PR binutils/13558
[deliverable/binutils-gdb.git] / gdb / elfread.c
CommitLineData
c906108c 1/* Read ELF (Executable and Linking Format) object files for GDB.
1bac305b 2
0b302171 3 Copyright (C) 1991-2012 Free Software Foundation, Inc.
1bac305b 4
c906108c
SS
5 Written by Fred Fish at Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "bfd.h"
24#include "gdb_string.h"
25#include "elf-bfd.h"
31d99776
DJ
26#include "elf/common.h"
27#include "elf/internal.h"
c906108c
SS
28#include "elf/mips.h"
29#include "symtab.h"
30#include "symfile.h"
31#include "objfiles.h"
32#include "buildsym.h"
33#include "stabsread.h"
34#include "gdb-stabs.h"
35#include "complaints.h"
36#include "demangle.h"
ccefe4c4 37#include "psympriv.h"
0ba1096a 38#include "filenames.h"
55aa24fb
SDJ
39#include "probe.h"
40#include "arch-utils.h"
07be84bf
JK
41#include "gdbtypes.h"
42#include "value.h"
43#include "infcall.h"
0e30163f
JK
44#include "gdbthread.h"
45#include "regcache.h"
0af1e9a5 46#include "bcache.h"
c906108c 47
a14ed312 48extern void _initialize_elfread (void);
392a587b 49
b11896a5 50/* Forward declarations. */
00b5771c 51static const struct sym_fns elf_sym_fns_gdb_index;
b11896a5 52static const struct sym_fns elf_sym_fns_lazy_psyms;
9291a0cd 53
c906108c 54/* The struct elfinfo is available only during ELF symbol table and
6426a772 55 psymtab reading. It is destroyed at the completion of psymtab-reading.
c906108c
SS
56 It's local to elf_symfile_read. */
57
c5aa993b
JM
58struct elfinfo
59 {
c5aa993b
JM
60 asection *stabsect; /* Section pointer for .stab section */
61 asection *stabindexsect; /* Section pointer for .stab.index section */
62 asection *mdebugsect; /* Section pointer for .mdebug section */
63 };
c906108c 64
55aa24fb
SDJ
65/* Per-objfile data for probe info. */
66
67static const struct objfile_data *probe_key = NULL;
68
12b9c64f 69static void free_elfinfo (void *);
c906108c 70
07be84bf
JK
71/* Minimal symbols located at the GOT entries for .plt - that is the real
72 pointer where the given entry will jump to. It gets updated by the real
73 function address during lazy ld.so resolving in the inferior. These
74 minimal symbols are indexed for <tab>-completion. */
75
76#define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
77
31d99776
DJ
78/* Locate the segments in ABFD. */
79
80static struct symfile_segment_data *
81elf_symfile_segments (bfd *abfd)
82{
83 Elf_Internal_Phdr *phdrs, **segments;
84 long phdrs_size;
85 int num_phdrs, num_segments, num_sections, i;
86 asection *sect;
87 struct symfile_segment_data *data;
88
89 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
90 if (phdrs_size == -1)
91 return NULL;
92
93 phdrs = alloca (phdrs_size);
94 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
95 if (num_phdrs == -1)
96 return NULL;
97
98 num_segments = 0;
99 segments = alloca (sizeof (Elf_Internal_Phdr *) * num_phdrs);
100 for (i = 0; i < num_phdrs; i++)
101 if (phdrs[i].p_type == PT_LOAD)
102 segments[num_segments++] = &phdrs[i];
103
104 if (num_segments == 0)
105 return NULL;
106
107 data = XZALLOC (struct symfile_segment_data);
108 data->num_segments = num_segments;
109 data->segment_bases = XCALLOC (num_segments, CORE_ADDR);
110 data->segment_sizes = XCALLOC (num_segments, CORE_ADDR);
111
112 for (i = 0; i < num_segments; i++)
113 {
114 data->segment_bases[i] = segments[i]->p_vaddr;
115 data->segment_sizes[i] = segments[i]->p_memsz;
116 }
117
118 num_sections = bfd_count_sections (abfd);
119 data->segment_info = XCALLOC (num_sections, int);
120
121 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
122 {
123 int j;
124 CORE_ADDR vma;
125
126 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
127 continue;
128
129 vma = bfd_get_section_vma (abfd, sect);
130
131 for (j = 0; j < num_segments; j++)
132 if (segments[j]->p_memsz > 0
133 && vma >= segments[j]->p_vaddr
a366c65a 134 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
31d99776
DJ
135 {
136 data->segment_info[i] = j + 1;
137 break;
138 }
139
ad09a548
DJ
140 /* We should have found a segment for every non-empty section.
141 If we haven't, we will not relocate this section by any
142 offsets we apply to the segments. As an exception, do not
143 warn about SHT_NOBITS sections; in normal ELF execution
144 environments, SHT_NOBITS means zero-initialized and belongs
145 in a segment, but in no-OS environments some tools (e.g. ARM
146 RealView) use SHT_NOBITS for uninitialized data. Since it is
147 uninitialized, it doesn't need a program header. Such
148 binaries are not relocatable. */
149 if (bfd_get_section_size (sect) > 0 && j == num_segments
150 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
28ee876a 151 warning (_("Loadable section \"%s\" outside of ELF segments"),
31d99776
DJ
152 bfd_section_name (abfd, sect));
153 }
154
155 return data;
156}
157
c906108c
SS
158/* We are called once per section from elf_symfile_read. We
159 need to examine each section we are passed, check to see
160 if it is something we are interested in processing, and
161 if so, stash away some access information for the section.
162
163 For now we recognize the dwarf debug information sections and
164 line number sections from matching their section names. The
165 ELF definition is no real help here since it has no direct
166 knowledge of DWARF (by design, so any debugging format can be
167 used).
168
169 We also recognize the ".stab" sections used by the Sun compilers
170 released with Solaris 2.
171
172 FIXME: The section names should not be hardwired strings (what
173 should they be? I don't think most object file formats have enough
0963b4bd 174 section flags to specify what kind of debug section it is.
c906108c
SS
175 -kingdon). */
176
177static void
12b9c64f 178elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
c906108c 179{
52f0bd74 180 struct elfinfo *ei;
c906108c
SS
181
182 ei = (struct elfinfo *) eip;
7ce59000 183 if (strcmp (sectp->name, ".stab") == 0)
c906108c 184 {
c5aa993b 185 ei->stabsect = sectp;
c906108c 186 }
6314a349 187 else if (strcmp (sectp->name, ".stab.index") == 0)
c906108c 188 {
c5aa993b 189 ei->stabindexsect = sectp;
c906108c 190 }
6314a349 191 else if (strcmp (sectp->name, ".mdebug") == 0)
c906108c 192 {
c5aa993b 193 ei->mdebugsect = sectp;
c906108c
SS
194 }
195}
196
c906108c 197static struct minimal_symbol *
04a679b8
TT
198record_minimal_symbol (const char *name, int name_len, int copy_name,
199 CORE_ADDR address,
f594e5e9
MC
200 enum minimal_symbol_type ms_type,
201 asection *bfd_section, struct objfile *objfile)
c906108c 202{
5e2b427d
UW
203 struct gdbarch *gdbarch = get_objfile_arch (objfile);
204
0875794a
JK
205 if (ms_type == mst_text || ms_type == mst_file_text
206 || ms_type == mst_text_gnu_ifunc)
5e2b427d 207 address = gdbarch_smash_text_address (gdbarch, address);
c906108c 208
04a679b8
TT
209 return prim_record_minimal_symbol_full (name, name_len, copy_name, address,
210 ms_type, bfd_section->index,
211 bfd_section, objfile);
c906108c
SS
212}
213
7f86f058 214/* Read the symbol table of an ELF file.
c906108c 215
62553543 216 Given an objfile, a symbol table, and a flag indicating whether the
6f610d07
UW
217 symbol table contains regular, dynamic, or synthetic symbols, add all
218 the global function and data symbols to the minimal symbol table.
c906108c 219
c5aa993b
JM
220 In stabs-in-ELF, as implemented by Sun, there are some local symbols
221 defined in the ELF symbol table, which can be used to locate
222 the beginnings of sections from each ".o" file that was linked to
223 form the executable objfile. We gather any such info and record it
7f86f058 224 in data structures hung off the objfile's private data. */
c906108c 225
6f610d07
UW
226#define ST_REGULAR 0
227#define ST_DYNAMIC 1
228#define ST_SYNTHETIC 2
229
c906108c 230static void
6f610d07 231elf_symtab_read (struct objfile *objfile, int type,
04a679b8
TT
232 long number_of_symbols, asymbol **symbol_table,
233 int copy_names)
c906108c 234{
5e2b427d 235 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 236 asymbol *sym;
c906108c 237 long i;
c906108c 238 CORE_ADDR symaddr;
d4f3574e 239 CORE_ADDR offset;
c906108c
SS
240 enum minimal_symbol_type ms_type;
241 /* If sectinfo is nonNULL, it contains section info that should end up
242 filed in the objfile. */
243 struct stab_section_info *sectinfo = NULL;
244 /* If filesym is nonzero, it points to a file symbol, but we haven't
245 seen any section info for it yet. */
246 asymbol *filesym = 0;
1c9e8358 247 /* Name of filesym. This is either a constant string or is saved on
0af1e9a5
TT
248 the objfile's filename cache. */
249 const char *filesymname = "";
0a6ddd08 250 struct dbx_symfile_info *dbx = objfile->deprecated_sym_stab_info;
d4f3574e 251 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
c5aa993b 252
0cc7b392 253 for (i = 0; i < number_of_symbols; i++)
c906108c 254 {
0cc7b392
DJ
255 sym = symbol_table[i];
256 if (sym->name == NULL || *sym->name == '\0')
c906108c 257 {
0cc7b392 258 /* Skip names that don't exist (shouldn't happen), or names
0963b4bd 259 that are null strings (may happen). */
0cc7b392
DJ
260 continue;
261 }
c906108c 262
74763737
DJ
263 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
264 symbols which do not correspond to objects in the symbol table,
265 but have some other target-specific meaning. */
266 if (bfd_is_target_special_symbol (objfile->obfd, sym))
60c5725c
DJ
267 {
268 if (gdbarch_record_special_symbol_p (gdbarch))
269 gdbarch_record_special_symbol (gdbarch, objfile, sym);
270 continue;
271 }
74763737 272
0cc7b392 273 offset = ANOFFSET (objfile->section_offsets, sym->section->index);
6f610d07 274 if (type == ST_DYNAMIC
45dfa85a 275 && sym->section == bfd_und_section_ptr
0cc7b392
DJ
276 && (sym->flags & BSF_FUNCTION))
277 {
278 struct minimal_symbol *msym;
02c75f72 279 bfd *abfd = objfile->obfd;
dea91a5c 280 asection *sect;
0cc7b392
DJ
281
282 /* Symbol is a reference to a function defined in
283 a shared library.
284 If its value is non zero then it is usually the address
285 of the corresponding entry in the procedure linkage table,
286 plus the desired section offset.
287 If its value is zero then the dynamic linker has to resolve
0963b4bd 288 the symbol. We are unable to find any meaningful address
0cc7b392
DJ
289 for this symbol in the executable file, so we skip it. */
290 symaddr = sym->value;
291 if (symaddr == 0)
292 continue;
02c75f72
UW
293
294 /* sym->section is the undefined section. However, we want to
295 record the section where the PLT stub resides with the
296 minimal symbol. Search the section table for the one that
297 covers the stub's address. */
298 for (sect = abfd->sections; sect != NULL; sect = sect->next)
299 {
300 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
301 continue;
302
303 if (symaddr >= bfd_get_section_vma (abfd, sect)
304 && symaddr < bfd_get_section_vma (abfd, sect)
305 + bfd_get_section_size (sect))
306 break;
307 }
308 if (!sect)
309 continue;
310
828cfa8d
JB
311 /* On ia64-hpux, we have discovered that the system linker
312 adds undefined symbols with nonzero addresses that cannot
313 be right (their address points inside the code of another
314 function in the .text section). This creates problems
315 when trying to determine which symbol corresponds to
316 a given address.
317
318 We try to detect those buggy symbols by checking which
319 section we think they correspond to. Normally, PLT symbols
320 are stored inside their own section, and the typical name
321 for that section is ".plt". So, if there is a ".plt"
322 section, and yet the section name of our symbol does not
323 start with ".plt", we ignore that symbol. */
324 if (strncmp (sect->name, ".plt", 4) != 0
325 && bfd_get_section_by_name (abfd, ".plt") != NULL)
326 continue;
327
02c75f72
UW
328 symaddr += ANOFFSET (objfile->section_offsets, sect->index);
329
0cc7b392 330 msym = record_minimal_symbol
04a679b8
TT
331 (sym->name, strlen (sym->name), copy_names,
332 symaddr, mst_solib_trampoline, sect, objfile);
0cc7b392
DJ
333 if (msym != NULL)
334 msym->filename = filesymname;
0cc7b392
DJ
335 continue;
336 }
c906108c 337
0cc7b392
DJ
338 /* If it is a nonstripped executable, do not enter dynamic
339 symbols, as the dynamic symbol table is usually a subset
340 of the main symbol table. */
6f610d07 341 if (type == ST_DYNAMIC && !stripped)
0cc7b392
DJ
342 continue;
343 if (sym->flags & BSF_FILE)
344 {
345 /* STT_FILE debugging symbol that helps stabs-in-elf debugging.
346 Chain any old one onto the objfile; remember new sym. */
347 if (sectinfo != NULL)
c906108c 348 {
0cc7b392
DJ
349 sectinfo->next = dbx->stab_section_info;
350 dbx->stab_section_info = sectinfo;
351 sectinfo = NULL;
352 }
353 filesym = sym;
0af1e9a5
TT
354 filesymname = bcache (filesym->name, strlen (filesym->name) + 1,
355 objfile->filename_cache);
0cc7b392
DJ
356 }
357 else if (sym->flags & BSF_SECTION_SYM)
358 continue;
359 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK))
360 {
361 struct minimal_symbol *msym;
362
363 /* Select global/local/weak symbols. Note that bfd puts abs
364 symbols in their own section, so all symbols we are
0963b4bd
MS
365 interested in will have a section. */
366 /* Bfd symbols are section relative. */
0cc7b392 367 symaddr = sym->value + sym->section->vma;
45148c2e
UW
368 /* Relocate all non-absolute and non-TLS symbols by the
369 section offset. */
45dfa85a 370 if (sym->section != bfd_abs_section_ptr
45148c2e 371 && !(sym->section->flags & SEC_THREAD_LOCAL))
0cc7b392
DJ
372 {
373 symaddr += offset;
c906108c 374 }
0cc7b392
DJ
375 /* For non-absolute symbols, use the type of the section
376 they are relative to, to intuit text/data. Bfd provides
0963b4bd 377 no way of figuring this out for absolute symbols. */
45dfa85a 378 if (sym->section == bfd_abs_section_ptr)
c906108c 379 {
0cc7b392
DJ
380 /* This is a hack to get the minimal symbol type
381 right for Irix 5, which has absolute addresses
6f610d07
UW
382 with special section indices for dynamic symbols.
383
384 NOTE: uweigand-20071112: Synthetic symbols do not
385 have an ELF-private part, so do not touch those. */
dea91a5c 386 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
0cc7b392
DJ
387 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
388
389 switch (shndx)
c906108c 390 {
0cc7b392
DJ
391 case SHN_MIPS_TEXT:
392 ms_type = mst_text;
393 break;
394 case SHN_MIPS_DATA:
395 ms_type = mst_data;
396 break;
397 case SHN_MIPS_ACOMMON:
398 ms_type = mst_bss;
399 break;
400 default:
401 ms_type = mst_abs;
402 }
403
404 /* If it is an Irix dynamic symbol, skip section name
0963b4bd 405 symbols, relocate all others by section offset. */
0cc7b392
DJ
406 if (ms_type != mst_abs)
407 {
408 if (sym->name[0] == '.')
409 continue;
d4f3574e 410 symaddr += offset;
c906108c 411 }
0cc7b392
DJ
412 }
413 else if (sym->section->flags & SEC_CODE)
414 {
08232497 415 if (sym->flags & (BSF_GLOBAL | BSF_WEAK))
c906108c 416 {
0875794a
JK
417 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
418 ms_type = mst_text_gnu_ifunc;
419 else
420 ms_type = mst_text;
0cc7b392 421 }
90359a16
JK
422 /* The BSF_SYNTHETIC check is there to omit ppc64 function
423 descriptors mistaken for static functions starting with 'L'.
424 */
425 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
426 && (sym->flags & BSF_SYNTHETIC) == 0)
0cc7b392
DJ
427 || ((sym->flags & BSF_LOCAL)
428 && sym->name[0] == '$'
429 && sym->name[1] == 'L'))
430 /* Looks like a compiler-generated label. Skip
431 it. The assembler should be skipping these (to
432 keep executables small), but apparently with
433 gcc on the (deleted) delta m88k SVR4, it loses.
434 So to have us check too should be harmless (but
435 I encourage people to fix this in the assembler
436 instead of adding checks here). */
437 continue;
438 else
439 {
440 ms_type = mst_file_text;
c906108c 441 }
0cc7b392
DJ
442 }
443 else if (sym->section->flags & SEC_ALLOC)
444 {
445 if (sym->flags & (BSF_GLOBAL | BSF_WEAK))
c906108c 446 {
0cc7b392 447 if (sym->section->flags & SEC_LOAD)
c906108c 448 {
0cc7b392 449 ms_type = mst_data;
c906108c 450 }
c906108c
SS
451 else
452 {
0cc7b392 453 ms_type = mst_bss;
c906108c
SS
454 }
455 }
0cc7b392 456 else if (sym->flags & BSF_LOCAL)
c906108c 457 {
0cc7b392
DJ
458 /* Named Local variable in a Data section.
459 Check its name for stabs-in-elf. */
460 int special_local_sect;
d7f9d729 461
0cc7b392
DJ
462 if (strcmp ("Bbss.bss", sym->name) == 0)
463 special_local_sect = SECT_OFF_BSS (objfile);
464 else if (strcmp ("Ddata.data", sym->name) == 0)
465 special_local_sect = SECT_OFF_DATA (objfile);
466 else if (strcmp ("Drodata.rodata", sym->name) == 0)
467 special_local_sect = SECT_OFF_RODATA (objfile);
468 else
469 special_local_sect = -1;
470 if (special_local_sect >= 0)
c906108c 471 {
0cc7b392
DJ
472 /* Found a special local symbol. Allocate a
473 sectinfo, if needed, and fill it in. */
474 if (sectinfo == NULL)
c906108c 475 {
0cc7b392
DJ
476 int max_index;
477 size_t size;
478
25c2f6ab
PP
479 max_index = SECT_OFF_BSS (objfile);
480 if (objfile->sect_index_data > max_index)
481 max_index = objfile->sect_index_data;
482 if (objfile->sect_index_rodata > max_index)
483 max_index = objfile->sect_index_rodata;
0cc7b392
DJ
484
485 /* max_index is the largest index we'll
486 use into this array, so we must
487 allocate max_index+1 elements for it.
488 However, 'struct stab_section_info'
489 already includes one element, so we
490 need to allocate max_index aadditional
491 elements. */
dea91a5c 492 size = (sizeof (struct stab_section_info)
c05d19c5 493 + (sizeof (CORE_ADDR) * max_index));
0cc7b392
DJ
494 sectinfo = (struct stab_section_info *)
495 xmalloc (size);
496 memset (sectinfo, 0, size);
497 sectinfo->num_sections = max_index;
498 if (filesym == NULL)
c906108c 499 {
0cc7b392 500 complaint (&symfile_complaints,
3e43a32a
MS
501 _("elf/stab section information %s "
502 "without a preceding file symbol"),
0cc7b392
DJ
503 sym->name);
504 }
505 else
506 {
507 sectinfo->filename =
508 (char *) filesym->name;
c906108c 509 }
c906108c 510 }
0cc7b392
DJ
511 if (sectinfo->sections[special_local_sect] != 0)
512 complaint (&symfile_complaints,
3e43a32a
MS
513 _("duplicated elf/stab section "
514 "information for %s"),
0cc7b392
DJ
515 sectinfo->filename);
516 /* BFD symbols are section relative. */
517 symaddr = sym->value + sym->section->vma;
518 /* Relocate non-absolute symbols by the
519 section offset. */
45dfa85a 520 if (sym->section != bfd_abs_section_ptr)
0cc7b392
DJ
521 symaddr += offset;
522 sectinfo->sections[special_local_sect] = symaddr;
523 /* The special local symbols don't go in the
524 minimal symbol table, so ignore this one. */
525 continue;
526 }
527 /* Not a special stabs-in-elf symbol, do regular
528 symbol processing. */
529 if (sym->section->flags & SEC_LOAD)
530 {
531 ms_type = mst_file_data;
c906108c
SS
532 }
533 else
534 {
0cc7b392 535 ms_type = mst_file_bss;
c906108c
SS
536 }
537 }
538 else
539 {
0cc7b392 540 ms_type = mst_unknown;
c906108c 541 }
0cc7b392
DJ
542 }
543 else
544 {
545 /* FIXME: Solaris2 shared libraries include lots of
dea91a5c 546 odd "absolute" and "undefined" symbols, that play
0cc7b392
DJ
547 hob with actions like finding what function the PC
548 is in. Ignore them if they aren't text, data, or bss. */
549 /* ms_type = mst_unknown; */
0963b4bd 550 continue; /* Skip this symbol. */
0cc7b392
DJ
551 }
552 msym = record_minimal_symbol
04a679b8 553 (sym->name, strlen (sym->name), copy_names, symaddr,
0cc7b392 554 ms_type, sym->section, objfile);
6f610d07 555
0cc7b392
DJ
556 if (msym)
557 {
558 /* Pass symbol size field in via BFD. FIXME!!! */
6f610d07
UW
559 elf_symbol_type *elf_sym;
560
561 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
562 ELF-private part. However, in some cases (e.g. synthetic
563 'dot' symbols on ppc64) the udata.p entry is set to point back
564 to the original ELF symbol it was derived from. Get the size
dea91a5c 565 from that symbol. */
6f610d07
UW
566 if (type != ST_SYNTHETIC)
567 elf_sym = (elf_symbol_type *) sym;
568 else
569 elf_sym = (elf_symbol_type *) sym->udata.p;
570
571 if (elf_sym)
572 MSYMBOL_SIZE(msym) = elf_sym->internal_elf_sym.st_size;
dea91a5c 573
a103a963
DJ
574 msym->filename = filesymname;
575 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
0cc7b392 576 }
2eaf8d2a
DJ
577
578 /* For @plt symbols, also record a trampoline to the
579 destination symbol. The @plt symbol will be used in
580 disassembly, and the trampoline will be used when we are
581 trying to find the target. */
582 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
583 {
584 int len = strlen (sym->name);
585
586 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
587 {
2eaf8d2a
DJ
588 struct minimal_symbol *mtramp;
589
04a679b8
TT
590 mtramp = record_minimal_symbol (sym->name, len - 4, 1,
591 symaddr,
2eaf8d2a
DJ
592 mst_solib_trampoline,
593 sym->section, objfile);
594 if (mtramp)
595 {
596 MSYMBOL_SIZE (mtramp) = MSYMBOL_SIZE (msym);
597 mtramp->filename = filesymname;
598 gdbarch_elf_make_msymbol_special (gdbarch, sym, mtramp);
599 }
600 }
601 }
c906108c 602 }
c906108c
SS
603 }
604}
605
07be84bf
JK
606/* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
607 for later look ups of which function to call when user requests
608 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
609 library defining `function' we cannot yet know while reading OBJFILE which
610 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
611 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
612
613static void
614elf_rel_plt_read (struct objfile *objfile, asymbol **dyn_symbol_table)
615{
616 bfd *obfd = objfile->obfd;
617 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
618 asection *plt, *relplt, *got_plt;
619 unsigned u;
620 int plt_elf_idx;
621 bfd_size_type reloc_count, reloc;
622 char *string_buffer = NULL;
623 size_t string_buffer_size = 0;
624 struct cleanup *back_to;
625 struct gdbarch *gdbarch = objfile->gdbarch;
626 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
627 size_t ptr_size = TYPE_LENGTH (ptr_type);
628
629 if (objfile->separate_debug_objfile_backlink)
630 return;
631
632 plt = bfd_get_section_by_name (obfd, ".plt");
633 if (plt == NULL)
634 return;
635 plt_elf_idx = elf_section_data (plt)->this_idx;
636
637 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
638 if (got_plt == NULL)
639 return;
640
641 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
642 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
643 if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx
644 && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL
645 || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA))
646 break;
647 if (relplt == NULL)
648 return;
649
650 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
651 return;
652
653 back_to = make_cleanup (free_current_contents, &string_buffer);
654
655 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
656 for (reloc = 0; reloc < reloc_count; reloc++)
657 {
658 const char *name, *name_got_plt;
659 struct minimal_symbol *msym;
660 CORE_ADDR address;
661 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
662 size_t name_len;
663
664 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
665 name_len = strlen (name);
666 address = relplt->relocation[reloc].address;
667
668 /* Does the pointer reside in the .got.plt section? */
669 if (!(bfd_get_section_vma (obfd, got_plt) <= address
670 && address < bfd_get_section_vma (obfd, got_plt)
671 + bfd_get_section_size (got_plt)))
672 continue;
673
674 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
675 OBJFILE the symbol is undefined and the objfile having NAME defined
676 may not yet have been loaded. */
677
3807f613 678 if (string_buffer_size < name_len + got_suffix_len + 1)
07be84bf
JK
679 {
680 string_buffer_size = 2 * (name_len + got_suffix_len);
681 string_buffer = xrealloc (string_buffer, string_buffer_size);
682 }
683 memcpy (string_buffer, name, name_len);
684 memcpy (&string_buffer[name_len], SYMBOL_GOT_PLT_SUFFIX,
3807f613 685 got_suffix_len + 1);
07be84bf
JK
686
687 msym = record_minimal_symbol (string_buffer, name_len + got_suffix_len,
688 1, address, mst_slot_got_plt, got_plt,
689 objfile);
690 if (msym)
691 MSYMBOL_SIZE (msym) = ptr_size;
692 }
693
694 do_cleanups (back_to);
695}
696
697/* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
698
699static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
700
701/* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
702
703struct elf_gnu_ifunc_cache
704{
705 /* This is always a function entry address, not a function descriptor. */
706 CORE_ADDR addr;
707
708 char name[1];
709};
710
711/* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
712
713static hashval_t
714elf_gnu_ifunc_cache_hash (const void *a_voidp)
715{
716 const struct elf_gnu_ifunc_cache *a = a_voidp;
717
718 return htab_hash_string (a->name);
719}
720
721/* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
722
723static int
724elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
725{
726 const struct elf_gnu_ifunc_cache *a = a_voidp;
727 const struct elf_gnu_ifunc_cache *b = b_voidp;
728
729 return strcmp (a->name, b->name) == 0;
730}
731
732/* Record the target function address of a STT_GNU_IFUNC function NAME is the
733 function entry address ADDR. Return 1 if NAME and ADDR are considered as
734 valid and therefore they were successfully recorded, return 0 otherwise.
735
736 Function does not expect a duplicate entry. Use
737 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
738 exists. */
739
740static int
741elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
742{
743 struct minimal_symbol *msym;
744 asection *sect;
745 struct objfile *objfile;
746 htab_t htab;
747 struct elf_gnu_ifunc_cache entry_local, *entry_p;
748 void **slot;
749
750 msym = lookup_minimal_symbol_by_pc (addr);
751 if (msym == NULL)
752 return 0;
753 if (SYMBOL_VALUE_ADDRESS (msym) != addr)
754 return 0;
755 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
756 sect = SYMBOL_OBJ_SECTION (msym)->the_bfd_section;
757 objfile = SYMBOL_OBJ_SECTION (msym)->objfile;
758
759 /* If .plt jumps back to .plt the symbol is still deferred for later
760 resolution and it has no use for GDB. Besides ".text" this symbol can
761 reside also in ".opd" for ppc64 function descriptor. */
762 if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
763 return 0;
764
765 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
766 if (htab == NULL)
767 {
768 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
769 elf_gnu_ifunc_cache_eq,
770 NULL, &objfile->objfile_obstack,
771 hashtab_obstack_allocate,
772 dummy_obstack_deallocate);
773 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
774 }
775
776 entry_local.addr = addr;
777 obstack_grow (&objfile->objfile_obstack, &entry_local,
778 offsetof (struct elf_gnu_ifunc_cache, name));
779 obstack_grow_str0 (&objfile->objfile_obstack, name);
780 entry_p = obstack_finish (&objfile->objfile_obstack);
781
782 slot = htab_find_slot (htab, entry_p, INSERT);
783 if (*slot != NULL)
784 {
785 struct elf_gnu_ifunc_cache *entry_found_p = *slot;
786 struct gdbarch *gdbarch = objfile->gdbarch;
787
788 if (entry_found_p->addr != addr)
789 {
790 /* This case indicates buggy inferior program, the resolved address
791 should never change. */
792
793 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
794 "function_address from %s to %s"),
795 name, paddress (gdbarch, entry_found_p->addr),
796 paddress (gdbarch, addr));
797 }
798
799 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
800 }
801 *slot = entry_p;
802
803 return 1;
804}
805
806/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
807 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
808 is not NULL) and the function returns 1. It returns 0 otherwise.
809
810 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
811 function. */
812
813static int
814elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
815{
816 struct objfile *objfile;
817
818 ALL_PSPACE_OBJFILES (current_program_space, objfile)
819 {
820 htab_t htab;
821 struct elf_gnu_ifunc_cache *entry_p;
822 void **slot;
823
824 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
825 if (htab == NULL)
826 continue;
827
828 entry_p = alloca (sizeof (*entry_p) + strlen (name));
829 strcpy (entry_p->name, name);
830
831 slot = htab_find_slot (htab, entry_p, NO_INSERT);
832 if (slot == NULL)
833 continue;
834 entry_p = *slot;
835 gdb_assert (entry_p != NULL);
836
837 if (addr_p)
838 *addr_p = entry_p->addr;
839 return 1;
840 }
841
842 return 0;
843}
844
845/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
846 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
847 is not NULL) and the function returns 1. It returns 0 otherwise.
848
849 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
850 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
851 prevent cache entries duplicates. */
852
853static int
854elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
855{
856 char *name_got_plt;
857 struct objfile *objfile;
858 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
859
860 name_got_plt = alloca (strlen (name) + got_suffix_len + 1);
861 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
862
863 ALL_PSPACE_OBJFILES (current_program_space, objfile)
864 {
865 bfd *obfd = objfile->obfd;
866 struct gdbarch *gdbarch = objfile->gdbarch;
867 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
868 size_t ptr_size = TYPE_LENGTH (ptr_type);
869 CORE_ADDR pointer_address, addr;
870 asection *plt;
871 gdb_byte *buf = alloca (ptr_size);
872 struct minimal_symbol *msym;
873
874 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
875 if (msym == NULL)
876 continue;
877 if (MSYMBOL_TYPE (msym) != mst_slot_got_plt)
878 continue;
879 pointer_address = SYMBOL_VALUE_ADDRESS (msym);
880
881 plt = bfd_get_section_by_name (obfd, ".plt");
882 if (plt == NULL)
883 continue;
884
885 if (MSYMBOL_SIZE (msym) != ptr_size)
886 continue;
887 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
888 continue;
889 addr = extract_typed_address (buf, ptr_type);
890 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
891 &current_target);
892
893 if (addr_p)
894 *addr_p = addr;
895 if (elf_gnu_ifunc_record_cache (name, addr))
896 return 1;
897 }
898
899 return 0;
900}
901
902/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
903 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
904 is not NULL) and the function returns 1. It returns 0 otherwise.
905
906 Both the elf_objfile_gnu_ifunc_cache_data hash table and
907 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
908
909static int
910elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
911{
912 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
913 return 1;
dea91a5c 914
07be84bf
JK
915 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
916 return 1;
917
918 return 0;
919}
920
921/* Call STT_GNU_IFUNC - a function returning addresss of a real function to
922 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
923 is the entry point of the resolved STT_GNU_IFUNC target function to call.
924 */
925
926static CORE_ADDR
927elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
928{
2c02bd72 929 const char *name_at_pc;
07be84bf
JK
930 CORE_ADDR start_at_pc, address;
931 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
932 struct value *function, *address_val;
933
934 /* Try first any non-intrusive methods without an inferior call. */
935
936 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
937 && start_at_pc == pc)
938 {
939 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
940 return address;
941 }
942 else
943 name_at_pc = NULL;
944
945 function = allocate_value (func_func_type);
946 set_value_address (function, pc);
947
948 /* STT_GNU_IFUNC resolver functions have no parameters. FUNCTION is the
949 function entry address. ADDRESS may be a function descriptor. */
950
951 address_val = call_function_by_hand (function, 0, NULL);
952 address = value_as_address (address_val);
953 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
954 &current_target);
955
956 if (name_at_pc)
957 elf_gnu_ifunc_record_cache (name_at_pc, address);
958
959 return address;
960}
961
0e30163f
JK
962/* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
963
964static void
965elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
966{
967 struct breakpoint *b_return;
968 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
969 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
970 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
971 int thread_id = pid_to_thread_id (inferior_ptid);
972
973 gdb_assert (b->type == bp_gnu_ifunc_resolver);
974
975 for (b_return = b->related_breakpoint; b_return != b;
976 b_return = b_return->related_breakpoint)
977 {
978 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
979 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
980 gdb_assert (frame_id_p (b_return->frame_id));
981
982 if (b_return->thread == thread_id
983 && b_return->loc->requested_address == prev_pc
984 && frame_id_eq (b_return->frame_id, prev_frame_id))
985 break;
986 }
987
988 if (b_return == b)
989 {
990 struct symtab_and_line sal;
991
992 /* No need to call find_pc_line for symbols resolving as this is only
993 a helper breakpointer never shown to the user. */
994
995 init_sal (&sal);
996 sal.pspace = current_inferior ()->pspace;
997 sal.pc = prev_pc;
998 sal.section = find_pc_overlay (sal.pc);
999 sal.explicit_pc = 1;
1000 b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
1001 prev_frame_id,
1002 bp_gnu_ifunc_resolver_return);
1003
c70a6932
JK
1004 /* set_momentary_breakpoint invalidates PREV_FRAME. */
1005 prev_frame = NULL;
1006
0e30163f
JK
1007 /* Add new b_return to the ring list b->related_breakpoint. */
1008 gdb_assert (b_return->related_breakpoint == b_return);
1009 b_return->related_breakpoint = b->related_breakpoint;
1010 b->related_breakpoint = b_return;
1011 }
1012}
1013
1014/* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
1015
1016static void
1017elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
1018{
1019 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
1020 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
1021 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
1022 struct regcache *regcache = get_thread_regcache (inferior_ptid);
1023 struct value *value;
1024 CORE_ADDR resolved_address, resolved_pc;
1025 struct symtab_and_line sal;
f1310107 1026 struct symtabs_and_lines sals, sals_end;
0e30163f
JK
1027
1028 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
1029
1030 value = allocate_value (value_type);
1031 gdbarch_return_value (gdbarch, func_func_type, value_type, regcache,
1032 value_contents_raw (value), NULL);
1033 resolved_address = value_as_address (value);
1034 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1035 resolved_address,
1036 &current_target);
1037
1038 while (b->related_breakpoint != b)
1039 {
1040 struct breakpoint *b_next = b->related_breakpoint;
1041
1042 switch (b->type)
1043 {
1044 case bp_gnu_ifunc_resolver:
1045 break;
1046 case bp_gnu_ifunc_resolver_return:
1047 delete_breakpoint (b);
1048 break;
1049 default:
1050 internal_error (__FILE__, __LINE__,
1051 _("handle_inferior_event: Invalid "
1052 "gnu-indirect-function breakpoint type %d"),
1053 (int) b->type);
1054 }
1055 b = b_next;
1056 }
1057 gdb_assert (b->type == bp_gnu_ifunc_resolver);
1058
f8eba3c6 1059 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
0e30163f
JK
1060 elf_gnu_ifunc_record_cache (b->addr_string, resolved_pc);
1061
1062 sal = find_pc_line (resolved_pc, 0);
1063 sals.nelts = 1;
1064 sals.sals = &sal;
f1310107 1065 sals_end.nelts = 0;
0e30163f
JK
1066
1067 b->type = bp_breakpoint;
f1310107 1068 update_breakpoint_locations (b, sals, sals_end);
0e30163f
JK
1069}
1070
874f5765
TG
1071struct build_id
1072 {
1073 size_t size;
1074 gdb_byte data[1];
1075 };
1076
1077/* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1078
1079static struct build_id *
1080build_id_bfd_get (bfd *abfd)
1081{
1082 struct build_id *retval;
1083
1084 if (!bfd_check_format (abfd, bfd_object)
1085 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1086 || elf_tdata (abfd)->build_id == NULL)
1087 return NULL;
1088
1089 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1090 retval->size = elf_tdata (abfd)->build_id_size;
1091 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1092
1093 return retval;
1094}
1095
1096/* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1097
1098static int
1099build_id_verify (const char *filename, struct build_id *check)
1100{
1101 bfd *abfd;
1102 struct build_id *found = NULL;
1103 int retval = 0;
1104
1105 /* We expect to be silent on the non-existing files. */
1106 abfd = bfd_open_maybe_remote (filename);
1107 if (abfd == NULL)
1108 return 0;
1109
1110 found = build_id_bfd_get (abfd);
1111
1112 if (found == NULL)
1113 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1114 else if (found->size != check->size
1115 || memcmp (found->data, check->data, found->size) != 0)
3e43a32a
MS
1116 warning (_("File \"%s\" has a different build-id, file skipped"),
1117 filename);
874f5765
TG
1118 else
1119 retval = 1;
1120
516ba659 1121 gdb_bfd_close_or_warn (abfd);
874f5765
TG
1122
1123 xfree (found);
1124
1125 return retval;
1126}
1127
1128static char *
1129build_id_to_debug_filename (struct build_id *build_id)
1130{
1131 char *link, *debugdir, *retval = NULL;
e4ab2fad
JK
1132 VEC (char_ptr) *debugdir_vec;
1133 struct cleanup *back_to;
1134 int ix;
874f5765
TG
1135
1136 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1137 link = alloca (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1138 + 2 * build_id->size + (sizeof ".debug" - 1) + 1);
1139
1140 /* Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1141 cause "/.build-id/..." lookups. */
1142
e4ab2fad
JK
1143 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1144 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1145
1146 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
874f5765 1147 {
e4ab2fad 1148 size_t debugdir_len = strlen (debugdir);
874f5765
TG
1149 gdb_byte *data = build_id->data;
1150 size_t size = build_id->size;
e4ab2fad 1151 char *s;
874f5765 1152
e4ab2fad
JK
1153 memcpy (link, debugdir, debugdir_len);
1154 s = &link[debugdir_len];
874f5765
TG
1155 s += sprintf (s, "/.build-id/");
1156 if (size > 0)
1157 {
1158 size--;
1159 s += sprintf (s, "%02x", (unsigned) *data++);
1160 }
1161 if (size > 0)
1162 *s++ = '/';
1163 while (size-- > 0)
1164 s += sprintf (s, "%02x", (unsigned) *data++);
1165 strcpy (s, ".debug");
1166
1167 /* lrealpath() is expensive even for the usually non-existent files. */
1168 if (access (link, F_OK) == 0)
1169 retval = lrealpath (link);
1170
1171 if (retval != NULL && !build_id_verify (retval, build_id))
1172 {
1173 xfree (retval);
1174 retval = NULL;
1175 }
1176
1177 if (retval != NULL)
1178 break;
874f5765 1179 }
874f5765 1180
e4ab2fad 1181 do_cleanups (back_to);
874f5765
TG
1182 return retval;
1183}
1184
1185static char *
1186find_separate_debug_file_by_buildid (struct objfile *objfile)
1187{
874f5765
TG
1188 struct build_id *build_id;
1189
1190 build_id = build_id_bfd_get (objfile->obfd);
1191 if (build_id != NULL)
1192 {
1193 char *build_id_name;
1194
1195 build_id_name = build_id_to_debug_filename (build_id);
1196 xfree (build_id);
1197 /* Prevent looping on a stripped .debug file. */
0ba1096a
KT
1198 if (build_id_name != NULL
1199 && filename_cmp (build_id_name, objfile->name) == 0)
874f5765
TG
1200 {
1201 warning (_("\"%s\": separate debug info file has no debug info"),
1202 build_id_name);
1203 xfree (build_id_name);
1204 }
1205 else if (build_id_name != NULL)
1206 return build_id_name;
1207 }
1208 return NULL;
1209}
1210
c906108c 1211/* Scan and build partial symbols for a symbol file.
dea91a5c 1212 We have been initialized by a call to elf_symfile_init, which
c906108c
SS
1213 currently does nothing.
1214
1215 SECTION_OFFSETS is a set of offsets to apply to relocate the symbols
1216 in each section. We simplify it down to a single offset for all
1217 symbols. FIXME.
1218
c906108c
SS
1219 This function only does the minimum work necessary for letting the
1220 user "name" things symbolically; it does not read the entire symtab.
1221 Instead, it reads the external and static symbols and puts them in partial
1222 symbol tables. When more extensive information is requested of a
1223 file, the corresponding partial symbol table is mutated into a full
1224 fledged symbol table by going back and reading the symbols
1225 for real.
1226
1227 We look for sections with specific names, to tell us what debug
1228 format to look for: FIXME!!!
1229
c906108c
SS
1230 elfstab_build_psymtabs() handles STABS symbols;
1231 mdebug_build_psymtabs() handles ECOFF debugging information.
1232
1233 Note that ELF files have a "minimal" symbol table, which looks a lot
1234 like a COFF symbol table, but has only the minimal information necessary
1235 for linking. We process this also, and use the information to
1236 build gdb's minimal symbol table. This gives us some minimal debugging
1237 capability even for files compiled without -g. */
1238
1239static void
f4352531 1240elf_symfile_read (struct objfile *objfile, int symfile_flags)
c906108c 1241{
63524580 1242 bfd *synth_abfd, *abfd = objfile->obfd;
c906108c
SS
1243 struct elfinfo ei;
1244 struct cleanup *back_to;
62553543
EZ
1245 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1246 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1247 asymbol *synthsyms;
c906108c
SS
1248
1249 init_minimal_symbol_collection ();
56e290f4 1250 back_to = make_cleanup_discard_minimal_symbols ();
c906108c
SS
1251
1252 memset ((char *) &ei, 0, sizeof (ei));
1253
0963b4bd 1254 /* Allocate struct to keep track of the symfile. */
0a6ddd08 1255 objfile->deprecated_sym_stab_info = (struct dbx_symfile_info *)
7936743b 1256 xmalloc (sizeof (struct dbx_symfile_info));
3e43a32a
MS
1257 memset ((char *) objfile->deprecated_sym_stab_info,
1258 0, sizeof (struct dbx_symfile_info));
12b9c64f 1259 make_cleanup (free_elfinfo, (void *) objfile);
c906108c 1260
3e43a32a
MS
1261 /* Process the normal ELF symbol table first. This may write some
1262 chain of info into the dbx_symfile_info in
1263 objfile->deprecated_sym_stab_info, which can later be used by
1264 elfstab_offset_sections. */
c906108c 1265
62553543
EZ
1266 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1267 if (storage_needed < 0)
3e43a32a
MS
1268 error (_("Can't read symbols from %s: %s"),
1269 bfd_get_filename (objfile->obfd),
62553543
EZ
1270 bfd_errmsg (bfd_get_error ()));
1271
1272 if (storage_needed > 0)
1273 {
1274 symbol_table = (asymbol **) xmalloc (storage_needed);
1275 make_cleanup (xfree, symbol_table);
1276 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1277
1278 if (symcount < 0)
3e43a32a
MS
1279 error (_("Can't read symbols from %s: %s"),
1280 bfd_get_filename (objfile->obfd),
62553543
EZ
1281 bfd_errmsg (bfd_get_error ()));
1282
04a679b8 1283 elf_symtab_read (objfile, ST_REGULAR, symcount, symbol_table, 0);
62553543 1284 }
c906108c
SS
1285
1286 /* Add the dynamic symbols. */
1287
62553543
EZ
1288 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1289
1290 if (storage_needed > 0)
1291 {
3f1eff0a
JK
1292 /* Memory gets permanently referenced from ABFD after
1293 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1294 It happens only in the case when elf_slurp_reloc_table sees
1295 asection->relocation NULL. Determining which section is asection is
1296 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1297 implementation detail, though. */
1298
1299 dyn_symbol_table = bfd_alloc (abfd, storage_needed);
62553543
EZ
1300 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1301 dyn_symbol_table);
1302
1303 if (dynsymcount < 0)
3e43a32a
MS
1304 error (_("Can't read symbols from %s: %s"),
1305 bfd_get_filename (objfile->obfd),
62553543
EZ
1306 bfd_errmsg (bfd_get_error ()));
1307
04a679b8 1308 elf_symtab_read (objfile, ST_DYNAMIC, dynsymcount, dyn_symbol_table, 0);
07be84bf
JK
1309
1310 elf_rel_plt_read (objfile, dyn_symbol_table);
62553543
EZ
1311 }
1312
63524580
JK
1313 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1314 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1315
1316 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1317 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1318 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1319 read the code address from .opd while it reads the .symtab section from
1320 a separate debug info file as the .opd section is SHT_NOBITS there.
1321
1322 With SYNTH_ABFD the .opd section will be read from the original
1323 backlinked binary where it is valid. */
1324
1325 if (objfile->separate_debug_objfile_backlink)
1326 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1327 else
1328 synth_abfd = abfd;
1329
62553543
EZ
1330 /* Add synthetic symbols - for instance, names for any PLT entries. */
1331
63524580 1332 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
62553543
EZ
1333 dynsymcount, dyn_symbol_table,
1334 &synthsyms);
1335 if (synthcount > 0)
1336 {
1337 asymbol **synth_symbol_table;
1338 long i;
1339
1340 make_cleanup (xfree, synthsyms);
1341 synth_symbol_table = xmalloc (sizeof (asymbol *) * synthcount);
1342 for (i = 0; i < synthcount; i++)
9f20e3da 1343 synth_symbol_table[i] = synthsyms + i;
62553543 1344 make_cleanup (xfree, synth_symbol_table);
3e43a32a
MS
1345 elf_symtab_read (objfile, ST_SYNTHETIC, synthcount,
1346 synth_symbol_table, 1);
62553543 1347 }
c906108c 1348
7134143f
DJ
1349 /* Install any minimal symbols that have been collected as the current
1350 minimal symbols for this objfile. The debug readers below this point
1351 should not generate new minimal symbols; if they do it's their
1352 responsibility to install them. "mdebug" appears to be the only one
1353 which will do this. */
1354
1355 install_minimal_symbols (objfile);
1356 do_cleanups (back_to);
1357
c906108c 1358 /* Now process debugging information, which is contained in
0963b4bd 1359 special ELF sections. */
c906108c 1360
0963b4bd 1361 /* We first have to find them... */
12b9c64f 1362 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
c906108c
SS
1363
1364 /* ELF debugging information is inserted into the psymtab in the
1365 order of least informative first - most informative last. Since
1366 the psymtab table is searched `most recent insertion first' this
1367 increases the probability that more detailed debug information
1368 for a section is found.
1369
1370 For instance, an object file might contain both .mdebug (XCOFF)
1371 and .debug_info (DWARF2) sections then .mdebug is inserted first
1372 (searched last) and DWARF2 is inserted last (searched first). If
1373 we don't do this then the XCOFF info is found first - for code in
0963b4bd 1374 an included file XCOFF info is useless. */
c906108c
SS
1375
1376 if (ei.mdebugsect)
1377 {
1378 const struct ecoff_debug_swap *swap;
1379
1380 /* .mdebug section, presumably holding ECOFF debugging
c5aa993b 1381 information. */
c906108c
SS
1382 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1383 if (swap)
d4f3574e 1384 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
c906108c
SS
1385 }
1386 if (ei.stabsect)
1387 {
1388 asection *str_sect;
1389
1390 /* Stab sections have an associated string table that looks like
c5aa993b 1391 a separate section. */
c906108c
SS
1392 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1393
1394 /* FIXME should probably warn about a stab section without a stabstr. */
1395 if (str_sect)
1396 elfstab_build_psymtabs (objfile,
086df311 1397 ei.stabsect,
c906108c
SS
1398 str_sect->filepos,
1399 bfd_section_size (abfd, str_sect));
1400 }
9291a0cd 1401
251d32d9 1402 if (dwarf2_has_info (objfile, NULL))
b11896a5 1403 {
3e03848b
JK
1404 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug
1405 information present in OBJFILE. If there is such debug info present
1406 never use .gdb_index. */
1407
1408 if (!objfile_has_partial_symbols (objfile)
1409 && dwarf2_initialize_objfile (objfile))
b11896a5
TT
1410 objfile->sf = &elf_sym_fns_gdb_index;
1411 else
1412 {
1413 /* It is ok to do this even if the stabs reader made some
1414 partial symbols, because OBJF_PSYMTABS_READ has not been
1415 set, and so our lazy reader function will still be called
1416 when needed. */
1417 objfile->sf = &elf_sym_fns_lazy_psyms;
1418 }
1419 }
3e43a32a
MS
1420 /* If the file has its own symbol tables it has no separate debug
1421 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1422 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1423 `.note.gnu.build-id'. */
b11896a5 1424 else if (!objfile_has_partial_symbols (objfile))
9cce227f
TG
1425 {
1426 char *debugfile;
1427
1428 debugfile = find_separate_debug_file_by_buildid (objfile);
1429
1430 if (debugfile == NULL)
1431 debugfile = find_separate_debug_file_by_debuglink (objfile);
1432
1433 if (debugfile)
1434 {
1435 bfd *abfd = symfile_bfd_open (debugfile);
d7f9d729 1436
9cce227f
TG
1437 symbol_file_add_separate (abfd, symfile_flags, objfile);
1438 xfree (debugfile);
1439 }
1440 }
c906108c
SS
1441}
1442
b11896a5
TT
1443/* Callback to lazily read psymtabs. */
1444
1445static void
1446read_psyms (struct objfile *objfile)
1447{
251d32d9 1448 if (dwarf2_has_info (objfile, NULL))
b11896a5
TT
1449 dwarf2_build_psymtabs (objfile);
1450}
1451
0a6ddd08
AC
1452/* This cleans up the objfile's deprecated_sym_stab_info pointer, and
1453 the chain of stab_section_info's, that might be dangling from
1454 it. */
c906108c
SS
1455
1456static void
12b9c64f 1457free_elfinfo (void *objp)
c906108c 1458{
c5aa993b 1459 struct objfile *objfile = (struct objfile *) objp;
0a6ddd08 1460 struct dbx_symfile_info *dbxinfo = objfile->deprecated_sym_stab_info;
c906108c
SS
1461 struct stab_section_info *ssi, *nssi;
1462
1463 ssi = dbxinfo->stab_section_info;
1464 while (ssi)
1465 {
1466 nssi = ssi->next;
2dc74dc1 1467 xfree (ssi);
c906108c
SS
1468 ssi = nssi;
1469 }
1470
1471 dbxinfo->stab_section_info = 0; /* Just say No mo info about this. */
1472}
1473
1474
1475/* Initialize anything that needs initializing when a completely new symbol
1476 file is specified (not just adding some symbols from another file, e.g. a
1477 shared library).
1478
3e43a32a
MS
1479 We reinitialize buildsym, since we may be reading stabs from an ELF
1480 file. */
c906108c
SS
1481
1482static void
fba45db2 1483elf_new_init (struct objfile *ignore)
c906108c
SS
1484{
1485 stabsread_new_init ();
1486 buildsym_new_init ();
1487}
1488
1489/* Perform any local cleanups required when we are done with a particular
1490 objfile. I.E, we are in the process of discarding all symbol information
1491 for an objfile, freeing up all memory held for it, and unlinking the
0963b4bd 1492 objfile struct from the global list of known objfiles. */
c906108c
SS
1493
1494static void
fba45db2 1495elf_symfile_finish (struct objfile *objfile)
c906108c 1496{
0a6ddd08 1497 if (objfile->deprecated_sym_stab_info != NULL)
c906108c 1498 {
0a6ddd08 1499 xfree (objfile->deprecated_sym_stab_info);
c906108c 1500 }
fe3e1990
DJ
1501
1502 dwarf2_free_objfile (objfile);
c906108c
SS
1503}
1504
1505/* ELF specific initialization routine for reading symbols.
1506
1507 It is passed a pointer to a struct sym_fns which contains, among other
1508 things, the BFD for the file whose symbols are being read, and a slot for
1509 a pointer to "private data" which we can fill with goodies.
1510
1511 For now at least, we have nothing in particular to do, so this function is
0963b4bd 1512 just a stub. */
c906108c
SS
1513
1514static void
fba45db2 1515elf_symfile_init (struct objfile *objfile)
c906108c
SS
1516{
1517 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1518 find this causes a significant slowdown in gdb then we could
1519 set it in the debug symbol readers only when necessary. */
1520 objfile->flags |= OBJF_REORDERED;
1521}
1522
1523/* When handling an ELF file that contains Sun STABS debug info,
1524 some of the debug info is relative to the particular chunk of the
1525 section that was generated in its individual .o file. E.g.
1526 offsets to static variables are relative to the start of the data
1527 segment *for that module before linking*. This information is
1528 painfully squirreled away in the ELF symbol table as local symbols
1529 with wierd names. Go get 'em when needed. */
1530
1531void
fba45db2 1532elfstab_offset_sections (struct objfile *objfile, struct partial_symtab *pst)
c906108c 1533{
72b9f47f 1534 const char *filename = pst->filename;
0a6ddd08 1535 struct dbx_symfile_info *dbx = objfile->deprecated_sym_stab_info;
c906108c
SS
1536 struct stab_section_info *maybe = dbx->stab_section_info;
1537 struct stab_section_info *questionable = 0;
1538 int i;
c906108c
SS
1539
1540 /* The ELF symbol info doesn't include path names, so strip the path
1541 (if any) from the psymtab filename. */
0ba1096a 1542 filename = lbasename (filename);
c906108c
SS
1543
1544 /* FIXME: This linear search could speed up significantly
1545 if it was chained in the right order to match how we search it,
0963b4bd 1546 and if we unchained when we found a match. */
c906108c
SS
1547 for (; maybe; maybe = maybe->next)
1548 {
1549 if (filename[0] == maybe->filename[0]
0ba1096a 1550 && filename_cmp (filename, maybe->filename) == 0)
c906108c
SS
1551 {
1552 /* We found a match. But there might be several source files
1553 (from different directories) with the same name. */
1554 if (0 == maybe->found)
1555 break;
c5aa993b 1556 questionable = maybe; /* Might use it later. */
c906108c
SS
1557 }
1558 }
1559
1560 if (maybe == 0 && questionable != 0)
1561 {
23136709 1562 complaint (&symfile_complaints,
3e43a32a
MS
1563 _("elf/stab section information questionable for %s"),
1564 filename);
c906108c
SS
1565 maybe = questionable;
1566 }
1567
1568 if (maybe)
1569 {
1570 /* Found it! Allocate a new psymtab struct, and fill it in. */
1571 maybe->found++;
1572 pst->section_offsets = (struct section_offsets *)
dea91a5c 1573 obstack_alloc (&objfile->objfile_obstack,
a39a16c4
MM
1574 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
1575 for (i = 0; i < maybe->num_sections; i++)
a4c8257b 1576 (pst->section_offsets)->offsets[i] = maybe->sections[i];
c906108c
SS
1577 return;
1578 }
1579
1580 /* We were unable to find any offsets for this file. Complain. */
c5aa993b 1581 if (dbx->stab_section_info) /* If there *is* any info, */
23136709 1582 complaint (&symfile_complaints,
e2e0b3e5 1583 _("elf/stab section information missing for %s"), filename);
c906108c 1584}
55aa24fb
SDJ
1585
1586/* Implementation of `sym_get_probes', as documented in symfile.h. */
1587
1588static VEC (probe_p) *
1589elf_get_probes (struct objfile *objfile)
1590{
1591 VEC (probe_p) *probes_per_objfile;
1592
1593 /* Have we parsed this objfile's probes already? */
1594 probes_per_objfile = objfile_data (objfile, probe_key);
1595
1596 if (!probes_per_objfile)
1597 {
1598 int ix;
1599 const struct probe_ops *probe_ops;
1600
1601 /* Here we try to gather information about all types of probes from the
1602 objfile. */
1603 for (ix = 0; VEC_iterate (probe_ops_cp, all_probe_ops, ix, probe_ops);
1604 ix++)
1605 probe_ops->get_probes (&probes_per_objfile, objfile);
1606
1607 if (probes_per_objfile == NULL)
1608 {
1609 VEC_reserve (probe_p, probes_per_objfile, 1);
1610 gdb_assert (probes_per_objfile != NULL);
1611 }
1612
1613 set_objfile_data (objfile, probe_key, probes_per_objfile);
1614 }
1615
1616 return probes_per_objfile;
1617}
1618
1619/* Implementation of `sym_get_probe_argument_count', as documented in
1620 symfile.h. */
1621
1622static unsigned
1623elf_get_probe_argument_count (struct objfile *objfile,
1624 struct probe *probe)
1625{
1626 return probe->pops->get_probe_argument_count (probe, objfile);
1627}
1628
1629/* Implementation of `sym_evaluate_probe_argument', as documented in
1630 symfile.h. */
1631
1632static struct value *
1633elf_evaluate_probe_argument (struct objfile *objfile,
1634 struct probe *probe,
1635 unsigned n)
1636{
1637 return probe->pops->evaluate_probe_argument (probe, objfile, n);
1638}
1639
1640/* Implementation of `sym_compile_to_ax', as documented in symfile.h. */
1641
1642static void
1643elf_compile_to_ax (struct objfile *objfile,
1644 struct probe *probe,
1645 struct agent_expr *expr,
1646 struct axs_value *value,
1647 unsigned n)
1648{
1649 probe->pops->compile_to_ax (probe, objfile, expr, value, n);
1650}
1651
1652/* Implementation of `sym_relocate_probe', as documented in symfile.h. */
1653
1654static void
1655elf_symfile_relocate_probe (struct objfile *objfile,
1656 struct section_offsets *new_offsets,
1657 struct section_offsets *delta)
1658{
1659 int ix;
1660 VEC (probe_p) *probes = objfile_data (objfile, probe_key);
1661 struct probe *probe;
1662
1663 for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1664 probe->pops->relocate (probe, ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
1665}
1666
1667/* Helper function used to free the space allocated for storing SystemTap
1668 probe information. */
1669
1670static void
1671probe_key_free (struct objfile *objfile, void *d)
1672{
1673 int ix;
1674 VEC (probe_p) *probes = d;
1675 struct probe *probe;
1676
1677 for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1678 probe->pops->destroy (probe);
1679
1680 VEC_free (probe_p, probes);
1681}
1682
c906108c 1683\f
55aa24fb
SDJ
1684
1685/* Implementation `sym_probe_fns', as documented in symfile.h. */
1686
1687static const struct sym_probe_fns elf_probe_fns =
1688{
1689 elf_get_probes, /* sym_get_probes */
1690 elf_get_probe_argument_count, /* sym_get_probe_argument_count */
1691 elf_evaluate_probe_argument, /* sym_evaluate_probe_argument */
1692 elf_compile_to_ax, /* sym_compile_to_ax */
1693 elf_symfile_relocate_probe, /* sym_relocate_probe */
1694};
1695
c906108c
SS
1696/* Register that we are able to handle ELF object file formats. */
1697
00b5771c 1698static const struct sym_fns elf_sym_fns =
c906108c
SS
1699{
1700 bfd_target_elf_flavour,
3e43a32a
MS
1701 elf_new_init, /* init anything gbl to entire symtab */
1702 elf_symfile_init, /* read initial info, setup for sym_read() */
1703 elf_symfile_read, /* read a symbol file into symtab */
b11896a5
TT
1704 NULL, /* sym_read_psymbols */
1705 elf_symfile_finish, /* finished with file, cleanup */
1706 default_symfile_offsets, /* Translate ext. to int. relocation */
1707 elf_symfile_segments, /* Get segment information from a file. */
1708 NULL,
1709 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1710 &elf_probe_fns, /* sym_probe_fns */
b11896a5
TT
1711 &psym_functions
1712};
1713
1714/* The same as elf_sym_fns, but not registered and lazily reads
1715 psymbols. */
1716
1717static const struct sym_fns elf_sym_fns_lazy_psyms =
1718{
1719 bfd_target_elf_flavour,
1720 elf_new_init, /* init anything gbl to entire symtab */
1721 elf_symfile_init, /* read initial info, setup for sym_read() */
1722 elf_symfile_read, /* read a symbol file into symtab */
1723 read_psyms, /* sym_read_psymbols */
3e43a32a
MS
1724 elf_symfile_finish, /* finished with file, cleanup */
1725 default_symfile_offsets, /* Translate ext. to int. relocation */
1726 elf_symfile_segments, /* Get segment information from a file. */
1727 NULL,
1728 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1729 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1730 &psym_functions
c906108c
SS
1731};
1732
9291a0cd
TT
1733/* The same as elf_sym_fns, but not registered and uses the
1734 DWARF-specific GNU index rather than psymtab. */
00b5771c 1735static const struct sym_fns elf_sym_fns_gdb_index =
9291a0cd
TT
1736{
1737 bfd_target_elf_flavour,
3e43a32a
MS
1738 elf_new_init, /* init anything gbl to entire symab */
1739 elf_symfile_init, /* read initial info, setup for sym_red() */
1740 elf_symfile_read, /* read a symbol file into symtab */
b11896a5 1741 NULL, /* sym_read_psymbols */
3e43a32a
MS
1742 elf_symfile_finish, /* finished with file, cleanup */
1743 default_symfile_offsets, /* Translate ext. to int. relocatin */
1744 elf_symfile_segments, /* Get segment information from a file. */
1745 NULL,
1746 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1747 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1748 &dwarf2_gdb_index_functions
9291a0cd
TT
1749};
1750
07be84bf
JK
1751/* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1752
1753static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1754{
1755 elf_gnu_ifunc_resolve_addr,
1756 elf_gnu_ifunc_resolve_name,
0e30163f
JK
1757 elf_gnu_ifunc_resolver_stop,
1758 elf_gnu_ifunc_resolver_return_stop
07be84bf
JK
1759};
1760
c906108c 1761void
fba45db2 1762_initialize_elfread (void)
c906108c 1763{
55aa24fb 1764 probe_key = register_objfile_data_with_cleanup (NULL, probe_key_free);
c906108c 1765 add_symtab_fns (&elf_sym_fns);
07be84bf
JK
1766
1767 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1768 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
c906108c 1769}
This page took 0.955263 seconds and 4 git commands to generate.