* elf-bfd.h (bfd_elf_perform_complex_relocation): Update prototype.
[deliverable/binutils-gdb.git] / gdb / frv-tdep.c
CommitLineData
456f8b9d 1/* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
0fd88904 2
6aba47ca 3 Copyright (C) 2002, 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
456f8b9d
DB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
456f8b9d
DB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
456f8b9d
DB
19
20#include "defs.h"
8baa6f92 21#include "gdb_string.h"
456f8b9d 22#include "inferior.h"
456f8b9d
DB
23#include "gdbcore.h"
24#include "arch-utils.h"
25#include "regcache.h"
8baa6f92 26#include "frame.h"
1cb761c7
KB
27#include "frame-unwind.h"
28#include "frame-base.h"
8baa6f92 29#include "trad-frame.h"
dcc6aaff 30#include "dis-asm.h"
526eef89
KB
31#include "gdb_assert.h"
32#include "sim-regno.h"
33#include "gdb/sim-frv.h"
34#include "opcodes/frv-desc.h" /* for the H_SPR_... enums */
634aa483 35#include "symtab.h"
7e295833
KB
36#include "elf-bfd.h"
37#include "elf/frv.h"
38#include "osabi.h"
7d9b040b 39#include "infcall.h"
917630e4 40#include "solib.h"
7e295833 41#include "frv-tdep.h"
456f8b9d
DB
42
43extern void _initialize_frv_tdep (void);
44
1cb761c7 45struct frv_unwind_cache /* was struct frame_extra_info */
456f8b9d 46 {
1cb761c7
KB
47 /* The previous frame's inner-most stack address. Used as this
48 frame ID's stack_addr. */
49 CORE_ADDR prev_sp;
456f8b9d 50
1cb761c7
KB
51 /* The frame's base, optionally used by the high-level debug info. */
52 CORE_ADDR base;
8baa6f92
KB
53
54 /* Table indicating the location of each and every register. */
55 struct trad_frame_saved_reg *saved_regs;
456f8b9d
DB
56 };
57
456f8b9d
DB
58/* A structure describing a particular variant of the FRV.
59 We allocate and initialize one of these structures when we create
60 the gdbarch object for a variant.
61
62 At the moment, all the FR variants we support differ only in which
63 registers are present; the portable code of GDB knows that
64 registers whose names are the empty string don't exist, so the
65 `register_names' array captures all the per-variant information we
66 need.
67
68 in the future, if we need to have per-variant maps for raw size,
69 virtual type, etc., we should replace register_names with an array
70 of structures, each of which gives all the necessary info for one
71 register. Don't stick parallel arrays in here --- that's so
72 Fortran. */
73struct gdbarch_tdep
74{
7e295833
KB
75 /* Which ABI is in use? */
76 enum frv_abi frv_abi;
77
456f8b9d
DB
78 /* How many general-purpose registers does this variant have? */
79 int num_gprs;
80
81 /* How many floating-point registers does this variant have? */
82 int num_fprs;
83
84 /* How many hardware watchpoints can it support? */
85 int num_hw_watchpoints;
86
87 /* How many hardware breakpoints can it support? */
88 int num_hw_breakpoints;
89
90 /* Register names. */
91 char **register_names;
92};
93
7e295833
KB
94/* Return the FR-V ABI associated with GDBARCH. */
95enum frv_abi
96frv_abi (struct gdbarch *gdbarch)
97{
98 return gdbarch_tdep (gdbarch)->frv_abi;
99}
100
101/* Fetch the interpreter and executable loadmap addresses (for shared
102 library support) for the FDPIC ABI. Return 0 if successful, -1 if
103 not. (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.) */
104int
105frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr,
106 CORE_ADDR *exec_addr)
107{
108 if (frv_abi (gdbarch) != FRV_ABI_FDPIC)
109 return -1;
110 else
111 {
594f7785
UW
112 struct regcache *regcache = get_current_regcache ();
113
7e295833
KB
114 if (interp_addr != NULL)
115 {
116 ULONGEST val;
594f7785 117 regcache_cooked_read_unsigned (regcache,
7e295833
KB
118 fdpic_loadmap_interp_regnum, &val);
119 *interp_addr = val;
120 }
121 if (exec_addr != NULL)
122 {
123 ULONGEST val;
594f7785 124 regcache_cooked_read_unsigned (regcache,
7e295833
KB
125 fdpic_loadmap_exec_regnum, &val);
126 *exec_addr = val;
127 }
128 return 0;
129 }
130}
456f8b9d
DB
131
132/* Allocate a new variant structure, and set up default values for all
133 the fields. */
134static struct gdbarch_tdep *
5ae5f592 135new_variant (void)
456f8b9d
DB
136{
137 struct gdbarch_tdep *var;
138 int r;
139 char buf[20];
140
141 var = xmalloc (sizeof (*var));
142 memset (var, 0, sizeof (*var));
143
7e295833 144 var->frv_abi = FRV_ABI_EABI;
456f8b9d
DB
145 var->num_gprs = 64;
146 var->num_fprs = 64;
147 var->num_hw_watchpoints = 0;
148 var->num_hw_breakpoints = 0;
149
150 /* By default, don't supply any general-purpose or floating-point
151 register names. */
6a748db6
KB
152 var->register_names
153 = (char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
154 * sizeof (char *));
155 for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
456f8b9d
DB
156 var->register_names[r] = "";
157
526eef89 158 /* Do, however, supply default names for the known special-purpose
456f8b9d 159 registers. */
456f8b9d
DB
160
161 var->register_names[pc_regnum] = "pc";
162 var->register_names[lr_regnum] = "lr";
163 var->register_names[lcr_regnum] = "lcr";
164
165 var->register_names[psr_regnum] = "psr";
166 var->register_names[ccr_regnum] = "ccr";
167 var->register_names[cccr_regnum] = "cccr";
168 var->register_names[tbr_regnum] = "tbr";
169
170 /* Debug registers. */
171 var->register_names[brr_regnum] = "brr";
172 var->register_names[dbar0_regnum] = "dbar0";
173 var->register_names[dbar1_regnum] = "dbar1";
174 var->register_names[dbar2_regnum] = "dbar2";
175 var->register_names[dbar3_regnum] = "dbar3";
176
526eef89
KB
177 /* iacc0 (Only found on MB93405.) */
178 var->register_names[iacc0h_regnum] = "iacc0h";
179 var->register_names[iacc0l_regnum] = "iacc0l";
6a748db6 180 var->register_names[iacc0_regnum] = "iacc0";
526eef89 181
8b67aa36
KB
182 /* fsr0 (Found on FR555 and FR501.) */
183 var->register_names[fsr0_regnum] = "fsr0";
184
185 /* acc0 - acc7. The architecture provides for the possibility of many
186 more (up to 64 total), but we don't want to make that big of a hole
187 in the G packet. If we need more in the future, we'll add them
188 elsewhere. */
189 for (r = acc0_regnum; r <= acc7_regnum; r++)
190 {
191 char *buf;
b435e160 192 buf = xstrprintf ("acc%d", r - acc0_regnum);
8b67aa36
KB
193 var->register_names[r] = buf;
194 }
195
196 /* accg0 - accg7: These are one byte registers. The remote protocol
197 provides the raw values packed four into a slot. accg0123 and
198 accg4567 correspond to accg0 - accg3 and accg4-accg7 respectively.
199 We don't provide names for accg0123 and accg4567 since the user will
200 likely not want to see these raw values. */
201
202 for (r = accg0_regnum; r <= accg7_regnum; r++)
203 {
204 char *buf;
b435e160 205 buf = xstrprintf ("accg%d", r - accg0_regnum);
8b67aa36
KB
206 var->register_names[r] = buf;
207 }
208
209 /* msr0 and msr1. */
210
211 var->register_names[msr0_regnum] = "msr0";
212 var->register_names[msr1_regnum] = "msr1";
213
214 /* gner and fner registers. */
215 var->register_names[gner0_regnum] = "gner0";
216 var->register_names[gner1_regnum] = "gner1";
217 var->register_names[fner0_regnum] = "fner0";
218 var->register_names[fner1_regnum] = "fner1";
219
456f8b9d
DB
220 return var;
221}
222
223
224/* Indicate that the variant VAR has NUM_GPRS general-purpose
225 registers, and fill in the names array appropriately. */
226static void
227set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
228{
229 int r;
230
231 var->num_gprs = num_gprs;
232
233 for (r = 0; r < num_gprs; ++r)
234 {
235 char buf[20];
236
237 sprintf (buf, "gr%d", r);
238 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
239 }
240}
241
242
243/* Indicate that the variant VAR has NUM_FPRS floating-point
244 registers, and fill in the names array appropriately. */
245static void
246set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
247{
248 int r;
249
250 var->num_fprs = num_fprs;
251
252 for (r = 0; r < num_fprs; ++r)
253 {
254 char buf[20];
255
256 sprintf (buf, "fr%d", r);
257 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
258 }
259}
260
7e295833
KB
261static void
262set_variant_abi_fdpic (struct gdbarch_tdep *var)
263{
264 var->frv_abi = FRV_ABI_FDPIC;
265 var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec");
266 var->register_names[fdpic_loadmap_interp_regnum] = xstrdup ("loadmap_interp");
267}
456f8b9d 268
b2d6d697
KB
269static void
270set_variant_scratch_registers (struct gdbarch_tdep *var)
271{
272 var->register_names[scr0_regnum] = xstrdup ("scr0");
273 var->register_names[scr1_regnum] = xstrdup ("scr1");
274 var->register_names[scr2_regnum] = xstrdup ("scr2");
275 var->register_names[scr3_regnum] = xstrdup ("scr3");
276}
277
456f8b9d 278static const char *
d93859e2 279frv_register_name (struct gdbarch *gdbarch, int reg)
456f8b9d
DB
280{
281 if (reg < 0)
282 return "?toosmall?";
6a748db6 283 if (reg >= frv_num_regs + frv_num_pseudo_regs)
456f8b9d
DB
284 return "?toolarge?";
285
7a22ecfc 286 return gdbarch_tdep (gdbarch)->register_names[reg];
456f8b9d
DB
287}
288
526eef89 289
456f8b9d 290static struct type *
7f398216 291frv_register_type (struct gdbarch *gdbarch, int reg)
456f8b9d 292{
526eef89 293 if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
456f8b9d 294 return builtin_type_float;
6a748db6
KB
295 else if (reg == iacc0_regnum)
296 return builtin_type_int64;
456f8b9d 297 else
526eef89 298 return builtin_type_int32;
456f8b9d
DB
299}
300
6a748db6
KB
301static void
302frv_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
e2b7c966 303 int reg, gdb_byte *buffer)
6a748db6
KB
304{
305 if (reg == iacc0_regnum)
306 {
307 regcache_raw_read (regcache, iacc0h_regnum, buffer);
308 regcache_raw_read (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
309 }
8b67aa36
KB
310 else if (accg0_regnum <= reg && reg <= accg7_regnum)
311 {
312 /* The accg raw registers have four values in each slot with the
313 lowest register number occupying the first byte. */
314
315 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
316 int byte_num = (reg - accg0_regnum) % 4;
317 bfd_byte buf[4];
318
319 regcache_raw_read (regcache, raw_regnum, buf);
320 memset (buffer, 0, 4);
321 /* FR-V is big endian, so put the requested byte in the first byte
322 of the buffer allocated to hold the pseudo-register. */
323 ((bfd_byte *) buffer)[0] = buf[byte_num];
324 }
6a748db6
KB
325}
326
327static void
328frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
e2b7c966 329 int reg, const gdb_byte *buffer)
6a748db6
KB
330{
331 if (reg == iacc0_regnum)
332 {
333 regcache_raw_write (regcache, iacc0h_regnum, buffer);
334 regcache_raw_write (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
335 }
8b67aa36
KB
336 else if (accg0_regnum <= reg && reg <= accg7_regnum)
337 {
338 /* The accg raw registers have four values in each slot with the
339 lowest register number occupying the first byte. */
340
341 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
342 int byte_num = (reg - accg0_regnum) % 4;
343 char buf[4];
344
345 regcache_raw_read (regcache, raw_regnum, buf);
346 buf[byte_num] = ((bfd_byte *) buffer)[0];
347 regcache_raw_write (regcache, raw_regnum, buf);
348 }
6a748db6
KB
349}
350
526eef89
KB
351static int
352frv_register_sim_regno (int reg)
353{
354 static const int spr_map[] =
355 {
356 H_SPR_PSR, /* psr_regnum */
357 H_SPR_CCR, /* ccr_regnum */
358 H_SPR_CCCR, /* cccr_regnum */
8b67aa36
KB
359 -1, /* fdpic_loadmap_exec_regnum */
360 -1, /* fdpic_loadmap_interp_regnum */
526eef89
KB
361 -1, /* 134 */
362 H_SPR_TBR, /* tbr_regnum */
363 H_SPR_BRR, /* brr_regnum */
364 H_SPR_DBAR0, /* dbar0_regnum */
365 H_SPR_DBAR1, /* dbar1_regnum */
366 H_SPR_DBAR2, /* dbar2_regnum */
367 H_SPR_DBAR3, /* dbar3_regnum */
8b67aa36
KB
368 H_SPR_SCR0, /* scr0_regnum */
369 H_SPR_SCR1, /* scr1_regnum */
370 H_SPR_SCR2, /* scr2_regnum */
371 H_SPR_SCR3, /* scr3_regnum */
526eef89
KB
372 H_SPR_LR, /* lr_regnum */
373 H_SPR_LCR, /* lcr_regnum */
374 H_SPR_IACC0H, /* iacc0h_regnum */
8b67aa36
KB
375 H_SPR_IACC0L, /* iacc0l_regnum */
376 H_SPR_FSR0, /* fsr0_regnum */
377 /* FIXME: Add infrastructure for fetching/setting ACC and ACCG regs. */
378 -1, /* acc0_regnum */
379 -1, /* acc1_regnum */
380 -1, /* acc2_regnum */
381 -1, /* acc3_regnum */
382 -1, /* acc4_regnum */
383 -1, /* acc5_regnum */
384 -1, /* acc6_regnum */
385 -1, /* acc7_regnum */
386 -1, /* acc0123_regnum */
387 -1, /* acc4567_regnum */
388 H_SPR_MSR0, /* msr0_regnum */
389 H_SPR_MSR1, /* msr1_regnum */
390 H_SPR_GNER0, /* gner0_regnum */
391 H_SPR_GNER1, /* gner1_regnum */
392 H_SPR_FNER0, /* fner0_regnum */
393 H_SPR_FNER1, /* fner1_regnum */
526eef89
KB
394 };
395
f57d151a 396 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (current_gdbarch));
526eef89
KB
397
398 if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
399 return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
400 else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
401 return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
402 else if (pc_regnum == reg)
403 return SIM_FRV_PC_REGNUM;
404 else if (reg >= first_spr_regnum
405 && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
406 {
407 int spr_reg_offset = spr_map[reg - first_spr_regnum];
408
409 if (spr_reg_offset < 0)
410 return SIM_REGNO_DOES_NOT_EXIST;
411 else
412 return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
413 }
414
e2e0b3e5 415 internal_error (__FILE__, __LINE__, _("Bad register number %d"), reg);
526eef89
KB
416}
417
456f8b9d 418static const unsigned char *
67d57894 419frv_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenp)
456f8b9d
DB
420{
421 static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
422 *lenp = sizeof (breakpoint);
423 return breakpoint;
424}
425
46a16dba
KB
426/* Define the maximum number of instructions which may be packed into a
427 bundle (VLIW instruction). */
428static const int max_instrs_per_bundle = 8;
429
430/* Define the size (in bytes) of an FR-V instruction. */
431static const int frv_instr_size = 4;
432
433/* Adjust a breakpoint's address to account for the FR-V architecture's
434 constraint that a break instruction must not appear as any but the
435 first instruction in the bundle. */
436static CORE_ADDR
1208538e 437frv_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
46a16dba
KB
438{
439 int count = max_instrs_per_bundle;
440 CORE_ADDR addr = bpaddr - frv_instr_size;
441 CORE_ADDR func_start = get_pc_function_start (bpaddr);
442
443 /* Find the end of the previous packing sequence. This will be indicated
444 by either attempting to access some inaccessible memory or by finding
445 an instruction word whose packing bit is set to one. */
446 while (count-- > 0 && addr >= func_start)
447 {
448 char instr[frv_instr_size];
449 int status;
450
359a9262 451 status = read_memory_nobpt (addr, instr, sizeof instr);
46a16dba
KB
452
453 if (status != 0)
454 break;
455
456 /* This is a big endian architecture, so byte zero will have most
457 significant byte. The most significant bit of this byte is the
458 packing bit. */
459 if (instr[0] & 0x80)
460 break;
461
462 addr -= frv_instr_size;
463 }
464
465 if (count > 0)
466 bpaddr = addr + frv_instr_size;
467
468 return bpaddr;
469}
470
456f8b9d
DB
471
472/* Return true if REG is a caller-saves ("scratch") register,
473 false otherwise. */
474static int
475is_caller_saves_reg (int reg)
476{
477 return ((4 <= reg && reg <= 7)
478 || (14 <= reg && reg <= 15)
479 || (32 <= reg && reg <= 47));
480}
481
482
483/* Return true if REG is a callee-saves register, false otherwise. */
484static int
485is_callee_saves_reg (int reg)
486{
487 return ((16 <= reg && reg <= 31)
488 || (48 <= reg && reg <= 63));
489}
490
491
492/* Return true if REG is an argument register, false otherwise. */
493static int
494is_argument_reg (int reg)
495{
496 return (8 <= reg && reg <= 13);
497}
498
456f8b9d
DB
499/* Scan an FR-V prologue, starting at PC, until frame->PC.
500 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
501 We assume FRAME's saved_regs array has already been allocated and cleared.
502 Return the first PC value after the prologue.
503
504 Note that, for unoptimized code, we almost don't need this function
505 at all; all arguments and locals live on the stack, so we just need
506 the FP to find everything. The catch: structures passed by value
507 have their addresses living in registers; they're never spilled to
508 the stack. So if you ever want to be able to get to these
509 arguments in any frame but the top, you'll need to do this serious
510 prologue analysis. */
511static CORE_ADDR
1cb761c7
KB
512frv_analyze_prologue (CORE_ADDR pc, struct frame_info *next_frame,
513 struct frv_unwind_cache *info)
456f8b9d
DB
514{
515 /* When writing out instruction bitpatterns, we use the following
516 letters to label instruction fields:
517 P - The parallel bit. We don't use this.
518 J - The register number of GRj in the instruction description.
519 K - The register number of GRk in the instruction description.
520 I - The register number of GRi.
521 S - a signed imediate offset.
522 U - an unsigned immediate offset.
523
524 The dots below the numbers indicate where hex digit boundaries
525 fall, to make it easier to check the numbers. */
526
527 /* Non-zero iff we've seen the instruction that initializes the
528 frame pointer for this function's frame. */
529 int fp_set = 0;
530
531 /* If fp_set is non_zero, then this is the distance from
532 the stack pointer to frame pointer: fp = sp + fp_offset. */
533 int fp_offset = 0;
534
535 /* Total size of frame prior to any alloca operations. */
536 int framesize = 0;
537
1cb761c7
KB
538 /* Flag indicating if lr has been saved on the stack. */
539 int lr_saved_on_stack = 0;
540
456f8b9d
DB
541 /* The number of the general-purpose register we saved the return
542 address ("link register") in, or -1 if we haven't moved it yet. */
543 int lr_save_reg = -1;
544
1cb761c7
KB
545 /* Offset (from sp) at which lr has been saved on the stack. */
546
547 int lr_sp_offset = 0;
456f8b9d
DB
548
549 /* If gr_saved[i] is non-zero, then we've noticed that general
550 register i has been saved at gr_sp_offset[i] from the stack
551 pointer. */
552 char gr_saved[64];
553 int gr_sp_offset[64];
554
d40fcd7b
KB
555 /* The address of the most recently scanned prologue instruction. */
556 CORE_ADDR last_prologue_pc;
557
558 /* The address of the next instruction. */
559 CORE_ADDR next_pc;
560
561 /* The upper bound to of the pc values to scan. */
562 CORE_ADDR lim_pc;
563
456f8b9d
DB
564 memset (gr_saved, 0, sizeof (gr_saved));
565
d40fcd7b
KB
566 last_prologue_pc = pc;
567
568 /* Try to compute an upper limit (on how far to scan) based on the
569 line number info. */
570 lim_pc = skip_prologue_using_sal (pc);
571 /* If there's no line number info, lim_pc will be 0. In that case,
572 set the limit to be 100 instructions away from pc. Hopefully, this
573 will be far enough away to account for the entire prologue. Don't
574 worry about overshooting the end of the function. The scan loop
575 below contains some checks to avoid scanning unreasonably far. */
576 if (lim_pc == 0)
577 lim_pc = pc + 400;
578
579 /* If we have a frame, we don't want to scan past the frame's pc. This
580 will catch those cases where the pc is in the prologue. */
581 if (next_frame)
582 {
583 CORE_ADDR frame_pc = frame_pc_unwind (next_frame);
584 if (frame_pc < lim_pc)
585 lim_pc = frame_pc;
586 }
587
588 /* Scan the prologue. */
589 while (pc < lim_pc)
456f8b9d 590 {
1ccda5e9
KB
591 char buf[frv_instr_size];
592 LONGEST op;
593
594 if (target_read_memory (pc, buf, sizeof buf) != 0)
595 break;
596 op = extract_signed_integer (buf, sizeof buf);
597
d40fcd7b 598 next_pc = pc + 4;
456f8b9d
DB
599
600 /* The tests in this chain of ifs should be in order of
601 decreasing selectivity, so that more particular patterns get
602 to fire before less particular patterns. */
603
d40fcd7b
KB
604 /* Some sort of control transfer instruction: stop scanning prologue.
605 Integer Conditional Branch:
606 X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
607 Floating-point / media Conditional Branch:
608 X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
609 LCR Conditional Branch to LR
610 X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
611 Integer conditional Branches to LR
612 X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
613 X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
614 Floating-point/Media Branches to LR
615 X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
616 X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
617 Jump and Link
618 X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
619 X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
620 Call
621 X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
622 Return from Trap
623 X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
624 Integer Conditional Trap
625 X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
626 X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
627 Floating-point /media Conditional Trap
628 X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
629 X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
630 Break
631 X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
632 Media Trap
633 X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
634 if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
635 || (op & 0x01f80000) == 0x00300000 /* Jump and Link */
636 || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
637 || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
638 {
639 /* Stop scanning; not in prologue any longer. */
640 break;
641 }
642
643 /* Loading something from memory into fp probably means that
644 we're in the epilogue. Stop scanning the prologue.
645 ld @(GRi, GRk), fp
646 X 000010 0000010 XXXXXX 000100 XXXXXX
647 ldi @(GRi, d12), fp
648 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
649 else if ((op & 0x7ffc0fc0) == 0x04080100
650 || (op & 0x7ffc0000) == 0x04c80000)
651 {
652 break;
653 }
654
456f8b9d
DB
655 /* Setting the FP from the SP:
656 ori sp, 0, fp
657 P 000010 0100010 000001 000000000000 = 0x04881000
658 0 111111 1111111 111111 111111111111 = 0x7fffffff
659 . . . . . . . .
660 We treat this as part of the prologue. */
d40fcd7b 661 else if ((op & 0x7fffffff) == 0x04881000)
456f8b9d
DB
662 {
663 fp_set = 1;
664 fp_offset = 0;
d40fcd7b 665 last_prologue_pc = next_pc;
456f8b9d
DB
666 }
667
668 /* Move the link register to the scratch register grJ, before saving:
669 movsg lr, grJ
670 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
671 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
672 . . . . . . . .
673 We treat this as part of the prologue. */
674 else if ((op & 0x7fffffc0) == 0x080d01c0)
675 {
676 int gr_j = op & 0x3f;
677
678 /* If we're moving it to a scratch register, that's fine. */
679 if (is_caller_saves_reg (gr_j))
d40fcd7b
KB
680 {
681 lr_save_reg = gr_j;
682 last_prologue_pc = next_pc;
683 }
456f8b9d
DB
684 }
685
686 /* To save multiple callee-saves registers on the stack, at
687 offset zero:
688
689 std grK,@(sp,gr0)
690 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
691 0 000000 1111111 111111 111111 111111 = 0x01ffffff
692
693 stq grK,@(sp,gr0)
694 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
695 0 000000 1111111 111111 111111 111111 = 0x01ffffff
696 . . . . . . . .
697 We treat this as part of the prologue, and record the register's
698 saved address in the frame structure. */
699 else if ((op & 0x01ffffff) == 0x000c10c0
700 || (op & 0x01ffffff) == 0x000c1100)
701 {
702 int gr_k = ((op >> 25) & 0x3f);
703 int ope = ((op >> 6) & 0x3f);
704 int count;
705 int i;
706
707 /* Is it an std or an stq? */
708 if (ope == 0x03)
709 count = 2;
710 else
711 count = 4;
712
713 /* Is it really a callee-saves register? */
714 if (is_callee_saves_reg (gr_k))
715 {
716 for (i = 0; i < count; i++)
717 {
718 gr_saved[gr_k + i] = 1;
719 gr_sp_offset[gr_k + i] = 4 * i;
720 }
d40fcd7b 721 last_prologue_pc = next_pc;
456f8b9d 722 }
456f8b9d
DB
723 }
724
725 /* Adjusting the stack pointer. (The stack pointer is GR1.)
726 addi sp, S, sp
727 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
728 0 111111 1111111 111111 000000000000 = 0x7ffff000
729 . . . . . . . .
730 We treat this as part of the prologue. */
731 else if ((op & 0x7ffff000) == 0x02401000)
732 {
d40fcd7b
KB
733 if (framesize == 0)
734 {
735 /* Sign-extend the twelve-bit field.
736 (Isn't there a better way to do this?) */
737 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
456f8b9d 738
d40fcd7b
KB
739 framesize -= s;
740 last_prologue_pc = pc;
741 }
742 else
743 {
744 /* If the prologue is being adjusted again, we've
745 likely gone too far; i.e. we're probably in the
746 epilogue. */
747 break;
748 }
456f8b9d
DB
749 }
750
751 /* Setting the FP to a constant distance from the SP:
752 addi sp, S, fp
753 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
754 0 111111 1111111 111111 000000000000 = 0x7ffff000
755 . . . . . . . .
756 We treat this as part of the prologue. */
757 else if ((op & 0x7ffff000) == 0x04401000)
758 {
759 /* Sign-extend the twelve-bit field.
760 (Isn't there a better way to do this?) */
761 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
762 fp_set = 1;
763 fp_offset = s;
d40fcd7b 764 last_prologue_pc = pc;
456f8b9d
DB
765 }
766
767 /* To spill an argument register to a scratch register:
768 ori GRi, 0, GRk
769 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
770 0 000000 1111111 000000 111111111111 = 0x01fc0fff
771 . . . . . . . .
772 For the time being, we treat this as a prologue instruction,
773 assuming that GRi is an argument register. This one's kind
774 of suspicious, because it seems like it could be part of a
775 legitimate body instruction. But we only come here when the
776 source info wasn't helpful, so we have to do the best we can.
777 Hopefully once GCC and GDB agree on how to emit line number
778 info for prologues, then this code will never come into play. */
779 else if ((op & 0x01fc0fff) == 0x00880000)
780 {
781 int gr_i = ((op >> 12) & 0x3f);
782
d40fcd7b
KB
783 /* Make sure that the source is an arg register; if it is, we'll
784 treat it as a prologue instruction. */
785 if (is_argument_reg (gr_i))
786 last_prologue_pc = next_pc;
456f8b9d
DB
787 }
788
789 /* To spill 16-bit values to the stack:
790 sthi GRk, @(fp, s)
791 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
792 0 000000 1111111 111111 000000000000 = 0x01fff000
793 . . . . . . . .
794 And for 8-bit values, we use STB instructions.
795 stbi GRk, @(fp, s)
796 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
797 0 000000 1111111 111111 000000000000 = 0x01fff000
798 . . . . . . . .
799 We check that GRk is really an argument register, and treat
800 all such as part of the prologue. */
801 else if ( (op & 0x01fff000) == 0x01442000
802 || (op & 0x01fff000) == 0x01402000)
803 {
804 int gr_k = ((op >> 25) & 0x3f);
805
d40fcd7b
KB
806 /* Make sure that GRk is really an argument register; treat
807 it as a prologue instruction if so. */
808 if (is_argument_reg (gr_k))
809 last_prologue_pc = next_pc;
456f8b9d
DB
810 }
811
812 /* To save multiple callee-saves register on the stack, at a
813 non-zero offset:
814
815 stdi GRk, @(sp, s)
816 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
817 0 000000 1111111 111111 000000000000 = 0x01fff000
818 . . . . . . . .
819 stqi GRk, @(sp, s)
820 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
821 0 000000 1111111 111111 000000000000 = 0x01fff000
822 . . . . . . . .
823 We treat this as part of the prologue, and record the register's
824 saved address in the frame structure. */
825 else if ((op & 0x01fff000) == 0x014c1000
826 || (op & 0x01fff000) == 0x01501000)
827 {
828 int gr_k = ((op >> 25) & 0x3f);
829 int count;
830 int i;
831
832 /* Is it a stdi or a stqi? */
833 if ((op & 0x01fff000) == 0x014c1000)
834 count = 2;
835 else
836 count = 4;
837
838 /* Is it really a callee-saves register? */
839 if (is_callee_saves_reg (gr_k))
840 {
841 /* Sign-extend the twelve-bit field.
842 (Isn't there a better way to do this?) */
843 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
844
845 for (i = 0; i < count; i++)
846 {
847 gr_saved[gr_k + i] = 1;
848 gr_sp_offset[gr_k + i] = s + (4 * i);
849 }
d40fcd7b 850 last_prologue_pc = next_pc;
456f8b9d 851 }
456f8b9d
DB
852 }
853
854 /* Storing any kind of integer register at any constant offset
855 from any other register.
856
857 st GRk, @(GRi, gr0)
858 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
859 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
860 . . . . . . . .
861 sti GRk, @(GRi, d12)
862 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
863 0 000000 1111111 000000 000000000000 = 0x01fc0000
864 . . . . . . . .
865 These could be almost anything, but a lot of prologue
866 instructions fall into this pattern, so let's decode the
867 instruction once, and then work at a higher level. */
868 else if (((op & 0x01fc0fff) == 0x000c0080)
869 || ((op & 0x01fc0000) == 0x01480000))
870 {
871 int gr_k = ((op >> 25) & 0x3f);
872 int gr_i = ((op >> 12) & 0x3f);
873 int offset;
874
875 /* Are we storing with gr0 as an offset, or using an
876 immediate value? */
877 if ((op & 0x01fc0fff) == 0x000c0080)
878 offset = 0;
879 else
880 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
881
882 /* If the address isn't relative to the SP or FP, it's not a
883 prologue instruction. */
884 if (gr_i != sp_regnum && gr_i != fp_regnum)
d40fcd7b
KB
885 {
886 /* Do nothing; not a prologue instruction. */
887 }
456f8b9d
DB
888
889 /* Saving the old FP in the new frame (relative to the SP). */
d40fcd7b 890 else if (gr_k == fp_regnum && gr_i == sp_regnum)
1cb761c7
KB
891 {
892 gr_saved[fp_regnum] = 1;
893 gr_sp_offset[fp_regnum] = offset;
d40fcd7b 894 last_prologue_pc = next_pc;
1cb761c7 895 }
456f8b9d
DB
896
897 /* Saving callee-saves register(s) on the stack, relative to
898 the SP. */
899 else if (gr_i == sp_regnum
900 && is_callee_saves_reg (gr_k))
901 {
902 gr_saved[gr_k] = 1;
1cb761c7
KB
903 if (gr_i == sp_regnum)
904 gr_sp_offset[gr_k] = offset;
905 else
906 gr_sp_offset[gr_k] = offset + fp_offset;
d40fcd7b 907 last_prologue_pc = next_pc;
456f8b9d
DB
908 }
909
910 /* Saving the scratch register holding the return address. */
911 else if (lr_save_reg != -1
912 && gr_k == lr_save_reg)
1cb761c7
KB
913 {
914 lr_saved_on_stack = 1;
915 if (gr_i == sp_regnum)
916 lr_sp_offset = offset;
917 else
918 lr_sp_offset = offset + fp_offset;
d40fcd7b 919 last_prologue_pc = next_pc;
1cb761c7 920 }
456f8b9d
DB
921
922 /* Spilling int-sized arguments to the stack. */
923 else if (is_argument_reg (gr_k))
d40fcd7b 924 last_prologue_pc = next_pc;
456f8b9d 925 }
d40fcd7b 926 pc = next_pc;
456f8b9d
DB
927 }
928
1cb761c7 929 if (next_frame && info)
456f8b9d 930 {
1cb761c7
KB
931 int i;
932 ULONGEST this_base;
456f8b9d
DB
933
934 /* If we know the relationship between the stack and frame
935 pointers, record the addresses of the registers we noticed.
936 Note that we have to do this as a separate step at the end,
937 because instructions may save relative to the SP, but we need
938 their addresses relative to the FP. */
939 if (fp_set)
11411de3 940 this_base = frame_unwind_register_unsigned (next_frame, fp_regnum);
1cb761c7 941 else
11411de3 942 this_base = frame_unwind_register_unsigned (next_frame, sp_regnum);
456f8b9d 943
1cb761c7
KB
944 for (i = 0; i < 64; i++)
945 if (gr_saved[i])
946 info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i];
456f8b9d 947
1cb761c7
KB
948 info->prev_sp = this_base - fp_offset + framesize;
949 info->base = this_base;
950
951 /* If LR was saved on the stack, record its location. */
952 if (lr_saved_on_stack)
953 info->saved_regs[lr_regnum].addr = this_base - fp_offset + lr_sp_offset;
954
955 /* The call instruction moves the caller's PC in the callee's LR.
956 Since this is an unwind, do the reverse. Copy the location of LR
957 into PC (the address / regnum) so that a request for PC will be
958 converted into a request for the LR. */
959 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
960
961 /* Save the previous frame's computed SP value. */
962 trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp);
456f8b9d
DB
963 }
964
d40fcd7b 965 return last_prologue_pc;
456f8b9d
DB
966}
967
968
969static CORE_ADDR
970frv_skip_prologue (CORE_ADDR pc)
971{
972 CORE_ADDR func_addr, func_end, new_pc;
973
974 new_pc = pc;
975
976 /* If the line table has entry for a line *within* the function
977 (i.e., not in the prologue, and not past the end), then that's
978 our location. */
979 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
980 {
981 struct symtab_and_line sal;
982
983 sal = find_pc_line (func_addr, 0);
984
985 if (sal.line != 0 && sal.end < func_end)
986 {
987 new_pc = sal.end;
988 }
989 }
990
991 /* The FR-V prologue is at least five instructions long (twenty bytes).
992 If we didn't find a real source location past that, then
993 do a full analysis of the prologue. */
994 if (new_pc < pc + 20)
1cb761c7 995 new_pc = frv_analyze_prologue (pc, 0, 0);
456f8b9d
DB
996
997 return new_pc;
998}
999
1cb761c7
KB
1000
1001static struct frv_unwind_cache *
1002frv_frame_unwind_cache (struct frame_info *next_frame,
1003 void **this_prologue_cache)
456f8b9d 1004{
1cb761c7
KB
1005 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1006 CORE_ADDR pc;
1cb761c7
KB
1007 ULONGEST this_base;
1008 struct frv_unwind_cache *info;
8baa6f92 1009
1cb761c7
KB
1010 if ((*this_prologue_cache))
1011 return (*this_prologue_cache);
456f8b9d 1012
1cb761c7
KB
1013 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
1014 (*this_prologue_cache) = info;
1015 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
456f8b9d 1016
1cb761c7 1017 /* Prologue analysis does the rest... */
93d42b30
DJ
1018 frv_analyze_prologue (frame_func_unwind (next_frame, NORMAL_FRAME),
1019 next_frame, info);
456f8b9d 1020
1cb761c7 1021 return info;
456f8b9d
DB
1022}
1023
456f8b9d 1024static void
cd31fb03 1025frv_extract_return_value (struct type *type, struct regcache *regcache,
e2b7c966 1026 gdb_byte *valbuf)
456f8b9d 1027{
cd31fb03
KB
1028 int len = TYPE_LENGTH (type);
1029
1030 if (len <= 4)
1031 {
1032 ULONGEST gpr8_val;
1033 regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
1034 store_unsigned_integer (valbuf, len, gpr8_val);
1035 }
1036 else if (len == 8)
1037 {
1038 ULONGEST regval;
1039 regcache_cooked_read_unsigned (regcache, 8, &regval);
1040 store_unsigned_integer (valbuf, 4, regval);
1041 regcache_cooked_read_unsigned (regcache, 9, &regval);
1042 store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, regval);
1043 }
1044 else
e2e0b3e5 1045 internal_error (__FILE__, __LINE__, _("Illegal return value length: %d"), len);
456f8b9d
DB
1046}
1047
1cb761c7
KB
1048static CORE_ADDR
1049frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
456f8b9d 1050{
1cb761c7 1051 /* Require dword alignment. */
5b03f266 1052 return align_down (sp, 8);
456f8b9d
DB
1053}
1054
c4d10515
KB
1055static CORE_ADDR
1056find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point)
1057{
1058 CORE_ADDR descr;
1059 char valbuf[4];
35e08e03
KB
1060 CORE_ADDR start_addr;
1061
1062 /* If we can't find the function in the symbol table, then we assume
1063 that the function address is already in descriptor form. */
1064 if (!find_pc_partial_function (entry_point, NULL, &start_addr, NULL)
1065 || entry_point != start_addr)
1066 return entry_point;
c4d10515
KB
1067
1068 descr = frv_fdpic_find_canonical_descriptor (entry_point);
1069
1070 if (descr != 0)
1071 return descr;
1072
1073 /* Construct a non-canonical descriptor from space allocated on
1074 the stack. */
1075
1076 descr = value_as_long (value_allocate_space_in_inferior (8));
1077 store_unsigned_integer (valbuf, 4, entry_point);
1078 write_memory (descr, valbuf, 4);
1079 store_unsigned_integer (valbuf, 4,
1080 frv_fdpic_find_global_pointer (entry_point));
1081 write_memory (descr + 4, valbuf, 4);
1082 return descr;
1083}
1084
1085static CORE_ADDR
1086frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1087 struct target_ops *targ)
1088{
1089 CORE_ADDR entry_point;
1090 CORE_ADDR got_address;
1091
1092 entry_point = get_target_memory_unsigned (targ, addr, 4);
1093 got_address = get_target_memory_unsigned (targ, addr + 4, 4);
1094
1095 if (got_address == frv_fdpic_find_global_pointer (entry_point))
1096 return entry_point;
1097 else
1098 return addr;
1099}
1100
456f8b9d 1101static CORE_ADDR
7d9b040b 1102frv_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1cb761c7
KB
1103 struct regcache *regcache, CORE_ADDR bp_addr,
1104 int nargs, struct value **args, CORE_ADDR sp,
1105 int struct_return, CORE_ADDR struct_addr)
456f8b9d
DB
1106{
1107 int argreg;
1108 int argnum;
1109 char *val;
1110 char valbuf[4];
1111 struct value *arg;
1112 struct type *arg_type;
1113 int len;
1114 enum type_code typecode;
1115 CORE_ADDR regval;
1116 int stack_space;
1117 int stack_offset;
c4d10515 1118 enum frv_abi abi = frv_abi (gdbarch);
7d9b040b 1119 CORE_ADDR func_addr = find_function_addr (function, NULL);
456f8b9d
DB
1120
1121#if 0
1122 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1123 nargs, (int) sp, struct_return, struct_addr);
1124#endif
1125
1126 stack_space = 0;
1127 for (argnum = 0; argnum < nargs; ++argnum)
4991999e 1128 stack_space += align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
456f8b9d
DB
1129
1130 stack_space -= (6 * 4);
1131 if (stack_space > 0)
1132 sp -= stack_space;
1133
1134 /* Make sure stack is dword aligned. */
5b03f266 1135 sp = align_down (sp, 8);
456f8b9d
DB
1136
1137 stack_offset = 0;
1138
1139 argreg = 8;
1140
1141 if (struct_return)
1cb761c7
KB
1142 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
1143 struct_addr);
456f8b9d
DB
1144
1145 for (argnum = 0; argnum < nargs; ++argnum)
1146 {
1147 arg = args[argnum];
4991999e 1148 arg_type = check_typedef (value_type (arg));
456f8b9d
DB
1149 len = TYPE_LENGTH (arg_type);
1150 typecode = TYPE_CODE (arg_type);
1151
1152 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1153 {
fbd9dcd3 1154 store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (arg));
456f8b9d
DB
1155 typecode = TYPE_CODE_PTR;
1156 len = 4;
1157 val = valbuf;
1158 }
c4d10515
KB
1159 else if (abi == FRV_ABI_FDPIC
1160 && len == 4
1161 && typecode == TYPE_CODE_PTR
1162 && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
1163 {
1164 /* The FDPIC ABI requires function descriptors to be passed instead
1165 of entry points. */
1166 store_unsigned_integer
1167 (valbuf, 4,
1168 find_func_descr (gdbarch,
0fd88904 1169 extract_unsigned_integer (value_contents (arg),
c4d10515
KB
1170 4)));
1171 typecode = TYPE_CODE_PTR;
1172 len = 4;
1173 val = valbuf;
1174 }
456f8b9d
DB
1175 else
1176 {
0fd88904 1177 val = (char *) value_contents (arg);
456f8b9d
DB
1178 }
1179
1180 while (len > 0)
1181 {
1182 int partial_len = (len < 4 ? len : 4);
1183
1184 if (argreg < 14)
1185 {
7c0b4a20 1186 regval = extract_unsigned_integer (val, partial_len);
456f8b9d
DB
1187#if 0
1188 printf(" Argnum %d data %x -> reg %d\n",
1189 argnum, (int) regval, argreg);
1190#endif
1cb761c7 1191 regcache_cooked_write_unsigned (regcache, argreg, regval);
456f8b9d
DB
1192 ++argreg;
1193 }
1194 else
1195 {
1196#if 0
1197 printf(" Argnum %d data %x -> offset %d (%x)\n",
1198 argnum, *((int *)val), stack_offset, (int) (sp + stack_offset));
1199#endif
1200 write_memory (sp + stack_offset, val, partial_len);
5b03f266 1201 stack_offset += align_up (partial_len, 4);
456f8b9d
DB
1202 }
1203 len -= partial_len;
1204 val += partial_len;
1205 }
1206 }
456f8b9d 1207
1cb761c7
KB
1208 /* Set the return address. For the frv, the return breakpoint is
1209 always at BP_ADDR. */
1210 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
1211
c4d10515
KB
1212 if (abi == FRV_ABI_FDPIC)
1213 {
1214 /* Set the GOT register for the FDPIC ABI. */
1215 regcache_cooked_write_unsigned
1216 (regcache, first_gpr_regnum + 15,
1217 frv_fdpic_find_global_pointer (func_addr));
1218 }
1219
1cb761c7
KB
1220 /* Finally, update the SP register. */
1221 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1222
456f8b9d
DB
1223 return sp;
1224}
1225
1226static void
cd31fb03 1227frv_store_return_value (struct type *type, struct regcache *regcache,
e2b7c966 1228 const gdb_byte *valbuf)
456f8b9d 1229{
cd31fb03
KB
1230 int len = TYPE_LENGTH (type);
1231
1232 if (len <= 4)
1233 {
1234 bfd_byte val[4];
1235 memset (val, 0, sizeof (val));
1236 memcpy (val + (4 - len), valbuf, len);
1237 regcache_cooked_write (regcache, 8, val);
1238 }
1239 else if (len == 8)
1240 {
1241 regcache_cooked_write (regcache, 8, valbuf);
1242 regcache_cooked_write (regcache, 9, (bfd_byte *) valbuf + 4);
1243 }
456f8b9d
DB
1244 else
1245 internal_error (__FILE__, __LINE__,
e2e0b3e5 1246 _("Don't know how to return a %d-byte value."), len);
456f8b9d
DB
1247}
1248
4c8b6ae0
UW
1249enum return_value_convention
1250frv_return_value (struct gdbarch *gdbarch, struct type *valtype,
1251 struct regcache *regcache, gdb_byte *readbuf,
1252 const gdb_byte *writebuf)
1253{
1254 int struct_return = TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1255 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1256 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY;
1257
1258 if (writebuf != NULL)
1259 {
1260 gdb_assert (!struct_return);
1261 frv_store_return_value (valtype, regcache, writebuf);
1262 }
1263
1264 if (readbuf != NULL)
1265 {
1266 gdb_assert (!struct_return);
1267 frv_extract_return_value (valtype, regcache, readbuf);
1268 }
1269
1270 if (struct_return)
1271 return RETURN_VALUE_STRUCT_CONVENTION;
1272 else
1273 return RETURN_VALUE_REGISTER_CONVENTION;
1274}
1275
456f8b9d 1276
456f8b9d
DB
1277/* Hardware watchpoint / breakpoint support for the FR500
1278 and FR400. */
1279
1280int
7a22ecfc 1281frv_check_watch_resources (struct gdbarch *gdbarch, int type, int cnt, int ot)
456f8b9d 1282{
7a22ecfc 1283 struct gdbarch_tdep *var = gdbarch_tdep (gdbarch);
456f8b9d
DB
1284
1285 /* Watchpoints not supported on simulator. */
1286 if (strcmp (target_shortname, "sim") == 0)
1287 return 0;
1288
1289 if (type == bp_hardware_breakpoint)
1290 {
1291 if (var->num_hw_breakpoints == 0)
1292 return 0;
1293 else if (cnt <= var->num_hw_breakpoints)
1294 return 1;
1295 }
1296 else
1297 {
1298 if (var->num_hw_watchpoints == 0)
1299 return 0;
1300 else if (ot)
1301 return -1;
1302 else if (cnt <= var->num_hw_watchpoints)
1303 return 1;
1304 }
1305 return -1;
1306}
1307
1308
4aa7a7f5
JJ
1309int
1310frv_stopped_data_address (CORE_ADDR *addr_p)
456f8b9d 1311{
1b5a9a8f 1312 struct frame_info *frame = get_current_frame ();
456f8b9d
DB
1313 CORE_ADDR brr, dbar0, dbar1, dbar2, dbar3;
1314
1b5a9a8f
UW
1315 brr = get_frame_register_unsigned (frame, brr_regnum);
1316 dbar0 = get_frame_register_unsigned (frame, dbar0_regnum);
1317 dbar1 = get_frame_register_unsigned (frame, dbar1_regnum);
1318 dbar2 = get_frame_register_unsigned (frame, dbar2_regnum);
1319 dbar3 = get_frame_register_unsigned (frame, dbar3_regnum);
456f8b9d
DB
1320
1321 if (brr & (1<<11))
4aa7a7f5 1322 *addr_p = dbar0;
456f8b9d 1323 else if (brr & (1<<10))
4aa7a7f5 1324 *addr_p = dbar1;
456f8b9d 1325 else if (brr & (1<<9))
4aa7a7f5 1326 *addr_p = dbar2;
456f8b9d 1327 else if (brr & (1<<8))
4aa7a7f5 1328 *addr_p = dbar3;
456f8b9d
DB
1329 else
1330 return 0;
4aa7a7f5
JJ
1331
1332 return 1;
1333}
1334
1335int
1336frv_have_stopped_data_address (void)
1337{
1338 CORE_ADDR addr = 0;
1339 return frv_stopped_data_address (&addr);
456f8b9d
DB
1340}
1341
1cb761c7
KB
1342static CORE_ADDR
1343frv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1344{
1345 return frame_unwind_register_unsigned (next_frame, pc_regnum);
1346}
1347
1348/* Given a GDB frame, determine the address of the calling function's
1349 frame. This will be used to create a new GDB frame struct. */
1350
1351static void
1352frv_frame_this_id (struct frame_info *next_frame,
1353 void **this_prologue_cache, struct frame_id *this_id)
1354{
1355 struct frv_unwind_cache *info
1356 = frv_frame_unwind_cache (next_frame, this_prologue_cache);
1357 CORE_ADDR base;
1358 CORE_ADDR func;
1359 struct minimal_symbol *msym_stack;
1360 struct frame_id id;
1361
1362 /* The FUNC is easy. */
93d42b30 1363 func = frame_func_unwind (next_frame, NORMAL_FRAME);
1cb761c7 1364
1cb761c7
KB
1365 /* Check if the stack is empty. */
1366 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
1367 if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
1368 return;
1369
1370 /* Hopefully the prologue analysis either correctly determined the
1371 frame's base (which is the SP from the previous frame), or set
1372 that base to "NULL". */
1373 base = info->prev_sp;
1374 if (base == 0)
1375 return;
1376
1377 id = frame_id_build (base, func);
1cb761c7
KB
1378 (*this_id) = id;
1379}
1380
1381static void
1382frv_frame_prev_register (struct frame_info *next_frame,
1383 void **this_prologue_cache,
1384 int regnum, int *optimizedp,
1385 enum lval_type *lvalp, CORE_ADDR *addrp,
e2b7c966 1386 int *realnump, gdb_byte *bufferp)
1cb761c7
KB
1387{
1388 struct frv_unwind_cache *info
1389 = frv_frame_unwind_cache (next_frame, this_prologue_cache);
1f67027d
AC
1390 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1391 optimizedp, lvalp, addrp, realnump, bufferp);
1cb761c7
KB
1392}
1393
1394static const struct frame_unwind frv_frame_unwind = {
1395 NORMAL_FRAME,
1396 frv_frame_this_id,
1397 frv_frame_prev_register
1398};
1399
1400static const struct frame_unwind *
1401frv_frame_sniffer (struct frame_info *next_frame)
1402{
1403 return &frv_frame_unwind;
1404}
1405
1406static CORE_ADDR
1407frv_frame_base_address (struct frame_info *next_frame, void **this_cache)
1408{
1409 struct frv_unwind_cache *info
1410 = frv_frame_unwind_cache (next_frame, this_cache);
1411 return info->base;
1412}
1413
1414static const struct frame_base frv_frame_base = {
1415 &frv_frame_unwind,
1416 frv_frame_base_address,
1417 frv_frame_base_address,
1418 frv_frame_base_address
1419};
1420
1421static CORE_ADDR
1422frv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1423{
1424 return frame_unwind_register_unsigned (next_frame, sp_regnum);
1425}
1426
1427
1428/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1429 dummy frame. The frame ID's base needs to match the TOS value
1430 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1431 breakpoint. */
1432
1433static struct frame_id
1434frv_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1435{
1436 return frame_id_build (frv_unwind_sp (gdbarch, next_frame),
1437 frame_pc_unwind (next_frame));
1438}
1439
456f8b9d
DB
1440static struct gdbarch *
1441frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1442{
1443 struct gdbarch *gdbarch;
1444 struct gdbarch_tdep *var;
7e295833 1445 int elf_flags = 0;
456f8b9d
DB
1446
1447 /* Check to see if we've already built an appropriate architecture
1448 object for this executable. */
1449 arches = gdbarch_list_lookup_by_info (arches, &info);
1450 if (arches)
1451 return arches->gdbarch;
1452
1453 /* Select the right tdep structure for this variant. */
1454 var = new_variant ();
1455 switch (info.bfd_arch_info->mach)
1456 {
1457 case bfd_mach_frv:
1458 case bfd_mach_frvsimple:
1459 case bfd_mach_fr500:
1460 case bfd_mach_frvtomcat:
251a3ae3 1461 case bfd_mach_fr550:
456f8b9d
DB
1462 set_variant_num_gprs (var, 64);
1463 set_variant_num_fprs (var, 64);
1464 break;
1465
1466 case bfd_mach_fr400:
b2d6d697 1467 case bfd_mach_fr450:
456f8b9d
DB
1468 set_variant_num_gprs (var, 32);
1469 set_variant_num_fprs (var, 32);
1470 break;
1471
1472 default:
1473 /* Never heard of this variant. */
1474 return 0;
1475 }
7e295833
KB
1476
1477 /* Extract the ELF flags, if available. */
1478 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1479 elf_flags = elf_elfheader (info.abfd)->e_flags;
1480
1481 if (elf_flags & EF_FRV_FDPIC)
1482 set_variant_abi_fdpic (var);
1483
b2d6d697
KB
1484 if (elf_flags & EF_FRV_CPU_FR450)
1485 set_variant_scratch_registers (var);
1486
456f8b9d
DB
1487 gdbarch = gdbarch_alloc (&info, var);
1488
1489 set_gdbarch_short_bit (gdbarch, 16);
1490 set_gdbarch_int_bit (gdbarch, 32);
1491 set_gdbarch_long_bit (gdbarch, 32);
1492 set_gdbarch_long_long_bit (gdbarch, 64);
1493 set_gdbarch_float_bit (gdbarch, 32);
1494 set_gdbarch_double_bit (gdbarch, 64);
1495 set_gdbarch_long_double_bit (gdbarch, 64);
1496 set_gdbarch_ptr_bit (gdbarch, 32);
1497
1498 set_gdbarch_num_regs (gdbarch, frv_num_regs);
6a748db6
KB
1499 set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1500
456f8b9d 1501 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
0ba6dca9 1502 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
456f8b9d
DB
1503 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1504
1505 set_gdbarch_register_name (gdbarch, frv_register_name);
7f398216 1506 set_gdbarch_register_type (gdbarch, frv_register_type);
526eef89 1507 set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
456f8b9d 1508
6a748db6
KB
1509 set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
1510 set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
1511
456f8b9d
DB
1512 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
1513 set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
1208538e
MK
1514 set_gdbarch_adjust_breakpoint_address
1515 (gdbarch, frv_adjust_breakpoint_address);
456f8b9d 1516
4c8b6ae0 1517 set_gdbarch_return_value (gdbarch, frv_return_value);
456f8b9d 1518
1cb761c7
KB
1519 /* Frame stuff. */
1520 set_gdbarch_unwind_pc (gdbarch, frv_unwind_pc);
1521 set_gdbarch_unwind_sp (gdbarch, frv_unwind_sp);
1522 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1cb761c7 1523 frame_base_set_default (gdbarch, &frv_frame_base);
5ecb7103
KB
1524 /* We set the sniffer lower down after the OSABI hooks have been
1525 established. */
456f8b9d 1526
1cb761c7
KB
1527 /* Settings for calling functions in the inferior. */
1528 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
1529 set_gdbarch_unwind_dummy_id (gdbarch, frv_unwind_dummy_id);
456f8b9d
DB
1530
1531 /* Settings that should be unnecessary. */
1532 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1533
456f8b9d
DB
1534 /* Hardware watchpoint / breakpoint support. */
1535 switch (info.bfd_arch_info->mach)
1536 {
1537 case bfd_mach_frv:
1538 case bfd_mach_frvsimple:
1539 case bfd_mach_fr500:
1540 case bfd_mach_frvtomcat:
1541 /* fr500-style hardware debugging support. */
1542 var->num_hw_watchpoints = 4;
1543 var->num_hw_breakpoints = 4;
1544 break;
1545
1546 case bfd_mach_fr400:
b2d6d697 1547 case bfd_mach_fr450:
456f8b9d
DB
1548 /* fr400-style hardware debugging support. */
1549 var->num_hw_watchpoints = 2;
1550 var->num_hw_breakpoints = 4;
1551 break;
1552
1553 default:
1554 /* Otherwise, assume we don't have hardware debugging support. */
1555 var->num_hw_watchpoints = 0;
1556 var->num_hw_breakpoints = 0;
1557 break;
1558 }
1559
36482093 1560 set_gdbarch_print_insn (gdbarch, print_insn_frv);
c4d10515
KB
1561 if (frv_abi (gdbarch) == FRV_ABI_FDPIC)
1562 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1563 frv_convert_from_func_ptr_addr);
36482093 1564
917630e4
UW
1565 set_solib_ops (gdbarch, &frv_so_ops);
1566
5ecb7103
KB
1567 /* Hook in ABI-specific overrides, if they have been registered. */
1568 gdbarch_init_osabi (info, gdbarch);
1569
5ecb7103
KB
1570 /* Set the fallback (prologue based) frame sniffer. */
1571 frame_unwind_append_sniffer (gdbarch, frv_frame_sniffer);
1572
186993b4
KB
1573 /* Enable TLS support. */
1574 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1575 frv_fetch_objfile_link_map);
1576
456f8b9d
DB
1577 return gdbarch;
1578}
1579
1580void
1581_initialize_frv_tdep (void)
1582{
1583 register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
456f8b9d 1584}
This page took 0.503015 seconds and 4 git commands to generate.