Factor out minsym_found/find_function_start_sal overload
[deliverable/binutils-gdb.git] / gdb / elfread.c
CommitLineData
c906108c 1/* Read ELF (Executable and Linking Format) object files for GDB.
1bac305b 2
e2882c85 3 Copyright (C) 1991-2018 Free Software Foundation, Inc.
1bac305b 4
c906108c
SS
5 Written by Fred Fish at Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "bfd.h"
c906108c 24#include "elf-bfd.h"
31d99776
DJ
25#include "elf/common.h"
26#include "elf/internal.h"
c906108c
SS
27#include "elf/mips.h"
28#include "symtab.h"
29#include "symfile.h"
30#include "objfiles.h"
31#include "buildsym.h"
32#include "stabsread.h"
33#include "gdb-stabs.h"
34#include "complaints.h"
35#include "demangle.h"
ccefe4c4 36#include "psympriv.h"
0ba1096a 37#include "filenames.h"
55aa24fb
SDJ
38#include "probe.h"
39#include "arch-utils.h"
07be84bf
JK
40#include "gdbtypes.h"
41#include "value.h"
42#include "infcall.h"
0e30163f
JK
43#include "gdbthread.h"
44#include "regcache.h"
0af1e9a5 45#include "bcache.h"
cbb099e8 46#include "gdb_bfd.h"
dc294be5 47#include "build-id.h"
f00aae0f 48#include "location.h"
e1b2624a 49#include "auxv.h"
c906108c 50
3c0aa29a
PA
51/* Forward declarations. */
52extern const struct sym_fns elf_sym_fns_gdb_index;
53extern const struct sym_fns elf_sym_fns_debug_names;
54extern const struct sym_fns elf_sym_fns_lazy_psyms;
55
c906108c 56/* The struct elfinfo is available only during ELF symbol table and
6426a772 57 psymtab reading. It is destroyed at the completion of psymtab-reading.
c906108c
SS
58 It's local to elf_symfile_read. */
59
c5aa993b
JM
60struct elfinfo
61 {
c5aa993b 62 asection *stabsect; /* Section pointer for .stab section */
c5aa993b
JM
63 asection *mdebugsect; /* Section pointer for .mdebug section */
64 };
c906108c 65
5d9cf8a4 66/* Per-BFD data for probe info. */
55aa24fb 67
5d9cf8a4 68static const struct bfd_data *probe_key = NULL;
55aa24fb 69
07be84bf
JK
70/* Minimal symbols located at the GOT entries for .plt - that is the real
71 pointer where the given entry will jump to. It gets updated by the real
72 function address during lazy ld.so resolving in the inferior. These
73 minimal symbols are indexed for <tab>-completion. */
74
75#define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
76
31d99776
DJ
77/* Locate the segments in ABFD. */
78
79static struct symfile_segment_data *
80elf_symfile_segments (bfd *abfd)
81{
82 Elf_Internal_Phdr *phdrs, **segments;
83 long phdrs_size;
84 int num_phdrs, num_segments, num_sections, i;
85 asection *sect;
86 struct symfile_segment_data *data;
87
88 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
89 if (phdrs_size == -1)
90 return NULL;
91
224c3ddb 92 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
31d99776
DJ
93 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
94 if (num_phdrs == -1)
95 return NULL;
96
97 num_segments = 0;
8d749320 98 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
31d99776
DJ
99 for (i = 0; i < num_phdrs; i++)
100 if (phdrs[i].p_type == PT_LOAD)
101 segments[num_segments++] = &phdrs[i];
102
103 if (num_segments == 0)
104 return NULL;
105
41bf6aca 106 data = XCNEW (struct symfile_segment_data);
31d99776 107 data->num_segments = num_segments;
fc270c35
TT
108 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
109 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
31d99776
DJ
110
111 for (i = 0; i < num_segments; i++)
112 {
113 data->segment_bases[i] = segments[i]->p_vaddr;
114 data->segment_sizes[i] = segments[i]->p_memsz;
115 }
116
117 num_sections = bfd_count_sections (abfd);
fc270c35 118 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
119
120 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
121 {
122 int j;
123 CORE_ADDR vma;
124
125 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
126 continue;
127
128 vma = bfd_get_section_vma (abfd, sect);
129
130 for (j = 0; j < num_segments; j++)
131 if (segments[j]->p_memsz > 0
132 && vma >= segments[j]->p_vaddr
a366c65a 133 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
31d99776
DJ
134 {
135 data->segment_info[i] = j + 1;
136 break;
137 }
138
ad09a548
DJ
139 /* We should have found a segment for every non-empty section.
140 If we haven't, we will not relocate this section by any
141 offsets we apply to the segments. As an exception, do not
142 warn about SHT_NOBITS sections; in normal ELF execution
143 environments, SHT_NOBITS means zero-initialized and belongs
144 in a segment, but in no-OS environments some tools (e.g. ARM
145 RealView) use SHT_NOBITS for uninitialized data. Since it is
146 uninitialized, it doesn't need a program header. Such
147 binaries are not relocatable. */
148 if (bfd_get_section_size (sect) > 0 && j == num_segments
149 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
28ee876a 150 warning (_("Loadable section \"%s\" outside of ELF segments"),
31d99776
DJ
151 bfd_section_name (abfd, sect));
152 }
153
154 return data;
155}
156
c906108c
SS
157/* We are called once per section from elf_symfile_read. We
158 need to examine each section we are passed, check to see
159 if it is something we are interested in processing, and
160 if so, stash away some access information for the section.
161
162 For now we recognize the dwarf debug information sections and
163 line number sections from matching their section names. The
164 ELF definition is no real help here since it has no direct
165 knowledge of DWARF (by design, so any debugging format can be
166 used).
167
168 We also recognize the ".stab" sections used by the Sun compilers
169 released with Solaris 2.
170
171 FIXME: The section names should not be hardwired strings (what
172 should they be? I don't think most object file formats have enough
0963b4bd 173 section flags to specify what kind of debug section it is.
c906108c
SS
174 -kingdon). */
175
176static void
12b9c64f 177elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
c906108c 178{
52f0bd74 179 struct elfinfo *ei;
c906108c
SS
180
181 ei = (struct elfinfo *) eip;
7ce59000 182 if (strcmp (sectp->name, ".stab") == 0)
c906108c 183 {
c5aa993b 184 ei->stabsect = sectp;
c906108c 185 }
6314a349 186 else if (strcmp (sectp->name, ".mdebug") == 0)
c906108c 187 {
c5aa993b 188 ei->mdebugsect = sectp;
c906108c
SS
189 }
190}
191
c906108c 192static struct minimal_symbol *
8dddcb8f 193record_minimal_symbol (minimal_symbol_reader &reader,
ce6c454e 194 const char *name, int name_len, bool copy_name,
04a679b8 195 CORE_ADDR address,
f594e5e9
MC
196 enum minimal_symbol_type ms_type,
197 asection *bfd_section, struct objfile *objfile)
c906108c 198{
5e2b427d
UW
199 struct gdbarch *gdbarch = get_objfile_arch (objfile);
200
0875794a
JK
201 if (ms_type == mst_text || ms_type == mst_file_text
202 || ms_type == mst_text_gnu_ifunc)
85ddcc70 203 address = gdbarch_addr_bits_remove (gdbarch, address);
c906108c 204
8dddcb8f
TT
205 return reader.record_full (name, name_len, copy_name, address,
206 ms_type,
207 gdb_bfd_section_index (objfile->obfd,
208 bfd_section));
c906108c
SS
209}
210
7f86f058 211/* Read the symbol table of an ELF file.
c906108c 212
62553543 213 Given an objfile, a symbol table, and a flag indicating whether the
6f610d07
UW
214 symbol table contains regular, dynamic, or synthetic symbols, add all
215 the global function and data symbols to the minimal symbol table.
c906108c 216
c5aa993b
JM
217 In stabs-in-ELF, as implemented by Sun, there are some local symbols
218 defined in the ELF symbol table, which can be used to locate
219 the beginnings of sections from each ".o" file that was linked to
220 form the executable objfile. We gather any such info and record it
7f86f058 221 in data structures hung off the objfile's private data. */
c906108c 222
6f610d07
UW
223#define ST_REGULAR 0
224#define ST_DYNAMIC 1
225#define ST_SYNTHETIC 2
226
c906108c 227static void
8dddcb8f
TT
228elf_symtab_read (minimal_symbol_reader &reader,
229 struct objfile *objfile, int type,
04a679b8 230 long number_of_symbols, asymbol **symbol_table,
ce6c454e 231 bool copy_names)
c906108c 232{
5e2b427d 233 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 234 asymbol *sym;
c906108c 235 long i;
c906108c
SS
236 CORE_ADDR symaddr;
237 enum minimal_symbol_type ms_type;
18a94d75
DE
238 /* Name of the last file symbol. This is either a constant string or is
239 saved on the objfile's filename cache. */
0af1e9a5 240 const char *filesymname = "";
d4f3574e 241 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
3e29f34a
MR
242 int elf_make_msymbol_special_p
243 = gdbarch_elf_make_msymbol_special_p (gdbarch);
c5aa993b 244
0cc7b392 245 for (i = 0; i < number_of_symbols; i++)
c906108c 246 {
0cc7b392
DJ
247 sym = symbol_table[i];
248 if (sym->name == NULL || *sym->name == '\0')
c906108c 249 {
0cc7b392 250 /* Skip names that don't exist (shouldn't happen), or names
0963b4bd 251 that are null strings (may happen). */
0cc7b392
DJ
252 continue;
253 }
c906108c 254
74763737
DJ
255 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
256 symbols which do not correspond to objects in the symbol table,
257 but have some other target-specific meaning. */
258 if (bfd_is_target_special_symbol (objfile->obfd, sym))
60c5725c
DJ
259 {
260 if (gdbarch_record_special_symbol_p (gdbarch))
261 gdbarch_record_special_symbol (gdbarch, objfile, sym);
262 continue;
263 }
74763737 264
6f610d07 265 if (type == ST_DYNAMIC
45dfa85a 266 && sym->section == bfd_und_section_ptr
0cc7b392
DJ
267 && (sym->flags & BSF_FUNCTION))
268 {
269 struct minimal_symbol *msym;
02c75f72 270 bfd *abfd = objfile->obfd;
dea91a5c 271 asection *sect;
0cc7b392
DJ
272
273 /* Symbol is a reference to a function defined in
274 a shared library.
275 If its value is non zero then it is usually the address
276 of the corresponding entry in the procedure linkage table,
277 plus the desired section offset.
278 If its value is zero then the dynamic linker has to resolve
0963b4bd 279 the symbol. We are unable to find any meaningful address
0cc7b392
DJ
280 for this symbol in the executable file, so we skip it. */
281 symaddr = sym->value;
282 if (symaddr == 0)
283 continue;
02c75f72
UW
284
285 /* sym->section is the undefined section. However, we want to
286 record the section where the PLT stub resides with the
287 minimal symbol. Search the section table for the one that
288 covers the stub's address. */
289 for (sect = abfd->sections; sect != NULL; sect = sect->next)
290 {
291 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
292 continue;
293
294 if (symaddr >= bfd_get_section_vma (abfd, sect)
295 && symaddr < bfd_get_section_vma (abfd, sect)
296 + bfd_get_section_size (sect))
297 break;
298 }
299 if (!sect)
300 continue;
301
828cfa8d
JB
302 /* On ia64-hpux, we have discovered that the system linker
303 adds undefined symbols with nonzero addresses that cannot
304 be right (their address points inside the code of another
305 function in the .text section). This creates problems
306 when trying to determine which symbol corresponds to
307 a given address.
308
309 We try to detect those buggy symbols by checking which
310 section we think they correspond to. Normally, PLT symbols
311 are stored inside their own section, and the typical name
312 for that section is ".plt". So, if there is a ".plt"
313 section, and yet the section name of our symbol does not
314 start with ".plt", we ignore that symbol. */
61012eef 315 if (!startswith (sect->name, ".plt")
828cfa8d
JB
316 && bfd_get_section_by_name (abfd, ".plt") != NULL)
317 continue;
318
0cc7b392 319 msym = record_minimal_symbol
8dddcb8f 320 (reader, sym->name, strlen (sym->name), copy_names,
04a679b8 321 symaddr, mst_solib_trampoline, sect, objfile);
0cc7b392 322 if (msym != NULL)
9b807e7b
MR
323 {
324 msym->filename = filesymname;
3e29f34a
MR
325 if (elf_make_msymbol_special_p)
326 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
9b807e7b 327 }
0cc7b392
DJ
328 continue;
329 }
c906108c 330
0cc7b392
DJ
331 /* If it is a nonstripped executable, do not enter dynamic
332 symbols, as the dynamic symbol table is usually a subset
333 of the main symbol table. */
6f610d07 334 if (type == ST_DYNAMIC && !stripped)
0cc7b392
DJ
335 continue;
336 if (sym->flags & BSF_FILE)
337 {
9a3c8263
SM
338 filesymname
339 = (const char *) bcache (sym->name, strlen (sym->name) + 1,
340 objfile->per_bfd->filename_cache);
0cc7b392
DJ
341 }
342 else if (sym->flags & BSF_SECTION_SYM)
343 continue;
bb869963
SDJ
344 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
345 | BSF_GNU_UNIQUE))
0cc7b392
DJ
346 {
347 struct minimal_symbol *msym;
348
349 /* Select global/local/weak symbols. Note that bfd puts abs
350 symbols in their own section, so all symbols we are
0963b4bd
MS
351 interested in will have a section. */
352 /* Bfd symbols are section relative. */
0cc7b392 353 symaddr = sym->value + sym->section->vma;
0cc7b392
DJ
354 /* For non-absolute symbols, use the type of the section
355 they are relative to, to intuit text/data. Bfd provides
0963b4bd 356 no way of figuring this out for absolute symbols. */
45dfa85a 357 if (sym->section == bfd_abs_section_ptr)
c906108c 358 {
0cc7b392
DJ
359 /* This is a hack to get the minimal symbol type
360 right for Irix 5, which has absolute addresses
6f610d07
UW
361 with special section indices for dynamic symbols.
362
363 NOTE: uweigand-20071112: Synthetic symbols do not
364 have an ELF-private part, so do not touch those. */
dea91a5c 365 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
0cc7b392
DJ
366 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
367
368 switch (shndx)
c906108c 369 {
0cc7b392
DJ
370 case SHN_MIPS_TEXT:
371 ms_type = mst_text;
372 break;
373 case SHN_MIPS_DATA:
374 ms_type = mst_data;
375 break;
376 case SHN_MIPS_ACOMMON:
377 ms_type = mst_bss;
378 break;
379 default:
380 ms_type = mst_abs;
381 }
382
383 /* If it is an Irix dynamic symbol, skip section name
0963b4bd 384 symbols, relocate all others by section offset. */
0cc7b392
DJ
385 if (ms_type != mst_abs)
386 {
387 if (sym->name[0] == '.')
388 continue;
c906108c 389 }
0cc7b392
DJ
390 }
391 else if (sym->section->flags & SEC_CODE)
392 {
bb869963 393 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 394 {
0875794a
JK
395 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
396 ms_type = mst_text_gnu_ifunc;
397 else
398 ms_type = mst_text;
0cc7b392 399 }
90359a16
JK
400 /* The BSF_SYNTHETIC check is there to omit ppc64 function
401 descriptors mistaken for static functions starting with 'L'.
402 */
403 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
404 && (sym->flags & BSF_SYNTHETIC) == 0)
0cc7b392
DJ
405 || ((sym->flags & BSF_LOCAL)
406 && sym->name[0] == '$'
407 && sym->name[1] == 'L'))
408 /* Looks like a compiler-generated label. Skip
409 it. The assembler should be skipping these (to
410 keep executables small), but apparently with
411 gcc on the (deleted) delta m88k SVR4, it loses.
412 So to have us check too should be harmless (but
413 I encourage people to fix this in the assembler
414 instead of adding checks here). */
415 continue;
416 else
417 {
418 ms_type = mst_file_text;
c906108c 419 }
0cc7b392
DJ
420 }
421 else if (sym->section->flags & SEC_ALLOC)
422 {
bb869963 423 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 424 {
0cc7b392 425 if (sym->section->flags & SEC_LOAD)
c906108c 426 {
0cc7b392 427 ms_type = mst_data;
c906108c 428 }
c906108c
SS
429 else
430 {
0cc7b392 431 ms_type = mst_bss;
c906108c
SS
432 }
433 }
0cc7b392 434 else if (sym->flags & BSF_LOCAL)
c906108c 435 {
0cc7b392
DJ
436 if (sym->section->flags & SEC_LOAD)
437 {
438 ms_type = mst_file_data;
c906108c
SS
439 }
440 else
441 {
0cc7b392 442 ms_type = mst_file_bss;
c906108c
SS
443 }
444 }
445 else
446 {
0cc7b392 447 ms_type = mst_unknown;
c906108c 448 }
0cc7b392
DJ
449 }
450 else
451 {
452 /* FIXME: Solaris2 shared libraries include lots of
dea91a5c 453 odd "absolute" and "undefined" symbols, that play
0cc7b392
DJ
454 hob with actions like finding what function the PC
455 is in. Ignore them if they aren't text, data, or bss. */
456 /* ms_type = mst_unknown; */
0963b4bd 457 continue; /* Skip this symbol. */
0cc7b392
DJ
458 }
459 msym = record_minimal_symbol
8dddcb8f 460 (reader, sym->name, strlen (sym->name), copy_names, symaddr,
0cc7b392 461 ms_type, sym->section, objfile);
6f610d07 462
0cc7b392
DJ
463 if (msym)
464 {
6f610d07 465 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
24c274a1 466 ELF-private part. */
6f610d07 467 if (type != ST_SYNTHETIC)
24c274a1
AM
468 {
469 /* Pass symbol size field in via BFD. FIXME!!! */
470 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
471 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
472 }
dea91a5c 473
a103a963 474 msym->filename = filesymname;
3e29f34a
MR
475 if (elf_make_msymbol_special_p)
476 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
0cc7b392 477 }
2eaf8d2a 478
715c6909
TT
479 /* If we see a default versioned symbol, install it under
480 its version-less name. */
481 if (msym != NULL)
482 {
483 const char *atsign = strchr (sym->name, '@');
484
485 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
486 {
487 int len = atsign - sym->name;
488
ce6c454e 489 record_minimal_symbol (reader, sym->name, len, true, symaddr,
715c6909
TT
490 ms_type, sym->section, objfile);
491 }
492 }
493
2eaf8d2a
DJ
494 /* For @plt symbols, also record a trampoline to the
495 destination symbol. The @plt symbol will be used in
496 disassembly, and the trampoline will be used when we are
497 trying to find the target. */
498 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
499 {
500 int len = strlen (sym->name);
501
502 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
503 {
2eaf8d2a
DJ
504 struct minimal_symbol *mtramp;
505
ce6c454e
TT
506 mtramp = record_minimal_symbol (reader, sym->name, len - 4,
507 true, symaddr,
2eaf8d2a
DJ
508 mst_solib_trampoline,
509 sym->section, objfile);
510 if (mtramp)
511 {
d9eaeb59 512 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
422d65e7 513 mtramp->created_by_gdb = 1;
2eaf8d2a 514 mtramp->filename = filesymname;
3e29f34a
MR
515 if (elf_make_msymbol_special_p)
516 gdbarch_elf_make_msymbol_special (gdbarch,
517 sym, mtramp);
2eaf8d2a
DJ
518 }
519 }
520 }
c906108c 521 }
c906108c
SS
522 }
523}
524
07be84bf
JK
525/* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
526 for later look ups of which function to call when user requests
527 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
528 library defining `function' we cannot yet know while reading OBJFILE which
529 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
530 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
531
532static void
8dddcb8f
TT
533elf_rel_plt_read (minimal_symbol_reader &reader,
534 struct objfile *objfile, asymbol **dyn_symbol_table)
07be84bf
JK
535{
536 bfd *obfd = objfile->obfd;
537 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
02e169e2 538 asection *relplt, *got_plt;
07be84bf 539 bfd_size_type reloc_count, reloc;
df6d5441 540 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
541 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
542 size_t ptr_size = TYPE_LENGTH (ptr_type);
543
544 if (objfile->separate_debug_objfile_backlink)
545 return;
546
07be84bf
JK
547 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
548 if (got_plt == NULL)
4b7d1f7f
WN
549 {
550 /* For platforms where there is no separate .got.plt. */
551 got_plt = bfd_get_section_by_name (obfd, ".got");
552 if (got_plt == NULL)
553 return;
554 }
07be84bf 555
02e169e2
PA
556 /* Depending on system, we may find jump slots in a relocation
557 section for either .got.plt or .plt. */
558 asection *plt = bfd_get_section_by_name (obfd, ".plt");
559 int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1;
560
561 int got_plt_elf_idx = elf_section_data (got_plt)->this_idx;
562
07be84bf
JK
563 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
564 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
02e169e2
PA
565 {
566 const auto &this_hdr = elf_section_data (relplt)->this_hdr;
567
568 if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA)
569 {
570 if (this_hdr.sh_info == plt_elf_idx
571 || this_hdr.sh_info == got_plt_elf_idx)
572 break;
573 }
574 }
07be84bf
JK
575 if (relplt == NULL)
576 return;
577
578 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
579 return;
580
26fcd5d7 581 std::string string_buffer;
07be84bf 582
02e169e2
PA
583 /* Does ADDRESS reside in SECTION of OBFD? */
584 auto within_section = [obfd] (asection *section, CORE_ADDR address)
585 {
586 if (section == NULL)
587 return false;
588
589 return (bfd_get_section_vma (obfd, section) <= address
590 && (address < bfd_get_section_vma (obfd, section)
591 + bfd_get_section_size (section)));
592 };
593
07be84bf
JK
594 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
595 for (reloc = 0; reloc < reloc_count; reloc++)
596 {
22e048c9 597 const char *name;
07be84bf
JK
598 struct minimal_symbol *msym;
599 CORE_ADDR address;
26fcd5d7 600 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
07be84bf 601 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
07be84bf
JK
602
603 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
07be84bf
JK
604 address = relplt->relocation[reloc].address;
605
02e169e2
PA
606 asection *msym_section;
607
608 /* Does the pointer reside in either the .got.plt or .plt
609 sections? */
610 if (within_section (got_plt, address))
611 msym_section = got_plt;
612 else if (within_section (plt, address))
613 msym_section = plt;
614 else
07be84bf
JK
615 continue;
616
617 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
618 OBJFILE the symbol is undefined and the objfile having NAME defined
619 may not yet have been loaded. */
620
26fcd5d7
TT
621 string_buffer.assign (name);
622 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
07be84bf 623
26fcd5d7
TT
624 msym = record_minimal_symbol (reader, string_buffer.c_str (),
625 string_buffer.size (),
02e169e2
PA
626 true, address, mst_slot_got_plt,
627 msym_section, objfile);
07be84bf 628 if (msym)
d9eaeb59 629 SET_MSYMBOL_SIZE (msym, ptr_size);
07be84bf 630 }
07be84bf
JK
631}
632
633/* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
634
635static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
636
637/* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
638
639struct elf_gnu_ifunc_cache
640{
641 /* This is always a function entry address, not a function descriptor. */
642 CORE_ADDR addr;
643
644 char name[1];
645};
646
647/* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
648
649static hashval_t
650elf_gnu_ifunc_cache_hash (const void *a_voidp)
651{
9a3c8263
SM
652 const struct elf_gnu_ifunc_cache *a
653 = (const struct elf_gnu_ifunc_cache *) a_voidp;
07be84bf
JK
654
655 return htab_hash_string (a->name);
656}
657
658/* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
659
660static int
661elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
662{
9a3c8263
SM
663 const struct elf_gnu_ifunc_cache *a
664 = (const struct elf_gnu_ifunc_cache *) a_voidp;
665 const struct elf_gnu_ifunc_cache *b
666 = (const struct elf_gnu_ifunc_cache *) b_voidp;
07be84bf
JK
667
668 return strcmp (a->name, b->name) == 0;
669}
670
671/* Record the target function address of a STT_GNU_IFUNC function NAME is the
672 function entry address ADDR. Return 1 if NAME and ADDR are considered as
673 valid and therefore they were successfully recorded, return 0 otherwise.
674
675 Function does not expect a duplicate entry. Use
676 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
677 exists. */
678
679static int
680elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
681{
7cbd4a93 682 struct bound_minimal_symbol msym;
07be84bf
JK
683 asection *sect;
684 struct objfile *objfile;
685 htab_t htab;
686 struct elf_gnu_ifunc_cache entry_local, *entry_p;
687 void **slot;
688
689 msym = lookup_minimal_symbol_by_pc (addr);
7cbd4a93 690 if (msym.minsym == NULL)
07be84bf 691 return 0;
77e371c0 692 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
07be84bf
JK
693 return 0;
694 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
efd66ac6 695 sect = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym)->the_bfd_section;
e27d198c 696 objfile = msym.objfile;
07be84bf
JK
697
698 /* If .plt jumps back to .plt the symbol is still deferred for later
699 resolution and it has no use for GDB. Besides ".text" this symbol can
700 reside also in ".opd" for ppc64 function descriptor. */
701 if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
702 return 0;
703
9a3c8263 704 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
07be84bf
JK
705 if (htab == NULL)
706 {
707 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
708 elf_gnu_ifunc_cache_eq,
709 NULL, &objfile->objfile_obstack,
710 hashtab_obstack_allocate,
711 dummy_obstack_deallocate);
712 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
713 }
714
715 entry_local.addr = addr;
716 obstack_grow (&objfile->objfile_obstack, &entry_local,
717 offsetof (struct elf_gnu_ifunc_cache, name));
718 obstack_grow_str0 (&objfile->objfile_obstack, name);
224c3ddb
SM
719 entry_p
720 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
07be84bf
JK
721
722 slot = htab_find_slot (htab, entry_p, INSERT);
723 if (*slot != NULL)
724 {
9a3c8263
SM
725 struct elf_gnu_ifunc_cache *entry_found_p
726 = (struct elf_gnu_ifunc_cache *) *slot;
df6d5441 727 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
728
729 if (entry_found_p->addr != addr)
730 {
731 /* This case indicates buggy inferior program, the resolved address
732 should never change. */
733
734 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
735 "function_address from %s to %s"),
736 name, paddress (gdbarch, entry_found_p->addr),
737 paddress (gdbarch, addr));
738 }
739
740 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
741 }
742 *slot = entry_p;
743
744 return 1;
745}
746
747/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
748 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
749 is not NULL) and the function returns 1. It returns 0 otherwise.
750
751 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
752 function. */
753
754static int
755elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
756{
757 struct objfile *objfile;
758
759 ALL_PSPACE_OBJFILES (current_program_space, objfile)
760 {
761 htab_t htab;
762 struct elf_gnu_ifunc_cache *entry_p;
763 void **slot;
764
9a3c8263 765 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
07be84bf
JK
766 if (htab == NULL)
767 continue;
768
224c3ddb
SM
769 entry_p = ((struct elf_gnu_ifunc_cache *)
770 alloca (sizeof (*entry_p) + strlen (name)));
07be84bf
JK
771 strcpy (entry_p->name, name);
772
773 slot = htab_find_slot (htab, entry_p, NO_INSERT);
774 if (slot == NULL)
775 continue;
9a3c8263 776 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
07be84bf
JK
777 gdb_assert (entry_p != NULL);
778
779 if (addr_p)
780 *addr_p = entry_p->addr;
781 return 1;
782 }
783
784 return 0;
785}
786
787/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
788 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
789 is not NULL) and the function returns 1. It returns 0 otherwise.
790
791 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
792 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
793 prevent cache entries duplicates. */
794
795static int
796elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
797{
798 char *name_got_plt;
799 struct objfile *objfile;
800 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
801
224c3ddb 802 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
07be84bf
JK
803 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
804
805 ALL_PSPACE_OBJFILES (current_program_space, objfile)
806 {
807 bfd *obfd = objfile->obfd;
df6d5441 808 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
809 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
810 size_t ptr_size = TYPE_LENGTH (ptr_type);
811 CORE_ADDR pointer_address, addr;
812 asection *plt;
224c3ddb 813 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
3b7344d5 814 struct bound_minimal_symbol msym;
07be84bf
JK
815
816 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
3b7344d5 817 if (msym.minsym == NULL)
07be84bf 818 continue;
3b7344d5 819 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
07be84bf 820 continue;
77e371c0 821 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
07be84bf
JK
822
823 plt = bfd_get_section_by_name (obfd, ".plt");
824 if (plt == NULL)
825 continue;
826
3b7344d5 827 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
07be84bf
JK
828 continue;
829 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
830 continue;
831 addr = extract_typed_address (buf, ptr_type);
832 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
833 &current_target);
4b7d1f7f 834 addr = gdbarch_addr_bits_remove (gdbarch, addr);
07be84bf 835
07be84bf 836 if (elf_gnu_ifunc_record_cache (name, addr))
28f4fa4d
PA
837 {
838 if (addr_p != NULL)
839 *addr_p = addr;
840 return 1;
841 }
07be84bf
JK
842 }
843
844 return 0;
845}
846
847/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
848 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
849 is not NULL) and the function returns 1. It returns 0 otherwise.
850
851 Both the elf_objfile_gnu_ifunc_cache_data hash table and
852 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
853
854static int
855elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
856{
857 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
858 return 1;
dea91a5c 859
07be84bf
JK
860 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
861 return 1;
862
863 return 0;
864}
865
866/* Call STT_GNU_IFUNC - a function returning addresss of a real function to
867 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
868 is the entry point of the resolved STT_GNU_IFUNC target function to call.
869 */
870
871static CORE_ADDR
872elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
873{
2c02bd72 874 const char *name_at_pc;
07be84bf
JK
875 CORE_ADDR start_at_pc, address;
876 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
877 struct value *function, *address_val;
e1b2624a
AA
878 CORE_ADDR hwcap = 0;
879 struct value *hwcap_val;
07be84bf
JK
880
881 /* Try first any non-intrusive methods without an inferior call. */
882
883 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
884 && start_at_pc == pc)
885 {
886 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
887 return address;
888 }
889 else
890 name_at_pc = NULL;
891
892 function = allocate_value (func_func_type);
1a088441 893 VALUE_LVAL (function) = lval_memory;
07be84bf
JK
894 set_value_address (function, pc);
895
e1b2624a
AA
896 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
897 parameter. FUNCTION is the function entry address. ADDRESS may be a
898 function descriptor. */
07be84bf 899
e1b2624a
AA
900 target_auxv_search (&current_target, AT_HWCAP, &hwcap);
901 hwcap_val = value_from_longest (builtin_type (gdbarch)
902 ->builtin_unsigned_long, hwcap);
7022349d 903 address_val = call_function_by_hand (function, NULL, 1, &hwcap_val);
07be84bf
JK
904 address = value_as_address (address_val);
905 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
906 &current_target);
4b7d1f7f 907 address = gdbarch_addr_bits_remove (gdbarch, address);
07be84bf
JK
908
909 if (name_at_pc)
910 elf_gnu_ifunc_record_cache (name_at_pc, address);
911
912 return address;
913}
914
0e30163f
JK
915/* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
916
917static void
918elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
919{
920 struct breakpoint *b_return;
921 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
922 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
923 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
5d5658a1 924 int thread_id = ptid_to_global_thread_id (inferior_ptid);
0e30163f
JK
925
926 gdb_assert (b->type == bp_gnu_ifunc_resolver);
927
928 for (b_return = b->related_breakpoint; b_return != b;
929 b_return = b_return->related_breakpoint)
930 {
931 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
932 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
933 gdb_assert (frame_id_p (b_return->frame_id));
934
935 if (b_return->thread == thread_id
936 && b_return->loc->requested_address == prev_pc
937 && frame_id_eq (b_return->frame_id, prev_frame_id))
938 break;
939 }
940
941 if (b_return == b)
942 {
0e30163f
JK
943 /* No need to call find_pc_line for symbols resolving as this is only
944 a helper breakpointer never shown to the user. */
945
51abb421 946 symtab_and_line sal;
0e30163f
JK
947 sal.pspace = current_inferior ()->pspace;
948 sal.pc = prev_pc;
949 sal.section = find_pc_overlay (sal.pc);
950 sal.explicit_pc = 1;
454dafbd
TT
951 b_return
952 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
953 prev_frame_id,
954 bp_gnu_ifunc_resolver_return).release ();
0e30163f 955
c70a6932
JK
956 /* set_momentary_breakpoint invalidates PREV_FRAME. */
957 prev_frame = NULL;
958
0e30163f
JK
959 /* Add new b_return to the ring list b->related_breakpoint. */
960 gdb_assert (b_return->related_breakpoint == b_return);
961 b_return->related_breakpoint = b->related_breakpoint;
962 b->related_breakpoint = b_return;
963 }
964}
965
966/* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
967
968static void
969elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
970{
971 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
972 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
973 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
974 struct regcache *regcache = get_thread_regcache (inferior_ptid);
6a3a010b 975 struct value *func_func;
0e30163f
JK
976 struct value *value;
977 CORE_ADDR resolved_address, resolved_pc;
0e30163f
JK
978
979 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
980
0e30163f
JK
981 while (b->related_breakpoint != b)
982 {
983 struct breakpoint *b_next = b->related_breakpoint;
984
985 switch (b->type)
986 {
987 case bp_gnu_ifunc_resolver:
988 break;
989 case bp_gnu_ifunc_resolver_return:
990 delete_breakpoint (b);
991 break;
992 default:
993 internal_error (__FILE__, __LINE__,
994 _("handle_inferior_event: Invalid "
995 "gnu-indirect-function breakpoint type %d"),
996 (int) b->type);
997 }
998 b = b_next;
999 }
1000 gdb_assert (b->type == bp_gnu_ifunc_resolver);
6a3a010b
MR
1001 gdb_assert (b->loc->next == NULL);
1002
1003 func_func = allocate_value (func_func_type);
1a088441 1004 VALUE_LVAL (func_func) = lval_memory;
6a3a010b
MR
1005 set_value_address (func_func, b->loc->related_address);
1006
1007 value = allocate_value (value_type);
1008 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1009 value_contents_raw (value), NULL);
1010 resolved_address = value_as_address (value);
1011 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1012 resolved_address,
1013 &current_target);
4b7d1f7f 1014 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
0e30163f 1015
f8eba3c6 1016 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
d28cd78a 1017 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
f00aae0f 1018 resolved_pc);
0e30163f 1019
0e30163f 1020 b->type = bp_breakpoint;
6c5b2ebe
PA
1021 update_breakpoint_locations (b, current_program_space,
1022 find_pc_line (resolved_pc, 0), {});
0e30163f
JK
1023}
1024
2750ef27
TT
1025/* A helper function for elf_symfile_read that reads the minimal
1026 symbols. */
c906108c
SS
1027
1028static void
5f6cac40
TT
1029elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1030 const struct elfinfo *ei)
c906108c 1031{
63524580 1032 bfd *synth_abfd, *abfd = objfile->obfd;
62553543
EZ
1033 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1034 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1035 asymbol *synthsyms;
d2f4b8fe 1036 struct dbx_symfile_info *dbx;
c906108c 1037
45cfd468
DE
1038 if (symtab_create_debug)
1039 {
1040 fprintf_unfiltered (gdb_stdlog,
1041 "Reading minimal symbols of objfile %s ...\n",
4262abfb 1042 objfile_name (objfile));
45cfd468
DE
1043 }
1044
5f6cac40
TT
1045 /* If we already have minsyms, then we can skip some work here.
1046 However, if there were stabs or mdebug sections, we go ahead and
1047 redo all the work anyway, because the psym readers for those
1048 kinds of debuginfo need extra information found here. This can
1049 go away once all types of symbols are in the per-BFD object. */
1050 if (objfile->per_bfd->minsyms_read
1051 && ei->stabsect == NULL
1052 && ei->mdebugsect == NULL)
1053 {
1054 if (symtab_create_debug)
1055 fprintf_unfiltered (gdb_stdlog,
1056 "... minimal symbols previously read\n");
1057 return;
1058 }
1059
d25e8719 1060 minimal_symbol_reader reader (objfile);
c906108c 1061
0963b4bd 1062 /* Allocate struct to keep track of the symfile. */
d2f4b8fe
TT
1063 dbx = XCNEW (struct dbx_symfile_info);
1064 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
c906108c 1065
18a94d75 1066 /* Process the normal ELF symbol table first. */
c906108c 1067
62553543
EZ
1068 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1069 if (storage_needed < 0)
3e43a32a
MS
1070 error (_("Can't read symbols from %s: %s"),
1071 bfd_get_filename (objfile->obfd),
62553543
EZ
1072 bfd_errmsg (bfd_get_error ()));
1073
1074 if (storage_needed > 0)
1075 {
80c57053
JK
1076 /* Memory gets permanently referenced from ABFD after
1077 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1078
224c3ddb 1079 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
62553543
EZ
1080 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1081
1082 if (symcount < 0)
3e43a32a
MS
1083 error (_("Can't read symbols from %s: %s"),
1084 bfd_get_filename (objfile->obfd),
62553543
EZ
1085 bfd_errmsg (bfd_get_error ()));
1086
ce6c454e
TT
1087 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1088 false);
62553543 1089 }
c906108c
SS
1090
1091 /* Add the dynamic symbols. */
1092
62553543
EZ
1093 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1094
1095 if (storage_needed > 0)
1096 {
3f1eff0a
JK
1097 /* Memory gets permanently referenced from ABFD after
1098 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1099 It happens only in the case when elf_slurp_reloc_table sees
1100 asection->relocation NULL. Determining which section is asection is
1101 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1102 implementation detail, though. */
1103
224c3ddb 1104 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
62553543
EZ
1105 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1106 dyn_symbol_table);
1107
1108 if (dynsymcount < 0)
3e43a32a
MS
1109 error (_("Can't read symbols from %s: %s"),
1110 bfd_get_filename (objfile->obfd),
62553543
EZ
1111 bfd_errmsg (bfd_get_error ()));
1112
8dddcb8f 1113 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
ce6c454e 1114 dyn_symbol_table, false);
07be84bf 1115
8dddcb8f 1116 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
62553543
EZ
1117 }
1118
63524580
JK
1119 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1120 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1121
1122 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1123 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1124 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1125 read the code address from .opd while it reads the .symtab section from
1126 a separate debug info file as the .opd section is SHT_NOBITS there.
1127
1128 With SYNTH_ABFD the .opd section will be read from the original
1129 backlinked binary where it is valid. */
1130
1131 if (objfile->separate_debug_objfile_backlink)
1132 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1133 else
1134 synth_abfd = abfd;
1135
62553543
EZ
1136 /* Add synthetic symbols - for instance, names for any PLT entries. */
1137
63524580 1138 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
62553543
EZ
1139 dynsymcount, dyn_symbol_table,
1140 &synthsyms);
1141 if (synthcount > 0)
1142 {
62553543
EZ
1143 long i;
1144
b22e99fd 1145 std::unique_ptr<asymbol *[]>
d1e4a624 1146 synth_symbol_table (new asymbol *[synthcount]);
62553543 1147 for (i = 0; i < synthcount; i++)
9f20e3da 1148 synth_symbol_table[i] = synthsyms + i;
8dddcb8f 1149 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
ce6c454e 1150 synth_symbol_table.get (), true);
ba713918
AL
1151
1152 xfree (synthsyms);
1153 synthsyms = NULL;
62553543 1154 }
c906108c 1155
7134143f
DJ
1156 /* Install any minimal symbols that have been collected as the current
1157 minimal symbols for this objfile. The debug readers below this point
1158 should not generate new minimal symbols; if they do it's their
1159 responsibility to install them. "mdebug" appears to be the only one
1160 which will do this. */
1161
d25e8719 1162 reader.install ();
7134143f 1163
4f00dda3
DE
1164 if (symtab_create_debug)
1165 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
2750ef27
TT
1166}
1167
1168/* Scan and build partial symbols for a symbol file.
1169 We have been initialized by a call to elf_symfile_init, which
1170 currently does nothing.
1171
2750ef27
TT
1172 This function only does the minimum work necessary for letting the
1173 user "name" things symbolically; it does not read the entire symtab.
1174 Instead, it reads the external and static symbols and puts them in partial
1175 symbol tables. When more extensive information is requested of a
1176 file, the corresponding partial symbol table is mutated into a full
1177 fledged symbol table by going back and reading the symbols
1178 for real.
1179
1180 We look for sections with specific names, to tell us what debug
1181 format to look for: FIXME!!!
1182
1183 elfstab_build_psymtabs() handles STABS symbols;
1184 mdebug_build_psymtabs() handles ECOFF debugging information.
1185
1186 Note that ELF files have a "minimal" symbol table, which looks a lot
1187 like a COFF symbol table, but has only the minimal information necessary
1188 for linking. We process this also, and use the information to
1189 build gdb's minimal symbol table. This gives us some minimal debugging
1190 capability even for files compiled without -g. */
1191
1192static void
b15cc25c 1193elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
2750ef27
TT
1194{
1195 bfd *abfd = objfile->obfd;
1196 struct elfinfo ei;
1197
2750ef27 1198 memset ((char *) &ei, 0, sizeof (ei));
97cbe998
SDJ
1199 if (!(objfile->flags & OBJF_READNEVER))
1200 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
c906108c 1201
5f6cac40
TT
1202 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1203
c906108c
SS
1204 /* ELF debugging information is inserted into the psymtab in the
1205 order of least informative first - most informative last. Since
1206 the psymtab table is searched `most recent insertion first' this
1207 increases the probability that more detailed debug information
1208 for a section is found.
1209
1210 For instance, an object file might contain both .mdebug (XCOFF)
1211 and .debug_info (DWARF2) sections then .mdebug is inserted first
1212 (searched last) and DWARF2 is inserted last (searched first). If
1213 we don't do this then the XCOFF info is found first - for code in
0963b4bd 1214 an included file XCOFF info is useless. */
c906108c
SS
1215
1216 if (ei.mdebugsect)
1217 {
1218 const struct ecoff_debug_swap *swap;
1219
1220 /* .mdebug section, presumably holding ECOFF debugging
c5aa993b 1221 information. */
c906108c
SS
1222 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1223 if (swap)
d4f3574e 1224 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
c906108c
SS
1225 }
1226 if (ei.stabsect)
1227 {
1228 asection *str_sect;
1229
1230 /* Stab sections have an associated string table that looks like
c5aa993b 1231 a separate section. */
c906108c
SS
1232 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1233
1234 /* FIXME should probably warn about a stab section without a stabstr. */
1235 if (str_sect)
1236 elfstab_build_psymtabs (objfile,
086df311 1237 ei.stabsect,
c906108c
SS
1238 str_sect->filepos,
1239 bfd_section_size (abfd, str_sect));
1240 }
9291a0cd 1241
251d32d9 1242 if (dwarf2_has_info (objfile, NULL))
b11896a5 1243 {
3c0aa29a 1244 dw_index_kind index_kind;
3e03848b 1245
3c0aa29a
PA
1246 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF
1247 debug information present in OBJFILE. If there is such debug
1248 info present never use an index. */
1249 if (!objfile_has_partial_symbols (objfile)
1250 && dwarf2_initialize_objfile (objfile, &index_kind))
1251 {
1252 switch (index_kind)
1253 {
1254 case dw_index_kind::GDB_INDEX:
1255 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1256 break;
1257 case dw_index_kind::DEBUG_NAMES:
1258 objfile_set_sym_fns (objfile, &elf_sym_fns_debug_names);
1259 break;
1260 }
1261 }
1262 else
b11896a5
TT
1263 {
1264 /* It is ok to do this even if the stabs reader made some
1265 partial symbols, because OBJF_PSYMTABS_READ has not been
1266 set, and so our lazy reader function will still be called
1267 when needed. */
8fb8eb5c 1268 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
b11896a5
TT
1269 }
1270 }
3e43a32a
MS
1271 /* If the file has its own symbol tables it has no separate debug
1272 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1273 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
8a92335b
JK
1274 `.note.gnu.build-id'.
1275
1276 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1277 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1278 an objfile via find_separate_debug_file_in_section there was no separate
1279 debug info available. Therefore do not attempt to search for another one,
1280 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1281 be NULL and we would possibly violate it. */
1282
1283 else if (!objfile_has_partial_symbols (objfile)
1284 && objfile->separate_debug_objfile == NULL
1285 && objfile->separate_debug_objfile_backlink == NULL)
9cce227f 1286 {
a8dbfd58 1287 std::string debugfile = find_separate_debug_file_by_buildid (objfile);
9cce227f 1288
a8dbfd58
SM
1289 if (debugfile.empty ())
1290 debugfile = find_separate_debug_file_by_debuglink (objfile);
9cce227f 1291
a8dbfd58 1292 if (!debugfile.empty ())
9cce227f 1293 {
a8dbfd58 1294 gdb_bfd_ref_ptr abfd (symfile_bfd_open (debugfile.c_str ()));
d7f9d729 1295
a8dbfd58 1296 symbol_file_add_separate (abfd.get (), debugfile.c_str (),
192b62ce 1297 symfile_flags, objfile);
9cce227f
TG
1298 }
1299 }
c906108c
SS
1300}
1301
b11896a5
TT
1302/* Callback to lazily read psymtabs. */
1303
1304static void
1305read_psyms (struct objfile *objfile)
1306{
251d32d9 1307 if (dwarf2_has_info (objfile, NULL))
b11896a5
TT
1308 dwarf2_build_psymtabs (objfile);
1309}
1310
c906108c
SS
1311/* Initialize anything that needs initializing when a completely new symbol
1312 file is specified (not just adding some symbols from another file, e.g. a
1313 shared library).
1314
3e43a32a
MS
1315 We reinitialize buildsym, since we may be reading stabs from an ELF
1316 file. */
c906108c
SS
1317
1318static void
fba45db2 1319elf_new_init (struct objfile *ignore)
c906108c
SS
1320{
1321 stabsread_new_init ();
1322 buildsym_new_init ();
1323}
1324
1325/* Perform any local cleanups required when we are done with a particular
1326 objfile. I.E, we are in the process of discarding all symbol information
1327 for an objfile, freeing up all memory held for it, and unlinking the
0963b4bd 1328 objfile struct from the global list of known objfiles. */
c906108c
SS
1329
1330static void
fba45db2 1331elf_symfile_finish (struct objfile *objfile)
c906108c 1332{
fe3e1990 1333 dwarf2_free_objfile (objfile);
c906108c
SS
1334}
1335
db7a9bcd 1336/* ELF specific initialization routine for reading symbols. */
c906108c
SS
1337
1338static void
fba45db2 1339elf_symfile_init (struct objfile *objfile)
c906108c
SS
1340{
1341 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1342 find this causes a significant slowdown in gdb then we could
1343 set it in the debug symbol readers only when necessary. */
1344 objfile->flags |= OBJF_REORDERED;
1345}
1346
55aa24fb
SDJ
1347/* Implementation of `sym_get_probes', as documented in symfile.h. */
1348
aaa63a31 1349static const std::vector<probe *> &
55aa24fb
SDJ
1350elf_get_probes (struct objfile *objfile)
1351{
aaa63a31 1352 std::vector<probe *> *probes_per_bfd;
55aa24fb
SDJ
1353
1354 /* Have we parsed this objfile's probes already? */
aaa63a31 1355 probes_per_bfd = (std::vector<probe *> *) bfd_data (objfile->obfd, probe_key);
55aa24fb 1356
aaa63a31 1357 if (probes_per_bfd == NULL)
55aa24fb 1358 {
aaa63a31 1359 probes_per_bfd = new std::vector<probe *>;
55aa24fb
SDJ
1360
1361 /* Here we try to gather information about all types of probes from the
1362 objfile. */
935676c9 1363 for (const static_probe_ops *ops : all_static_probe_ops)
0782db84 1364 ops->get_probes (probes_per_bfd, objfile);
55aa24fb 1365
5d9cf8a4 1366 set_bfd_data (objfile->obfd, probe_key, probes_per_bfd);
55aa24fb
SDJ
1367 }
1368
aaa63a31 1369 return *probes_per_bfd;
55aa24fb
SDJ
1370}
1371
55aa24fb
SDJ
1372/* Helper function used to free the space allocated for storing SystemTap
1373 probe information. */
1374
1375static void
5d9cf8a4 1376probe_key_free (bfd *abfd, void *d)
55aa24fb 1377{
aaa63a31 1378 std::vector<probe *> *probes = (std::vector<probe *> *) d;
55aa24fb 1379
63f0e930 1380 for (probe *p : *probes)
935676c9 1381 delete p;
55aa24fb 1382
aaa63a31 1383 delete probes;
55aa24fb
SDJ
1384}
1385
c906108c 1386\f
55aa24fb
SDJ
1387
1388/* Implementation `sym_probe_fns', as documented in symfile.h. */
1389
1390static const struct sym_probe_fns elf_probe_fns =
1391{
25f9533e 1392 elf_get_probes, /* sym_get_probes */
55aa24fb
SDJ
1393};
1394
c906108c
SS
1395/* Register that we are able to handle ELF object file formats. */
1396
00b5771c 1397static const struct sym_fns elf_sym_fns =
c906108c 1398{
3e43a32a
MS
1399 elf_new_init, /* init anything gbl to entire symtab */
1400 elf_symfile_init, /* read initial info, setup for sym_read() */
1401 elf_symfile_read, /* read a symbol file into symtab */
b11896a5
TT
1402 NULL, /* sym_read_psymbols */
1403 elf_symfile_finish, /* finished with file, cleanup */
1404 default_symfile_offsets, /* Translate ext. to int. relocation */
1405 elf_symfile_segments, /* Get segment information from a file. */
1406 NULL,
1407 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1408 &elf_probe_fns, /* sym_probe_fns */
b11896a5
TT
1409 &psym_functions
1410};
1411
1412/* The same as elf_sym_fns, but not registered and lazily reads
1413 psymbols. */
1414
e36122e9 1415const struct sym_fns elf_sym_fns_lazy_psyms =
b11896a5 1416{
b11896a5
TT
1417 elf_new_init, /* init anything gbl to entire symtab */
1418 elf_symfile_init, /* read initial info, setup for sym_read() */
1419 elf_symfile_read, /* read a symbol file into symtab */
1420 read_psyms, /* sym_read_psymbols */
3e43a32a
MS
1421 elf_symfile_finish, /* finished with file, cleanup */
1422 default_symfile_offsets, /* Translate ext. to int. relocation */
1423 elf_symfile_segments, /* Get segment information from a file. */
1424 NULL,
1425 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1426 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1427 &psym_functions
c906108c
SS
1428};
1429
9291a0cd
TT
1430/* The same as elf_sym_fns, but not registered and uses the
1431 DWARF-specific GNU index rather than psymtab. */
e36122e9 1432const struct sym_fns elf_sym_fns_gdb_index =
9291a0cd 1433{
3e43a32a
MS
1434 elf_new_init, /* init anything gbl to entire symab */
1435 elf_symfile_init, /* read initial info, setup for sym_red() */
1436 elf_symfile_read, /* read a symbol file into symtab */
b11896a5 1437 NULL, /* sym_read_psymbols */
3e43a32a
MS
1438 elf_symfile_finish, /* finished with file, cleanup */
1439 default_symfile_offsets, /* Translate ext. to int. relocatin */
1440 elf_symfile_segments, /* Get segment information from a file. */
1441 NULL,
1442 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1443 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1444 &dwarf2_gdb_index_functions
9291a0cd
TT
1445};
1446
927aa2e7
JK
1447/* The same as elf_sym_fns, but not registered and uses the
1448 DWARF-specific .debug_names index rather than psymtab. */
1449const struct sym_fns elf_sym_fns_debug_names =
1450{
1451 elf_new_init, /* init anything gbl to entire symab */
1452 elf_symfile_init, /* read initial info, setup for sym_red() */
1453 elf_symfile_read, /* read a symbol file into symtab */
1454 NULL, /* sym_read_psymbols */
1455 elf_symfile_finish, /* finished with file, cleanup */
1456 default_symfile_offsets, /* Translate ext. to int. relocatin */
1457 elf_symfile_segments, /* Get segment information from a file. */
1458 NULL,
1459 default_symfile_relocate, /* Relocate a debug section. */
1460 &elf_probe_fns, /* sym_probe_fns */
1461 &dwarf2_debug_names_functions
1462};
1463
07be84bf
JK
1464/* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1465
1466static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1467{
1468 elf_gnu_ifunc_resolve_addr,
1469 elf_gnu_ifunc_resolve_name,
0e30163f
JK
1470 elf_gnu_ifunc_resolver_stop,
1471 elf_gnu_ifunc_resolver_return_stop
07be84bf
JK
1472};
1473
c906108c 1474void
fba45db2 1475_initialize_elfread (void)
c906108c 1476{
5d9cf8a4 1477 probe_key = register_bfd_data_with_cleanup (NULL, probe_key_free);
c256e171 1478 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
07be84bf
JK
1479
1480 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1481 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
c906108c 1482}
This page took 1.367157 seconds and 4 git commands to generate.