Convert generic probe interface to C++ (and perform some cleanups)
[deliverable/binutils-gdb.git] / gdb / elfread.c
CommitLineData
c906108c 1/* Read ELF (Executable and Linking Format) object files for GDB.
1bac305b 2
61baf725 3 Copyright (C) 1991-2017 Free Software Foundation, Inc.
1bac305b 4
c906108c
SS
5 Written by Fred Fish at Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "bfd.h"
c906108c 24#include "elf-bfd.h"
31d99776
DJ
25#include "elf/common.h"
26#include "elf/internal.h"
c906108c
SS
27#include "elf/mips.h"
28#include "symtab.h"
29#include "symfile.h"
30#include "objfiles.h"
31#include "buildsym.h"
32#include "stabsread.h"
33#include "gdb-stabs.h"
34#include "complaints.h"
35#include "demangle.h"
ccefe4c4 36#include "psympriv.h"
0ba1096a 37#include "filenames.h"
55aa24fb
SDJ
38#include "probe.h"
39#include "arch-utils.h"
07be84bf
JK
40#include "gdbtypes.h"
41#include "value.h"
42#include "infcall.h"
0e30163f
JK
43#include "gdbthread.h"
44#include "regcache.h"
0af1e9a5 45#include "bcache.h"
cbb099e8 46#include "gdb_bfd.h"
dc294be5 47#include "build-id.h"
f00aae0f 48#include "location.h"
e1b2624a 49#include "auxv.h"
c906108c 50
b11896a5 51/* Forward declarations. */
e36122e9
TT
52extern const struct sym_fns elf_sym_fns_gdb_index;
53extern const struct sym_fns elf_sym_fns_lazy_psyms;
9291a0cd 54
c906108c 55/* The struct elfinfo is available only during ELF symbol table and
6426a772 56 psymtab reading. It is destroyed at the completion of psymtab-reading.
c906108c
SS
57 It's local to elf_symfile_read. */
58
c5aa993b
JM
59struct elfinfo
60 {
c5aa993b 61 asection *stabsect; /* Section pointer for .stab section */
c5aa993b
JM
62 asection *mdebugsect; /* Section pointer for .mdebug section */
63 };
c906108c 64
5d9cf8a4 65/* Per-BFD data for probe info. */
55aa24fb 66
5d9cf8a4 67static const struct bfd_data *probe_key = NULL;
55aa24fb 68
07be84bf
JK
69/* Minimal symbols located at the GOT entries for .plt - that is the real
70 pointer where the given entry will jump to. It gets updated by the real
71 function address during lazy ld.so resolving in the inferior. These
72 minimal symbols are indexed for <tab>-completion. */
73
74#define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
75
31d99776
DJ
76/* Locate the segments in ABFD. */
77
78static struct symfile_segment_data *
79elf_symfile_segments (bfd *abfd)
80{
81 Elf_Internal_Phdr *phdrs, **segments;
82 long phdrs_size;
83 int num_phdrs, num_segments, num_sections, i;
84 asection *sect;
85 struct symfile_segment_data *data;
86
87 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
88 if (phdrs_size == -1)
89 return NULL;
90
224c3ddb 91 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
31d99776
DJ
92 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
93 if (num_phdrs == -1)
94 return NULL;
95
96 num_segments = 0;
8d749320 97 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
31d99776
DJ
98 for (i = 0; i < num_phdrs; i++)
99 if (phdrs[i].p_type == PT_LOAD)
100 segments[num_segments++] = &phdrs[i];
101
102 if (num_segments == 0)
103 return NULL;
104
41bf6aca 105 data = XCNEW (struct symfile_segment_data);
31d99776 106 data->num_segments = num_segments;
fc270c35
TT
107 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
108 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
31d99776
DJ
109
110 for (i = 0; i < num_segments; i++)
111 {
112 data->segment_bases[i] = segments[i]->p_vaddr;
113 data->segment_sizes[i] = segments[i]->p_memsz;
114 }
115
116 num_sections = bfd_count_sections (abfd);
fc270c35 117 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
118
119 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
120 {
121 int j;
122 CORE_ADDR vma;
123
124 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
125 continue;
126
127 vma = bfd_get_section_vma (abfd, sect);
128
129 for (j = 0; j < num_segments; j++)
130 if (segments[j]->p_memsz > 0
131 && vma >= segments[j]->p_vaddr
a366c65a 132 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
31d99776
DJ
133 {
134 data->segment_info[i] = j + 1;
135 break;
136 }
137
ad09a548
DJ
138 /* We should have found a segment for every non-empty section.
139 If we haven't, we will not relocate this section by any
140 offsets we apply to the segments. As an exception, do not
141 warn about SHT_NOBITS sections; in normal ELF execution
142 environments, SHT_NOBITS means zero-initialized and belongs
143 in a segment, but in no-OS environments some tools (e.g. ARM
144 RealView) use SHT_NOBITS for uninitialized data. Since it is
145 uninitialized, it doesn't need a program header. Such
146 binaries are not relocatable. */
147 if (bfd_get_section_size (sect) > 0 && j == num_segments
148 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
28ee876a 149 warning (_("Loadable section \"%s\" outside of ELF segments"),
31d99776
DJ
150 bfd_section_name (abfd, sect));
151 }
152
153 return data;
154}
155
c906108c
SS
156/* We are called once per section from elf_symfile_read. We
157 need to examine each section we are passed, check to see
158 if it is something we are interested in processing, and
159 if so, stash away some access information for the section.
160
161 For now we recognize the dwarf debug information sections and
162 line number sections from matching their section names. The
163 ELF definition is no real help here since it has no direct
164 knowledge of DWARF (by design, so any debugging format can be
165 used).
166
167 We also recognize the ".stab" sections used by the Sun compilers
168 released with Solaris 2.
169
170 FIXME: The section names should not be hardwired strings (what
171 should they be? I don't think most object file formats have enough
0963b4bd 172 section flags to specify what kind of debug section it is.
c906108c
SS
173 -kingdon). */
174
175static void
12b9c64f 176elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
c906108c 177{
52f0bd74 178 struct elfinfo *ei;
c906108c
SS
179
180 ei = (struct elfinfo *) eip;
7ce59000 181 if (strcmp (sectp->name, ".stab") == 0)
c906108c 182 {
c5aa993b 183 ei->stabsect = sectp;
c906108c 184 }
6314a349 185 else if (strcmp (sectp->name, ".mdebug") == 0)
c906108c 186 {
c5aa993b 187 ei->mdebugsect = sectp;
c906108c
SS
188 }
189}
190
c906108c 191static struct minimal_symbol *
8dddcb8f 192record_minimal_symbol (minimal_symbol_reader &reader,
ce6c454e 193 const char *name, int name_len, bool copy_name,
04a679b8 194 CORE_ADDR address,
f594e5e9
MC
195 enum minimal_symbol_type ms_type,
196 asection *bfd_section, struct objfile *objfile)
c906108c 197{
5e2b427d
UW
198 struct gdbarch *gdbarch = get_objfile_arch (objfile);
199
0875794a
JK
200 if (ms_type == mst_text || ms_type == mst_file_text
201 || ms_type == mst_text_gnu_ifunc)
85ddcc70 202 address = gdbarch_addr_bits_remove (gdbarch, address);
c906108c 203
8dddcb8f
TT
204 return reader.record_full (name, name_len, copy_name, address,
205 ms_type,
206 gdb_bfd_section_index (objfile->obfd,
207 bfd_section));
c906108c
SS
208}
209
7f86f058 210/* Read the symbol table of an ELF file.
c906108c 211
62553543 212 Given an objfile, a symbol table, and a flag indicating whether the
6f610d07
UW
213 symbol table contains regular, dynamic, or synthetic symbols, add all
214 the global function and data symbols to the minimal symbol table.
c906108c 215
c5aa993b
JM
216 In stabs-in-ELF, as implemented by Sun, there are some local symbols
217 defined in the ELF symbol table, which can be used to locate
218 the beginnings of sections from each ".o" file that was linked to
219 form the executable objfile. We gather any such info and record it
7f86f058 220 in data structures hung off the objfile's private data. */
c906108c 221
6f610d07
UW
222#define ST_REGULAR 0
223#define ST_DYNAMIC 1
224#define ST_SYNTHETIC 2
225
c906108c 226static void
8dddcb8f
TT
227elf_symtab_read (minimal_symbol_reader &reader,
228 struct objfile *objfile, int type,
04a679b8 229 long number_of_symbols, asymbol **symbol_table,
ce6c454e 230 bool copy_names)
c906108c 231{
5e2b427d 232 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 233 asymbol *sym;
c906108c 234 long i;
c906108c
SS
235 CORE_ADDR symaddr;
236 enum minimal_symbol_type ms_type;
18a94d75
DE
237 /* Name of the last file symbol. This is either a constant string or is
238 saved on the objfile's filename cache. */
0af1e9a5 239 const char *filesymname = "";
d2f4b8fe 240 struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
d4f3574e 241 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
3e29f34a
MR
242 int elf_make_msymbol_special_p
243 = gdbarch_elf_make_msymbol_special_p (gdbarch);
c5aa993b 244
0cc7b392 245 for (i = 0; i < number_of_symbols; i++)
c906108c 246 {
0cc7b392
DJ
247 sym = symbol_table[i];
248 if (sym->name == NULL || *sym->name == '\0')
c906108c 249 {
0cc7b392 250 /* Skip names that don't exist (shouldn't happen), or names
0963b4bd 251 that are null strings (may happen). */
0cc7b392
DJ
252 continue;
253 }
c906108c 254
74763737
DJ
255 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
256 symbols which do not correspond to objects in the symbol table,
257 but have some other target-specific meaning. */
258 if (bfd_is_target_special_symbol (objfile->obfd, sym))
60c5725c
DJ
259 {
260 if (gdbarch_record_special_symbol_p (gdbarch))
261 gdbarch_record_special_symbol (gdbarch, objfile, sym);
262 continue;
263 }
74763737 264
6f610d07 265 if (type == ST_DYNAMIC
45dfa85a 266 && sym->section == bfd_und_section_ptr
0cc7b392
DJ
267 && (sym->flags & BSF_FUNCTION))
268 {
269 struct minimal_symbol *msym;
02c75f72 270 bfd *abfd = objfile->obfd;
dea91a5c 271 asection *sect;
0cc7b392
DJ
272
273 /* Symbol is a reference to a function defined in
274 a shared library.
275 If its value is non zero then it is usually the address
276 of the corresponding entry in the procedure linkage table,
277 plus the desired section offset.
278 If its value is zero then the dynamic linker has to resolve
0963b4bd 279 the symbol. We are unable to find any meaningful address
0cc7b392
DJ
280 for this symbol in the executable file, so we skip it. */
281 symaddr = sym->value;
282 if (symaddr == 0)
283 continue;
02c75f72
UW
284
285 /* sym->section is the undefined section. However, we want to
286 record the section where the PLT stub resides with the
287 minimal symbol. Search the section table for the one that
288 covers the stub's address. */
289 for (sect = abfd->sections; sect != NULL; sect = sect->next)
290 {
291 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
292 continue;
293
294 if (symaddr >= bfd_get_section_vma (abfd, sect)
295 && symaddr < bfd_get_section_vma (abfd, sect)
296 + bfd_get_section_size (sect))
297 break;
298 }
299 if (!sect)
300 continue;
301
828cfa8d
JB
302 /* On ia64-hpux, we have discovered that the system linker
303 adds undefined symbols with nonzero addresses that cannot
304 be right (their address points inside the code of another
305 function in the .text section). This creates problems
306 when trying to determine which symbol corresponds to
307 a given address.
308
309 We try to detect those buggy symbols by checking which
310 section we think they correspond to. Normally, PLT symbols
311 are stored inside their own section, and the typical name
312 for that section is ".plt". So, if there is a ".plt"
313 section, and yet the section name of our symbol does not
314 start with ".plt", we ignore that symbol. */
61012eef 315 if (!startswith (sect->name, ".plt")
828cfa8d
JB
316 && bfd_get_section_by_name (abfd, ".plt") != NULL)
317 continue;
318
0cc7b392 319 msym = record_minimal_symbol
8dddcb8f 320 (reader, sym->name, strlen (sym->name), copy_names,
04a679b8 321 symaddr, mst_solib_trampoline, sect, objfile);
0cc7b392 322 if (msym != NULL)
9b807e7b
MR
323 {
324 msym->filename = filesymname;
3e29f34a
MR
325 if (elf_make_msymbol_special_p)
326 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
9b807e7b 327 }
0cc7b392
DJ
328 continue;
329 }
c906108c 330
0cc7b392
DJ
331 /* If it is a nonstripped executable, do not enter dynamic
332 symbols, as the dynamic symbol table is usually a subset
333 of the main symbol table. */
6f610d07 334 if (type == ST_DYNAMIC && !stripped)
0cc7b392
DJ
335 continue;
336 if (sym->flags & BSF_FILE)
337 {
9a3c8263
SM
338 filesymname
339 = (const char *) bcache (sym->name, strlen (sym->name) + 1,
340 objfile->per_bfd->filename_cache);
0cc7b392
DJ
341 }
342 else if (sym->flags & BSF_SECTION_SYM)
343 continue;
bb869963
SDJ
344 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
345 | BSF_GNU_UNIQUE))
0cc7b392
DJ
346 {
347 struct minimal_symbol *msym;
348
349 /* Select global/local/weak symbols. Note that bfd puts abs
350 symbols in their own section, so all symbols we are
0963b4bd
MS
351 interested in will have a section. */
352 /* Bfd symbols are section relative. */
0cc7b392 353 symaddr = sym->value + sym->section->vma;
0cc7b392
DJ
354 /* For non-absolute symbols, use the type of the section
355 they are relative to, to intuit text/data. Bfd provides
0963b4bd 356 no way of figuring this out for absolute symbols. */
45dfa85a 357 if (sym->section == bfd_abs_section_ptr)
c906108c 358 {
0cc7b392
DJ
359 /* This is a hack to get the minimal symbol type
360 right for Irix 5, which has absolute addresses
6f610d07
UW
361 with special section indices for dynamic symbols.
362
363 NOTE: uweigand-20071112: Synthetic symbols do not
364 have an ELF-private part, so do not touch those. */
dea91a5c 365 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
0cc7b392
DJ
366 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
367
368 switch (shndx)
c906108c 369 {
0cc7b392
DJ
370 case SHN_MIPS_TEXT:
371 ms_type = mst_text;
372 break;
373 case SHN_MIPS_DATA:
374 ms_type = mst_data;
375 break;
376 case SHN_MIPS_ACOMMON:
377 ms_type = mst_bss;
378 break;
379 default:
380 ms_type = mst_abs;
381 }
382
383 /* If it is an Irix dynamic symbol, skip section name
0963b4bd 384 symbols, relocate all others by section offset. */
0cc7b392
DJ
385 if (ms_type != mst_abs)
386 {
387 if (sym->name[0] == '.')
388 continue;
c906108c 389 }
0cc7b392
DJ
390 }
391 else if (sym->section->flags & SEC_CODE)
392 {
bb869963 393 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 394 {
0875794a
JK
395 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
396 ms_type = mst_text_gnu_ifunc;
397 else
398 ms_type = mst_text;
0cc7b392 399 }
90359a16
JK
400 /* The BSF_SYNTHETIC check is there to omit ppc64 function
401 descriptors mistaken for static functions starting with 'L'.
402 */
403 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
404 && (sym->flags & BSF_SYNTHETIC) == 0)
0cc7b392
DJ
405 || ((sym->flags & BSF_LOCAL)
406 && sym->name[0] == '$'
407 && sym->name[1] == 'L'))
408 /* Looks like a compiler-generated label. Skip
409 it. The assembler should be skipping these (to
410 keep executables small), but apparently with
411 gcc on the (deleted) delta m88k SVR4, it loses.
412 So to have us check too should be harmless (but
413 I encourage people to fix this in the assembler
414 instead of adding checks here). */
415 continue;
416 else
417 {
418 ms_type = mst_file_text;
c906108c 419 }
0cc7b392
DJ
420 }
421 else if (sym->section->flags & SEC_ALLOC)
422 {
bb869963 423 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 424 {
0cc7b392 425 if (sym->section->flags & SEC_LOAD)
c906108c 426 {
0cc7b392 427 ms_type = mst_data;
c906108c 428 }
c906108c
SS
429 else
430 {
0cc7b392 431 ms_type = mst_bss;
c906108c
SS
432 }
433 }
0cc7b392 434 else if (sym->flags & BSF_LOCAL)
c906108c 435 {
0cc7b392
DJ
436 if (sym->section->flags & SEC_LOAD)
437 {
438 ms_type = mst_file_data;
c906108c
SS
439 }
440 else
441 {
0cc7b392 442 ms_type = mst_file_bss;
c906108c
SS
443 }
444 }
445 else
446 {
0cc7b392 447 ms_type = mst_unknown;
c906108c 448 }
0cc7b392
DJ
449 }
450 else
451 {
452 /* FIXME: Solaris2 shared libraries include lots of
dea91a5c 453 odd "absolute" and "undefined" symbols, that play
0cc7b392
DJ
454 hob with actions like finding what function the PC
455 is in. Ignore them if they aren't text, data, or bss. */
456 /* ms_type = mst_unknown; */
0963b4bd 457 continue; /* Skip this symbol. */
0cc7b392
DJ
458 }
459 msym = record_minimal_symbol
8dddcb8f 460 (reader, sym->name, strlen (sym->name), copy_names, symaddr,
0cc7b392 461 ms_type, sym->section, objfile);
6f610d07 462
0cc7b392
DJ
463 if (msym)
464 {
6f610d07 465 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
24c274a1 466 ELF-private part. */
6f610d07 467 if (type != ST_SYNTHETIC)
24c274a1
AM
468 {
469 /* Pass symbol size field in via BFD. FIXME!!! */
470 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
471 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
472 }
dea91a5c 473
a103a963 474 msym->filename = filesymname;
3e29f34a
MR
475 if (elf_make_msymbol_special_p)
476 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
0cc7b392 477 }
2eaf8d2a 478
715c6909
TT
479 /* If we see a default versioned symbol, install it under
480 its version-less name. */
481 if (msym != NULL)
482 {
483 const char *atsign = strchr (sym->name, '@');
484
485 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
486 {
487 int len = atsign - sym->name;
488
ce6c454e 489 record_minimal_symbol (reader, sym->name, len, true, symaddr,
715c6909
TT
490 ms_type, sym->section, objfile);
491 }
492 }
493
2eaf8d2a
DJ
494 /* For @plt symbols, also record a trampoline to the
495 destination symbol. The @plt symbol will be used in
496 disassembly, and the trampoline will be used when we are
497 trying to find the target. */
498 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
499 {
500 int len = strlen (sym->name);
501
502 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
503 {
2eaf8d2a
DJ
504 struct minimal_symbol *mtramp;
505
ce6c454e
TT
506 mtramp = record_minimal_symbol (reader, sym->name, len - 4,
507 true, symaddr,
2eaf8d2a
DJ
508 mst_solib_trampoline,
509 sym->section, objfile);
510 if (mtramp)
511 {
d9eaeb59 512 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
422d65e7 513 mtramp->created_by_gdb = 1;
2eaf8d2a 514 mtramp->filename = filesymname;
3e29f34a
MR
515 if (elf_make_msymbol_special_p)
516 gdbarch_elf_make_msymbol_special (gdbarch,
517 sym, mtramp);
2eaf8d2a
DJ
518 }
519 }
520 }
c906108c 521 }
c906108c
SS
522 }
523}
524
07be84bf
JK
525/* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
526 for later look ups of which function to call when user requests
527 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
528 library defining `function' we cannot yet know while reading OBJFILE which
529 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
530 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
531
532static void
8dddcb8f
TT
533elf_rel_plt_read (minimal_symbol_reader &reader,
534 struct objfile *objfile, asymbol **dyn_symbol_table)
07be84bf
JK
535{
536 bfd *obfd = objfile->obfd;
537 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
538 asection *plt, *relplt, *got_plt;
07be84bf
JK
539 int plt_elf_idx;
540 bfd_size_type reloc_count, reloc;
df6d5441 541 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
542 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
543 size_t ptr_size = TYPE_LENGTH (ptr_type);
544
545 if (objfile->separate_debug_objfile_backlink)
546 return;
547
548 plt = bfd_get_section_by_name (obfd, ".plt");
549 if (plt == NULL)
550 return;
551 plt_elf_idx = elf_section_data (plt)->this_idx;
552
553 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
554 if (got_plt == NULL)
4b7d1f7f
WN
555 {
556 /* For platforms where there is no separate .got.plt. */
557 got_plt = bfd_get_section_by_name (obfd, ".got");
558 if (got_plt == NULL)
559 return;
560 }
07be84bf
JK
561
562 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
563 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
564 if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx
565 && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL
566 || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA))
567 break;
568 if (relplt == NULL)
569 return;
570
571 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
572 return;
573
26fcd5d7 574 std::string string_buffer;
07be84bf
JK
575
576 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
577 for (reloc = 0; reloc < reloc_count; reloc++)
578 {
22e048c9 579 const char *name;
07be84bf
JK
580 struct minimal_symbol *msym;
581 CORE_ADDR address;
26fcd5d7 582 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
07be84bf 583 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
07be84bf
JK
584
585 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
07be84bf
JK
586 address = relplt->relocation[reloc].address;
587
588 /* Does the pointer reside in the .got.plt section? */
589 if (!(bfd_get_section_vma (obfd, got_plt) <= address
590 && address < bfd_get_section_vma (obfd, got_plt)
591 + bfd_get_section_size (got_plt)))
592 continue;
593
594 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
595 OBJFILE the symbol is undefined and the objfile having NAME defined
596 may not yet have been loaded. */
597
26fcd5d7
TT
598 string_buffer.assign (name);
599 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
07be84bf 600
26fcd5d7
TT
601 msym = record_minimal_symbol (reader, string_buffer.c_str (),
602 string_buffer.size (),
ce6c454e 603 true, address, mst_slot_got_plt, got_plt,
07be84bf
JK
604 objfile);
605 if (msym)
d9eaeb59 606 SET_MSYMBOL_SIZE (msym, ptr_size);
07be84bf 607 }
07be84bf
JK
608}
609
610/* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
611
612static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
613
614/* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
615
616struct elf_gnu_ifunc_cache
617{
618 /* This is always a function entry address, not a function descriptor. */
619 CORE_ADDR addr;
620
621 char name[1];
622};
623
624/* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
625
626static hashval_t
627elf_gnu_ifunc_cache_hash (const void *a_voidp)
628{
9a3c8263
SM
629 const struct elf_gnu_ifunc_cache *a
630 = (const struct elf_gnu_ifunc_cache *) a_voidp;
07be84bf
JK
631
632 return htab_hash_string (a->name);
633}
634
635/* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
636
637static int
638elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
639{
9a3c8263
SM
640 const struct elf_gnu_ifunc_cache *a
641 = (const struct elf_gnu_ifunc_cache *) a_voidp;
642 const struct elf_gnu_ifunc_cache *b
643 = (const struct elf_gnu_ifunc_cache *) b_voidp;
07be84bf
JK
644
645 return strcmp (a->name, b->name) == 0;
646}
647
648/* Record the target function address of a STT_GNU_IFUNC function NAME is the
649 function entry address ADDR. Return 1 if NAME and ADDR are considered as
650 valid and therefore they were successfully recorded, return 0 otherwise.
651
652 Function does not expect a duplicate entry. Use
653 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
654 exists. */
655
656static int
657elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
658{
7cbd4a93 659 struct bound_minimal_symbol msym;
07be84bf
JK
660 asection *sect;
661 struct objfile *objfile;
662 htab_t htab;
663 struct elf_gnu_ifunc_cache entry_local, *entry_p;
664 void **slot;
665
666 msym = lookup_minimal_symbol_by_pc (addr);
7cbd4a93 667 if (msym.minsym == NULL)
07be84bf 668 return 0;
77e371c0 669 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
07be84bf
JK
670 return 0;
671 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
efd66ac6 672 sect = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym)->the_bfd_section;
e27d198c 673 objfile = msym.objfile;
07be84bf
JK
674
675 /* If .plt jumps back to .plt the symbol is still deferred for later
676 resolution and it has no use for GDB. Besides ".text" this symbol can
677 reside also in ".opd" for ppc64 function descriptor. */
678 if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
679 return 0;
680
9a3c8263 681 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
07be84bf
JK
682 if (htab == NULL)
683 {
684 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
685 elf_gnu_ifunc_cache_eq,
686 NULL, &objfile->objfile_obstack,
687 hashtab_obstack_allocate,
688 dummy_obstack_deallocate);
689 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
690 }
691
692 entry_local.addr = addr;
693 obstack_grow (&objfile->objfile_obstack, &entry_local,
694 offsetof (struct elf_gnu_ifunc_cache, name));
695 obstack_grow_str0 (&objfile->objfile_obstack, name);
224c3ddb
SM
696 entry_p
697 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
07be84bf
JK
698
699 slot = htab_find_slot (htab, entry_p, INSERT);
700 if (*slot != NULL)
701 {
9a3c8263
SM
702 struct elf_gnu_ifunc_cache *entry_found_p
703 = (struct elf_gnu_ifunc_cache *) *slot;
df6d5441 704 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
705
706 if (entry_found_p->addr != addr)
707 {
708 /* This case indicates buggy inferior program, the resolved address
709 should never change. */
710
711 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
712 "function_address from %s to %s"),
713 name, paddress (gdbarch, entry_found_p->addr),
714 paddress (gdbarch, addr));
715 }
716
717 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
718 }
719 *slot = entry_p;
720
721 return 1;
722}
723
724/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
725 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
726 is not NULL) and the function returns 1. It returns 0 otherwise.
727
728 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
729 function. */
730
731static int
732elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
733{
734 struct objfile *objfile;
735
736 ALL_PSPACE_OBJFILES (current_program_space, objfile)
737 {
738 htab_t htab;
739 struct elf_gnu_ifunc_cache *entry_p;
740 void **slot;
741
9a3c8263 742 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
07be84bf
JK
743 if (htab == NULL)
744 continue;
745
224c3ddb
SM
746 entry_p = ((struct elf_gnu_ifunc_cache *)
747 alloca (sizeof (*entry_p) + strlen (name)));
07be84bf
JK
748 strcpy (entry_p->name, name);
749
750 slot = htab_find_slot (htab, entry_p, NO_INSERT);
751 if (slot == NULL)
752 continue;
9a3c8263 753 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
07be84bf
JK
754 gdb_assert (entry_p != NULL);
755
756 if (addr_p)
757 *addr_p = entry_p->addr;
758 return 1;
759 }
760
761 return 0;
762}
763
764/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
765 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
766 is not NULL) and the function returns 1. It returns 0 otherwise.
767
768 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
769 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
770 prevent cache entries duplicates. */
771
772static int
773elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
774{
775 char *name_got_plt;
776 struct objfile *objfile;
777 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
778
224c3ddb 779 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
07be84bf
JK
780 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
781
782 ALL_PSPACE_OBJFILES (current_program_space, objfile)
783 {
784 bfd *obfd = objfile->obfd;
df6d5441 785 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
786 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
787 size_t ptr_size = TYPE_LENGTH (ptr_type);
788 CORE_ADDR pointer_address, addr;
789 asection *plt;
224c3ddb 790 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
3b7344d5 791 struct bound_minimal_symbol msym;
07be84bf
JK
792
793 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
3b7344d5 794 if (msym.minsym == NULL)
07be84bf 795 continue;
3b7344d5 796 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
07be84bf 797 continue;
77e371c0 798 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
07be84bf
JK
799
800 plt = bfd_get_section_by_name (obfd, ".plt");
801 if (plt == NULL)
802 continue;
803
3b7344d5 804 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
07be84bf
JK
805 continue;
806 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
807 continue;
808 addr = extract_typed_address (buf, ptr_type);
809 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
810 &current_target);
4b7d1f7f 811 addr = gdbarch_addr_bits_remove (gdbarch, addr);
07be84bf
JK
812
813 if (addr_p)
814 *addr_p = addr;
815 if (elf_gnu_ifunc_record_cache (name, addr))
816 return 1;
817 }
818
819 return 0;
820}
821
822/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
823 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
824 is not NULL) and the function returns 1. It returns 0 otherwise.
825
826 Both the elf_objfile_gnu_ifunc_cache_data hash table and
827 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
828
829static int
830elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
831{
832 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
833 return 1;
dea91a5c 834
07be84bf
JK
835 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
836 return 1;
837
838 return 0;
839}
840
841/* Call STT_GNU_IFUNC - a function returning addresss of a real function to
842 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
843 is the entry point of the resolved STT_GNU_IFUNC target function to call.
844 */
845
846static CORE_ADDR
847elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
848{
2c02bd72 849 const char *name_at_pc;
07be84bf
JK
850 CORE_ADDR start_at_pc, address;
851 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
852 struct value *function, *address_val;
e1b2624a
AA
853 CORE_ADDR hwcap = 0;
854 struct value *hwcap_val;
07be84bf
JK
855
856 /* Try first any non-intrusive methods without an inferior call. */
857
858 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
859 && start_at_pc == pc)
860 {
861 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
862 return address;
863 }
864 else
865 name_at_pc = NULL;
866
867 function = allocate_value (func_func_type);
1a088441 868 VALUE_LVAL (function) = lval_memory;
07be84bf
JK
869 set_value_address (function, pc);
870
e1b2624a
AA
871 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
872 parameter. FUNCTION is the function entry address. ADDRESS may be a
873 function descriptor. */
07be84bf 874
e1b2624a
AA
875 target_auxv_search (&current_target, AT_HWCAP, &hwcap);
876 hwcap_val = value_from_longest (builtin_type (gdbarch)
877 ->builtin_unsigned_long, hwcap);
7022349d 878 address_val = call_function_by_hand (function, NULL, 1, &hwcap_val);
07be84bf
JK
879 address = value_as_address (address_val);
880 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
881 &current_target);
4b7d1f7f 882 address = gdbarch_addr_bits_remove (gdbarch, address);
07be84bf
JK
883
884 if (name_at_pc)
885 elf_gnu_ifunc_record_cache (name_at_pc, address);
886
887 return address;
888}
889
0e30163f
JK
890/* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
891
892static void
893elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
894{
895 struct breakpoint *b_return;
896 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
897 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
898 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
5d5658a1 899 int thread_id = ptid_to_global_thread_id (inferior_ptid);
0e30163f
JK
900
901 gdb_assert (b->type == bp_gnu_ifunc_resolver);
902
903 for (b_return = b->related_breakpoint; b_return != b;
904 b_return = b_return->related_breakpoint)
905 {
906 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
907 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
908 gdb_assert (frame_id_p (b_return->frame_id));
909
910 if (b_return->thread == thread_id
911 && b_return->loc->requested_address == prev_pc
912 && frame_id_eq (b_return->frame_id, prev_frame_id))
913 break;
914 }
915
916 if (b_return == b)
917 {
0e30163f
JK
918 /* No need to call find_pc_line for symbols resolving as this is only
919 a helper breakpointer never shown to the user. */
920
51abb421 921 symtab_and_line sal;
0e30163f
JK
922 sal.pspace = current_inferior ()->pspace;
923 sal.pc = prev_pc;
924 sal.section = find_pc_overlay (sal.pc);
925 sal.explicit_pc = 1;
454dafbd
TT
926 b_return
927 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
928 prev_frame_id,
929 bp_gnu_ifunc_resolver_return).release ();
0e30163f 930
c70a6932
JK
931 /* set_momentary_breakpoint invalidates PREV_FRAME. */
932 prev_frame = NULL;
933
0e30163f
JK
934 /* Add new b_return to the ring list b->related_breakpoint. */
935 gdb_assert (b_return->related_breakpoint == b_return);
936 b_return->related_breakpoint = b->related_breakpoint;
937 b->related_breakpoint = b_return;
938 }
939}
940
941/* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
942
943static void
944elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
945{
946 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
947 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
948 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
949 struct regcache *regcache = get_thread_regcache (inferior_ptid);
6a3a010b 950 struct value *func_func;
0e30163f
JK
951 struct value *value;
952 CORE_ADDR resolved_address, resolved_pc;
0e30163f
JK
953
954 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
955
0e30163f
JK
956 while (b->related_breakpoint != b)
957 {
958 struct breakpoint *b_next = b->related_breakpoint;
959
960 switch (b->type)
961 {
962 case bp_gnu_ifunc_resolver:
963 break;
964 case bp_gnu_ifunc_resolver_return:
965 delete_breakpoint (b);
966 break;
967 default:
968 internal_error (__FILE__, __LINE__,
969 _("handle_inferior_event: Invalid "
970 "gnu-indirect-function breakpoint type %d"),
971 (int) b->type);
972 }
973 b = b_next;
974 }
975 gdb_assert (b->type == bp_gnu_ifunc_resolver);
6a3a010b
MR
976 gdb_assert (b->loc->next == NULL);
977
978 func_func = allocate_value (func_func_type);
1a088441 979 VALUE_LVAL (func_func) = lval_memory;
6a3a010b
MR
980 set_value_address (func_func, b->loc->related_address);
981
982 value = allocate_value (value_type);
983 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
984 value_contents_raw (value), NULL);
985 resolved_address = value_as_address (value);
986 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
987 resolved_address,
988 &current_target);
4b7d1f7f 989 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
0e30163f 990
f8eba3c6 991 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
d28cd78a 992 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
f00aae0f 993 resolved_pc);
0e30163f 994
0e30163f 995 b->type = bp_breakpoint;
6c5b2ebe
PA
996 update_breakpoint_locations (b, current_program_space,
997 find_pc_line (resolved_pc, 0), {});
0e30163f
JK
998}
999
2750ef27
TT
1000/* A helper function for elf_symfile_read that reads the minimal
1001 symbols. */
c906108c
SS
1002
1003static void
5f6cac40
TT
1004elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1005 const struct elfinfo *ei)
c906108c 1006{
63524580 1007 bfd *synth_abfd, *abfd = objfile->obfd;
62553543
EZ
1008 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1009 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1010 asymbol *synthsyms;
d2f4b8fe 1011 struct dbx_symfile_info *dbx;
c906108c 1012
45cfd468
DE
1013 if (symtab_create_debug)
1014 {
1015 fprintf_unfiltered (gdb_stdlog,
1016 "Reading minimal symbols of objfile %s ...\n",
4262abfb 1017 objfile_name (objfile));
45cfd468
DE
1018 }
1019
5f6cac40
TT
1020 /* If we already have minsyms, then we can skip some work here.
1021 However, if there were stabs or mdebug sections, we go ahead and
1022 redo all the work anyway, because the psym readers for those
1023 kinds of debuginfo need extra information found here. This can
1024 go away once all types of symbols are in the per-BFD object. */
1025 if (objfile->per_bfd->minsyms_read
1026 && ei->stabsect == NULL
1027 && ei->mdebugsect == NULL)
1028 {
1029 if (symtab_create_debug)
1030 fprintf_unfiltered (gdb_stdlog,
1031 "... minimal symbols previously read\n");
1032 return;
1033 }
1034
d25e8719 1035 minimal_symbol_reader reader (objfile);
c906108c 1036
0963b4bd 1037 /* Allocate struct to keep track of the symfile. */
d2f4b8fe
TT
1038 dbx = XCNEW (struct dbx_symfile_info);
1039 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
c906108c 1040
18a94d75 1041 /* Process the normal ELF symbol table first. */
c906108c 1042
62553543
EZ
1043 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1044 if (storage_needed < 0)
3e43a32a
MS
1045 error (_("Can't read symbols from %s: %s"),
1046 bfd_get_filename (objfile->obfd),
62553543
EZ
1047 bfd_errmsg (bfd_get_error ()));
1048
1049 if (storage_needed > 0)
1050 {
80c57053
JK
1051 /* Memory gets permanently referenced from ABFD after
1052 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1053
224c3ddb 1054 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
62553543
EZ
1055 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1056
1057 if (symcount < 0)
3e43a32a
MS
1058 error (_("Can't read symbols from %s: %s"),
1059 bfd_get_filename (objfile->obfd),
62553543
EZ
1060 bfd_errmsg (bfd_get_error ()));
1061
ce6c454e
TT
1062 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1063 false);
62553543 1064 }
c906108c
SS
1065
1066 /* Add the dynamic symbols. */
1067
62553543
EZ
1068 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1069
1070 if (storage_needed > 0)
1071 {
3f1eff0a
JK
1072 /* Memory gets permanently referenced from ABFD after
1073 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1074 It happens only in the case when elf_slurp_reloc_table sees
1075 asection->relocation NULL. Determining which section is asection is
1076 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1077 implementation detail, though. */
1078
224c3ddb 1079 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
62553543
EZ
1080 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1081 dyn_symbol_table);
1082
1083 if (dynsymcount < 0)
3e43a32a
MS
1084 error (_("Can't read symbols from %s: %s"),
1085 bfd_get_filename (objfile->obfd),
62553543
EZ
1086 bfd_errmsg (bfd_get_error ()));
1087
8dddcb8f 1088 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
ce6c454e 1089 dyn_symbol_table, false);
07be84bf 1090
8dddcb8f 1091 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
62553543
EZ
1092 }
1093
63524580
JK
1094 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1095 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1096
1097 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1098 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1099 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1100 read the code address from .opd while it reads the .symtab section from
1101 a separate debug info file as the .opd section is SHT_NOBITS there.
1102
1103 With SYNTH_ABFD the .opd section will be read from the original
1104 backlinked binary where it is valid. */
1105
1106 if (objfile->separate_debug_objfile_backlink)
1107 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1108 else
1109 synth_abfd = abfd;
1110
62553543
EZ
1111 /* Add synthetic symbols - for instance, names for any PLT entries. */
1112
63524580 1113 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
62553543
EZ
1114 dynsymcount, dyn_symbol_table,
1115 &synthsyms);
1116 if (synthcount > 0)
1117 {
62553543
EZ
1118 long i;
1119
b22e99fd 1120 std::unique_ptr<asymbol *[]>
d1e4a624 1121 synth_symbol_table (new asymbol *[synthcount]);
62553543 1122 for (i = 0; i < synthcount; i++)
9f20e3da 1123 synth_symbol_table[i] = synthsyms + i;
8dddcb8f 1124 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
ce6c454e 1125 synth_symbol_table.get (), true);
ba713918
AL
1126
1127 xfree (synthsyms);
1128 synthsyms = NULL;
62553543 1129 }
c906108c 1130
7134143f
DJ
1131 /* Install any minimal symbols that have been collected as the current
1132 minimal symbols for this objfile. The debug readers below this point
1133 should not generate new minimal symbols; if they do it's their
1134 responsibility to install them. "mdebug" appears to be the only one
1135 which will do this. */
1136
d25e8719 1137 reader.install ();
7134143f 1138
4f00dda3
DE
1139 if (symtab_create_debug)
1140 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
2750ef27
TT
1141}
1142
1143/* Scan and build partial symbols for a symbol file.
1144 We have been initialized by a call to elf_symfile_init, which
1145 currently does nothing.
1146
2750ef27
TT
1147 This function only does the minimum work necessary for letting the
1148 user "name" things symbolically; it does not read the entire symtab.
1149 Instead, it reads the external and static symbols and puts them in partial
1150 symbol tables. When more extensive information is requested of a
1151 file, the corresponding partial symbol table is mutated into a full
1152 fledged symbol table by going back and reading the symbols
1153 for real.
1154
1155 We look for sections with specific names, to tell us what debug
1156 format to look for: FIXME!!!
1157
1158 elfstab_build_psymtabs() handles STABS symbols;
1159 mdebug_build_psymtabs() handles ECOFF debugging information.
1160
1161 Note that ELF files have a "minimal" symbol table, which looks a lot
1162 like a COFF symbol table, but has only the minimal information necessary
1163 for linking. We process this also, and use the information to
1164 build gdb's minimal symbol table. This gives us some minimal debugging
1165 capability even for files compiled without -g. */
1166
1167static void
b15cc25c 1168elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
2750ef27
TT
1169{
1170 bfd *abfd = objfile->obfd;
1171 struct elfinfo ei;
1172
2750ef27 1173 memset ((char *) &ei, 0, sizeof (ei));
12b9c64f 1174 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
c906108c 1175
5f6cac40
TT
1176 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1177
c906108c
SS
1178 /* ELF debugging information is inserted into the psymtab in the
1179 order of least informative first - most informative last. Since
1180 the psymtab table is searched `most recent insertion first' this
1181 increases the probability that more detailed debug information
1182 for a section is found.
1183
1184 For instance, an object file might contain both .mdebug (XCOFF)
1185 and .debug_info (DWARF2) sections then .mdebug is inserted first
1186 (searched last) and DWARF2 is inserted last (searched first). If
1187 we don't do this then the XCOFF info is found first - for code in
0963b4bd 1188 an included file XCOFF info is useless. */
c906108c
SS
1189
1190 if (ei.mdebugsect)
1191 {
1192 const struct ecoff_debug_swap *swap;
1193
1194 /* .mdebug section, presumably holding ECOFF debugging
c5aa993b 1195 information. */
c906108c
SS
1196 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1197 if (swap)
d4f3574e 1198 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
c906108c
SS
1199 }
1200 if (ei.stabsect)
1201 {
1202 asection *str_sect;
1203
1204 /* Stab sections have an associated string table that looks like
c5aa993b 1205 a separate section. */
c906108c
SS
1206 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1207
1208 /* FIXME should probably warn about a stab section without a stabstr. */
1209 if (str_sect)
1210 elfstab_build_psymtabs (objfile,
086df311 1211 ei.stabsect,
c906108c
SS
1212 str_sect->filepos,
1213 bfd_section_size (abfd, str_sect));
1214 }
9291a0cd 1215
251d32d9 1216 if (dwarf2_has_info (objfile, NULL))
b11896a5 1217 {
3e03848b
JK
1218 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug
1219 information present in OBJFILE. If there is such debug info present
1220 never use .gdb_index. */
1221
1222 if (!objfile_has_partial_symbols (objfile)
1223 && dwarf2_initialize_objfile (objfile))
8fb8eb5c 1224 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
b11896a5
TT
1225 else
1226 {
1227 /* It is ok to do this even if the stabs reader made some
1228 partial symbols, because OBJF_PSYMTABS_READ has not been
1229 set, and so our lazy reader function will still be called
1230 when needed. */
8fb8eb5c 1231 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
b11896a5
TT
1232 }
1233 }
3e43a32a
MS
1234 /* If the file has its own symbol tables it has no separate debug
1235 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1236 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
8a92335b
JK
1237 `.note.gnu.build-id'.
1238
1239 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1240 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1241 an objfile via find_separate_debug_file_in_section there was no separate
1242 debug info available. Therefore do not attempt to search for another one,
1243 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1244 be NULL and we would possibly violate it. */
1245
1246 else if (!objfile_has_partial_symbols (objfile)
1247 && objfile->separate_debug_objfile == NULL
1248 && objfile->separate_debug_objfile_backlink == NULL)
9cce227f 1249 {
192b62ce
TT
1250 gdb::unique_xmalloc_ptr<char> debugfile
1251 (find_separate_debug_file_by_buildid (objfile));
9cce227f
TG
1252
1253 if (debugfile == NULL)
192b62ce 1254 debugfile.reset (find_separate_debug_file_by_debuglink (objfile));
9cce227f 1255
192b62ce 1256 if (debugfile != NULL)
9cce227f 1257 {
192b62ce 1258 gdb_bfd_ref_ptr abfd (symfile_bfd_open (debugfile.get ()));
d7f9d729 1259
192b62ce
TT
1260 symbol_file_add_separate (abfd.get (), debugfile.get (),
1261 symfile_flags, objfile);
9cce227f
TG
1262 }
1263 }
c906108c
SS
1264}
1265
b11896a5
TT
1266/* Callback to lazily read psymtabs. */
1267
1268static void
1269read_psyms (struct objfile *objfile)
1270{
251d32d9 1271 if (dwarf2_has_info (objfile, NULL))
b11896a5
TT
1272 dwarf2_build_psymtabs (objfile);
1273}
1274
c906108c
SS
1275/* Initialize anything that needs initializing when a completely new symbol
1276 file is specified (not just adding some symbols from another file, e.g. a
1277 shared library).
1278
3e43a32a
MS
1279 We reinitialize buildsym, since we may be reading stabs from an ELF
1280 file. */
c906108c
SS
1281
1282static void
fba45db2 1283elf_new_init (struct objfile *ignore)
c906108c
SS
1284{
1285 stabsread_new_init ();
1286 buildsym_new_init ();
1287}
1288
1289/* Perform any local cleanups required when we are done with a particular
1290 objfile. I.E, we are in the process of discarding all symbol information
1291 for an objfile, freeing up all memory held for it, and unlinking the
0963b4bd 1292 objfile struct from the global list of known objfiles. */
c906108c
SS
1293
1294static void
fba45db2 1295elf_symfile_finish (struct objfile *objfile)
c906108c 1296{
fe3e1990 1297 dwarf2_free_objfile (objfile);
c906108c
SS
1298}
1299
db7a9bcd 1300/* ELF specific initialization routine for reading symbols. */
c906108c
SS
1301
1302static void
fba45db2 1303elf_symfile_init (struct objfile *objfile)
c906108c
SS
1304{
1305 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1306 find this causes a significant slowdown in gdb then we could
1307 set it in the debug symbol readers only when necessary. */
1308 objfile->flags |= OBJF_REORDERED;
1309}
1310
55aa24fb
SDJ
1311/* Implementation of `sym_get_probes', as documented in symfile.h. */
1312
aaa63a31 1313static const std::vector<probe *> &
55aa24fb
SDJ
1314elf_get_probes (struct objfile *objfile)
1315{
aaa63a31 1316 std::vector<probe *> *probes_per_bfd;
55aa24fb
SDJ
1317
1318 /* Have we parsed this objfile's probes already? */
aaa63a31 1319 probes_per_bfd = (std::vector<probe *> *) bfd_data (objfile->obfd, probe_key);
55aa24fb 1320
aaa63a31 1321 if (probes_per_bfd == NULL)
55aa24fb 1322 {
aaa63a31 1323 probes_per_bfd = new std::vector<probe *>;
55aa24fb
SDJ
1324
1325 /* Here we try to gather information about all types of probes from the
1326 objfile. */
935676c9 1327 for (const static_probe_ops *ops : all_static_probe_ops)
0782db84 1328 ops->get_probes (probes_per_bfd, objfile);
55aa24fb 1329
5d9cf8a4 1330 set_bfd_data (objfile->obfd, probe_key, probes_per_bfd);
55aa24fb
SDJ
1331 }
1332
aaa63a31 1333 return *probes_per_bfd;
55aa24fb
SDJ
1334}
1335
55aa24fb
SDJ
1336/* Helper function used to free the space allocated for storing SystemTap
1337 probe information. */
1338
1339static void
5d9cf8a4 1340probe_key_free (bfd *abfd, void *d)
55aa24fb 1341{
aaa63a31 1342 std::vector<probe *> *probes = (std::vector<probe *> *) d;
55aa24fb 1343
63f0e930 1344 for (probe *p : *probes)
935676c9 1345 delete p;
55aa24fb 1346
aaa63a31 1347 delete probes;
55aa24fb
SDJ
1348}
1349
c906108c 1350\f
55aa24fb
SDJ
1351
1352/* Implementation `sym_probe_fns', as documented in symfile.h. */
1353
1354static const struct sym_probe_fns elf_probe_fns =
1355{
25f9533e 1356 elf_get_probes, /* sym_get_probes */
55aa24fb
SDJ
1357};
1358
c906108c
SS
1359/* Register that we are able to handle ELF object file formats. */
1360
00b5771c 1361static const struct sym_fns elf_sym_fns =
c906108c 1362{
3e43a32a
MS
1363 elf_new_init, /* init anything gbl to entire symtab */
1364 elf_symfile_init, /* read initial info, setup for sym_read() */
1365 elf_symfile_read, /* read a symbol file into symtab */
b11896a5
TT
1366 NULL, /* sym_read_psymbols */
1367 elf_symfile_finish, /* finished with file, cleanup */
1368 default_symfile_offsets, /* Translate ext. to int. relocation */
1369 elf_symfile_segments, /* Get segment information from a file. */
1370 NULL,
1371 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1372 &elf_probe_fns, /* sym_probe_fns */
b11896a5
TT
1373 &psym_functions
1374};
1375
1376/* The same as elf_sym_fns, but not registered and lazily reads
1377 psymbols. */
1378
e36122e9 1379const struct sym_fns elf_sym_fns_lazy_psyms =
b11896a5 1380{
b11896a5
TT
1381 elf_new_init, /* init anything gbl to entire symtab */
1382 elf_symfile_init, /* read initial info, setup for sym_read() */
1383 elf_symfile_read, /* read a symbol file into symtab */
1384 read_psyms, /* sym_read_psymbols */
3e43a32a
MS
1385 elf_symfile_finish, /* finished with file, cleanup */
1386 default_symfile_offsets, /* Translate ext. to int. relocation */
1387 elf_symfile_segments, /* Get segment information from a file. */
1388 NULL,
1389 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1390 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1391 &psym_functions
c906108c
SS
1392};
1393
9291a0cd
TT
1394/* The same as elf_sym_fns, but not registered and uses the
1395 DWARF-specific GNU index rather than psymtab. */
e36122e9 1396const struct sym_fns elf_sym_fns_gdb_index =
9291a0cd 1397{
3e43a32a
MS
1398 elf_new_init, /* init anything gbl to entire symab */
1399 elf_symfile_init, /* read initial info, setup for sym_red() */
1400 elf_symfile_read, /* read a symbol file into symtab */
b11896a5 1401 NULL, /* sym_read_psymbols */
3e43a32a
MS
1402 elf_symfile_finish, /* finished with file, cleanup */
1403 default_symfile_offsets, /* Translate ext. to int. relocatin */
1404 elf_symfile_segments, /* Get segment information from a file. */
1405 NULL,
1406 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1407 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1408 &dwarf2_gdb_index_functions
9291a0cd
TT
1409};
1410
07be84bf
JK
1411/* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1412
1413static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1414{
1415 elf_gnu_ifunc_resolve_addr,
1416 elf_gnu_ifunc_resolve_name,
0e30163f
JK
1417 elf_gnu_ifunc_resolver_stop,
1418 elf_gnu_ifunc_resolver_return_stop
07be84bf
JK
1419};
1420
c906108c 1421void
fba45db2 1422_initialize_elfread (void)
c906108c 1423{
5d9cf8a4 1424 probe_key = register_bfd_data_with_cleanup (NULL, probe_key_free);
c256e171 1425 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
07be84bf
JK
1426
1427 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1428 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
c906108c 1429}
This page took 1.297287 seconds and 4 git commands to generate.