take care of some other basic things at this point, such
3439 as ensuring that the instance of the die info structure starts
3440 out completely zero'd and that curdie is initialized for use
3441 in error reporting if we have a problem with the current die.
c906108c 3442
c5aa993b
JM
3443 NOTES
3444
3445 All DIE's must have at least a valid length, thus the minimum
3446 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3447 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3448 are forced to be TAG_padding DIES.
c906108c 3449
c5aa993b
JM
3450 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3451 that if a padding DIE is used for alignment and the amount needed is
3452 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3453 enough to align to the next alignment boundry.
3454
3455 We do some basic sanity checking here, such as verifying that the
3456 length of the die would not cause it to overrun the recorded end of
3457 the buffer holding the DIE info. If we find a DIE that is either
3458 too small or too large, we force it's length to zero which should
3459 cause the caller to take appropriate action.
c906108c
SS
3460 */
3461
3462static void
fba45db2 3463basicdieinfo (struct dieinfo *dip, char *diep, struct objfile *objfile)
c906108c
SS
3464{
3465 curdie = dip;
3466 memset (dip, 0, sizeof (struct dieinfo));
c5aa993b
JM
3467 dip->die = diep;
3468 dip->die_ref = dbroff + (diep - dbbase);
3469 dip->die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3470 objfile);
3471 if ((dip->die_length < SIZEOF_DIE_LENGTH) ||
3472 ((diep + dip->die_length) > (dbbase + dbsize)))
c906108c 3473 {
23136709
KB
3474 complaint (&symfile_complaints,
3475 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%ld bytes)",
3476 DIE_ID, DIE_NAME, dip->die_length);
c5aa993b 3477 dip->die_length = 0;
c906108c 3478 }
c5aa993b 3479 else if (dip->die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
c906108c 3480 {
c5aa993b 3481 dip->die_tag = TAG_padding;
c906108c
SS
3482 }
3483 else
3484 {
3485 diep += SIZEOF_DIE_LENGTH;
c5aa993b
JM
3486 dip->die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3487 objfile);
c906108c
SS
3488 }
3489}
3490
3491/*
3492
c5aa993b 3493 LOCAL FUNCTION
c906108c 3494
c5aa993b 3495 completedieinfo -- finish reading the information for a given DIE
c906108c 3496
c5aa993b 3497 SYNOPSIS
c906108c 3498
c5aa993b 3499 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
c906108c 3500
c5aa993b 3501 DESCRIPTION
c906108c 3502
c5aa993b
JM
3503 Given a pointer to an already partially initialized die info structure,
3504 scan the raw DIE data and finish filling in the die info structure
3505 from the various attributes found.
c906108c 3506
c5aa993b
JM
3507 Note that since there is no guarantee that the data is properly
3508 aligned in memory for the type of access required (indirection
3509 through anything other than a char pointer), and there is no
3510 guarantee that it is in the same byte order as the gdb host,
3511 we call a function which deals with both alignment and byte
3512 swapping issues. Possibly inefficient, but quite portable.
c906108c 3513
c5aa993b
JM
3514 NOTES
3515
3516 Each time we are called, we increment the diecount variable, which
3517 keeps an approximate count of the number of dies processed for
3518 each compilation unit. This information is presented to the user
3519 if the info_verbose flag is set.
c906108c
SS
3520
3521 */
3522
3523static void
fba45db2 3524completedieinfo (struct dieinfo *dip, struct objfile *objfile)
c906108c
SS
3525{
3526 char *diep; /* Current pointer into raw DIE data */
3527 char *end; /* Terminate DIE scan here */
3528 unsigned short attr; /* Current attribute being scanned */
3529 unsigned short form; /* Form of the attribute */
3530 int nbytes; /* Size of next field to read */
c5aa993b 3531
c906108c 3532 diecount++;
c5aa993b
JM
3533 diep = dip->die;
3534 end = diep + dip->die_length;
c906108c
SS
3535 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3536 while (diep < end)
3537 {
3538 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3539 diep += SIZEOF_ATTRIBUTE;
b59661bd
AC
3540 nbytes = attribute_size (attr);
3541 if (nbytes == -1)
c906108c 3542 {
23136709
KB
3543 complaint (&symfile_complaints,
3544 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes",
3545 DIE_ID, DIE_NAME);
c906108c
SS
3546 diep = end;
3547 continue;
3548 }
3549 switch (attr)
3550 {
3551 case AT_fund_type:
c5aa993b
JM
3552 dip->at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3553 objfile);
c906108c
SS
3554 break;
3555 case AT_ordering:
c5aa993b
JM
3556 dip->at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3557 objfile);
c906108c
SS
3558 break;
3559 case AT_bit_offset:
c5aa993b
JM
3560 dip->at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3561 objfile);
c906108c
SS
3562 break;
3563 case AT_sibling:
c5aa993b
JM
3564 dip->at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3565 objfile);
c906108c
SS
3566 break;
3567 case AT_stmt_list:
c5aa993b
JM
3568 dip->at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3569 objfile);
3570 dip->has_at_stmt_list = 1;
c906108c
SS
3571 break;
3572 case AT_low_pc:
c5aa993b
JM
3573 dip->at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3574 objfile);
3575 dip->at_low_pc += baseaddr;
3576 dip->has_at_low_pc = 1;
c906108c
SS
3577 break;
3578 case AT_high_pc:
c5aa993b
JM
3579 dip->at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3580 objfile);
3581 dip->at_high_pc += baseaddr;
c906108c
SS
3582 break;
3583 case AT_language:
c5aa993b
JM
3584 dip->at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3585 objfile);
c906108c
SS
3586 break;
3587 case AT_user_def_type:
c5aa993b
JM
3588 dip->at_user_def_type = target_to_host (diep, nbytes,
3589 GET_UNSIGNED, objfile);
c906108c
SS
3590 break;
3591 case AT_byte_size:
c5aa993b
JM
3592 dip->at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3593 objfile);
3594 dip->has_at_byte_size = 1;
c906108c
SS
3595 break;
3596 case AT_bit_size:
c5aa993b
JM
3597 dip->at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3598 objfile);
c906108c
SS
3599 break;
3600 case AT_member:
c5aa993b
JM
3601 dip->at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3602 objfile);
c906108c
SS
3603 break;
3604 case AT_discr:
c5aa993b
JM
3605 dip->at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3606 objfile);
c906108c
SS
3607 break;
3608 case AT_location:
c5aa993b 3609 dip->at_location = diep;
c906108c
SS
3610 break;
3611 case AT_mod_fund_type:
c5aa993b 3612 dip->at_mod_fund_type = diep;
c906108c
SS
3613 break;
3614 case AT_subscr_data:
c5aa993b 3615 dip->at_subscr_data = diep;
c906108c
SS
3616 break;
3617 case AT_mod_u_d_type:
c5aa993b 3618 dip->at_mod_u_d_type = diep;
c906108c
SS
3619 break;
3620 case AT_element_list:
c5aa993b
JM
3621 dip->at_element_list = diep;
3622 dip->short_element_list = 0;
c906108c
SS
3623 break;
3624 case AT_short_element_list:
c5aa993b
JM
3625 dip->at_element_list = diep;
3626 dip->short_element_list = 1;
c906108c
SS
3627 break;
3628 case AT_discr_value:
c5aa993b 3629 dip->at_discr_value = diep;
c906108c
SS
3630 break;
3631 case AT_string_length:
c5aa993b 3632 dip->at_string_length = diep;
c906108c
SS
3633 break;
3634 case AT_name:
c5aa993b 3635 dip->at_name = diep;
c906108c
SS
3636 break;
3637 case AT_comp_dir:
3638 /* For now, ignore any "hostname:" portion, since gdb doesn't
3639 know how to deal with it. (FIXME). */
c5aa993b
JM
3640 dip->at_comp_dir = strrchr (diep, ':');
3641 if (dip->at_comp_dir != NULL)
c906108c 3642 {
c5aa993b 3643 dip->at_comp_dir++;
c906108c
SS
3644 }
3645 else
3646 {
c5aa993b 3647 dip->at_comp_dir = diep;
c906108c
SS
3648 }
3649 break;
3650 case AT_producer:
c5aa993b 3651 dip->at_producer = diep;
c906108c
SS
3652 break;
3653 case AT_start_scope:
c5aa993b
JM
3654 dip->at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3655 objfile);
c906108c
SS
3656 break;
3657 case AT_stride_size:
c5aa993b
JM
3658 dip->at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3659 objfile);
c906108c
SS
3660 break;
3661 case AT_src_info:
c5aa993b
JM
3662 dip->at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3663 objfile);
c906108c
SS
3664 break;
3665 case AT_prototyped:
c5aa993b 3666 dip->at_prototyped = diep;
c906108c
SS
3667 break;
3668 default:
3669 /* Found an attribute that we are unprepared to handle. However
3670 it is specifically one of the design goals of DWARF that
3671 consumers should ignore unknown attributes. As long as the
3672 form is one that we recognize (so we know how to skip it),
3673 we can just ignore the unknown attribute. */
3674 break;
3675 }
3676 form = FORM_FROM_ATTR (attr);
3677 switch (form)
3678 {
3679 case FORM_DATA2:
3680 diep += 2;
3681 break;
3682 case FORM_DATA4:
3683 case FORM_REF:
3684 diep += 4;
3685 break;
3686 case FORM_DATA8:
3687 diep += 8;
3688 break;
3689 case FORM_ADDR:
3690 diep += TARGET_FT_POINTER_SIZE (objfile);
3691 break;
3692 case FORM_BLOCK2:
3693 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3694 break;
3695 case FORM_BLOCK4:
3696 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3697 break;
3698 case FORM_STRING:
3699 diep += strlen (diep) + 1;
3700 break;
3701 default:
23136709 3702 unknown_attribute_form_complaint (DIE_ID, DIE_NAME, form);
c906108c
SS
3703 diep = end;
3704 break;
3705 }
3706 }
3707}
3708
3709/*
3710
c5aa993b 3711 LOCAL FUNCTION
c906108c 3712
c5aa993b 3713 target_to_host -- swap in target data to host
c906108c 3714
c5aa993b 3715 SYNOPSIS
c906108c 3716
c5aa993b
JM
3717 target_to_host (char *from, int nbytes, int signextend,
3718 struct objfile *objfile)
c906108c 3719
c5aa993b 3720 DESCRIPTION
c906108c 3721
c5aa993b
JM
3722 Given pointer to data in target format in FROM, a byte count for
3723 the size of the data in NBYTES, a flag indicating whether or not
3724 the data is signed in SIGNEXTEND, and a pointer to the current
3725 objfile in OBJFILE, convert the data to host format and return
3726 the converted value.
c906108c 3727
c5aa993b 3728 NOTES
c906108c 3729
c5aa993b
JM
3730 FIXME: If we read data that is known to be signed, and expect to
3731 use it as signed data, then we need to explicitly sign extend the
3732 result until the bfd library is able to do this for us.
c906108c 3733
c5aa993b 3734 FIXME: Would a 32 bit target ever need an 8 byte result?
c906108c
SS
3735
3736 */
3737
3738static CORE_ADDR
fba45db2
KB
3739target_to_host (char *from, int nbytes, int signextend, /* FIXME: Unused */
3740 struct objfile *objfile)
c906108c
SS
3741{
3742 CORE_ADDR rtnval;
3743
3744 switch (nbytes)
3745 {
c5aa993b
JM
3746 case 8:
3747 rtnval = bfd_get_64 (objfile->obfd, (bfd_byte *) from);
3748 break;
3749 case 4:
3750 rtnval = bfd_get_32 (objfile->obfd, (bfd_byte *) from);
3751 break;
3752 case 2:
3753 rtnval = bfd_get_16 (objfile->obfd, (bfd_byte *) from);
3754 break;
3755 case 1:
3756 rtnval = bfd_get_8 (objfile->obfd, (bfd_byte *) from);
3757 break;
3758 default:
23136709
KB
3759 complaint (&symfile_complaints,
3760 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object",
3761 DIE_ID, DIE_NAME, nbytes);
c5aa993b
JM
3762 rtnval = 0;
3763 break;
c906108c
SS
3764 }
3765 return (rtnval);
3766}
3767
3768/*
3769
c5aa993b 3770 LOCAL FUNCTION
c906108c 3771
c5aa993b 3772 attribute_size -- compute size of data for a DWARF attribute
c906108c 3773
c5aa993b 3774 SYNOPSIS
c906108c 3775
c5aa993b 3776 static int attribute_size (unsigned int attr)
c906108c 3777
c5aa993b 3778 DESCRIPTION
c906108c 3779
c5aa993b
JM
3780 Given a DWARF attribute in ATTR, compute the size of the first
3781 piece of data associated with this attribute and return that
3782 size.
c906108c 3783
c5aa993b 3784 Returns -1 for unrecognized attributes.
c906108c
SS
3785
3786 */
3787
3788static int
fba45db2 3789attribute_size (unsigned int attr)
c906108c
SS
3790{
3791 int nbytes; /* Size of next data for this attribute */
3792 unsigned short form; /* Form of the attribute */
3793
3794 form = FORM_FROM_ATTR (attr);
3795 switch (form)
3796 {
c5aa993b
JM
3797 case FORM_STRING: /* A variable length field is next */
3798 nbytes = 0;
3799 break;
3800 case FORM_DATA2: /* Next 2 byte field is the data itself */
3801 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3802 nbytes = 2;
3803 break;
3804 case FORM_DATA4: /* Next 4 byte field is the data itself */
3805 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3806 case FORM_REF: /* Next 4 byte field is a DIE offset */
3807 nbytes = 4;
3808 break;
3809 case FORM_DATA8: /* Next 8 byte field is the data itself */
3810 nbytes = 8;
3811 break;
3812 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3813 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3814 break;
3815 default:
23136709 3816 unknown_attribute_form_complaint (DIE_ID, DIE_NAME, form);
c5aa993b
JM
3817 nbytes = -1;
3818 break;
3819 }
c906108c
SS
3820 return (nbytes);
3821}
This page took 0.561747 seconds and 4 git commands to generate.