2005-02-11 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
CommitLineData
c906108c 1/* DWARF debugging format support for GDB.
1bac305b
AC
2
3 Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
b99607ea 4 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
1bac305b 5
c906108c
SS
6 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
7 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
c906108c 24
5ae7ca1d
MC
25/*
26 If you are looking for DWARF-2 support, you are in the wrong file.
013be872
MC
27 Go look in dwarf2read.c. This file is for the original DWARF,
28 also known as DWARF-1.
29
30 DWARF-1 is slowly headed for obsoletion.
31
b2a871dd 32 In gcc 3.4.0, support for dwarf-1 has been removed.
013be872
MC
33
34 In gcc 3.3.2, these targets prefer dwarf-1:
35
36 i[34567]86-sequent-ptx4*
37 i[34567]86-sequent-sysv4*
38 mips-sni-sysv4
39 sparc-hal-solaris2*
40
41 In gcc 3.2.2, these targets prefer dwarf-1:
42
43 i[34567]86-dg-dgux*
44 i[34567]86-sequent-ptx4*
45 i[34567]86-sequent-sysv4*
46 m88k-dg-dgux*
47 mips-sni-sysv4
48 sparc-hal-solaris2*
49
50 In gcc 2.95.3, these targets prefer dwarf-1:
51
52 i[34567]86-dg-dgux*
53 i[34567]86-ncr-sysv4*
54 i[34567]86-sequent-ptx4*
55 i[34567]86-sequent-sysv4*
56 i[34567]86-*-osf1*
57 i[34567]86-*-sco3.2v5*
58 i[34567]86-*-sysv4*
59 i860-alliant-*
60 i860-*-sysv4*
61 m68k-atari-sysv4*
62 m68k-cbm-sysv4*
63 m68k-*-sysv4*
64 m88k-dg-dgux*
65 m88k-*-sysv4*
66 mips-sni-sysv4
67 mips-*-gnu*
68 sh-*-elf*
69 sh-*-rtemself*
70 sparc-hal-solaris2*
71 sparc-*-sysv4*
72
73 Some non-gcc compilers produce dwarf-1:
74
75 PR gdb/1179 was from a user with Diab C++ 4.3.
b2a871dd
MC
76 On 2003-07-25 the gdb list received a report from a user
77 with Diab Compiler 4.4b.
013be872 78 Other users have also reported using Diab compilers with dwarf-1.
b2a871dd
MC
79
80 Diab Compiler Suite 5.0.1 supports dwarf-2/dwarf-3 for C and C++.
81 (Diab(tm) Compiler Suite 5.0.1 Release Notes, DOC-14691-ZD-00,
82 Wind River Systems, 2002-07-31).
83
013be872
MC
84 On 2003-06-09 the gdb list received a report from a user
85 with Absoft ProFortran f77 which is dwarf-1.
86
9cbc6ef0 87 Absoft ProFortran Linux[sic] Fortran User Guide (no version,
b2a871dd
MC
88 but copyright dates are 1991-2001) says that Absoft ProFortran
89 supports -gdwarf1 and -gdwarf2.
90
91 -- chastain 2004-04-24
5ae7ca1d
MC
92*/
93
c906108c
SS
94/*
95
c5aa993b
JM
96 FIXME: Do we need to generate dependencies in partial symtabs?
97 (Perhaps we don't need to).
c906108c 98
c5aa993b
JM
99 FIXME: Resolve minor differences between what information we put in the
100 partial symbol table and what dbxread puts in. For example, we don't yet
101 put enum constants there. And dbxread seems to invent a lot of typedefs
102 we never see. Use the new printpsym command to see the partial symbol table
103 contents.
c906108c 104
c5aa993b
JM
105 FIXME: Figure out a better way to tell gdb about the name of the function
106 contain the user's entry point (I.E. main())
c906108c 107
c5aa993b
JM
108 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
109 other things to work on, if you get bored. :-)
c906108c 110
c5aa993b 111 */
c906108c
SS
112
113#include "defs.h"
114#include "symtab.h"
115#include "gdbtypes.h"
c906108c
SS
116#include "objfiles.h"
117#include "elf/dwarf.h"
118#include "buildsym.h"
119#include "demangle.h"
c5aa993b 120#include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
c906108c
SS
121#include "language.h"
122#include "complaints.h"
123
124#include <fcntl.h>
125#include "gdb_string.h"
126
127/* Some macros to provide DIE info for complaints. */
128
129#define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
130#define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
131
132/* Complaints that can be issued during DWARF debug info reading. */
133
23136709
KB
134static void
135bad_die_ref_complaint (int arg1, const char *arg2, int arg3)
c906108c 136{
23136709 137 complaint (&symfile_complaints,
e2e0b3e5 138 _("DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit"),
23136709
KB
139 arg1, arg2, arg3);
140}
c906108c 141
23136709
KB
142static void
143unknown_attribute_form_complaint (int arg1, const char *arg2, int arg3)
c906108c 144{
23136709 145 complaint (&symfile_complaints,
e2e0b3e5 146 _("DIE @ 0x%x \"%s\", unknown attribute form (0x%x)"), arg1, arg2,
23136709
KB
147 arg3);
148}
c906108c 149
23136709
KB
150static void
151dup_user_type_definition_complaint (int arg1, const char *arg2)
c906108c 152{
23136709 153 complaint (&symfile_complaints,
e2e0b3e5 154 _("DIE @ 0x%x \"%s\", internal error: duplicate user type definition"),
23136709
KB
155 arg1, arg2);
156}
c906108c 157
23136709
KB
158static void
159bad_array_element_type_complaint (int arg1, const char *arg2, int arg3)
c906108c 160{
23136709 161 complaint (&symfile_complaints,
e2e0b3e5 162 _("DIE @ 0x%x \"%s\", bad array element type attribute 0x%x"), arg1,
23136709
KB
163 arg2, arg3);
164}
c906108c
SS
165
166typedef unsigned int DIE_REF; /* Reference to a DIE */
167
168#ifndef GCC_PRODUCER
169#define GCC_PRODUCER "GNU C "
170#endif
171
172#ifndef GPLUS_PRODUCER
173#define GPLUS_PRODUCER "GNU C++ "
174#endif
175
176#ifndef LCC_PRODUCER
177#define LCC_PRODUCER "NCR C/C++"
178#endif
179
c906108c
SS
180/* Flags to target_to_host() that tell whether or not the data object is
181 expected to be signed. Used, for example, when fetching a signed
182 integer in the target environment which is used as a signed integer
183 in the host environment, and the two environments have different sized
184 ints. In this case, *somebody* has to sign extend the smaller sized
185 int. */
186
187#define GET_UNSIGNED 0 /* No sign extension required */
188#define GET_SIGNED 1 /* Sign extension required */
189
190/* Defines for things which are specified in the document "DWARF Debugging
191 Information Format" published by UNIX International, Programming Languages
192 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
193
194#define SIZEOF_DIE_LENGTH 4
195#define SIZEOF_DIE_TAG 2
196#define SIZEOF_ATTRIBUTE 2
197#define SIZEOF_FORMAT_SPECIFIER 1
198#define SIZEOF_FMT_FT 2
199#define SIZEOF_LINETBL_LENGTH 4
200#define SIZEOF_LINETBL_LINENO 4
201#define SIZEOF_LINETBL_STMT 2
202#define SIZEOF_LINETBL_DELTA 4
203#define SIZEOF_LOC_ATOM_CODE 1
204
205#define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
206
207/* Macros that return the sizes of various types of data in the target
208 environment.
209
210 FIXME: Currently these are just compile time constants (as they are in
211 other parts of gdb as well). They need to be able to get the right size
212 either from the bfd or possibly from the DWARF info. It would be nice if
213 the DWARF producer inserted DIES that describe the fundamental types in
214 the target environment into the DWARF info, similar to the way dbx stabs
215 producers produce information about their fundamental types. */
216
217#define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
218#define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
219
220/* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
221 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
222 However, the Issue 2 DWARF specification from AT&T defines it as
223 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
224 For backwards compatibility with the AT&T compiler produced executables
225 we define AT_short_element_list for this variant. */
226
227#define AT_short_element_list (0x00f0|FORM_BLOCK2)
228
c906108c
SS
229/* The DWARF debugging information consists of two major pieces,
230 one is a block of DWARF Information Entries (DIE's) and the other
231 is a line number table. The "struct dieinfo" structure contains
232 the information for a single DIE, the one currently being processed.
233
234 In order to make it easier to randomly access the attribute fields
235 of the current DIE, which are specifically unordered within the DIE,
236 each DIE is scanned and an instance of the "struct dieinfo"
237 structure is initialized.
238
239 Initialization is done in two levels. The first, done by basicdieinfo(),
240 just initializes those fields that are vital to deciding whether or not
241 to use this DIE, how to skip past it, etc. The second, done by the
242 function completedieinfo(), fills in the rest of the information.
243
244 Attributes which have block forms are not interpreted at the time
245 the DIE is scanned, instead we just save pointers to the start
246 of their value fields.
247
248 Some fields have a flag <name>_p that is set when the value of the
249 field is valid (I.E. we found a matching attribute in the DIE). Since
250 we may want to test for the presence of some attributes in the DIE,
251 such as AT_low_pc, without restricting the values of the field,
252 we need someway to note that we found such an attribute.
c5aa993b 253
c906108c 254 */
c5aa993b 255
c906108c
SS
256typedef char BLOCK;
257
c5aa993b
JM
258struct dieinfo
259 {
260 char *die; /* Pointer to the raw DIE data */
261 unsigned long die_length; /* Length of the raw DIE data */
262 DIE_REF die_ref; /* Offset of this DIE */
263 unsigned short die_tag; /* Tag for this DIE */
264 unsigned long at_padding;
265 unsigned long at_sibling;
266 BLOCK *at_location;
267 char *at_name;
268 unsigned short at_fund_type;
269 BLOCK *at_mod_fund_type;
270 unsigned long at_user_def_type;
271 BLOCK *at_mod_u_d_type;
272 unsigned short at_ordering;
273 BLOCK *at_subscr_data;
274 unsigned long at_byte_size;
275 unsigned short at_bit_offset;
276 unsigned long at_bit_size;
277 BLOCK *at_element_list;
278 unsigned long at_stmt_list;
279 CORE_ADDR at_low_pc;
280 CORE_ADDR at_high_pc;
281 unsigned long at_language;
282 unsigned long at_member;
283 unsigned long at_discr;
284 BLOCK *at_discr_value;
285 BLOCK *at_string_length;
286 char *at_comp_dir;
287 char *at_producer;
288 unsigned long at_start_scope;
289 unsigned long at_stride_size;
290 unsigned long at_src_info;
291 char *at_prototyped;
292 unsigned int has_at_low_pc:1;
293 unsigned int has_at_stmt_list:1;
294 unsigned int has_at_byte_size:1;
295 unsigned int short_element_list:1;
296
297 /* Kludge to identify register variables */
298
299 unsigned int isreg;
300
301 /* Kludge to identify optimized out variables */
302
303 unsigned int optimized_out;
304
305 /* Kludge to identify basereg references.
306 Nonzero if we have an offset relative to a basereg. */
307
308 unsigned int offreg;
309
310 /* Kludge to identify which base register is it relative to. */
311
312 unsigned int basereg;
313 };
c906108c 314
c5aa993b 315static int diecount; /* Approximate count of dies for compilation unit */
c906108c
SS
316static struct dieinfo *curdie; /* For warnings and such */
317
c5aa993b
JM
318static char *dbbase; /* Base pointer to dwarf info */
319static int dbsize; /* Size of dwarf info in bytes */
320static int dbroff; /* Relative offset from start of .debug section */
321static char *lnbase; /* Base pointer to line section */
c906108c
SS
322
323/* This value is added to each symbol value. FIXME: Generalize to
324 the section_offsets structure used by dbxread (once this is done,
325 pass the appropriate section number to end_symtab). */
326static CORE_ADDR baseaddr; /* Add to each symbol value */
327
328/* The section offsets used in the current psymtab or symtab. FIXME,
329 only used to pass one value (baseaddr) at the moment. */
330static struct section_offsets *base_section_offsets;
331
332/* We put a pointer to this structure in the read_symtab_private field
333 of the psymtab. */
334
c5aa993b
JM
335struct dwfinfo
336 {
337 /* Always the absolute file offset to the start of the ".debug"
338 section for the file containing the DIE's being accessed. */
339 file_ptr dbfoff;
340 /* Relative offset from the start of the ".debug" section to the
341 first DIE to be accessed. When building the partial symbol
342 table, this value will be zero since we are accessing the
343 entire ".debug" section. When expanding a partial symbol
344 table entry, this value will be the offset to the first
345 DIE for the compilation unit containing the symbol that
346 triggers the expansion. */
347 int dbroff;
348 /* The size of the chunk of DIE's being examined, in bytes. */
349 int dblength;
350 /* The absolute file offset to the line table fragment. Ignored
351 when building partial symbol tables, but used when expanding
352 them, and contains the absolute file offset to the fragment
353 of the ".line" section containing the line numbers for the
354 current compilation unit. */
355 file_ptr lnfoff;
356 };
c906108c
SS
357
358#define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
359#define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
360#define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
361#define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
362
363/* The generic symbol table building routines have separate lists for
364 file scope symbols and all all other scopes (local scopes). So
365 we need to select the right one to pass to add_symbol_to_list().
366 We do it by keeping a pointer to the correct list in list_in_scope.
367
368 FIXME: The original dwarf code just treated the file scope as the first
369 local scope, and all other local scopes as nested local scopes, and worked
370 fine. Check to see if we really need to distinguish these in buildsym.c */
371
372struct pending **list_in_scope = &file_symbols;
373
374/* DIES which have user defined types or modified user defined types refer to
375 other DIES for the type information. Thus we need to associate the offset
376 of a DIE for a user defined type with a pointer to the type information.
377
378 Originally this was done using a simple but expensive algorithm, with an
379 array of unsorted structures, each containing an offset/type-pointer pair.
380 This array was scanned linearly each time a lookup was done. The result
381 was that gdb was spending over half it's startup time munging through this
382 array of pointers looking for a structure that had the right offset member.
383
384 The second attempt used the same array of structures, but the array was
385 sorted using qsort each time a new offset/type was recorded, and a binary
386 search was used to find the type pointer for a given DIE offset. This was
387 even slower, due to the overhead of sorting the array each time a new
388 offset/type pair was entered.
389
390 The third attempt uses a fixed size array of type pointers, indexed by a
391 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
392 we can divide any DIE offset by 4 to obtain a unique index into this fixed
393 size array. Since each element is a 4 byte pointer, it takes exactly as
394 much memory to hold this array as to hold the DWARF info for a given
395 compilation unit. But it gets freed as soon as we are done with it.
396 This has worked well in practice, as a reasonable tradeoff between memory
397 consumption and speed, without having to resort to much more complicated
398 algorithms. */
399
400static struct type **utypes; /* Pointer to array of user type pointers */
401static int numutypes; /* Max number of user type pointers */
402
403/* Maintain an array of referenced fundamental types for the current
404 compilation unit being read. For DWARF version 1, we have to construct
405 the fundamental types on the fly, since no information about the
406 fundamental types is supplied. Each such fundamental type is created by
407 calling a language dependent routine to create the type, and then a
408 pointer to that type is then placed in the array at the index specified
409 by it's FT_<TYPENAME> value. The array has a fixed size set by the
410 FT_NUM_MEMBERS compile time constant, which is the number of predefined
411 fundamental types gdb knows how to construct. */
412
c5aa993b 413static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
c906108c
SS
414
415/* Record the language for the compilation unit which is currently being
416 processed. We know it once we have seen the TAG_compile_unit DIE,
417 and we need it while processing the DIE's for that compilation unit.
418 It is eventually saved in the symtab structure, but we don't finalize
419 the symtab struct until we have processed all the DIE's for the
420 compilation unit. We also need to get and save a pointer to the
421 language struct for this language, so we can call the language
422 dependent routines for doing things such as creating fundamental
423 types. */
424
425static enum language cu_language;
426static const struct language_defn *cu_language_defn;
427
428/* Forward declarations of static functions so we don't have to worry
429 about ordering within this file. */
430
4efb68b1 431static void free_utypes (void *);
c906108c 432
a14ed312 433static int attribute_size (unsigned int);
c906108c 434
a14ed312 435static CORE_ADDR target_to_host (char *, int, int, struct objfile *);
c906108c 436
a14ed312 437static void add_enum_psymbol (struct dieinfo *, struct objfile *);
c906108c 438
a14ed312 439static void handle_producer (char *);
c906108c 440
570b8f7c
AC
441static void read_file_scope (struct dieinfo *, char *, char *,
442 struct objfile *);
c906108c 443
570b8f7c
AC
444static void read_func_scope (struct dieinfo *, char *, char *,
445 struct objfile *);
c906108c 446
570b8f7c
AC
447static void read_lexical_block_scope (struct dieinfo *, char *, char *,
448 struct objfile *);
c906108c 449
a14ed312 450static void scan_partial_symbols (char *, char *, struct objfile *);
c906108c 451
570b8f7c
AC
452static void scan_compilation_units (char *, char *, file_ptr, file_ptr,
453 struct objfile *);
c906108c 454
a14ed312 455static void add_partial_symbol (struct dieinfo *, struct objfile *);
c906108c 456
a14ed312 457static void basicdieinfo (struct dieinfo *, char *, struct objfile *);
c906108c 458
a14ed312 459static void completedieinfo (struct dieinfo *, struct objfile *);
c906108c 460
a14ed312 461static void dwarf_psymtab_to_symtab (struct partial_symtab *);
c906108c 462
a14ed312 463static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 464
a14ed312 465static void read_ofile_symtab (struct partial_symtab *);
c906108c 466
a14ed312 467static void process_dies (char *, char *, struct objfile *);
c906108c 468
570b8f7c
AC
469static void read_structure_scope (struct dieinfo *, char *, char *,
470 struct objfile *);
c906108c 471
a14ed312 472static struct type *decode_array_element_type (char *);
c906108c 473
a14ed312 474static struct type *decode_subscript_data_item (char *, char *);
c906108c 475
a14ed312 476static void dwarf_read_array_type (struct dieinfo *);
c906108c 477
a14ed312 478static void read_tag_pointer_type (struct dieinfo *dip);
c906108c 479
a14ed312 480static void read_tag_string_type (struct dieinfo *dip);
c906108c 481
a14ed312 482static void read_subroutine_type (struct dieinfo *, char *, char *);
c906108c 483
570b8f7c
AC
484static void read_enumeration (struct dieinfo *, char *, char *,
485 struct objfile *);
c906108c 486
a14ed312
KB
487static struct type *struct_type (struct dieinfo *, char *, char *,
488 struct objfile *);
c906108c 489
a14ed312 490static struct type *enum_type (struct dieinfo *, struct objfile *);
c906108c 491
a14ed312 492static void decode_line_numbers (char *);
c906108c 493
a14ed312 494static struct type *decode_die_type (struct dieinfo *);
c906108c 495
a14ed312 496static struct type *decode_mod_fund_type (char *);
c906108c 497
a14ed312 498static struct type *decode_mod_u_d_type (char *);
c906108c 499
a14ed312 500static struct type *decode_modified_type (char *, unsigned int, int);
c906108c 501
a14ed312 502static struct type *decode_fund_type (unsigned int);
c906108c 503
a14ed312 504static char *create_name (char *, struct obstack *);
c906108c 505
a14ed312 506static struct type *lookup_utype (DIE_REF);
c906108c 507
a14ed312 508static struct type *alloc_utype (DIE_REF, struct type *);
c906108c 509
a14ed312 510static struct symbol *new_symbol (struct dieinfo *, struct objfile *);
c906108c 511
570b8f7c
AC
512static void synthesize_typedef (struct dieinfo *, struct objfile *,
513 struct type *);
c906108c 514
a14ed312 515static int locval (struct dieinfo *);
c906108c 516
a14ed312 517static void set_cu_language (struct dieinfo *);
c906108c 518
a14ed312 519static struct type *dwarf_fundamental_type (struct objfile *, int);
c906108c
SS
520
521
522/*
523
c5aa993b 524 LOCAL FUNCTION
c906108c 525
c5aa993b 526 dwarf_fundamental_type -- lookup or create a fundamental type
c906108c 527
c5aa993b 528 SYNOPSIS
c906108c 529
c5aa993b
JM
530 struct type *
531 dwarf_fundamental_type (struct objfile *objfile, int typeid)
c906108c 532
c5aa993b 533 DESCRIPTION
c906108c 534
c5aa993b
JM
535 DWARF version 1 doesn't supply any fundamental type information,
536 so gdb has to construct such types. It has a fixed number of
537 fundamental types that it knows how to construct, which is the
538 union of all types that it knows how to construct for all languages
539 that it knows about. These are enumerated in gdbtypes.h.
c906108c 540
c5aa993b
JM
541 As an example, assume we find a DIE that references a DWARF
542 fundamental type of FT_integer. We first look in the ftypes
543 array to see if we already have such a type, indexed by the
544 gdb internal value of FT_INTEGER. If so, we simply return a
545 pointer to that type. If not, then we ask an appropriate
546 language dependent routine to create a type FT_INTEGER, using
547 defaults reasonable for the current target machine, and install
548 that type in ftypes for future reference.
c906108c 549
c5aa993b 550 RETURNS
c906108c 551
c5aa993b 552 Pointer to a fundamental type.
c906108c 553
c5aa993b 554 */
c906108c
SS
555
556static struct type *
fba45db2 557dwarf_fundamental_type (struct objfile *objfile, int typeid)
c906108c
SS
558{
559 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
560 {
8a3fe4f8 561 error (_("internal error - invalid fundamental type id %d"), typeid);
c906108c
SS
562 }
563
564 /* Look for this particular type in the fundamental type vector. If one is
565 not found, create and install one appropriate for the current language
566 and the current target machine. */
567
568 if (ftypes[typeid] == NULL)
569 {
c5aa993b 570 ftypes[typeid] = cu_language_defn->la_fund_type (objfile, typeid);
c906108c
SS
571 }
572
573 return (ftypes[typeid]);
574}
575
576/*
577
c5aa993b 578 LOCAL FUNCTION
c906108c 579
c5aa993b 580 set_cu_language -- set local copy of language for compilation unit
c906108c 581
c5aa993b 582 SYNOPSIS
c906108c 583
c5aa993b
JM
584 void
585 set_cu_language (struct dieinfo *dip)
c906108c 586
c5aa993b 587 DESCRIPTION
c906108c 588
c5aa993b
JM
589 Decode the language attribute for a compilation unit DIE and
590 remember what the language was. We use this at various times
591 when processing DIE's for a given compilation unit.
c906108c 592
c5aa993b 593 RETURNS
c906108c 594
c5aa993b 595 No return value.
c906108c
SS
596
597 */
598
599static void
fba45db2 600set_cu_language (struct dieinfo *dip)
c906108c 601{
c5aa993b 602 switch (dip->at_language)
c906108c 603 {
c5aa993b
JM
604 case LANG_C89:
605 case LANG_C:
606 cu_language = language_c;
607 break;
608 case LANG_C_PLUS_PLUS:
609 cu_language = language_cplus;
610 break;
c5aa993b
JM
611 case LANG_MODULA2:
612 cu_language = language_m2;
613 break;
614 case LANG_FORTRAN77:
615 case LANG_FORTRAN90:
616 cu_language = language_fortran;
617 break;
618 case LANG_ADA83:
619 case LANG_COBOL74:
620 case LANG_COBOL85:
621 case LANG_PASCAL83:
622 /* We don't know anything special about these yet. */
623 cu_language = language_unknown;
624 break;
625 default:
626 /* If no at_language, try to deduce one from the filename */
627 cu_language = deduce_language_from_filename (dip->at_name);
628 break;
c906108c
SS
629 }
630 cu_language_defn = language_def (cu_language);
631}
632
633/*
634
c5aa993b 635 GLOBAL FUNCTION
c906108c 636
c5aa993b 637 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
c906108c 638
c5aa993b 639 SYNOPSIS
c906108c 640
c5aa993b 641 void dwarf_build_psymtabs (struct objfile *objfile,
c5aa993b
JM
642 int mainline, file_ptr dbfoff, unsigned int dbfsize,
643 file_ptr lnoffset, unsigned int lnsize)
c906108c 644
c5aa993b 645 DESCRIPTION
c906108c 646
c5aa993b
JM
647 This function is called upon to build partial symtabs from files
648 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
c906108c 649
c5aa993b
JM
650 It is passed a bfd* containing the DIES
651 and line number information, the corresponding filename for that
652 file, a base address for relocating the symbols, a flag indicating
653 whether or not this debugging information is from a "main symbol
654 table" rather than a shared library or dynamically linked file,
655 and file offset/size pairs for the DIE information and line number
656 information.
c906108c 657
c5aa993b 658 RETURNS
c906108c 659
c5aa993b 660 No return value.
c906108c
SS
661
662 */
663
664void
fba45db2
KB
665dwarf_build_psymtabs (struct objfile *objfile, int mainline, file_ptr dbfoff,
666 unsigned int dbfsize, file_ptr lnoffset,
667 unsigned int lnsize)
c906108c
SS
668{
669 bfd *abfd = objfile->obfd;
670 struct cleanup *back_to;
c5aa993b 671
c906108c
SS
672 current_objfile = objfile;
673 dbsize = dbfsize;
674 dbbase = xmalloc (dbsize);
675 dbroff = 0;
676 if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
3a42e9d0 677 (bfd_bread (dbbase, dbsize, abfd) != dbsize))
c906108c 678 {
b8c9b27d 679 xfree (dbbase);
8a3fe4f8 680 error (_("can't read DWARF data from '%s'"), bfd_get_filename (abfd));
c906108c 681 }
b8c9b27d 682 back_to = make_cleanup (xfree, dbbase);
c5aa993b 683
c906108c
SS
684 /* If we are reinitializing, or if we have never loaded syms yet, init.
685 Since we have no idea how many DIES we are looking at, we just guess
686 some arbitrary value. */
c5aa993b 687
ef96bde8
EZ
688 if (mainline
689 || (objfile->global_psymbols.size == 0
690 && objfile->static_psymbols.size == 0))
c906108c
SS
691 {
692 init_psymbol_list (objfile, 1024);
693 }
c5aa993b 694
c906108c
SS
695 /* Save the relocation factor where everybody can see it. */
696
d4f3574e
SS
697 base_section_offsets = objfile->section_offsets;
698 baseaddr = ANOFFSET (objfile->section_offsets, 0);
c906108c
SS
699
700 /* Follow the compilation unit sibling chain, building a partial symbol
701 table entry for each one. Save enough information about each compilation
702 unit to locate the full DWARF information later. */
c5aa993b 703
c906108c 704 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
c5aa993b 705
c906108c
SS
706 do_cleanups (back_to);
707 current_objfile = NULL;
708}
709
710/*
711
c5aa993b 712 LOCAL FUNCTION
c906108c 713
c5aa993b 714 read_lexical_block_scope -- process all dies in a lexical block
c906108c 715
c5aa993b 716 SYNOPSIS
c906108c 717
c5aa993b
JM
718 static void read_lexical_block_scope (struct dieinfo *dip,
719 char *thisdie, char *enddie)
c906108c 720
c5aa993b 721 DESCRIPTION
c906108c 722
c5aa993b
JM
723 Process all the DIES contained within a lexical block scope.
724 Start a new scope, process the dies, and then close the scope.
c906108c
SS
725
726 */
727
728static void
fba45db2
KB
729read_lexical_block_scope (struct dieinfo *dip, char *thisdie, char *enddie,
730 struct objfile *objfile)
c906108c 731{
b59661bd 732 struct context_stack *new;
c906108c 733
c5aa993b
JM
734 push_context (0, dip->at_low_pc);
735 process_dies (thisdie + dip->die_length, enddie, objfile);
c906108c
SS
736 new = pop_context ();
737 if (local_symbols != NULL)
738 {
c5aa993b
JM
739 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
740 dip->at_high_pc, objfile);
c906108c 741 }
c5aa993b 742 local_symbols = new->locals;
c906108c
SS
743}
744
745/*
746
c5aa993b 747 LOCAL FUNCTION
c906108c 748
c5aa993b 749 lookup_utype -- look up a user defined type from die reference
c906108c 750
c5aa993b 751 SYNOPSIS
c906108c 752
c5aa993b 753 static type *lookup_utype (DIE_REF die_ref)
c906108c 754
c5aa993b 755 DESCRIPTION
c906108c 756
c5aa993b
JM
757 Given a DIE reference, lookup the user defined type associated with
758 that DIE, if it has been registered already. If not registered, then
759 return NULL. Alloc_utype() can be called to register an empty
760 type for this reference, which will be filled in later when the
761 actual referenced DIE is processed.
c906108c
SS
762 */
763
764static struct type *
fba45db2 765lookup_utype (DIE_REF die_ref)
c906108c
SS
766{
767 struct type *type = NULL;
768 int utypeidx;
c5aa993b 769
c906108c
SS
770 utypeidx = (die_ref - dbroff) / 4;
771 if ((utypeidx < 0) || (utypeidx >= numutypes))
772 {
23136709 773 bad_die_ref_complaint (DIE_ID, DIE_NAME, die_ref);
c906108c
SS
774 }
775 else
776 {
777 type = *(utypes + utypeidx);
778 }
779 return (type);
780}
781
782
783/*
784
c5aa993b 785 LOCAL FUNCTION
c906108c 786
c5aa993b 787 alloc_utype -- add a user defined type for die reference
c906108c 788
c5aa993b 789 SYNOPSIS
c906108c 790
c5aa993b 791 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
c906108c 792
c5aa993b 793 DESCRIPTION
c906108c 794
c5aa993b
JM
795 Given a die reference DIE_REF, and a possible pointer to a user
796 defined type UTYPEP, register that this reference has a user
797 defined type and either use the specified type in UTYPEP or
798 make a new empty type that will be filled in later.
c906108c 799
c5aa993b
JM
800 We should only be called after calling lookup_utype() to verify that
801 there is not currently a type registered for DIE_REF.
c906108c
SS
802 */
803
804static struct type *
fba45db2 805alloc_utype (DIE_REF die_ref, struct type *utypep)
c906108c
SS
806{
807 struct type **typep;
808 int utypeidx;
c5aa993b 809
c906108c
SS
810 utypeidx = (die_ref - dbroff) / 4;
811 typep = utypes + utypeidx;
812 if ((utypeidx < 0) || (utypeidx >= numutypes))
813 {
814 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
23136709 815 bad_die_ref_complaint (DIE_ID, DIE_NAME, die_ref);
c906108c
SS
816 }
817 else if (*typep != NULL)
818 {
819 utypep = *typep;
23136709 820 complaint (&symfile_complaints,
e2e0b3e5 821 _("DIE @ 0x%x \"%s\", internal error: duplicate user type allocation"),
23136709 822 DIE_ID, DIE_NAME);
c906108c
SS
823 }
824 else
825 {
826 if (utypep == NULL)
827 {
828 utypep = alloc_type (current_objfile);
829 }
830 *typep = utypep;
831 }
832 return (utypep);
833}
834
835/*
836
c5aa993b 837 LOCAL FUNCTION
c906108c 838
c5aa993b 839 free_utypes -- free the utypes array and reset pointer & count
c906108c 840
c5aa993b 841 SYNOPSIS
c906108c 842
4efb68b1 843 static void free_utypes (void *dummy)
c906108c 844
c5aa993b 845 DESCRIPTION
c906108c 846
c5aa993b
JM
847 Called via do_cleanups to free the utypes array, reset the pointer to NULL,
848 and set numutypes back to zero. This ensures that the utypes does not get
849 referenced after being freed.
c906108c
SS
850 */
851
852static void
4efb68b1 853free_utypes (void *dummy)
c906108c 854{
b8c9b27d 855 xfree (utypes);
c906108c
SS
856 utypes = NULL;
857 numutypes = 0;
858}
859
860
861/*
862
c5aa993b 863 LOCAL FUNCTION
c906108c 864
c5aa993b 865 decode_die_type -- return a type for a specified die
c906108c 866
c5aa993b 867 SYNOPSIS
c906108c 868
c5aa993b 869 static struct type *decode_die_type (struct dieinfo *dip)
c906108c 870
c5aa993b 871 DESCRIPTION
c906108c 872
c5aa993b
JM
873 Given a pointer to a die information structure DIP, decode the
874 type of the die and return a pointer to the decoded type. All
875 dies without specific types default to type int.
c906108c
SS
876 */
877
878static struct type *
fba45db2 879decode_die_type (struct dieinfo *dip)
c906108c
SS
880{
881 struct type *type = NULL;
c5aa993b
JM
882
883 if (dip->at_fund_type != 0)
c906108c 884 {
c5aa993b 885 type = decode_fund_type (dip->at_fund_type);
c906108c 886 }
c5aa993b 887 else if (dip->at_mod_fund_type != NULL)
c906108c 888 {
c5aa993b 889 type = decode_mod_fund_type (dip->at_mod_fund_type);
c906108c 890 }
c5aa993b 891 else if (dip->at_user_def_type)
c906108c 892 {
b59661bd
AC
893 type = lookup_utype (dip->at_user_def_type);
894 if (type == NULL)
c906108c 895 {
c5aa993b 896 type = alloc_utype (dip->at_user_def_type, NULL);
c906108c
SS
897 }
898 }
c5aa993b 899 else if (dip->at_mod_u_d_type)
c906108c 900 {
c5aa993b 901 type = decode_mod_u_d_type (dip->at_mod_u_d_type);
c906108c
SS
902 }
903 else
904 {
905 type = dwarf_fundamental_type (current_objfile, FT_VOID);
906 }
907 return (type);
908}
909
910/*
911
c5aa993b 912 LOCAL FUNCTION
c906108c 913
c5aa993b 914 struct_type -- compute and return the type for a struct or union
c906108c 915
c5aa993b 916 SYNOPSIS
c906108c 917
c5aa993b
JM
918 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
919 char *enddie, struct objfile *objfile)
c906108c 920
c5aa993b 921 DESCRIPTION
c906108c 922
c5aa993b
JM
923 Given pointer to a die information structure for a die which
924 defines a union or structure (and MUST define one or the other),
925 and pointers to the raw die data that define the range of dies which
926 define the members, compute and return the user defined type for the
927 structure or union.
c906108c
SS
928 */
929
930static struct type *
fba45db2
KB
931struct_type (struct dieinfo *dip, char *thisdie, char *enddie,
932 struct objfile *objfile)
c906108c
SS
933{
934 struct type *type;
c5aa993b
JM
935 struct nextfield
936 {
937 struct nextfield *next;
938 struct field field;
939 };
c906108c
SS
940 struct nextfield *list = NULL;
941 struct nextfield *new;
942 int nfields = 0;
943 int n;
944 struct dieinfo mbr;
945 char *nextdie;
946 int anonymous_size;
c5aa993b 947
b59661bd
AC
948 type = lookup_utype (dip->die_ref);
949 if (type == NULL)
c906108c
SS
950 {
951 /* No forward references created an empty type, so install one now */
c5aa993b 952 type = alloc_utype (dip->die_ref, NULL);
c906108c 953 }
c5aa993b
JM
954 INIT_CPLUS_SPECIFIC (type);
955 switch (dip->die_tag)
c906108c 956 {
c5aa993b
JM
957 case TAG_class_type:
958 TYPE_CODE (type) = TYPE_CODE_CLASS;
959 break;
960 case TAG_structure_type:
961 TYPE_CODE (type) = TYPE_CODE_STRUCT;
962 break;
963 case TAG_union_type:
964 TYPE_CODE (type) = TYPE_CODE_UNION;
965 break;
966 default:
967 /* Should never happen */
968 TYPE_CODE (type) = TYPE_CODE_UNDEF;
23136709 969 complaint (&symfile_complaints,
e2e0b3e5 970 _("DIE @ 0x%x \"%s\", missing class, structure, or union tag"),
23136709 971 DIE_ID, DIE_NAME);
c5aa993b 972 break;
c906108c
SS
973 }
974 /* Some compilers try to be helpful by inventing "fake" names for
975 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
976 Thanks, but no thanks... */
c5aa993b
JM
977 if (dip->at_name != NULL
978 && *dip->at_name != '~'
979 && *dip->at_name != '.')
c906108c 980 {
b99607ea 981 TYPE_TAG_NAME (type) = obconcat (&objfile->objfile_obstack,
c5aa993b 982 "", "", dip->at_name);
c906108c
SS
983 }
984 /* Use whatever size is known. Zero is a valid size. We might however
985 wish to check has_at_byte_size to make sure that some byte size was
986 given explicitly, but DWARF doesn't specify that explicit sizes of
987 zero have to present, so complaining about missing sizes should
988 probably not be the default. */
c5aa993b
JM
989 TYPE_LENGTH (type) = dip->at_byte_size;
990 thisdie += dip->die_length;
c906108c
SS
991 while (thisdie < enddie)
992 {
993 basicdieinfo (&mbr, thisdie, objfile);
994 completedieinfo (&mbr, objfile);
995 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
996 {
997 break;
998 }
999 else if (mbr.at_sibling != 0)
1000 {
1001 nextdie = dbbase + mbr.at_sibling - dbroff;
1002 }
1003 else
1004 {
1005 nextdie = thisdie + mbr.die_length;
1006 }
1007 switch (mbr.die_tag)
1008 {
1009 case TAG_member:
fba3138e
DJ
1010 /* Static fields can be either TAG_global_variable (GCC) or else
1011 TAG_member with no location (Diab). We could treat the latter like
1012 the former... but since we don't support the former, just avoid
1013 crashing on the latter for now. */
1014 if (mbr.at_location == NULL)
1015 break;
1016
c906108c
SS
1017 /* Get space to record the next field's data. */
1018 new = (struct nextfield *) alloca (sizeof (struct nextfield));
c5aa993b 1019 new->next = list;
c906108c
SS
1020 list = new;
1021 /* Save the data. */
c5aa993b
JM
1022 list->field.name =
1023 obsavestring (mbr.at_name, strlen (mbr.at_name),
b99607ea 1024 &objfile->objfile_obstack);
c906108c
SS
1025 FIELD_TYPE (list->field) = decode_die_type (&mbr);
1026 FIELD_BITPOS (list->field) = 8 * locval (&mbr);
01ad7f36 1027 FIELD_STATIC_KIND (list->field) = 0;
c906108c
SS
1028 /* Handle bit fields. */
1029 FIELD_BITSIZE (list->field) = mbr.at_bit_size;
1030 if (BITS_BIG_ENDIAN)
1031 {
1032 /* For big endian bits, the at_bit_offset gives the
c5aa993b
JM
1033 additional bit offset from the MSB of the containing
1034 anonymous object to the MSB of the field. We don't
1035 have to do anything special since we don't need to
1036 know the size of the anonymous object. */
c906108c
SS
1037 FIELD_BITPOS (list->field) += mbr.at_bit_offset;
1038 }
1039 else
1040 {
1041 /* For little endian bits, we need to have a non-zero
c5aa993b
JM
1042 at_bit_size, so that we know we are in fact dealing
1043 with a bitfield. Compute the bit offset to the MSB
1044 of the anonymous object, subtract off the number of
1045 bits from the MSB of the field to the MSB of the
1046 object, and then subtract off the number of bits of
1047 the field itself. The result is the bit offset of
1048 the LSB of the field. */
c906108c
SS
1049 if (mbr.at_bit_size > 0)
1050 {
1051 if (mbr.has_at_byte_size)
1052 {
1053 /* The size of the anonymous object containing
c5aa993b
JM
1054 the bit field is explicit, so use the
1055 indicated size (in bytes). */
c906108c
SS
1056 anonymous_size = mbr.at_byte_size;
1057 }
1058 else
1059 {
1060 /* The size of the anonymous object containing
c5aa993b
JM
1061 the bit field matches the size of an object
1062 of the bit field's type. DWARF allows
1063 at_byte_size to be left out in such cases, as
1064 a debug information size optimization. */
1065 anonymous_size = TYPE_LENGTH (list->field.type);
c906108c
SS
1066 }
1067 FIELD_BITPOS (list->field) +=
1068 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1069 }
1070 }
1071 nfields++;
1072 break;
1073 default:
1074 process_dies (thisdie, nextdie, objfile);
1075 break;
1076 }
1077 thisdie = nextdie;
1078 }
1079 /* Now create the vector of fields, and record how big it is. We may
1080 not even have any fields, if this DIE was generated due to a reference
1081 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1082 set, which clues gdb in to the fact that it needs to search elsewhere
1083 for the full structure definition. */
1084 if (nfields == 0)
1085 {
1086 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1087 }
1088 else
1089 {
1090 TYPE_NFIELDS (type) = nfields;
1091 TYPE_FIELDS (type) = (struct field *)
1092 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1093 /* Copy the saved-up fields into the field vector. */
c5aa993b 1094 for (n = nfields; list; list = list->next)
c906108c 1095 {
c5aa993b
JM
1096 TYPE_FIELD (type, --n) = list->field;
1097 }
c906108c
SS
1098 }
1099 return (type);
1100}
1101
1102/*
1103
c5aa993b 1104 LOCAL FUNCTION
c906108c 1105
c5aa993b 1106 read_structure_scope -- process all dies within struct or union
c906108c 1107
c5aa993b 1108 SYNOPSIS
c906108c 1109
c5aa993b
JM
1110 static void read_structure_scope (struct dieinfo *dip,
1111 char *thisdie, char *enddie, struct objfile *objfile)
c906108c 1112
c5aa993b 1113 DESCRIPTION
c906108c 1114
c5aa993b
JM
1115 Called when we find the DIE that starts a structure or union
1116 scope (definition) to process all dies that define the members
1117 of the structure or union. DIP is a pointer to the die info
1118 struct for the DIE that names the structure or union.
c906108c 1119
c5aa993b
JM
1120 NOTES
1121
1122 Note that we need to call struct_type regardless of whether or not
1123 the DIE has an at_name attribute, since it might be an anonymous
1124 structure or union. This gets the type entered into our set of
1125 user defined types.
1126
1127 However, if the structure is incomplete (an opaque struct/union)
1128 then suppress creating a symbol table entry for it since gdb only
1129 wants to find the one with the complete definition. Note that if
1130 it is complete, we just call new_symbol, which does it's own
1131 checking about whether the struct/union is anonymous or not (and
1132 suppresses creating a symbol table entry itself).
c906108c 1133
c906108c
SS
1134 */
1135
1136static void
fba45db2
KB
1137read_structure_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1138 struct objfile *objfile)
c906108c
SS
1139{
1140 struct type *type;
1141 struct symbol *sym;
c5aa993b 1142
c906108c 1143 type = struct_type (dip, thisdie, enddie, objfile);
74a9bb82 1144 if (!TYPE_STUB (type))
c906108c
SS
1145 {
1146 sym = new_symbol (dip, objfile);
1147 if (sym != NULL)
1148 {
1149 SYMBOL_TYPE (sym) = type;
1150 if (cu_language == language_cplus)
1151 {
1152 synthesize_typedef (dip, objfile, type);
1153 }
1154 }
1155 }
1156}
1157
1158/*
1159
c5aa993b 1160 LOCAL FUNCTION
c906108c 1161
c5aa993b 1162 decode_array_element_type -- decode type of the array elements
c906108c 1163
c5aa993b 1164 SYNOPSIS
c906108c 1165
c5aa993b 1166 static struct type *decode_array_element_type (char *scan, char *end)
c906108c 1167
c5aa993b 1168 DESCRIPTION
c906108c 1169
c5aa993b
JM
1170 As the last step in decoding the array subscript information for an
1171 array DIE, we need to decode the type of the array elements. We are
1172 passed a pointer to this last part of the subscript information and
1173 must return the appropriate type. If the type attribute is not
1174 recognized, just warn about the problem and return type int.
c906108c
SS
1175 */
1176
1177static struct type *
fba45db2 1178decode_array_element_type (char *scan)
c906108c
SS
1179{
1180 struct type *typep;
1181 DIE_REF die_ref;
1182 unsigned short attribute;
1183 unsigned short fundtype;
1184 int nbytes;
c5aa993b 1185
c906108c
SS
1186 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1187 current_objfile);
1188 scan += SIZEOF_ATTRIBUTE;
b59661bd
AC
1189 nbytes = attribute_size (attribute);
1190 if (nbytes == -1)
c906108c 1191 {
23136709 1192 bad_array_element_type_complaint (DIE_ID, DIE_NAME, attribute);
c906108c
SS
1193 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1194 }
1195 else
1196 {
1197 switch (attribute)
1198 {
c5aa993b
JM
1199 case AT_fund_type:
1200 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1201 current_objfile);
1202 typep = decode_fund_type (fundtype);
1203 break;
1204 case AT_mod_fund_type:
1205 typep = decode_mod_fund_type (scan);
1206 break;
1207 case AT_user_def_type:
1208 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1209 current_objfile);
b59661bd
AC
1210 typep = lookup_utype (die_ref);
1211 if (typep == NULL)
c5aa993b
JM
1212 {
1213 typep = alloc_utype (die_ref, NULL);
1214 }
1215 break;
1216 case AT_mod_u_d_type:
1217 typep = decode_mod_u_d_type (scan);
1218 break;
1219 default:
23136709 1220 bad_array_element_type_complaint (DIE_ID, DIE_NAME, attribute);
c5aa993b
JM
1221 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1222 break;
1223 }
c906108c
SS
1224 }
1225 return (typep);
1226}
1227
1228/*
1229
c5aa993b 1230 LOCAL FUNCTION
c906108c 1231
c5aa993b 1232 decode_subscript_data_item -- decode array subscript item
c906108c 1233
c5aa993b 1234 SYNOPSIS
c906108c 1235
c5aa993b
JM
1236 static struct type *
1237 decode_subscript_data_item (char *scan, char *end)
c906108c 1238
c5aa993b 1239 DESCRIPTION
c906108c 1240
c5aa993b
JM
1241 The array subscripts and the data type of the elements of an
1242 array are described by a list of data items, stored as a block
1243 of contiguous bytes. There is a data item describing each array
1244 dimension, and a final data item describing the element type.
1245 The data items are ordered the same as their appearance in the
1246 source (I.E. leftmost dimension first, next to leftmost second,
1247 etc).
c906108c 1248
c5aa993b
JM
1249 The data items describing each array dimension consist of four
1250 parts: (1) a format specifier, (2) type type of the subscript
1251 index, (3) a description of the low bound of the array dimension,
1252 and (4) a description of the high bound of the array dimension.
c906108c 1253
c5aa993b
JM
1254 The last data item is the description of the type of each of
1255 the array elements.
c906108c 1256
c5aa993b
JM
1257 We are passed a pointer to the start of the block of bytes
1258 containing the remaining data items, and a pointer to the first
1259 byte past the data. This function recursively decodes the
1260 remaining data items and returns a type.
c906108c 1261
c5aa993b
JM
1262 If we somehow fail to decode some data, we complain about it
1263 and return a type "array of int".
c906108c 1264
c5aa993b
JM
1265 BUGS
1266 FIXME: This code only implements the forms currently used
1267 by the AT&T and GNU C compilers.
c906108c 1268
c5aa993b
JM
1269 The end pointer is supplied for error checking, maybe we should
1270 use it for that...
c906108c
SS
1271 */
1272
1273static struct type *
fba45db2 1274decode_subscript_data_item (char *scan, char *end)
c906108c
SS
1275{
1276 struct type *typep = NULL; /* Array type we are building */
1277 struct type *nexttype; /* Type of each element (may be array) */
1278 struct type *indextype; /* Type of this index */
1279 struct type *rangetype;
1280 unsigned int format;
1281 unsigned short fundtype;
1282 unsigned long lowbound;
1283 unsigned long highbound;
1284 int nbytes;
c5aa993b 1285
c906108c
SS
1286 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1287 current_objfile);
1288 scan += SIZEOF_FORMAT_SPECIFIER;
1289 switch (format)
1290 {
1291 case FMT_ET:
1292 typep = decode_array_element_type (scan);
1293 break;
1294 case FMT_FT_C_C:
1295 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1296 current_objfile);
1297 indextype = decode_fund_type (fundtype);
1298 scan += SIZEOF_FMT_FT;
1299 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1300 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1301 scan += nbytes;
1302 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1303 scan += nbytes;
1304 nexttype = decode_subscript_data_item (scan, end);
1305 if (nexttype == NULL)
1306 {
1307 /* Munged subscript data or other problem, fake it. */
23136709 1308 complaint (&symfile_complaints,
e2e0b3e5 1309 _("DIE @ 0x%x \"%s\", can't decode subscript data items"),
23136709 1310 DIE_ID, DIE_NAME);
c906108c
SS
1311 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1312 }
1313 rangetype = create_range_type ((struct type *) NULL, indextype,
c5aa993b 1314 lowbound, highbound);
c906108c
SS
1315 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1316 break;
1317 case FMT_FT_C_X:
1318 case FMT_FT_X_C:
1319 case FMT_FT_X_X:
1320 case FMT_UT_C_C:
1321 case FMT_UT_C_X:
1322 case FMT_UT_X_C:
1323 case FMT_UT_X_X:
23136709 1324 complaint (&symfile_complaints,
e2e0b3e5 1325 _("DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet"),
23136709 1326 DIE_ID, DIE_NAME, format);
c906108c
SS
1327 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1328 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1329 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1330 break;
1331 default:
23136709 1332 complaint (&symfile_complaints,
e2e0b3e5 1333 _("DIE @ 0x%x \"%s\", unknown array subscript format %x"), DIE_ID,
23136709 1334 DIE_NAME, format);
c906108c
SS
1335 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1336 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1337 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1338 break;
1339 }
1340 return (typep);
1341}
1342
1343/*
1344
c5aa993b 1345 LOCAL FUNCTION
c906108c 1346
c5aa993b 1347 dwarf_read_array_type -- read TAG_array_type DIE
c906108c 1348
c5aa993b 1349 SYNOPSIS
c906108c 1350
c5aa993b 1351 static void dwarf_read_array_type (struct dieinfo *dip)
c906108c 1352
c5aa993b 1353 DESCRIPTION
c906108c 1354
c5aa993b
JM
1355 Extract all information from a TAG_array_type DIE and add to
1356 the user defined type vector.
c906108c
SS
1357 */
1358
1359static void
fba45db2 1360dwarf_read_array_type (struct dieinfo *dip)
c906108c
SS
1361{
1362 struct type *type;
1363 struct type *utype;
1364 char *sub;
1365 char *subend;
1366 unsigned short blocksz;
1367 int nbytes;
c5aa993b
JM
1368
1369 if (dip->at_ordering != ORD_row_major)
c906108c
SS
1370 {
1371 /* FIXME: Can gdb even handle column major arrays? */
23136709 1372 complaint (&symfile_complaints,
e2e0b3e5 1373 _("DIE @ 0x%x \"%s\", array not row major; not handled correctly"),
23136709 1374 DIE_ID, DIE_NAME);
c906108c 1375 }
b59661bd
AC
1376 sub = dip->at_subscr_data;
1377 if (sub != NULL)
c906108c
SS
1378 {
1379 nbytes = attribute_size (AT_subscr_data);
1380 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1381 subend = sub + nbytes + blocksz;
1382 sub += nbytes;
1383 type = decode_subscript_data_item (sub, subend);
b59661bd
AC
1384 utype = lookup_utype (dip->die_ref);
1385 if (utype == NULL)
c906108c
SS
1386 {
1387 /* Install user defined type that has not been referenced yet. */
c5aa993b 1388 alloc_utype (dip->die_ref, type);
c906108c
SS
1389 }
1390 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1391 {
1392 /* Ick! A forward ref has already generated a blank type in our
1393 slot, and this type probably already has things pointing to it
1394 (which is what caused it to be created in the first place).
1395 If it's just a place holder we can plop our fully defined type
1396 on top of it. We can't recover the space allocated for our
1397 new type since it might be on an obstack, but we could reuse
1398 it if we kept a list of them, but it might not be worth it
1399 (FIXME). */
1400 *utype = *type;
1401 }
1402 else
1403 {
1404 /* Double ick! Not only is a type already in our slot, but
1405 someone has decorated it. Complain and leave it alone. */
23136709 1406 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
c906108c
SS
1407 }
1408 }
1409}
1410
1411/*
1412
c5aa993b 1413 LOCAL FUNCTION
c906108c 1414
c5aa993b 1415 read_tag_pointer_type -- read TAG_pointer_type DIE
c906108c 1416
c5aa993b 1417 SYNOPSIS
c906108c 1418
c5aa993b 1419 static void read_tag_pointer_type (struct dieinfo *dip)
c906108c 1420
c5aa993b 1421 DESCRIPTION
c906108c 1422
c5aa993b
JM
1423 Extract all information from a TAG_pointer_type DIE and add to
1424 the user defined type vector.
c906108c
SS
1425 */
1426
1427static void
fba45db2 1428read_tag_pointer_type (struct dieinfo *dip)
c906108c
SS
1429{
1430 struct type *type;
1431 struct type *utype;
c5aa993b 1432
c906108c 1433 type = decode_die_type (dip);
b59661bd
AC
1434 utype = lookup_utype (dip->die_ref);
1435 if (utype == NULL)
c906108c
SS
1436 {
1437 utype = lookup_pointer_type (type);
c5aa993b 1438 alloc_utype (dip->die_ref, utype);
c906108c
SS
1439 }
1440 else
1441 {
1442 TYPE_TARGET_TYPE (utype) = type;
1443 TYPE_POINTER_TYPE (type) = utype;
1444
1445 /* We assume the machine has only one representation for pointers! */
1446 /* FIXME: Possably a poor assumption */
c5aa993b 1447 TYPE_LENGTH (utype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
c906108c
SS
1448 TYPE_CODE (utype) = TYPE_CODE_PTR;
1449 }
1450}
1451
1452/*
1453
c5aa993b 1454 LOCAL FUNCTION
c906108c 1455
c5aa993b 1456 read_tag_string_type -- read TAG_string_type DIE
c906108c 1457
c5aa993b 1458 SYNOPSIS
c906108c 1459
c5aa993b 1460 static void read_tag_string_type (struct dieinfo *dip)
c906108c 1461
c5aa993b 1462 DESCRIPTION
c906108c 1463
c5aa993b
JM
1464 Extract all information from a TAG_string_type DIE and add to
1465 the user defined type vector. It isn't really a user defined
1466 type, but it behaves like one, with other DIE's using an
1467 AT_user_def_type attribute to reference it.
c906108c
SS
1468 */
1469
1470static void
fba45db2 1471read_tag_string_type (struct dieinfo *dip)
c906108c
SS
1472{
1473 struct type *utype;
1474 struct type *indextype;
1475 struct type *rangetype;
1476 unsigned long lowbound = 0;
1477 unsigned long highbound;
1478
c5aa993b 1479 if (dip->has_at_byte_size)
c906108c
SS
1480 {
1481 /* A fixed bounds string */
c5aa993b 1482 highbound = dip->at_byte_size - 1;
c906108c
SS
1483 }
1484 else
1485 {
1486 /* A varying length string. Stub for now. (FIXME) */
1487 highbound = 1;
1488 }
1489 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1490 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1491 highbound);
c5aa993b
JM
1492
1493 utype = lookup_utype (dip->die_ref);
c906108c
SS
1494 if (utype == NULL)
1495 {
1496 /* No type defined, go ahead and create a blank one to use. */
c5aa993b 1497 utype = alloc_utype (dip->die_ref, (struct type *) NULL);
c906108c
SS
1498 }
1499 else
1500 {
1501 /* Already a type in our slot due to a forward reference. Make sure it
c5aa993b 1502 is a blank one. If not, complain and leave it alone. */
c906108c
SS
1503 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1504 {
23136709 1505 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
c906108c
SS
1506 return;
1507 }
1508 }
1509
1510 /* Create the string type using the blank type we either found or created. */
1511 utype = create_string_type (utype, rangetype);
1512}
1513
1514/*
1515
c5aa993b 1516 LOCAL FUNCTION
c906108c 1517
c5aa993b 1518 read_subroutine_type -- process TAG_subroutine_type dies
c906108c 1519
c5aa993b 1520 SYNOPSIS
c906108c 1521
c5aa993b
JM
1522 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1523 char *enddie)
c906108c 1524
c5aa993b 1525 DESCRIPTION
c906108c 1526
c5aa993b 1527 Handle DIES due to C code like:
c906108c 1528
c5aa993b
JM
1529 struct foo {
1530 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1531 int b;
1532 };
c906108c 1533
c5aa993b 1534 NOTES
c906108c 1535
c5aa993b
JM
1536 The parameter DIES are currently ignored. See if gdb has a way to
1537 include this info in it's type system, and decode them if so. Is
1538 this what the type structure's "arg_types" field is for? (FIXME)
c906108c
SS
1539 */
1540
1541static void
fba45db2 1542read_subroutine_type (struct dieinfo *dip, char *thisdie, char *enddie)
c906108c
SS
1543{
1544 struct type *type; /* Type that this function returns */
1545 struct type *ftype; /* Function that returns above type */
c5aa993b 1546
c906108c
SS
1547 /* Decode the type that this subroutine returns */
1548
1549 type = decode_die_type (dip);
1550
1551 /* Check to see if we already have a partially constructed user
1552 defined type for this DIE, from a forward reference. */
1553
b59661bd
AC
1554 ftype = lookup_utype (dip->die_ref);
1555 if (ftype == NULL)
c906108c
SS
1556 {
1557 /* This is the first reference to one of these types. Make
c5aa993b 1558 a new one and place it in the user defined types. */
c906108c 1559 ftype = lookup_function_type (type);
c5aa993b 1560 alloc_utype (dip->die_ref, ftype);
c906108c
SS
1561 }
1562 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1563 {
1564 /* We have an existing partially constructed type, so bash it
c5aa993b 1565 into the correct type. */
c906108c
SS
1566 TYPE_TARGET_TYPE (ftype) = type;
1567 TYPE_LENGTH (ftype) = 1;
1568 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1569 }
1570 else
1571 {
23136709 1572 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
c906108c
SS
1573 }
1574}
1575
1576/*
1577
c5aa993b 1578 LOCAL FUNCTION
c906108c 1579
c5aa993b 1580 read_enumeration -- process dies which define an enumeration
c906108c 1581
c5aa993b 1582 SYNOPSIS
c906108c 1583
c5aa993b
JM
1584 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1585 char *enddie, struct objfile *objfile)
c906108c 1586
c5aa993b 1587 DESCRIPTION
c906108c 1588
c5aa993b
JM
1589 Given a pointer to a die which begins an enumeration, process all
1590 the dies that define the members of the enumeration.
c906108c 1591
c5aa993b 1592 NOTES
c906108c 1593
c5aa993b
JM
1594 Note that we need to call enum_type regardless of whether or not we
1595 have a symbol, since we might have an enum without a tag name (thus
1596 no symbol for the tagname).
c906108c
SS
1597 */
1598
1599static void
fba45db2
KB
1600read_enumeration (struct dieinfo *dip, char *thisdie, char *enddie,
1601 struct objfile *objfile)
c906108c
SS
1602{
1603 struct type *type;
1604 struct symbol *sym;
c5aa993b 1605
c906108c
SS
1606 type = enum_type (dip, objfile);
1607 sym = new_symbol (dip, objfile);
1608 if (sym != NULL)
1609 {
1610 SYMBOL_TYPE (sym) = type;
1611 if (cu_language == language_cplus)
1612 {
1613 synthesize_typedef (dip, objfile, type);
1614 }
1615 }
1616}
1617
1618/*
1619
c5aa993b 1620 LOCAL FUNCTION
c906108c 1621
c5aa993b 1622 enum_type -- decode and return a type for an enumeration
c906108c 1623
c5aa993b 1624 SYNOPSIS
c906108c 1625
c5aa993b 1626 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
c906108c 1627
c5aa993b 1628 DESCRIPTION
c906108c 1629
c5aa993b
JM
1630 Given a pointer to a die information structure for the die which
1631 starts an enumeration, process all the dies that define the members
1632 of the enumeration and return a type pointer for the enumeration.
c906108c 1633
c5aa993b 1634 At the same time, for each member of the enumeration, create a
176620f1 1635 symbol for it with domain VAR_DOMAIN and class LOC_CONST,
c5aa993b 1636 and give it the type of the enumeration itself.
c906108c 1637
c5aa993b 1638 NOTES
c906108c 1639
c5aa993b
JM
1640 Note that the DWARF specification explicitly mandates that enum
1641 constants occur in reverse order from the source program order,
1642 for "consistency" and because this ordering is easier for many
1643 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1644 Entries). Because gdb wants to see the enum members in program
1645 source order, we have to ensure that the order gets reversed while
1646 we are processing them.
c906108c
SS
1647 */
1648
1649static struct type *
fba45db2 1650enum_type (struct dieinfo *dip, struct objfile *objfile)
c906108c
SS
1651{
1652 struct type *type;
c5aa993b
JM
1653 struct nextfield
1654 {
1655 struct nextfield *next;
1656 struct field field;
1657 };
c906108c
SS
1658 struct nextfield *list = NULL;
1659 struct nextfield *new;
1660 int nfields = 0;
1661 int n;
1662 char *scan;
1663 char *listend;
1664 unsigned short blocksz;
1665 struct symbol *sym;
1666 int nbytes;
1667 int unsigned_enum = 1;
c5aa993b 1668
b59661bd
AC
1669 type = lookup_utype (dip->die_ref);
1670 if (type == NULL)
c906108c
SS
1671 {
1672 /* No forward references created an empty type, so install one now */
c5aa993b 1673 type = alloc_utype (dip->die_ref, NULL);
c906108c
SS
1674 }
1675 TYPE_CODE (type) = TYPE_CODE_ENUM;
1676 /* Some compilers try to be helpful by inventing "fake" names for
1677 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1678 Thanks, but no thanks... */
c5aa993b
JM
1679 if (dip->at_name != NULL
1680 && *dip->at_name != '~'
1681 && *dip->at_name != '.')
c906108c 1682 {
b99607ea 1683 TYPE_TAG_NAME (type) = obconcat (&objfile->objfile_obstack,
c5aa993b 1684 "", "", dip->at_name);
c906108c 1685 }
c5aa993b 1686 if (dip->at_byte_size != 0)
c906108c 1687 {
c5aa993b 1688 TYPE_LENGTH (type) = dip->at_byte_size;
c906108c 1689 }
b59661bd
AC
1690 scan = dip->at_element_list;
1691 if (scan != NULL)
c906108c 1692 {
c5aa993b 1693 if (dip->short_element_list)
c906108c
SS
1694 {
1695 nbytes = attribute_size (AT_short_element_list);
1696 }
1697 else
1698 {
1699 nbytes = attribute_size (AT_element_list);
1700 }
1701 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1702 listend = scan + nbytes + blocksz;
1703 scan += nbytes;
1704 while (scan < listend)
1705 {
1706 new = (struct nextfield *) alloca (sizeof (struct nextfield));
c5aa993b 1707 new->next = list;
c906108c
SS
1708 list = new;
1709 FIELD_TYPE (list->field) = NULL;
1710 FIELD_BITSIZE (list->field) = 0;
01ad7f36 1711 FIELD_STATIC_KIND (list->field) = 0;
c906108c
SS
1712 FIELD_BITPOS (list->field) =
1713 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1714 objfile);
1715 scan += TARGET_FT_LONG_SIZE (objfile);
c5aa993b 1716 list->field.name = obsavestring (scan, strlen (scan),
b99607ea 1717 &objfile->objfile_obstack);
c906108c
SS
1718 scan += strlen (scan) + 1;
1719 nfields++;
1720 /* Handcraft a new symbol for this enum member. */
4a146b47 1721 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
1722 sizeof (struct symbol));
1723 memset (sym, 0, sizeof (struct symbol));
22abf04a 1724 DEPRECATED_SYMBOL_NAME (sym) = create_name (list->field.name,
4a146b47 1725 &objfile->objfile_obstack);
c906108c 1726 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
176620f1 1727 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1728 SYMBOL_CLASS (sym) = LOC_CONST;
1729 SYMBOL_TYPE (sym) = type;
1730 SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field);
1731 if (SYMBOL_VALUE (sym) < 0)
1732 unsigned_enum = 0;
1733 add_symbol_to_list (sym, list_in_scope);
1734 }
1735 /* Now create the vector of fields, and record how big it is. This is
c5aa993b
JM
1736 where we reverse the order, by pulling the members off the list in
1737 reverse order from how they were inserted. If we have no fields
1738 (this is apparently possible in C++) then skip building a field
1739 vector. */
c906108c
SS
1740 if (nfields > 0)
1741 {
1742 if (unsigned_enum)
1743 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
1744 TYPE_NFIELDS (type) = nfields;
1745 TYPE_FIELDS (type) = (struct field *)
4a146b47 1746 obstack_alloc (&objfile->objfile_obstack, sizeof (struct field) * nfields);
c906108c 1747 /* Copy the saved-up fields into the field vector. */
c5aa993b 1748 for (n = 0; (n < nfields) && (list != NULL); list = list->next)
c906108c 1749 {
c5aa993b
JM
1750 TYPE_FIELD (type, n++) = list->field;
1751 }
c906108c
SS
1752 }
1753 }
1754 return (type);
1755}
1756
1757/*
1758
c5aa993b 1759 LOCAL FUNCTION
c906108c 1760
c5aa993b 1761 read_func_scope -- process all dies within a function scope
c906108c 1762
c5aa993b 1763 DESCRIPTION
c906108c 1764
c5aa993b
JM
1765 Process all dies within a given function scope. We are passed
1766 a die information structure pointer DIP for the die which
1767 starts the function scope, and pointers into the raw die data
1768 that define the dies within the function scope.
1769
1770 For now, we ignore lexical block scopes within the function.
1771 The problem is that AT&T cc does not define a DWARF lexical
1772 block scope for the function itself, while gcc defines a
1773 lexical block scope for the function. We need to think about
1774 how to handle this difference, or if it is even a problem.
1775 (FIXME)
c906108c
SS
1776 */
1777
1778static void
fba45db2
KB
1779read_func_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1780 struct objfile *objfile)
c906108c 1781{
b59661bd 1782 struct context_stack *new;
c5aa993b 1783
c906108c
SS
1784 /* AT_name is absent if the function is described with an
1785 AT_abstract_origin tag.
1786 Ignore the function description for now to avoid GDB core dumps.
1787 FIXME: Add code to handle AT_abstract_origin tags properly. */
c5aa993b 1788 if (dip->at_name == NULL)
c906108c 1789 {
e2e0b3e5 1790 complaint (&symfile_complaints, _("DIE @ 0x%x, AT_name tag missing"),
23136709 1791 DIE_ID);
c906108c
SS
1792 return;
1793 }
1794
c5aa993b
JM
1795 new = push_context (0, dip->at_low_pc);
1796 new->name = new_symbol (dip, objfile);
c906108c 1797 list_in_scope = &local_symbols;
c5aa993b 1798 process_dies (thisdie + dip->die_length, enddie, objfile);
c906108c
SS
1799 new = pop_context ();
1800 /* Make a block for the local symbols within. */
c5aa993b
JM
1801 finish_block (new->name, &local_symbols, new->old_blocks,
1802 new->start_addr, dip->at_high_pc, objfile);
c906108c
SS
1803 list_in_scope = &file_symbols;
1804}
1805
1806
1807/*
1808
c5aa993b 1809 LOCAL FUNCTION
c906108c 1810
c5aa993b 1811 handle_producer -- process the AT_producer attribute
c906108c 1812
c5aa993b 1813 DESCRIPTION
c906108c 1814
c5aa993b
JM
1815 Perform any operations that depend on finding a particular
1816 AT_producer attribute.
c906108c
SS
1817
1818 */
1819
1820static void
fba45db2 1821handle_producer (char *producer)
c906108c
SS
1822{
1823
1824 /* If this compilation unit was compiled with g++ or gcc, then set the
1825 processing_gcc_compilation flag. */
1826
cb137aa5 1827 if (DEPRECATED_STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER)))
c906108c
SS
1828 {
1829 char version = producer[strlen (GCC_PRODUCER)];
1830 processing_gcc_compilation = (version == '2' ? 2 : 1);
1831 }
1832 else
1833 {
1834 processing_gcc_compilation =
bf896cb0 1835 strncmp (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)) == 0;
c906108c
SS
1836 }
1837
1838 /* Select a demangling style if we can identify the producer and if
1839 the current style is auto. We leave the current style alone if it
1840 is not auto. We also leave the demangling style alone if we find a
1841 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1842
1843 if (AUTO_DEMANGLING)
1844 {
cb137aa5 1845 if (DEPRECATED_STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
c906108c 1846 {
8052a17a
JM
1847#if 0
1848 /* For now, stay with AUTO_DEMANGLING for g++ output, as we don't
1849 know whether it will use the old style or v3 mangling. */
c906108c 1850 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
8052a17a 1851#endif
c906108c 1852 }
cb137aa5 1853 else if (DEPRECATED_STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
c906108c
SS
1854 {
1855 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1856 }
1857 }
1858}
1859
1860
1861/*
1862
c5aa993b 1863 LOCAL FUNCTION
c906108c 1864
c5aa993b 1865 read_file_scope -- process all dies within a file scope
c906108c 1866
c5aa993b
JM
1867 DESCRIPTION
1868
1869 Process all dies within a given file scope. We are passed a
1870 pointer to the die information structure for the die which
1871 starts the file scope, and pointers into the raw die data which
1872 mark the range of dies within the file scope.
c906108c 1873
c5aa993b
JM
1874 When the partial symbol table is built, the file offset for the line
1875 number table for each compilation unit is saved in the partial symbol
1876 table entry for that compilation unit. As the symbols for each
1877 compilation unit are read, the line number table is read into memory
1878 and the variable lnbase is set to point to it. Thus all we have to
1879 do is use lnbase to access the line number table for the current
1880 compilation unit.
c906108c
SS
1881 */
1882
1883static void
fba45db2
KB
1884read_file_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1885 struct objfile *objfile)
c906108c
SS
1886{
1887 struct cleanup *back_to;
1888 struct symtab *symtab;
c5aa993b 1889
c906108c 1890 set_cu_language (dip);
c5aa993b 1891 if (dip->at_producer != NULL)
c906108c 1892 {
c5aa993b 1893 handle_producer (dip->at_producer);
c906108c
SS
1894 }
1895 numutypes = (enddie - thisdie) / 4;
1896 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1897 back_to = make_cleanup (free_utypes, NULL);
1898 memset (utypes, 0, numutypes * sizeof (struct type *));
1899 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
c5aa993b 1900 start_symtab (dip->at_name, dip->at_comp_dir, dip->at_low_pc);
c906108c
SS
1901 record_debugformat ("DWARF 1");
1902 decode_line_numbers (lnbase);
c5aa993b 1903 process_dies (thisdie + dip->die_length, enddie, objfile);
c906108c 1904
c5aa993b 1905 symtab = end_symtab (dip->at_high_pc, objfile, 0);
c906108c
SS
1906 if (symtab != NULL)
1907 {
c5aa993b
JM
1908 symtab->language = cu_language;
1909 }
c906108c
SS
1910 do_cleanups (back_to);
1911}
1912
1913/*
1914
c5aa993b 1915 LOCAL FUNCTION
c906108c 1916
c5aa993b 1917 process_dies -- process a range of DWARF Information Entries
c906108c 1918
c5aa993b 1919 SYNOPSIS
c906108c 1920
c5aa993b
JM
1921 static void process_dies (char *thisdie, char *enddie,
1922 struct objfile *objfile)
c906108c 1923
c5aa993b 1924 DESCRIPTION
c906108c 1925
c5aa993b
JM
1926 Process all DIE's in a specified range. May be (and almost
1927 certainly will be) called recursively.
c906108c
SS
1928 */
1929
1930static void
fba45db2 1931process_dies (char *thisdie, char *enddie, struct objfile *objfile)
c906108c
SS
1932{
1933 char *nextdie;
1934 struct dieinfo di;
c5aa993b 1935
c906108c
SS
1936 while (thisdie < enddie)
1937 {
1938 basicdieinfo (&di, thisdie, objfile);
1939 if (di.die_length < SIZEOF_DIE_LENGTH)
1940 {
1941 break;
1942 }
1943 else if (di.die_tag == TAG_padding)
1944 {
1945 nextdie = thisdie + di.die_length;
1946 }
1947 else
1948 {
1949 completedieinfo (&di, objfile);
1950 if (di.at_sibling != 0)
1951 {
1952 nextdie = dbbase + di.at_sibling - dbroff;
1953 }
1954 else
1955 {
1956 nextdie = thisdie + di.die_length;
1957 }
c906108c 1958 /* I think that these are always text, not data, addresses. */
181c1381
RE
1959 di.at_low_pc = SMASH_TEXT_ADDRESS (di.at_low_pc);
1960 di.at_high_pc = SMASH_TEXT_ADDRESS (di.at_high_pc);
c906108c
SS
1961 switch (di.die_tag)
1962 {
1963 case TAG_compile_unit:
1964 /* Skip Tag_compile_unit if we are already inside a compilation
c5aa993b
JM
1965 unit, we are unable to handle nested compilation units
1966 properly (FIXME). */
c906108c
SS
1967 if (current_subfile == NULL)
1968 read_file_scope (&di, thisdie, nextdie, objfile);
1969 else
1970 nextdie = thisdie + di.die_length;
1971 break;
1972 case TAG_global_subroutine:
1973 case TAG_subroutine:
1974 if (di.has_at_low_pc)
1975 {
1976 read_func_scope (&di, thisdie, nextdie, objfile);
1977 }
1978 break;
1979 case TAG_lexical_block:
1980 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
1981 break;
1982 case TAG_class_type:
1983 case TAG_structure_type:
1984 case TAG_union_type:
1985 read_structure_scope (&di, thisdie, nextdie, objfile);
1986 break;
1987 case TAG_enumeration_type:
1988 read_enumeration (&di, thisdie, nextdie, objfile);
1989 break;
1990 case TAG_subroutine_type:
1991 read_subroutine_type (&di, thisdie, nextdie);
1992 break;
1993 case TAG_array_type:
1994 dwarf_read_array_type (&di);
1995 break;
1996 case TAG_pointer_type:
1997 read_tag_pointer_type (&di);
1998 break;
1999 case TAG_string_type:
2000 read_tag_string_type (&di);
2001 break;
2002 default:
2003 new_symbol (&di, objfile);
2004 break;
2005 }
2006 }
2007 thisdie = nextdie;
2008 }
2009}
2010
2011/*
2012
c5aa993b 2013 LOCAL FUNCTION
c906108c 2014
c5aa993b 2015 decode_line_numbers -- decode a line number table fragment
c906108c 2016
c5aa993b 2017 SYNOPSIS
c906108c 2018
c5aa993b
JM
2019 static void decode_line_numbers (char *tblscan, char *tblend,
2020 long length, long base, long line, long pc)
c906108c 2021
c5aa993b 2022 DESCRIPTION
c906108c 2023
c5aa993b 2024 Translate the DWARF line number information to gdb form.
c906108c 2025
c5aa993b
JM
2026 The ".line" section contains one or more line number tables, one for
2027 each ".line" section from the objects that were linked.
c906108c 2028
c5aa993b
JM
2029 The AT_stmt_list attribute for each TAG_source_file entry in the
2030 ".debug" section contains the offset into the ".line" section for the
2031 start of the table for that file.
c906108c 2032
c5aa993b 2033 The table itself has the following structure:
c906108c 2034
c5aa993b
JM
2035 <table length><base address><source statement entry>
2036 4 bytes 4 bytes 10 bytes
c906108c 2037
c5aa993b
JM
2038 The table length is the total size of the table, including the 4 bytes
2039 for the length information.
c906108c 2040
c5aa993b
JM
2041 The base address is the address of the first instruction generated
2042 for the source file.
c906108c 2043
c5aa993b 2044 Each source statement entry has the following structure:
c906108c 2045
c5aa993b
JM
2046 <line number><statement position><address delta>
2047 4 bytes 2 bytes 4 bytes
c906108c 2048
c5aa993b
JM
2049 The line number is relative to the start of the file, starting with
2050 line 1.
c906108c 2051
c5aa993b
JM
2052 The statement position either -1 (0xFFFF) or the number of characters
2053 from the beginning of the line to the beginning of the statement.
c906108c 2054
c5aa993b
JM
2055 The address delta is the difference between the base address and
2056 the address of the first instruction for the statement.
c906108c 2057
c5aa993b
JM
2058 Note that we must copy the bytes from the packed table to our local
2059 variables before attempting to use them, to avoid alignment problems
2060 on some machines, particularly RISC processors.
c906108c 2061
c5aa993b 2062 BUGS
c906108c 2063
c5aa993b
JM
2064 Does gdb expect the line numbers to be sorted? They are now by
2065 chance/luck, but are not required to be. (FIXME)
c906108c 2066
c5aa993b
JM
2067 The line with number 0 is unused, gdb apparently can discover the
2068 span of the last line some other way. How? (FIXME)
c906108c
SS
2069 */
2070
2071static void
fba45db2 2072decode_line_numbers (char *linetable)
c906108c
SS
2073{
2074 char *tblscan;
2075 char *tblend;
2076 unsigned long length;
2077 unsigned long base;
2078 unsigned long line;
2079 unsigned long pc;
c5aa993b 2080
c906108c
SS
2081 if (linetable != NULL)
2082 {
2083 tblscan = tblend = linetable;
2084 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2085 current_objfile);
2086 tblscan += SIZEOF_LINETBL_LENGTH;
2087 tblend += length;
2088 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2089 GET_UNSIGNED, current_objfile);
2090 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2091 base += baseaddr;
2092 while (tblscan < tblend)
2093 {
2094 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2095 current_objfile);
2096 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2097 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2098 current_objfile);
2099 tblscan += SIZEOF_LINETBL_DELTA;
2100 pc += base;
2101 if (line != 0)
2102 {
2103 record_line (current_subfile, line, pc);
2104 }
2105 }
2106 }
2107}
2108
2109/*
2110
c5aa993b 2111 LOCAL FUNCTION
c906108c 2112
c5aa993b 2113 locval -- compute the value of a location attribute
c906108c 2114
c5aa993b 2115 SYNOPSIS
c906108c 2116
c5aa993b 2117 static int locval (struct dieinfo *dip)
c906108c 2118
c5aa993b 2119 DESCRIPTION
c906108c 2120
c5aa993b
JM
2121 Given pointer to a string of bytes that define a location, compute
2122 the location and return the value.
2123 A location description containing no atoms indicates that the
2124 object is optimized out. The optimized_out flag is set for those,
2125 the return value is meaningless.
c906108c 2126
c5aa993b
JM
2127 When computing values involving the current value of the frame pointer,
2128 the value zero is used, which results in a value relative to the frame
2129 pointer, rather than the absolute value. This is what GDB wants
2130 anyway.
c906108c 2131
c5aa993b
JM
2132 When the result is a register number, the isreg flag is set, otherwise
2133 it is cleared. This is a kludge until we figure out a better
2134 way to handle the problem. Gdb's design does not mesh well with the
2135 DWARF notion of a location computing interpreter, which is a shame
2136 because the flexibility goes unused.
2137
2138 NOTES
2139
2140 Note that stack[0] is unused except as a default error return.
2141 Note that stack overflow is not yet handled.
c906108c
SS
2142 */
2143
2144static int
fba45db2 2145locval (struct dieinfo *dip)
c906108c
SS
2146{
2147 unsigned short nbytes;
2148 unsigned short locsize;
2149 auto long stack[64];
2150 int stacki;
2151 char *loc;
2152 char *end;
2153 int loc_atom_code;
2154 int loc_value_size;
c5aa993b
JM
2155
2156 loc = dip->at_location;
c906108c
SS
2157 nbytes = attribute_size (AT_location);
2158 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2159 loc += nbytes;
2160 end = loc + locsize;
2161 stacki = 0;
2162 stack[stacki] = 0;
c5aa993b
JM
2163 dip->isreg = 0;
2164 dip->offreg = 0;
2165 dip->optimized_out = 1;
c906108c
SS
2166 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2167 while (loc < end)
2168 {
c5aa993b 2169 dip->optimized_out = 0;
c906108c
SS
2170 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2171 current_objfile);
2172 loc += SIZEOF_LOC_ATOM_CODE;
2173 switch (loc_atom_code)
2174 {
c5aa993b
JM
2175 case 0:
2176 /* error */
2177 loc = end;
2178 break;
2179 case OP_REG:
2180 /* push register (number) */
2181 stack[++stacki]
2182 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2183 GET_UNSIGNED,
2184 current_objfile));
2185 loc += loc_value_size;
2186 dip->isreg = 1;
2187 break;
2188 case OP_BASEREG:
2189 /* push value of register (number) */
2190 /* Actually, we compute the value as if register has 0, so the
2191 value ends up being the offset from that register. */
2192 dip->offreg = 1;
2193 dip->basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2194 current_objfile);
2195 loc += loc_value_size;
2196 stack[++stacki] = 0;
2197 break;
2198 case OP_ADDR:
2199 /* push address (relocated address) */
2200 stack[++stacki] = target_to_host (loc, loc_value_size,
2201 GET_UNSIGNED, current_objfile);
2202 loc += loc_value_size;
2203 break;
2204 case OP_CONST:
2205 /* push constant (number) FIXME: signed or unsigned! */
2206 stack[++stacki] = target_to_host (loc, loc_value_size,
2207 GET_SIGNED, current_objfile);
2208 loc += loc_value_size;
2209 break;
2210 case OP_DEREF2:
2211 /* pop, deref and push 2 bytes (as a long) */
23136709 2212 complaint (&symfile_complaints,
e2e0b3e5 2213 _("DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%lx not handled"),
23136709 2214 DIE_ID, DIE_NAME, stack[stacki]);
c5aa993b
JM
2215 break;
2216 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
23136709 2217 complaint (&symfile_complaints,
e2e0b3e5 2218 _("DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%lx not handled"),
23136709 2219 DIE_ID, DIE_NAME, stack[stacki]);
c5aa993b
JM
2220 break;
2221 case OP_ADD: /* pop top 2 items, add, push result */
2222 stack[stacki - 1] += stack[stacki];
2223 stacki--;
2224 break;
c906108c
SS
2225 }
2226 }
2227 return (stack[stacki]);
2228}
2229
2230/*
2231
c5aa993b 2232 LOCAL FUNCTION
c906108c 2233
c5aa993b 2234 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
c906108c 2235
c5aa993b 2236 SYNOPSIS
c906108c 2237
c5aa993b 2238 static void read_ofile_symtab (struct partial_symtab *pst)
c906108c 2239
c5aa993b 2240 DESCRIPTION
c906108c 2241
c5aa993b
JM
2242 When expanding a partial symbol table entry to a full symbol table
2243 entry, this is the function that gets called to read in the symbols
2244 for the compilation unit. A pointer to the newly constructed symtab,
2245 which is now the new first one on the objfile's symtab list, is
2246 stashed in the partial symbol table entry.
c906108c
SS
2247 */
2248
2249static void
fba45db2 2250read_ofile_symtab (struct partial_symtab *pst)
c906108c
SS
2251{
2252 struct cleanup *back_to;
2253 unsigned long lnsize;
2254 file_ptr foffset;
2255 bfd *abfd;
2256 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2257
c5aa993b
JM
2258 abfd = pst->objfile->obfd;
2259 current_objfile = pst->objfile;
c906108c
SS
2260
2261 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2262 unit, seek to the location in the file, and read in all the DIE's. */
2263
2264 diecount = 0;
2265 dbsize = DBLENGTH (pst);
2266 dbbase = xmalloc (dbsize);
c5aa993b
JM
2267 dbroff = DBROFF (pst);
2268 foffset = DBFOFF (pst) + dbroff;
c906108c
SS
2269 base_section_offsets = pst->section_offsets;
2270 baseaddr = ANOFFSET (pst->section_offsets, 0);
2271 if (bfd_seek (abfd, foffset, SEEK_SET) ||
3a42e9d0 2272 (bfd_bread (dbbase, dbsize, abfd) != dbsize))
c906108c 2273 {
b8c9b27d 2274 xfree (dbbase);
8a3fe4f8 2275 error (_("can't read DWARF data"));
c906108c 2276 }
b8c9b27d 2277 back_to = make_cleanup (xfree, dbbase);
c906108c
SS
2278
2279 /* If there is a line number table associated with this compilation unit
2280 then read the size of this fragment in bytes, from the fragment itself.
2281 Allocate a buffer for the fragment and read it in for future
2282 processing. */
2283
2284 lnbase = NULL;
2285 if (LNFOFF (pst))
2286 {
2287 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
4efb68b1 2288 (bfd_bread (lnsizedata, sizeof (lnsizedata), abfd)
3a42e9d0 2289 != sizeof (lnsizedata)))
c906108c 2290 {
8a3fe4f8 2291 error (_("can't read DWARF line number table size"));
c906108c
SS
2292 }
2293 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
c5aa993b 2294 GET_UNSIGNED, pst->objfile);
c906108c
SS
2295 lnbase = xmalloc (lnsize);
2296 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
3a42e9d0 2297 (bfd_bread (lnbase, lnsize, abfd) != lnsize))
c906108c 2298 {
b8c9b27d 2299 xfree (lnbase);
8a3fe4f8 2300 error (_("can't read DWARF line numbers"));
c906108c 2301 }
b8c9b27d 2302 make_cleanup (xfree, lnbase);
c906108c
SS
2303 }
2304
c5aa993b 2305 process_dies (dbbase, dbbase + dbsize, pst->objfile);
c906108c
SS
2306 do_cleanups (back_to);
2307 current_objfile = NULL;
c5aa993b 2308 pst->symtab = pst->objfile->symtabs;
c906108c
SS
2309}
2310
2311/*
2312
c5aa993b 2313 LOCAL FUNCTION
c906108c 2314
c5aa993b 2315 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
c906108c 2316
c5aa993b 2317 SYNOPSIS
c906108c 2318
c5aa993b 2319 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 2320
c5aa993b 2321 DESCRIPTION
c906108c 2322
c5aa993b
JM
2323 Called once for each partial symbol table entry that needs to be
2324 expanded into a full symbol table entry.
c906108c 2325
c5aa993b 2326 */
c906108c
SS
2327
2328static void
fba45db2 2329psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c
SS
2330{
2331 int i;
2332 struct cleanup *old_chain;
c5aa993b 2333
c906108c
SS
2334 if (pst != NULL)
2335 {
2336 if (pst->readin)
2337 {
8a3fe4f8 2338 warning (_("psymtab for %s already read in. Shouldn't happen."),
c5aa993b 2339 pst->filename);
c906108c
SS
2340 }
2341 else
2342 {
2343 /* Read in all partial symtabs on which this one is dependent */
c5aa993b 2344 for (i = 0; i < pst->number_of_dependencies; i++)
c906108c 2345 {
c5aa993b 2346 if (!pst->dependencies[i]->readin)
c906108c
SS
2347 {
2348 /* Inform about additional files that need to be read in. */
2349 if (info_verbose)
2350 {
2351 fputs_filtered (" ", gdb_stdout);
2352 wrap_here ("");
2353 fputs_filtered ("and ", gdb_stdout);
2354 wrap_here ("");
2355 printf_filtered ("%s...",
c5aa993b 2356 pst->dependencies[i]->filename);
c906108c 2357 wrap_here ("");
c5aa993b 2358 gdb_flush (gdb_stdout); /* Flush output */
c906108c 2359 }
c5aa993b 2360 psymtab_to_symtab_1 (pst->dependencies[i]);
c906108c 2361 }
c5aa993b
JM
2362 }
2363 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
c906108c
SS
2364 {
2365 buildsym_init ();
a0b3c4fd 2366 old_chain = make_cleanup (really_free_pendings, 0);
c906108c
SS
2367 read_ofile_symtab (pst);
2368 if (info_verbose)
2369 {
2370 printf_filtered ("%d DIE's, sorting...", diecount);
2371 wrap_here ("");
2372 gdb_flush (gdb_stdout);
2373 }
c906108c
SS
2374 do_cleanups (old_chain);
2375 }
c5aa993b 2376 pst->readin = 1;
c906108c
SS
2377 }
2378 }
2379}
2380
2381/*
2382
c5aa993b 2383 LOCAL FUNCTION
c906108c 2384
c5aa993b 2385 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
c906108c 2386
c5aa993b 2387 SYNOPSIS
c906108c 2388
c5aa993b 2389 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
c906108c 2390
c5aa993b 2391 DESCRIPTION
c906108c 2392
c5aa993b
JM
2393 This is the DWARF support entry point for building a full symbol
2394 table entry from a partial symbol table entry. We are passed a
2395 pointer to the partial symbol table entry that needs to be expanded.
c906108c 2396
c5aa993b 2397 */
c906108c
SS
2398
2399static void
fba45db2 2400dwarf_psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
2401{
2402
2403 if (pst != NULL)
2404 {
c5aa993b 2405 if (pst->readin)
c906108c 2406 {
8a3fe4f8 2407 warning (_("psymtab for %s already read in. Shouldn't happen."),
c5aa993b 2408 pst->filename);
c906108c
SS
2409 }
2410 else
2411 {
c5aa993b 2412 if (DBLENGTH (pst) || pst->number_of_dependencies)
c906108c
SS
2413 {
2414 /* Print the message now, before starting serious work, to avoid
c5aa993b 2415 disconcerting pauses. */
c906108c
SS
2416 if (info_verbose)
2417 {
2418 printf_filtered ("Reading in symbols for %s...",
c5aa993b 2419 pst->filename);
c906108c
SS
2420 gdb_flush (gdb_stdout);
2421 }
c5aa993b 2422
c906108c 2423 psymtab_to_symtab_1 (pst);
c5aa993b
JM
2424
2425#if 0 /* FIXME: Check to see what dbxread is doing here and see if
2426 we need to do an equivalent or is this something peculiar to
2427 stabs/a.out format.
2428 Match with global symbols. This only needs to be done once,
2429 after all of the symtabs and dependencies have been read in.
2430 */
2431 scan_file_globals (pst->objfile);
c906108c 2432#endif
c5aa993b 2433
c906108c
SS
2434 /* Finish up the verbose info message. */
2435 if (info_verbose)
2436 {
2437 printf_filtered ("done.\n");
2438 gdb_flush (gdb_stdout);
2439 }
2440 }
2441 }
2442 }
2443}
2444
2445/*
2446
c5aa993b 2447 LOCAL FUNCTION
c906108c 2448
c5aa993b 2449 add_enum_psymbol -- add enumeration members to partial symbol table
c906108c 2450
c5aa993b 2451 DESCRIPTION
c906108c 2452
c5aa993b
JM
2453 Given pointer to a DIE that is known to be for an enumeration,
2454 extract the symbolic names of the enumeration members and add
2455 partial symbols for them.
2456 */
c906108c
SS
2457
2458static void
fba45db2 2459add_enum_psymbol (struct dieinfo *dip, struct objfile *objfile)
c906108c
SS
2460{
2461 char *scan;
2462 char *listend;
2463 unsigned short blocksz;
2464 int nbytes;
c5aa993b 2465
b59661bd
AC
2466 scan = dip->at_element_list;
2467 if (scan != NULL)
c906108c 2468 {
c5aa993b 2469 if (dip->short_element_list)
c906108c
SS
2470 {
2471 nbytes = attribute_size (AT_short_element_list);
2472 }
2473 else
2474 {
2475 nbytes = attribute_size (AT_element_list);
2476 }
2477 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2478 scan += nbytes;
2479 listend = scan + blocksz;
2480 while (scan < listend)
2481 {
2482 scan += TARGET_FT_LONG_SIZE (objfile);
176620f1 2483 add_psymbol_to_list (scan, strlen (scan), VAR_DOMAIN, LOC_CONST,
c5aa993b 2484 &objfile->static_psymbols, 0, 0, cu_language,
c906108c
SS
2485 objfile);
2486 scan += strlen (scan) + 1;
2487 }
2488 }
2489}
2490
2491/*
2492
c5aa993b 2493 LOCAL FUNCTION
c906108c 2494
c5aa993b 2495 add_partial_symbol -- add symbol to partial symbol table
c906108c 2496
c5aa993b 2497 DESCRIPTION
c906108c 2498
c5aa993b
JM
2499 Given a DIE, if it is one of the types that we want to
2500 add to a partial symbol table, finish filling in the die info
2501 and then add a partial symbol table entry for it.
c906108c 2502
c5aa993b 2503 NOTES
c906108c 2504
c5aa993b
JM
2505 The caller must ensure that the DIE has a valid name attribute.
2506 */
c906108c
SS
2507
2508static void
fba45db2 2509add_partial_symbol (struct dieinfo *dip, struct objfile *objfile)
c906108c 2510{
c5aa993b 2511 switch (dip->die_tag)
c906108c
SS
2512 {
2513 case TAG_global_subroutine:
c5aa993b 2514 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
176620f1 2515 VAR_DOMAIN, LOC_BLOCK,
c5aa993b
JM
2516 &objfile->global_psymbols,
2517 0, dip->at_low_pc, cu_language, objfile);
c906108c
SS
2518 break;
2519 case TAG_global_variable:
c5aa993b 2520 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
176620f1 2521 VAR_DOMAIN, LOC_STATIC,
c5aa993b 2522 &objfile->global_psymbols,
c906108c
SS
2523 0, 0, cu_language, objfile);
2524 break;
2525 case TAG_subroutine:
c5aa993b 2526 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
176620f1 2527 VAR_DOMAIN, LOC_BLOCK,
c5aa993b
JM
2528 &objfile->static_psymbols,
2529 0, dip->at_low_pc, cu_language, objfile);
c906108c
SS
2530 break;
2531 case TAG_local_variable:
c5aa993b 2532 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
176620f1 2533 VAR_DOMAIN, LOC_STATIC,
c5aa993b 2534 &objfile->static_psymbols,
c906108c
SS
2535 0, 0, cu_language, objfile);
2536 break;
2537 case TAG_typedef:
c5aa993b 2538 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
176620f1 2539 VAR_DOMAIN, LOC_TYPEDEF,
c5aa993b 2540 &objfile->static_psymbols,
c906108c
SS
2541 0, 0, cu_language, objfile);
2542 break;
2543 case TAG_class_type:
2544 case TAG_structure_type:
2545 case TAG_union_type:
2546 case TAG_enumeration_type:
2547 /* Do not add opaque aggregate definitions to the psymtab. */
c5aa993b 2548 if (!dip->has_at_byte_size)
c906108c 2549 break;
c5aa993b 2550 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
176620f1 2551 STRUCT_DOMAIN, LOC_TYPEDEF,
c5aa993b 2552 &objfile->static_psymbols,
c906108c
SS
2553 0, 0, cu_language, objfile);
2554 if (cu_language == language_cplus)
2555 {
2556 /* For C++, these implicitly act as typedefs as well. */
c5aa993b 2557 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
176620f1 2558 VAR_DOMAIN, LOC_TYPEDEF,
c5aa993b 2559 &objfile->static_psymbols,
c906108c
SS
2560 0, 0, cu_language, objfile);
2561 }
2562 break;
2563 }
2564}
9846de1b 2565/* *INDENT-OFF* */
c906108c
SS
2566/*
2567
2568LOCAL FUNCTION
2569
2570 scan_partial_symbols -- scan DIE's within a single compilation unit
2571
2572DESCRIPTION
2573
2574 Process the DIE's within a single compilation unit, looking for
2575 interesting DIE's that contribute to the partial symbol table entry
2576 for this compilation unit.
2577
2578NOTES
2579
2580 There are some DIE's that may appear both at file scope and within
2581 the scope of a function. We are only interested in the ones at file
2582 scope, and the only way to tell them apart is to keep track of the
2583 scope. For example, consider the test case:
2584
2585 static int i;
2586 main () { int j; }
2587
2588 for which the relevant DWARF segment has the structure:
2589
2590 0x51:
2591 0x23 global subrtn sibling 0x9b
2592 name main
2593 fund_type FT_integer
2594 low_pc 0x800004cc
2595 high_pc 0x800004d4
2596
2597 0x74:
2598 0x23 local var sibling 0x97
2599 name j
2600 fund_type FT_integer
2601 location OP_BASEREG 0xe
2602 OP_CONST 0xfffffffc
2603 OP_ADD
2604 0x97:
2605 0x4
2606
2607 0x9b:
2608 0x1d local var sibling 0xb8
2609 name i
2610 fund_type FT_integer
2611 location OP_ADDR 0x800025dc
2612
2613 0xb8:
2614 0x4
2615
2616 We want to include the symbol 'i' in the partial symbol table, but
2617 not the symbol 'j'. In essence, we want to skip all the dies within
2618 the scope of a TAG_global_subroutine DIE.
2619
2620 Don't attempt to add anonymous structures or unions since they have
2621 no name. Anonymous enumerations however are processed, because we
2622 want to extract their member names (the check for a tag name is
2623 done later).
2624
2625 Also, for variables and subroutines, check that this is the place
2626 where the actual definition occurs, rather than just a reference
2627 to an external.
2628 */
9846de1b 2629/* *INDENT-ON* */
c906108c 2630
c5aa993b
JM
2631
2632
c906108c 2633static void
fba45db2 2634scan_partial_symbols (char *thisdie, char *enddie, struct objfile *objfile)
c906108c
SS
2635{
2636 char *nextdie;
2637 char *temp;
2638 struct dieinfo di;
c5aa993b 2639
c906108c
SS
2640 while (thisdie < enddie)
2641 {
2642 basicdieinfo (&di, thisdie, objfile);
2643 if (di.die_length < SIZEOF_DIE_LENGTH)
2644 {
2645 break;
2646 }
2647 else
2648 {
2649 nextdie = thisdie + di.die_length;
2650 /* To avoid getting complete die information for every die, we
2651 only do it (below) for the cases we are interested in. */
2652 switch (di.die_tag)
2653 {
2654 case TAG_global_subroutine:
2655 case TAG_subroutine:
2656 completedieinfo (&di, objfile);
2657 if (di.at_name && (di.has_at_low_pc || di.at_location))
2658 {
2659 add_partial_symbol (&di, objfile);
2660 /* If there is a sibling attribute, adjust the nextdie
2661 pointer to skip the entire scope of the subroutine.
2662 Apply some sanity checking to make sure we don't
2663 overrun or underrun the range of remaining DIE's */
2664 if (di.at_sibling != 0)
2665 {
2666 temp = dbbase + di.at_sibling - dbroff;
2667 if ((temp < thisdie) || (temp >= enddie))
2668 {
23136709
KB
2669 bad_die_ref_complaint (DIE_ID, DIE_NAME,
2670 di.at_sibling);
c906108c
SS
2671 }
2672 else
2673 {
2674 nextdie = temp;
2675 }
2676 }
2677 }
2678 break;
2679 case TAG_global_variable:
2680 case TAG_local_variable:
2681 completedieinfo (&di, objfile);
2682 if (di.at_name && (di.has_at_low_pc || di.at_location))
2683 {
2684 add_partial_symbol (&di, objfile);
2685 }
2686 break;
2687 case TAG_typedef:
2688 case TAG_class_type:
2689 case TAG_structure_type:
2690 case TAG_union_type:
2691 completedieinfo (&di, objfile);
2692 if (di.at_name)
2693 {
2694 add_partial_symbol (&di, objfile);
2695 }
2696 break;
2697 case TAG_enumeration_type:
2698 completedieinfo (&di, objfile);
2699 if (di.at_name)
2700 {
2701 add_partial_symbol (&di, objfile);
2702 }
2703 add_enum_psymbol (&di, objfile);
2704 break;
2705 }
2706 }
2707 thisdie = nextdie;
2708 }
2709}
2710
2711/*
2712
c5aa993b 2713 LOCAL FUNCTION
c906108c 2714
c5aa993b 2715 scan_compilation_units -- build a psymtab entry for each compilation
c906108c 2716
c5aa993b 2717 DESCRIPTION
c906108c 2718
c5aa993b
JM
2719 This is the top level dwarf parsing routine for building partial
2720 symbol tables.
c906108c 2721
c5aa993b
JM
2722 It scans from the beginning of the DWARF table looking for the first
2723 TAG_compile_unit DIE, and then follows the sibling chain to locate
2724 each additional TAG_compile_unit DIE.
2725
2726 For each TAG_compile_unit DIE it creates a partial symtab structure,
2727 calls a subordinate routine to collect all the compilation unit's
2728 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2729 new partial symtab structure into the partial symbol table. It also
2730 records the appropriate information in the partial symbol table entry
2731 to allow the chunk of DIE's and line number table for this compilation
2732 unit to be located and re-read later, to generate a complete symbol
2733 table entry for the compilation unit.
2734
2735 Thus it effectively partitions up a chunk of DIE's for multiple
2736 compilation units into smaller DIE chunks and line number tables,
2737 and associates them with a partial symbol table entry.
2738
2739 NOTES
c906108c 2740
c5aa993b
JM
2741 If any compilation unit has no line number table associated with
2742 it for some reason (a missing at_stmt_list attribute, rather than
2743 just one with a value of zero, which is valid) then we ensure that
2744 the recorded file offset is zero so that the routine which later
2745 reads line number table fragments knows that there is no fragment
2746 to read.
c906108c 2747
c5aa993b 2748 RETURNS
c906108c 2749
c5aa993b 2750 Returns no value.
c906108c
SS
2751
2752 */
2753
2754static void
fba45db2
KB
2755scan_compilation_units (char *thisdie, char *enddie, file_ptr dbfoff,
2756 file_ptr lnoffset, struct objfile *objfile)
c906108c
SS
2757{
2758 char *nextdie;
2759 struct dieinfo di;
2760 struct partial_symtab *pst;
2761 int culength;
2762 int curoff;
2763 file_ptr curlnoffset;
2764
2765 while (thisdie < enddie)
2766 {
2767 basicdieinfo (&di, thisdie, objfile);
2768 if (di.die_length < SIZEOF_DIE_LENGTH)
2769 {
2770 break;
2771 }
2772 else if (di.die_tag != TAG_compile_unit)
2773 {
2774 nextdie = thisdie + di.die_length;
2775 }
2776 else
2777 {
2778 completedieinfo (&di, objfile);
2779 set_cu_language (&di);
2780 if (di.at_sibling != 0)
2781 {
2782 nextdie = dbbase + di.at_sibling - dbroff;
2783 }
2784 else
2785 {
2786 nextdie = thisdie + di.die_length;
2787 }
2788 curoff = thisdie - dbbase;
2789 culength = nextdie - thisdie;
2790 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2791
2792 /* First allocate a new partial symbol table structure */
2793
2794 pst = start_psymtab_common (objfile, base_section_offsets,
2795 di.at_name, di.at_low_pc,
c5aa993b
JM
2796 objfile->global_psymbols.next,
2797 objfile->static_psymbols.next);
c906108c 2798
c5aa993b
JM
2799 pst->texthigh = di.at_high_pc;
2800 pst->read_symtab_private = (char *)
8b92e4d5 2801 obstack_alloc (&objfile->objfile_obstack,
c5aa993b 2802 sizeof (struct dwfinfo));
c906108c
SS
2803 DBFOFF (pst) = dbfoff;
2804 DBROFF (pst) = curoff;
2805 DBLENGTH (pst) = culength;
c5aa993b
JM
2806 LNFOFF (pst) = curlnoffset;
2807 pst->read_symtab = dwarf_psymtab_to_symtab;
c906108c
SS
2808
2809 /* Now look for partial symbols */
2810
2811 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2812
c5aa993b
JM
2813 pst->n_global_syms = objfile->global_psymbols.next -
2814 (objfile->global_psymbols.list + pst->globals_offset);
2815 pst->n_static_syms = objfile->static_psymbols.next -
2816 (objfile->static_psymbols.list + pst->statics_offset);
c906108c
SS
2817 sort_pst_symbols (pst);
2818 /* If there is already a psymtab or symtab for a file of this name,
2819 remove it. (If there is a symtab, more drastic things also
2820 happen.) This happens in VxWorks. */
c5aa993b 2821 free_named_symtabs (pst->filename);
c906108c 2822 }
c5aa993b 2823 thisdie = nextdie;
c906108c
SS
2824 }
2825}
2826
2827/*
2828
c5aa993b 2829 LOCAL FUNCTION
c906108c 2830
c5aa993b 2831 new_symbol -- make a symbol table entry for a new symbol
c906108c 2832
c5aa993b 2833 SYNOPSIS
c906108c 2834
c5aa993b
JM
2835 static struct symbol *new_symbol (struct dieinfo *dip,
2836 struct objfile *objfile)
c906108c 2837
c5aa993b 2838 DESCRIPTION
c906108c 2839
c5aa993b
JM
2840 Given a pointer to a DWARF information entry, figure out if we need
2841 to make a symbol table entry for it, and if so, create a new entry
2842 and return a pointer to it.
c906108c
SS
2843 */
2844
2845static struct symbol *
fba45db2 2846new_symbol (struct dieinfo *dip, struct objfile *objfile)
c906108c
SS
2847{
2848 struct symbol *sym = NULL;
c5aa993b
JM
2849
2850 if (dip->at_name != NULL)
c906108c 2851 {
4a146b47 2852 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
2853 sizeof (struct symbol));
2854 OBJSTAT (objfile, n_syms++);
2855 memset (sym, 0, sizeof (struct symbol));
c906108c 2856 /* default assumptions */
176620f1 2857 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
2858 SYMBOL_CLASS (sym) = LOC_STATIC;
2859 SYMBOL_TYPE (sym) = decode_die_type (dip);
2860
2861 /* If this symbol is from a C++ compilation, then attempt to cache the
c5aa993b
JM
2862 demangled form for future reference. This is a typical time versus
2863 space tradeoff, that was decided in favor of time because it sped up
2864 C++ symbol lookups by a factor of about 20. */
c906108c
SS
2865
2866 SYMBOL_LANGUAGE (sym) = cu_language;
2de7ced7 2867 SYMBOL_SET_NAMES (sym, dip->at_name, strlen (dip->at_name), objfile);
c5aa993b 2868 switch (dip->die_tag)
c906108c
SS
2869 {
2870 case TAG_label:
c5aa993b 2871 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
c906108c
SS
2872 SYMBOL_CLASS (sym) = LOC_LABEL;
2873 break;
2874 case TAG_global_subroutine:
2875 case TAG_subroutine:
c5aa993b 2876 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
c906108c 2877 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
c5aa993b 2878 if (dip->at_prototyped)
c906108c
SS
2879 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
2880 SYMBOL_CLASS (sym) = LOC_BLOCK;
c5aa993b 2881 if (dip->die_tag == TAG_global_subroutine)
c906108c
SS
2882 {
2883 add_symbol_to_list (sym, &global_symbols);
2884 }
2885 else
2886 {
2887 add_symbol_to_list (sym, list_in_scope);
2888 }
2889 break;
2890 case TAG_global_variable:
c5aa993b 2891 if (dip->at_location != NULL)
c906108c
SS
2892 {
2893 SYMBOL_VALUE_ADDRESS (sym) = locval (dip);
2894 add_symbol_to_list (sym, &global_symbols);
2895 SYMBOL_CLASS (sym) = LOC_STATIC;
2896 SYMBOL_VALUE (sym) += baseaddr;
2897 }
2898 break;
2899 case TAG_local_variable:
c5aa993b 2900 if (dip->at_location != NULL)
c906108c
SS
2901 {
2902 int loc = locval (dip);
c5aa993b 2903 if (dip->optimized_out)
c906108c
SS
2904 {
2905 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
2906 }
c5aa993b 2907 else if (dip->isreg)
c906108c
SS
2908 {
2909 SYMBOL_CLASS (sym) = LOC_REGISTER;
2910 }
c5aa993b 2911 else if (dip->offreg)
c906108c
SS
2912 {
2913 SYMBOL_CLASS (sym) = LOC_BASEREG;
c5aa993b 2914 SYMBOL_BASEREG (sym) = dip->basereg;
c906108c
SS
2915 }
2916 else
2917 {
2918 SYMBOL_CLASS (sym) = LOC_STATIC;
2919 SYMBOL_VALUE (sym) += baseaddr;
2920 }
2921 if (SYMBOL_CLASS (sym) == LOC_STATIC)
2922 {
2923 /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS,
2924 which may store to a bigger location than SYMBOL_VALUE. */
2925 SYMBOL_VALUE_ADDRESS (sym) = loc;
2926 }
2927 else
2928 {
2929 SYMBOL_VALUE (sym) = loc;
2930 }
2931 add_symbol_to_list (sym, list_in_scope);
2932 }
2933 break;
2934 case TAG_formal_parameter:
c5aa993b 2935 if (dip->at_location != NULL)
c906108c
SS
2936 {
2937 SYMBOL_VALUE (sym) = locval (dip);
2938 }
2939 add_symbol_to_list (sym, list_in_scope);
c5aa993b 2940 if (dip->isreg)
c906108c
SS
2941 {
2942 SYMBOL_CLASS (sym) = LOC_REGPARM;
2943 }
c5aa993b 2944 else if (dip->offreg)
c906108c
SS
2945 {
2946 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
c5aa993b 2947 SYMBOL_BASEREG (sym) = dip->basereg;
c906108c
SS
2948 }
2949 else
2950 {
2951 SYMBOL_CLASS (sym) = LOC_ARG;
2952 }
2953 break;
2954 case TAG_unspecified_parameters:
2955 /* From varargs functions; gdb doesn't seem to have any interest in
2956 this information, so just ignore it for now. (FIXME?) */
2957 break;
2958 case TAG_class_type:
2959 case TAG_structure_type:
2960 case TAG_union_type:
2961 case TAG_enumeration_type:
2962 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 2963 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c
SS
2964 add_symbol_to_list (sym, list_in_scope);
2965 break;
2966 case TAG_typedef:
2967 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 2968 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
2969 add_symbol_to_list (sym, list_in_scope);
2970 break;
2971 default:
2972 /* Not a tag we recognize. Hopefully we aren't processing trash
2973 data, but since we must specifically ignore things we don't
2974 recognize, there is nothing else we should do at this point. */
2975 break;
2976 }
2977 }
2978 return (sym);
2979}
2980
2981/*
2982
c5aa993b 2983 LOCAL FUNCTION
c906108c 2984
c5aa993b 2985 synthesize_typedef -- make a symbol table entry for a "fake" typedef
c906108c 2986
c5aa993b 2987 SYNOPSIS
c906108c 2988
c5aa993b
JM
2989 static void synthesize_typedef (struct dieinfo *dip,
2990 struct objfile *objfile,
2991 struct type *type);
c906108c 2992
c5aa993b 2993 DESCRIPTION
c906108c 2994
c5aa993b
JM
2995 Given a pointer to a DWARF information entry, synthesize a typedef
2996 for the name in the DIE, using the specified type.
c906108c 2997
c5aa993b
JM
2998 This is used for C++ class, structs, unions, and enumerations to
2999 set up the tag name as a type.
c906108c
SS
3000
3001 */
3002
3003static void
fba45db2
KB
3004synthesize_typedef (struct dieinfo *dip, struct objfile *objfile,
3005 struct type *type)
c906108c
SS
3006{
3007 struct symbol *sym = NULL;
c5aa993b
JM
3008
3009 if (dip->at_name != NULL)
c906108c
SS
3010 {
3011 sym = (struct symbol *)
4a146b47 3012 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
c906108c
SS
3013 OBJSTAT (objfile, n_syms++);
3014 memset (sym, 0, sizeof (struct symbol));
22abf04a 3015 DEPRECATED_SYMBOL_NAME (sym) = create_name (dip->at_name,
4a146b47 3016 &objfile->objfile_obstack);
c906108c
SS
3017 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3018 SYMBOL_TYPE (sym) = type;
3019 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 3020 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
3021 add_symbol_to_list (sym, list_in_scope);
3022 }
3023}
3024
3025/*
3026
c5aa993b 3027 LOCAL FUNCTION
c906108c 3028
c5aa993b 3029 decode_mod_fund_type -- decode a modified fundamental type
c906108c 3030
c5aa993b 3031 SYNOPSIS
c906108c 3032
c5aa993b 3033 static struct type *decode_mod_fund_type (char *typedata)
c906108c 3034
c5aa993b 3035 DESCRIPTION
c906108c 3036
c5aa993b
JM
3037 Decode a block of data containing a modified fundamental
3038 type specification. TYPEDATA is a pointer to the block,
3039 which starts with a length containing the size of the rest
3040 of the block. At the end of the block is a fundmental type
3041 code value that gives the fundamental type. Everything
3042 in between are type modifiers.
c906108c 3043
c5aa993b
JM
3044 We simply compute the number of modifiers and call the general
3045 function decode_modified_type to do the actual work.
3046 */
c906108c
SS
3047
3048static struct type *
fba45db2 3049decode_mod_fund_type (char *typedata)
c906108c
SS
3050{
3051 struct type *typep = NULL;
3052 unsigned short modcount;
3053 int nbytes;
c5aa993b 3054
c906108c
SS
3055 /* Get the total size of the block, exclusive of the size itself */
3056
3057 nbytes = attribute_size (AT_mod_fund_type);
3058 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3059 typedata += nbytes;
3060
3061 /* Deduct the size of the fundamental type bytes at the end of the block. */
3062
3063 modcount -= attribute_size (AT_fund_type);
3064
3065 /* Now do the actual decoding */
3066
3067 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3068 return (typep);
3069}
3070
3071/*
3072
c5aa993b 3073 LOCAL FUNCTION
c906108c 3074
c5aa993b 3075 decode_mod_u_d_type -- decode a modified user defined type
c906108c 3076
c5aa993b 3077 SYNOPSIS
c906108c 3078
c5aa993b 3079 static struct type *decode_mod_u_d_type (char *typedata)
c906108c 3080
c5aa993b 3081 DESCRIPTION
c906108c 3082
c5aa993b
JM
3083 Decode a block of data containing a modified user defined
3084 type specification. TYPEDATA is a pointer to the block,
3085 which consists of a two byte length, containing the size
3086 of the rest of the block. At the end of the block is a
3087 four byte value that gives a reference to a user defined type.
3088 Everything in between are type modifiers.
c906108c 3089
c5aa993b
JM
3090 We simply compute the number of modifiers and call the general
3091 function decode_modified_type to do the actual work.
3092 */
c906108c
SS
3093
3094static struct type *
fba45db2 3095decode_mod_u_d_type (char *typedata)
c906108c
SS
3096{
3097 struct type *typep = NULL;
3098 unsigned short modcount;
3099 int nbytes;
c5aa993b 3100
c906108c
SS
3101 /* Get the total size of the block, exclusive of the size itself */
3102
3103 nbytes = attribute_size (AT_mod_u_d_type);
3104 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3105 typedata += nbytes;
3106
3107 /* Deduct the size of the reference type bytes at the end of the block. */
3108
3109 modcount -= attribute_size (AT_user_def_type);
3110
3111 /* Now do the actual decoding */
3112
3113 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3114 return (typep);
3115}
3116
3117/*
3118
c5aa993b 3119 LOCAL FUNCTION
c906108c 3120
c5aa993b 3121 decode_modified_type -- decode modified user or fundamental type
c906108c 3122
c5aa993b 3123 SYNOPSIS
c906108c 3124
c5aa993b
JM
3125 static struct type *decode_modified_type (char *modifiers,
3126 unsigned short modcount, int mtype)
c906108c 3127
c5aa993b 3128 DESCRIPTION
c906108c 3129
c5aa993b
JM
3130 Decode a modified type, either a modified fundamental type or
3131 a modified user defined type. MODIFIERS is a pointer to the
3132 block of bytes that define MODCOUNT modifiers. Immediately
3133 following the last modifier is a short containing the fundamental
3134 type or a long containing the reference to the user defined
3135 type. Which one is determined by MTYPE, which is either
3136 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3137 type we are generating.
c906108c 3138
c5aa993b
JM
3139 We call ourself recursively to generate each modified type,`
3140 until MODCOUNT reaches zero, at which point we have consumed
3141 all the modifiers and generate either the fundamental type or
3142 user defined type. When the recursion unwinds, each modifier
3143 is applied in turn to generate the full modified type.
3144
3145 NOTES
c906108c 3146
c5aa993b
JM
3147 If we find a modifier that we don't recognize, and it is not one
3148 of those reserved for application specific use, then we issue a
3149 warning and simply ignore the modifier.
c906108c 3150
c5aa993b 3151 BUGS
c906108c 3152
c5aa993b 3153 We currently ignore MOD_const and MOD_volatile. (FIXME)
c906108c
SS
3154
3155 */
3156
3157static struct type *
fba45db2 3158decode_modified_type (char *modifiers, unsigned int modcount, int mtype)
c906108c
SS
3159{
3160 struct type *typep = NULL;
3161 unsigned short fundtype;
3162 DIE_REF die_ref;
3163 char modifier;
3164 int nbytes;
c5aa993b 3165
c906108c
SS
3166 if (modcount == 0)
3167 {
3168 switch (mtype)
3169 {
3170 case AT_mod_fund_type:
3171 nbytes = attribute_size (AT_fund_type);
3172 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3173 current_objfile);
3174 typep = decode_fund_type (fundtype);
3175 break;
3176 case AT_mod_u_d_type:
3177 nbytes = attribute_size (AT_user_def_type);
3178 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3179 current_objfile);
b59661bd
AC
3180 typep = lookup_utype (die_ref);
3181 if (typep == NULL)
c906108c
SS
3182 {
3183 typep = alloc_utype (die_ref, NULL);
3184 }
3185 break;
3186 default:
23136709 3187 complaint (&symfile_complaints,
e2e0b3e5 3188 _("DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)"),
23136709 3189 DIE_ID, DIE_NAME, mtype);
c906108c
SS
3190 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3191 break;
3192 }
3193 }
3194 else
3195 {
3196 modifier = *modifiers++;
3197 typep = decode_modified_type (modifiers, --modcount, mtype);
3198 switch (modifier)
3199 {
c5aa993b
JM
3200 case MOD_pointer_to:
3201 typep = lookup_pointer_type (typep);
3202 break;
3203 case MOD_reference_to:
3204 typep = lookup_reference_type (typep);
3205 break;
3206 case MOD_const:
23136709 3207 complaint (&symfile_complaints,
e2e0b3e5 3208 _("DIE @ 0x%x \"%s\", type modifier 'const' ignored"), DIE_ID,
23136709 3209 DIE_NAME); /* FIXME */
c5aa993b
JM
3210 break;
3211 case MOD_volatile:
23136709 3212 complaint (&symfile_complaints,
e2e0b3e5 3213 _("DIE @ 0x%x \"%s\", type modifier 'volatile' ignored"),
23136709 3214 DIE_ID, DIE_NAME); /* FIXME */
c5aa993b
JM
3215 break;
3216 default:
3cb3398d
EZ
3217 if (!(MOD_lo_user <= (unsigned char) modifier))
3218#if 0
3219/* This part of the test would always be true, and it triggers a compiler
3220 warning. */
c5aa993b 3221 && (unsigned char) modifier <= MOD_hi_user))
3cb3398d 3222#endif
c5aa993b 3223 {
23136709 3224 complaint (&symfile_complaints,
e2e0b3e5 3225 _("DIE @ 0x%x \"%s\", unknown type modifier %u"), DIE_ID,
23136709 3226 DIE_NAME, modifier);
c5aa993b
JM
3227 }
3228 break;
c906108c
SS
3229 }
3230 }
3231 return (typep);
3232}
3233
3234/*
3235
c5aa993b 3236 LOCAL FUNCTION
c906108c 3237
c5aa993b 3238 decode_fund_type -- translate basic DWARF type to gdb base type
c906108c 3239
c5aa993b 3240 DESCRIPTION
c906108c 3241
c5aa993b
JM
3242 Given an integer that is one of the fundamental DWARF types,
3243 translate it to one of the basic internal gdb types and return
3244 a pointer to the appropriate gdb type (a "struct type *").
c906108c 3245
c5aa993b 3246 NOTES
c906108c 3247
c5aa993b
JM
3248 For robustness, if we are asked to translate a fundamental
3249 type that we are unprepared to deal with, we return int so
3250 callers can always depend upon a valid type being returned,
3251 and so gdb may at least do something reasonable by default.
3252 If the type is not in the range of those types defined as
3253 application specific types, we also issue a warning.
3254 */
c906108c
SS
3255
3256static struct type *
fba45db2 3257decode_fund_type (unsigned int fundtype)
c906108c
SS
3258{
3259 struct type *typep = NULL;
c5aa993b 3260
c906108c
SS
3261 switch (fundtype)
3262 {
3263
3264 case FT_void:
3265 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3266 break;
c5aa993b 3267
c906108c
SS
3268 case FT_boolean: /* Was FT_set in AT&T version */
3269 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3270 break;
3271
3272 case FT_pointer: /* (void *) */
3273 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3274 typep = lookup_pointer_type (typep);
3275 break;
c5aa993b 3276
c906108c
SS
3277 case FT_char:
3278 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3279 break;
c5aa993b 3280
c906108c
SS
3281 case FT_signed_char:
3282 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3283 break;
3284
3285 case FT_unsigned_char:
3286 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3287 break;
c5aa993b 3288
c906108c
SS
3289 case FT_short:
3290 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3291 break;
3292
3293 case FT_signed_short:
3294 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3295 break;
c5aa993b 3296
c906108c
SS
3297 case FT_unsigned_short:
3298 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3299 break;
c5aa993b 3300
c906108c
SS
3301 case FT_integer:
3302 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3303 break;
3304
3305 case FT_signed_integer:
3306 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3307 break;
c5aa993b 3308
c906108c
SS
3309 case FT_unsigned_integer:
3310 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3311 break;
c5aa993b 3312
c906108c
SS
3313 case FT_long:
3314 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3315 break;
3316
3317 case FT_signed_long:
3318 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3319 break;
c5aa993b 3320
c906108c
SS
3321 case FT_unsigned_long:
3322 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3323 break;
c5aa993b 3324
c906108c
SS
3325 case FT_long_long:
3326 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3327 break;
3328
3329 case FT_signed_long_long:
3330 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3331 break;
3332
3333 case FT_unsigned_long_long:
3334 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3335 break;
3336
3337 case FT_float:
3338 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3339 break;
c5aa993b 3340
c906108c
SS
3341 case FT_dbl_prec_float:
3342 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3343 break;
c5aa993b 3344
c906108c
SS
3345 case FT_ext_prec_float:
3346 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3347 break;
c5aa993b 3348
c906108c
SS
3349 case FT_complex:
3350 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3351 break;
c5aa993b 3352
c906108c
SS
3353 case FT_dbl_prec_complex:
3354 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3355 break;
c5aa993b 3356
c906108c
SS
3357 case FT_ext_prec_complex:
3358 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3359 break;
c5aa993b 3360
c906108c
SS
3361 }
3362
3363 if (typep == NULL)
3364 {
3365 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3366 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3367 {
23136709 3368 complaint (&symfile_complaints,
e2e0b3e5 3369 _("DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x"),
23136709 3370 DIE_ID, DIE_NAME, fundtype);
c906108c
SS
3371 }
3372 }
c5aa993b 3373
c906108c
SS
3374 return (typep);
3375}
3376
3377/*
3378
c5aa993b 3379 LOCAL FUNCTION
c906108c 3380
c5aa993b 3381 create_name -- allocate a fresh copy of a string on an obstack
c906108c 3382
c5aa993b 3383 DESCRIPTION
c906108c 3384
c5aa993b
JM
3385 Given a pointer to a string and a pointer to an obstack, allocates
3386 a fresh copy of the string on the specified obstack.
c906108c 3387
c5aa993b 3388 */
c906108c
SS
3389
3390static char *
fba45db2 3391create_name (char *name, struct obstack *obstackp)
c906108c
SS
3392{
3393 int length;
3394 char *newname;
3395
3396 length = strlen (name) + 1;
3397 newname = (char *) obstack_alloc (obstackp, length);
3398 strcpy (newname, name);
3399 return (newname);
3400}
3401
3402/*
3403
c5aa993b 3404 LOCAL FUNCTION
c906108c 3405
c5aa993b 3406 basicdieinfo -- extract the minimal die info from raw die data
c906108c 3407
c5aa993b 3408 SYNOPSIS
c906108c 3409
c5aa993b
JM
3410 void basicdieinfo (char *diep, struct dieinfo *dip,
3411 struct objfile *objfile)
c906108c 3412
c5aa993b 3413 DESCRIPTION
c906108c 3414
c5aa993b
JM
3415 Given a pointer to raw DIE data, and a pointer to an instance of a
3416 die info structure, this function extracts the basic information
3417 from the DIE data required to continue processing this DIE, along
3418 with some bookkeeping information about the DIE.
c906108c 3419
c5aa993b
JM
3420 The information we absolutely must have includes the DIE tag,
3421 and the DIE length. If we need the sibling reference, then we
3422 will have to call completedieinfo() to process all the remaining
3423 DIE information.
c906108c 3424
c5aa993b
JM
3425 Note that since there is no guarantee that the data is properly
3426 aligned in memory for the type of access required (indirection
3427 through anything other than a char pointer), and there is no
3428 guarantee that it is in the same byte order as the gdb host,
3429 we call a function which deals with both alignment and byte
3430 swapping issues. Possibly inefficient, but quite portable.
c906108c 3431
c5aa993b
JM
3432 We also take care of some other basic things at this point, such
3433 as ensuring that the instance of the die info structure starts
3434 out completely zero'd and that curdie is initialized for use
3435 in error reporting if we have a problem with the current die.
c906108c 3436
c5aa993b
JM
3437 NOTES
3438
3439 All DIE's must have at least a valid length, thus the minimum
3440 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3441 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3442 are forced to be TAG_padding DIES.
c906108c 3443
c5aa993b
JM
3444 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3445 that if a padding DIE is used for alignment and the amount needed is
3446 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3447 enough to align to the next alignment boundry.
3448
3449 We do some basic sanity checking here, such as verifying that the
3450 length of the die would not cause it to overrun the recorded end of
3451 the buffer holding the DIE info. If we find a DIE that is either
3452 too small or too large, we force it's length to zero which should
3453 cause the caller to take appropriate action.
c906108c
SS
3454 */
3455
3456static void
fba45db2 3457basicdieinfo (struct dieinfo *dip, char *diep, struct objfile *objfile)
c906108c
SS
3458{
3459 curdie = dip;
3460 memset (dip, 0, sizeof (struct dieinfo));
c5aa993b
JM
3461 dip->die = diep;
3462 dip->die_ref = dbroff + (diep - dbbase);
3463 dip->die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3464 objfile);
3465 if ((dip->die_length < SIZEOF_DIE_LENGTH) ||
3466 ((diep + dip->die_length) > (dbbase + dbsize)))
c906108c 3467 {
23136709 3468 complaint (&symfile_complaints,
e2e0b3e5 3469 _("DIE @ 0x%x \"%s\", malformed DIE, bad length (%ld bytes)"),
23136709 3470 DIE_ID, DIE_NAME, dip->die_length);
c5aa993b 3471 dip->die_length = 0;
c906108c 3472 }
c5aa993b 3473 else if (dip->die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
c906108c 3474 {
c5aa993b 3475 dip->die_tag = TAG_padding;
c906108c
SS
3476 }
3477 else
3478 {
3479 diep += SIZEOF_DIE_LENGTH;
c5aa993b
JM
3480 dip->die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3481 objfile);
c906108c
SS
3482 }
3483}
3484
3485/*
3486
c5aa993b 3487 LOCAL FUNCTION
c906108c 3488
c5aa993b 3489 completedieinfo -- finish reading the information for a given DIE
c906108c 3490
c5aa993b 3491 SYNOPSIS
c906108c 3492
c5aa993b 3493 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
c906108c 3494
c5aa993b 3495 DESCRIPTION
c906108c 3496
c5aa993b
JM
3497 Given a pointer to an already partially initialized die info structure,
3498 scan the raw DIE data and finish filling in the die info structure
3499 from the various attributes found.
c906108c 3500
c5aa993b
JM
3501 Note that since there is no guarantee that the data is properly
3502 aligned in memory for the type of access required (indirection
3503 through anything other than a char pointer), and there is no
3504 guarantee that it is in the same byte order as the gdb host,
3505 we call a function which deals with both alignment and byte
3506 swapping issues. Possibly inefficient, but quite portable.
c906108c 3507
c5aa993b
JM
3508 NOTES
3509
3510 Each time we are called, we increment the diecount variable, which
3511 keeps an approximate count of the number of dies processed for
3512 each compilation unit. This information is presented to the user
3513 if the info_verbose flag is set.
c906108c
SS
3514
3515 */
3516
3517static void
fba45db2 3518completedieinfo (struct dieinfo *dip, struct objfile *objfile)
c906108c
SS
3519{
3520 char *diep; /* Current pointer into raw DIE data */
3521 char *end; /* Terminate DIE scan here */
3522 unsigned short attr; /* Current attribute being scanned */
3523 unsigned short form; /* Form of the attribute */
3524 int nbytes; /* Size of next field to read */
c5aa993b 3525
c906108c 3526 diecount++;
c5aa993b
JM
3527 diep = dip->die;
3528 end = diep + dip->die_length;
c906108c
SS
3529 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3530 while (diep < end)
3531 {
3532 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3533 diep += SIZEOF_ATTRIBUTE;
b59661bd
AC
3534 nbytes = attribute_size (attr);
3535 if (nbytes == -1)
c906108c 3536 {
23136709 3537 complaint (&symfile_complaints,
e2e0b3e5 3538 _("DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes"),
23136709 3539 DIE_ID, DIE_NAME);
c906108c
SS
3540 diep = end;
3541 continue;
3542 }
3543 switch (attr)
3544 {
3545 case AT_fund_type:
c5aa993b
JM
3546 dip->at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3547 objfile);
c906108c
SS
3548 break;
3549 case AT_ordering:
c5aa993b
JM
3550 dip->at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3551 objfile);
c906108c
SS
3552 break;
3553 case AT_bit_offset:
c5aa993b
JM
3554 dip->at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3555 objfile);
c906108c
SS
3556 break;
3557 case AT_sibling:
c5aa993b
JM
3558 dip->at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3559 objfile);
c906108c
SS
3560 break;
3561 case AT_stmt_list:
c5aa993b
JM
3562 dip->at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3563 objfile);
3564 dip->has_at_stmt_list = 1;
c906108c
SS
3565 break;
3566 case AT_low_pc:
c5aa993b
JM
3567 dip->at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3568 objfile);
3569 dip->at_low_pc += baseaddr;
3570 dip->has_at_low_pc = 1;
c906108c
SS
3571 break;
3572 case AT_high_pc:
c5aa993b
JM
3573 dip->at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3574 objfile);
3575 dip->at_high_pc += baseaddr;
c906108c
SS
3576 break;
3577 case AT_language:
c5aa993b
JM
3578 dip->at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3579 objfile);
c906108c
SS
3580 break;
3581 case AT_user_def_type:
c5aa993b
JM
3582 dip->at_user_def_type = target_to_host (diep, nbytes,
3583 GET_UNSIGNED, objfile);
c906108c
SS
3584 break;
3585 case AT_byte_size:
c5aa993b
JM
3586 dip->at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3587 objfile);
3588 dip->has_at_byte_size = 1;
c906108c
SS
3589 break;
3590 case AT_bit_size:
c5aa993b
JM
3591 dip->at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3592 objfile);
c906108c
SS
3593 break;
3594 case AT_member:
c5aa993b
JM
3595 dip->at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3596 objfile);
c906108c
SS
3597 break;
3598 case AT_discr:
c5aa993b
JM
3599 dip->at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3600 objfile);
c906108c
SS
3601 break;
3602 case AT_location:
c5aa993b 3603 dip->at_location = diep;
c906108c
SS
3604 break;
3605 case AT_mod_fund_type:
c5aa993b 3606 dip->at_mod_fund_type = diep;
c906108c
SS
3607 break;
3608 case AT_subscr_data:
c5aa993b 3609 dip->at_subscr_data = diep;
c906108c
SS
3610 break;
3611 case AT_mod_u_d_type:
c5aa993b 3612 dip->at_mod_u_d_type = diep;
c906108c
SS
3613 break;
3614 case AT_element_list:
c5aa993b
JM
3615 dip->at_element_list = diep;
3616 dip->short_element_list = 0;
c906108c
SS
3617 break;
3618 case AT_short_element_list:
c5aa993b
JM
3619 dip->at_element_list = diep;
3620 dip->short_element_list = 1;
c906108c
SS
3621 break;
3622 case AT_discr_value:
c5aa993b 3623 dip->at_discr_value = diep;
c906108c
SS
3624 break;
3625 case AT_string_length:
c5aa993b 3626 dip->at_string_length = diep;
c906108c
SS
3627 break;
3628 case AT_name:
c5aa993b 3629 dip->at_name = diep;
c906108c
SS
3630 break;
3631 case AT_comp_dir:
3632 /* For now, ignore any "hostname:" portion, since gdb doesn't
3633 know how to deal with it. (FIXME). */
c5aa993b
JM
3634 dip->at_comp_dir = strrchr (diep, ':');
3635 if (dip->at_comp_dir != NULL)
c906108c 3636 {
c5aa993b 3637 dip->at_comp_dir++;
c906108c
SS
3638 }
3639 else
3640 {
c5aa993b 3641 dip->at_comp_dir = diep;
c906108c
SS
3642 }
3643 break;
3644 case AT_producer:
c5aa993b 3645 dip->at_producer = diep;
c906108c
SS
3646 break;
3647 case AT_start_scope:
c5aa993b
JM
3648 dip->at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3649 objfile);
c906108c
SS
3650 break;
3651 case AT_stride_size:
c5aa993b
JM
3652 dip->at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3653 objfile);
c906108c
SS
3654 break;
3655 case AT_src_info:
c5aa993b
JM
3656 dip->at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3657 objfile);
c906108c
SS
3658 break;
3659 case AT_prototyped:
c5aa993b 3660 dip->at_prototyped = diep;
c906108c
SS
3661 break;
3662 default:
3663 /* Found an attribute that we are unprepared to handle. However
3664 it is specifically one of the design goals of DWARF that
3665 consumers should ignore unknown attributes. As long as the
3666 form is one that we recognize (so we know how to skip it),
3667 we can just ignore the unknown attribute. */
3668 break;
3669 }
3670 form = FORM_FROM_ATTR (attr);
3671 switch (form)
3672 {
3673 case FORM_DATA2:
3674 diep += 2;
3675 break;
3676 case FORM_DATA4:
3677 case FORM_REF:
3678 diep += 4;
3679 break;
3680 case FORM_DATA8:
3681 diep += 8;
3682 break;
3683 case FORM_ADDR:
3684 diep += TARGET_FT_POINTER_SIZE (objfile);
3685 break;
3686 case FORM_BLOCK2:
3687 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3688 break;
3689 case FORM_BLOCK4:
3690 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3691 break;
3692 case FORM_STRING:
3693 diep += strlen (diep) + 1;
3694 break;
3695 default:
23136709 3696 unknown_attribute_form_complaint (DIE_ID, DIE_NAME, form);
c906108c
SS
3697 diep = end;
3698 break;
3699 }
3700 }
3701}
3702
3703/*
3704
c5aa993b 3705 LOCAL FUNCTION
c906108c 3706
c5aa993b 3707 target_to_host -- swap in target data to host
c906108c 3708
c5aa993b 3709 SYNOPSIS
c906108c 3710
c5aa993b
JM
3711 target_to_host (char *from, int nbytes, int signextend,
3712 struct objfile *objfile)
c906108c 3713
c5aa993b 3714 DESCRIPTION
c906108c 3715
c5aa993b
JM
3716 Given pointer to data in target format in FROM, a byte count for
3717 the size of the data in NBYTES, a flag indicating whether or not
3718 the data is signed in SIGNEXTEND, and a pointer to the current
3719 objfile in OBJFILE, convert the data to host format and return
3720 the converted value.
c906108c 3721
c5aa993b 3722 NOTES
c906108c 3723
c5aa993b
JM
3724 FIXME: If we read data that is known to be signed, and expect to
3725 use it as signed data, then we need to explicitly sign extend the
3726 result until the bfd library is able to do this for us.
c906108c 3727
c5aa993b 3728 FIXME: Would a 32 bit target ever need an 8 byte result?
c906108c
SS
3729
3730 */
3731
3732static CORE_ADDR
fba45db2
KB
3733target_to_host (char *from, int nbytes, int signextend, /* FIXME: Unused */
3734 struct objfile *objfile)
c906108c
SS
3735{
3736 CORE_ADDR rtnval;
3737
3738 switch (nbytes)
3739 {
c5aa993b
JM
3740 case 8:
3741 rtnval = bfd_get_64 (objfile->obfd, (bfd_byte *) from);
3742 break;
3743 case 4:
3744 rtnval = bfd_get_32 (objfile->obfd, (bfd_byte *) from);
3745 break;
3746 case 2:
3747 rtnval = bfd_get_16 (objfile->obfd, (bfd_byte *) from);
3748 break;
3749 case 1:
3750 rtnval = bfd_get_8 (objfile->obfd, (bfd_byte *) from);
3751 break;
3752 default:
23136709 3753 complaint (&symfile_complaints,
e2e0b3e5 3754 _("DIE @ 0x%x \"%s\", no bfd support for %d byte data object"),
23136709 3755 DIE_ID, DIE_NAME, nbytes);
c5aa993b
JM
3756 rtnval = 0;
3757 break;
c906108c
SS
3758 }
3759 return (rtnval);
3760}
3761
3762/*
3763
c5aa993b 3764 LOCAL FUNCTION
c906108c 3765
c5aa993b 3766 attribute_size -- compute size of data for a DWARF attribute
c906108c 3767
c5aa993b 3768 SYNOPSIS
c906108c 3769
c5aa993b 3770 static int attribute_size (unsigned int attr)
c906108c 3771
c5aa993b 3772 DESCRIPTION
c906108c 3773
c5aa993b
JM
3774 Given a DWARF attribute in ATTR, compute the size of the first
3775 piece of data associated with this attribute and return that
3776 size.
c906108c 3777
c5aa993b 3778 Returns -1 for unrecognized attributes.
c906108c
SS
3779
3780 */
3781
3782static int
fba45db2 3783attribute_size (unsigned int attr)
c906108c
SS
3784{
3785 int nbytes; /* Size of next data for this attribute */
3786 unsigned short form; /* Form of the attribute */
3787
3788 form = FORM_FROM_ATTR (attr);
3789 switch (form)
3790 {
c5aa993b
JM
3791 case FORM_STRING: /* A variable length field is next */
3792 nbytes = 0;
3793 break;
3794 case FORM_DATA2: /* Next 2 byte field is the data itself */
3795 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3796 nbytes = 2;
3797 break;
3798 case FORM_DATA4: /* Next 4 byte field is the data itself */
3799 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3800 case FORM_REF: /* Next 4 byte field is a DIE offset */
3801 nbytes = 4;
3802 break;
3803 case FORM_DATA8: /* Next 8 byte field is the data itself */
3804 nbytes = 8;
3805 break;
3806 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3807 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3808 break;
3809 default:
23136709 3810 unknown_attribute_form_complaint (DIE_ID, DIE_NAME, form);
c5aa993b
JM
3811 nbytes = -1;
3812 break;
3813 }
c906108c
SS
3814 return (nbytes);
3815}
This page took 0.615472 seconds and 4 git commands to generate.