x86: Move x86-specific linker options to elf_linker_x86_params
[deliverable/binutils-gdb.git] / gdb / frv-tdep.c
CommitLineData
456f8b9d 1/* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
0fd88904 2
42a4f53d 3 Copyright (C) 2002-2019 Free Software Foundation, Inc.
456f8b9d
DB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
456f8b9d
DB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
456f8b9d
DB
19
20#include "defs.h"
d55e5aa6
TT
21
22/* Local non-gdb includes. */
23#include "../opcodes/frv-desc.h"
456f8b9d 24#include "arch-utils.h"
dcc6aaff 25#include "dis-asm.h"
7e295833
KB
26#include "elf-bfd.h"
27#include "elf/frv.h"
d55e5aa6
TT
28#include "frame-base.h"
29#include "frame-unwind.h"
30#include "frame.h"
7e295833 31#include "frv-tdep.h"
d55e5aa6
TT
32#include "gdb/sim-frv.h"
33#include "gdbcore.h"
34#include "infcall.h"
35#include "inferior.h"
77e371c0 36#include "objfiles.h"
d55e5aa6
TT
37#include "osabi.h"
38#include "regcache.h"
39#include "sim-regno.h"
40#include "solib.h"
41#include "symtab.h"
42#include "trad-frame.h"
456f8b9d 43
1cb761c7 44struct frv_unwind_cache /* was struct frame_extra_info */
456f8b9d 45 {
1cb761c7
KB
46 /* The previous frame's inner-most stack address. Used as this
47 frame ID's stack_addr. */
48 CORE_ADDR prev_sp;
456f8b9d 49
1cb761c7
KB
50 /* The frame's base, optionally used by the high-level debug info. */
51 CORE_ADDR base;
8baa6f92
KB
52
53 /* Table indicating the location of each and every register. */
54 struct trad_frame_saved_reg *saved_regs;
456f8b9d
DB
55 };
56
456f8b9d
DB
57/* A structure describing a particular variant of the FRV.
58 We allocate and initialize one of these structures when we create
59 the gdbarch object for a variant.
60
61 At the moment, all the FR variants we support differ only in which
62 registers are present; the portable code of GDB knows that
63 registers whose names are the empty string don't exist, so the
64 `register_names' array captures all the per-variant information we
65 need.
66
67 in the future, if we need to have per-variant maps for raw size,
68 virtual type, etc., we should replace register_names with an array
69 of structures, each of which gives all the necessary info for one
70 register. Don't stick parallel arrays in here --- that's so
71 Fortran. */
72struct gdbarch_tdep
73{
7e295833
KB
74 /* Which ABI is in use? */
75 enum frv_abi frv_abi;
76
456f8b9d
DB
77 /* How many general-purpose registers does this variant have? */
78 int num_gprs;
79
80 /* How many floating-point registers does this variant have? */
81 int num_fprs;
82
83 /* How many hardware watchpoints can it support? */
84 int num_hw_watchpoints;
85
86 /* How many hardware breakpoints can it support? */
87 int num_hw_breakpoints;
88
89 /* Register names. */
a121b7c1 90 const char **register_names;
456f8b9d
DB
91};
92
7e295833
KB
93/* Return the FR-V ABI associated with GDBARCH. */
94enum frv_abi
95frv_abi (struct gdbarch *gdbarch)
96{
97 return gdbarch_tdep (gdbarch)->frv_abi;
98}
99
100/* Fetch the interpreter and executable loadmap addresses (for shared
101 library support) for the FDPIC ABI. Return 0 if successful, -1 if
102 not. (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.) */
103int
104frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr,
105 CORE_ADDR *exec_addr)
106{
107 if (frv_abi (gdbarch) != FRV_ABI_FDPIC)
108 return -1;
109 else
110 {
594f7785
UW
111 struct regcache *regcache = get_current_regcache ();
112
7e295833
KB
113 if (interp_addr != NULL)
114 {
115 ULONGEST val;
594f7785 116 regcache_cooked_read_unsigned (regcache,
7e295833
KB
117 fdpic_loadmap_interp_regnum, &val);
118 *interp_addr = val;
119 }
120 if (exec_addr != NULL)
121 {
122 ULONGEST val;
594f7785 123 regcache_cooked_read_unsigned (regcache,
7e295833
KB
124 fdpic_loadmap_exec_regnum, &val);
125 *exec_addr = val;
126 }
127 return 0;
128 }
129}
456f8b9d
DB
130
131/* Allocate a new variant structure, and set up default values for all
132 the fields. */
133static struct gdbarch_tdep *
5ae5f592 134new_variant (void)
456f8b9d
DB
135{
136 struct gdbarch_tdep *var;
137 int r;
456f8b9d 138
8d749320
SM
139 var = XCNEW (struct gdbarch_tdep);
140
7e295833 141 var->frv_abi = FRV_ABI_EABI;
456f8b9d
DB
142 var->num_gprs = 64;
143 var->num_fprs = 64;
144 var->num_hw_watchpoints = 0;
145 var->num_hw_breakpoints = 0;
146
147 /* By default, don't supply any general-purpose or floating-point
148 register names. */
6a748db6 149 var->register_names
a121b7c1
PA
150 = (const char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
151 * sizeof (const char *));
6a748db6 152 for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
456f8b9d
DB
153 var->register_names[r] = "";
154
526eef89 155 /* Do, however, supply default names for the known special-purpose
456f8b9d 156 registers. */
456f8b9d
DB
157
158 var->register_names[pc_regnum] = "pc";
159 var->register_names[lr_regnum] = "lr";
160 var->register_names[lcr_regnum] = "lcr";
161
162 var->register_names[psr_regnum] = "psr";
163 var->register_names[ccr_regnum] = "ccr";
164 var->register_names[cccr_regnum] = "cccr";
165 var->register_names[tbr_regnum] = "tbr";
166
167 /* Debug registers. */
168 var->register_names[brr_regnum] = "brr";
169 var->register_names[dbar0_regnum] = "dbar0";
170 var->register_names[dbar1_regnum] = "dbar1";
171 var->register_names[dbar2_regnum] = "dbar2";
172 var->register_names[dbar3_regnum] = "dbar3";
173
526eef89
KB
174 /* iacc0 (Only found on MB93405.) */
175 var->register_names[iacc0h_regnum] = "iacc0h";
176 var->register_names[iacc0l_regnum] = "iacc0l";
6a748db6 177 var->register_names[iacc0_regnum] = "iacc0";
526eef89 178
8b67aa36
KB
179 /* fsr0 (Found on FR555 and FR501.) */
180 var->register_names[fsr0_regnum] = "fsr0";
181
182 /* acc0 - acc7. The architecture provides for the possibility of many
183 more (up to 64 total), but we don't want to make that big of a hole
184 in the G packet. If we need more in the future, we'll add them
185 elsewhere. */
186 for (r = acc0_regnum; r <= acc7_regnum; r++)
187 {
188 char *buf;
b435e160 189 buf = xstrprintf ("acc%d", r - acc0_regnum);
8b67aa36
KB
190 var->register_names[r] = buf;
191 }
192
193 /* accg0 - accg7: These are one byte registers. The remote protocol
194 provides the raw values packed four into a slot. accg0123 and
195 accg4567 correspond to accg0 - accg3 and accg4-accg7 respectively.
196 We don't provide names for accg0123 and accg4567 since the user will
197 likely not want to see these raw values. */
198
199 for (r = accg0_regnum; r <= accg7_regnum; r++)
200 {
201 char *buf;
b435e160 202 buf = xstrprintf ("accg%d", r - accg0_regnum);
8b67aa36
KB
203 var->register_names[r] = buf;
204 }
205
206 /* msr0 and msr1. */
207
208 var->register_names[msr0_regnum] = "msr0";
209 var->register_names[msr1_regnum] = "msr1";
210
211 /* gner and fner registers. */
212 var->register_names[gner0_regnum] = "gner0";
213 var->register_names[gner1_regnum] = "gner1";
214 var->register_names[fner0_regnum] = "fner0";
215 var->register_names[fner1_regnum] = "fner1";
216
456f8b9d
DB
217 return var;
218}
219
220
221/* Indicate that the variant VAR has NUM_GPRS general-purpose
222 registers, and fill in the names array appropriately. */
223static void
224set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
225{
226 int r;
227
228 var->num_gprs = num_gprs;
229
230 for (r = 0; r < num_gprs; ++r)
231 {
232 char buf[20];
233
08850b56 234 xsnprintf (buf, sizeof (buf), "gr%d", r);
456f8b9d
DB
235 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
236 }
237}
238
239
240/* Indicate that the variant VAR has NUM_FPRS floating-point
241 registers, and fill in the names array appropriately. */
242static void
243set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
244{
245 int r;
246
247 var->num_fprs = num_fprs;
248
249 for (r = 0; r < num_fprs; ++r)
250 {
251 char buf[20];
252
08850b56 253 xsnprintf (buf, sizeof (buf), "fr%d", r);
456f8b9d
DB
254 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
255 }
256}
257
7e295833
KB
258static void
259set_variant_abi_fdpic (struct gdbarch_tdep *var)
260{
261 var->frv_abi = FRV_ABI_FDPIC;
262 var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec");
0963b4bd
MS
263 var->register_names[fdpic_loadmap_interp_regnum]
264 = xstrdup ("loadmap_interp");
7e295833 265}
456f8b9d 266
b2d6d697
KB
267static void
268set_variant_scratch_registers (struct gdbarch_tdep *var)
269{
270 var->register_names[scr0_regnum] = xstrdup ("scr0");
271 var->register_names[scr1_regnum] = xstrdup ("scr1");
272 var->register_names[scr2_regnum] = xstrdup ("scr2");
273 var->register_names[scr3_regnum] = xstrdup ("scr3");
274}
275
456f8b9d 276static const char *
d93859e2 277frv_register_name (struct gdbarch *gdbarch, int reg)
456f8b9d
DB
278{
279 if (reg < 0)
280 return "?toosmall?";
6a748db6 281 if (reg >= frv_num_regs + frv_num_pseudo_regs)
456f8b9d
DB
282 return "?toolarge?";
283
7a22ecfc 284 return gdbarch_tdep (gdbarch)->register_names[reg];
456f8b9d
DB
285}
286
526eef89 287
456f8b9d 288static struct type *
7f398216 289frv_register_type (struct gdbarch *gdbarch, int reg)
456f8b9d 290{
526eef89 291 if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
0dfff4cb 292 return builtin_type (gdbarch)->builtin_float;
6a748db6 293 else if (reg == iacc0_regnum)
df4df182 294 return builtin_type (gdbarch)->builtin_int64;
456f8b9d 295 else
df4df182 296 return builtin_type (gdbarch)->builtin_int32;
456f8b9d
DB
297}
298
05d1431c 299static enum register_status
849d0ba8 300frv_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
e2b7c966 301 int reg, gdb_byte *buffer)
6a748db6 302{
05d1431c
PA
303 enum register_status status;
304
6a748db6
KB
305 if (reg == iacc0_regnum)
306 {
03f50fc8 307 status = regcache->raw_read (iacc0h_regnum, buffer);
05d1431c 308 if (status == REG_VALID)
03f50fc8 309 status = regcache->raw_read (iacc0l_regnum, (bfd_byte *) buffer + 4);
6a748db6 310 }
8b67aa36
KB
311 else if (accg0_regnum <= reg && reg <= accg7_regnum)
312 {
313 /* The accg raw registers have four values in each slot with the
314 lowest register number occupying the first byte. */
315
316 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
317 int byte_num = (reg - accg0_regnum) % 4;
05d1431c 318 gdb_byte buf[4];
8b67aa36 319
03f50fc8 320 status = regcache->raw_read (raw_regnum, buf);
05d1431c
PA
321 if (status == REG_VALID)
322 {
323 memset (buffer, 0, 4);
324 /* FR-V is big endian, so put the requested byte in the
325 first byte of the buffer allocated to hold the
326 pseudo-register. */
327 buffer[0] = buf[byte_num];
328 }
8b67aa36 329 }
05d1431c
PA
330 else
331 gdb_assert_not_reached ("invalid pseudo register number");
332
333 return status;
6a748db6
KB
334}
335
336static void
337frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
e2b7c966 338 int reg, const gdb_byte *buffer)
6a748db6
KB
339{
340 if (reg == iacc0_regnum)
341 {
10eaee5f
SM
342 regcache->raw_write (iacc0h_regnum, buffer);
343 regcache->raw_write (iacc0l_regnum, (bfd_byte *) buffer + 4);
6a748db6 344 }
8b67aa36
KB
345 else if (accg0_regnum <= reg && reg <= accg7_regnum)
346 {
347 /* The accg raw registers have four values in each slot with the
348 lowest register number occupying the first byte. */
349
350 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
351 int byte_num = (reg - accg0_regnum) % 4;
e362b510 352 gdb_byte buf[4];
8b67aa36 353
0b883586 354 regcache->raw_read (raw_regnum, buf);
8b67aa36 355 buf[byte_num] = ((bfd_byte *) buffer)[0];
10eaee5f 356 regcache->raw_write (raw_regnum, buf);
8b67aa36 357 }
6a748db6
KB
358}
359
526eef89 360static int
e7faf938 361frv_register_sim_regno (struct gdbarch *gdbarch, int reg)
526eef89
KB
362{
363 static const int spr_map[] =
364 {
365 H_SPR_PSR, /* psr_regnum */
366 H_SPR_CCR, /* ccr_regnum */
367 H_SPR_CCCR, /* cccr_regnum */
8b67aa36
KB
368 -1, /* fdpic_loadmap_exec_regnum */
369 -1, /* fdpic_loadmap_interp_regnum */
526eef89
KB
370 -1, /* 134 */
371 H_SPR_TBR, /* tbr_regnum */
372 H_SPR_BRR, /* brr_regnum */
373 H_SPR_DBAR0, /* dbar0_regnum */
374 H_SPR_DBAR1, /* dbar1_regnum */
375 H_SPR_DBAR2, /* dbar2_regnum */
376 H_SPR_DBAR3, /* dbar3_regnum */
8b67aa36
KB
377 H_SPR_SCR0, /* scr0_regnum */
378 H_SPR_SCR1, /* scr1_regnum */
379 H_SPR_SCR2, /* scr2_regnum */
380 H_SPR_SCR3, /* scr3_regnum */
526eef89
KB
381 H_SPR_LR, /* lr_regnum */
382 H_SPR_LCR, /* lcr_regnum */
383 H_SPR_IACC0H, /* iacc0h_regnum */
8b67aa36
KB
384 H_SPR_IACC0L, /* iacc0l_regnum */
385 H_SPR_FSR0, /* fsr0_regnum */
386 /* FIXME: Add infrastructure for fetching/setting ACC and ACCG regs. */
387 -1, /* acc0_regnum */
388 -1, /* acc1_regnum */
389 -1, /* acc2_regnum */
390 -1, /* acc3_regnum */
391 -1, /* acc4_regnum */
392 -1, /* acc5_regnum */
393 -1, /* acc6_regnum */
394 -1, /* acc7_regnum */
395 -1, /* acc0123_regnum */
396 -1, /* acc4567_regnum */
397 H_SPR_MSR0, /* msr0_regnum */
398 H_SPR_MSR1, /* msr1_regnum */
399 H_SPR_GNER0, /* gner0_regnum */
400 H_SPR_GNER1, /* gner1_regnum */
401 H_SPR_FNER0, /* fner0_regnum */
402 H_SPR_FNER1, /* fner1_regnum */
526eef89
KB
403 };
404
e7faf938 405 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
526eef89
KB
406
407 if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
408 return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
409 else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
410 return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
411 else if (pc_regnum == reg)
412 return SIM_FRV_PC_REGNUM;
413 else if (reg >= first_spr_regnum
414 && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
415 {
416 int spr_reg_offset = spr_map[reg - first_spr_regnum];
417
418 if (spr_reg_offset < 0)
419 return SIM_REGNO_DOES_NOT_EXIST;
420 else
421 return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
422 }
423
e2e0b3e5 424 internal_error (__FILE__, __LINE__, _("Bad register number %d"), reg);
526eef89
KB
425}
426
04180708 427constexpr gdb_byte frv_break_insn[] = {0xc0, 0x70, 0x00, 0x01};
598cc9dc 428
04180708 429typedef BP_MANIPULATION (frv_break_insn) frv_breakpoint;
456f8b9d 430
46a16dba
KB
431/* Define the maximum number of instructions which may be packed into a
432 bundle (VLIW instruction). */
433static const int max_instrs_per_bundle = 8;
434
435/* Define the size (in bytes) of an FR-V instruction. */
436static const int frv_instr_size = 4;
437
438/* Adjust a breakpoint's address to account for the FR-V architecture's
439 constraint that a break instruction must not appear as any but the
440 first instruction in the bundle. */
441static CORE_ADDR
1208538e 442frv_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
46a16dba
KB
443{
444 int count = max_instrs_per_bundle;
445 CORE_ADDR addr = bpaddr - frv_instr_size;
446 CORE_ADDR func_start = get_pc_function_start (bpaddr);
447
448 /* Find the end of the previous packing sequence. This will be indicated
449 by either attempting to access some inaccessible memory or by finding
0963b4bd 450 an instruction word whose packing bit is set to one. */
46a16dba
KB
451 while (count-- > 0 && addr >= func_start)
452 {
948f8e3d 453 gdb_byte instr[frv_instr_size];
46a16dba
KB
454 int status;
455
8defab1a 456 status = target_read_memory (addr, instr, sizeof instr);
46a16dba
KB
457
458 if (status != 0)
459 break;
460
461 /* This is a big endian architecture, so byte zero will have most
462 significant byte. The most significant bit of this byte is the
463 packing bit. */
464 if (instr[0] & 0x80)
465 break;
466
467 addr -= frv_instr_size;
468 }
469
470 if (count > 0)
471 bpaddr = addr + frv_instr_size;
472
473 return bpaddr;
474}
475
456f8b9d
DB
476
477/* Return true if REG is a caller-saves ("scratch") register,
478 false otherwise. */
479static int
480is_caller_saves_reg (int reg)
481{
482 return ((4 <= reg && reg <= 7)
483 || (14 <= reg && reg <= 15)
484 || (32 <= reg && reg <= 47));
485}
486
487
488/* Return true if REG is a callee-saves register, false otherwise. */
489static int
490is_callee_saves_reg (int reg)
491{
492 return ((16 <= reg && reg <= 31)
493 || (48 <= reg && reg <= 63));
494}
495
496
497/* Return true if REG is an argument register, false otherwise. */
498static int
499is_argument_reg (int reg)
500{
501 return (8 <= reg && reg <= 13);
502}
503
456f8b9d
DB
504/* Scan an FR-V prologue, starting at PC, until frame->PC.
505 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
506 We assume FRAME's saved_regs array has already been allocated and cleared.
507 Return the first PC value after the prologue.
508
509 Note that, for unoptimized code, we almost don't need this function
510 at all; all arguments and locals live on the stack, so we just need
511 the FP to find everything. The catch: structures passed by value
512 have their addresses living in registers; they're never spilled to
513 the stack. So if you ever want to be able to get to these
514 arguments in any frame but the top, you'll need to do this serious
515 prologue analysis. */
516static CORE_ADDR
d80b854b
UW
517frv_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
518 struct frame_info *this_frame,
1cb761c7 519 struct frv_unwind_cache *info)
456f8b9d 520{
e17a4113
UW
521 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
522
456f8b9d
DB
523 /* When writing out instruction bitpatterns, we use the following
524 letters to label instruction fields:
525 P - The parallel bit. We don't use this.
526 J - The register number of GRj in the instruction description.
527 K - The register number of GRk in the instruction description.
528 I - The register number of GRi.
529 S - a signed imediate offset.
530 U - an unsigned immediate offset.
531
532 The dots below the numbers indicate where hex digit boundaries
533 fall, to make it easier to check the numbers. */
534
535 /* Non-zero iff we've seen the instruction that initializes the
536 frame pointer for this function's frame. */
537 int fp_set = 0;
538
539 /* If fp_set is non_zero, then this is the distance from
540 the stack pointer to frame pointer: fp = sp + fp_offset. */
541 int fp_offset = 0;
542
0963b4bd 543 /* Total size of frame prior to any alloca operations. */
456f8b9d
DB
544 int framesize = 0;
545
1cb761c7
KB
546 /* Flag indicating if lr has been saved on the stack. */
547 int lr_saved_on_stack = 0;
548
456f8b9d
DB
549 /* The number of the general-purpose register we saved the return
550 address ("link register") in, or -1 if we haven't moved it yet. */
551 int lr_save_reg = -1;
552
1cb761c7
KB
553 /* Offset (from sp) at which lr has been saved on the stack. */
554
555 int lr_sp_offset = 0;
456f8b9d
DB
556
557 /* If gr_saved[i] is non-zero, then we've noticed that general
558 register i has been saved at gr_sp_offset[i] from the stack
559 pointer. */
560 char gr_saved[64];
561 int gr_sp_offset[64];
562
d40fcd7b
KB
563 /* The address of the most recently scanned prologue instruction. */
564 CORE_ADDR last_prologue_pc;
565
0963b4bd 566 /* The address of the next instruction. */
d40fcd7b
KB
567 CORE_ADDR next_pc;
568
569 /* The upper bound to of the pc values to scan. */
570 CORE_ADDR lim_pc;
571
456f8b9d
DB
572 memset (gr_saved, 0, sizeof (gr_saved));
573
d40fcd7b
KB
574 last_prologue_pc = pc;
575
576 /* Try to compute an upper limit (on how far to scan) based on the
577 line number info. */
d80b854b 578 lim_pc = skip_prologue_using_sal (gdbarch, pc);
d40fcd7b
KB
579 /* If there's no line number info, lim_pc will be 0. In that case,
580 set the limit to be 100 instructions away from pc. Hopefully, this
581 will be far enough away to account for the entire prologue. Don't
582 worry about overshooting the end of the function. The scan loop
583 below contains some checks to avoid scanning unreasonably far. */
584 if (lim_pc == 0)
585 lim_pc = pc + 400;
586
587 /* If we have a frame, we don't want to scan past the frame's pc. This
588 will catch those cases where the pc is in the prologue. */
94afd7a6 589 if (this_frame)
d40fcd7b 590 {
94afd7a6 591 CORE_ADDR frame_pc = get_frame_pc (this_frame);
d40fcd7b
KB
592 if (frame_pc < lim_pc)
593 lim_pc = frame_pc;
594 }
595
596 /* Scan the prologue. */
597 while (pc < lim_pc)
456f8b9d 598 {
e362b510 599 gdb_byte buf[frv_instr_size];
1ccda5e9
KB
600 LONGEST op;
601
602 if (target_read_memory (pc, buf, sizeof buf) != 0)
603 break;
e17a4113 604 op = extract_signed_integer (buf, sizeof buf, byte_order);
1ccda5e9 605
d40fcd7b 606 next_pc = pc + 4;
456f8b9d
DB
607
608 /* The tests in this chain of ifs should be in order of
609 decreasing selectivity, so that more particular patterns get
610 to fire before less particular patterns. */
611
d40fcd7b
KB
612 /* Some sort of control transfer instruction: stop scanning prologue.
613 Integer Conditional Branch:
614 X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
615 Floating-point / media Conditional Branch:
616 X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
617 LCR Conditional Branch to LR
618 X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
619 Integer conditional Branches to LR
620 X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
621 X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
622 Floating-point/Media Branches to LR
623 X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
624 X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
625 Jump and Link
626 X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
627 X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
628 Call
629 X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
630 Return from Trap
631 X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
632 Integer Conditional Trap
633 X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
634 X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
635 Floating-point /media Conditional Trap
636 X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
637 X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
638 Break
639 X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
640 Media Trap
641 X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
642 if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
643 || (op & 0x01f80000) == 0x00300000 /* Jump and Link */
644 || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
645 || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
646 {
647 /* Stop scanning; not in prologue any longer. */
648 break;
649 }
650
651 /* Loading something from memory into fp probably means that
652 we're in the epilogue. Stop scanning the prologue.
653 ld @(GRi, GRk), fp
654 X 000010 0000010 XXXXXX 000100 XXXXXX
655 ldi @(GRi, d12), fp
656 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
657 else if ((op & 0x7ffc0fc0) == 0x04080100
658 || (op & 0x7ffc0000) == 0x04c80000)
659 {
660 break;
661 }
662
456f8b9d
DB
663 /* Setting the FP from the SP:
664 ori sp, 0, fp
665 P 000010 0100010 000001 000000000000 = 0x04881000
666 0 111111 1111111 111111 111111111111 = 0x7fffffff
667 . . . . . . . .
668 We treat this as part of the prologue. */
d40fcd7b 669 else if ((op & 0x7fffffff) == 0x04881000)
456f8b9d
DB
670 {
671 fp_set = 1;
672 fp_offset = 0;
d40fcd7b 673 last_prologue_pc = next_pc;
456f8b9d
DB
674 }
675
676 /* Move the link register to the scratch register grJ, before saving:
677 movsg lr, grJ
678 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
679 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
680 . . . . . . . .
681 We treat this as part of the prologue. */
682 else if ((op & 0x7fffffc0) == 0x080d01c0)
683 {
684 int gr_j = op & 0x3f;
685
686 /* If we're moving it to a scratch register, that's fine. */
687 if (is_caller_saves_reg (gr_j))
d40fcd7b
KB
688 {
689 lr_save_reg = gr_j;
690 last_prologue_pc = next_pc;
691 }
456f8b9d
DB
692 }
693
694 /* To save multiple callee-saves registers on the stack, at
695 offset zero:
696
697 std grK,@(sp,gr0)
698 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
699 0 000000 1111111 111111 111111 111111 = 0x01ffffff
700
701 stq grK,@(sp,gr0)
702 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
703 0 000000 1111111 111111 111111 111111 = 0x01ffffff
704 . . . . . . . .
705 We treat this as part of the prologue, and record the register's
706 saved address in the frame structure. */
707 else if ((op & 0x01ffffff) == 0x000c10c0
708 || (op & 0x01ffffff) == 0x000c1100)
709 {
710 int gr_k = ((op >> 25) & 0x3f);
711 int ope = ((op >> 6) & 0x3f);
712 int count;
713 int i;
714
715 /* Is it an std or an stq? */
716 if (ope == 0x03)
717 count = 2;
718 else
719 count = 4;
720
721 /* Is it really a callee-saves register? */
722 if (is_callee_saves_reg (gr_k))
723 {
724 for (i = 0; i < count; i++)
725 {
726 gr_saved[gr_k + i] = 1;
727 gr_sp_offset[gr_k + i] = 4 * i;
728 }
d40fcd7b 729 last_prologue_pc = next_pc;
456f8b9d 730 }
456f8b9d
DB
731 }
732
733 /* Adjusting the stack pointer. (The stack pointer is GR1.)
734 addi sp, S, sp
735 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
736 0 111111 1111111 111111 000000000000 = 0x7ffff000
737 . . . . . . . .
738 We treat this as part of the prologue. */
739 else if ((op & 0x7ffff000) == 0x02401000)
740 {
d40fcd7b
KB
741 if (framesize == 0)
742 {
743 /* Sign-extend the twelve-bit field.
744 (Isn't there a better way to do this?) */
745 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
456f8b9d 746
d40fcd7b
KB
747 framesize -= s;
748 last_prologue_pc = pc;
749 }
750 else
751 {
752 /* If the prologue is being adjusted again, we've
753 likely gone too far; i.e. we're probably in the
754 epilogue. */
755 break;
756 }
456f8b9d
DB
757 }
758
759 /* Setting the FP to a constant distance from the SP:
760 addi sp, S, fp
761 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
762 0 111111 1111111 111111 000000000000 = 0x7ffff000
763 . . . . . . . .
764 We treat this as part of the prologue. */
765 else if ((op & 0x7ffff000) == 0x04401000)
766 {
767 /* Sign-extend the twelve-bit field.
768 (Isn't there a better way to do this?) */
769 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
770 fp_set = 1;
771 fp_offset = s;
d40fcd7b 772 last_prologue_pc = pc;
456f8b9d
DB
773 }
774
775 /* To spill an argument register to a scratch register:
776 ori GRi, 0, GRk
777 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
778 0 000000 1111111 000000 111111111111 = 0x01fc0fff
779 . . . . . . . .
780 For the time being, we treat this as a prologue instruction,
781 assuming that GRi is an argument register. This one's kind
782 of suspicious, because it seems like it could be part of a
783 legitimate body instruction. But we only come here when the
784 source info wasn't helpful, so we have to do the best we can.
785 Hopefully once GCC and GDB agree on how to emit line number
786 info for prologues, then this code will never come into play. */
787 else if ((op & 0x01fc0fff) == 0x00880000)
788 {
789 int gr_i = ((op >> 12) & 0x3f);
790
d40fcd7b
KB
791 /* Make sure that the source is an arg register; if it is, we'll
792 treat it as a prologue instruction. */
793 if (is_argument_reg (gr_i))
794 last_prologue_pc = next_pc;
456f8b9d
DB
795 }
796
797 /* To spill 16-bit values to the stack:
798 sthi GRk, @(fp, s)
799 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
800 0 000000 1111111 111111 000000000000 = 0x01fff000
801 . . . . . . . .
802 And for 8-bit values, we use STB instructions.
803 stbi GRk, @(fp, s)
804 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
805 0 000000 1111111 111111 000000000000 = 0x01fff000
806 . . . . . . . .
807 We check that GRk is really an argument register, and treat
808 all such as part of the prologue. */
809 else if ( (op & 0x01fff000) == 0x01442000
810 || (op & 0x01fff000) == 0x01402000)
811 {
812 int gr_k = ((op >> 25) & 0x3f);
813
d40fcd7b
KB
814 /* Make sure that GRk is really an argument register; treat
815 it as a prologue instruction if so. */
816 if (is_argument_reg (gr_k))
817 last_prologue_pc = next_pc;
456f8b9d
DB
818 }
819
820 /* To save multiple callee-saves register on the stack, at a
821 non-zero offset:
822
823 stdi GRk, @(sp, s)
824 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
825 0 000000 1111111 111111 000000000000 = 0x01fff000
826 . . . . . . . .
827 stqi GRk, @(sp, s)
828 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
829 0 000000 1111111 111111 000000000000 = 0x01fff000
830 . . . . . . . .
831 We treat this as part of the prologue, and record the register's
832 saved address in the frame structure. */
833 else if ((op & 0x01fff000) == 0x014c1000
834 || (op & 0x01fff000) == 0x01501000)
835 {
836 int gr_k = ((op >> 25) & 0x3f);
837 int count;
838 int i;
839
840 /* Is it a stdi or a stqi? */
841 if ((op & 0x01fff000) == 0x014c1000)
842 count = 2;
843 else
844 count = 4;
845
846 /* Is it really a callee-saves register? */
847 if (is_callee_saves_reg (gr_k))
848 {
849 /* Sign-extend the twelve-bit field.
850 (Isn't there a better way to do this?) */
851 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
852
853 for (i = 0; i < count; i++)
854 {
855 gr_saved[gr_k + i] = 1;
856 gr_sp_offset[gr_k + i] = s + (4 * i);
857 }
d40fcd7b 858 last_prologue_pc = next_pc;
456f8b9d 859 }
456f8b9d
DB
860 }
861
862 /* Storing any kind of integer register at any constant offset
863 from any other register.
864
865 st GRk, @(GRi, gr0)
866 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
867 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
868 . . . . . . . .
869 sti GRk, @(GRi, d12)
870 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
871 0 000000 1111111 000000 000000000000 = 0x01fc0000
872 . . . . . . . .
873 These could be almost anything, but a lot of prologue
874 instructions fall into this pattern, so let's decode the
875 instruction once, and then work at a higher level. */
876 else if (((op & 0x01fc0fff) == 0x000c0080)
877 || ((op & 0x01fc0000) == 0x01480000))
878 {
879 int gr_k = ((op >> 25) & 0x3f);
880 int gr_i = ((op >> 12) & 0x3f);
881 int offset;
882
883 /* Are we storing with gr0 as an offset, or using an
884 immediate value? */
885 if ((op & 0x01fc0fff) == 0x000c0080)
886 offset = 0;
887 else
888 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
889
890 /* If the address isn't relative to the SP or FP, it's not a
891 prologue instruction. */
892 if (gr_i != sp_regnum && gr_i != fp_regnum)
d40fcd7b
KB
893 {
894 /* Do nothing; not a prologue instruction. */
895 }
456f8b9d
DB
896
897 /* Saving the old FP in the new frame (relative to the SP). */
d40fcd7b 898 else if (gr_k == fp_regnum && gr_i == sp_regnum)
1cb761c7
KB
899 {
900 gr_saved[fp_regnum] = 1;
901 gr_sp_offset[fp_regnum] = offset;
d40fcd7b 902 last_prologue_pc = next_pc;
1cb761c7 903 }
456f8b9d
DB
904
905 /* Saving callee-saves register(s) on the stack, relative to
906 the SP. */
907 else if (gr_i == sp_regnum
908 && is_callee_saves_reg (gr_k))
909 {
910 gr_saved[gr_k] = 1;
1cb761c7
KB
911 if (gr_i == sp_regnum)
912 gr_sp_offset[gr_k] = offset;
913 else
914 gr_sp_offset[gr_k] = offset + fp_offset;
d40fcd7b 915 last_prologue_pc = next_pc;
456f8b9d
DB
916 }
917
918 /* Saving the scratch register holding the return address. */
919 else if (lr_save_reg != -1
920 && gr_k == lr_save_reg)
1cb761c7
KB
921 {
922 lr_saved_on_stack = 1;
923 if (gr_i == sp_regnum)
924 lr_sp_offset = offset;
925 else
926 lr_sp_offset = offset + fp_offset;
d40fcd7b 927 last_prologue_pc = next_pc;
1cb761c7 928 }
456f8b9d
DB
929
930 /* Spilling int-sized arguments to the stack. */
931 else if (is_argument_reg (gr_k))
d40fcd7b 932 last_prologue_pc = next_pc;
456f8b9d 933 }
d40fcd7b 934 pc = next_pc;
456f8b9d
DB
935 }
936
94afd7a6 937 if (this_frame && info)
456f8b9d 938 {
1cb761c7
KB
939 int i;
940 ULONGEST this_base;
456f8b9d
DB
941
942 /* If we know the relationship between the stack and frame
943 pointers, record the addresses of the registers we noticed.
944 Note that we have to do this as a separate step at the end,
945 because instructions may save relative to the SP, but we need
946 their addresses relative to the FP. */
947 if (fp_set)
94afd7a6 948 this_base = get_frame_register_unsigned (this_frame, fp_regnum);
1cb761c7 949 else
94afd7a6 950 this_base = get_frame_register_unsigned (this_frame, sp_regnum);
456f8b9d 951
1cb761c7
KB
952 for (i = 0; i < 64; i++)
953 if (gr_saved[i])
954 info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i];
456f8b9d 955
1cb761c7
KB
956 info->prev_sp = this_base - fp_offset + framesize;
957 info->base = this_base;
958
959 /* If LR was saved on the stack, record its location. */
960 if (lr_saved_on_stack)
0963b4bd
MS
961 info->saved_regs[lr_regnum].addr
962 = this_base - fp_offset + lr_sp_offset;
1cb761c7
KB
963
964 /* The call instruction moves the caller's PC in the callee's LR.
965 Since this is an unwind, do the reverse. Copy the location of LR
966 into PC (the address / regnum) so that a request for PC will be
967 converted into a request for the LR. */
968 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
969
970 /* Save the previous frame's computed SP value. */
971 trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp);
456f8b9d
DB
972 }
973
d40fcd7b 974 return last_prologue_pc;
456f8b9d
DB
975}
976
977
978static CORE_ADDR
6093d2eb 979frv_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
456f8b9d
DB
980{
981 CORE_ADDR func_addr, func_end, new_pc;
982
983 new_pc = pc;
984
985 /* If the line table has entry for a line *within* the function
986 (i.e., not in the prologue, and not past the end), then that's
987 our location. */
988 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
989 {
990 struct symtab_and_line sal;
991
992 sal = find_pc_line (func_addr, 0);
993
994 if (sal.line != 0 && sal.end < func_end)
995 {
996 new_pc = sal.end;
997 }
998 }
999
1000 /* The FR-V prologue is at least five instructions long (twenty bytes).
1001 If we didn't find a real source location past that, then
1002 do a full analysis of the prologue. */
1003 if (new_pc < pc + 20)
d80b854b 1004 new_pc = frv_analyze_prologue (gdbarch, pc, 0, 0);
456f8b9d
DB
1005
1006 return new_pc;
1007}
1008
1cb761c7 1009
9bc7b6c6
KB
1010/* Examine the instruction pointed to by PC. If it corresponds to
1011 a call to __main, return the address of the next instruction.
1012 Otherwise, return PC. */
1013
1014static CORE_ADDR
1015frv_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1016{
e17a4113 1017 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9bc7b6c6
KB
1018 gdb_byte buf[4];
1019 unsigned long op;
1020 CORE_ADDR orig_pc = pc;
1021
1022 if (target_read_memory (pc, buf, 4))
1023 return pc;
e17a4113 1024 op = extract_unsigned_integer (buf, 4, byte_order);
9bc7b6c6
KB
1025
1026 /* In PIC code, GR15 may be loaded from some offset off of FP prior
1027 to the call instruction.
1028
1029 Skip over this instruction if present. It won't be present in
0963b4bd 1030 non-PIC code, and even in PIC code, it might not be present.
9bc7b6c6
KB
1031 (This is due to the fact that GR15, the FDPIC register, already
1032 contains the correct value.)
1033
1034 The general form of the LDI is given first, followed by the
1035 specific instruction with the GRi and GRk filled in as FP and
1036 GR15.
1037
1038 ldi @(GRi, d12), GRk
1039 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x00c80000
1040 0 000000 1111111 000000 000000000000 = 0x01fc0000
1041 . . . . . . . .
1042 ldi @(FP, d12), GR15
1043 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x1ec82000
1044 0 001111 1111111 000010 000000000000 = 0x7ffff000
1045 . . . . . . . . */
1046
1047 if ((op & 0x7ffff000) == 0x1ec82000)
1048 {
1049 pc += 4;
1050 if (target_read_memory (pc, buf, 4))
1051 return orig_pc;
e17a4113 1052 op = extract_unsigned_integer (buf, 4, byte_order);
9bc7b6c6
KB
1053 }
1054
1055 /* The format of an FRV CALL instruction is as follows:
1056
1057 call label24
1058 P HHHHHH 0001111 LLLLLLLLLLLLLLLLLL = 0x003c0000
1059 0 000000 1111111 000000000000000000 = 0x01fc0000
1060 . . . . . . . .
1061
1062 where label24 is constructed by concatenating the H bits with the
1063 L bits. The call target is PC + (4 * sign_ext(label24)). */
1064
1065 if ((op & 0x01fc0000) == 0x003c0000)
1066 {
1067 LONGEST displ;
1068 CORE_ADDR call_dest;
7cbd4a93 1069 struct bound_minimal_symbol s;
9bc7b6c6
KB
1070
1071 displ = ((op & 0xfe000000) >> 7) | (op & 0x0003ffff);
1072 if ((displ & 0x00800000) != 0)
1073 displ |= ~((LONGEST) 0x00ffffff);
1074
1075 call_dest = pc + 4 * displ;
1076 s = lookup_minimal_symbol_by_pc (call_dest);
1077
7cbd4a93 1078 if (s.minsym != NULL
efd66ac6
TT
1079 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1080 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
9bc7b6c6
KB
1081 {
1082 pc += 4;
1083 return pc;
1084 }
1085 }
1086 return orig_pc;
1087}
1088
1089
1cb761c7 1090static struct frv_unwind_cache *
94afd7a6 1091frv_frame_unwind_cache (struct frame_info *this_frame,
1cb761c7 1092 void **this_prologue_cache)
456f8b9d 1093{
94afd7a6 1094 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1cb761c7 1095 struct frv_unwind_cache *info;
8baa6f92 1096
1cb761c7 1097 if ((*this_prologue_cache))
9a3c8263 1098 return (struct frv_unwind_cache *) (*this_prologue_cache);
456f8b9d 1099
1cb761c7
KB
1100 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
1101 (*this_prologue_cache) = info;
94afd7a6 1102 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
456f8b9d 1103
1cb761c7 1104 /* Prologue analysis does the rest... */
d80b854b
UW
1105 frv_analyze_prologue (gdbarch,
1106 get_frame_func (this_frame), this_frame, info);
456f8b9d 1107
1cb761c7 1108 return info;
456f8b9d
DB
1109}
1110
456f8b9d 1111static void
cd31fb03 1112frv_extract_return_value (struct type *type, struct regcache *regcache,
e2b7c966 1113 gdb_byte *valbuf)
456f8b9d 1114{
ac7936df 1115 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 1116 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cd31fb03
KB
1117 int len = TYPE_LENGTH (type);
1118
1119 if (len <= 4)
1120 {
1121 ULONGEST gpr8_val;
1122 regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
e17a4113 1123 store_unsigned_integer (valbuf, len, byte_order, gpr8_val);
cd31fb03
KB
1124 }
1125 else if (len == 8)
1126 {
1127 ULONGEST regval;
0963b4bd 1128
cd31fb03 1129 regcache_cooked_read_unsigned (regcache, 8, &regval);
e17a4113 1130 store_unsigned_integer (valbuf, 4, byte_order, regval);
cd31fb03 1131 regcache_cooked_read_unsigned (regcache, 9, &regval);
e17a4113 1132 store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, byte_order, regval);
cd31fb03
KB
1133 }
1134 else
0963b4bd
MS
1135 internal_error (__FILE__, __LINE__,
1136 _("Illegal return value length: %d"), len);
456f8b9d
DB
1137}
1138
1cb761c7
KB
1139static CORE_ADDR
1140frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
456f8b9d 1141{
1cb761c7 1142 /* Require dword alignment. */
5b03f266 1143 return align_down (sp, 8);
456f8b9d
DB
1144}
1145
c4d10515
KB
1146static CORE_ADDR
1147find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point)
1148{
e17a4113 1149 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c4d10515 1150 CORE_ADDR descr;
948f8e3d 1151 gdb_byte valbuf[4];
35e08e03
KB
1152 CORE_ADDR start_addr;
1153
1154 /* If we can't find the function in the symbol table, then we assume
1155 that the function address is already in descriptor form. */
1156 if (!find_pc_partial_function (entry_point, NULL, &start_addr, NULL)
1157 || entry_point != start_addr)
1158 return entry_point;
c4d10515
KB
1159
1160 descr = frv_fdpic_find_canonical_descriptor (entry_point);
1161
1162 if (descr != 0)
1163 return descr;
1164
1165 /* Construct a non-canonical descriptor from space allocated on
1166 the stack. */
1167
1168 descr = value_as_long (value_allocate_space_in_inferior (8));
e17a4113 1169 store_unsigned_integer (valbuf, 4, byte_order, entry_point);
c4d10515 1170 write_memory (descr, valbuf, 4);
e17a4113 1171 store_unsigned_integer (valbuf, 4, byte_order,
c4d10515
KB
1172 frv_fdpic_find_global_pointer (entry_point));
1173 write_memory (descr + 4, valbuf, 4);
1174 return descr;
1175}
1176
1177static CORE_ADDR
1178frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1179 struct target_ops *targ)
1180{
e17a4113 1181 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c4d10515
KB
1182 CORE_ADDR entry_point;
1183 CORE_ADDR got_address;
1184
e17a4113
UW
1185 entry_point = get_target_memory_unsigned (targ, addr, 4, byte_order);
1186 got_address = get_target_memory_unsigned (targ, addr + 4, 4, byte_order);
c4d10515
KB
1187
1188 if (got_address == frv_fdpic_find_global_pointer (entry_point))
1189 return entry_point;
1190 else
1191 return addr;
1192}
1193
456f8b9d 1194static CORE_ADDR
7d9b040b 1195frv_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1cb761c7
KB
1196 struct regcache *regcache, CORE_ADDR bp_addr,
1197 int nargs, struct value **args, CORE_ADDR sp,
cf84fa6b
AH
1198 function_call_return_method return_method,
1199 CORE_ADDR struct_addr)
456f8b9d 1200{
e17a4113 1201 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
456f8b9d
DB
1202 int argreg;
1203 int argnum;
948f8e3d
PA
1204 const gdb_byte *val;
1205 gdb_byte valbuf[4];
456f8b9d
DB
1206 struct value *arg;
1207 struct type *arg_type;
1208 int len;
1209 enum type_code typecode;
1210 CORE_ADDR regval;
1211 int stack_space;
1212 int stack_offset;
c4d10515 1213 enum frv_abi abi = frv_abi (gdbarch);
7d9b040b 1214 CORE_ADDR func_addr = find_function_addr (function, NULL);
456f8b9d
DB
1215
1216#if 0
1217 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1218 nargs, (int) sp, struct_return, struct_addr);
1219#endif
1220
1221 stack_space = 0;
1222 for (argnum = 0; argnum < nargs; ++argnum)
4991999e 1223 stack_space += align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
456f8b9d
DB
1224
1225 stack_space -= (6 * 4);
1226 if (stack_space > 0)
1227 sp -= stack_space;
1228
0963b4bd 1229 /* Make sure stack is dword aligned. */
5b03f266 1230 sp = align_down (sp, 8);
456f8b9d
DB
1231
1232 stack_offset = 0;
1233
1234 argreg = 8;
1235
cf84fa6b 1236 if (return_method == return_method_struct)
1cb761c7
KB
1237 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
1238 struct_addr);
456f8b9d
DB
1239
1240 for (argnum = 0; argnum < nargs; ++argnum)
1241 {
1242 arg = args[argnum];
4991999e 1243 arg_type = check_typedef (value_type (arg));
456f8b9d
DB
1244 len = TYPE_LENGTH (arg_type);
1245 typecode = TYPE_CODE (arg_type);
1246
1247 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1248 {
e17a4113
UW
1249 store_unsigned_integer (valbuf, 4, byte_order,
1250 value_address (arg));
456f8b9d
DB
1251 typecode = TYPE_CODE_PTR;
1252 len = 4;
1253 val = valbuf;
1254 }
c4d10515
KB
1255 else if (abi == FRV_ABI_FDPIC
1256 && len == 4
1257 && typecode == TYPE_CODE_PTR
1258 && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
1259 {
1260 /* The FDPIC ABI requires function descriptors to be passed instead
1261 of entry points. */
e17a4113
UW
1262 CORE_ADDR addr = extract_unsigned_integer
1263 (value_contents (arg), 4, byte_order);
1264 addr = find_func_descr (gdbarch, addr);
1265 store_unsigned_integer (valbuf, 4, byte_order, addr);
c4d10515
KB
1266 typecode = TYPE_CODE_PTR;
1267 len = 4;
1268 val = valbuf;
1269 }
456f8b9d
DB
1270 else
1271 {
948f8e3d 1272 val = value_contents (arg);
456f8b9d
DB
1273 }
1274
1275 while (len > 0)
1276 {
1277 int partial_len = (len < 4 ? len : 4);
1278
1279 if (argreg < 14)
1280 {
e17a4113 1281 regval = extract_unsigned_integer (val, partial_len, byte_order);
456f8b9d
DB
1282#if 0
1283 printf(" Argnum %d data %x -> reg %d\n",
1284 argnum, (int) regval, argreg);
1285#endif
1cb761c7 1286 regcache_cooked_write_unsigned (regcache, argreg, regval);
456f8b9d
DB
1287 ++argreg;
1288 }
1289 else
1290 {
1291#if 0
1292 printf(" Argnum %d data %x -> offset %d (%x)\n",
0963b4bd
MS
1293 argnum, *((int *)val), stack_offset,
1294 (int) (sp + stack_offset));
456f8b9d
DB
1295#endif
1296 write_memory (sp + stack_offset, val, partial_len);
5b03f266 1297 stack_offset += align_up (partial_len, 4);
456f8b9d
DB
1298 }
1299 len -= partial_len;
1300 val += partial_len;
1301 }
1302 }
456f8b9d 1303
1cb761c7
KB
1304 /* Set the return address. For the frv, the return breakpoint is
1305 always at BP_ADDR. */
1306 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
1307
c4d10515
KB
1308 if (abi == FRV_ABI_FDPIC)
1309 {
1310 /* Set the GOT register for the FDPIC ABI. */
1311 regcache_cooked_write_unsigned
1312 (regcache, first_gpr_regnum + 15,
1313 frv_fdpic_find_global_pointer (func_addr));
1314 }
1315
1cb761c7
KB
1316 /* Finally, update the SP register. */
1317 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1318
456f8b9d
DB
1319 return sp;
1320}
1321
1322static void
cd31fb03 1323frv_store_return_value (struct type *type, struct regcache *regcache,
e2b7c966 1324 const gdb_byte *valbuf)
456f8b9d 1325{
cd31fb03
KB
1326 int len = TYPE_LENGTH (type);
1327
1328 if (len <= 4)
1329 {
1330 bfd_byte val[4];
1331 memset (val, 0, sizeof (val));
1332 memcpy (val + (4 - len), valbuf, len);
b66f5587 1333 regcache->cooked_write (8, val);
cd31fb03
KB
1334 }
1335 else if (len == 8)
1336 {
b66f5587
SM
1337 regcache->cooked_write (8, valbuf);
1338 regcache->cooked_write (9, (bfd_byte *) valbuf + 4);
cd31fb03 1339 }
456f8b9d
DB
1340 else
1341 internal_error (__FILE__, __LINE__,
e2e0b3e5 1342 _("Don't know how to return a %d-byte value."), len);
456f8b9d
DB
1343}
1344
63807e1d 1345static enum return_value_convention
6a3a010b 1346frv_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
1347 struct type *valtype, struct regcache *regcache,
1348 gdb_byte *readbuf, const gdb_byte *writebuf)
4c8b6ae0
UW
1349{
1350 int struct_return = TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1351 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1352 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY;
1353
1354 if (writebuf != NULL)
1355 {
1356 gdb_assert (!struct_return);
1357 frv_store_return_value (valtype, regcache, writebuf);
1358 }
1359
1360 if (readbuf != NULL)
1361 {
1362 gdb_assert (!struct_return);
1363 frv_extract_return_value (valtype, regcache, readbuf);
1364 }
1365
1366 if (struct_return)
1367 return RETURN_VALUE_STRUCT_CONVENTION;
1368 else
1369 return RETURN_VALUE_REGISTER_CONVENTION;
456f8b9d
DB
1370}
1371
1cb761c7
KB
1372/* Given a GDB frame, determine the address of the calling function's
1373 frame. This will be used to create a new GDB frame struct. */
1374
1375static void
94afd7a6 1376frv_frame_this_id (struct frame_info *this_frame,
1cb761c7
KB
1377 void **this_prologue_cache, struct frame_id *this_id)
1378{
1379 struct frv_unwind_cache *info
94afd7a6 1380 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1cb761c7
KB
1381 CORE_ADDR base;
1382 CORE_ADDR func;
3b7344d5 1383 struct bound_minimal_symbol msym_stack;
1cb761c7
KB
1384 struct frame_id id;
1385
1386 /* The FUNC is easy. */
94afd7a6 1387 func = get_frame_func (this_frame);
1cb761c7 1388
1cb761c7
KB
1389 /* Check if the stack is empty. */
1390 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
77e371c0 1391 if (msym_stack.minsym && info->base == BMSYMBOL_VALUE_ADDRESS (msym_stack))
1cb761c7
KB
1392 return;
1393
1394 /* Hopefully the prologue analysis either correctly determined the
1395 frame's base (which is the SP from the previous frame), or set
1396 that base to "NULL". */
1397 base = info->prev_sp;
1398 if (base == 0)
1399 return;
1400
1401 id = frame_id_build (base, func);
1cb761c7
KB
1402 (*this_id) = id;
1403}
1404
94afd7a6
UW
1405static struct value *
1406frv_frame_prev_register (struct frame_info *this_frame,
1407 void **this_prologue_cache, int regnum)
1cb761c7
KB
1408{
1409 struct frv_unwind_cache *info
94afd7a6
UW
1410 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1411 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1cb761c7
KB
1412}
1413
1414static const struct frame_unwind frv_frame_unwind = {
1415 NORMAL_FRAME,
8fbca658 1416 default_frame_unwind_stop_reason,
1cb761c7 1417 frv_frame_this_id,
94afd7a6
UW
1418 frv_frame_prev_register,
1419 NULL,
1420 default_frame_sniffer
1cb761c7
KB
1421};
1422
1cb761c7 1423static CORE_ADDR
94afd7a6 1424frv_frame_base_address (struct frame_info *this_frame, void **this_cache)
1cb761c7
KB
1425{
1426 struct frv_unwind_cache *info
94afd7a6 1427 = frv_frame_unwind_cache (this_frame, this_cache);
1cb761c7
KB
1428 return info->base;
1429}
1430
1431static const struct frame_base frv_frame_base = {
1432 &frv_frame_unwind,
1433 frv_frame_base_address,
1434 frv_frame_base_address,
1435 frv_frame_base_address
1436};
1437
456f8b9d
DB
1438static struct gdbarch *
1439frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1440{
1441 struct gdbarch *gdbarch;
1442 struct gdbarch_tdep *var;
7e295833 1443 int elf_flags = 0;
456f8b9d
DB
1444
1445 /* Check to see if we've already built an appropriate architecture
1446 object for this executable. */
1447 arches = gdbarch_list_lookup_by_info (arches, &info);
1448 if (arches)
1449 return arches->gdbarch;
1450
1451 /* Select the right tdep structure for this variant. */
1452 var = new_variant ();
1453 switch (info.bfd_arch_info->mach)
1454 {
1455 case bfd_mach_frv:
1456 case bfd_mach_frvsimple:
087ccc6a 1457 case bfd_mach_fr300:
456f8b9d
DB
1458 case bfd_mach_fr500:
1459 case bfd_mach_frvtomcat:
251a3ae3 1460 case bfd_mach_fr550:
456f8b9d
DB
1461 set_variant_num_gprs (var, 64);
1462 set_variant_num_fprs (var, 64);
1463 break;
1464
1465 case bfd_mach_fr400:
b2d6d697 1466 case bfd_mach_fr450:
456f8b9d
DB
1467 set_variant_num_gprs (var, 32);
1468 set_variant_num_fprs (var, 32);
1469 break;
1470
1471 default:
1472 /* Never heard of this variant. */
1473 return 0;
1474 }
7e295833
KB
1475
1476 /* Extract the ELF flags, if available. */
1477 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1478 elf_flags = elf_elfheader (info.abfd)->e_flags;
1479
1480 if (elf_flags & EF_FRV_FDPIC)
1481 set_variant_abi_fdpic (var);
1482
b2d6d697
KB
1483 if (elf_flags & EF_FRV_CPU_FR450)
1484 set_variant_scratch_registers (var);
1485
456f8b9d
DB
1486 gdbarch = gdbarch_alloc (&info, var);
1487
1488 set_gdbarch_short_bit (gdbarch, 16);
1489 set_gdbarch_int_bit (gdbarch, 32);
1490 set_gdbarch_long_bit (gdbarch, 32);
1491 set_gdbarch_long_long_bit (gdbarch, 64);
1492 set_gdbarch_float_bit (gdbarch, 32);
1493 set_gdbarch_double_bit (gdbarch, 64);
1494 set_gdbarch_long_double_bit (gdbarch, 64);
1495 set_gdbarch_ptr_bit (gdbarch, 32);
1496
1497 set_gdbarch_num_regs (gdbarch, frv_num_regs);
6a748db6
KB
1498 set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1499
456f8b9d 1500 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
0ba6dca9 1501 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
456f8b9d
DB
1502 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1503
1504 set_gdbarch_register_name (gdbarch, frv_register_name);
7f398216 1505 set_gdbarch_register_type (gdbarch, frv_register_type);
526eef89 1506 set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
456f8b9d 1507
6a748db6
KB
1508 set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
1509 set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
1510
456f8b9d 1511 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
9bc7b6c6 1512 set_gdbarch_skip_main_prologue (gdbarch, frv_skip_main_prologue);
04180708
YQ
1513 set_gdbarch_breakpoint_kind_from_pc (gdbarch, frv_breakpoint::kind_from_pc);
1514 set_gdbarch_sw_breakpoint_from_kind (gdbarch, frv_breakpoint::bp_from_kind);
1208538e
MK
1515 set_gdbarch_adjust_breakpoint_address
1516 (gdbarch, frv_adjust_breakpoint_address);
456f8b9d 1517
4c8b6ae0 1518 set_gdbarch_return_value (gdbarch, frv_return_value);
456f8b9d 1519
1cb761c7 1520 /* Frame stuff. */
1cb761c7 1521 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1cb761c7 1522 frame_base_set_default (gdbarch, &frv_frame_base);
5ecb7103
KB
1523 /* We set the sniffer lower down after the OSABI hooks have been
1524 established. */
456f8b9d 1525
1cb761c7
KB
1526 /* Settings for calling functions in the inferior. */
1527 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
456f8b9d
DB
1528
1529 /* Settings that should be unnecessary. */
1530 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1531
456f8b9d
DB
1532 /* Hardware watchpoint / breakpoint support. */
1533 switch (info.bfd_arch_info->mach)
1534 {
1535 case bfd_mach_frv:
1536 case bfd_mach_frvsimple:
087ccc6a 1537 case bfd_mach_fr300:
456f8b9d
DB
1538 case bfd_mach_fr500:
1539 case bfd_mach_frvtomcat:
1540 /* fr500-style hardware debugging support. */
1541 var->num_hw_watchpoints = 4;
1542 var->num_hw_breakpoints = 4;
1543 break;
1544
1545 case bfd_mach_fr400:
b2d6d697 1546 case bfd_mach_fr450:
456f8b9d
DB
1547 /* fr400-style hardware debugging support. */
1548 var->num_hw_watchpoints = 2;
1549 var->num_hw_breakpoints = 4;
1550 break;
1551
1552 default:
1553 /* Otherwise, assume we don't have hardware debugging support. */
1554 var->num_hw_watchpoints = 0;
1555 var->num_hw_breakpoints = 0;
1556 break;
1557 }
1558
c4d10515
KB
1559 if (frv_abi (gdbarch) == FRV_ABI_FDPIC)
1560 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1561 frv_convert_from_func_ptr_addr);
36482093 1562
917630e4
UW
1563 set_solib_ops (gdbarch, &frv_so_ops);
1564
5ecb7103
KB
1565 /* Hook in ABI-specific overrides, if they have been registered. */
1566 gdbarch_init_osabi (info, gdbarch);
1567
5ecb7103 1568 /* Set the fallback (prologue based) frame sniffer. */
94afd7a6 1569 frame_unwind_append_unwinder (gdbarch, &frv_frame_unwind);
5ecb7103 1570
186993b4
KB
1571 /* Enable TLS support. */
1572 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1573 frv_fetch_objfile_link_map);
1574
456f8b9d
DB
1575 return gdbarch;
1576}
1577
1578void
1579_initialize_frv_tdep (void)
1580{
1581 register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
456f8b9d 1582}
This page took 1.638282 seconds and 4 git commands to generate.