ubsan: microblaze: left shift cannot be represented in type 'int'
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
42a4f53d 5# Copyright (C) 1998-2019 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
ea480a30
SM
68 # treat ``;;' as three fields while some treat it as just two.
69 # Work around this by eliminating ``;;'' ....
70 line="`echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g'`"
3d9a5942 71
ea480a30 72 OFS="${IFS}" ; IFS="[;]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
ea480a30 341i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
ea480a30
SM
343i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
344i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
4be87837 345#
ea480a30 346i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
424163ea 347#
ea480a30 348i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
32c9a795 349
66b43ecb 350# Number of bits in a short or unsigned short for the target machine.
ea480a30 351v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
66b43ecb 352# Number of bits in an int or unsigned int for the target machine.
ea480a30 353v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
66b43ecb 354# Number of bits in a long or unsigned long for the target machine.
ea480a30 355v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
66b43ecb
AC
356# Number of bits in a long long or unsigned long long for the target
357# machine.
ea480a30 358v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
456fcf94 359
f9e9243a
UW
360# The ABI default bit-size and format for "half", "float", "double", and
361# "long double". These bit/format pairs should eventually be combined
362# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
363# Each format describes both the big and little endian layouts (if
364# useful).
456fcf94 365
ea480a30
SM
366v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
367v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
368v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
369v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
370v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
371v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
372v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
373v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
456fcf94 374
53375380
PA
375# The ABI default bit-size for "wchar_t". wchar_t is a built-in type
376# starting with C++11.
ea480a30 377v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
53375380 378# One if \`wchar_t' is signed, zero if unsigned.
ea480a30 379v;int;wchar_signed;;;1;-1;1
53375380 380
9b790ce7
UW
381# Returns the floating-point format to be used for values of length LENGTH.
382# NAME, if non-NULL, is the type name, which may be used to distinguish
383# different target formats of the same length.
ea480a30 384m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
9b790ce7 385
52204a0b
DT
386# For most targets, a pointer on the target and its representation as an
387# address in GDB have the same size and "look the same". For such a
17a912b6 388# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
389# / addr_bit will be set from it.
390#
17a912b6 391# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
392# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393# gdbarch_address_to_pointer as well.
52204a0b
DT
394#
395# ptr_bit is the size of a pointer on the target
ea480a30 396v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
52204a0b 397# addr_bit is the size of a target address as represented in gdb
ea480a30 398v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
104c1213 399#
8da614df
CV
400# dwarf2_addr_size is the target address size as used in the Dwarf debug
401# info. For .debug_frame FDEs, this is supposed to be the target address
402# size from the associated CU header, and which is equivalent to the
403# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404# Unfortunately there is no good way to determine this value. Therefore
405# dwarf2_addr_size simply defaults to the target pointer size.
406#
407# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408# defined using the target's pointer size so far.
409#
410# Note that dwarf2_addr_size only needs to be redefined by a target if the
411# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412# and if Dwarf versions < 4 need to be supported.
ea480a30 413v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
8da614df 414#
4e409299 415# One if \`char' acts like \`signed char', zero if \`unsigned char'.
ea480a30 416v;int;char_signed;;;1;-1;1
4e409299 417#
c113ed0c 418F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
ea480a30 419F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
39d4ef09
AC
420# Function for getting target's idea of a frame pointer. FIXME: GDB's
421# whole scheme for dealing with "frames" and "frame pointers" needs a
422# serious shakedown.
ea480a30 423m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
66b43ecb 424#
849d0ba8 425M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
3543a589
TT
426# Read a register into a new struct value. If the register is wholly
427# or partly unavailable, this should call mark_value_bytes_unavailable
428# as appropriate. If this is defined, then pseudo_register_read will
429# never be called.
849d0ba8 430M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
ea480a30 431M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
61a0eb5b 432#
ea480a30 433v;int;num_regs;;;0;-1
0aba1244
EZ
434# This macro gives the number of pseudo-registers that live in the
435# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
436# These pseudo-registers may be aliases for other registers,
437# combinations of other registers, or they may be computed by GDB.
ea480a30 438v;int;num_pseudo_regs;;;0;0;;0
c2169756 439
175ff332
HZ
440# Assemble agent expression bytecode to collect pseudo-register REG.
441# Return -1 if something goes wrong, 0 otherwise.
ea480a30 442M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
175ff332
HZ
443
444# Assemble agent expression bytecode to push the value of pseudo-register
445# REG on the interpreter stack.
446# Return -1 if something goes wrong, 0 otherwise.
ea480a30 447M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
175ff332 448
012b3a21
WT
449# Some targets/architectures can do extra processing/display of
450# segmentation faults. E.g., Intel MPX boundary faults.
451# Call the architecture dependent function to handle the fault.
452# UIOUT is the output stream where the handler will place information.
ea480a30 453M;void;handle_segmentation_fault;struct ui_out *uiout;uiout
012b3a21 454
c2169756
AC
455# GDB's standard (or well known) register numbers. These can map onto
456# a real register or a pseudo (computed) register or not be defined at
1200cd6e 457# all (-1).
3e8c568d 458# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
ea480a30
SM
459v;int;sp_regnum;;;-1;-1;;0
460v;int;pc_regnum;;;-1;-1;;0
461v;int;ps_regnum;;;-1;-1;;0
462v;int;fp0_regnum;;;0;-1;;0
88c72b7d 463# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
ea480a30 464m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
88c72b7d 465# Provide a default mapping from a ecoff register number to a gdb REGNUM.
ea480a30 466m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
88c72b7d 467# Convert from an sdb register number to an internal gdb register number.
ea480a30 468m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
ba2b1c56 469# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
0fde2c53 470# Return -1 for bad REGNUM. Note: Several targets get this wrong.
ea480a30
SM
471m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
472m;const char *;register_name;int regnr;regnr;;0
9c04cab7 473
7b9ee6a8
DJ
474# Return the type of a register specified by the architecture. Only
475# the register cache should call this function directly; others should
476# use "register_type".
ea480a30 477M;struct type *;register_type;int reg_nr;reg_nr
9c04cab7 478
8bcb5208
AB
479# Generate a dummy frame_id for THIS_FRAME assuming that the frame is
480# a dummy frame. A dummy frame is created before an inferior call,
481# the frame_id returned here must match the frame_id that was built
482# for the inferior call. Usually this means the returned frame_id's
483# stack address should match the address returned by
484# gdbarch_push_dummy_call, and the returned frame_id's code address
485# should match the address at which the breakpoint was set in the dummy
486# frame.
487m;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame;;default_dummy_id;;0
669fac23 488# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 489# deprecated_fp_regnum.
ea480a30 490v;int;deprecated_fp_regnum;;;-1;-1;;0
f3be58bc 491
cf84fa6b 492M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, function_call_return_method return_method, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, return_method, struct_addr
ea480a30
SM
493v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
494M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 495
7eb89530 496# Return true if the code of FRAME is writable.
ea480a30 497m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
7eb89530 498
ea480a30
SM
499m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
500m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
501M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
7c7651b2
AC
502# MAP a GDB RAW register number onto a simulator register number. See
503# also include/...-sim.h.
ea480a30
SM
504m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
505m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
506m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
eade6471
JB
507
508# Determine the address where a longjmp will land and save this address
509# in PC. Return nonzero on success.
510#
511# FRAME corresponds to the longjmp frame.
ea480a30 512F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
eade6471 513
104c1213 514#
ea480a30 515v;int;believe_pcc_promotion;;;;;;;
104c1213 516#
ea480a30
SM
517m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
518f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
519f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
9acbedc0 520# Construct a value representing the contents of register REGNUM in
2ed3c037 521# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
522# allocate and return a struct value with all value attributes
523# (but not the value contents) filled in.
ea480a30 524m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
104c1213 525#
ea480a30
SM
526m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
527m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
528M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
92ad9cd9 529
6a3a010b
MR
530# Return the return-value convention that will be used by FUNCTION
531# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
532# case the return convention is computed based only on VALTYPE.
533#
534# If READBUF is not NULL, extract the return value and save it in this buffer.
535#
536# If WRITEBUF is not NULL, it contains a return value which will be
537# stored into the appropriate register. This can be used when we want
538# to force the value returned by a function (see the "return" command
539# for instance).
ea480a30 540M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
92ad9cd9 541
18648a37
YQ
542# Return true if the return value of function is stored in the first hidden
543# parameter. In theory, this feature should be language-dependent, specified
544# by language and its ABI, such as C++. Unfortunately, compiler may
545# implement it to a target-dependent feature. So that we need such hook here
546# to be aware of this in GDB.
ea480a30 547m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
18648a37 548
ea480a30
SM
549m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
550M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
591a12a1
UW
551# On some platforms, a single function may provide multiple entry points,
552# e.g. one that is used for function-pointer calls and a different one
553# that is used for direct function calls.
554# In order to ensure that breakpoints set on the function will trigger
555# no matter via which entry point the function is entered, a platform
556# may provide the skip_entrypoint callback. It is called with IP set
557# to the main entry point of a function (as determined by the symbol table),
558# and should return the address of the innermost entry point, where the
559# actual breakpoint needs to be set. Note that skip_entrypoint is used
560# by GDB common code even when debugging optimized code, where skip_prologue
561# is not used.
ea480a30 562M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
591a12a1 563
ea480a30
SM
564f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
565m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
cd6c3b4f
YQ
566
567# Return the breakpoint kind for this target based on *PCPTR.
ea480a30 568m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
cd6c3b4f
YQ
569
570# Return the software breakpoint from KIND. KIND can have target
571# specific meaning like the Z0 kind parameter.
572# SIZE is set to the software breakpoint's length in memory.
ea480a30 573m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
cd6c3b4f 574
833b7ab5
YQ
575# Return the breakpoint kind for this target based on the current
576# processor state (e.g. the current instruction mode on ARM) and the
577# *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
ea480a30 578m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
833b7ab5 579
ea480a30
SM
580M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
581m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
582m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
583v;CORE_ADDR;decr_pc_after_break;;;0;;;0
782263ab
AC
584
585# A function can be addressed by either it's "pointer" (possibly a
586# descriptor address) or "entry point" (first executable instruction).
587# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 588# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
589# a simplified subset of that functionality - the function's address
590# corresponds to the "function pointer" and the function's start
591# corresponds to the "function entry point" - and hence is redundant.
592
ea480a30 593v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
782263ab 594
123dc839
DJ
595# Return the remote protocol register number associated with this
596# register. Normally the identity mapping.
ea480a30 597m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
123dc839 598
b2756930 599# Fetch the target specific address used to represent a load module.
ea480a30 600F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
6e056c81
JB
601
602# Return the thread-local address at OFFSET in the thread-local
603# storage for the thread PTID and the shared library or executable
604# file given by LM_ADDR. If that block of thread-local storage hasn't
605# been allocated yet, this function may throw an error. LM_ADDR may
606# be zero for statically linked multithreaded inferiors.
607
608M;CORE_ADDR;get_thread_local_address;ptid_t ptid, CORE_ADDR lm_addr, CORE_ADDR offset;ptid, lm_addr, offset
104c1213 609#
ea480a30 610v;CORE_ADDR;frame_args_skip;;;0;;;0
8bcb5208
AB
611m;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame;;default_unwind_pc;;0
612m;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame;;default_unwind_sp;;0
42efa47a
AC
613# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
614# frame-base. Enable frame-base before frame-unwind.
ea480a30 615F;int;frame_num_args;struct frame_info *frame;frame
104c1213 616#
ea480a30
SM
617M;CORE_ADDR;frame_align;CORE_ADDR address;address
618m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
619v;int;frame_red_zone_size
f0d4cc9e 620#
ea480a30 621m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
875e1767
AC
622# On some machines there are bits in addresses which are not really
623# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 624# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
625# we get a "real" address such as one would find in a symbol table.
626# This is used only for addresses of instructions, and even then I'm
627# not sure it's used in all contexts. It exists to deal with there
628# being a few stray bits in the PC which would mislead us, not as some
629# sort of generic thing to handle alignment or segmentation (it's
630# possible it should be in TARGET_READ_PC instead).
ea480a30 631m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
e6590a1b 632
a738ea1d
YQ
633# On some machines, not all bits of an address word are significant.
634# For example, on AArch64, the top bits of an address known as the "tag"
635# are ignored by the kernel, the hardware, etc. and can be regarded as
636# additional data associated with the address.
5969f0db 637v;int;significant_addr_bit;;;;;;0
a738ea1d 638
e6590a1b
UW
639# FIXME/cagney/2001-01-18: This should be split in two. A target method that
640# indicates if the target needs software single step. An ISA method to
641# implement it.
642#
e6590a1b
UW
643# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
644# target can single step. If not, then implement single step using breakpoints.
64c4637f 645#
93f9a11f
YQ
646# Return a vector of addresses on which the software single step
647# breakpoints should be inserted. NULL means software single step is
648# not used.
649# Multiple breakpoints may be inserted for some instructions such as
650# conditional branch. However, each implementation must always evaluate
651# the condition and only put the breakpoint at the branch destination if
652# the condition is true, so that we ensure forward progress when stepping
653# past a conditional branch to self.
a0ff9e1a 654F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
e6590a1b 655
3352ef37
AC
656# Return non-zero if the processor is executing a delay slot and a
657# further single-step is needed before the instruction finishes.
ea480a30 658M;int;single_step_through_delay;struct frame_info *frame;frame
f6c40618 659# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 660# disassembler. Perhaps objdump can handle it?
39503f82 661f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
ea480a30 662f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
d50355b6
MS
663
664
cfd8ab24 665# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
666# evaluates non-zero, this is the address where the debugger will place
667# a step-resume breakpoint to get us past the dynamic linker.
ea480a30 668m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
d50355b6 669# Some systems also have trampoline code for returning from shared libs.
ea480a30 670m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
d50355b6 671
1d509aa6
MM
672# Return true if PC lies inside an indirect branch thunk.
673m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
674
c12260ac
CV
675# A target might have problems with watchpoints as soon as the stack
676# frame of the current function has been destroyed. This mostly happens
c9cf6e20 677# as the first action in a function's epilogue. stack_frame_destroyed_p()
c12260ac
CV
678# is defined to return a non-zero value if either the given addr is one
679# instruction after the stack destroying instruction up to the trailing
680# return instruction or if we can figure out that the stack frame has
681# already been invalidated regardless of the value of addr. Targets
682# which don't suffer from that problem could just let this functionality
683# untouched.
ea480a30 684m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
3e29f34a
MR
685# Process an ELF symbol in the minimal symbol table in a backend-specific
686# way. Normally this hook is supposed to do nothing, however if required,
687# then this hook can be used to apply tranformations to symbols that are
688# considered special in some way. For example the MIPS backend uses it
689# to interpret \`st_other' information to mark compressed code symbols so
690# that they can be treated in the appropriate manner in the processing of
691# the main symbol table and DWARF-2 records.
ea480a30
SM
692F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
693f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
3e29f34a
MR
694# Process a symbol in the main symbol table in a backend-specific way.
695# Normally this hook is supposed to do nothing, however if required,
696# then this hook can be used to apply tranformations to symbols that
697# are considered special in some way. This is currently used by the
698# MIPS backend to make sure compressed code symbols have the ISA bit
699# set. This in turn is needed for symbol values seen in GDB to match
700# the values used at the runtime by the program itself, for function
701# and label references.
ea480a30 702f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
3e29f34a
MR
703# Adjust the address retrieved from a DWARF-2 record other than a line
704# entry in a backend-specific way. Normally this hook is supposed to
705# return the address passed unchanged, however if that is incorrect for
706# any reason, then this hook can be used to fix the address up in the
707# required manner. This is currently used by the MIPS backend to make
708# sure addresses in FDE, range records, etc. referring to compressed
709# code have the ISA bit set, matching line information and the symbol
710# table.
ea480a30 711f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
3e29f34a
MR
712# Adjust the address updated by a line entry in a backend-specific way.
713# Normally this hook is supposed to return the address passed unchanged,
714# however in the case of inconsistencies in these records, this hook can
715# be used to fix them up in the required manner. This is currently used
716# by the MIPS backend to make sure all line addresses in compressed code
717# are presented with the ISA bit set, which is not always the case. This
718# in turn ensures breakpoint addresses are correctly matched against the
719# stop PC.
ea480a30
SM
720f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
721v;int;cannot_step_breakpoint;;;0;0;;0
7ea65f08
PA
722# See comment in target.h about continuable, steppable and
723# non-steppable watchpoints.
ea480a30
SM
724v;int;have_nonsteppable_watchpoint;;;0;0;;0
725F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
726M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
b41c5a85
JW
727# Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
728# FS are passed from the generic execute_cfa_program function.
ea480a30 729m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
69f97648
SM
730
731# Return the appropriate type_flags for the supplied address class.
732# This function should return 1 if the address class was recognized and
733# type_flags was set, zero otherwise.
ea480a30 734M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
b59ff9d5 735# Is a register in a group
ea480a30 736m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
f6214256 737# Fetch the pointer to the ith function argument.
ea480a30 738F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
6ce6d90f 739
5aa82d05
AA
740# Iterate over all supported register notes in a core file. For each
741# supported register note section, the iterator must call CB and pass
742# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
743# the supported register note sections based on the current register
744# values. Otherwise it should enumerate all supported register note
745# sections.
ea480a30 746M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
17ea7499 747
6432734d 748# Create core file notes
ea480a30 749M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
6432734d 750
35c2fab7 751# Find core file memory regions
ea480a30 752M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
35c2fab7 753
de584861 754# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
755# core file into buffer READBUF with length LEN. Return the number of bytes read
756# (zero indicates failure).
757# failed, otherwise, return the red length of READBUF.
ea480a30 758M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
de584861 759
356a5233
JB
760# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
761# libraries list from core file into buffer READBUF with length LEN.
c09f20e4 762# Return the number of bytes read (zero indicates failure).
ea480a30 763M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
356a5233 764
c0edd9ed 765# How the core target converts a PTID from a core file to a string.
a068643d 766M;std::string;core_pid_to_str;ptid_t ptid;ptid
28439f5e 767
4dfc5dbc 768# How the core target extracts the name of a thread from a core file.
ea480a30 769M;const char *;core_thread_name;struct thread_info *thr;thr
4dfc5dbc 770
382b69bb
JB
771# Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
772# from core file into buffer READBUF with length LEN. Return the number
773# of bytes read (zero indicates EOF, a negative value indicates failure).
774M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
775
a78c2d62 776# BFD target to use when generating a core file.
ea480a30 777V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
a78c2d62 778
0d5de010
DJ
779# If the elements of C++ vtables are in-place function descriptors rather
780# than normal function pointers (which may point to code or a descriptor),
781# set this to one.
ea480a30 782v;int;vtable_function_descriptors;;;0;0;;0
0d5de010
DJ
783
784# Set if the least significant bit of the delta is used instead of the least
785# significant bit of the pfn for pointers to virtual member functions.
ea480a30 786v;int;vbit_in_delta;;;0;0;;0
6d350bb5
UW
787
788# Advance PC to next instruction in order to skip a permanent breakpoint.
ea480a30 789f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
1c772458 790
1668ae25 791# The maximum length of an instruction on this architecture in bytes.
ea480a30 792V;ULONGEST;max_insn_length;;;0;0
237fc4c9
PA
793
794# Copy the instruction at FROM to TO, and make any adjustments
795# necessary to single-step it at that address.
796#
797# REGS holds the state the thread's registers will have before
798# executing the copied instruction; the PC in REGS will refer to FROM,
799# not the copy at TO. The caller should update it to point at TO later.
800#
801# Return a pointer to data of the architecture's choice to be passed
802# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
803# the instruction's effects have been completely simulated, with the
804# resulting state written back to REGS.
805#
806# For a general explanation of displaced stepping and how GDB uses it,
807# see the comments in infrun.c.
808#
809# The TO area is only guaranteed to have space for
810# gdbarch_max_insn_length (arch) bytes, so this function must not
811# write more bytes than that to that area.
812#
813# If you do not provide this function, GDB assumes that the
814# architecture does not support displaced stepping.
815#
7f03bd92
PA
816# If the instruction cannot execute out of line, return NULL. The
817# core falls back to stepping past the instruction in-line instead in
818# that case.
ea480a30 819M;struct displaced_step_closure *;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
237fc4c9 820
99e40580
UW
821# Return true if GDB should use hardware single-stepping to execute
822# the displaced instruction identified by CLOSURE. If false,
823# GDB will simply restart execution at the displaced instruction
824# location, and it is up to the target to ensure GDB will receive
825# control again (e.g. by placing a software breakpoint instruction
826# into the displaced instruction buffer).
827#
828# The default implementation returns false on all targets that
829# provide a gdbarch_software_single_step routine, and true otherwise.
ea480a30 830m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
99e40580 831
237fc4c9
PA
832# Fix up the state resulting from successfully single-stepping a
833# displaced instruction, to give the result we would have gotten from
834# stepping the instruction in its original location.
835#
836# REGS is the register state resulting from single-stepping the
837# displaced instruction.
838#
839# CLOSURE is the result from the matching call to
840# gdbarch_displaced_step_copy_insn.
841#
842# If you provide gdbarch_displaced_step_copy_insn.but not this
843# function, then GDB assumes that no fixup is needed after
844# single-stepping the instruction.
845#
846# For a general explanation of displaced stepping and how GDB uses it,
847# see the comments in infrun.c.
ea480a30 848M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
237fc4c9 849
237fc4c9
PA
850# Return the address of an appropriate place to put displaced
851# instructions while we step over them. There need only be one such
852# place, since we're only stepping one thread over a breakpoint at a
853# time.
854#
855# For a general explanation of displaced stepping and how GDB uses it,
856# see the comments in infrun.c.
ea480a30 857m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
237fc4c9 858
dde08ee1
PA
859# Relocate an instruction to execute at a different address. OLDLOC
860# is the address in the inferior memory where the instruction to
861# relocate is currently at. On input, TO points to the destination
862# where we want the instruction to be copied (and possibly adjusted)
863# to. On output, it points to one past the end of the resulting
864# instruction(s). The effect of executing the instruction at TO shall
865# be the same as if executing it at FROM. For example, call
866# instructions that implicitly push the return address on the stack
867# should be adjusted to return to the instruction after OLDLOC;
868# relative branches, and other PC-relative instructions need the
869# offset adjusted; etc.
ea480a30 870M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
dde08ee1 871
1c772458 872# Refresh overlay mapped state for section OSECT.
ea480a30 873F;void;overlay_update;struct obj_section *osect;osect
4eb0ad19 874
ea480a30 875M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
149ad273
UW
876
877# Handle special encoding of static variables in stabs debug info.
ea480a30 878F;const char *;static_transform_name;const char *name;name
203c3895 879# Set if the address in N_SO or N_FUN stabs may be zero.
ea480a30 880v;int;sofun_address_maybe_missing;;;0;0;;0
1cded358 881
0508c3ec
HZ
882# Parse the instruction at ADDR storing in the record execution log
883# the registers REGCACHE and memory ranges that will be affected when
884# the instruction executes, along with their current values.
885# Return -1 if something goes wrong, 0 otherwise.
ea480a30 886M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
0508c3ec 887
3846b520
HZ
888# Save process state after a signal.
889# Return -1 if something goes wrong, 0 otherwise.
ea480a30 890M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
3846b520 891
22203bbf 892# Signal translation: translate inferior's signal (target's) number
86b49880
PA
893# into GDB's representation. The implementation of this method must
894# be host independent. IOW, don't rely on symbols of the NAT_FILE
895# header (the nm-*.h files), the host <signal.h> header, or similar
896# headers. This is mainly used when cross-debugging core files ---
897# "Live" targets hide the translation behind the target interface
1f8cf220 898# (target_wait, target_resume, etc.).
ea480a30 899M;enum gdb_signal;gdb_signal_from_target;int signo;signo
60c5725c 900
eb14d406
SDJ
901# Signal translation: translate the GDB's internal signal number into
902# the inferior's signal (target's) representation. The implementation
903# of this method must be host independent. IOW, don't rely on symbols
904# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
905# header, or similar headers.
906# Return the target signal number if found, or -1 if the GDB internal
907# signal number is invalid.
ea480a30 908M;int;gdb_signal_to_target;enum gdb_signal signal;signal
eb14d406 909
4aa995e1
PA
910# Extra signal info inspection.
911#
912# Return a type suitable to inspect extra signal information.
ea480a30 913M;struct type *;get_siginfo_type;void;
4aa995e1 914
60c5725c 915# Record architecture-specific information from the symbol table.
ea480a30 916M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
50c71eaf 917
a96d9b2e
SDJ
918# Function for the 'catch syscall' feature.
919
920# Get architecture-specific system calls information from registers.
00431a78 921M;LONGEST;get_syscall_number;thread_info *thread;thread
a96d9b2e 922
458c8db8 923# The filename of the XML syscall for this architecture.
ea480a30 924v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
458c8db8
SDJ
925
926# Information about system calls from this architecture
ea480a30 927v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
458c8db8 928
55aa24fb
SDJ
929# SystemTap related fields and functions.
930
05c0465e
SDJ
931# A NULL-terminated array of prefixes used to mark an integer constant
932# on the architecture's assembly.
55aa24fb
SDJ
933# For example, on x86 integer constants are written as:
934#
935# \$10 ;; integer constant 10
936#
937# in this case, this prefix would be the character \`\$\'.
ea480a30 938v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 939
05c0465e
SDJ
940# A NULL-terminated array of suffixes used to mark an integer constant
941# on the architecture's assembly.
ea480a30 942v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 943
05c0465e
SDJ
944# A NULL-terminated array of prefixes used to mark a register name on
945# the architecture's assembly.
55aa24fb
SDJ
946# For example, on x86 the register name is written as:
947#
948# \%eax ;; register eax
949#
950# in this case, this prefix would be the character \`\%\'.
ea480a30 951v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 952
05c0465e
SDJ
953# A NULL-terminated array of suffixes used to mark a register name on
954# the architecture's assembly.
ea480a30 955v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 956
05c0465e
SDJ
957# A NULL-terminated array of prefixes used to mark a register
958# indirection on the architecture's assembly.
55aa24fb
SDJ
959# For example, on x86 the register indirection is written as:
960#
961# \(\%eax\) ;; indirecting eax
962#
963# in this case, this prefix would be the charater \`\(\'.
964#
965# Please note that we use the indirection prefix also for register
966# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 967v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 968
05c0465e
SDJ
969# A NULL-terminated array of suffixes used to mark a register
970# indirection on the architecture's assembly.
55aa24fb
SDJ
971# For example, on x86 the register indirection is written as:
972#
973# \(\%eax\) ;; indirecting eax
974#
975# in this case, this prefix would be the charater \`\)\'.
976#
977# Please note that we use the indirection suffix also for register
978# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 979v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 980
05c0465e 981# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
982#
983# For example, on PPC a register is represented by a number in the assembly
984# language (e.g., \`10\' is the 10th general-purpose register). However,
985# inside GDB this same register has an \`r\' appended to its name, so the 10th
986# register would be represented as \`r10\' internally.
ea480a30 987v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
988
989# Suffix used to name a register using GDB's nomenclature.
ea480a30 990v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
991
992# Check if S is a single operand.
993#
994# Single operands can be:
995# \- Literal integers, e.g. \`\$10\' on x86
996# \- Register access, e.g. \`\%eax\' on x86
997# \- Register indirection, e.g. \`\(\%eax\)\' on x86
998# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
999#
1000# This function should check for these patterns on the string
1001# and return 1 if some were found, or zero otherwise. Please try to match
1002# as much info as you can from the string, i.e., if you have to match
1003# something like \`\(\%\', do not match just the \`\(\'.
ea480a30 1004M;int;stap_is_single_operand;const char *s;s
55aa24fb
SDJ
1005
1006# Function used to handle a "special case" in the parser.
1007#
1008# A "special case" is considered to be an unknown token, i.e., a token
1009# that the parser does not know how to parse. A good example of special
1010# case would be ARM's register displacement syntax:
1011#
1012# [R0, #4] ;; displacing R0 by 4
1013#
1014# Since the parser assumes that a register displacement is of the form:
1015#
1016# <number> <indirection_prefix> <register_name> <indirection_suffix>
1017#
1018# it means that it will not be able to recognize and parse this odd syntax.
1019# Therefore, we should add a special case function that will handle this token.
1020#
1021# This function should generate the proper expression form of the expression
1022# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1023# and so on). It should also return 1 if the parsing was successful, or zero
1024# if the token was not recognized as a special token (in this case, returning
1025# zero means that the special parser is deferring the parsing to the generic
1026# parser), and should advance the buffer pointer (p->arg).
ea480a30 1027M;int;stap_parse_special_token;struct stap_parse_info *p;p
55aa24fb 1028
7d7571f0
SDJ
1029# Perform arch-dependent adjustments to a register name.
1030#
1031# In very specific situations, it may be necessary for the register
1032# name present in a SystemTap probe's argument to be handled in a
1033# special way. For example, on i386, GCC may over-optimize the
1034# register allocation and use smaller registers than necessary. In
1035# such cases, the client that is reading and evaluating the SystemTap
1036# probe (ourselves) will need to actually fetch values from the wider
1037# version of the register in question.
1038#
1039# To illustrate the example, consider the following probe argument
1040# (i386):
1041#
1042# 4@%ax
1043#
1044# This argument says that its value can be found at the %ax register,
1045# which is a 16-bit register. However, the argument's prefix says
1046# that its type is "uint32_t", which is 32-bit in size. Therefore, in
1047# this case, GDB should actually fetch the probe's value from register
1048# %eax, not %ax. In this scenario, this function would actually
1049# replace the register name from %ax to %eax.
1050#
1051# The rationale for this can be found at PR breakpoints/24541.
6b78c3f8 1052M;std::string;stap_adjust_register;struct stap_parse_info *p, const std::string \&regname, int regnum;p, regname, regnum
7d7571f0 1053
8b367e17
JM
1054# DTrace related functions.
1055
1056# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1057# NARG must be >= 0.
37eedb39 1058M;void;dtrace_parse_probe_argument;struct expr_builder *builder, int narg;builder, narg
8b367e17
JM
1059
1060# True if the given ADDR does not contain the instruction sequence
1061# corresponding to a disabled DTrace is-enabled probe.
ea480a30 1062M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
8b367e17
JM
1063
1064# Enable a DTrace is-enabled probe at ADDR.
ea480a30 1065M;void;dtrace_enable_probe;CORE_ADDR addr;addr
8b367e17
JM
1066
1067# Disable a DTrace is-enabled probe at ADDR.
ea480a30 1068M;void;dtrace_disable_probe;CORE_ADDR addr;addr
55aa24fb 1069
50c71eaf
PA
1070# True if the list of shared libraries is one and only for all
1071# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
1072# This usually means that all processes, although may or may not share
1073# an address space, will see the same set of symbols at the same
1074# addresses.
ea480a30 1075v;int;has_global_solist;;;0;0;;0
2567c7d9
PA
1076
1077# On some targets, even though each inferior has its own private
1078# address space, the debug interface takes care of making breakpoints
1079# visible to all address spaces automatically. For such cases,
1080# this property should be set to true.
ea480a30 1081v;int;has_global_breakpoints;;;0;0;;0
6c95b8df
PA
1082
1083# True if inferiors share an address space (e.g., uClinux).
ea480a30 1084m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
7a697b8d
SS
1085
1086# True if a fast tracepoint can be set at an address.
281d762b 1087m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
75cebea9 1088
5f034a78
MK
1089# Guess register state based on tracepoint location. Used for tracepoints
1090# where no registers have been collected, but there's only one location,
1091# allowing us to guess the PC value, and perhaps some other registers.
1092# On entry, regcache has all registers marked as unavailable.
ea480a30 1093m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
5f034a78 1094
f870a310 1095# Return the "auto" target charset.
ea480a30 1096f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
f870a310 1097# Return the "auto" target wide charset.
ea480a30 1098f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
08105857
PA
1099
1100# If non-empty, this is a file extension that will be opened in place
1101# of the file extension reported by the shared library list.
1102#
1103# This is most useful for toolchains that use a post-linker tool,
1104# where the names of the files run on the target differ in extension
1105# compared to the names of the files GDB should load for debug info.
ea480a30 1106v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
1107
1108# If true, the target OS has DOS-based file system semantics. That
1109# is, absolute paths include a drive name, and the backslash is
1110# considered a directory separator.
ea480a30 1111v;int;has_dos_based_file_system;;;0;0;;0
6710bf39
SS
1112
1113# Generate bytecodes to collect the return address in a frame.
1114# Since the bytecodes run on the target, possibly with GDB not even
1115# connected, the full unwinding machinery is not available, and
1116# typically this function will issue bytecodes for one or more likely
1117# places that the return address may be found.
ea480a30 1118m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
6710bf39 1119
3030c96e 1120# Implement the "info proc" command.
ea480a30 1121M;void;info_proc;const char *args, enum info_proc_what what;args, what
3030c96e 1122
451b7c33
TT
1123# Implement the "info proc" command for core files. Noe that there
1124# are two "info_proc"-like methods on gdbarch -- one for core files,
1125# one for live targets.
ea480a30 1126M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
451b7c33 1127
19630284
JB
1128# Iterate over all objfiles in the order that makes the most sense
1129# for the architecture to make global symbol searches.
1130#
1131# CB is a callback function where OBJFILE is the objfile to be searched,
1132# and CB_DATA a pointer to user-defined data (the same data that is passed
1133# when calling this gdbarch method). The iteration stops if this function
1134# returns nonzero.
1135#
1136# CB_DATA is a pointer to some user-defined data to be passed to
1137# the callback.
1138#
1139# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1140# inspected when the symbol search was requested.
ea480a30 1141m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
19630284 1142
7e35103a 1143# Ravenscar arch-dependent ops.
ea480a30 1144v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1145
1146# Return non-zero if the instruction at ADDR is a call; zero otherwise.
ea480a30 1147m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
c2170eef
MM
1148
1149# Return non-zero if the instruction at ADDR is a return; zero otherwise.
ea480a30 1150m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
c2170eef
MM
1151
1152# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
ea480a30 1153m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
27a48a92
MK
1154
1155# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1156# Return 0 if *READPTR is already at the end of the buffer.
1157# Return -1 if there is insufficient buffer for a whole entry.
1158# Return 1 if an entry was read into *TYPEP and *VALP.
ea480a30 1159M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
3437254d 1160
2faa3447
JB
1161# Print the description of a single auxv entry described by TYPE and VAL
1162# to FILE.
ea480a30 1163m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
2faa3447 1164
3437254d
PA
1165# Find the address range of the current inferior's vsyscall/vDSO, and
1166# write it to *RANGE. If the vsyscall's length can't be determined, a
1167# range with zero length is returned. Returns true if the vsyscall is
1168# found, false otherwise.
ea480a30 1169m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
f208eee0
JK
1170
1171# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1172# PROT has GDB_MMAP_PROT_* bitmask format.
1173# Throw an error if it is not possible. Returned address is always valid.
ea480a30 1174f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
f208eee0 1175
7f361056
JK
1176# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1177# Print a warning if it is not possible.
ea480a30 1178f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
7f361056 1179
f208eee0
JK
1180# Return string (caller has to use xfree for it) with options for GCC
1181# to produce code for this target, typically "-m64", "-m32" or "-m31".
1182# These options are put before CU's DW_AT_producer compilation options so that
953cff56
TT
1183# they can override it.
1184m;std::string;gcc_target_options;void;;;default_gcc_target_options;;0
ac04f72b
TT
1185
1186# Return a regular expression that matches names used by this
1187# architecture in GNU configury triplets. The result is statically
1188# allocated and must not be freed. The default implementation simply
1189# returns the BFD architecture name, which is correct in nearly every
1190# case.
ea480a30 1191m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
3374165f
SM
1192
1193# Return the size in 8-bit bytes of an addressable memory unit on this
1194# architecture. This corresponds to the number of 8-bit bytes associated to
1195# each address in memory.
ea480a30 1196m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
3374165f 1197
65b48a81 1198# Functions for allowing a target to modify its disassembler options.
471b9d15 1199v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
ea480a30 1200v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
471b9d15 1201v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
65b48a81 1202
5561fc30
AB
1203# Type alignment override method. Return the architecture specific
1204# alignment required for TYPE. If there is no special handling
1205# required for TYPE then return the value 0, GDB will then apply the
1206# default rules as laid out in gdbtypes.c:type_align.
2b4424c3
TT
1207m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1208
aa7ca1bb
AH
1209# Return a string containing any flags for the given PC in the given FRAME.
1210f;std::string;get_pc_address_flags;frame_info *frame, CORE_ADDR pc;frame, pc;;default_get_pc_address_flags;;0
1211
104c1213 1212EOF
104c1213
JM
1213}
1214
0b8f9e4d
AC
1215#
1216# The .log file
1217#
1218exec > new-gdbarch.log
34620563 1219function_list | while do_read
0b8f9e4d
AC
1220do
1221 cat <<EOF
2f9b146e 1222${class} ${returntype} ${function} ($formal)
104c1213 1223EOF
3d9a5942
AC
1224 for r in ${read}
1225 do
1226 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1227 done
f0d4cc9e 1228 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1229 then
66d659b1 1230 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1231 kill $$
1232 exit 1
1233 fi
72e74a21 1234 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1235 then
1236 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1237 kill $$
1238 exit 1
1239 fi
a72293e2
AC
1240 if class_is_multiarch_p
1241 then
1242 if class_is_predicate_p ; then :
1243 elif test "x${predefault}" = "x"
1244 then
2f9b146e 1245 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1246 kill $$
1247 exit 1
1248 fi
1249 fi
3d9a5942 1250 echo ""
0b8f9e4d
AC
1251done
1252
1253exec 1>&2
1254compare_new gdbarch.log
1255
104c1213
JM
1256
1257copyright ()
1258{
1259cat <<EOF
c4bfde41
JK
1260/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1261/* vi:set ro: */
59233f88 1262
104c1213 1263/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1264
c6f4a5d0 1265 Copyright (C) 1998-2019 Free Software Foundation, Inc.
104c1213
JM
1266
1267 This file is part of GDB.
1268
1269 This program is free software; you can redistribute it and/or modify
1270 it under the terms of the GNU General Public License as published by
50efebf8 1271 the Free Software Foundation; either version 3 of the License, or
104c1213 1272 (at your option) any later version.
618f726f 1273
104c1213
JM
1274 This program is distributed in the hope that it will be useful,
1275 but WITHOUT ANY WARRANTY; without even the implied warranty of
1276 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1277 GNU General Public License for more details.
618f726f 1278
104c1213 1279 You should have received a copy of the GNU General Public License
50efebf8 1280 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1281
104c1213
JM
1282/* This file was created with the aid of \`\`gdbarch.sh''.
1283
52204a0b 1284 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1285 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1286 against the existing \`\`gdbarch.[hc]''. Any differences found
1287 being reported.
1288
1289 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1290 changes into that script. Conversely, when making sweeping changes
104c1213 1291 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1292 easier. */
104c1213
JM
1293
1294EOF
1295}
1296
1297#
1298# The .h file
1299#
1300
1301exec > new-gdbarch.h
1302copyright
1303cat <<EOF
1304#ifndef GDBARCH_H
1305#define GDBARCH_H
1306
a0ff9e1a 1307#include <vector>
eb7a547a 1308#include "frame.h"
65b48a81 1309#include "dis-asm.h"
284a0e3c 1310#include "gdb_obstack.h"
eb7a547a 1311
da3331ec
AC
1312struct floatformat;
1313struct ui_file;
104c1213 1314struct value;
b6af0555 1315struct objfile;
1c772458 1316struct obj_section;
a2cf933a 1317struct minimal_symbol;
049ee0e4 1318struct regcache;
b59ff9d5 1319struct reggroup;
6ce6d90f 1320struct regset;
a89aa300 1321struct disassemble_info;
e2d0e7eb 1322struct target_ops;
030f20e1 1323struct obstack;
8181d85f 1324struct bp_target_info;
424163ea 1325struct target_desc;
3e29f34a 1326struct symbol;
237fc4c9 1327struct displaced_step_closure;
a96d9b2e 1328struct syscall;
175ff332 1329struct agent_expr;
6710bf39 1330struct axs_value;
55aa24fb 1331struct stap_parse_info;
37eedb39 1332struct expr_builder;
7e35103a 1333struct ravenscar_arch_ops;
3437254d 1334struct mem_range;
458c8db8 1335struct syscalls_info;
4dfc5dbc 1336struct thread_info;
012b3a21 1337struct ui_out;
104c1213 1338
8a526fa6
PA
1339#include "regcache.h"
1340
6ecd4729
PA
1341/* The architecture associated with the inferior through the
1342 connection to the target.
1343
1344 The architecture vector provides some information that is really a
1345 property of the inferior, accessed through a particular target:
1346 ptrace operations; the layout of certain RSP packets; the solib_ops
1347 vector; etc. To differentiate architecture accesses to
1348 per-inferior/target properties from
1349 per-thread/per-frame/per-objfile properties, accesses to
1350 per-inferior/target properties should be made through this
1351 gdbarch. */
1352
1353/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1354extern struct gdbarch *target_gdbarch (void);
6ecd4729 1355
19630284
JB
1356/* Callback type for the 'iterate_over_objfiles_in_search_order'
1357 gdbarch method. */
1358
1359typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1360 (struct objfile *objfile, void *cb_data);
5aa82d05 1361
1528345d
AA
1362/* Callback type for regset section iterators. The callback usually
1363 invokes the REGSET's supply or collect method, to which it must
a616bb94
AH
1364 pass a buffer - for collects this buffer will need to be created using
1365 COLLECT_SIZE, for supply the existing buffer being read from should
1366 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1367 is used for diagnostic messages. CB_DATA should have been passed
1368 unchanged through the iterator. */
1528345d 1369
5aa82d05 1370typedef void (iterate_over_regset_sections_cb)
a616bb94
AH
1371 (const char *sect_name, int supply_size, int collect_size,
1372 const struct regset *regset, const char *human_name, void *cb_data);
c5ac5cbb
AH
1373
1374/* For a function call, does the function return a value using a
1375 normal value return or a structure return - passing a hidden
1376 argument pointing to storage. For the latter, there are two
1377 cases: language-mandated structure return and target ABI
1378 structure return. */
1379
1380enum function_call_return_method
1381{
1382 /* Standard value return. */
1383 return_method_normal = 0,
1384
1385 /* Language ABI structure return. This is handled
1386 by passing the return location as the first parameter to
1387 the function, even preceding "this". */
1388 return_method_hidden_param,
1389
1390 /* Target ABI struct return. This is target-specific; for instance,
1391 on ia64 the first argument is passed in out0 but the hidden
1392 structure return pointer would normally be passed in r8. */
1393 return_method_struct,
1394};
1395
104c1213
JM
1396EOF
1397
1398# function typedef's
3d9a5942
AC
1399printf "\n"
1400printf "\n"
0963b4bd 1401printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1402function_list | while do_read
104c1213 1403do
2ada493a
AC
1404 if class_is_info_p
1405 then
3d9a5942
AC
1406 printf "\n"
1407 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1408 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1409 fi
104c1213
JM
1410done
1411
1412# function typedef's
3d9a5942
AC
1413printf "\n"
1414printf "\n"
0963b4bd 1415printf "/* The following are initialized by the target dependent code. */\n"
34620563 1416function_list | while do_read
104c1213 1417do
72e74a21 1418 if [ -n "${comment}" ]
34620563
AC
1419 then
1420 echo "${comment}" | sed \
1421 -e '2 s,#,/*,' \
1422 -e '3,$ s,#, ,' \
1423 -e '$ s,$, */,'
1424 fi
412d5987
AC
1425
1426 if class_is_predicate_p
2ada493a 1427 then
412d5987
AC
1428 printf "\n"
1429 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1430 fi
2ada493a
AC
1431 if class_is_variable_p
1432 then
3d9a5942
AC
1433 printf "\n"
1434 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1435 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1436 fi
1437 if class_is_function_p
1438 then
3d9a5942 1439 printf "\n"
72e74a21 1440 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1441 then
1442 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1443 elif class_is_multiarch_p
1444 then
1445 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1446 else
1447 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1448 fi
72e74a21 1449 if [ "x${formal}" = "xvoid" ]
104c1213 1450 then
3d9a5942 1451 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1452 else
3d9a5942 1453 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1454 fi
3d9a5942 1455 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1456 fi
104c1213
JM
1457done
1458
1459# close it off
1460cat <<EOF
1461
1462extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1463
1464
1465/* Mechanism for co-ordinating the selection of a specific
1466 architecture.
1467
1468 GDB targets (*-tdep.c) can register an interest in a specific
1469 architecture. Other GDB components can register a need to maintain
1470 per-architecture data.
1471
1472 The mechanisms below ensures that there is only a loose connection
1473 between the set-architecture command and the various GDB
0fa6923a 1474 components. Each component can independently register their need
104c1213
JM
1475 to maintain architecture specific data with gdbarch.
1476
1477 Pragmatics:
1478
1479 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1480 didn't scale.
1481
1482 The more traditional mega-struct containing architecture specific
1483 data for all the various GDB components was also considered. Since
0fa6923a 1484 GDB is built from a variable number of (fairly independent)
104c1213 1485 components it was determined that the global aproach was not
0963b4bd 1486 applicable. */
104c1213
JM
1487
1488
1489/* Register a new architectural family with GDB.
1490
1491 Register support for the specified ARCHITECTURE with GDB. When
1492 gdbarch determines that the specified architecture has been
1493 selected, the corresponding INIT function is called.
1494
1495 --
1496
1497 The INIT function takes two parameters: INFO which contains the
1498 information available to gdbarch about the (possibly new)
1499 architecture; ARCHES which is a list of the previously created
1500 \`\`struct gdbarch'' for this architecture.
1501
0f79675b 1502 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1503 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1504
1505 The ARCHES parameter is a linked list (sorted most recently used)
1506 of all the previously created architures for this architecture
1507 family. The (possibly NULL) ARCHES->gdbarch can used to access
1508 values from the previously selected architecture for this
59837fe0 1509 architecture family.
104c1213
JM
1510
1511 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1512 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1513 gdbarch'' from the ARCHES list - indicating that the new
1514 architecture is just a synonym for an earlier architecture (see
1515 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1516 - that describes the selected architecture (see gdbarch_alloc()).
1517
1518 The DUMP_TDEP function shall print out all target specific values.
1519 Care should be taken to ensure that the function works in both the
0963b4bd 1520 multi-arch and non- multi-arch cases. */
104c1213
JM
1521
1522struct gdbarch_list
1523{
1524 struct gdbarch *gdbarch;
1525 struct gdbarch_list *next;
1526};
1527
1528struct gdbarch_info
1529{
0963b4bd 1530 /* Use default: NULL (ZERO). */
104c1213
JM
1531 const struct bfd_arch_info *bfd_arch_info;
1532
428721aa 1533 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1534 enum bfd_endian byte_order;
104c1213 1535
94123b4f 1536 enum bfd_endian byte_order_for_code;
9d4fde75 1537
0963b4bd 1538 /* Use default: NULL (ZERO). */
104c1213
JM
1539 bfd *abfd;
1540
0963b4bd 1541 /* Use default: NULL (ZERO). */
0dba2a6c
MR
1542 union
1543 {
1544 /* Architecture-specific information. The generic form for targets
1545 that have extra requirements. */
1546 struct gdbarch_tdep_info *tdep_info;
1547
1548 /* Architecture-specific target description data. Numerous targets
1549 need only this, so give them an easy way to hold it. */
1550 struct tdesc_arch_data *tdesc_data;
1551
1552 /* SPU file system ID. This is a single integer, so using the
1553 generic form would only complicate code. Other targets may
1554 reuse this member if suitable. */
1555 int *id;
1556 };
4be87837
DJ
1557
1558 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1559 enum gdb_osabi osabi;
424163ea
DJ
1560
1561 /* Use default: NULL (ZERO). */
1562 const struct target_desc *target_desc;
104c1213
JM
1563};
1564
1565typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1566typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1567
4b9b3959 1568/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1569extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1570
4b9b3959
AC
1571extern void gdbarch_register (enum bfd_architecture architecture,
1572 gdbarch_init_ftype *,
1573 gdbarch_dump_tdep_ftype *);
1574
104c1213 1575
b4a20239
AC
1576/* Return a freshly allocated, NULL terminated, array of the valid
1577 architecture names. Since architectures are registered during the
1578 _initialize phase this function only returns useful information
0963b4bd 1579 once initialization has been completed. */
b4a20239
AC
1580
1581extern const char **gdbarch_printable_names (void);
1582
1583
104c1213 1584/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1585 matches the information provided by INFO. */
104c1213 1586
424163ea 1587extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1588
1589
1590/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1591 basic initialization using values obtained from the INFO and TDEP
104c1213 1592 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1593 initialization of the object. */
104c1213
JM
1594
1595extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1596
1597
4b9b3959
AC
1598/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1599 It is assumed that the caller freeds the \`\`struct
0963b4bd 1600 gdbarch_tdep''. */
4b9b3959 1601
058f20d5
JB
1602extern void gdbarch_free (struct gdbarch *);
1603
284a0e3c
SM
1604/* Get the obstack owned by ARCH. */
1605
1606extern obstack *gdbarch_obstack (gdbarch *arch);
058f20d5 1607
aebd7893
AC
1608/* Helper function. Allocate memory from the \`\`struct gdbarch''
1609 obstack. The memory is freed when the corresponding architecture
1610 is also freed. */
1611
284a0e3c
SM
1612#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1613 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1614
1615#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1616 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
aebd7893 1617
6c214e7c
PP
1618/* Duplicate STRING, returning an equivalent string that's allocated on the
1619 obstack associated with GDBARCH. The string is freed when the corresponding
1620 architecture is also freed. */
1621
1622extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
aebd7893 1623
0963b4bd 1624/* Helper function. Force an update of the current architecture.
104c1213 1625
b732d07d
AC
1626 The actual architecture selected is determined by INFO, \`\`(gdb) set
1627 architecture'' et.al., the existing architecture and BFD's default
1628 architecture. INFO should be initialized to zero and then selected
1629 fields should be updated.
104c1213 1630
0963b4bd 1631 Returns non-zero if the update succeeds. */
16f33e29
AC
1632
1633extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1634
1635
ebdba546
AC
1636/* Helper function. Find an architecture matching info.
1637
1638 INFO should be initialized using gdbarch_info_init, relevant fields
1639 set, and then finished using gdbarch_info_fill.
1640
1641 Returns the corresponding architecture, or NULL if no matching
59837fe0 1642 architecture was found. */
ebdba546
AC
1643
1644extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1645
1646
aff68abb 1647/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1648
aff68abb 1649extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1650
104c1213
JM
1651
1652/* Register per-architecture data-pointer.
1653
1654 Reserve space for a per-architecture data-pointer. An identifier
1655 for the reserved data-pointer is returned. That identifer should
95160752 1656 be saved in a local static variable.
104c1213 1657
fcc1c85c
AC
1658 Memory for the per-architecture data shall be allocated using
1659 gdbarch_obstack_zalloc. That memory will be deleted when the
1660 corresponding architecture object is deleted.
104c1213 1661
95160752
AC
1662 When a previously created architecture is re-selected, the
1663 per-architecture data-pointer for that previous architecture is
76860b5f 1664 restored. INIT() is not re-called.
104c1213
JM
1665
1666 Multiple registrarants for any architecture are allowed (and
1667 strongly encouraged). */
1668
95160752 1669struct gdbarch_data;
104c1213 1670
030f20e1
AC
1671typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1672extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1673typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1674extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1675extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1676 struct gdbarch_data *data,
1677 void *pointer);
104c1213 1678
451fbdda 1679extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1680
1681
0fa6923a 1682/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1683 byte-order, ...) using information found in the BFD. */
104c1213
JM
1684
1685extern void set_gdbarch_from_file (bfd *);
1686
1687
e514a9d6
JM
1688/* Initialize the current architecture to the "first" one we find on
1689 our list. */
1690
1691extern void initialize_current_architecture (void);
1692
104c1213 1693/* gdbarch trace variable */
ccce17b0 1694extern unsigned int gdbarch_debug;
104c1213 1695
4b9b3959 1696extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1697
f6efe3f8
SM
1698/* Return the number of cooked registers (raw + pseudo) for ARCH. */
1699
1700static inline int
1701gdbarch_num_cooked_regs (gdbarch *arch)
1702{
1703 return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
1704}
1705
104c1213
JM
1706#endif
1707EOF
1708exec 1>&2
1709#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1710compare_new gdbarch.h
104c1213
JM
1711
1712
1713#
1714# C file
1715#
1716
1717exec > new-gdbarch.c
1718copyright
1719cat <<EOF
1720
1721#include "defs.h"
7355ddba 1722#include "arch-utils.h"
104c1213 1723
104c1213 1724#include "gdbcmd.h"
faaf634c 1725#include "inferior.h"
104c1213
JM
1726#include "symcat.h"
1727
f0d4cc9e 1728#include "floatformat.h"
b59ff9d5 1729#include "reggroups.h"
4be87837 1730#include "osabi.h"
aebd7893 1731#include "gdb_obstack.h"
0bee6dd4 1732#include "observable.h"
a3ecef73 1733#include "regcache.h"
19630284 1734#include "objfiles.h"
2faa3447 1735#include "auxv.h"
8bcb5208
AB
1736#include "frame-unwind.h"
1737#include "dummy-frame.h"
95160752 1738
104c1213
JM
1739/* Static function declarations */
1740
b3cc3077 1741static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1742
104c1213
JM
1743/* Non-zero if we want to trace architecture code. */
1744
1745#ifndef GDBARCH_DEBUG
1746#define GDBARCH_DEBUG 0
1747#endif
ccce17b0 1748unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1749static void
1750show_gdbarch_debug (struct ui_file *file, int from_tty,
1751 struct cmd_list_element *c, const char *value)
1752{
1753 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1754}
104c1213 1755
456fcf94 1756static const char *
8da61cc4 1757pformat (const struct floatformat **format)
456fcf94
AC
1758{
1759 if (format == NULL)
1760 return "(null)";
1761 else
8da61cc4
DJ
1762 /* Just print out one of them - this is only for diagnostics. */
1763 return format[0]->name;
456fcf94
AC
1764}
1765
08105857
PA
1766static const char *
1767pstring (const char *string)
1768{
1769 if (string == NULL)
1770 return "(null)";
1771 return string;
05c0465e
SDJ
1772}
1773
a121b7c1 1774static const char *
f7bb4e3a
PB
1775pstring_ptr (char **string)
1776{
1777 if (string == NULL || *string == NULL)
1778 return "(null)";
1779 return *string;
1780}
1781
05c0465e
SDJ
1782/* Helper function to print a list of strings, represented as "const
1783 char *const *". The list is printed comma-separated. */
1784
a121b7c1 1785static const char *
05c0465e
SDJ
1786pstring_list (const char *const *list)
1787{
1788 static char ret[100];
1789 const char *const *p;
1790 size_t offset = 0;
1791
1792 if (list == NULL)
1793 return "(null)";
1794
1795 ret[0] = '\0';
1796 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1797 {
1798 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1799 offset += 2 + s;
1800 }
1801
1802 if (offset > 0)
1803 {
1804 gdb_assert (offset - 2 < sizeof (ret));
1805 ret[offset - 2] = '\0';
1806 }
1807
1808 return ret;
08105857
PA
1809}
1810
104c1213
JM
1811EOF
1812
1813# gdbarch open the gdbarch object
3d9a5942 1814printf "\n"
0963b4bd 1815printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1816printf "\n"
1817printf "struct gdbarch\n"
1818printf "{\n"
76860b5f
AC
1819printf " /* Has this architecture been fully initialized? */\n"
1820printf " int initialized_p;\n"
aebd7893
AC
1821printf "\n"
1822printf " /* An obstack bound to the lifetime of the architecture. */\n"
1823printf " struct obstack *obstack;\n"
1824printf "\n"
0963b4bd 1825printf " /* basic architectural information. */\n"
34620563 1826function_list | while do_read
104c1213 1827do
2ada493a
AC
1828 if class_is_info_p
1829 then
3d9a5942 1830 printf " ${returntype} ${function};\n"
2ada493a 1831 fi
104c1213 1832done
3d9a5942 1833printf "\n"
0963b4bd 1834printf " /* target specific vector. */\n"
3d9a5942
AC
1835printf " struct gdbarch_tdep *tdep;\n"
1836printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1837printf "\n"
0963b4bd 1838printf " /* per-architecture data-pointers. */\n"
95160752 1839printf " unsigned nr_data;\n"
3d9a5942
AC
1840printf " void **data;\n"
1841printf "\n"
104c1213
JM
1842cat <<EOF
1843 /* Multi-arch values.
1844
1845 When extending this structure you must:
1846
1847 Add the field below.
1848
1849 Declare set/get functions and define the corresponding
1850 macro in gdbarch.h.
1851
1852 gdbarch_alloc(): If zero/NULL is not a suitable default,
1853 initialize the new field.
1854
1855 verify_gdbarch(): Confirm that the target updated the field
1856 correctly.
1857
7e73cedf 1858 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1859 field is dumped out
1860
104c1213
JM
1861 get_gdbarch(): Implement the set/get functions (probably using
1862 the macro's as shortcuts).
1863
1864 */
1865
1866EOF
34620563 1867function_list | while do_read
104c1213 1868do
2ada493a
AC
1869 if class_is_variable_p
1870 then
3d9a5942 1871 printf " ${returntype} ${function};\n"
2ada493a
AC
1872 elif class_is_function_p
1873 then
2f9b146e 1874 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1875 fi
104c1213 1876done
3d9a5942 1877printf "};\n"
104c1213 1878
104c1213 1879# Create a new gdbarch struct
104c1213 1880cat <<EOF
7de2341d 1881
66b43ecb 1882/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1883 \`\`struct gdbarch_info''. */
104c1213 1884EOF
3d9a5942 1885printf "\n"
104c1213
JM
1886cat <<EOF
1887struct gdbarch *
1888gdbarch_alloc (const struct gdbarch_info *info,
1889 struct gdbarch_tdep *tdep)
1890{
be7811ad 1891 struct gdbarch *gdbarch;
aebd7893
AC
1892
1893 /* Create an obstack for allocating all the per-architecture memory,
1894 then use that to allocate the architecture vector. */
70ba0933 1895 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1896 obstack_init (obstack);
8d749320 1897 gdbarch = XOBNEW (obstack, struct gdbarch);
be7811ad
MD
1898 memset (gdbarch, 0, sizeof (*gdbarch));
1899 gdbarch->obstack = obstack;
85de9627 1900
be7811ad 1901 alloc_gdbarch_data (gdbarch);
85de9627 1902
be7811ad 1903 gdbarch->tdep = tdep;
104c1213 1904EOF
3d9a5942 1905printf "\n"
34620563 1906function_list | while do_read
104c1213 1907do
2ada493a
AC
1908 if class_is_info_p
1909 then
be7811ad 1910 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1911 fi
104c1213 1912done
3d9a5942 1913printf "\n"
0963b4bd 1914printf " /* Force the explicit initialization of these. */\n"
34620563 1915function_list | while do_read
104c1213 1916do
2ada493a
AC
1917 if class_is_function_p || class_is_variable_p
1918 then
72e74a21 1919 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1920 then
be7811ad 1921 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1922 fi
2ada493a 1923 fi
104c1213
JM
1924done
1925cat <<EOF
1926 /* gdbarch_alloc() */
1927
be7811ad 1928 return gdbarch;
104c1213
JM
1929}
1930EOF
1931
058f20d5 1932# Free a gdbarch struct.
3d9a5942
AC
1933printf "\n"
1934printf "\n"
058f20d5 1935cat <<EOF
aebd7893 1936
284a0e3c 1937obstack *gdbarch_obstack (gdbarch *arch)
aebd7893 1938{
284a0e3c 1939 return arch->obstack;
aebd7893
AC
1940}
1941
6c214e7c
PP
1942/* See gdbarch.h. */
1943
1944char *
1945gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1946{
1947 return obstack_strdup (arch->obstack, string);
1948}
1949
aebd7893 1950
058f20d5
JB
1951/* Free a gdbarch struct. This should never happen in normal
1952 operation --- once you've created a gdbarch, you keep it around.
1953 However, if an architecture's init function encounters an error
1954 building the structure, it may need to clean up a partially
1955 constructed gdbarch. */
4b9b3959 1956
058f20d5
JB
1957void
1958gdbarch_free (struct gdbarch *arch)
1959{
aebd7893 1960 struct obstack *obstack;
05c547f6 1961
95160752 1962 gdb_assert (arch != NULL);
aebd7893
AC
1963 gdb_assert (!arch->initialized_p);
1964 obstack = arch->obstack;
1965 obstack_free (obstack, 0); /* Includes the ARCH. */
1966 xfree (obstack);
058f20d5
JB
1967}
1968EOF
1969
104c1213 1970# verify a new architecture
104c1213 1971cat <<EOF
db446970
AC
1972
1973
1974/* Ensure that all values in a GDBARCH are reasonable. */
1975
104c1213 1976static void
be7811ad 1977verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1978{
d7e74731 1979 string_file log;
05c547f6 1980
104c1213 1981 /* fundamental */
be7811ad 1982 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
d7e74731 1983 log.puts ("\n\tbyte-order");
be7811ad 1984 if (gdbarch->bfd_arch_info == NULL)
d7e74731 1985 log.puts ("\n\tbfd_arch_info");
0963b4bd 1986 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1987EOF
34620563 1988function_list | while do_read
104c1213 1989do
2ada493a
AC
1990 if class_is_function_p || class_is_variable_p
1991 then
72e74a21 1992 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1993 then
3d9a5942 1994 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1995 elif class_is_predicate_p
1996 then
0963b4bd 1997 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1998 # FIXME: See do_read for potential simplification
72e74a21 1999 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 2000 then
3d9a5942 2001 printf " if (${invalid_p})\n"
be7811ad 2002 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 2003 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 2004 then
be7811ad
MD
2005 printf " if (gdbarch->${function} == ${predefault})\n"
2006 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 2007 elif [ -n "${postdefault}" ]
f0d4cc9e 2008 then
be7811ad
MD
2009 printf " if (gdbarch->${function} == 0)\n"
2010 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 2011 elif [ -n "${invalid_p}" ]
104c1213 2012 then
4d60522e 2013 printf " if (${invalid_p})\n"
d7e74731 2014 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
72e74a21 2015 elif [ -n "${predefault}" ]
104c1213 2016 then
be7811ad 2017 printf " if (gdbarch->${function} == ${predefault})\n"
d7e74731 2018 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
104c1213 2019 fi
2ada493a 2020 fi
104c1213
JM
2021done
2022cat <<EOF
d7e74731 2023 if (!log.empty ())
f16a1923 2024 internal_error (__FILE__, __LINE__,
85c07804 2025 _("verify_gdbarch: the following are invalid ...%s"),
d7e74731 2026 log.c_str ());
104c1213
JM
2027}
2028EOF
2029
2030# dump the structure
3d9a5942
AC
2031printf "\n"
2032printf "\n"
104c1213 2033cat <<EOF
0963b4bd 2034/* Print out the details of the current architecture. */
4b9b3959 2035
104c1213 2036void
be7811ad 2037gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 2038{
b78960be 2039 const char *gdb_nm_file = "<not-defined>";
05c547f6 2040
b78960be
AC
2041#if defined (GDB_NM_FILE)
2042 gdb_nm_file = GDB_NM_FILE;
2043#endif
2044 fprintf_unfiltered (file,
2045 "gdbarch_dump: GDB_NM_FILE = %s\\n",
2046 gdb_nm_file);
104c1213 2047EOF
ea480a30 2048function_list | sort '-t;' -k 3 | while do_read
104c1213 2049do
1e9f55d0
AC
2050 # First the predicate
2051 if class_is_predicate_p
2052 then
7996bcec 2053 printf " fprintf_unfiltered (file,\n"
48f7351b 2054 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 2055 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 2056 fi
48f7351b 2057 # Print the corresponding value.
283354d8 2058 if class_is_function_p
4b9b3959 2059 then
7996bcec 2060 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
2061 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
2062 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 2063 else
48f7351b 2064 # It is a variable
2f9b146e
AC
2065 case "${print}:${returntype}" in
2066 :CORE_ADDR )
0b1553bc
UW
2067 fmt="%s"
2068 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 2069 ;;
2f9b146e 2070 :* )
48f7351b 2071 fmt="%s"
623d3eb1 2072 print="plongest (gdbarch->${function})"
48f7351b
AC
2073 ;;
2074 * )
2f9b146e 2075 fmt="%s"
48f7351b
AC
2076 ;;
2077 esac
3d9a5942 2078 printf " fprintf_unfiltered (file,\n"
48f7351b 2079 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 2080 printf " ${print});\n"
2ada493a 2081 fi
104c1213 2082done
381323f4 2083cat <<EOF
be7811ad
MD
2084 if (gdbarch->dump_tdep != NULL)
2085 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
2086}
2087EOF
104c1213
JM
2088
2089
2090# GET/SET
3d9a5942 2091printf "\n"
104c1213
JM
2092cat <<EOF
2093struct gdbarch_tdep *
2094gdbarch_tdep (struct gdbarch *gdbarch)
2095{
2096 if (gdbarch_debug >= 2)
3d9a5942 2097 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
2098 return gdbarch->tdep;
2099}
2100EOF
3d9a5942 2101printf "\n"
34620563 2102function_list | while do_read
104c1213 2103do
2ada493a
AC
2104 if class_is_predicate_p
2105 then
3d9a5942
AC
2106 printf "\n"
2107 printf "int\n"
2108 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
2109 printf "{\n"
8de9bdc4 2110 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 2111 printf " return ${predicate};\n"
3d9a5942 2112 printf "}\n"
2ada493a
AC
2113 fi
2114 if class_is_function_p
2115 then
3d9a5942
AC
2116 printf "\n"
2117 printf "${returntype}\n"
72e74a21 2118 if [ "x${formal}" = "xvoid" ]
104c1213 2119 then
3d9a5942 2120 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 2121 else
3d9a5942 2122 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 2123 fi
3d9a5942 2124 printf "{\n"
8de9bdc4 2125 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 2126 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 2127 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
2128 then
2129 # Allow a call to a function with a predicate.
956ac328 2130 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 2131 fi
3d9a5942
AC
2132 printf " if (gdbarch_debug >= 2)\n"
2133 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 2134 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
2135 then
2136 if class_is_multiarch_p
2137 then
2138 params="gdbarch"
2139 else
2140 params=""
2141 fi
2142 else
2143 if class_is_multiarch_p
2144 then
2145 params="gdbarch, ${actual}"
2146 else
2147 params="${actual}"
2148 fi
2149 fi
72e74a21 2150 if [ "x${returntype}" = "xvoid" ]
104c1213 2151 then
4a5c6a1d 2152 printf " gdbarch->${function} (${params});\n"
104c1213 2153 else
4a5c6a1d 2154 printf " return gdbarch->${function} (${params});\n"
104c1213 2155 fi
3d9a5942
AC
2156 printf "}\n"
2157 printf "\n"
2158 printf "void\n"
2159 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2160 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2161 printf "{\n"
2162 printf " gdbarch->${function} = ${function};\n"
2163 printf "}\n"
2ada493a
AC
2164 elif class_is_variable_p
2165 then
3d9a5942
AC
2166 printf "\n"
2167 printf "${returntype}\n"
2168 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2169 printf "{\n"
8de9bdc4 2170 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 2171 if [ "x${invalid_p}" = "x0" ]
c0e8c252 2172 then
3d9a5942 2173 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 2174 elif [ -n "${invalid_p}" ]
104c1213 2175 then
956ac328
AC
2176 printf " /* Check variable is valid. */\n"
2177 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 2178 elif [ -n "${predefault}" ]
104c1213 2179 then
956ac328
AC
2180 printf " /* Check variable changed from pre-default. */\n"
2181 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 2182 fi
3d9a5942
AC
2183 printf " if (gdbarch_debug >= 2)\n"
2184 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2185 printf " return gdbarch->${function};\n"
2186 printf "}\n"
2187 printf "\n"
2188 printf "void\n"
2189 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2190 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2191 printf "{\n"
2192 printf " gdbarch->${function} = ${function};\n"
2193 printf "}\n"
2ada493a
AC
2194 elif class_is_info_p
2195 then
3d9a5942
AC
2196 printf "\n"
2197 printf "${returntype}\n"
2198 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2199 printf "{\n"
8de9bdc4 2200 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
2201 printf " if (gdbarch_debug >= 2)\n"
2202 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2203 printf " return gdbarch->${function};\n"
2204 printf "}\n"
2ada493a 2205 fi
104c1213
JM
2206done
2207
2208# All the trailing guff
2209cat <<EOF
2210
2211
f44c642f 2212/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2213 modules. */
104c1213
JM
2214
2215struct gdbarch_data
2216{
95160752 2217 unsigned index;
76860b5f 2218 int init_p;
030f20e1
AC
2219 gdbarch_data_pre_init_ftype *pre_init;
2220 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2221};
2222
2223struct gdbarch_data_registration
2224{
104c1213
JM
2225 struct gdbarch_data *data;
2226 struct gdbarch_data_registration *next;
2227};
2228
f44c642f 2229struct gdbarch_data_registry
104c1213 2230{
95160752 2231 unsigned nr;
104c1213
JM
2232 struct gdbarch_data_registration *registrations;
2233};
2234
f44c642f 2235struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2236{
2237 0, NULL,
2238};
2239
030f20e1
AC
2240static struct gdbarch_data *
2241gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2242 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2243{
2244 struct gdbarch_data_registration **curr;
05c547f6
MS
2245
2246 /* Append the new registration. */
f44c642f 2247 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2248 (*curr) != NULL;
2249 curr = &(*curr)->next);
70ba0933 2250 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2251 (*curr)->next = NULL;
70ba0933 2252 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2253 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2254 (*curr)->data->pre_init = pre_init;
2255 (*curr)->data->post_init = post_init;
76860b5f 2256 (*curr)->data->init_p = 1;
104c1213
JM
2257 return (*curr)->data;
2258}
2259
030f20e1
AC
2260struct gdbarch_data *
2261gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2262{
2263 return gdbarch_data_register (pre_init, NULL);
2264}
2265
2266struct gdbarch_data *
2267gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2268{
2269 return gdbarch_data_register (NULL, post_init);
2270}
104c1213 2271
0963b4bd 2272/* Create/delete the gdbarch data vector. */
95160752
AC
2273
2274static void
b3cc3077 2275alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2276{
b3cc3077
JB
2277 gdb_assert (gdbarch->data == NULL);
2278 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2279 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2280}
3c875b6f 2281
76860b5f 2282/* Initialize the current value of the specified per-architecture
0963b4bd 2283 data-pointer. */
b3cc3077 2284
95160752 2285void
030f20e1
AC
2286deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2287 struct gdbarch_data *data,
2288 void *pointer)
95160752
AC
2289{
2290 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2291 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2292 gdb_assert (data->pre_init == NULL);
95160752
AC
2293 gdbarch->data[data->index] = pointer;
2294}
2295
104c1213 2296/* Return the current value of the specified per-architecture
0963b4bd 2297 data-pointer. */
104c1213
JM
2298
2299void *
451fbdda 2300gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2301{
451fbdda 2302 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2303 if (gdbarch->data[data->index] == NULL)
76860b5f 2304 {
030f20e1
AC
2305 /* The data-pointer isn't initialized, call init() to get a
2306 value. */
2307 if (data->pre_init != NULL)
2308 /* Mid architecture creation: pass just the obstack, and not
2309 the entire architecture, as that way it isn't possible for
2310 pre-init code to refer to undefined architecture
2311 fields. */
2312 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2313 else if (gdbarch->initialized_p
2314 && data->post_init != NULL)
2315 /* Post architecture creation: pass the entire architecture
2316 (as all fields are valid), but be careful to also detect
2317 recursive references. */
2318 {
2319 gdb_assert (data->init_p);
2320 data->init_p = 0;
2321 gdbarch->data[data->index] = data->post_init (gdbarch);
2322 data->init_p = 1;
2323 }
2324 else
2325 /* The architecture initialization hasn't completed - punt -
2326 hope that the caller knows what they are doing. Once
2327 deprecated_set_gdbarch_data has been initialized, this can be
2328 changed to an internal error. */
2329 return NULL;
76860b5f
AC
2330 gdb_assert (gdbarch->data[data->index] != NULL);
2331 }
451fbdda 2332 return gdbarch->data[data->index];
104c1213
JM
2333}
2334
2335
0963b4bd 2336/* Keep a registry of the architectures known by GDB. */
104c1213 2337
4b9b3959 2338struct gdbarch_registration
104c1213
JM
2339{
2340 enum bfd_architecture bfd_architecture;
2341 gdbarch_init_ftype *init;
4b9b3959 2342 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2343 struct gdbarch_list *arches;
4b9b3959 2344 struct gdbarch_registration *next;
104c1213
JM
2345};
2346
f44c642f 2347static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2348
b4a20239
AC
2349static void
2350append_name (const char ***buf, int *nr, const char *name)
2351{
1dc7a623 2352 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
b4a20239
AC
2353 (*buf)[*nr] = name;
2354 *nr += 1;
2355}
2356
2357const char **
2358gdbarch_printable_names (void)
2359{
7996bcec 2360 /* Accumulate a list of names based on the registed list of
0963b4bd 2361 architectures. */
7996bcec
AC
2362 int nr_arches = 0;
2363 const char **arches = NULL;
2364 struct gdbarch_registration *rego;
05c547f6 2365
7996bcec
AC
2366 for (rego = gdbarch_registry;
2367 rego != NULL;
2368 rego = rego->next)
b4a20239 2369 {
7996bcec
AC
2370 const struct bfd_arch_info *ap;
2371 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2372 if (ap == NULL)
2373 internal_error (__FILE__, __LINE__,
85c07804 2374 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2375 do
2376 {
2377 append_name (&arches, &nr_arches, ap->printable_name);
2378 ap = ap->next;
2379 }
2380 while (ap != NULL);
b4a20239 2381 }
7996bcec
AC
2382 append_name (&arches, &nr_arches, NULL);
2383 return arches;
b4a20239
AC
2384}
2385
2386
104c1213 2387void
4b9b3959
AC
2388gdbarch_register (enum bfd_architecture bfd_architecture,
2389 gdbarch_init_ftype *init,
2390 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2391{
4b9b3959 2392 struct gdbarch_registration **curr;
104c1213 2393 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2394
ec3d358c 2395 /* Check that BFD recognizes this architecture */
104c1213
JM
2396 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2397 if (bfd_arch_info == NULL)
2398 {
8e65ff28 2399 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2400 _("gdbarch: Attempt to register "
2401 "unknown architecture (%d)"),
8e65ff28 2402 bfd_architecture);
104c1213 2403 }
0963b4bd 2404 /* Check that we haven't seen this architecture before. */
f44c642f 2405 for (curr = &gdbarch_registry;
104c1213
JM
2406 (*curr) != NULL;
2407 curr = &(*curr)->next)
2408 {
2409 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2410 internal_error (__FILE__, __LINE__,
64b9b334 2411 _("gdbarch: Duplicate registration "
0963b4bd 2412 "of architecture (%s)"),
8e65ff28 2413 bfd_arch_info->printable_name);
104c1213
JM
2414 }
2415 /* log it */
2416 if (gdbarch_debug)
30737ed9 2417 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2418 bfd_arch_info->printable_name,
30737ed9 2419 host_address_to_string (init));
104c1213 2420 /* Append it */
70ba0933 2421 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2422 (*curr)->bfd_architecture = bfd_architecture;
2423 (*curr)->init = init;
4b9b3959 2424 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2425 (*curr)->arches = NULL;
2426 (*curr)->next = NULL;
4b9b3959
AC
2427}
2428
2429void
2430register_gdbarch_init (enum bfd_architecture bfd_architecture,
2431 gdbarch_init_ftype *init)
2432{
2433 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2434}
104c1213
JM
2435
2436
424163ea 2437/* Look for an architecture using gdbarch_info. */
104c1213
JM
2438
2439struct gdbarch_list *
2440gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2441 const struct gdbarch_info *info)
2442{
2443 for (; arches != NULL; arches = arches->next)
2444 {
2445 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2446 continue;
2447 if (info->byte_order != arches->gdbarch->byte_order)
2448 continue;
4be87837
DJ
2449 if (info->osabi != arches->gdbarch->osabi)
2450 continue;
424163ea
DJ
2451 if (info->target_desc != arches->gdbarch->target_desc)
2452 continue;
104c1213
JM
2453 return arches;
2454 }
2455 return NULL;
2456}
2457
2458
ebdba546 2459/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2460 architecture if needed. Return that new architecture. */
104c1213 2461
59837fe0
UW
2462struct gdbarch *
2463gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2464{
2465 struct gdbarch *new_gdbarch;
4b9b3959 2466 struct gdbarch_registration *rego;
104c1213 2467
b732d07d 2468 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2469 sources: "set ..."; INFOabfd supplied; and the global
2470 defaults. */
2471 gdbarch_info_fill (&info);
4be87837 2472
0963b4bd 2473 /* Must have found some sort of architecture. */
b732d07d 2474 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2475
2476 if (gdbarch_debug)
2477 {
2478 fprintf_unfiltered (gdb_stdlog,
59837fe0 2479 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2480 (info.bfd_arch_info != NULL
2481 ? info.bfd_arch_info->printable_name
2482 : "(null)"));
2483 fprintf_unfiltered (gdb_stdlog,
59837fe0 2484 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2485 info.byte_order,
d7449b42 2486 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2487 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2488 : "default"));
4be87837 2489 fprintf_unfiltered (gdb_stdlog,
59837fe0 2490 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2491 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2492 fprintf_unfiltered (gdb_stdlog,
59837fe0 2493 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2494 host_address_to_string (info.abfd));
104c1213 2495 fprintf_unfiltered (gdb_stdlog,
59837fe0 2496 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2497 host_address_to_string (info.tdep_info));
104c1213
JM
2498 }
2499
ebdba546 2500 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2501 for (rego = gdbarch_registry;
2502 rego != NULL;
2503 rego = rego->next)
2504 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2505 break;
2506 if (rego == NULL)
2507 {
2508 if (gdbarch_debug)
59837fe0 2509 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2510 "No matching architecture\n");
b732d07d
AC
2511 return 0;
2512 }
2513
ebdba546 2514 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2515 new_gdbarch = rego->init (info, rego->arches);
2516
ebdba546
AC
2517 /* Did the tdep code like it? No. Reject the change and revert to
2518 the old architecture. */
104c1213
JM
2519 if (new_gdbarch == NULL)
2520 {
2521 if (gdbarch_debug)
59837fe0 2522 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2523 "Target rejected architecture\n");
2524 return NULL;
104c1213
JM
2525 }
2526
ebdba546
AC
2527 /* Is this a pre-existing architecture (as determined by already
2528 being initialized)? Move it to the front of the architecture
2529 list (keeping the list sorted Most Recently Used). */
2530 if (new_gdbarch->initialized_p)
104c1213 2531 {
ebdba546 2532 struct gdbarch_list **list;
fe978cb0 2533 struct gdbarch_list *self;
104c1213 2534 if (gdbarch_debug)
59837fe0 2535 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2536 "Previous architecture %s (%s) selected\n",
2537 host_address_to_string (new_gdbarch),
104c1213 2538 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2539 /* Find the existing arch in the list. */
2540 for (list = &rego->arches;
2541 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2542 list = &(*list)->next);
2543 /* It had better be in the list of architectures. */
2544 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
fe978cb0
PA
2545 /* Unlink SELF. */
2546 self = (*list);
2547 (*list) = self->next;
2548 /* Insert SELF at the front. */
2549 self->next = rego->arches;
2550 rego->arches = self;
ebdba546
AC
2551 /* Return it. */
2552 return new_gdbarch;
104c1213
JM
2553 }
2554
ebdba546
AC
2555 /* It's a new architecture. */
2556 if (gdbarch_debug)
59837fe0 2557 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2558 "New architecture %s (%s) selected\n",
2559 host_address_to_string (new_gdbarch),
ebdba546
AC
2560 new_gdbarch->bfd_arch_info->printable_name);
2561
2562 /* Insert the new architecture into the front of the architecture
2563 list (keep the list sorted Most Recently Used). */
0f79675b 2564 {
fe978cb0
PA
2565 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2566 self->next = rego->arches;
2567 self->gdbarch = new_gdbarch;
2568 rego->arches = self;
0f79675b 2569 }
104c1213 2570
4b9b3959
AC
2571 /* Check that the newly installed architecture is valid. Plug in
2572 any post init values. */
2573 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2574 verify_gdbarch (new_gdbarch);
ebdba546 2575 new_gdbarch->initialized_p = 1;
104c1213 2576
4b9b3959 2577 if (gdbarch_debug)
ebdba546
AC
2578 gdbarch_dump (new_gdbarch, gdb_stdlog);
2579
2580 return new_gdbarch;
2581}
2582
e487cc15 2583/* Make the specified architecture current. */
ebdba546
AC
2584
2585void
aff68abb 2586set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2587{
2588 gdb_assert (new_gdbarch != NULL);
ebdba546 2589 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2590 current_inferior ()->gdbarch = new_gdbarch;
0bee6dd4 2591 gdb::observers::architecture_changed.notify (new_gdbarch);
a3ecef73 2592 registers_changed ();
ebdba546 2593}
104c1213 2594
f5656ead 2595/* Return the current inferior's arch. */
6ecd4729
PA
2596
2597struct gdbarch *
f5656ead 2598target_gdbarch (void)
6ecd4729
PA
2599{
2600 return current_inferior ()->gdbarch;
2601}
2602
104c1213 2603void
34620563 2604_initialize_gdbarch (void)
104c1213 2605{
ccce17b0 2606 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2607Set architecture debugging."), _("\\
2608Show architecture debugging."), _("\\
2609When non-zero, architecture debugging is enabled."),
2610 NULL,
920d2a44 2611 show_gdbarch_debug,
85c07804 2612 &setdebuglist, &showdebuglist);
104c1213
JM
2613}
2614EOF
2615
2616# close things off
2617exec 1>&2
2618#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2619compare_new gdbarch.c
This page took 1.770062 seconds and 4 git commands to generate.