windows-nat: Don't change current_event.dwThreadId in handle_output_debug_string()
[deliverable/binutils-gdb.git] / gdb / frv-tdep.c
CommitLineData
456f8b9d 1/* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
0fd88904 2
32d0add0 3 Copyright (C) 2002-2015 Free Software Foundation, Inc.
456f8b9d
DB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
456f8b9d
DB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
456f8b9d
DB
19
20#include "defs.h"
21#include "inferior.h"
456f8b9d
DB
22#include "gdbcore.h"
23#include "arch-utils.h"
24#include "regcache.h"
8baa6f92 25#include "frame.h"
1cb761c7
KB
26#include "frame-unwind.h"
27#include "frame-base.h"
8baa6f92 28#include "trad-frame.h"
dcc6aaff 29#include "dis-asm.h"
526eef89
KB
30#include "sim-regno.h"
31#include "gdb/sim-frv.h"
32#include "opcodes/frv-desc.h" /* for the H_SPR_... enums */
634aa483 33#include "symtab.h"
7e295833
KB
34#include "elf-bfd.h"
35#include "elf/frv.h"
36#include "osabi.h"
7d9b040b 37#include "infcall.h"
917630e4 38#include "solib.h"
7e295833 39#include "frv-tdep.h"
77e371c0 40#include "objfiles.h"
456f8b9d
DB
41
42extern void _initialize_frv_tdep (void);
43
1cb761c7 44struct frv_unwind_cache /* was struct frame_extra_info */
456f8b9d 45 {
1cb761c7
KB
46 /* The previous frame's inner-most stack address. Used as this
47 frame ID's stack_addr. */
48 CORE_ADDR prev_sp;
456f8b9d 49
1cb761c7
KB
50 /* The frame's base, optionally used by the high-level debug info. */
51 CORE_ADDR base;
8baa6f92
KB
52
53 /* Table indicating the location of each and every register. */
54 struct trad_frame_saved_reg *saved_regs;
456f8b9d
DB
55 };
56
456f8b9d
DB
57/* A structure describing a particular variant of the FRV.
58 We allocate and initialize one of these structures when we create
59 the gdbarch object for a variant.
60
61 At the moment, all the FR variants we support differ only in which
62 registers are present; the portable code of GDB knows that
63 registers whose names are the empty string don't exist, so the
64 `register_names' array captures all the per-variant information we
65 need.
66
67 in the future, if we need to have per-variant maps for raw size,
68 virtual type, etc., we should replace register_names with an array
69 of structures, each of which gives all the necessary info for one
70 register. Don't stick parallel arrays in here --- that's so
71 Fortran. */
72struct gdbarch_tdep
73{
7e295833
KB
74 /* Which ABI is in use? */
75 enum frv_abi frv_abi;
76
456f8b9d
DB
77 /* How many general-purpose registers does this variant have? */
78 int num_gprs;
79
80 /* How many floating-point registers does this variant have? */
81 int num_fprs;
82
83 /* How many hardware watchpoints can it support? */
84 int num_hw_watchpoints;
85
86 /* How many hardware breakpoints can it support? */
87 int num_hw_breakpoints;
88
89 /* Register names. */
90 char **register_names;
91};
92
7e295833
KB
93/* Return the FR-V ABI associated with GDBARCH. */
94enum frv_abi
95frv_abi (struct gdbarch *gdbarch)
96{
97 return gdbarch_tdep (gdbarch)->frv_abi;
98}
99
100/* Fetch the interpreter and executable loadmap addresses (for shared
101 library support) for the FDPIC ABI. Return 0 if successful, -1 if
102 not. (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.) */
103int
104frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr,
105 CORE_ADDR *exec_addr)
106{
107 if (frv_abi (gdbarch) != FRV_ABI_FDPIC)
108 return -1;
109 else
110 {
594f7785
UW
111 struct regcache *regcache = get_current_regcache ();
112
7e295833
KB
113 if (interp_addr != NULL)
114 {
115 ULONGEST val;
594f7785 116 regcache_cooked_read_unsigned (regcache,
7e295833
KB
117 fdpic_loadmap_interp_regnum, &val);
118 *interp_addr = val;
119 }
120 if (exec_addr != NULL)
121 {
122 ULONGEST val;
594f7785 123 regcache_cooked_read_unsigned (regcache,
7e295833
KB
124 fdpic_loadmap_exec_regnum, &val);
125 *exec_addr = val;
126 }
127 return 0;
128 }
129}
456f8b9d
DB
130
131/* Allocate a new variant structure, and set up default values for all
132 the fields. */
133static struct gdbarch_tdep *
5ae5f592 134new_variant (void)
456f8b9d
DB
135{
136 struct gdbarch_tdep *var;
137 int r;
456f8b9d
DB
138
139 var = xmalloc (sizeof (*var));
140 memset (var, 0, sizeof (*var));
141
7e295833 142 var->frv_abi = FRV_ABI_EABI;
456f8b9d
DB
143 var->num_gprs = 64;
144 var->num_fprs = 64;
145 var->num_hw_watchpoints = 0;
146 var->num_hw_breakpoints = 0;
147
148 /* By default, don't supply any general-purpose or floating-point
149 register names. */
6a748db6
KB
150 var->register_names
151 = (char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
152 * sizeof (char *));
153 for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
456f8b9d
DB
154 var->register_names[r] = "";
155
526eef89 156 /* Do, however, supply default names for the known special-purpose
456f8b9d 157 registers. */
456f8b9d
DB
158
159 var->register_names[pc_regnum] = "pc";
160 var->register_names[lr_regnum] = "lr";
161 var->register_names[lcr_regnum] = "lcr";
162
163 var->register_names[psr_regnum] = "psr";
164 var->register_names[ccr_regnum] = "ccr";
165 var->register_names[cccr_regnum] = "cccr";
166 var->register_names[tbr_regnum] = "tbr";
167
168 /* Debug registers. */
169 var->register_names[brr_regnum] = "brr";
170 var->register_names[dbar0_regnum] = "dbar0";
171 var->register_names[dbar1_regnum] = "dbar1";
172 var->register_names[dbar2_regnum] = "dbar2";
173 var->register_names[dbar3_regnum] = "dbar3";
174
526eef89
KB
175 /* iacc0 (Only found on MB93405.) */
176 var->register_names[iacc0h_regnum] = "iacc0h";
177 var->register_names[iacc0l_regnum] = "iacc0l";
6a748db6 178 var->register_names[iacc0_regnum] = "iacc0";
526eef89 179
8b67aa36
KB
180 /* fsr0 (Found on FR555 and FR501.) */
181 var->register_names[fsr0_regnum] = "fsr0";
182
183 /* acc0 - acc7. The architecture provides for the possibility of many
184 more (up to 64 total), but we don't want to make that big of a hole
185 in the G packet. If we need more in the future, we'll add them
186 elsewhere. */
187 for (r = acc0_regnum; r <= acc7_regnum; r++)
188 {
189 char *buf;
b435e160 190 buf = xstrprintf ("acc%d", r - acc0_regnum);
8b67aa36
KB
191 var->register_names[r] = buf;
192 }
193
194 /* accg0 - accg7: These are one byte registers. The remote protocol
195 provides the raw values packed four into a slot. accg0123 and
196 accg4567 correspond to accg0 - accg3 and accg4-accg7 respectively.
197 We don't provide names for accg0123 and accg4567 since the user will
198 likely not want to see these raw values. */
199
200 for (r = accg0_regnum; r <= accg7_regnum; r++)
201 {
202 char *buf;
b435e160 203 buf = xstrprintf ("accg%d", r - accg0_regnum);
8b67aa36
KB
204 var->register_names[r] = buf;
205 }
206
207 /* msr0 and msr1. */
208
209 var->register_names[msr0_regnum] = "msr0";
210 var->register_names[msr1_regnum] = "msr1";
211
212 /* gner and fner registers. */
213 var->register_names[gner0_regnum] = "gner0";
214 var->register_names[gner1_regnum] = "gner1";
215 var->register_names[fner0_regnum] = "fner0";
216 var->register_names[fner1_regnum] = "fner1";
217
456f8b9d
DB
218 return var;
219}
220
221
222/* Indicate that the variant VAR has NUM_GPRS general-purpose
223 registers, and fill in the names array appropriately. */
224static void
225set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
226{
227 int r;
228
229 var->num_gprs = num_gprs;
230
231 for (r = 0; r < num_gprs; ++r)
232 {
233 char buf[20];
234
08850b56 235 xsnprintf (buf, sizeof (buf), "gr%d", r);
456f8b9d
DB
236 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
237 }
238}
239
240
241/* Indicate that the variant VAR has NUM_FPRS floating-point
242 registers, and fill in the names array appropriately. */
243static void
244set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
245{
246 int r;
247
248 var->num_fprs = num_fprs;
249
250 for (r = 0; r < num_fprs; ++r)
251 {
252 char buf[20];
253
08850b56 254 xsnprintf (buf, sizeof (buf), "fr%d", r);
456f8b9d
DB
255 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
256 }
257}
258
7e295833
KB
259static void
260set_variant_abi_fdpic (struct gdbarch_tdep *var)
261{
262 var->frv_abi = FRV_ABI_FDPIC;
263 var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec");
0963b4bd
MS
264 var->register_names[fdpic_loadmap_interp_regnum]
265 = xstrdup ("loadmap_interp");
7e295833 266}
456f8b9d 267
b2d6d697
KB
268static void
269set_variant_scratch_registers (struct gdbarch_tdep *var)
270{
271 var->register_names[scr0_regnum] = xstrdup ("scr0");
272 var->register_names[scr1_regnum] = xstrdup ("scr1");
273 var->register_names[scr2_regnum] = xstrdup ("scr2");
274 var->register_names[scr3_regnum] = xstrdup ("scr3");
275}
276
456f8b9d 277static const char *
d93859e2 278frv_register_name (struct gdbarch *gdbarch, int reg)
456f8b9d
DB
279{
280 if (reg < 0)
281 return "?toosmall?";
6a748db6 282 if (reg >= frv_num_regs + frv_num_pseudo_regs)
456f8b9d
DB
283 return "?toolarge?";
284
7a22ecfc 285 return gdbarch_tdep (gdbarch)->register_names[reg];
456f8b9d
DB
286}
287
526eef89 288
456f8b9d 289static struct type *
7f398216 290frv_register_type (struct gdbarch *gdbarch, int reg)
456f8b9d 291{
526eef89 292 if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
0dfff4cb 293 return builtin_type (gdbarch)->builtin_float;
6a748db6 294 else if (reg == iacc0_regnum)
df4df182 295 return builtin_type (gdbarch)->builtin_int64;
456f8b9d 296 else
df4df182 297 return builtin_type (gdbarch)->builtin_int32;
456f8b9d
DB
298}
299
05d1431c 300static enum register_status
6a748db6 301frv_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
e2b7c966 302 int reg, gdb_byte *buffer)
6a748db6 303{
05d1431c
PA
304 enum register_status status;
305
6a748db6
KB
306 if (reg == iacc0_regnum)
307 {
05d1431c
PA
308 status = regcache_raw_read (regcache, iacc0h_regnum, buffer);
309 if (status == REG_VALID)
310 status = regcache_raw_read (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
6a748db6 311 }
8b67aa36
KB
312 else if (accg0_regnum <= reg && reg <= accg7_regnum)
313 {
314 /* The accg raw registers have four values in each slot with the
315 lowest register number occupying the first byte. */
316
317 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
318 int byte_num = (reg - accg0_regnum) % 4;
05d1431c 319 gdb_byte buf[4];
8b67aa36 320
05d1431c
PA
321 status = regcache_raw_read (regcache, raw_regnum, buf);
322 if (status == REG_VALID)
323 {
324 memset (buffer, 0, 4);
325 /* FR-V is big endian, so put the requested byte in the
326 first byte of the buffer allocated to hold the
327 pseudo-register. */
328 buffer[0] = buf[byte_num];
329 }
8b67aa36 330 }
05d1431c
PA
331 else
332 gdb_assert_not_reached ("invalid pseudo register number");
333
334 return status;
6a748db6
KB
335}
336
337static void
338frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
e2b7c966 339 int reg, const gdb_byte *buffer)
6a748db6
KB
340{
341 if (reg == iacc0_regnum)
342 {
343 regcache_raw_write (regcache, iacc0h_regnum, buffer);
344 regcache_raw_write (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
345 }
8b67aa36
KB
346 else if (accg0_regnum <= reg && reg <= accg7_regnum)
347 {
348 /* The accg raw registers have four values in each slot with the
349 lowest register number occupying the first byte. */
350
351 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
352 int byte_num = (reg - accg0_regnum) % 4;
e362b510 353 gdb_byte buf[4];
8b67aa36
KB
354
355 regcache_raw_read (regcache, raw_regnum, buf);
356 buf[byte_num] = ((bfd_byte *) buffer)[0];
357 regcache_raw_write (regcache, raw_regnum, buf);
358 }
6a748db6
KB
359}
360
526eef89 361static int
e7faf938 362frv_register_sim_regno (struct gdbarch *gdbarch, int reg)
526eef89
KB
363{
364 static const int spr_map[] =
365 {
366 H_SPR_PSR, /* psr_regnum */
367 H_SPR_CCR, /* ccr_regnum */
368 H_SPR_CCCR, /* cccr_regnum */
8b67aa36
KB
369 -1, /* fdpic_loadmap_exec_regnum */
370 -1, /* fdpic_loadmap_interp_regnum */
526eef89
KB
371 -1, /* 134 */
372 H_SPR_TBR, /* tbr_regnum */
373 H_SPR_BRR, /* brr_regnum */
374 H_SPR_DBAR0, /* dbar0_regnum */
375 H_SPR_DBAR1, /* dbar1_regnum */
376 H_SPR_DBAR2, /* dbar2_regnum */
377 H_SPR_DBAR3, /* dbar3_regnum */
8b67aa36
KB
378 H_SPR_SCR0, /* scr0_regnum */
379 H_SPR_SCR1, /* scr1_regnum */
380 H_SPR_SCR2, /* scr2_regnum */
381 H_SPR_SCR3, /* scr3_regnum */
526eef89
KB
382 H_SPR_LR, /* lr_regnum */
383 H_SPR_LCR, /* lcr_regnum */
384 H_SPR_IACC0H, /* iacc0h_regnum */
8b67aa36
KB
385 H_SPR_IACC0L, /* iacc0l_regnum */
386 H_SPR_FSR0, /* fsr0_regnum */
387 /* FIXME: Add infrastructure for fetching/setting ACC and ACCG regs. */
388 -1, /* acc0_regnum */
389 -1, /* acc1_regnum */
390 -1, /* acc2_regnum */
391 -1, /* acc3_regnum */
392 -1, /* acc4_regnum */
393 -1, /* acc5_regnum */
394 -1, /* acc6_regnum */
395 -1, /* acc7_regnum */
396 -1, /* acc0123_regnum */
397 -1, /* acc4567_regnum */
398 H_SPR_MSR0, /* msr0_regnum */
399 H_SPR_MSR1, /* msr1_regnum */
400 H_SPR_GNER0, /* gner0_regnum */
401 H_SPR_GNER1, /* gner1_regnum */
402 H_SPR_FNER0, /* fner0_regnum */
403 H_SPR_FNER1, /* fner1_regnum */
526eef89
KB
404 };
405
e7faf938 406 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
526eef89
KB
407
408 if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
409 return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
410 else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
411 return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
412 else if (pc_regnum == reg)
413 return SIM_FRV_PC_REGNUM;
414 else if (reg >= first_spr_regnum
415 && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
416 {
417 int spr_reg_offset = spr_map[reg - first_spr_regnum];
418
419 if (spr_reg_offset < 0)
420 return SIM_REGNO_DOES_NOT_EXIST;
421 else
422 return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
423 }
424
e2e0b3e5 425 internal_error (__FILE__, __LINE__, _("Bad register number %d"), reg);
526eef89
KB
426}
427
456f8b9d 428static const unsigned char *
67d57894 429frv_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenp)
456f8b9d
DB
430{
431 static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
432 *lenp = sizeof (breakpoint);
433 return breakpoint;
434}
435
46a16dba
KB
436/* Define the maximum number of instructions which may be packed into a
437 bundle (VLIW instruction). */
438static const int max_instrs_per_bundle = 8;
439
440/* Define the size (in bytes) of an FR-V instruction. */
441static const int frv_instr_size = 4;
442
443/* Adjust a breakpoint's address to account for the FR-V architecture's
444 constraint that a break instruction must not appear as any but the
445 first instruction in the bundle. */
446static CORE_ADDR
1208538e 447frv_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
46a16dba
KB
448{
449 int count = max_instrs_per_bundle;
450 CORE_ADDR addr = bpaddr - frv_instr_size;
451 CORE_ADDR func_start = get_pc_function_start (bpaddr);
452
453 /* Find the end of the previous packing sequence. This will be indicated
454 by either attempting to access some inaccessible memory or by finding
0963b4bd 455 an instruction word whose packing bit is set to one. */
46a16dba
KB
456 while (count-- > 0 && addr >= func_start)
457 {
948f8e3d 458 gdb_byte instr[frv_instr_size];
46a16dba
KB
459 int status;
460
8defab1a 461 status = target_read_memory (addr, instr, sizeof instr);
46a16dba
KB
462
463 if (status != 0)
464 break;
465
466 /* This is a big endian architecture, so byte zero will have most
467 significant byte. The most significant bit of this byte is the
468 packing bit. */
469 if (instr[0] & 0x80)
470 break;
471
472 addr -= frv_instr_size;
473 }
474
475 if (count > 0)
476 bpaddr = addr + frv_instr_size;
477
478 return bpaddr;
479}
480
456f8b9d
DB
481
482/* Return true if REG is a caller-saves ("scratch") register,
483 false otherwise. */
484static int
485is_caller_saves_reg (int reg)
486{
487 return ((4 <= reg && reg <= 7)
488 || (14 <= reg && reg <= 15)
489 || (32 <= reg && reg <= 47));
490}
491
492
493/* Return true if REG is a callee-saves register, false otherwise. */
494static int
495is_callee_saves_reg (int reg)
496{
497 return ((16 <= reg && reg <= 31)
498 || (48 <= reg && reg <= 63));
499}
500
501
502/* Return true if REG is an argument register, false otherwise. */
503static int
504is_argument_reg (int reg)
505{
506 return (8 <= reg && reg <= 13);
507}
508
456f8b9d
DB
509/* Scan an FR-V prologue, starting at PC, until frame->PC.
510 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
511 We assume FRAME's saved_regs array has already been allocated and cleared.
512 Return the first PC value after the prologue.
513
514 Note that, for unoptimized code, we almost don't need this function
515 at all; all arguments and locals live on the stack, so we just need
516 the FP to find everything. The catch: structures passed by value
517 have their addresses living in registers; they're never spilled to
518 the stack. So if you ever want to be able to get to these
519 arguments in any frame but the top, you'll need to do this serious
520 prologue analysis. */
521static CORE_ADDR
d80b854b
UW
522frv_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
523 struct frame_info *this_frame,
1cb761c7 524 struct frv_unwind_cache *info)
456f8b9d 525{
e17a4113
UW
526 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
527
456f8b9d
DB
528 /* When writing out instruction bitpatterns, we use the following
529 letters to label instruction fields:
530 P - The parallel bit. We don't use this.
531 J - The register number of GRj in the instruction description.
532 K - The register number of GRk in the instruction description.
533 I - The register number of GRi.
534 S - a signed imediate offset.
535 U - an unsigned immediate offset.
536
537 The dots below the numbers indicate where hex digit boundaries
538 fall, to make it easier to check the numbers. */
539
540 /* Non-zero iff we've seen the instruction that initializes the
541 frame pointer for this function's frame. */
542 int fp_set = 0;
543
544 /* If fp_set is non_zero, then this is the distance from
545 the stack pointer to frame pointer: fp = sp + fp_offset. */
546 int fp_offset = 0;
547
0963b4bd 548 /* Total size of frame prior to any alloca operations. */
456f8b9d
DB
549 int framesize = 0;
550
1cb761c7
KB
551 /* Flag indicating if lr has been saved on the stack. */
552 int lr_saved_on_stack = 0;
553
456f8b9d
DB
554 /* The number of the general-purpose register we saved the return
555 address ("link register") in, or -1 if we haven't moved it yet. */
556 int lr_save_reg = -1;
557
1cb761c7
KB
558 /* Offset (from sp) at which lr has been saved on the stack. */
559
560 int lr_sp_offset = 0;
456f8b9d
DB
561
562 /* If gr_saved[i] is non-zero, then we've noticed that general
563 register i has been saved at gr_sp_offset[i] from the stack
564 pointer. */
565 char gr_saved[64];
566 int gr_sp_offset[64];
567
d40fcd7b
KB
568 /* The address of the most recently scanned prologue instruction. */
569 CORE_ADDR last_prologue_pc;
570
0963b4bd 571 /* The address of the next instruction. */
d40fcd7b
KB
572 CORE_ADDR next_pc;
573
574 /* The upper bound to of the pc values to scan. */
575 CORE_ADDR lim_pc;
576
456f8b9d
DB
577 memset (gr_saved, 0, sizeof (gr_saved));
578
d40fcd7b
KB
579 last_prologue_pc = pc;
580
581 /* Try to compute an upper limit (on how far to scan) based on the
582 line number info. */
d80b854b 583 lim_pc = skip_prologue_using_sal (gdbarch, pc);
d40fcd7b
KB
584 /* If there's no line number info, lim_pc will be 0. In that case,
585 set the limit to be 100 instructions away from pc. Hopefully, this
586 will be far enough away to account for the entire prologue. Don't
587 worry about overshooting the end of the function. The scan loop
588 below contains some checks to avoid scanning unreasonably far. */
589 if (lim_pc == 0)
590 lim_pc = pc + 400;
591
592 /* If we have a frame, we don't want to scan past the frame's pc. This
593 will catch those cases where the pc is in the prologue. */
94afd7a6 594 if (this_frame)
d40fcd7b 595 {
94afd7a6 596 CORE_ADDR frame_pc = get_frame_pc (this_frame);
d40fcd7b
KB
597 if (frame_pc < lim_pc)
598 lim_pc = frame_pc;
599 }
600
601 /* Scan the prologue. */
602 while (pc < lim_pc)
456f8b9d 603 {
e362b510 604 gdb_byte buf[frv_instr_size];
1ccda5e9
KB
605 LONGEST op;
606
607 if (target_read_memory (pc, buf, sizeof buf) != 0)
608 break;
e17a4113 609 op = extract_signed_integer (buf, sizeof buf, byte_order);
1ccda5e9 610
d40fcd7b 611 next_pc = pc + 4;
456f8b9d
DB
612
613 /* The tests in this chain of ifs should be in order of
614 decreasing selectivity, so that more particular patterns get
615 to fire before less particular patterns. */
616
d40fcd7b
KB
617 /* Some sort of control transfer instruction: stop scanning prologue.
618 Integer Conditional Branch:
619 X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
620 Floating-point / media Conditional Branch:
621 X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
622 LCR Conditional Branch to LR
623 X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
624 Integer conditional Branches to LR
625 X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
626 X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
627 Floating-point/Media Branches to LR
628 X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
629 X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
630 Jump and Link
631 X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
632 X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
633 Call
634 X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
635 Return from Trap
636 X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
637 Integer Conditional Trap
638 X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
639 X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
640 Floating-point /media Conditional Trap
641 X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
642 X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
643 Break
644 X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
645 Media Trap
646 X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
647 if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
648 || (op & 0x01f80000) == 0x00300000 /* Jump and Link */
649 || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
650 || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
651 {
652 /* Stop scanning; not in prologue any longer. */
653 break;
654 }
655
656 /* Loading something from memory into fp probably means that
657 we're in the epilogue. Stop scanning the prologue.
658 ld @(GRi, GRk), fp
659 X 000010 0000010 XXXXXX 000100 XXXXXX
660 ldi @(GRi, d12), fp
661 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
662 else if ((op & 0x7ffc0fc0) == 0x04080100
663 || (op & 0x7ffc0000) == 0x04c80000)
664 {
665 break;
666 }
667
456f8b9d
DB
668 /* Setting the FP from the SP:
669 ori sp, 0, fp
670 P 000010 0100010 000001 000000000000 = 0x04881000
671 0 111111 1111111 111111 111111111111 = 0x7fffffff
672 . . . . . . . .
673 We treat this as part of the prologue. */
d40fcd7b 674 else if ((op & 0x7fffffff) == 0x04881000)
456f8b9d
DB
675 {
676 fp_set = 1;
677 fp_offset = 0;
d40fcd7b 678 last_prologue_pc = next_pc;
456f8b9d
DB
679 }
680
681 /* Move the link register to the scratch register grJ, before saving:
682 movsg lr, grJ
683 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
684 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
685 . . . . . . . .
686 We treat this as part of the prologue. */
687 else if ((op & 0x7fffffc0) == 0x080d01c0)
688 {
689 int gr_j = op & 0x3f;
690
691 /* If we're moving it to a scratch register, that's fine. */
692 if (is_caller_saves_reg (gr_j))
d40fcd7b
KB
693 {
694 lr_save_reg = gr_j;
695 last_prologue_pc = next_pc;
696 }
456f8b9d
DB
697 }
698
699 /* To save multiple callee-saves registers on the stack, at
700 offset zero:
701
702 std grK,@(sp,gr0)
703 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
704 0 000000 1111111 111111 111111 111111 = 0x01ffffff
705
706 stq grK,@(sp,gr0)
707 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
708 0 000000 1111111 111111 111111 111111 = 0x01ffffff
709 . . . . . . . .
710 We treat this as part of the prologue, and record the register's
711 saved address in the frame structure. */
712 else if ((op & 0x01ffffff) == 0x000c10c0
713 || (op & 0x01ffffff) == 0x000c1100)
714 {
715 int gr_k = ((op >> 25) & 0x3f);
716 int ope = ((op >> 6) & 0x3f);
717 int count;
718 int i;
719
720 /* Is it an std or an stq? */
721 if (ope == 0x03)
722 count = 2;
723 else
724 count = 4;
725
726 /* Is it really a callee-saves register? */
727 if (is_callee_saves_reg (gr_k))
728 {
729 for (i = 0; i < count; i++)
730 {
731 gr_saved[gr_k + i] = 1;
732 gr_sp_offset[gr_k + i] = 4 * i;
733 }
d40fcd7b 734 last_prologue_pc = next_pc;
456f8b9d 735 }
456f8b9d
DB
736 }
737
738 /* Adjusting the stack pointer. (The stack pointer is GR1.)
739 addi sp, S, sp
740 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
741 0 111111 1111111 111111 000000000000 = 0x7ffff000
742 . . . . . . . .
743 We treat this as part of the prologue. */
744 else if ((op & 0x7ffff000) == 0x02401000)
745 {
d40fcd7b
KB
746 if (framesize == 0)
747 {
748 /* Sign-extend the twelve-bit field.
749 (Isn't there a better way to do this?) */
750 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
456f8b9d 751
d40fcd7b
KB
752 framesize -= s;
753 last_prologue_pc = pc;
754 }
755 else
756 {
757 /* If the prologue is being adjusted again, we've
758 likely gone too far; i.e. we're probably in the
759 epilogue. */
760 break;
761 }
456f8b9d
DB
762 }
763
764 /* Setting the FP to a constant distance from the SP:
765 addi sp, S, fp
766 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
767 0 111111 1111111 111111 000000000000 = 0x7ffff000
768 . . . . . . . .
769 We treat this as part of the prologue. */
770 else if ((op & 0x7ffff000) == 0x04401000)
771 {
772 /* Sign-extend the twelve-bit field.
773 (Isn't there a better way to do this?) */
774 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
775 fp_set = 1;
776 fp_offset = s;
d40fcd7b 777 last_prologue_pc = pc;
456f8b9d
DB
778 }
779
780 /* To spill an argument register to a scratch register:
781 ori GRi, 0, GRk
782 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
783 0 000000 1111111 000000 111111111111 = 0x01fc0fff
784 . . . . . . . .
785 For the time being, we treat this as a prologue instruction,
786 assuming that GRi is an argument register. This one's kind
787 of suspicious, because it seems like it could be part of a
788 legitimate body instruction. But we only come here when the
789 source info wasn't helpful, so we have to do the best we can.
790 Hopefully once GCC and GDB agree on how to emit line number
791 info for prologues, then this code will never come into play. */
792 else if ((op & 0x01fc0fff) == 0x00880000)
793 {
794 int gr_i = ((op >> 12) & 0x3f);
795
d40fcd7b
KB
796 /* Make sure that the source is an arg register; if it is, we'll
797 treat it as a prologue instruction. */
798 if (is_argument_reg (gr_i))
799 last_prologue_pc = next_pc;
456f8b9d
DB
800 }
801
802 /* To spill 16-bit values to the stack:
803 sthi GRk, @(fp, s)
804 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
805 0 000000 1111111 111111 000000000000 = 0x01fff000
806 . . . . . . . .
807 And for 8-bit values, we use STB instructions.
808 stbi GRk, @(fp, s)
809 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
810 0 000000 1111111 111111 000000000000 = 0x01fff000
811 . . . . . . . .
812 We check that GRk is really an argument register, and treat
813 all such as part of the prologue. */
814 else if ( (op & 0x01fff000) == 0x01442000
815 || (op & 0x01fff000) == 0x01402000)
816 {
817 int gr_k = ((op >> 25) & 0x3f);
818
d40fcd7b
KB
819 /* Make sure that GRk is really an argument register; treat
820 it as a prologue instruction if so. */
821 if (is_argument_reg (gr_k))
822 last_prologue_pc = next_pc;
456f8b9d
DB
823 }
824
825 /* To save multiple callee-saves register on the stack, at a
826 non-zero offset:
827
828 stdi GRk, @(sp, s)
829 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
830 0 000000 1111111 111111 000000000000 = 0x01fff000
831 . . . . . . . .
832 stqi GRk, @(sp, s)
833 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
834 0 000000 1111111 111111 000000000000 = 0x01fff000
835 . . . . . . . .
836 We treat this as part of the prologue, and record the register's
837 saved address in the frame structure. */
838 else if ((op & 0x01fff000) == 0x014c1000
839 || (op & 0x01fff000) == 0x01501000)
840 {
841 int gr_k = ((op >> 25) & 0x3f);
842 int count;
843 int i;
844
845 /* Is it a stdi or a stqi? */
846 if ((op & 0x01fff000) == 0x014c1000)
847 count = 2;
848 else
849 count = 4;
850
851 /* Is it really a callee-saves register? */
852 if (is_callee_saves_reg (gr_k))
853 {
854 /* Sign-extend the twelve-bit field.
855 (Isn't there a better way to do this?) */
856 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
857
858 for (i = 0; i < count; i++)
859 {
860 gr_saved[gr_k + i] = 1;
861 gr_sp_offset[gr_k + i] = s + (4 * i);
862 }
d40fcd7b 863 last_prologue_pc = next_pc;
456f8b9d 864 }
456f8b9d
DB
865 }
866
867 /* Storing any kind of integer register at any constant offset
868 from any other register.
869
870 st GRk, @(GRi, gr0)
871 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
872 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
873 . . . . . . . .
874 sti GRk, @(GRi, d12)
875 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
876 0 000000 1111111 000000 000000000000 = 0x01fc0000
877 . . . . . . . .
878 These could be almost anything, but a lot of prologue
879 instructions fall into this pattern, so let's decode the
880 instruction once, and then work at a higher level. */
881 else if (((op & 0x01fc0fff) == 0x000c0080)
882 || ((op & 0x01fc0000) == 0x01480000))
883 {
884 int gr_k = ((op >> 25) & 0x3f);
885 int gr_i = ((op >> 12) & 0x3f);
886 int offset;
887
888 /* Are we storing with gr0 as an offset, or using an
889 immediate value? */
890 if ((op & 0x01fc0fff) == 0x000c0080)
891 offset = 0;
892 else
893 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
894
895 /* If the address isn't relative to the SP or FP, it's not a
896 prologue instruction. */
897 if (gr_i != sp_regnum && gr_i != fp_regnum)
d40fcd7b
KB
898 {
899 /* Do nothing; not a prologue instruction. */
900 }
456f8b9d
DB
901
902 /* Saving the old FP in the new frame (relative to the SP). */
d40fcd7b 903 else if (gr_k == fp_regnum && gr_i == sp_regnum)
1cb761c7
KB
904 {
905 gr_saved[fp_regnum] = 1;
906 gr_sp_offset[fp_regnum] = offset;
d40fcd7b 907 last_prologue_pc = next_pc;
1cb761c7 908 }
456f8b9d
DB
909
910 /* Saving callee-saves register(s) on the stack, relative to
911 the SP. */
912 else if (gr_i == sp_regnum
913 && is_callee_saves_reg (gr_k))
914 {
915 gr_saved[gr_k] = 1;
1cb761c7
KB
916 if (gr_i == sp_regnum)
917 gr_sp_offset[gr_k] = offset;
918 else
919 gr_sp_offset[gr_k] = offset + fp_offset;
d40fcd7b 920 last_prologue_pc = next_pc;
456f8b9d
DB
921 }
922
923 /* Saving the scratch register holding the return address. */
924 else if (lr_save_reg != -1
925 && gr_k == lr_save_reg)
1cb761c7
KB
926 {
927 lr_saved_on_stack = 1;
928 if (gr_i == sp_regnum)
929 lr_sp_offset = offset;
930 else
931 lr_sp_offset = offset + fp_offset;
d40fcd7b 932 last_prologue_pc = next_pc;
1cb761c7 933 }
456f8b9d
DB
934
935 /* Spilling int-sized arguments to the stack. */
936 else if (is_argument_reg (gr_k))
d40fcd7b 937 last_prologue_pc = next_pc;
456f8b9d 938 }
d40fcd7b 939 pc = next_pc;
456f8b9d
DB
940 }
941
94afd7a6 942 if (this_frame && info)
456f8b9d 943 {
1cb761c7
KB
944 int i;
945 ULONGEST this_base;
456f8b9d
DB
946
947 /* If we know the relationship between the stack and frame
948 pointers, record the addresses of the registers we noticed.
949 Note that we have to do this as a separate step at the end,
950 because instructions may save relative to the SP, but we need
951 their addresses relative to the FP. */
952 if (fp_set)
94afd7a6 953 this_base = get_frame_register_unsigned (this_frame, fp_regnum);
1cb761c7 954 else
94afd7a6 955 this_base = get_frame_register_unsigned (this_frame, sp_regnum);
456f8b9d 956
1cb761c7
KB
957 for (i = 0; i < 64; i++)
958 if (gr_saved[i])
959 info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i];
456f8b9d 960
1cb761c7
KB
961 info->prev_sp = this_base - fp_offset + framesize;
962 info->base = this_base;
963
964 /* If LR was saved on the stack, record its location. */
965 if (lr_saved_on_stack)
0963b4bd
MS
966 info->saved_regs[lr_regnum].addr
967 = this_base - fp_offset + lr_sp_offset;
1cb761c7
KB
968
969 /* The call instruction moves the caller's PC in the callee's LR.
970 Since this is an unwind, do the reverse. Copy the location of LR
971 into PC (the address / regnum) so that a request for PC will be
972 converted into a request for the LR. */
973 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
974
975 /* Save the previous frame's computed SP value. */
976 trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp);
456f8b9d
DB
977 }
978
d40fcd7b 979 return last_prologue_pc;
456f8b9d
DB
980}
981
982
983static CORE_ADDR
6093d2eb 984frv_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
456f8b9d
DB
985{
986 CORE_ADDR func_addr, func_end, new_pc;
987
988 new_pc = pc;
989
990 /* If the line table has entry for a line *within* the function
991 (i.e., not in the prologue, and not past the end), then that's
992 our location. */
993 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
994 {
995 struct symtab_and_line sal;
996
997 sal = find_pc_line (func_addr, 0);
998
999 if (sal.line != 0 && sal.end < func_end)
1000 {
1001 new_pc = sal.end;
1002 }
1003 }
1004
1005 /* The FR-V prologue is at least five instructions long (twenty bytes).
1006 If we didn't find a real source location past that, then
1007 do a full analysis of the prologue. */
1008 if (new_pc < pc + 20)
d80b854b 1009 new_pc = frv_analyze_prologue (gdbarch, pc, 0, 0);
456f8b9d
DB
1010
1011 return new_pc;
1012}
1013
1cb761c7 1014
9bc7b6c6
KB
1015/* Examine the instruction pointed to by PC. If it corresponds to
1016 a call to __main, return the address of the next instruction.
1017 Otherwise, return PC. */
1018
1019static CORE_ADDR
1020frv_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1021{
e17a4113 1022 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9bc7b6c6
KB
1023 gdb_byte buf[4];
1024 unsigned long op;
1025 CORE_ADDR orig_pc = pc;
1026
1027 if (target_read_memory (pc, buf, 4))
1028 return pc;
e17a4113 1029 op = extract_unsigned_integer (buf, 4, byte_order);
9bc7b6c6
KB
1030
1031 /* In PIC code, GR15 may be loaded from some offset off of FP prior
1032 to the call instruction.
1033
1034 Skip over this instruction if present. It won't be present in
0963b4bd 1035 non-PIC code, and even in PIC code, it might not be present.
9bc7b6c6
KB
1036 (This is due to the fact that GR15, the FDPIC register, already
1037 contains the correct value.)
1038
1039 The general form of the LDI is given first, followed by the
1040 specific instruction with the GRi and GRk filled in as FP and
1041 GR15.
1042
1043 ldi @(GRi, d12), GRk
1044 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x00c80000
1045 0 000000 1111111 000000 000000000000 = 0x01fc0000
1046 . . . . . . . .
1047 ldi @(FP, d12), GR15
1048 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x1ec82000
1049 0 001111 1111111 000010 000000000000 = 0x7ffff000
1050 . . . . . . . . */
1051
1052 if ((op & 0x7ffff000) == 0x1ec82000)
1053 {
1054 pc += 4;
1055 if (target_read_memory (pc, buf, 4))
1056 return orig_pc;
e17a4113 1057 op = extract_unsigned_integer (buf, 4, byte_order);
9bc7b6c6
KB
1058 }
1059
1060 /* The format of an FRV CALL instruction is as follows:
1061
1062 call label24
1063 P HHHHHH 0001111 LLLLLLLLLLLLLLLLLL = 0x003c0000
1064 0 000000 1111111 000000000000000000 = 0x01fc0000
1065 . . . . . . . .
1066
1067 where label24 is constructed by concatenating the H bits with the
1068 L bits. The call target is PC + (4 * sign_ext(label24)). */
1069
1070 if ((op & 0x01fc0000) == 0x003c0000)
1071 {
1072 LONGEST displ;
1073 CORE_ADDR call_dest;
7cbd4a93 1074 struct bound_minimal_symbol s;
9bc7b6c6
KB
1075
1076 displ = ((op & 0xfe000000) >> 7) | (op & 0x0003ffff);
1077 if ((displ & 0x00800000) != 0)
1078 displ |= ~((LONGEST) 0x00ffffff);
1079
1080 call_dest = pc + 4 * displ;
1081 s = lookup_minimal_symbol_by_pc (call_dest);
1082
7cbd4a93 1083 if (s.minsym != NULL
efd66ac6
TT
1084 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1085 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
9bc7b6c6
KB
1086 {
1087 pc += 4;
1088 return pc;
1089 }
1090 }
1091 return orig_pc;
1092}
1093
1094
1cb761c7 1095static struct frv_unwind_cache *
94afd7a6 1096frv_frame_unwind_cache (struct frame_info *this_frame,
1cb761c7 1097 void **this_prologue_cache)
456f8b9d 1098{
94afd7a6 1099 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1cb761c7 1100 struct frv_unwind_cache *info;
8baa6f92 1101
1cb761c7
KB
1102 if ((*this_prologue_cache))
1103 return (*this_prologue_cache);
456f8b9d 1104
1cb761c7
KB
1105 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
1106 (*this_prologue_cache) = info;
94afd7a6 1107 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
456f8b9d 1108
1cb761c7 1109 /* Prologue analysis does the rest... */
d80b854b
UW
1110 frv_analyze_prologue (gdbarch,
1111 get_frame_func (this_frame), this_frame, info);
456f8b9d 1112
1cb761c7 1113 return info;
456f8b9d
DB
1114}
1115
456f8b9d 1116static void
cd31fb03 1117frv_extract_return_value (struct type *type, struct regcache *regcache,
e2b7c966 1118 gdb_byte *valbuf)
456f8b9d 1119{
e17a4113
UW
1120 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1121 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cd31fb03
KB
1122 int len = TYPE_LENGTH (type);
1123
1124 if (len <= 4)
1125 {
1126 ULONGEST gpr8_val;
1127 regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
e17a4113 1128 store_unsigned_integer (valbuf, len, byte_order, gpr8_val);
cd31fb03
KB
1129 }
1130 else if (len == 8)
1131 {
1132 ULONGEST regval;
0963b4bd 1133
cd31fb03 1134 regcache_cooked_read_unsigned (regcache, 8, &regval);
e17a4113 1135 store_unsigned_integer (valbuf, 4, byte_order, regval);
cd31fb03 1136 regcache_cooked_read_unsigned (regcache, 9, &regval);
e17a4113 1137 store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, byte_order, regval);
cd31fb03
KB
1138 }
1139 else
0963b4bd
MS
1140 internal_error (__FILE__, __LINE__,
1141 _("Illegal return value length: %d"), len);
456f8b9d
DB
1142}
1143
1cb761c7
KB
1144static CORE_ADDR
1145frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
456f8b9d 1146{
1cb761c7 1147 /* Require dword alignment. */
5b03f266 1148 return align_down (sp, 8);
456f8b9d
DB
1149}
1150
c4d10515
KB
1151static CORE_ADDR
1152find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point)
1153{
e17a4113 1154 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c4d10515 1155 CORE_ADDR descr;
948f8e3d 1156 gdb_byte valbuf[4];
35e08e03
KB
1157 CORE_ADDR start_addr;
1158
1159 /* If we can't find the function in the symbol table, then we assume
1160 that the function address is already in descriptor form. */
1161 if (!find_pc_partial_function (entry_point, NULL, &start_addr, NULL)
1162 || entry_point != start_addr)
1163 return entry_point;
c4d10515
KB
1164
1165 descr = frv_fdpic_find_canonical_descriptor (entry_point);
1166
1167 if (descr != 0)
1168 return descr;
1169
1170 /* Construct a non-canonical descriptor from space allocated on
1171 the stack. */
1172
1173 descr = value_as_long (value_allocate_space_in_inferior (8));
e17a4113 1174 store_unsigned_integer (valbuf, 4, byte_order, entry_point);
c4d10515 1175 write_memory (descr, valbuf, 4);
e17a4113 1176 store_unsigned_integer (valbuf, 4, byte_order,
c4d10515
KB
1177 frv_fdpic_find_global_pointer (entry_point));
1178 write_memory (descr + 4, valbuf, 4);
1179 return descr;
1180}
1181
1182static CORE_ADDR
1183frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1184 struct target_ops *targ)
1185{
e17a4113 1186 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c4d10515
KB
1187 CORE_ADDR entry_point;
1188 CORE_ADDR got_address;
1189
e17a4113
UW
1190 entry_point = get_target_memory_unsigned (targ, addr, 4, byte_order);
1191 got_address = get_target_memory_unsigned (targ, addr + 4, 4, byte_order);
c4d10515
KB
1192
1193 if (got_address == frv_fdpic_find_global_pointer (entry_point))
1194 return entry_point;
1195 else
1196 return addr;
1197}
1198
456f8b9d 1199static CORE_ADDR
7d9b040b 1200frv_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1cb761c7
KB
1201 struct regcache *regcache, CORE_ADDR bp_addr,
1202 int nargs, struct value **args, CORE_ADDR sp,
1203 int struct_return, CORE_ADDR struct_addr)
456f8b9d 1204{
e17a4113 1205 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
456f8b9d
DB
1206 int argreg;
1207 int argnum;
948f8e3d
PA
1208 const gdb_byte *val;
1209 gdb_byte valbuf[4];
456f8b9d
DB
1210 struct value *arg;
1211 struct type *arg_type;
1212 int len;
1213 enum type_code typecode;
1214 CORE_ADDR regval;
1215 int stack_space;
1216 int stack_offset;
c4d10515 1217 enum frv_abi abi = frv_abi (gdbarch);
7d9b040b 1218 CORE_ADDR func_addr = find_function_addr (function, NULL);
456f8b9d
DB
1219
1220#if 0
1221 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1222 nargs, (int) sp, struct_return, struct_addr);
1223#endif
1224
1225 stack_space = 0;
1226 for (argnum = 0; argnum < nargs; ++argnum)
4991999e 1227 stack_space += align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
456f8b9d
DB
1228
1229 stack_space -= (6 * 4);
1230 if (stack_space > 0)
1231 sp -= stack_space;
1232
0963b4bd 1233 /* Make sure stack is dword aligned. */
5b03f266 1234 sp = align_down (sp, 8);
456f8b9d
DB
1235
1236 stack_offset = 0;
1237
1238 argreg = 8;
1239
1240 if (struct_return)
1cb761c7
KB
1241 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
1242 struct_addr);
456f8b9d
DB
1243
1244 for (argnum = 0; argnum < nargs; ++argnum)
1245 {
1246 arg = args[argnum];
4991999e 1247 arg_type = check_typedef (value_type (arg));
456f8b9d
DB
1248 len = TYPE_LENGTH (arg_type);
1249 typecode = TYPE_CODE (arg_type);
1250
1251 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1252 {
e17a4113
UW
1253 store_unsigned_integer (valbuf, 4, byte_order,
1254 value_address (arg));
456f8b9d
DB
1255 typecode = TYPE_CODE_PTR;
1256 len = 4;
1257 val = valbuf;
1258 }
c4d10515
KB
1259 else if (abi == FRV_ABI_FDPIC
1260 && len == 4
1261 && typecode == TYPE_CODE_PTR
1262 && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
1263 {
1264 /* The FDPIC ABI requires function descriptors to be passed instead
1265 of entry points. */
e17a4113
UW
1266 CORE_ADDR addr = extract_unsigned_integer
1267 (value_contents (arg), 4, byte_order);
1268 addr = find_func_descr (gdbarch, addr);
1269 store_unsigned_integer (valbuf, 4, byte_order, addr);
c4d10515
KB
1270 typecode = TYPE_CODE_PTR;
1271 len = 4;
1272 val = valbuf;
1273 }
456f8b9d
DB
1274 else
1275 {
948f8e3d 1276 val = value_contents (arg);
456f8b9d
DB
1277 }
1278
1279 while (len > 0)
1280 {
1281 int partial_len = (len < 4 ? len : 4);
1282
1283 if (argreg < 14)
1284 {
e17a4113 1285 regval = extract_unsigned_integer (val, partial_len, byte_order);
456f8b9d
DB
1286#if 0
1287 printf(" Argnum %d data %x -> reg %d\n",
1288 argnum, (int) regval, argreg);
1289#endif
1cb761c7 1290 regcache_cooked_write_unsigned (regcache, argreg, regval);
456f8b9d
DB
1291 ++argreg;
1292 }
1293 else
1294 {
1295#if 0
1296 printf(" Argnum %d data %x -> offset %d (%x)\n",
0963b4bd
MS
1297 argnum, *((int *)val), stack_offset,
1298 (int) (sp + stack_offset));
456f8b9d
DB
1299#endif
1300 write_memory (sp + stack_offset, val, partial_len);
5b03f266 1301 stack_offset += align_up (partial_len, 4);
456f8b9d
DB
1302 }
1303 len -= partial_len;
1304 val += partial_len;
1305 }
1306 }
456f8b9d 1307
1cb761c7
KB
1308 /* Set the return address. For the frv, the return breakpoint is
1309 always at BP_ADDR. */
1310 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
1311
c4d10515
KB
1312 if (abi == FRV_ABI_FDPIC)
1313 {
1314 /* Set the GOT register for the FDPIC ABI. */
1315 regcache_cooked_write_unsigned
1316 (regcache, first_gpr_regnum + 15,
1317 frv_fdpic_find_global_pointer (func_addr));
1318 }
1319
1cb761c7
KB
1320 /* Finally, update the SP register. */
1321 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1322
456f8b9d
DB
1323 return sp;
1324}
1325
1326static void
cd31fb03 1327frv_store_return_value (struct type *type, struct regcache *regcache,
e2b7c966 1328 const gdb_byte *valbuf)
456f8b9d 1329{
cd31fb03
KB
1330 int len = TYPE_LENGTH (type);
1331
1332 if (len <= 4)
1333 {
1334 bfd_byte val[4];
1335 memset (val, 0, sizeof (val));
1336 memcpy (val + (4 - len), valbuf, len);
1337 regcache_cooked_write (regcache, 8, val);
1338 }
1339 else if (len == 8)
1340 {
1341 regcache_cooked_write (regcache, 8, valbuf);
1342 regcache_cooked_write (regcache, 9, (bfd_byte *) valbuf + 4);
1343 }
456f8b9d
DB
1344 else
1345 internal_error (__FILE__, __LINE__,
e2e0b3e5 1346 _("Don't know how to return a %d-byte value."), len);
456f8b9d
DB
1347}
1348
63807e1d 1349static enum return_value_convention
6a3a010b 1350frv_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
1351 struct type *valtype, struct regcache *regcache,
1352 gdb_byte *readbuf, const gdb_byte *writebuf)
4c8b6ae0
UW
1353{
1354 int struct_return = TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1355 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1356 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY;
1357
1358 if (writebuf != NULL)
1359 {
1360 gdb_assert (!struct_return);
1361 frv_store_return_value (valtype, regcache, writebuf);
1362 }
1363
1364 if (readbuf != NULL)
1365 {
1366 gdb_assert (!struct_return);
1367 frv_extract_return_value (valtype, regcache, readbuf);
1368 }
1369
1370 if (struct_return)
1371 return RETURN_VALUE_STRUCT_CONVENTION;
1372 else
1373 return RETURN_VALUE_REGISTER_CONVENTION;
456f8b9d
DB
1374}
1375
1cb761c7
KB
1376static CORE_ADDR
1377frv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1378{
1379 return frame_unwind_register_unsigned (next_frame, pc_regnum);
1380}
1381
1382/* Given a GDB frame, determine the address of the calling function's
1383 frame. This will be used to create a new GDB frame struct. */
1384
1385static void
94afd7a6 1386frv_frame_this_id (struct frame_info *this_frame,
1cb761c7
KB
1387 void **this_prologue_cache, struct frame_id *this_id)
1388{
1389 struct frv_unwind_cache *info
94afd7a6 1390 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1cb761c7
KB
1391 CORE_ADDR base;
1392 CORE_ADDR func;
3b7344d5 1393 struct bound_minimal_symbol msym_stack;
1cb761c7
KB
1394 struct frame_id id;
1395
1396 /* The FUNC is easy. */
94afd7a6 1397 func = get_frame_func (this_frame);
1cb761c7 1398
1cb761c7
KB
1399 /* Check if the stack is empty. */
1400 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
77e371c0 1401 if (msym_stack.minsym && info->base == BMSYMBOL_VALUE_ADDRESS (msym_stack))
1cb761c7
KB
1402 return;
1403
1404 /* Hopefully the prologue analysis either correctly determined the
1405 frame's base (which is the SP from the previous frame), or set
1406 that base to "NULL". */
1407 base = info->prev_sp;
1408 if (base == 0)
1409 return;
1410
1411 id = frame_id_build (base, func);
1cb761c7
KB
1412 (*this_id) = id;
1413}
1414
94afd7a6
UW
1415static struct value *
1416frv_frame_prev_register (struct frame_info *this_frame,
1417 void **this_prologue_cache, int regnum)
1cb761c7
KB
1418{
1419 struct frv_unwind_cache *info
94afd7a6
UW
1420 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1421 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1cb761c7
KB
1422}
1423
1424static const struct frame_unwind frv_frame_unwind = {
1425 NORMAL_FRAME,
8fbca658 1426 default_frame_unwind_stop_reason,
1cb761c7 1427 frv_frame_this_id,
94afd7a6
UW
1428 frv_frame_prev_register,
1429 NULL,
1430 default_frame_sniffer
1cb761c7
KB
1431};
1432
1cb761c7 1433static CORE_ADDR
94afd7a6 1434frv_frame_base_address (struct frame_info *this_frame, void **this_cache)
1cb761c7
KB
1435{
1436 struct frv_unwind_cache *info
94afd7a6 1437 = frv_frame_unwind_cache (this_frame, this_cache);
1cb761c7
KB
1438 return info->base;
1439}
1440
1441static const struct frame_base frv_frame_base = {
1442 &frv_frame_unwind,
1443 frv_frame_base_address,
1444 frv_frame_base_address,
1445 frv_frame_base_address
1446};
1447
1448static CORE_ADDR
1449frv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1450{
1451 return frame_unwind_register_unsigned (next_frame, sp_regnum);
1452}
1453
1454
94afd7a6
UW
1455/* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1456 frame. The frame ID's base needs to match the TOS value saved by
1457 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1cb761c7
KB
1458
1459static struct frame_id
94afd7a6 1460frv_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1cb761c7 1461{
94afd7a6
UW
1462 CORE_ADDR sp = get_frame_register_unsigned (this_frame, sp_regnum);
1463 return frame_id_build (sp, get_frame_pc (this_frame));
1cb761c7
KB
1464}
1465
456f8b9d
DB
1466static struct gdbarch *
1467frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1468{
1469 struct gdbarch *gdbarch;
1470 struct gdbarch_tdep *var;
7e295833 1471 int elf_flags = 0;
456f8b9d
DB
1472
1473 /* Check to see if we've already built an appropriate architecture
1474 object for this executable. */
1475 arches = gdbarch_list_lookup_by_info (arches, &info);
1476 if (arches)
1477 return arches->gdbarch;
1478
1479 /* Select the right tdep structure for this variant. */
1480 var = new_variant ();
1481 switch (info.bfd_arch_info->mach)
1482 {
1483 case bfd_mach_frv:
1484 case bfd_mach_frvsimple:
1485 case bfd_mach_fr500:
1486 case bfd_mach_frvtomcat:
251a3ae3 1487 case bfd_mach_fr550:
456f8b9d
DB
1488 set_variant_num_gprs (var, 64);
1489 set_variant_num_fprs (var, 64);
1490 break;
1491
1492 case bfd_mach_fr400:
b2d6d697 1493 case bfd_mach_fr450:
456f8b9d
DB
1494 set_variant_num_gprs (var, 32);
1495 set_variant_num_fprs (var, 32);
1496 break;
1497
1498 default:
1499 /* Never heard of this variant. */
1500 return 0;
1501 }
7e295833
KB
1502
1503 /* Extract the ELF flags, if available. */
1504 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1505 elf_flags = elf_elfheader (info.abfd)->e_flags;
1506
1507 if (elf_flags & EF_FRV_FDPIC)
1508 set_variant_abi_fdpic (var);
1509
b2d6d697
KB
1510 if (elf_flags & EF_FRV_CPU_FR450)
1511 set_variant_scratch_registers (var);
1512
456f8b9d
DB
1513 gdbarch = gdbarch_alloc (&info, var);
1514
1515 set_gdbarch_short_bit (gdbarch, 16);
1516 set_gdbarch_int_bit (gdbarch, 32);
1517 set_gdbarch_long_bit (gdbarch, 32);
1518 set_gdbarch_long_long_bit (gdbarch, 64);
1519 set_gdbarch_float_bit (gdbarch, 32);
1520 set_gdbarch_double_bit (gdbarch, 64);
1521 set_gdbarch_long_double_bit (gdbarch, 64);
1522 set_gdbarch_ptr_bit (gdbarch, 32);
1523
1524 set_gdbarch_num_regs (gdbarch, frv_num_regs);
6a748db6
KB
1525 set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1526
456f8b9d 1527 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
0ba6dca9 1528 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
456f8b9d
DB
1529 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1530
1531 set_gdbarch_register_name (gdbarch, frv_register_name);
7f398216 1532 set_gdbarch_register_type (gdbarch, frv_register_type);
526eef89 1533 set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
456f8b9d 1534
6a748db6
KB
1535 set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
1536 set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
1537
456f8b9d 1538 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
9bc7b6c6 1539 set_gdbarch_skip_main_prologue (gdbarch, frv_skip_main_prologue);
456f8b9d 1540 set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
1208538e
MK
1541 set_gdbarch_adjust_breakpoint_address
1542 (gdbarch, frv_adjust_breakpoint_address);
456f8b9d 1543
4c8b6ae0 1544 set_gdbarch_return_value (gdbarch, frv_return_value);
456f8b9d 1545
1cb761c7
KB
1546 /* Frame stuff. */
1547 set_gdbarch_unwind_pc (gdbarch, frv_unwind_pc);
1548 set_gdbarch_unwind_sp (gdbarch, frv_unwind_sp);
1549 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1cb761c7 1550 frame_base_set_default (gdbarch, &frv_frame_base);
5ecb7103
KB
1551 /* We set the sniffer lower down after the OSABI hooks have been
1552 established. */
456f8b9d 1553
1cb761c7
KB
1554 /* Settings for calling functions in the inferior. */
1555 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
94afd7a6 1556 set_gdbarch_dummy_id (gdbarch, frv_dummy_id);
456f8b9d
DB
1557
1558 /* Settings that should be unnecessary. */
1559 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1560
456f8b9d
DB
1561 /* Hardware watchpoint / breakpoint support. */
1562 switch (info.bfd_arch_info->mach)
1563 {
1564 case bfd_mach_frv:
1565 case bfd_mach_frvsimple:
1566 case bfd_mach_fr500:
1567 case bfd_mach_frvtomcat:
1568 /* fr500-style hardware debugging support. */
1569 var->num_hw_watchpoints = 4;
1570 var->num_hw_breakpoints = 4;
1571 break;
1572
1573 case bfd_mach_fr400:
b2d6d697 1574 case bfd_mach_fr450:
456f8b9d
DB
1575 /* fr400-style hardware debugging support. */
1576 var->num_hw_watchpoints = 2;
1577 var->num_hw_breakpoints = 4;
1578 break;
1579
1580 default:
1581 /* Otherwise, assume we don't have hardware debugging support. */
1582 var->num_hw_watchpoints = 0;
1583 var->num_hw_breakpoints = 0;
1584 break;
1585 }
1586
36482093 1587 set_gdbarch_print_insn (gdbarch, print_insn_frv);
c4d10515
KB
1588 if (frv_abi (gdbarch) == FRV_ABI_FDPIC)
1589 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1590 frv_convert_from_func_ptr_addr);
36482093 1591
917630e4
UW
1592 set_solib_ops (gdbarch, &frv_so_ops);
1593
5ecb7103
KB
1594 /* Hook in ABI-specific overrides, if they have been registered. */
1595 gdbarch_init_osabi (info, gdbarch);
1596
5ecb7103 1597 /* Set the fallback (prologue based) frame sniffer. */
94afd7a6 1598 frame_unwind_append_unwinder (gdbarch, &frv_frame_unwind);
5ecb7103 1599
186993b4
KB
1600 /* Enable TLS support. */
1601 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1602 frv_fetch_objfile_link_map);
1603
456f8b9d
DB
1604 return gdbarch;
1605}
1606
1607void
1608_initialize_frv_tdep (void)
1609{
1610 register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
456f8b9d 1611}
This page took 1.122844 seconds and 4 git commands to generate.