gdb/mi: add new --group-by-objfile flag for -file-list-exec-source-files
[deliverable/binutils-gdb.git] / gdb / elfread.c
CommitLineData
c906108c 1/* Read ELF (Executable and Linking Format) object files for GDB.
1bac305b 2
3666a048 3 Copyright (C) 1991-2021 Free Software Foundation, Inc.
1bac305b 4
c906108c
SS
5 Written by Fred Fish at Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "bfd.h"
c906108c 24#include "elf-bfd.h"
31d99776
DJ
25#include "elf/common.h"
26#include "elf/internal.h"
c906108c 27#include "elf/mips.h"
4de283e4
TT
28#include "symtab.h"
29#include "symfile.h"
30#include "objfiles.h"
31#include "stabsread.h"
4de283e4
TT
32#include "complaints.h"
33#include "demangle.h"
34#include "psympriv.h"
35#include "filenames.h"
36#include "probe.h"
37#include "arch-utils.h"
07be84bf 38#include "gdbtypes.h"
4de283e4 39#include "value.h"
07be84bf 40#include "infcall.h"
4de283e4 41#include "gdbthread.h"
00431a78 42#include "inferior.h"
4de283e4
TT
43#include "regcache.h"
44#include "bcache.h"
45#include "gdb_bfd.h"
46#include "build-id.h"
f00aae0f 47#include "location.h"
4de283e4 48#include "auxv.h"
0e8f53ba 49#include "mdebugread.h"
30d1f018 50#include "ctfread.h"
31edb802 51#include "gdbsupport/gdb_string_view.h"
0d79cdc4
AM
52#include "gdbsupport/scoped_fd.h"
53#include "debuginfod-support.h"
70182375 54#include "dwarf2/public.h"
c906108c
SS
55
56/* The struct elfinfo is available only during ELF symbol table and
6426a772 57 psymtab reading. It is destroyed at the completion of psymtab-reading.
c906108c
SS
58 It's local to elf_symfile_read. */
59
c5aa993b
JM
60struct elfinfo
61 {
c5aa993b 62 asection *stabsect; /* Section pointer for .stab section */
c5aa993b 63 asection *mdebugsect; /* Section pointer for .mdebug section */
30d1f018 64 asection *ctfsect; /* Section pointer for .ctf section */
c5aa993b 65 };
c906108c 66
814cf43a
TT
67/* Type for per-BFD data. */
68
69typedef std::vector<std::unique_ptr<probe>> elfread_data;
70
5d9cf8a4 71/* Per-BFD data for probe info. */
55aa24fb 72
814cf43a 73static const struct bfd_key<elfread_data> probe_key;
55aa24fb 74
07be84bf
JK
75/* Minimal symbols located at the GOT entries for .plt - that is the real
76 pointer where the given entry will jump to. It gets updated by the real
77 function address during lazy ld.so resolving in the inferior. These
78 minimal symbols are indexed for <tab>-completion. */
79
80#define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
81
31d99776
DJ
82/* Locate the segments in ABFD. */
83
62982abd 84static symfile_segment_data_up
31d99776
DJ
85elf_symfile_segments (bfd *abfd)
86{
87 Elf_Internal_Phdr *phdrs, **segments;
88 long phdrs_size;
89 int num_phdrs, num_segments, num_sections, i;
90 asection *sect;
31d99776
DJ
91
92 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
93 if (phdrs_size == -1)
94 return NULL;
95
224c3ddb 96 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
31d99776
DJ
97 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
98 if (num_phdrs == -1)
99 return NULL;
100
101 num_segments = 0;
8d749320 102 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
31d99776
DJ
103 for (i = 0; i < num_phdrs; i++)
104 if (phdrs[i].p_type == PT_LOAD)
105 segments[num_segments++] = &phdrs[i];
106
107 if (num_segments == 0)
108 return NULL;
109
62982abd 110 symfile_segment_data_up data (new symfile_segment_data);
68b888ff 111 data->segments.reserve (num_segments);
31d99776
DJ
112
113 for (i = 0; i < num_segments; i++)
68b888ff 114 data->segments.emplace_back (segments[i]->p_vaddr, segments[i]->p_memsz);
31d99776
DJ
115
116 num_sections = bfd_count_sections (abfd);
9005fbbb
SM
117
118 /* All elements are initialized to 0 (map to no segment). */
119 data->segment_info.resize (num_sections);
31d99776
DJ
120
121 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
122 {
123 int j;
31d99776 124
fd361982 125 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
31d99776
DJ
126 continue;
127
62b74cb8 128 Elf_Internal_Shdr *this_hdr = &elf_section_data (sect)->this_hdr;
31d99776
DJ
129
130 for (j = 0; j < num_segments; j++)
62b74cb8 131 if (ELF_SECTION_IN_SEGMENT (this_hdr, segments[j]))
31d99776
DJ
132 {
133 data->segment_info[i] = j + 1;
134 break;
135 }
136
ad09a548
DJ
137 /* We should have found a segment for every non-empty section.
138 If we haven't, we will not relocate this section by any
139 offsets we apply to the segments. As an exception, do not
140 warn about SHT_NOBITS sections; in normal ELF execution
141 environments, SHT_NOBITS means zero-initialized and belongs
142 in a segment, but in no-OS environments some tools (e.g. ARM
143 RealView) use SHT_NOBITS for uninitialized data. Since it is
144 uninitialized, it doesn't need a program header. Such
145 binaries are not relocatable. */
25f4c262
KS
146
147 /* Exclude debuginfo files from this warning, too, since those
148 are often not strictly compliant with the standard. See, e.g.,
149 ld/24717 for more discussion. */
150 if (!is_debuginfo_file (abfd)
151 && bfd_section_size (sect) > 0 && j == num_segments
fd361982 152 && (bfd_section_flags (sect) & SEC_LOAD) != 0)
9d3ab915
KS
153 warning (_("Loadable section \"%s\" outside of ELF segments\n in %s"),
154 bfd_section_name (sect), bfd_get_filename (abfd));
31d99776
DJ
155 }
156
157 return data;
158}
159
c906108c
SS
160/* We are called once per section from elf_symfile_read. We
161 need to examine each section we are passed, check to see
162 if it is something we are interested in processing, and
163 if so, stash away some access information for the section.
164
165 For now we recognize the dwarf debug information sections and
166 line number sections from matching their section names. The
167 ELF definition is no real help here since it has no direct
168 knowledge of DWARF (by design, so any debugging format can be
169 used).
170
171 We also recognize the ".stab" sections used by the Sun compilers
172 released with Solaris 2.
173
174 FIXME: The section names should not be hardwired strings (what
175 should they be? I don't think most object file formats have enough
0963b4bd 176 section flags to specify what kind of debug section it is.
c906108c
SS
177 -kingdon). */
178
179static void
08f93a1a 180elf_locate_sections (asection *sectp, struct elfinfo *ei)
c906108c 181{
7ce59000 182 if (strcmp (sectp->name, ".stab") == 0)
c906108c 183 {
c5aa993b 184 ei->stabsect = sectp;
c906108c 185 }
6314a349 186 else if (strcmp (sectp->name, ".mdebug") == 0)
c906108c 187 {
c5aa993b 188 ei->mdebugsect = sectp;
c906108c 189 }
30d1f018
WP
190 else if (strcmp (sectp->name, ".ctf") == 0)
191 {
192 ei->ctfsect = sectp;
193 }
c906108c
SS
194}
195
c906108c 196static struct minimal_symbol *
8dddcb8f 197record_minimal_symbol (minimal_symbol_reader &reader,
31edb802 198 gdb::string_view name, bool copy_name,
04a679b8 199 CORE_ADDR address,
f594e5e9
MC
200 enum minimal_symbol_type ms_type,
201 asection *bfd_section, struct objfile *objfile)
c906108c 202{
08feed99 203 struct gdbarch *gdbarch = objfile->arch ();
5e2b427d 204
0875794a
JK
205 if (ms_type == mst_text || ms_type == mst_file_text
206 || ms_type == mst_text_gnu_ifunc)
85ddcc70 207 address = gdbarch_addr_bits_remove (gdbarch, address);
c906108c 208
44e4c775
AB
209 /* We only setup section information for allocatable sections. Usually
210 we'd only expect to find msymbols for allocatable sections, but if the
211 ELF is malformed then this might not be the case. In that case don't
212 create an msymbol that references an uninitialised section object. */
213 int section_index = 0;
214 if ((bfd_section_flags (bfd_section) & SEC_ALLOC) == SEC_ALLOC)
215 section_index = gdb_bfd_section_index (objfile->obfd, bfd_section);
216
4b610737 217 struct minimal_symbol *result
44e4c775 218 = reader.record_full (name, copy_name, address, ms_type, section_index);
4b610737
TT
219 if ((objfile->flags & OBJF_MAINLINE) == 0
220 && (ms_type == mst_data || ms_type == mst_bss))
221 result->maybe_copied = 1;
222
223 return result;
c906108c
SS
224}
225
7f86f058 226/* Read the symbol table of an ELF file.
c906108c 227
62553543 228 Given an objfile, a symbol table, and a flag indicating whether the
6f610d07
UW
229 symbol table contains regular, dynamic, or synthetic symbols, add all
230 the global function and data symbols to the minimal symbol table.
c906108c 231
c5aa993b
JM
232 In stabs-in-ELF, as implemented by Sun, there are some local symbols
233 defined in the ELF symbol table, which can be used to locate
234 the beginnings of sections from each ".o" file that was linked to
235 form the executable objfile. We gather any such info and record it
7f86f058 236 in data structures hung off the objfile's private data. */
c906108c 237
6f610d07
UW
238#define ST_REGULAR 0
239#define ST_DYNAMIC 1
240#define ST_SYNTHETIC 2
241
c906108c 242static void
8dddcb8f
TT
243elf_symtab_read (minimal_symbol_reader &reader,
244 struct objfile *objfile, int type,
04a679b8 245 long number_of_symbols, asymbol **symbol_table,
ce6c454e 246 bool copy_names)
c906108c 247{
08feed99 248 struct gdbarch *gdbarch = objfile->arch ();
c906108c 249 asymbol *sym;
c906108c 250 long i;
c906108c
SS
251 CORE_ADDR symaddr;
252 enum minimal_symbol_type ms_type;
18a94d75
DE
253 /* Name of the last file symbol. This is either a constant string or is
254 saved on the objfile's filename cache. */
0af1e9a5 255 const char *filesymname = "";
d4f3574e 256 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
3e29f34a
MR
257 int elf_make_msymbol_special_p
258 = gdbarch_elf_make_msymbol_special_p (gdbarch);
c5aa993b 259
0cc7b392 260 for (i = 0; i < number_of_symbols; i++)
c906108c 261 {
0cc7b392
DJ
262 sym = symbol_table[i];
263 if (sym->name == NULL || *sym->name == '\0')
c906108c 264 {
0cc7b392 265 /* Skip names that don't exist (shouldn't happen), or names
0963b4bd 266 that are null strings (may happen). */
0cc7b392
DJ
267 continue;
268 }
c906108c 269
74763737
DJ
270 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
271 symbols which do not correspond to objects in the symbol table,
272 but have some other target-specific meaning. */
273 if (bfd_is_target_special_symbol (objfile->obfd, sym))
60c5725c
DJ
274 {
275 if (gdbarch_record_special_symbol_p (gdbarch))
276 gdbarch_record_special_symbol (gdbarch, objfile, sym);
277 continue;
278 }
74763737 279
6f610d07 280 if (type == ST_DYNAMIC
45dfa85a 281 && sym->section == bfd_und_section_ptr
0cc7b392
DJ
282 && (sym->flags & BSF_FUNCTION))
283 {
284 struct minimal_symbol *msym;
02c75f72 285 bfd *abfd = objfile->obfd;
dea91a5c 286 asection *sect;
0cc7b392
DJ
287
288 /* Symbol is a reference to a function defined in
289 a shared library.
290 If its value is non zero then it is usually the address
291 of the corresponding entry in the procedure linkage table,
292 plus the desired section offset.
293 If its value is zero then the dynamic linker has to resolve
0963b4bd 294 the symbol. We are unable to find any meaningful address
0cc7b392
DJ
295 for this symbol in the executable file, so we skip it. */
296 symaddr = sym->value;
297 if (symaddr == 0)
298 continue;
02c75f72
UW
299
300 /* sym->section is the undefined section. However, we want to
301 record the section where the PLT stub resides with the
302 minimal symbol. Search the section table for the one that
303 covers the stub's address. */
304 for (sect = abfd->sections; sect != NULL; sect = sect->next)
305 {
fd361982 306 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
02c75f72
UW
307 continue;
308
fd361982
AM
309 if (symaddr >= bfd_section_vma (sect)
310 && symaddr < bfd_section_vma (sect)
311 + bfd_section_size (sect))
02c75f72
UW
312 break;
313 }
314 if (!sect)
315 continue;
316
828cfa8d
JB
317 /* On ia64-hpux, we have discovered that the system linker
318 adds undefined symbols with nonzero addresses that cannot
319 be right (their address points inside the code of another
320 function in the .text section). This creates problems
321 when trying to determine which symbol corresponds to
322 a given address.
323
324 We try to detect those buggy symbols by checking which
325 section we think they correspond to. Normally, PLT symbols
326 are stored inside their own section, and the typical name
327 for that section is ".plt". So, if there is a ".plt"
328 section, and yet the section name of our symbol does not
329 start with ".plt", we ignore that symbol. */
61012eef 330 if (!startswith (sect->name, ".plt")
828cfa8d
JB
331 && bfd_get_section_by_name (abfd, ".plt") != NULL)
332 continue;
333
0cc7b392 334 msym = record_minimal_symbol
31edb802 335 (reader, sym->name, copy_names,
04a679b8 336 symaddr, mst_solib_trampoline, sect, objfile);
0cc7b392 337 if (msym != NULL)
9b807e7b
MR
338 {
339 msym->filename = filesymname;
3e29f34a
MR
340 if (elf_make_msymbol_special_p)
341 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
9b807e7b 342 }
0cc7b392
DJ
343 continue;
344 }
c906108c 345
0cc7b392
DJ
346 /* If it is a nonstripped executable, do not enter dynamic
347 symbols, as the dynamic symbol table is usually a subset
348 of the main symbol table. */
6f610d07 349 if (type == ST_DYNAMIC && !stripped)
0cc7b392
DJ
350 continue;
351 if (sym->flags & BSF_FILE)
be1e3d3e 352 filesymname = objfile->intern (sym->name);
0cc7b392
DJ
353 else if (sym->flags & BSF_SECTION_SYM)
354 continue;
bb869963
SDJ
355 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
356 | BSF_GNU_UNIQUE))
0cc7b392
DJ
357 {
358 struct minimal_symbol *msym;
359
360 /* Select global/local/weak symbols. Note that bfd puts abs
361 symbols in their own section, so all symbols we are
0963b4bd
MS
362 interested in will have a section. */
363 /* Bfd symbols are section relative. */
0cc7b392 364 symaddr = sym->value + sym->section->vma;
0cc7b392
DJ
365 /* For non-absolute symbols, use the type of the section
366 they are relative to, to intuit text/data. Bfd provides
0963b4bd 367 no way of figuring this out for absolute symbols. */
45dfa85a 368 if (sym->section == bfd_abs_section_ptr)
c906108c 369 {
0cc7b392
DJ
370 /* This is a hack to get the minimal symbol type
371 right for Irix 5, which has absolute addresses
6f610d07
UW
372 with special section indices for dynamic symbols.
373
374 NOTE: uweigand-20071112: Synthetic symbols do not
375 have an ELF-private part, so do not touch those. */
dea91a5c 376 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
0cc7b392
DJ
377 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
378
379 switch (shndx)
c906108c 380 {
0cc7b392
DJ
381 case SHN_MIPS_TEXT:
382 ms_type = mst_text;
383 break;
384 case SHN_MIPS_DATA:
385 ms_type = mst_data;
386 break;
387 case SHN_MIPS_ACOMMON:
388 ms_type = mst_bss;
389 break;
390 default:
391 ms_type = mst_abs;
392 }
393
394 /* If it is an Irix dynamic symbol, skip section name
0963b4bd 395 symbols, relocate all others by section offset. */
0cc7b392
DJ
396 if (ms_type != mst_abs)
397 {
398 if (sym->name[0] == '.')
399 continue;
c906108c 400 }
0cc7b392
DJ
401 }
402 else if (sym->section->flags & SEC_CODE)
403 {
bb869963 404 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 405 {
0875794a
JK
406 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
407 ms_type = mst_text_gnu_ifunc;
408 else
409 ms_type = mst_text;
0cc7b392 410 }
90359a16
JK
411 /* The BSF_SYNTHETIC check is there to omit ppc64 function
412 descriptors mistaken for static functions starting with 'L'.
413 */
414 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
415 && (sym->flags & BSF_SYNTHETIC) == 0)
0cc7b392
DJ
416 || ((sym->flags & BSF_LOCAL)
417 && sym->name[0] == '$'
418 && sym->name[1] == 'L'))
419 /* Looks like a compiler-generated label. Skip
420 it. The assembler should be skipping these (to
421 keep executables small), but apparently with
422 gcc on the (deleted) delta m88k SVR4, it loses.
423 So to have us check too should be harmless (but
424 I encourage people to fix this in the assembler
425 instead of adding checks here). */
426 continue;
427 else
428 {
429 ms_type = mst_file_text;
c906108c 430 }
0cc7b392
DJ
431 }
432 else if (sym->section->flags & SEC_ALLOC)
433 {
bb869963 434 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 435 {
f50776aa
PA
436 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
437 {
438 ms_type = mst_data_gnu_ifunc;
439 }
440 else if (sym->section->flags & SEC_LOAD)
c906108c 441 {
0cc7b392 442 ms_type = mst_data;
c906108c 443 }
c906108c
SS
444 else
445 {
0cc7b392 446 ms_type = mst_bss;
c906108c
SS
447 }
448 }
0cc7b392 449 else if (sym->flags & BSF_LOCAL)
c906108c 450 {
0cc7b392
DJ
451 if (sym->section->flags & SEC_LOAD)
452 {
453 ms_type = mst_file_data;
c906108c
SS
454 }
455 else
456 {
0cc7b392 457 ms_type = mst_file_bss;
c906108c
SS
458 }
459 }
460 else
461 {
0cc7b392 462 ms_type = mst_unknown;
c906108c 463 }
0cc7b392
DJ
464 }
465 else
466 {
467 /* FIXME: Solaris2 shared libraries include lots of
dea91a5c 468 odd "absolute" and "undefined" symbols, that play
0cc7b392
DJ
469 hob with actions like finding what function the PC
470 is in. Ignore them if they aren't text, data, or bss. */
471 /* ms_type = mst_unknown; */
0963b4bd 472 continue; /* Skip this symbol. */
0cc7b392
DJ
473 }
474 msym = record_minimal_symbol
31edb802 475 (reader, sym->name, copy_names, symaddr,
0cc7b392 476 ms_type, sym->section, objfile);
6f610d07 477
0cc7b392
DJ
478 if (msym)
479 {
6f610d07 480 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
24c274a1 481 ELF-private part. */
6f610d07 482 if (type != ST_SYNTHETIC)
24c274a1
AM
483 {
484 /* Pass symbol size field in via BFD. FIXME!!! */
485 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
486 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
487 }
dea91a5c 488
a103a963 489 msym->filename = filesymname;
3e29f34a
MR
490 if (elf_make_msymbol_special_p)
491 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
0cc7b392 492 }
2eaf8d2a 493
715c6909
TT
494 /* If we see a default versioned symbol, install it under
495 its version-less name. */
496 if (msym != NULL)
497 {
498 const char *atsign = strchr (sym->name, '@');
499
500 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
501 {
502 int len = atsign - sym->name;
503
31edb802
CB
504 record_minimal_symbol (reader,
505 gdb::string_view (sym->name, len),
506 true, symaddr, ms_type, sym->section,
507 objfile);
715c6909
TT
508 }
509 }
510
2eaf8d2a
DJ
511 /* For @plt symbols, also record a trampoline to the
512 destination symbol. The @plt symbol will be used in
513 disassembly, and the trampoline will be used when we are
514 trying to find the target. */
515 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
516 {
517 int len = strlen (sym->name);
518
519 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
520 {
2eaf8d2a
DJ
521 struct minimal_symbol *mtramp;
522
31edb802
CB
523 mtramp = record_minimal_symbol
524 (reader, gdb::string_view (sym->name, len - 4), true,
525 symaddr, mst_solib_trampoline, sym->section, objfile);
2eaf8d2a
DJ
526 if (mtramp)
527 {
d9eaeb59 528 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
422d65e7 529 mtramp->created_by_gdb = 1;
2eaf8d2a 530 mtramp->filename = filesymname;
3e29f34a
MR
531 if (elf_make_msymbol_special_p)
532 gdbarch_elf_make_msymbol_special (gdbarch,
533 sym, mtramp);
2eaf8d2a
DJ
534 }
535 }
536 }
c906108c 537 }
c906108c
SS
538 }
539}
540
07be84bf
JK
541/* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
542 for later look ups of which function to call when user requests
543 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
544 library defining `function' we cannot yet know while reading OBJFILE which
545 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
546 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
547
548static void
8dddcb8f
TT
549elf_rel_plt_read (minimal_symbol_reader &reader,
550 struct objfile *objfile, asymbol **dyn_symbol_table)
07be84bf
JK
551{
552 bfd *obfd = objfile->obfd;
553 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
02e169e2 554 asection *relplt, *got_plt;
07be84bf 555 bfd_size_type reloc_count, reloc;
08feed99 556 struct gdbarch *gdbarch = objfile->arch ();
07be84bf
JK
557 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
558 size_t ptr_size = TYPE_LENGTH (ptr_type);
559
560 if (objfile->separate_debug_objfile_backlink)
561 return;
562
07be84bf
JK
563 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
564 if (got_plt == NULL)
4b7d1f7f
WN
565 {
566 /* For platforms where there is no separate .got.plt. */
567 got_plt = bfd_get_section_by_name (obfd, ".got");
568 if (got_plt == NULL)
569 return;
570 }
07be84bf 571
02e169e2
PA
572 /* Depending on system, we may find jump slots in a relocation
573 section for either .got.plt or .plt. */
574 asection *plt = bfd_get_section_by_name (obfd, ".plt");
575 int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1;
576
577 int got_plt_elf_idx = elf_section_data (got_plt)->this_idx;
578
07be84bf
JK
579 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
580 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
02e169e2
PA
581 {
582 const auto &this_hdr = elf_section_data (relplt)->this_hdr;
583
584 if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA)
585 {
586 if (this_hdr.sh_info == plt_elf_idx
587 || this_hdr.sh_info == got_plt_elf_idx)
588 break;
589 }
590 }
07be84bf
JK
591 if (relplt == NULL)
592 return;
593
594 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
595 return;
596
26fcd5d7 597 std::string string_buffer;
07be84bf 598
02e169e2
PA
599 /* Does ADDRESS reside in SECTION of OBFD? */
600 auto within_section = [obfd] (asection *section, CORE_ADDR address)
601 {
602 if (section == NULL)
603 return false;
604
fd361982
AM
605 return (bfd_section_vma (section) <= address
606 && (address < bfd_section_vma (section)
607 + bfd_section_size (section)));
02e169e2
PA
608 };
609
07be84bf
JK
610 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
611 for (reloc = 0; reloc < reloc_count; reloc++)
612 {
22e048c9 613 const char *name;
07be84bf
JK
614 struct minimal_symbol *msym;
615 CORE_ADDR address;
26fcd5d7 616 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
07be84bf 617 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
07be84bf
JK
618
619 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
07be84bf
JK
620 address = relplt->relocation[reloc].address;
621
02e169e2
PA
622 asection *msym_section;
623
624 /* Does the pointer reside in either the .got.plt or .plt
625 sections? */
626 if (within_section (got_plt, address))
627 msym_section = got_plt;
628 else if (within_section (plt, address))
629 msym_section = plt;
630 else
07be84bf
JK
631 continue;
632
f50776aa
PA
633 /* We cannot check if NAME is a reference to
634 mst_text_gnu_ifunc/mst_data_gnu_ifunc as in OBJFILE the
635 symbol is undefined and the objfile having NAME defined may
636 not yet have been loaded. */
07be84bf 637
26fcd5d7
TT
638 string_buffer.assign (name);
639 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
07be84bf 640
31edb802 641 msym = record_minimal_symbol (reader, string_buffer,
02e169e2
PA
642 true, address, mst_slot_got_plt,
643 msym_section, objfile);
07be84bf 644 if (msym)
d9eaeb59 645 SET_MSYMBOL_SIZE (msym, ptr_size);
07be84bf 646 }
07be84bf
JK
647}
648
649/* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
650
8127a2fa
TT
651static const struct objfile_key<htab, htab_deleter>
652 elf_objfile_gnu_ifunc_cache_data;
07be84bf
JK
653
654/* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
655
656struct elf_gnu_ifunc_cache
657{
658 /* This is always a function entry address, not a function descriptor. */
659 CORE_ADDR addr;
660
661 char name[1];
662};
663
664/* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
665
666static hashval_t
667elf_gnu_ifunc_cache_hash (const void *a_voidp)
668{
9a3c8263
SM
669 const struct elf_gnu_ifunc_cache *a
670 = (const struct elf_gnu_ifunc_cache *) a_voidp;
07be84bf
JK
671
672 return htab_hash_string (a->name);
673}
674
675/* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
676
677static int
678elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
679{
9a3c8263
SM
680 const struct elf_gnu_ifunc_cache *a
681 = (const struct elf_gnu_ifunc_cache *) a_voidp;
682 const struct elf_gnu_ifunc_cache *b
683 = (const struct elf_gnu_ifunc_cache *) b_voidp;
07be84bf
JK
684
685 return strcmp (a->name, b->name) == 0;
686}
687
688/* Record the target function address of a STT_GNU_IFUNC function NAME is the
689 function entry address ADDR. Return 1 if NAME and ADDR are considered as
690 valid and therefore they were successfully recorded, return 0 otherwise.
691
692 Function does not expect a duplicate entry. Use
693 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
694 exists. */
695
696static int
697elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
698{
7cbd4a93 699 struct bound_minimal_symbol msym;
07be84bf
JK
700 struct objfile *objfile;
701 htab_t htab;
702 struct elf_gnu_ifunc_cache entry_local, *entry_p;
703 void **slot;
704
705 msym = lookup_minimal_symbol_by_pc (addr);
7cbd4a93 706 if (msym.minsym == NULL)
07be84bf 707 return 0;
77e371c0 708 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
07be84bf 709 return 0;
e27d198c 710 objfile = msym.objfile;
07be84bf
JK
711
712 /* If .plt jumps back to .plt the symbol is still deferred for later
1adeb822 713 resolution and it has no use for GDB. */
c9d95fa3 714 const char *target_name = msym.minsym->linkage_name ();
1adeb822
PA
715 size_t len = strlen (target_name);
716
717 /* Note we check the symbol's name instead of checking whether the
718 symbol is in the .plt section because some systems have @plt
719 symbols in the .text section. */
720 if (len > 4 && strcmp (target_name + len - 4, "@plt") == 0)
07be84bf
JK
721 return 0;
722
8127a2fa 723 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
07be84bf
JK
724 if (htab == NULL)
725 {
8127a2fa
TT
726 htab = htab_create_alloc (1, elf_gnu_ifunc_cache_hash,
727 elf_gnu_ifunc_cache_eq,
728 NULL, xcalloc, xfree);
729 elf_objfile_gnu_ifunc_cache_data.set (objfile, htab);
07be84bf
JK
730 }
731
732 entry_local.addr = addr;
733 obstack_grow (&objfile->objfile_obstack, &entry_local,
734 offsetof (struct elf_gnu_ifunc_cache, name));
735 obstack_grow_str0 (&objfile->objfile_obstack, name);
224c3ddb
SM
736 entry_p
737 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
07be84bf
JK
738
739 slot = htab_find_slot (htab, entry_p, INSERT);
740 if (*slot != NULL)
741 {
9a3c8263
SM
742 struct elf_gnu_ifunc_cache *entry_found_p
743 = (struct elf_gnu_ifunc_cache *) *slot;
08feed99 744 struct gdbarch *gdbarch = objfile->arch ();
07be84bf
JK
745
746 if (entry_found_p->addr != addr)
747 {
748 /* This case indicates buggy inferior program, the resolved address
749 should never change. */
750
751 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
752 "function_address from %s to %s"),
753 name, paddress (gdbarch, entry_found_p->addr),
754 paddress (gdbarch, addr));
755 }
756
757 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
758 }
759 *slot = entry_p;
760
761 return 1;
762}
763
764/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
765 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
766 is not NULL) and the function returns 1. It returns 0 otherwise.
767
768 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
769 function. */
770
771static int
772elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
773{
2030c079 774 for (objfile *objfile : current_program_space->objfiles ())
07be84bf
JK
775 {
776 htab_t htab;
777 struct elf_gnu_ifunc_cache *entry_p;
778 void **slot;
779
8127a2fa 780 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
07be84bf
JK
781 if (htab == NULL)
782 continue;
783
224c3ddb
SM
784 entry_p = ((struct elf_gnu_ifunc_cache *)
785 alloca (sizeof (*entry_p) + strlen (name)));
07be84bf
JK
786 strcpy (entry_p->name, name);
787
788 slot = htab_find_slot (htab, entry_p, NO_INSERT);
789 if (slot == NULL)
790 continue;
9a3c8263 791 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
07be84bf
JK
792 gdb_assert (entry_p != NULL);
793
794 if (addr_p)
795 *addr_p = entry_p->addr;
796 return 1;
797 }
798
799 return 0;
800}
801
802/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
803 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
804 is not NULL) and the function returns 1. It returns 0 otherwise.
805
806 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
807 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
808 prevent cache entries duplicates. */
809
810static int
811elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
812{
813 char *name_got_plt;
07be84bf
JK
814 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
815
224c3ddb 816 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
07be84bf
JK
817 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
818
2030c079 819 for (objfile *objfile : current_program_space->objfiles ())
07be84bf
JK
820 {
821 bfd *obfd = objfile->obfd;
08feed99 822 struct gdbarch *gdbarch = objfile->arch ();
07be84bf
JK
823 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
824 size_t ptr_size = TYPE_LENGTH (ptr_type);
825 CORE_ADDR pointer_address, addr;
826 asection *plt;
224c3ddb 827 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
3b7344d5 828 struct bound_minimal_symbol msym;
07be84bf
JK
829
830 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
3b7344d5 831 if (msym.minsym == NULL)
07be84bf 832 continue;
3b7344d5 833 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
07be84bf 834 continue;
77e371c0 835 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
07be84bf
JK
836
837 plt = bfd_get_section_by_name (obfd, ".plt");
838 if (plt == NULL)
839 continue;
840
3b7344d5 841 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
07be84bf
JK
842 continue;
843 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
844 continue;
845 addr = extract_typed_address (buf, ptr_type);
328d42d8
SM
846 addr = gdbarch_convert_from_func_ptr_addr
847 (gdbarch, addr, current_inferior ()->top_target ());
4b7d1f7f 848 addr = gdbarch_addr_bits_remove (gdbarch, addr);
07be84bf 849
07be84bf 850 if (elf_gnu_ifunc_record_cache (name, addr))
28f4fa4d
PA
851 {
852 if (addr_p != NULL)
853 *addr_p = addr;
854 return 1;
855 }
07be84bf
JK
856 }
857
858 return 0;
859}
860
861/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
862 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
ececd218 863 is not NULL) and the function returns true. It returns false otherwise.
07be84bf
JK
864
865 Both the elf_objfile_gnu_ifunc_cache_data hash table and
866 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
867
ececd218 868static bool
07be84bf
JK
869elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
870{
871 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
ececd218 872 return true;
dea91a5c 873
07be84bf 874 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
ececd218 875 return true;
07be84bf 876
ececd218 877 return false;
07be84bf
JK
878}
879
880/* Call STT_GNU_IFUNC - a function returning addresss of a real function to
881 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
882 is the entry point of the resolved STT_GNU_IFUNC target function to call.
883 */
884
885static CORE_ADDR
886elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
887{
2c02bd72 888 const char *name_at_pc;
07be84bf
JK
889 CORE_ADDR start_at_pc, address;
890 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
891 struct value *function, *address_val;
e1b2624a
AA
892 CORE_ADDR hwcap = 0;
893 struct value *hwcap_val;
07be84bf
JK
894
895 /* Try first any non-intrusive methods without an inferior call. */
896
897 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
898 && start_at_pc == pc)
899 {
900 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
901 return address;
902 }
903 else
904 name_at_pc = NULL;
905
906 function = allocate_value (func_func_type);
1a088441 907 VALUE_LVAL (function) = lval_memory;
07be84bf
JK
908 set_value_address (function, pc);
909
e1b2624a
AA
910 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
911 parameter. FUNCTION is the function entry address. ADDRESS may be a
912 function descriptor. */
07be84bf 913
328d42d8 914 target_auxv_search (current_inferior ()->top_target (), AT_HWCAP, &hwcap);
e1b2624a
AA
915 hwcap_val = value_from_longest (builtin_type (gdbarch)
916 ->builtin_unsigned_long, hwcap);
e71585ff 917 address_val = call_function_by_hand (function, NULL, hwcap_val);
07be84bf 918 address = value_as_address (address_val);
328d42d8
SM
919 address = gdbarch_convert_from_func_ptr_addr
920 (gdbarch, address, current_inferior ()->top_target ());
4b7d1f7f 921 address = gdbarch_addr_bits_remove (gdbarch, address);
07be84bf
JK
922
923 if (name_at_pc)
924 elf_gnu_ifunc_record_cache (name_at_pc, address);
925
926 return address;
927}
928
0e30163f
JK
929/* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
930
931static void
932elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
933{
934 struct breakpoint *b_return;
935 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
936 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
937 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
00431a78 938 int thread_id = inferior_thread ()->global_num;
0e30163f
JK
939
940 gdb_assert (b->type == bp_gnu_ifunc_resolver);
941
942 for (b_return = b->related_breakpoint; b_return != b;
943 b_return = b_return->related_breakpoint)
944 {
945 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
946 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
947 gdb_assert (frame_id_p (b_return->frame_id));
948
949 if (b_return->thread == thread_id
950 && b_return->loc->requested_address == prev_pc
951 && frame_id_eq (b_return->frame_id, prev_frame_id))
952 break;
953 }
954
955 if (b_return == b)
956 {
0e30163f
JK
957 /* No need to call find_pc_line for symbols resolving as this is only
958 a helper breakpointer never shown to the user. */
959
51abb421 960 symtab_and_line sal;
0e30163f
JK
961 sal.pspace = current_inferior ()->pspace;
962 sal.pc = prev_pc;
963 sal.section = find_pc_overlay (sal.pc);
964 sal.explicit_pc = 1;
454dafbd
TT
965 b_return
966 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
967 prev_frame_id,
968 bp_gnu_ifunc_resolver_return).release ();
0e30163f 969
c70a6932
JK
970 /* set_momentary_breakpoint invalidates PREV_FRAME. */
971 prev_frame = NULL;
972
0e30163f
JK
973 /* Add new b_return to the ring list b->related_breakpoint. */
974 gdb_assert (b_return->related_breakpoint == b_return);
975 b_return->related_breakpoint = b->related_breakpoint;
976 b->related_breakpoint = b_return;
977 }
978}
979
980/* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
981
982static void
983elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
984{
00431a78 985 thread_info *thread = inferior_thread ();
0e30163f
JK
986 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
987 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
988 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
00431a78 989 struct regcache *regcache = get_thread_regcache (thread);
6a3a010b 990 struct value *func_func;
0e30163f
JK
991 struct value *value;
992 CORE_ADDR resolved_address, resolved_pc;
0e30163f
JK
993
994 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
995
0e30163f
JK
996 while (b->related_breakpoint != b)
997 {
998 struct breakpoint *b_next = b->related_breakpoint;
999
1000 switch (b->type)
1001 {
1002 case bp_gnu_ifunc_resolver:
1003 break;
1004 case bp_gnu_ifunc_resolver_return:
1005 delete_breakpoint (b);
1006 break;
1007 default:
1008 internal_error (__FILE__, __LINE__,
1009 _("handle_inferior_event: Invalid "
1010 "gnu-indirect-function breakpoint type %d"),
1011 (int) b->type);
1012 }
1013 b = b_next;
1014 }
1015 gdb_assert (b->type == bp_gnu_ifunc_resolver);
6a3a010b
MR
1016 gdb_assert (b->loc->next == NULL);
1017
1018 func_func = allocate_value (func_func_type);
1a088441 1019 VALUE_LVAL (func_func) = lval_memory;
6a3a010b
MR
1020 set_value_address (func_func, b->loc->related_address);
1021
1022 value = allocate_value (value_type);
1023 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1024 value_contents_raw (value), NULL);
1025 resolved_address = value_as_address (value);
328d42d8
SM
1026 resolved_pc = gdbarch_convert_from_func_ptr_addr
1027 (gdbarch, resolved_address, current_inferior ()->top_target ());
4b7d1f7f 1028 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
0e30163f 1029
f8eba3c6 1030 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
d28cd78a 1031 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
f00aae0f 1032 resolved_pc);
0e30163f 1033
0e30163f 1034 b->type = bp_breakpoint;
6c5b2ebe 1035 update_breakpoint_locations (b, current_program_space,
79188d8d
PA
1036 find_function_start_sal (resolved_pc, NULL, true),
1037 {});
0e30163f
JK
1038}
1039
2750ef27
TT
1040/* A helper function for elf_symfile_read that reads the minimal
1041 symbols. */
c906108c
SS
1042
1043static void
5f6cac40
TT
1044elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1045 const struct elfinfo *ei)
c906108c 1046{
63524580 1047 bfd *synth_abfd, *abfd = objfile->obfd;
62553543
EZ
1048 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1049 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1050 asymbol *synthsyms;
c906108c 1051
45cfd468
DE
1052 if (symtab_create_debug)
1053 {
1054 fprintf_unfiltered (gdb_stdlog,
1055 "Reading minimal symbols of objfile %s ...\n",
4262abfb 1056 objfile_name (objfile));
45cfd468
DE
1057 }
1058
5f6cac40
TT
1059 /* If we already have minsyms, then we can skip some work here.
1060 However, if there were stabs or mdebug sections, we go ahead and
1061 redo all the work anyway, because the psym readers for those
1062 kinds of debuginfo need extra information found here. This can
1063 go away once all types of symbols are in the per-BFD object. */
1064 if (objfile->per_bfd->minsyms_read
1065 && ei->stabsect == NULL
30d1f018
WP
1066 && ei->mdebugsect == NULL
1067 && ei->ctfsect == NULL)
5f6cac40
TT
1068 {
1069 if (symtab_create_debug)
1070 fprintf_unfiltered (gdb_stdlog,
1071 "... minimal symbols previously read\n");
1072 return;
1073 }
1074
d25e8719 1075 minimal_symbol_reader reader (objfile);
c906108c 1076
18a94d75 1077 /* Process the normal ELF symbol table first. */
c906108c 1078
62553543
EZ
1079 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1080 if (storage_needed < 0)
3e43a32a
MS
1081 error (_("Can't read symbols from %s: %s"),
1082 bfd_get_filename (objfile->obfd),
62553543
EZ
1083 bfd_errmsg (bfd_get_error ()));
1084
1085 if (storage_needed > 0)
1086 {
80c57053
JK
1087 /* Memory gets permanently referenced from ABFD after
1088 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1089
224c3ddb 1090 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
62553543
EZ
1091 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1092
1093 if (symcount < 0)
3e43a32a
MS
1094 error (_("Can't read symbols from %s: %s"),
1095 bfd_get_filename (objfile->obfd),
62553543
EZ
1096 bfd_errmsg (bfd_get_error ()));
1097
ce6c454e
TT
1098 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1099 false);
62553543 1100 }
c906108c
SS
1101
1102 /* Add the dynamic symbols. */
1103
62553543
EZ
1104 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1105
1106 if (storage_needed > 0)
1107 {
3f1eff0a
JK
1108 /* Memory gets permanently referenced from ABFD after
1109 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1110 It happens only in the case when elf_slurp_reloc_table sees
1111 asection->relocation NULL. Determining which section is asection is
1112 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1113 implementation detail, though. */
1114
224c3ddb 1115 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
62553543
EZ
1116 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1117 dyn_symbol_table);
1118
1119 if (dynsymcount < 0)
3e43a32a
MS
1120 error (_("Can't read symbols from %s: %s"),
1121 bfd_get_filename (objfile->obfd),
62553543
EZ
1122 bfd_errmsg (bfd_get_error ()));
1123
8dddcb8f 1124 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
ce6c454e 1125 dyn_symbol_table, false);
07be84bf 1126
8dddcb8f 1127 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
62553543
EZ
1128 }
1129
63524580
JK
1130 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1131 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1132
1133 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1134 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1135 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1136 read the code address from .opd while it reads the .symtab section from
1137 a separate debug info file as the .opd section is SHT_NOBITS there.
1138
1139 With SYNTH_ABFD the .opd section will be read from the original
1140 backlinked binary where it is valid. */
1141
1142 if (objfile->separate_debug_objfile_backlink)
1143 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1144 else
1145 synth_abfd = abfd;
1146
62553543
EZ
1147 /* Add synthetic symbols - for instance, names for any PLT entries. */
1148
63524580 1149 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
62553543
EZ
1150 dynsymcount, dyn_symbol_table,
1151 &synthsyms);
1152 if (synthcount > 0)
1153 {
62553543
EZ
1154 long i;
1155
b22e99fd 1156 std::unique_ptr<asymbol *[]>
d1e4a624 1157 synth_symbol_table (new asymbol *[synthcount]);
62553543 1158 for (i = 0; i < synthcount; i++)
9f20e3da 1159 synth_symbol_table[i] = synthsyms + i;
8dddcb8f 1160 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
ce6c454e 1161 synth_symbol_table.get (), true);
ba713918
AL
1162
1163 xfree (synthsyms);
1164 synthsyms = NULL;
62553543 1165 }
c906108c 1166
7134143f
DJ
1167 /* Install any minimal symbols that have been collected as the current
1168 minimal symbols for this objfile. The debug readers below this point
1169 should not generate new minimal symbols; if they do it's their
1170 responsibility to install them. "mdebug" appears to be the only one
1171 which will do this. */
1172
d25e8719 1173 reader.install ();
7134143f 1174
4f00dda3
DE
1175 if (symtab_create_debug)
1176 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
2750ef27
TT
1177}
1178
1179/* Scan and build partial symbols for a symbol file.
1180 We have been initialized by a call to elf_symfile_init, which
1181 currently does nothing.
1182
2750ef27
TT
1183 This function only does the minimum work necessary for letting the
1184 user "name" things symbolically; it does not read the entire symtab.
1185 Instead, it reads the external and static symbols and puts them in partial
1186 symbol tables. When more extensive information is requested of a
1187 file, the corresponding partial symbol table is mutated into a full
1188 fledged symbol table by going back and reading the symbols
1189 for real.
1190
1191 We look for sections with specific names, to tell us what debug
1192 format to look for: FIXME!!!
1193
1194 elfstab_build_psymtabs() handles STABS symbols;
1195 mdebug_build_psymtabs() handles ECOFF debugging information.
1196
1197 Note that ELF files have a "minimal" symbol table, which looks a lot
1198 like a COFF symbol table, but has only the minimal information necessary
1199 for linking. We process this also, and use the information to
1200 build gdb's minimal symbol table. This gives us some minimal debugging
1201 capability even for files compiled without -g. */
1202
1203static void
b15cc25c 1204elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
2750ef27
TT
1205{
1206 bfd *abfd = objfile->obfd;
1207 struct elfinfo ei;
30d1f018 1208 bool has_dwarf2 = true;
2750ef27 1209
2750ef27 1210 memset ((char *) &ei, 0, sizeof (ei));
97cbe998 1211 if (!(objfile->flags & OBJF_READNEVER))
08f93a1a
TT
1212 {
1213 for (asection *sect : gdb_bfd_sections (abfd))
1214 elf_locate_sections (sect, &ei);
1215 }
c906108c 1216
5f6cac40
TT
1217 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1218
c906108c
SS
1219 /* ELF debugging information is inserted into the psymtab in the
1220 order of least informative first - most informative last. Since
1221 the psymtab table is searched `most recent insertion first' this
1222 increases the probability that more detailed debug information
1223 for a section is found.
1224
1225 For instance, an object file might contain both .mdebug (XCOFF)
1226 and .debug_info (DWARF2) sections then .mdebug is inserted first
1227 (searched last) and DWARF2 is inserted last (searched first). If
1228 we don't do this then the XCOFF info is found first - for code in
0963b4bd 1229 an included file XCOFF info is useless. */
c906108c
SS
1230
1231 if (ei.mdebugsect)
1232 {
1233 const struct ecoff_debug_swap *swap;
1234
1235 /* .mdebug section, presumably holding ECOFF debugging
dda83cd7 1236 information. */
c906108c
SS
1237 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1238 if (swap)
d4f3574e 1239 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
c906108c
SS
1240 }
1241 if (ei.stabsect)
1242 {
1243 asection *str_sect;
1244
1245 /* Stab sections have an associated string table that looks like
dda83cd7 1246 a separate section. */
c906108c
SS
1247 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1248
1249 /* FIXME should probably warn about a stab section without a stabstr. */
1250 if (str_sect)
1251 elfstab_build_psymtabs (objfile,
086df311 1252 ei.stabsect,
c906108c 1253 str_sect->filepos,
fd361982 1254 bfd_section_size (str_sect));
c906108c 1255 }
9291a0cd 1256
4b610737 1257 if (dwarf2_has_info (objfile, NULL, true))
edc02ceb 1258 dwarf2_initialize_objfile (objfile);
3e43a32a
MS
1259 /* If the file has its own symbol tables it has no separate debug
1260 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1261 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
8a92335b
JK
1262 `.note.gnu.build-id'.
1263
a8ad4f3c 1264 .gnu_debugdata is !objfile::has_partial_symbols because it contains only
8a92335b
JK
1265 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1266 an objfile via find_separate_debug_file_in_section there was no separate
1267 debug info available. Therefore do not attempt to search for another one,
1268 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1269 be NULL and we would possibly violate it. */
1270
a8ad4f3c 1271 else if (!objfile->has_partial_symbols ()
8a92335b
JK
1272 && objfile->separate_debug_objfile == NULL
1273 && objfile->separate_debug_objfile_backlink == NULL)
9cce227f 1274 {
a8dbfd58 1275 std::string debugfile = find_separate_debug_file_by_buildid (objfile);
9cce227f 1276
a8dbfd58
SM
1277 if (debugfile.empty ())
1278 debugfile = find_separate_debug_file_by_debuglink (objfile);
9cce227f 1279
a8dbfd58 1280 if (!debugfile.empty ())
9cce227f 1281 {
b926417a 1282 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (debugfile.c_str ()));
d7f9d729 1283
b926417a 1284 symbol_file_add_separate (debug_bfd.get (), debugfile.c_str (),
192b62ce 1285 symfile_flags, objfile);
9cce227f 1286 }
0d79cdc4
AM
1287 else
1288 {
30d1f018 1289 has_dwarf2 = false;
0d79cdc4
AM
1290 const struct bfd_build_id *build_id = build_id_bfd_get (objfile->obfd);
1291
1292 if (build_id != nullptr)
1293 {
1294 gdb::unique_xmalloc_ptr<char> symfile_path;
1295 scoped_fd fd (debuginfod_debuginfo_query (build_id->data,
1296 build_id->size,
1297 objfile->original_name,
1298 &symfile_path));
1299
1300 if (fd.get () >= 0)
1301 {
1302 /* File successfully retrieved from server. */
1303 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (symfile_path.get ()));
1304
1305 if (debug_bfd == nullptr)
1306 warning (_("File \"%s\" from debuginfod cannot be opened as bfd"),
1307 objfile->original_name);
1308 else if (build_id_verify (debug_bfd.get (), build_id->size, build_id->data))
1309 {
1310 symbol_file_add_separate (debug_bfd.get (), symfile_path.get (),
1311 symfile_flags, objfile);
1312 has_dwarf2 = true;
1313 }
1314 }
1315 }
1316 }
30d1f018
WP
1317 }
1318
1319 /* Read the CTF section only if there is no DWARF info. */
1320 if (!has_dwarf2 && ei.ctfsect)
1321 {
1322 elfctf_build_psymtabs (objfile);
9cce227f 1323 }
c906108c
SS
1324}
1325
c906108c
SS
1326/* Initialize anything that needs initializing when a completely new symbol
1327 file is specified (not just adding some symbols from another file, e.g. a
caa429d8 1328 shared library). */
c906108c
SS
1329
1330static void
fba45db2 1331elf_new_init (struct objfile *ignore)
c906108c 1332{
c906108c
SS
1333}
1334
1335/* Perform any local cleanups required when we are done with a particular
1336 objfile. I.E, we are in the process of discarding all symbol information
1337 for an objfile, freeing up all memory held for it, and unlinking the
0963b4bd 1338 objfile struct from the global list of known objfiles. */
c906108c
SS
1339
1340static void
fba45db2 1341elf_symfile_finish (struct objfile *objfile)
c906108c 1342{
c906108c
SS
1343}
1344
db7a9bcd 1345/* ELF specific initialization routine for reading symbols. */
c906108c
SS
1346
1347static void
fba45db2 1348elf_symfile_init (struct objfile *objfile)
c906108c
SS
1349{
1350 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1351 find this causes a significant slowdown in gdb then we could
1352 set it in the debug symbol readers only when necessary. */
1353 objfile->flags |= OBJF_REORDERED;
1354}
1355
55aa24fb
SDJ
1356/* Implementation of `sym_get_probes', as documented in symfile.h. */
1357
814cf43a 1358static const elfread_data &
55aa24fb
SDJ
1359elf_get_probes (struct objfile *objfile)
1360{
814cf43a 1361 elfread_data *probes_per_bfd = probe_key.get (objfile->obfd);
55aa24fb 1362
aaa63a31 1363 if (probes_per_bfd == NULL)
55aa24fb 1364 {
814cf43a 1365 probes_per_bfd = probe_key.emplace (objfile->obfd);
55aa24fb
SDJ
1366
1367 /* Here we try to gather information about all types of probes from the
1368 objfile. */
935676c9 1369 for (const static_probe_ops *ops : all_static_probe_ops)
0782db84 1370 ops->get_probes (probes_per_bfd, objfile);
55aa24fb
SDJ
1371 }
1372
aaa63a31 1373 return *probes_per_bfd;
55aa24fb
SDJ
1374}
1375
c906108c 1376\f
55aa24fb
SDJ
1377
1378/* Implementation `sym_probe_fns', as documented in symfile.h. */
1379
1380static const struct sym_probe_fns elf_probe_fns =
1381{
25f9533e 1382 elf_get_probes, /* sym_get_probes */
55aa24fb
SDJ
1383};
1384
c906108c
SS
1385/* Register that we are able to handle ELF object file formats. */
1386
00b5771c 1387static const struct sym_fns elf_sym_fns =
c906108c 1388{
3e43a32a
MS
1389 elf_new_init, /* init anything gbl to entire symtab */
1390 elf_symfile_init, /* read initial info, setup for sym_read() */
1391 elf_symfile_read, /* read a symbol file into symtab */
1392 elf_symfile_finish, /* finished with file, cleanup */
1393 default_symfile_offsets, /* Translate ext. to int. relocation */
1394 elf_symfile_segments, /* Get segment information from a file. */
1395 NULL,
1396 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1397 &elf_probe_fns, /* sym_probe_fns */
927aa2e7
JK
1398};
1399
07be84bf
JK
1400/* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1401
1402static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1403{
1404 elf_gnu_ifunc_resolve_addr,
1405 elf_gnu_ifunc_resolve_name,
0e30163f
JK
1406 elf_gnu_ifunc_resolver_stop,
1407 elf_gnu_ifunc_resolver_return_stop
07be84bf
JK
1408};
1409
6c265988 1410void _initialize_elfread ();
c906108c 1411void
6c265988 1412_initialize_elfread ()
c906108c 1413{
c256e171 1414 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
07be84bf 1415
07be84bf 1416 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
c906108c 1417}
This page took 1.583455 seconds and 4 git commands to generate.