Class reg_buffer
[deliverable/binutils-gdb.git] / gdb / frv-tdep.c
CommitLineData
456f8b9d 1/* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
0fd88904 2
e2882c85 3 Copyright (C) 2002-2018 Free Software Foundation, Inc.
456f8b9d
DB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
456f8b9d
DB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
456f8b9d
DB
19
20#include "defs.h"
21#include "inferior.h"
456f8b9d
DB
22#include "gdbcore.h"
23#include "arch-utils.h"
24#include "regcache.h"
8baa6f92 25#include "frame.h"
1cb761c7
KB
26#include "frame-unwind.h"
27#include "frame-base.h"
8baa6f92 28#include "trad-frame.h"
dcc6aaff 29#include "dis-asm.h"
526eef89
KB
30#include "sim-regno.h"
31#include "gdb/sim-frv.h"
32#include "opcodes/frv-desc.h" /* for the H_SPR_... enums */
634aa483 33#include "symtab.h"
7e295833
KB
34#include "elf-bfd.h"
35#include "elf/frv.h"
36#include "osabi.h"
7d9b040b 37#include "infcall.h"
917630e4 38#include "solib.h"
7e295833 39#include "frv-tdep.h"
77e371c0 40#include "objfiles.h"
456f8b9d 41
1cb761c7 42struct frv_unwind_cache /* was struct frame_extra_info */
456f8b9d 43 {
1cb761c7
KB
44 /* The previous frame's inner-most stack address. Used as this
45 frame ID's stack_addr. */
46 CORE_ADDR prev_sp;
456f8b9d 47
1cb761c7
KB
48 /* The frame's base, optionally used by the high-level debug info. */
49 CORE_ADDR base;
8baa6f92
KB
50
51 /* Table indicating the location of each and every register. */
52 struct trad_frame_saved_reg *saved_regs;
456f8b9d
DB
53 };
54
456f8b9d
DB
55/* A structure describing a particular variant of the FRV.
56 We allocate and initialize one of these structures when we create
57 the gdbarch object for a variant.
58
59 At the moment, all the FR variants we support differ only in which
60 registers are present; the portable code of GDB knows that
61 registers whose names are the empty string don't exist, so the
62 `register_names' array captures all the per-variant information we
63 need.
64
65 in the future, if we need to have per-variant maps for raw size,
66 virtual type, etc., we should replace register_names with an array
67 of structures, each of which gives all the necessary info for one
68 register. Don't stick parallel arrays in here --- that's so
69 Fortran. */
70struct gdbarch_tdep
71{
7e295833
KB
72 /* Which ABI is in use? */
73 enum frv_abi frv_abi;
74
456f8b9d
DB
75 /* How many general-purpose registers does this variant have? */
76 int num_gprs;
77
78 /* How many floating-point registers does this variant have? */
79 int num_fprs;
80
81 /* How many hardware watchpoints can it support? */
82 int num_hw_watchpoints;
83
84 /* How many hardware breakpoints can it support? */
85 int num_hw_breakpoints;
86
87 /* Register names. */
a121b7c1 88 const char **register_names;
456f8b9d
DB
89};
90
7e295833
KB
91/* Return the FR-V ABI associated with GDBARCH. */
92enum frv_abi
93frv_abi (struct gdbarch *gdbarch)
94{
95 return gdbarch_tdep (gdbarch)->frv_abi;
96}
97
98/* Fetch the interpreter and executable loadmap addresses (for shared
99 library support) for the FDPIC ABI. Return 0 if successful, -1 if
100 not. (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.) */
101int
102frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr,
103 CORE_ADDR *exec_addr)
104{
105 if (frv_abi (gdbarch) != FRV_ABI_FDPIC)
106 return -1;
107 else
108 {
594f7785
UW
109 struct regcache *regcache = get_current_regcache ();
110
7e295833
KB
111 if (interp_addr != NULL)
112 {
113 ULONGEST val;
594f7785 114 regcache_cooked_read_unsigned (regcache,
7e295833
KB
115 fdpic_loadmap_interp_regnum, &val);
116 *interp_addr = val;
117 }
118 if (exec_addr != NULL)
119 {
120 ULONGEST val;
594f7785 121 regcache_cooked_read_unsigned (regcache,
7e295833
KB
122 fdpic_loadmap_exec_regnum, &val);
123 *exec_addr = val;
124 }
125 return 0;
126 }
127}
456f8b9d
DB
128
129/* Allocate a new variant structure, and set up default values for all
130 the fields. */
131static struct gdbarch_tdep *
5ae5f592 132new_variant (void)
456f8b9d
DB
133{
134 struct gdbarch_tdep *var;
135 int r;
456f8b9d 136
8d749320
SM
137 var = XCNEW (struct gdbarch_tdep);
138
7e295833 139 var->frv_abi = FRV_ABI_EABI;
456f8b9d
DB
140 var->num_gprs = 64;
141 var->num_fprs = 64;
142 var->num_hw_watchpoints = 0;
143 var->num_hw_breakpoints = 0;
144
145 /* By default, don't supply any general-purpose or floating-point
146 register names. */
6a748db6 147 var->register_names
a121b7c1
PA
148 = (const char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
149 * sizeof (const char *));
6a748db6 150 for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
456f8b9d
DB
151 var->register_names[r] = "";
152
526eef89 153 /* Do, however, supply default names for the known special-purpose
456f8b9d 154 registers. */
456f8b9d
DB
155
156 var->register_names[pc_regnum] = "pc";
157 var->register_names[lr_regnum] = "lr";
158 var->register_names[lcr_regnum] = "lcr";
159
160 var->register_names[psr_regnum] = "psr";
161 var->register_names[ccr_regnum] = "ccr";
162 var->register_names[cccr_regnum] = "cccr";
163 var->register_names[tbr_regnum] = "tbr";
164
165 /* Debug registers. */
166 var->register_names[brr_regnum] = "brr";
167 var->register_names[dbar0_regnum] = "dbar0";
168 var->register_names[dbar1_regnum] = "dbar1";
169 var->register_names[dbar2_regnum] = "dbar2";
170 var->register_names[dbar3_regnum] = "dbar3";
171
526eef89
KB
172 /* iacc0 (Only found on MB93405.) */
173 var->register_names[iacc0h_regnum] = "iacc0h";
174 var->register_names[iacc0l_regnum] = "iacc0l";
6a748db6 175 var->register_names[iacc0_regnum] = "iacc0";
526eef89 176
8b67aa36
KB
177 /* fsr0 (Found on FR555 and FR501.) */
178 var->register_names[fsr0_regnum] = "fsr0";
179
180 /* acc0 - acc7. The architecture provides for the possibility of many
181 more (up to 64 total), but we don't want to make that big of a hole
182 in the G packet. If we need more in the future, we'll add them
183 elsewhere. */
184 for (r = acc0_regnum; r <= acc7_regnum; r++)
185 {
186 char *buf;
b435e160 187 buf = xstrprintf ("acc%d", r - acc0_regnum);
8b67aa36
KB
188 var->register_names[r] = buf;
189 }
190
191 /* accg0 - accg7: These are one byte registers. The remote protocol
192 provides the raw values packed four into a slot. accg0123 and
193 accg4567 correspond to accg0 - accg3 and accg4-accg7 respectively.
194 We don't provide names for accg0123 and accg4567 since the user will
195 likely not want to see these raw values. */
196
197 for (r = accg0_regnum; r <= accg7_regnum; r++)
198 {
199 char *buf;
b435e160 200 buf = xstrprintf ("accg%d", r - accg0_regnum);
8b67aa36
KB
201 var->register_names[r] = buf;
202 }
203
204 /* msr0 and msr1. */
205
206 var->register_names[msr0_regnum] = "msr0";
207 var->register_names[msr1_regnum] = "msr1";
208
209 /* gner and fner registers. */
210 var->register_names[gner0_regnum] = "gner0";
211 var->register_names[gner1_regnum] = "gner1";
212 var->register_names[fner0_regnum] = "fner0";
213 var->register_names[fner1_regnum] = "fner1";
214
456f8b9d
DB
215 return var;
216}
217
218
219/* Indicate that the variant VAR has NUM_GPRS general-purpose
220 registers, and fill in the names array appropriately. */
221static void
222set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
223{
224 int r;
225
226 var->num_gprs = num_gprs;
227
228 for (r = 0; r < num_gprs; ++r)
229 {
230 char buf[20];
231
08850b56 232 xsnprintf (buf, sizeof (buf), "gr%d", r);
456f8b9d
DB
233 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
234 }
235}
236
237
238/* Indicate that the variant VAR has NUM_FPRS floating-point
239 registers, and fill in the names array appropriately. */
240static void
241set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
242{
243 int r;
244
245 var->num_fprs = num_fprs;
246
247 for (r = 0; r < num_fprs; ++r)
248 {
249 char buf[20];
250
08850b56 251 xsnprintf (buf, sizeof (buf), "fr%d", r);
456f8b9d
DB
252 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
253 }
254}
255
7e295833
KB
256static void
257set_variant_abi_fdpic (struct gdbarch_tdep *var)
258{
259 var->frv_abi = FRV_ABI_FDPIC;
260 var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec");
0963b4bd
MS
261 var->register_names[fdpic_loadmap_interp_regnum]
262 = xstrdup ("loadmap_interp");
7e295833 263}
456f8b9d 264
b2d6d697
KB
265static void
266set_variant_scratch_registers (struct gdbarch_tdep *var)
267{
268 var->register_names[scr0_regnum] = xstrdup ("scr0");
269 var->register_names[scr1_regnum] = xstrdup ("scr1");
270 var->register_names[scr2_regnum] = xstrdup ("scr2");
271 var->register_names[scr3_regnum] = xstrdup ("scr3");
272}
273
456f8b9d 274static const char *
d93859e2 275frv_register_name (struct gdbarch *gdbarch, int reg)
456f8b9d
DB
276{
277 if (reg < 0)
278 return "?toosmall?";
6a748db6 279 if (reg >= frv_num_regs + frv_num_pseudo_regs)
456f8b9d
DB
280 return "?toolarge?";
281
7a22ecfc 282 return gdbarch_tdep (gdbarch)->register_names[reg];
456f8b9d
DB
283}
284
526eef89 285
456f8b9d 286static struct type *
7f398216 287frv_register_type (struct gdbarch *gdbarch, int reg)
456f8b9d 288{
526eef89 289 if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
0dfff4cb 290 return builtin_type (gdbarch)->builtin_float;
6a748db6 291 else if (reg == iacc0_regnum)
df4df182 292 return builtin_type (gdbarch)->builtin_int64;
456f8b9d 293 else
df4df182 294 return builtin_type (gdbarch)->builtin_int32;
456f8b9d
DB
295}
296
05d1431c 297static enum register_status
6a748db6 298frv_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
e2b7c966 299 int reg, gdb_byte *buffer)
6a748db6 300{
05d1431c
PA
301 enum register_status status;
302
6a748db6
KB
303 if (reg == iacc0_regnum)
304 {
03f50fc8 305 status = regcache->raw_read (iacc0h_regnum, buffer);
05d1431c 306 if (status == REG_VALID)
03f50fc8 307 status = regcache->raw_read (iacc0l_regnum, (bfd_byte *) buffer + 4);
6a748db6 308 }
8b67aa36
KB
309 else if (accg0_regnum <= reg && reg <= accg7_regnum)
310 {
311 /* The accg raw registers have four values in each slot with the
312 lowest register number occupying the first byte. */
313
314 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
315 int byte_num = (reg - accg0_regnum) % 4;
05d1431c 316 gdb_byte buf[4];
8b67aa36 317
03f50fc8 318 status = regcache->raw_read (raw_regnum, buf);
05d1431c
PA
319 if (status == REG_VALID)
320 {
321 memset (buffer, 0, 4);
322 /* FR-V is big endian, so put the requested byte in the
323 first byte of the buffer allocated to hold the
324 pseudo-register. */
325 buffer[0] = buf[byte_num];
326 }
8b67aa36 327 }
05d1431c
PA
328 else
329 gdb_assert_not_reached ("invalid pseudo register number");
330
331 return status;
6a748db6
KB
332}
333
334static void
335frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
e2b7c966 336 int reg, const gdb_byte *buffer)
6a748db6
KB
337{
338 if (reg == iacc0_regnum)
339 {
340 regcache_raw_write (regcache, iacc0h_regnum, buffer);
341 regcache_raw_write (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
342 }
8b67aa36
KB
343 else if (accg0_regnum <= reg && reg <= accg7_regnum)
344 {
345 /* The accg raw registers have four values in each slot with the
346 lowest register number occupying the first byte. */
347
348 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
349 int byte_num = (reg - accg0_regnum) % 4;
e362b510 350 gdb_byte buf[4];
8b67aa36
KB
351
352 regcache_raw_read (regcache, raw_regnum, buf);
353 buf[byte_num] = ((bfd_byte *) buffer)[0];
354 regcache_raw_write (regcache, raw_regnum, buf);
355 }
6a748db6
KB
356}
357
526eef89 358static int
e7faf938 359frv_register_sim_regno (struct gdbarch *gdbarch, int reg)
526eef89
KB
360{
361 static const int spr_map[] =
362 {
363 H_SPR_PSR, /* psr_regnum */
364 H_SPR_CCR, /* ccr_regnum */
365 H_SPR_CCCR, /* cccr_regnum */
8b67aa36
KB
366 -1, /* fdpic_loadmap_exec_regnum */
367 -1, /* fdpic_loadmap_interp_regnum */
526eef89
KB
368 -1, /* 134 */
369 H_SPR_TBR, /* tbr_regnum */
370 H_SPR_BRR, /* brr_regnum */
371 H_SPR_DBAR0, /* dbar0_regnum */
372 H_SPR_DBAR1, /* dbar1_regnum */
373 H_SPR_DBAR2, /* dbar2_regnum */
374 H_SPR_DBAR3, /* dbar3_regnum */
8b67aa36
KB
375 H_SPR_SCR0, /* scr0_regnum */
376 H_SPR_SCR1, /* scr1_regnum */
377 H_SPR_SCR2, /* scr2_regnum */
378 H_SPR_SCR3, /* scr3_regnum */
526eef89
KB
379 H_SPR_LR, /* lr_regnum */
380 H_SPR_LCR, /* lcr_regnum */
381 H_SPR_IACC0H, /* iacc0h_regnum */
8b67aa36
KB
382 H_SPR_IACC0L, /* iacc0l_regnum */
383 H_SPR_FSR0, /* fsr0_regnum */
384 /* FIXME: Add infrastructure for fetching/setting ACC and ACCG regs. */
385 -1, /* acc0_regnum */
386 -1, /* acc1_regnum */
387 -1, /* acc2_regnum */
388 -1, /* acc3_regnum */
389 -1, /* acc4_regnum */
390 -1, /* acc5_regnum */
391 -1, /* acc6_regnum */
392 -1, /* acc7_regnum */
393 -1, /* acc0123_regnum */
394 -1, /* acc4567_regnum */
395 H_SPR_MSR0, /* msr0_regnum */
396 H_SPR_MSR1, /* msr1_regnum */
397 H_SPR_GNER0, /* gner0_regnum */
398 H_SPR_GNER1, /* gner1_regnum */
399 H_SPR_FNER0, /* fner0_regnum */
400 H_SPR_FNER1, /* fner1_regnum */
526eef89
KB
401 };
402
e7faf938 403 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
526eef89
KB
404
405 if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
406 return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
407 else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
408 return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
409 else if (pc_regnum == reg)
410 return SIM_FRV_PC_REGNUM;
411 else if (reg >= first_spr_regnum
412 && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
413 {
414 int spr_reg_offset = spr_map[reg - first_spr_regnum];
415
416 if (spr_reg_offset < 0)
417 return SIM_REGNO_DOES_NOT_EXIST;
418 else
419 return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
420 }
421
e2e0b3e5 422 internal_error (__FILE__, __LINE__, _("Bad register number %d"), reg);
526eef89
KB
423}
424
04180708 425constexpr gdb_byte frv_break_insn[] = {0xc0, 0x70, 0x00, 0x01};
598cc9dc 426
04180708 427typedef BP_MANIPULATION (frv_break_insn) frv_breakpoint;
456f8b9d 428
46a16dba
KB
429/* Define the maximum number of instructions which may be packed into a
430 bundle (VLIW instruction). */
431static const int max_instrs_per_bundle = 8;
432
433/* Define the size (in bytes) of an FR-V instruction. */
434static const int frv_instr_size = 4;
435
436/* Adjust a breakpoint's address to account for the FR-V architecture's
437 constraint that a break instruction must not appear as any but the
438 first instruction in the bundle. */
439static CORE_ADDR
1208538e 440frv_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
46a16dba
KB
441{
442 int count = max_instrs_per_bundle;
443 CORE_ADDR addr = bpaddr - frv_instr_size;
444 CORE_ADDR func_start = get_pc_function_start (bpaddr);
445
446 /* Find the end of the previous packing sequence. This will be indicated
447 by either attempting to access some inaccessible memory or by finding
0963b4bd 448 an instruction word whose packing bit is set to one. */
46a16dba
KB
449 while (count-- > 0 && addr >= func_start)
450 {
948f8e3d 451 gdb_byte instr[frv_instr_size];
46a16dba
KB
452 int status;
453
8defab1a 454 status = target_read_memory (addr, instr, sizeof instr);
46a16dba
KB
455
456 if (status != 0)
457 break;
458
459 /* This is a big endian architecture, so byte zero will have most
460 significant byte. The most significant bit of this byte is the
461 packing bit. */
462 if (instr[0] & 0x80)
463 break;
464
465 addr -= frv_instr_size;
466 }
467
468 if (count > 0)
469 bpaddr = addr + frv_instr_size;
470
471 return bpaddr;
472}
473
456f8b9d
DB
474
475/* Return true if REG is a caller-saves ("scratch") register,
476 false otherwise. */
477static int
478is_caller_saves_reg (int reg)
479{
480 return ((4 <= reg && reg <= 7)
481 || (14 <= reg && reg <= 15)
482 || (32 <= reg && reg <= 47));
483}
484
485
486/* Return true if REG is a callee-saves register, false otherwise. */
487static int
488is_callee_saves_reg (int reg)
489{
490 return ((16 <= reg && reg <= 31)
491 || (48 <= reg && reg <= 63));
492}
493
494
495/* Return true if REG is an argument register, false otherwise. */
496static int
497is_argument_reg (int reg)
498{
499 return (8 <= reg && reg <= 13);
500}
501
456f8b9d
DB
502/* Scan an FR-V prologue, starting at PC, until frame->PC.
503 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
504 We assume FRAME's saved_regs array has already been allocated and cleared.
505 Return the first PC value after the prologue.
506
507 Note that, for unoptimized code, we almost don't need this function
508 at all; all arguments and locals live on the stack, so we just need
509 the FP to find everything. The catch: structures passed by value
510 have their addresses living in registers; they're never spilled to
511 the stack. So if you ever want to be able to get to these
512 arguments in any frame but the top, you'll need to do this serious
513 prologue analysis. */
514static CORE_ADDR
d80b854b
UW
515frv_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
516 struct frame_info *this_frame,
1cb761c7 517 struct frv_unwind_cache *info)
456f8b9d 518{
e17a4113
UW
519 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
520
456f8b9d
DB
521 /* When writing out instruction bitpatterns, we use the following
522 letters to label instruction fields:
523 P - The parallel bit. We don't use this.
524 J - The register number of GRj in the instruction description.
525 K - The register number of GRk in the instruction description.
526 I - The register number of GRi.
527 S - a signed imediate offset.
528 U - an unsigned immediate offset.
529
530 The dots below the numbers indicate where hex digit boundaries
531 fall, to make it easier to check the numbers. */
532
533 /* Non-zero iff we've seen the instruction that initializes the
534 frame pointer for this function's frame. */
535 int fp_set = 0;
536
537 /* If fp_set is non_zero, then this is the distance from
538 the stack pointer to frame pointer: fp = sp + fp_offset. */
539 int fp_offset = 0;
540
0963b4bd 541 /* Total size of frame prior to any alloca operations. */
456f8b9d
DB
542 int framesize = 0;
543
1cb761c7
KB
544 /* Flag indicating if lr has been saved on the stack. */
545 int lr_saved_on_stack = 0;
546
456f8b9d
DB
547 /* The number of the general-purpose register we saved the return
548 address ("link register") in, or -1 if we haven't moved it yet. */
549 int lr_save_reg = -1;
550
1cb761c7
KB
551 /* Offset (from sp) at which lr has been saved on the stack. */
552
553 int lr_sp_offset = 0;
456f8b9d
DB
554
555 /* If gr_saved[i] is non-zero, then we've noticed that general
556 register i has been saved at gr_sp_offset[i] from the stack
557 pointer. */
558 char gr_saved[64];
559 int gr_sp_offset[64];
560
d40fcd7b
KB
561 /* The address of the most recently scanned prologue instruction. */
562 CORE_ADDR last_prologue_pc;
563
0963b4bd 564 /* The address of the next instruction. */
d40fcd7b
KB
565 CORE_ADDR next_pc;
566
567 /* The upper bound to of the pc values to scan. */
568 CORE_ADDR lim_pc;
569
456f8b9d
DB
570 memset (gr_saved, 0, sizeof (gr_saved));
571
d40fcd7b
KB
572 last_prologue_pc = pc;
573
574 /* Try to compute an upper limit (on how far to scan) based on the
575 line number info. */
d80b854b 576 lim_pc = skip_prologue_using_sal (gdbarch, pc);
d40fcd7b
KB
577 /* If there's no line number info, lim_pc will be 0. In that case,
578 set the limit to be 100 instructions away from pc. Hopefully, this
579 will be far enough away to account for the entire prologue. Don't
580 worry about overshooting the end of the function. The scan loop
581 below contains some checks to avoid scanning unreasonably far. */
582 if (lim_pc == 0)
583 lim_pc = pc + 400;
584
585 /* If we have a frame, we don't want to scan past the frame's pc. This
586 will catch those cases where the pc is in the prologue. */
94afd7a6 587 if (this_frame)
d40fcd7b 588 {
94afd7a6 589 CORE_ADDR frame_pc = get_frame_pc (this_frame);
d40fcd7b
KB
590 if (frame_pc < lim_pc)
591 lim_pc = frame_pc;
592 }
593
594 /* Scan the prologue. */
595 while (pc < lim_pc)
456f8b9d 596 {
e362b510 597 gdb_byte buf[frv_instr_size];
1ccda5e9
KB
598 LONGEST op;
599
600 if (target_read_memory (pc, buf, sizeof buf) != 0)
601 break;
e17a4113 602 op = extract_signed_integer (buf, sizeof buf, byte_order);
1ccda5e9 603
d40fcd7b 604 next_pc = pc + 4;
456f8b9d
DB
605
606 /* The tests in this chain of ifs should be in order of
607 decreasing selectivity, so that more particular patterns get
608 to fire before less particular patterns. */
609
d40fcd7b
KB
610 /* Some sort of control transfer instruction: stop scanning prologue.
611 Integer Conditional Branch:
612 X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
613 Floating-point / media Conditional Branch:
614 X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
615 LCR Conditional Branch to LR
616 X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
617 Integer conditional Branches to LR
618 X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
619 X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
620 Floating-point/Media Branches to LR
621 X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
622 X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
623 Jump and Link
624 X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
625 X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
626 Call
627 X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
628 Return from Trap
629 X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
630 Integer Conditional Trap
631 X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
632 X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
633 Floating-point /media Conditional Trap
634 X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
635 X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
636 Break
637 X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
638 Media Trap
639 X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
640 if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
641 || (op & 0x01f80000) == 0x00300000 /* Jump and Link */
642 || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
643 || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
644 {
645 /* Stop scanning; not in prologue any longer. */
646 break;
647 }
648
649 /* Loading something from memory into fp probably means that
650 we're in the epilogue. Stop scanning the prologue.
651 ld @(GRi, GRk), fp
652 X 000010 0000010 XXXXXX 000100 XXXXXX
653 ldi @(GRi, d12), fp
654 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
655 else if ((op & 0x7ffc0fc0) == 0x04080100
656 || (op & 0x7ffc0000) == 0x04c80000)
657 {
658 break;
659 }
660
456f8b9d
DB
661 /* Setting the FP from the SP:
662 ori sp, 0, fp
663 P 000010 0100010 000001 000000000000 = 0x04881000
664 0 111111 1111111 111111 111111111111 = 0x7fffffff
665 . . . . . . . .
666 We treat this as part of the prologue. */
d40fcd7b 667 else if ((op & 0x7fffffff) == 0x04881000)
456f8b9d
DB
668 {
669 fp_set = 1;
670 fp_offset = 0;
d40fcd7b 671 last_prologue_pc = next_pc;
456f8b9d
DB
672 }
673
674 /* Move the link register to the scratch register grJ, before saving:
675 movsg lr, grJ
676 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
677 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
678 . . . . . . . .
679 We treat this as part of the prologue. */
680 else if ((op & 0x7fffffc0) == 0x080d01c0)
681 {
682 int gr_j = op & 0x3f;
683
684 /* If we're moving it to a scratch register, that's fine. */
685 if (is_caller_saves_reg (gr_j))
d40fcd7b
KB
686 {
687 lr_save_reg = gr_j;
688 last_prologue_pc = next_pc;
689 }
456f8b9d
DB
690 }
691
692 /* To save multiple callee-saves registers on the stack, at
693 offset zero:
694
695 std grK,@(sp,gr0)
696 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
697 0 000000 1111111 111111 111111 111111 = 0x01ffffff
698
699 stq grK,@(sp,gr0)
700 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
701 0 000000 1111111 111111 111111 111111 = 0x01ffffff
702 . . . . . . . .
703 We treat this as part of the prologue, and record the register's
704 saved address in the frame structure. */
705 else if ((op & 0x01ffffff) == 0x000c10c0
706 || (op & 0x01ffffff) == 0x000c1100)
707 {
708 int gr_k = ((op >> 25) & 0x3f);
709 int ope = ((op >> 6) & 0x3f);
710 int count;
711 int i;
712
713 /* Is it an std or an stq? */
714 if (ope == 0x03)
715 count = 2;
716 else
717 count = 4;
718
719 /* Is it really a callee-saves register? */
720 if (is_callee_saves_reg (gr_k))
721 {
722 for (i = 0; i < count; i++)
723 {
724 gr_saved[gr_k + i] = 1;
725 gr_sp_offset[gr_k + i] = 4 * i;
726 }
d40fcd7b 727 last_prologue_pc = next_pc;
456f8b9d 728 }
456f8b9d
DB
729 }
730
731 /* Adjusting the stack pointer. (The stack pointer is GR1.)
732 addi sp, S, sp
733 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
734 0 111111 1111111 111111 000000000000 = 0x7ffff000
735 . . . . . . . .
736 We treat this as part of the prologue. */
737 else if ((op & 0x7ffff000) == 0x02401000)
738 {
d40fcd7b
KB
739 if (framesize == 0)
740 {
741 /* Sign-extend the twelve-bit field.
742 (Isn't there a better way to do this?) */
743 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
456f8b9d 744
d40fcd7b
KB
745 framesize -= s;
746 last_prologue_pc = pc;
747 }
748 else
749 {
750 /* If the prologue is being adjusted again, we've
751 likely gone too far; i.e. we're probably in the
752 epilogue. */
753 break;
754 }
456f8b9d
DB
755 }
756
757 /* Setting the FP to a constant distance from the SP:
758 addi sp, S, fp
759 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
760 0 111111 1111111 111111 000000000000 = 0x7ffff000
761 . . . . . . . .
762 We treat this as part of the prologue. */
763 else if ((op & 0x7ffff000) == 0x04401000)
764 {
765 /* Sign-extend the twelve-bit field.
766 (Isn't there a better way to do this?) */
767 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
768 fp_set = 1;
769 fp_offset = s;
d40fcd7b 770 last_prologue_pc = pc;
456f8b9d
DB
771 }
772
773 /* To spill an argument register to a scratch register:
774 ori GRi, 0, GRk
775 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
776 0 000000 1111111 000000 111111111111 = 0x01fc0fff
777 . . . . . . . .
778 For the time being, we treat this as a prologue instruction,
779 assuming that GRi is an argument register. This one's kind
780 of suspicious, because it seems like it could be part of a
781 legitimate body instruction. But we only come here when the
782 source info wasn't helpful, so we have to do the best we can.
783 Hopefully once GCC and GDB agree on how to emit line number
784 info for prologues, then this code will never come into play. */
785 else if ((op & 0x01fc0fff) == 0x00880000)
786 {
787 int gr_i = ((op >> 12) & 0x3f);
788
d40fcd7b
KB
789 /* Make sure that the source is an arg register; if it is, we'll
790 treat it as a prologue instruction. */
791 if (is_argument_reg (gr_i))
792 last_prologue_pc = next_pc;
456f8b9d
DB
793 }
794
795 /* To spill 16-bit values to the stack:
796 sthi GRk, @(fp, s)
797 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
798 0 000000 1111111 111111 000000000000 = 0x01fff000
799 . . . . . . . .
800 And for 8-bit values, we use STB instructions.
801 stbi GRk, @(fp, s)
802 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
803 0 000000 1111111 111111 000000000000 = 0x01fff000
804 . . . . . . . .
805 We check that GRk is really an argument register, and treat
806 all such as part of the prologue. */
807 else if ( (op & 0x01fff000) == 0x01442000
808 || (op & 0x01fff000) == 0x01402000)
809 {
810 int gr_k = ((op >> 25) & 0x3f);
811
d40fcd7b
KB
812 /* Make sure that GRk is really an argument register; treat
813 it as a prologue instruction if so. */
814 if (is_argument_reg (gr_k))
815 last_prologue_pc = next_pc;
456f8b9d
DB
816 }
817
818 /* To save multiple callee-saves register on the stack, at a
819 non-zero offset:
820
821 stdi GRk, @(sp, s)
822 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
823 0 000000 1111111 111111 000000000000 = 0x01fff000
824 . . . . . . . .
825 stqi GRk, @(sp, s)
826 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
827 0 000000 1111111 111111 000000000000 = 0x01fff000
828 . . . . . . . .
829 We treat this as part of the prologue, and record the register's
830 saved address in the frame structure. */
831 else if ((op & 0x01fff000) == 0x014c1000
832 || (op & 0x01fff000) == 0x01501000)
833 {
834 int gr_k = ((op >> 25) & 0x3f);
835 int count;
836 int i;
837
838 /* Is it a stdi or a stqi? */
839 if ((op & 0x01fff000) == 0x014c1000)
840 count = 2;
841 else
842 count = 4;
843
844 /* Is it really a callee-saves register? */
845 if (is_callee_saves_reg (gr_k))
846 {
847 /* Sign-extend the twelve-bit field.
848 (Isn't there a better way to do this?) */
849 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
850
851 for (i = 0; i < count; i++)
852 {
853 gr_saved[gr_k + i] = 1;
854 gr_sp_offset[gr_k + i] = s + (4 * i);
855 }
d40fcd7b 856 last_prologue_pc = next_pc;
456f8b9d 857 }
456f8b9d
DB
858 }
859
860 /* Storing any kind of integer register at any constant offset
861 from any other register.
862
863 st GRk, @(GRi, gr0)
864 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
865 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
866 . . . . . . . .
867 sti GRk, @(GRi, d12)
868 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
869 0 000000 1111111 000000 000000000000 = 0x01fc0000
870 . . . . . . . .
871 These could be almost anything, but a lot of prologue
872 instructions fall into this pattern, so let's decode the
873 instruction once, and then work at a higher level. */
874 else if (((op & 0x01fc0fff) == 0x000c0080)
875 || ((op & 0x01fc0000) == 0x01480000))
876 {
877 int gr_k = ((op >> 25) & 0x3f);
878 int gr_i = ((op >> 12) & 0x3f);
879 int offset;
880
881 /* Are we storing with gr0 as an offset, or using an
882 immediate value? */
883 if ((op & 0x01fc0fff) == 0x000c0080)
884 offset = 0;
885 else
886 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
887
888 /* If the address isn't relative to the SP or FP, it's not a
889 prologue instruction. */
890 if (gr_i != sp_regnum && gr_i != fp_regnum)
d40fcd7b
KB
891 {
892 /* Do nothing; not a prologue instruction. */
893 }
456f8b9d
DB
894
895 /* Saving the old FP in the new frame (relative to the SP). */
d40fcd7b 896 else if (gr_k == fp_regnum && gr_i == sp_regnum)
1cb761c7
KB
897 {
898 gr_saved[fp_regnum] = 1;
899 gr_sp_offset[fp_regnum] = offset;
d40fcd7b 900 last_prologue_pc = next_pc;
1cb761c7 901 }
456f8b9d
DB
902
903 /* Saving callee-saves register(s) on the stack, relative to
904 the SP. */
905 else if (gr_i == sp_regnum
906 && is_callee_saves_reg (gr_k))
907 {
908 gr_saved[gr_k] = 1;
1cb761c7
KB
909 if (gr_i == sp_regnum)
910 gr_sp_offset[gr_k] = offset;
911 else
912 gr_sp_offset[gr_k] = offset + fp_offset;
d40fcd7b 913 last_prologue_pc = next_pc;
456f8b9d
DB
914 }
915
916 /* Saving the scratch register holding the return address. */
917 else if (lr_save_reg != -1
918 && gr_k == lr_save_reg)
1cb761c7
KB
919 {
920 lr_saved_on_stack = 1;
921 if (gr_i == sp_regnum)
922 lr_sp_offset = offset;
923 else
924 lr_sp_offset = offset + fp_offset;
d40fcd7b 925 last_prologue_pc = next_pc;
1cb761c7 926 }
456f8b9d
DB
927
928 /* Spilling int-sized arguments to the stack. */
929 else if (is_argument_reg (gr_k))
d40fcd7b 930 last_prologue_pc = next_pc;
456f8b9d 931 }
d40fcd7b 932 pc = next_pc;
456f8b9d
DB
933 }
934
94afd7a6 935 if (this_frame && info)
456f8b9d 936 {
1cb761c7
KB
937 int i;
938 ULONGEST this_base;
456f8b9d
DB
939
940 /* If we know the relationship between the stack and frame
941 pointers, record the addresses of the registers we noticed.
942 Note that we have to do this as a separate step at the end,
943 because instructions may save relative to the SP, but we need
944 their addresses relative to the FP. */
945 if (fp_set)
94afd7a6 946 this_base = get_frame_register_unsigned (this_frame, fp_regnum);
1cb761c7 947 else
94afd7a6 948 this_base = get_frame_register_unsigned (this_frame, sp_regnum);
456f8b9d 949
1cb761c7
KB
950 for (i = 0; i < 64; i++)
951 if (gr_saved[i])
952 info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i];
456f8b9d 953
1cb761c7
KB
954 info->prev_sp = this_base - fp_offset + framesize;
955 info->base = this_base;
956
957 /* If LR was saved on the stack, record its location. */
958 if (lr_saved_on_stack)
0963b4bd
MS
959 info->saved_regs[lr_regnum].addr
960 = this_base - fp_offset + lr_sp_offset;
1cb761c7
KB
961
962 /* The call instruction moves the caller's PC in the callee's LR.
963 Since this is an unwind, do the reverse. Copy the location of LR
964 into PC (the address / regnum) so that a request for PC will be
965 converted into a request for the LR. */
966 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
967
968 /* Save the previous frame's computed SP value. */
969 trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp);
456f8b9d
DB
970 }
971
d40fcd7b 972 return last_prologue_pc;
456f8b9d
DB
973}
974
975
976static CORE_ADDR
6093d2eb 977frv_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
456f8b9d
DB
978{
979 CORE_ADDR func_addr, func_end, new_pc;
980
981 new_pc = pc;
982
983 /* If the line table has entry for a line *within* the function
984 (i.e., not in the prologue, and not past the end), then that's
985 our location. */
986 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
987 {
988 struct symtab_and_line sal;
989
990 sal = find_pc_line (func_addr, 0);
991
992 if (sal.line != 0 && sal.end < func_end)
993 {
994 new_pc = sal.end;
995 }
996 }
997
998 /* The FR-V prologue is at least five instructions long (twenty bytes).
999 If we didn't find a real source location past that, then
1000 do a full analysis of the prologue. */
1001 if (new_pc < pc + 20)
d80b854b 1002 new_pc = frv_analyze_prologue (gdbarch, pc, 0, 0);
456f8b9d
DB
1003
1004 return new_pc;
1005}
1006
1cb761c7 1007
9bc7b6c6
KB
1008/* Examine the instruction pointed to by PC. If it corresponds to
1009 a call to __main, return the address of the next instruction.
1010 Otherwise, return PC. */
1011
1012static CORE_ADDR
1013frv_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1014{
e17a4113 1015 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9bc7b6c6
KB
1016 gdb_byte buf[4];
1017 unsigned long op;
1018 CORE_ADDR orig_pc = pc;
1019
1020 if (target_read_memory (pc, buf, 4))
1021 return pc;
e17a4113 1022 op = extract_unsigned_integer (buf, 4, byte_order);
9bc7b6c6
KB
1023
1024 /* In PIC code, GR15 may be loaded from some offset off of FP prior
1025 to the call instruction.
1026
1027 Skip over this instruction if present. It won't be present in
0963b4bd 1028 non-PIC code, and even in PIC code, it might not be present.
9bc7b6c6
KB
1029 (This is due to the fact that GR15, the FDPIC register, already
1030 contains the correct value.)
1031
1032 The general form of the LDI is given first, followed by the
1033 specific instruction with the GRi and GRk filled in as FP and
1034 GR15.
1035
1036 ldi @(GRi, d12), GRk
1037 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x00c80000
1038 0 000000 1111111 000000 000000000000 = 0x01fc0000
1039 . . . . . . . .
1040 ldi @(FP, d12), GR15
1041 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x1ec82000
1042 0 001111 1111111 000010 000000000000 = 0x7ffff000
1043 . . . . . . . . */
1044
1045 if ((op & 0x7ffff000) == 0x1ec82000)
1046 {
1047 pc += 4;
1048 if (target_read_memory (pc, buf, 4))
1049 return orig_pc;
e17a4113 1050 op = extract_unsigned_integer (buf, 4, byte_order);
9bc7b6c6
KB
1051 }
1052
1053 /* The format of an FRV CALL instruction is as follows:
1054
1055 call label24
1056 P HHHHHH 0001111 LLLLLLLLLLLLLLLLLL = 0x003c0000
1057 0 000000 1111111 000000000000000000 = 0x01fc0000
1058 . . . . . . . .
1059
1060 where label24 is constructed by concatenating the H bits with the
1061 L bits. The call target is PC + (4 * sign_ext(label24)). */
1062
1063 if ((op & 0x01fc0000) == 0x003c0000)
1064 {
1065 LONGEST displ;
1066 CORE_ADDR call_dest;
7cbd4a93 1067 struct bound_minimal_symbol s;
9bc7b6c6
KB
1068
1069 displ = ((op & 0xfe000000) >> 7) | (op & 0x0003ffff);
1070 if ((displ & 0x00800000) != 0)
1071 displ |= ~((LONGEST) 0x00ffffff);
1072
1073 call_dest = pc + 4 * displ;
1074 s = lookup_minimal_symbol_by_pc (call_dest);
1075
7cbd4a93 1076 if (s.minsym != NULL
efd66ac6
TT
1077 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1078 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
9bc7b6c6
KB
1079 {
1080 pc += 4;
1081 return pc;
1082 }
1083 }
1084 return orig_pc;
1085}
1086
1087
1cb761c7 1088static struct frv_unwind_cache *
94afd7a6 1089frv_frame_unwind_cache (struct frame_info *this_frame,
1cb761c7 1090 void **this_prologue_cache)
456f8b9d 1091{
94afd7a6 1092 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1cb761c7 1093 struct frv_unwind_cache *info;
8baa6f92 1094
1cb761c7 1095 if ((*this_prologue_cache))
9a3c8263 1096 return (struct frv_unwind_cache *) (*this_prologue_cache);
456f8b9d 1097
1cb761c7
KB
1098 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
1099 (*this_prologue_cache) = info;
94afd7a6 1100 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
456f8b9d 1101
1cb761c7 1102 /* Prologue analysis does the rest... */
d80b854b
UW
1103 frv_analyze_prologue (gdbarch,
1104 get_frame_func (this_frame), this_frame, info);
456f8b9d 1105
1cb761c7 1106 return info;
456f8b9d
DB
1107}
1108
456f8b9d 1109static void
cd31fb03 1110frv_extract_return_value (struct type *type, struct regcache *regcache,
e2b7c966 1111 gdb_byte *valbuf)
456f8b9d 1112{
ac7936df 1113 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 1114 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cd31fb03
KB
1115 int len = TYPE_LENGTH (type);
1116
1117 if (len <= 4)
1118 {
1119 ULONGEST gpr8_val;
1120 regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
e17a4113 1121 store_unsigned_integer (valbuf, len, byte_order, gpr8_val);
cd31fb03
KB
1122 }
1123 else if (len == 8)
1124 {
1125 ULONGEST regval;
0963b4bd 1126
cd31fb03 1127 regcache_cooked_read_unsigned (regcache, 8, &regval);
e17a4113 1128 store_unsigned_integer (valbuf, 4, byte_order, regval);
cd31fb03 1129 regcache_cooked_read_unsigned (regcache, 9, &regval);
e17a4113 1130 store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, byte_order, regval);
cd31fb03
KB
1131 }
1132 else
0963b4bd
MS
1133 internal_error (__FILE__, __LINE__,
1134 _("Illegal return value length: %d"), len);
456f8b9d
DB
1135}
1136
1cb761c7
KB
1137static CORE_ADDR
1138frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
456f8b9d 1139{
1cb761c7 1140 /* Require dword alignment. */
5b03f266 1141 return align_down (sp, 8);
456f8b9d
DB
1142}
1143
c4d10515
KB
1144static CORE_ADDR
1145find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point)
1146{
e17a4113 1147 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c4d10515 1148 CORE_ADDR descr;
948f8e3d 1149 gdb_byte valbuf[4];
35e08e03
KB
1150 CORE_ADDR start_addr;
1151
1152 /* If we can't find the function in the symbol table, then we assume
1153 that the function address is already in descriptor form. */
1154 if (!find_pc_partial_function (entry_point, NULL, &start_addr, NULL)
1155 || entry_point != start_addr)
1156 return entry_point;
c4d10515
KB
1157
1158 descr = frv_fdpic_find_canonical_descriptor (entry_point);
1159
1160 if (descr != 0)
1161 return descr;
1162
1163 /* Construct a non-canonical descriptor from space allocated on
1164 the stack. */
1165
1166 descr = value_as_long (value_allocate_space_in_inferior (8));
e17a4113 1167 store_unsigned_integer (valbuf, 4, byte_order, entry_point);
c4d10515 1168 write_memory (descr, valbuf, 4);
e17a4113 1169 store_unsigned_integer (valbuf, 4, byte_order,
c4d10515
KB
1170 frv_fdpic_find_global_pointer (entry_point));
1171 write_memory (descr + 4, valbuf, 4);
1172 return descr;
1173}
1174
1175static CORE_ADDR
1176frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1177 struct target_ops *targ)
1178{
e17a4113 1179 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c4d10515
KB
1180 CORE_ADDR entry_point;
1181 CORE_ADDR got_address;
1182
e17a4113
UW
1183 entry_point = get_target_memory_unsigned (targ, addr, 4, byte_order);
1184 got_address = get_target_memory_unsigned (targ, addr + 4, 4, byte_order);
c4d10515
KB
1185
1186 if (got_address == frv_fdpic_find_global_pointer (entry_point))
1187 return entry_point;
1188 else
1189 return addr;
1190}
1191
456f8b9d 1192static CORE_ADDR
7d9b040b 1193frv_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1cb761c7
KB
1194 struct regcache *regcache, CORE_ADDR bp_addr,
1195 int nargs, struct value **args, CORE_ADDR sp,
1196 int struct_return, CORE_ADDR struct_addr)
456f8b9d 1197{
e17a4113 1198 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
456f8b9d
DB
1199 int argreg;
1200 int argnum;
948f8e3d
PA
1201 const gdb_byte *val;
1202 gdb_byte valbuf[4];
456f8b9d
DB
1203 struct value *arg;
1204 struct type *arg_type;
1205 int len;
1206 enum type_code typecode;
1207 CORE_ADDR regval;
1208 int stack_space;
1209 int stack_offset;
c4d10515 1210 enum frv_abi abi = frv_abi (gdbarch);
7d9b040b 1211 CORE_ADDR func_addr = find_function_addr (function, NULL);
456f8b9d
DB
1212
1213#if 0
1214 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1215 nargs, (int) sp, struct_return, struct_addr);
1216#endif
1217
1218 stack_space = 0;
1219 for (argnum = 0; argnum < nargs; ++argnum)
4991999e 1220 stack_space += align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
456f8b9d
DB
1221
1222 stack_space -= (6 * 4);
1223 if (stack_space > 0)
1224 sp -= stack_space;
1225
0963b4bd 1226 /* Make sure stack is dword aligned. */
5b03f266 1227 sp = align_down (sp, 8);
456f8b9d
DB
1228
1229 stack_offset = 0;
1230
1231 argreg = 8;
1232
1233 if (struct_return)
1cb761c7
KB
1234 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
1235 struct_addr);
456f8b9d
DB
1236
1237 for (argnum = 0; argnum < nargs; ++argnum)
1238 {
1239 arg = args[argnum];
4991999e 1240 arg_type = check_typedef (value_type (arg));
456f8b9d
DB
1241 len = TYPE_LENGTH (arg_type);
1242 typecode = TYPE_CODE (arg_type);
1243
1244 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1245 {
e17a4113
UW
1246 store_unsigned_integer (valbuf, 4, byte_order,
1247 value_address (arg));
456f8b9d
DB
1248 typecode = TYPE_CODE_PTR;
1249 len = 4;
1250 val = valbuf;
1251 }
c4d10515
KB
1252 else if (abi == FRV_ABI_FDPIC
1253 && len == 4
1254 && typecode == TYPE_CODE_PTR
1255 && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
1256 {
1257 /* The FDPIC ABI requires function descriptors to be passed instead
1258 of entry points. */
e17a4113
UW
1259 CORE_ADDR addr = extract_unsigned_integer
1260 (value_contents (arg), 4, byte_order);
1261 addr = find_func_descr (gdbarch, addr);
1262 store_unsigned_integer (valbuf, 4, byte_order, addr);
c4d10515
KB
1263 typecode = TYPE_CODE_PTR;
1264 len = 4;
1265 val = valbuf;
1266 }
456f8b9d
DB
1267 else
1268 {
948f8e3d 1269 val = value_contents (arg);
456f8b9d
DB
1270 }
1271
1272 while (len > 0)
1273 {
1274 int partial_len = (len < 4 ? len : 4);
1275
1276 if (argreg < 14)
1277 {
e17a4113 1278 regval = extract_unsigned_integer (val, partial_len, byte_order);
456f8b9d
DB
1279#if 0
1280 printf(" Argnum %d data %x -> reg %d\n",
1281 argnum, (int) regval, argreg);
1282#endif
1cb761c7 1283 regcache_cooked_write_unsigned (regcache, argreg, regval);
456f8b9d
DB
1284 ++argreg;
1285 }
1286 else
1287 {
1288#if 0
1289 printf(" Argnum %d data %x -> offset %d (%x)\n",
0963b4bd
MS
1290 argnum, *((int *)val), stack_offset,
1291 (int) (sp + stack_offset));
456f8b9d
DB
1292#endif
1293 write_memory (sp + stack_offset, val, partial_len);
5b03f266 1294 stack_offset += align_up (partial_len, 4);
456f8b9d
DB
1295 }
1296 len -= partial_len;
1297 val += partial_len;
1298 }
1299 }
456f8b9d 1300
1cb761c7
KB
1301 /* Set the return address. For the frv, the return breakpoint is
1302 always at BP_ADDR. */
1303 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
1304
c4d10515
KB
1305 if (abi == FRV_ABI_FDPIC)
1306 {
1307 /* Set the GOT register for the FDPIC ABI. */
1308 regcache_cooked_write_unsigned
1309 (regcache, first_gpr_regnum + 15,
1310 frv_fdpic_find_global_pointer (func_addr));
1311 }
1312
1cb761c7
KB
1313 /* Finally, update the SP register. */
1314 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1315
456f8b9d
DB
1316 return sp;
1317}
1318
1319static void
cd31fb03 1320frv_store_return_value (struct type *type, struct regcache *regcache,
e2b7c966 1321 const gdb_byte *valbuf)
456f8b9d 1322{
cd31fb03
KB
1323 int len = TYPE_LENGTH (type);
1324
1325 if (len <= 4)
1326 {
1327 bfd_byte val[4];
1328 memset (val, 0, sizeof (val));
1329 memcpy (val + (4 - len), valbuf, len);
1330 regcache_cooked_write (regcache, 8, val);
1331 }
1332 else if (len == 8)
1333 {
1334 regcache_cooked_write (regcache, 8, valbuf);
1335 regcache_cooked_write (regcache, 9, (bfd_byte *) valbuf + 4);
1336 }
456f8b9d
DB
1337 else
1338 internal_error (__FILE__, __LINE__,
e2e0b3e5 1339 _("Don't know how to return a %d-byte value."), len);
456f8b9d
DB
1340}
1341
63807e1d 1342static enum return_value_convention
6a3a010b 1343frv_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
1344 struct type *valtype, struct regcache *regcache,
1345 gdb_byte *readbuf, const gdb_byte *writebuf)
4c8b6ae0
UW
1346{
1347 int struct_return = TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1348 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1349 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY;
1350
1351 if (writebuf != NULL)
1352 {
1353 gdb_assert (!struct_return);
1354 frv_store_return_value (valtype, regcache, writebuf);
1355 }
1356
1357 if (readbuf != NULL)
1358 {
1359 gdb_assert (!struct_return);
1360 frv_extract_return_value (valtype, regcache, readbuf);
1361 }
1362
1363 if (struct_return)
1364 return RETURN_VALUE_STRUCT_CONVENTION;
1365 else
1366 return RETURN_VALUE_REGISTER_CONVENTION;
456f8b9d
DB
1367}
1368
1cb761c7
KB
1369static CORE_ADDR
1370frv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1371{
1372 return frame_unwind_register_unsigned (next_frame, pc_regnum);
1373}
1374
1375/* Given a GDB frame, determine the address of the calling function's
1376 frame. This will be used to create a new GDB frame struct. */
1377
1378static void
94afd7a6 1379frv_frame_this_id (struct frame_info *this_frame,
1cb761c7
KB
1380 void **this_prologue_cache, struct frame_id *this_id)
1381{
1382 struct frv_unwind_cache *info
94afd7a6 1383 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1cb761c7
KB
1384 CORE_ADDR base;
1385 CORE_ADDR func;
3b7344d5 1386 struct bound_minimal_symbol msym_stack;
1cb761c7
KB
1387 struct frame_id id;
1388
1389 /* The FUNC is easy. */
94afd7a6 1390 func = get_frame_func (this_frame);
1cb761c7 1391
1cb761c7
KB
1392 /* Check if the stack is empty. */
1393 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
77e371c0 1394 if (msym_stack.minsym && info->base == BMSYMBOL_VALUE_ADDRESS (msym_stack))
1cb761c7
KB
1395 return;
1396
1397 /* Hopefully the prologue analysis either correctly determined the
1398 frame's base (which is the SP from the previous frame), or set
1399 that base to "NULL". */
1400 base = info->prev_sp;
1401 if (base == 0)
1402 return;
1403
1404 id = frame_id_build (base, func);
1cb761c7
KB
1405 (*this_id) = id;
1406}
1407
94afd7a6
UW
1408static struct value *
1409frv_frame_prev_register (struct frame_info *this_frame,
1410 void **this_prologue_cache, int regnum)
1cb761c7
KB
1411{
1412 struct frv_unwind_cache *info
94afd7a6
UW
1413 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1414 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1cb761c7
KB
1415}
1416
1417static const struct frame_unwind frv_frame_unwind = {
1418 NORMAL_FRAME,
8fbca658 1419 default_frame_unwind_stop_reason,
1cb761c7 1420 frv_frame_this_id,
94afd7a6
UW
1421 frv_frame_prev_register,
1422 NULL,
1423 default_frame_sniffer
1cb761c7
KB
1424};
1425
1cb761c7 1426static CORE_ADDR
94afd7a6 1427frv_frame_base_address (struct frame_info *this_frame, void **this_cache)
1cb761c7
KB
1428{
1429 struct frv_unwind_cache *info
94afd7a6 1430 = frv_frame_unwind_cache (this_frame, this_cache);
1cb761c7
KB
1431 return info->base;
1432}
1433
1434static const struct frame_base frv_frame_base = {
1435 &frv_frame_unwind,
1436 frv_frame_base_address,
1437 frv_frame_base_address,
1438 frv_frame_base_address
1439};
1440
1441static CORE_ADDR
1442frv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1443{
1444 return frame_unwind_register_unsigned (next_frame, sp_regnum);
1445}
1446
1447
94afd7a6
UW
1448/* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1449 frame. The frame ID's base needs to match the TOS value saved by
1450 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1cb761c7
KB
1451
1452static struct frame_id
94afd7a6 1453frv_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1cb761c7 1454{
94afd7a6
UW
1455 CORE_ADDR sp = get_frame_register_unsigned (this_frame, sp_regnum);
1456 return frame_id_build (sp, get_frame_pc (this_frame));
1cb761c7
KB
1457}
1458
456f8b9d
DB
1459static struct gdbarch *
1460frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1461{
1462 struct gdbarch *gdbarch;
1463 struct gdbarch_tdep *var;
7e295833 1464 int elf_flags = 0;
456f8b9d
DB
1465
1466 /* Check to see if we've already built an appropriate architecture
1467 object for this executable. */
1468 arches = gdbarch_list_lookup_by_info (arches, &info);
1469 if (arches)
1470 return arches->gdbarch;
1471
1472 /* Select the right tdep structure for this variant. */
1473 var = new_variant ();
1474 switch (info.bfd_arch_info->mach)
1475 {
1476 case bfd_mach_frv:
1477 case bfd_mach_frvsimple:
087ccc6a 1478 case bfd_mach_fr300:
456f8b9d
DB
1479 case bfd_mach_fr500:
1480 case bfd_mach_frvtomcat:
251a3ae3 1481 case bfd_mach_fr550:
456f8b9d
DB
1482 set_variant_num_gprs (var, 64);
1483 set_variant_num_fprs (var, 64);
1484 break;
1485
1486 case bfd_mach_fr400:
b2d6d697 1487 case bfd_mach_fr450:
456f8b9d
DB
1488 set_variant_num_gprs (var, 32);
1489 set_variant_num_fprs (var, 32);
1490 break;
1491
1492 default:
1493 /* Never heard of this variant. */
1494 return 0;
1495 }
7e295833
KB
1496
1497 /* Extract the ELF flags, if available. */
1498 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1499 elf_flags = elf_elfheader (info.abfd)->e_flags;
1500
1501 if (elf_flags & EF_FRV_FDPIC)
1502 set_variant_abi_fdpic (var);
1503
b2d6d697
KB
1504 if (elf_flags & EF_FRV_CPU_FR450)
1505 set_variant_scratch_registers (var);
1506
456f8b9d
DB
1507 gdbarch = gdbarch_alloc (&info, var);
1508
1509 set_gdbarch_short_bit (gdbarch, 16);
1510 set_gdbarch_int_bit (gdbarch, 32);
1511 set_gdbarch_long_bit (gdbarch, 32);
1512 set_gdbarch_long_long_bit (gdbarch, 64);
1513 set_gdbarch_float_bit (gdbarch, 32);
1514 set_gdbarch_double_bit (gdbarch, 64);
1515 set_gdbarch_long_double_bit (gdbarch, 64);
1516 set_gdbarch_ptr_bit (gdbarch, 32);
1517
1518 set_gdbarch_num_regs (gdbarch, frv_num_regs);
6a748db6
KB
1519 set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1520
456f8b9d 1521 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
0ba6dca9 1522 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
456f8b9d
DB
1523 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1524
1525 set_gdbarch_register_name (gdbarch, frv_register_name);
7f398216 1526 set_gdbarch_register_type (gdbarch, frv_register_type);
526eef89 1527 set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
456f8b9d 1528
6a748db6
KB
1529 set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
1530 set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
1531
456f8b9d 1532 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
9bc7b6c6 1533 set_gdbarch_skip_main_prologue (gdbarch, frv_skip_main_prologue);
04180708
YQ
1534 set_gdbarch_breakpoint_kind_from_pc (gdbarch, frv_breakpoint::kind_from_pc);
1535 set_gdbarch_sw_breakpoint_from_kind (gdbarch, frv_breakpoint::bp_from_kind);
1208538e
MK
1536 set_gdbarch_adjust_breakpoint_address
1537 (gdbarch, frv_adjust_breakpoint_address);
456f8b9d 1538
4c8b6ae0 1539 set_gdbarch_return_value (gdbarch, frv_return_value);
456f8b9d 1540
1cb761c7
KB
1541 /* Frame stuff. */
1542 set_gdbarch_unwind_pc (gdbarch, frv_unwind_pc);
1543 set_gdbarch_unwind_sp (gdbarch, frv_unwind_sp);
1544 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1cb761c7 1545 frame_base_set_default (gdbarch, &frv_frame_base);
5ecb7103
KB
1546 /* We set the sniffer lower down after the OSABI hooks have been
1547 established. */
456f8b9d 1548
1cb761c7
KB
1549 /* Settings for calling functions in the inferior. */
1550 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
94afd7a6 1551 set_gdbarch_dummy_id (gdbarch, frv_dummy_id);
456f8b9d
DB
1552
1553 /* Settings that should be unnecessary. */
1554 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1555
456f8b9d
DB
1556 /* Hardware watchpoint / breakpoint support. */
1557 switch (info.bfd_arch_info->mach)
1558 {
1559 case bfd_mach_frv:
1560 case bfd_mach_frvsimple:
087ccc6a 1561 case bfd_mach_fr300:
456f8b9d
DB
1562 case bfd_mach_fr500:
1563 case bfd_mach_frvtomcat:
1564 /* fr500-style hardware debugging support. */
1565 var->num_hw_watchpoints = 4;
1566 var->num_hw_breakpoints = 4;
1567 break;
1568
1569 case bfd_mach_fr400:
b2d6d697 1570 case bfd_mach_fr450:
456f8b9d
DB
1571 /* fr400-style hardware debugging support. */
1572 var->num_hw_watchpoints = 2;
1573 var->num_hw_breakpoints = 4;
1574 break;
1575
1576 default:
1577 /* Otherwise, assume we don't have hardware debugging support. */
1578 var->num_hw_watchpoints = 0;
1579 var->num_hw_breakpoints = 0;
1580 break;
1581 }
1582
c4d10515
KB
1583 if (frv_abi (gdbarch) == FRV_ABI_FDPIC)
1584 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1585 frv_convert_from_func_ptr_addr);
36482093 1586
917630e4
UW
1587 set_solib_ops (gdbarch, &frv_so_ops);
1588
5ecb7103
KB
1589 /* Hook in ABI-specific overrides, if they have been registered. */
1590 gdbarch_init_osabi (info, gdbarch);
1591
5ecb7103 1592 /* Set the fallback (prologue based) frame sniffer. */
94afd7a6 1593 frame_unwind_append_unwinder (gdbarch, &frv_frame_unwind);
5ecb7103 1594
186993b4
KB
1595 /* Enable TLS support. */
1596 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1597 frv_fetch_objfile_link_map);
1598
456f8b9d
DB
1599 return gdbarch;
1600}
1601
1602void
1603_initialize_frv_tdep (void)
1604{
1605 register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
456f8b9d 1606}
This page took 1.273077 seconds and 4 git commands to generate.