[gdb/testsuite] Handle early_flags in gdb_default_target_compile
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
b811d2c2 5# Copyright (C) 1998-2020 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532 26
59233f88 27# Format of the input table
97030eea 28read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
29
30do_read ()
31{
34620563
AC
32 comment=""
33 class=""
c9023fb3
PA
34 # On some SH's, 'read' trims leading and trailing whitespace by
35 # default (e.g., bash), while on others (e.g., dash), it doesn't.
36 # Set IFS to empty to disable the trimming everywhere.
ffc2844e 37 # shellcheck disable=SC2162
c9023fb3 38 while IFS='' read line
34620563
AC
39 do
40 if test "${line}" = ""
41 then
42 continue
43 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 44 then
34620563
AC
45 continue
46 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 47 then
34620563
AC
48 comment="${comment}
49${line}"
f0d4cc9e 50 else
3d9a5942
AC
51
52 # The semantics of IFS varies between different SH's. Some
ea480a30
SM
53 # treat ``;;' as three fields while some treat it as just two.
54 # Work around this by eliminating ``;;'' ....
cb02ab24 55 line="$(echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g')"
3d9a5942 56
ea480a30 57 OFS="${IFS}" ; IFS="[;]"
a6fc5ffc 58 eval read "${read}" <<EOF
34620563
AC
59${line}
60EOF
61 IFS="${OFS}"
62
1207375d 63 if test -n "${garbage_at_eol:-}"
283354d8
AC
64 then
65 echo "Garbage at end-of-line in ${line}" 1>&2
66 kill $$
67 exit 1
68 fi
69
3d9a5942
AC
70 # .... and then going back through each field and strip out those
71 # that ended up with just that space character.
72 for r in ${read}
73 do
a6fc5ffc 74 if eval test "\"\${${r}}\" = ' '"
3d9a5942 75 then
a6fc5ffc 76 eval "${r}="
3d9a5942
AC
77 fi
78 done
79
a72293e2 80 case "${class}" in
1207375d 81 m ) staticdefault="${predefault:-}" ;;
a72293e2
AC
82 M ) staticdefault="0" ;;
83 * ) test "${staticdefault}" || staticdefault=0 ;;
84 esac
06b25f14 85
ae45cd16
AC
86 case "${class}" in
87 F | V | M )
1207375d 88 case "${invalid_p:-}" in
34620563 89 "" )
f7968451 90 if test -n "${predefault}"
34620563
AC
91 then
92 #invalid_p="gdbarch->${function} == ${predefault}"
1207375d 93 predicate="gdbarch->${function:-} != ${predefault}"
f7968451
AC
94 elif class_is_variable_p
95 then
96 predicate="gdbarch->${function} != 0"
97 elif class_is_function_p
98 then
99 predicate="gdbarch->${function} != NULL"
34620563
AC
100 fi
101 ;;
ae45cd16 102 * )
1e9f55d0 103 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
104 kill $$
105 exit 1
106 ;;
107 esac
34620563
AC
108 esac
109
34620563
AC
110 #NOT YET: See gdbarch.log for basic verification of
111 # database
112
113 break
f0d4cc9e 114 fi
34620563 115 done
72e74a21 116 if [ -n "${class}" ]
34620563
AC
117 then
118 true
c0e8c252
AC
119 else
120 false
121 fi
122}
123
104c1213 124
f0d4cc9e
AC
125fallback_default_p ()
126{
1207375d 127 { [ -n "${postdefault:-}" ] && [ "x${invalid_p}" != "x0" ]; } \
9fdb2916 128 || { [ -n "${predefault}" ] && [ "x${invalid_p}" = "x0" ]; }
f0d4cc9e
AC
129}
130
131class_is_variable_p ()
132{
4a5c6a1d
AC
133 case "${class}" in
134 *v* | *V* ) true ;;
135 * ) false ;;
136 esac
f0d4cc9e
AC
137}
138
139class_is_function_p ()
140{
4a5c6a1d
AC
141 case "${class}" in
142 *f* | *F* | *m* | *M* ) true ;;
143 * ) false ;;
144 esac
145}
146
147class_is_multiarch_p ()
148{
149 case "${class}" in
150 *m* | *M* ) true ;;
151 * ) false ;;
152 esac
f0d4cc9e
AC
153}
154
155class_is_predicate_p ()
156{
4a5c6a1d
AC
157 case "${class}" in
158 *F* | *V* | *M* ) true ;;
159 * ) false ;;
160 esac
f0d4cc9e
AC
161}
162
163class_is_info_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *i* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171
cff3e48b
JM
172# dump out/verify the doco
173for field in ${read}
174do
175 case ${field} in
176
177 class ) : ;;
c4093a6a 178
c0e8c252
AC
179 # # -> line disable
180 # f -> function
181 # hiding a function
2ada493a
AC
182 # F -> function + predicate
183 # hiding a function + predicate to test function validity
c0e8c252
AC
184 # v -> variable
185 # hiding a variable
2ada493a
AC
186 # V -> variable + predicate
187 # hiding a variable + predicate to test variables validity
c0e8c252
AC
188 # i -> set from info
189 # hiding something from the ``struct info'' object
4a5c6a1d
AC
190 # m -> multi-arch function
191 # hiding a multi-arch function (parameterised with the architecture)
192 # M -> multi-arch function + predicate
193 # hiding a multi-arch function + predicate to test function validity
cff3e48b 194
cff3e48b
JM
195 returntype ) : ;;
196
c0e8c252 197 # For functions, the return type; for variables, the data type
cff3e48b
JM
198
199 function ) : ;;
200
c0e8c252
AC
201 # For functions, the member function name; for variables, the
202 # variable name. Member function names are always prefixed with
203 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
204
205 formal ) : ;;
206
c0e8c252
AC
207 # The formal argument list. It is assumed that the formal
208 # argument list includes the actual name of each list element.
209 # A function with no arguments shall have ``void'' as the
210 # formal argument list.
cff3e48b
JM
211
212 actual ) : ;;
213
c0e8c252
AC
214 # The list of actual arguments. The arguments specified shall
215 # match the FORMAL list given above. Functions with out
216 # arguments leave this blank.
cff3e48b 217
0b8f9e4d 218 staticdefault ) : ;;
c0e8c252
AC
219
220 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
221 # created. STATICDEFAULT is the value to insert into that
222 # static gdbarch object. Since this a static object only
223 # simple expressions can be used.
cff3e48b 224
0b8f9e4d 225 # If STATICDEFAULT is empty, zero is used.
c0e8c252 226
0b8f9e4d 227 predefault ) : ;;
cff3e48b 228
10312cc4
AC
229 # An initial value to assign to MEMBER of the freshly
230 # malloc()ed gdbarch object. After initialization, the
231 # freshly malloc()ed object is passed to the target
232 # architecture code for further updates.
cff3e48b 233
0b8f9e4d
AC
234 # If PREDEFAULT is empty, zero is used.
235
10312cc4
AC
236 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
237 # INVALID_P are specified, PREDEFAULT will be used as the
238 # default for the non- multi-arch target.
239
240 # A zero PREDEFAULT function will force the fallback to call
241 # internal_error().
f0d4cc9e
AC
242
243 # Variable declarations can refer to ``gdbarch'' which will
244 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
245
246 postdefault ) : ;;
247
248 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
249 # the target architecture code fail to change the PREDEFAULT
250 # value.
0b8f9e4d
AC
251
252 # If POSTDEFAULT is empty, no post update is performed.
253
254 # If both INVALID_P and POSTDEFAULT are non-empty then
255 # INVALID_P will be used to determine if MEMBER should be
256 # changed to POSTDEFAULT.
257
10312cc4
AC
258 # If a non-empty POSTDEFAULT and a zero INVALID_P are
259 # specified, POSTDEFAULT will be used as the default for the
260 # non- multi-arch target (regardless of the value of
261 # PREDEFAULT).
262
f0d4cc9e
AC
263 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
264
be7811ad 265 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
266 # will contain the current architecture. Care should be
267 # taken.
cff3e48b 268
c4093a6a 269 invalid_p ) : ;;
cff3e48b 270
0b8f9e4d 271 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 272 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
273 # initialize MEMBER or the initialized the member is invalid.
274 # If POSTDEFAULT is non-empty then MEMBER will be updated to
275 # that value. If POSTDEFAULT is empty then internal_error()
276 # is called.
277
278 # If INVALID_P is empty, a check that MEMBER is no longer
279 # equal to PREDEFAULT is used.
280
f0d4cc9e
AC
281 # The expression ``0'' disables the INVALID_P check making
282 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
283
284 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 285
cff3e48b
JM
286 print ) : ;;
287
2f9b146e
AC
288 # An optional expression that convers MEMBER to a value
289 # suitable for formatting using %s.
c0e8c252 290
0b1553bc
UW
291 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
292 # or plongest (anything else) is used.
cff3e48b 293
283354d8 294 garbage_at_eol ) : ;;
0b8f9e4d 295
283354d8 296 # Catches stray fields.
cff3e48b 297
50248794
AC
298 *)
299 echo "Bad field ${field}"
300 exit 1;;
cff3e48b
JM
301 esac
302done
303
cff3e48b 304
104c1213
JM
305function_list ()
306{
cff3e48b 307 # See below (DOCO) for description of each field
34620563 308 cat <<EOF
ea480a30 309i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 310#
ea480a30
SM
311i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
312i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
4be87837 313#
ea480a30 314i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
424163ea 315#
ea480a30 316i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
32c9a795 317
66b43ecb 318# Number of bits in a short or unsigned short for the target machine.
ea480a30 319v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
66b43ecb 320# Number of bits in an int or unsigned int for the target machine.
ea480a30 321v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
66b43ecb 322# Number of bits in a long or unsigned long for the target machine.
ea480a30 323v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
66b43ecb
AC
324# Number of bits in a long long or unsigned long long for the target
325# machine.
ea480a30 326v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
456fcf94 327
f9e9243a
UW
328# The ABI default bit-size and format for "half", "float", "double", and
329# "long double". These bit/format pairs should eventually be combined
330# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
331# Each format describes both the big and little endian layouts (if
332# useful).
456fcf94 333
ea480a30
SM
334v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
335v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
336v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
337v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
338v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
339v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
340v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
341v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
456fcf94 342
53375380
PA
343# The ABI default bit-size for "wchar_t". wchar_t is a built-in type
344# starting with C++11.
ea480a30 345v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
53375380 346# One if \`wchar_t' is signed, zero if unsigned.
ea480a30 347v;int;wchar_signed;;;1;-1;1
53375380 348
9b790ce7
UW
349# Returns the floating-point format to be used for values of length LENGTH.
350# NAME, if non-NULL, is the type name, which may be used to distinguish
351# different target formats of the same length.
ea480a30 352m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
9b790ce7 353
52204a0b
DT
354# For most targets, a pointer on the target and its representation as an
355# address in GDB have the same size and "look the same". For such a
17a912b6 356# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
357# / addr_bit will be set from it.
358#
17a912b6 359# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
360# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
361# gdbarch_address_to_pointer as well.
52204a0b
DT
362#
363# ptr_bit is the size of a pointer on the target
ea480a30 364v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
52204a0b 365# addr_bit is the size of a target address as represented in gdb
ea480a30 366v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
104c1213 367#
8da614df
CV
368# dwarf2_addr_size is the target address size as used in the Dwarf debug
369# info. For .debug_frame FDEs, this is supposed to be the target address
370# size from the associated CU header, and which is equivalent to the
371# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
372# Unfortunately there is no good way to determine this value. Therefore
373# dwarf2_addr_size simply defaults to the target pointer size.
374#
375# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
376# defined using the target's pointer size so far.
377#
378# Note that dwarf2_addr_size only needs to be redefined by a target if the
379# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
380# and if Dwarf versions < 4 need to be supported.
ea480a30 381v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
8da614df 382#
4e409299 383# One if \`char' acts like \`signed char', zero if \`unsigned char'.
ea480a30 384v;int;char_signed;;;1;-1;1
4e409299 385#
c113ed0c 386F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
ea480a30 387F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
39d4ef09
AC
388# Function for getting target's idea of a frame pointer. FIXME: GDB's
389# whole scheme for dealing with "frames" and "frame pointers" needs a
390# serious shakedown.
ea480a30 391m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
66b43ecb 392#
849d0ba8 393M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
3543a589
TT
394# Read a register into a new struct value. If the register is wholly
395# or partly unavailable, this should call mark_value_bytes_unavailable
396# as appropriate. If this is defined, then pseudo_register_read will
397# never be called.
849d0ba8 398M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
ea480a30 399M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
61a0eb5b 400#
ea480a30 401v;int;num_regs;;;0;-1
0aba1244
EZ
402# This macro gives the number of pseudo-registers that live in the
403# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
404# These pseudo-registers may be aliases for other registers,
405# combinations of other registers, or they may be computed by GDB.
ea480a30 406v;int;num_pseudo_regs;;;0;0;;0
c2169756 407
175ff332
HZ
408# Assemble agent expression bytecode to collect pseudo-register REG.
409# Return -1 if something goes wrong, 0 otherwise.
ea480a30 410M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
175ff332
HZ
411
412# Assemble agent expression bytecode to push the value of pseudo-register
413# REG on the interpreter stack.
414# Return -1 if something goes wrong, 0 otherwise.
ea480a30 415M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
175ff332 416
012b3a21
WT
417# Some targets/architectures can do extra processing/display of
418# segmentation faults. E.g., Intel MPX boundary faults.
419# Call the architecture dependent function to handle the fault.
420# UIOUT is the output stream where the handler will place information.
ea480a30 421M;void;handle_segmentation_fault;struct ui_out *uiout;uiout
012b3a21 422
c2169756
AC
423# GDB's standard (or well known) register numbers. These can map onto
424# a real register or a pseudo (computed) register or not be defined at
1200cd6e 425# all (-1).
3e8c568d 426# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
ea480a30
SM
427v;int;sp_regnum;;;-1;-1;;0
428v;int;pc_regnum;;;-1;-1;;0
429v;int;ps_regnum;;;-1;-1;;0
430v;int;fp0_regnum;;;0;-1;;0
88c72b7d 431# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
ea480a30 432m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
88c72b7d 433# Provide a default mapping from a ecoff register number to a gdb REGNUM.
ea480a30 434m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
88c72b7d 435# Convert from an sdb register number to an internal gdb register number.
ea480a30 436m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
ba2b1c56 437# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
0fde2c53 438# Return -1 for bad REGNUM. Note: Several targets get this wrong.
ea480a30
SM
439m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
440m;const char *;register_name;int regnr;regnr;;0
9c04cab7 441
7b9ee6a8
DJ
442# Return the type of a register specified by the architecture. Only
443# the register cache should call this function directly; others should
444# use "register_type".
ea480a30 445M;struct type *;register_type;int reg_nr;reg_nr
9c04cab7 446
8bcb5208
AB
447# Generate a dummy frame_id for THIS_FRAME assuming that the frame is
448# a dummy frame. A dummy frame is created before an inferior call,
449# the frame_id returned here must match the frame_id that was built
450# for the inferior call. Usually this means the returned frame_id's
451# stack address should match the address returned by
452# gdbarch_push_dummy_call, and the returned frame_id's code address
453# should match the address at which the breakpoint was set in the dummy
454# frame.
455m;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame;;default_dummy_id;;0
669fac23 456# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 457# deprecated_fp_regnum.
ea480a30 458v;int;deprecated_fp_regnum;;;-1;-1;;0
f3be58bc 459
cf84fa6b 460M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, function_call_return_method return_method, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, return_method, struct_addr
ea480a30
SM
461v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
462M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 463
7eb89530 464# Return true if the code of FRAME is writable.
ea480a30 465m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
7eb89530 466
ea480a30
SM
467m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
468m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
469M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
7c7651b2
AC
470# MAP a GDB RAW register number onto a simulator register number. See
471# also include/...-sim.h.
ea480a30
SM
472m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
473m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
474m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
eade6471
JB
475
476# Determine the address where a longjmp will land and save this address
477# in PC. Return nonzero on success.
478#
479# FRAME corresponds to the longjmp frame.
ea480a30 480F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
eade6471 481
104c1213 482#
ea480a30 483v;int;believe_pcc_promotion;;;;;;;
104c1213 484#
ea480a30
SM
485m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
486f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
487f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
9acbedc0 488# Construct a value representing the contents of register REGNUM in
2ed3c037 489# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
490# allocate and return a struct value with all value attributes
491# (but not the value contents) filled in.
ea480a30 492m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
104c1213 493#
ea480a30
SM
494m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
495m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
496M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
92ad9cd9 497
6a3a010b
MR
498# Return the return-value convention that will be used by FUNCTION
499# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
500# case the return convention is computed based only on VALTYPE.
501#
502# If READBUF is not NULL, extract the return value and save it in this buffer.
503#
504# If WRITEBUF is not NULL, it contains a return value which will be
505# stored into the appropriate register. This can be used when we want
506# to force the value returned by a function (see the "return" command
507# for instance).
ea480a30 508M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
92ad9cd9 509
18648a37
YQ
510# Return true if the return value of function is stored in the first hidden
511# parameter. In theory, this feature should be language-dependent, specified
512# by language and its ABI, such as C++. Unfortunately, compiler may
513# implement it to a target-dependent feature. So that we need such hook here
514# to be aware of this in GDB.
ea480a30 515m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
18648a37 516
ea480a30
SM
517m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
518M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
591a12a1
UW
519# On some platforms, a single function may provide multiple entry points,
520# e.g. one that is used for function-pointer calls and a different one
521# that is used for direct function calls.
522# In order to ensure that breakpoints set on the function will trigger
523# no matter via which entry point the function is entered, a platform
524# may provide the skip_entrypoint callback. It is called with IP set
525# to the main entry point of a function (as determined by the symbol table),
526# and should return the address of the innermost entry point, where the
527# actual breakpoint needs to be set. Note that skip_entrypoint is used
528# by GDB common code even when debugging optimized code, where skip_prologue
529# is not used.
ea480a30 530M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
591a12a1 531
ea480a30
SM
532f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
533m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
cd6c3b4f
YQ
534
535# Return the breakpoint kind for this target based on *PCPTR.
ea480a30 536m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
cd6c3b4f
YQ
537
538# Return the software breakpoint from KIND. KIND can have target
539# specific meaning like the Z0 kind parameter.
540# SIZE is set to the software breakpoint's length in memory.
ea480a30 541m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
cd6c3b4f 542
833b7ab5
YQ
543# Return the breakpoint kind for this target based on the current
544# processor state (e.g. the current instruction mode on ARM) and the
545# *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
ea480a30 546m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
833b7ab5 547
ea480a30
SM
548M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
549m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
550m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
551v;CORE_ADDR;decr_pc_after_break;;;0;;;0
782263ab
AC
552
553# A function can be addressed by either it's "pointer" (possibly a
554# descriptor address) or "entry point" (first executable instruction).
555# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 556# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
557# a simplified subset of that functionality - the function's address
558# corresponds to the "function pointer" and the function's start
559# corresponds to the "function entry point" - and hence is redundant.
560
ea480a30 561v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
782263ab 562
123dc839
DJ
563# Return the remote protocol register number associated with this
564# register. Normally the identity mapping.
ea480a30 565m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
123dc839 566
b2756930 567# Fetch the target specific address used to represent a load module.
ea480a30 568F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
6e056c81
JB
569
570# Return the thread-local address at OFFSET in the thread-local
571# storage for the thread PTID and the shared library or executable
572# file given by LM_ADDR. If that block of thread-local storage hasn't
573# been allocated yet, this function may throw an error. LM_ADDR may
574# be zero for statically linked multithreaded inferiors.
575
576M;CORE_ADDR;get_thread_local_address;ptid_t ptid, CORE_ADDR lm_addr, CORE_ADDR offset;ptid, lm_addr, offset
104c1213 577#
ea480a30 578v;CORE_ADDR;frame_args_skip;;;0;;;0
8bcb5208
AB
579m;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame;;default_unwind_pc;;0
580m;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame;;default_unwind_sp;;0
42efa47a
AC
581# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
582# frame-base. Enable frame-base before frame-unwind.
ea480a30 583F;int;frame_num_args;struct frame_info *frame;frame
104c1213 584#
ea480a30
SM
585M;CORE_ADDR;frame_align;CORE_ADDR address;address
586m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
587v;int;frame_red_zone_size
f0d4cc9e 588#
ea480a30 589m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
875e1767
AC
590# On some machines there are bits in addresses which are not really
591# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 592# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
593# we get a "real" address such as one would find in a symbol table.
594# This is used only for addresses of instructions, and even then I'm
595# not sure it's used in all contexts. It exists to deal with there
596# being a few stray bits in the PC which would mislead us, not as some
597# sort of generic thing to handle alignment or segmentation (it's
598# possible it should be in TARGET_READ_PC instead).
ea480a30 599m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
e6590a1b 600
a738ea1d
YQ
601# On some machines, not all bits of an address word are significant.
602# For example, on AArch64, the top bits of an address known as the "tag"
603# are ignored by the kernel, the hardware, etc. and can be regarded as
604# additional data associated with the address.
5969f0db 605v;int;significant_addr_bit;;;;;;0
a738ea1d 606
e6590a1b
UW
607# FIXME/cagney/2001-01-18: This should be split in two. A target method that
608# indicates if the target needs software single step. An ISA method to
609# implement it.
610#
e6590a1b
UW
611# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
612# target can single step. If not, then implement single step using breakpoints.
64c4637f 613#
93f9a11f
YQ
614# Return a vector of addresses on which the software single step
615# breakpoints should be inserted. NULL means software single step is
616# not used.
617# Multiple breakpoints may be inserted for some instructions such as
618# conditional branch. However, each implementation must always evaluate
619# the condition and only put the breakpoint at the branch destination if
620# the condition is true, so that we ensure forward progress when stepping
621# past a conditional branch to self.
a0ff9e1a 622F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
e6590a1b 623
3352ef37
AC
624# Return non-zero if the processor is executing a delay slot and a
625# further single-step is needed before the instruction finishes.
ea480a30 626M;int;single_step_through_delay;struct frame_info *frame;frame
f6c40618 627# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 628# disassembler. Perhaps objdump can handle it?
39503f82 629f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
ea480a30 630f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
d50355b6
MS
631
632
cfd8ab24 633# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
634# evaluates non-zero, this is the address where the debugger will place
635# a step-resume breakpoint to get us past the dynamic linker.
ea480a30 636m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
d50355b6 637# Some systems also have trampoline code for returning from shared libs.
ea480a30 638m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
d50355b6 639
1d509aa6
MM
640# Return true if PC lies inside an indirect branch thunk.
641m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
642
c12260ac
CV
643# A target might have problems with watchpoints as soon as the stack
644# frame of the current function has been destroyed. This mostly happens
c9cf6e20 645# as the first action in a function's epilogue. stack_frame_destroyed_p()
c12260ac
CV
646# is defined to return a non-zero value if either the given addr is one
647# instruction after the stack destroying instruction up to the trailing
648# return instruction or if we can figure out that the stack frame has
649# already been invalidated regardless of the value of addr. Targets
650# which don't suffer from that problem could just let this functionality
651# untouched.
ea480a30 652m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
3e29f34a
MR
653# Process an ELF symbol in the minimal symbol table in a backend-specific
654# way. Normally this hook is supposed to do nothing, however if required,
655# then this hook can be used to apply tranformations to symbols that are
656# considered special in some way. For example the MIPS backend uses it
657# to interpret \`st_other' information to mark compressed code symbols so
658# that they can be treated in the appropriate manner in the processing of
659# the main symbol table and DWARF-2 records.
ea480a30
SM
660F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
661f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
3e29f34a
MR
662# Process a symbol in the main symbol table in a backend-specific way.
663# Normally this hook is supposed to do nothing, however if required,
664# then this hook can be used to apply tranformations to symbols that
665# are considered special in some way. This is currently used by the
666# MIPS backend to make sure compressed code symbols have the ISA bit
667# set. This in turn is needed for symbol values seen in GDB to match
668# the values used at the runtime by the program itself, for function
669# and label references.
ea480a30 670f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
3e29f34a
MR
671# Adjust the address retrieved from a DWARF-2 record other than a line
672# entry in a backend-specific way. Normally this hook is supposed to
673# return the address passed unchanged, however if that is incorrect for
674# any reason, then this hook can be used to fix the address up in the
675# required manner. This is currently used by the MIPS backend to make
676# sure addresses in FDE, range records, etc. referring to compressed
677# code have the ISA bit set, matching line information and the symbol
678# table.
ea480a30 679f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
3e29f34a
MR
680# Adjust the address updated by a line entry in a backend-specific way.
681# Normally this hook is supposed to return the address passed unchanged,
682# however in the case of inconsistencies in these records, this hook can
683# be used to fix them up in the required manner. This is currently used
684# by the MIPS backend to make sure all line addresses in compressed code
685# are presented with the ISA bit set, which is not always the case. This
686# in turn ensures breakpoint addresses are correctly matched against the
687# stop PC.
ea480a30
SM
688f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
689v;int;cannot_step_breakpoint;;;0;0;;0
7ea65f08
PA
690# See comment in target.h about continuable, steppable and
691# non-steppable watchpoints.
ea480a30
SM
692v;int;have_nonsteppable_watchpoint;;;0;0;;0
693F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
694M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
b41c5a85
JW
695# Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
696# FS are passed from the generic execute_cfa_program function.
ea480a30 697m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
69f97648
SM
698
699# Return the appropriate type_flags for the supplied address class.
700# This function should return 1 if the address class was recognized and
701# type_flags was set, zero otherwise.
ea480a30 702M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
b59ff9d5 703# Is a register in a group
ea480a30 704m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
f6214256 705# Fetch the pointer to the ith function argument.
ea480a30 706F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
6ce6d90f 707
5aa82d05
AA
708# Iterate over all supported register notes in a core file. For each
709# supported register note section, the iterator must call CB and pass
710# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
711# the supported register note sections based on the current register
712# values. Otherwise it should enumerate all supported register note
713# sections.
ea480a30 714M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
17ea7499 715
6432734d 716# Create core file notes
ea480a30 717M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
6432734d 718
35c2fab7 719# Find core file memory regions
ea480a30 720M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
35c2fab7 721
de584861 722# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
723# core file into buffer READBUF with length LEN. Return the number of bytes read
724# (zero indicates failure).
725# failed, otherwise, return the red length of READBUF.
ea480a30 726M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
de584861 727
356a5233
JB
728# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
729# libraries list from core file into buffer READBUF with length LEN.
c09f20e4 730# Return the number of bytes read (zero indicates failure).
ea480a30 731M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
356a5233 732
c0edd9ed 733# How the core target converts a PTID from a core file to a string.
a068643d 734M;std::string;core_pid_to_str;ptid_t ptid;ptid
28439f5e 735
4dfc5dbc 736# How the core target extracts the name of a thread from a core file.
ea480a30 737M;const char *;core_thread_name;struct thread_info *thr;thr
4dfc5dbc 738
382b69bb
JB
739# Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
740# from core file into buffer READBUF with length LEN. Return the number
741# of bytes read (zero indicates EOF, a negative value indicates failure).
742M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
743
a78c2d62 744# BFD target to use when generating a core file.
ea480a30 745V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
a78c2d62 746
0d5de010
DJ
747# If the elements of C++ vtables are in-place function descriptors rather
748# than normal function pointers (which may point to code or a descriptor),
749# set this to one.
ea480a30 750v;int;vtable_function_descriptors;;;0;0;;0
0d5de010
DJ
751
752# Set if the least significant bit of the delta is used instead of the least
753# significant bit of the pfn for pointers to virtual member functions.
ea480a30 754v;int;vbit_in_delta;;;0;0;;0
6d350bb5
UW
755
756# Advance PC to next instruction in order to skip a permanent breakpoint.
ea480a30 757f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
1c772458 758
1668ae25 759# The maximum length of an instruction on this architecture in bytes.
ea480a30 760V;ULONGEST;max_insn_length;;;0;0
237fc4c9
PA
761
762# Copy the instruction at FROM to TO, and make any adjustments
763# necessary to single-step it at that address.
764#
765# REGS holds the state the thread's registers will have before
766# executing the copied instruction; the PC in REGS will refer to FROM,
767# not the copy at TO. The caller should update it to point at TO later.
768#
769# Return a pointer to data of the architecture's choice to be passed
19b187a9 770# to gdbarch_displaced_step_fixup.
237fc4c9
PA
771#
772# For a general explanation of displaced stepping and how GDB uses it,
773# see the comments in infrun.c.
774#
775# The TO area is only guaranteed to have space for
776# gdbarch_max_insn_length (arch) bytes, so this function must not
777# write more bytes than that to that area.
778#
779# If you do not provide this function, GDB assumes that the
780# architecture does not support displaced stepping.
781#
7f03bd92
PA
782# If the instruction cannot execute out of line, return NULL. The
783# core falls back to stepping past the instruction in-line instead in
784# that case.
fdb61c6c 785M;displaced_step_closure_up;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
237fc4c9 786
99e40580
UW
787# Return true if GDB should use hardware single-stepping to execute
788# the displaced instruction identified by CLOSURE. If false,
789# GDB will simply restart execution at the displaced instruction
790# location, and it is up to the target to ensure GDB will receive
791# control again (e.g. by placing a software breakpoint instruction
792# into the displaced instruction buffer).
793#
794# The default implementation returns false on all targets that
795# provide a gdbarch_software_single_step routine, and true otherwise.
ea480a30 796m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
99e40580 797
237fc4c9
PA
798# Fix up the state resulting from successfully single-stepping a
799# displaced instruction, to give the result we would have gotten from
800# stepping the instruction in its original location.
801#
802# REGS is the register state resulting from single-stepping the
803# displaced instruction.
804#
805# CLOSURE is the result from the matching call to
806# gdbarch_displaced_step_copy_insn.
807#
808# If you provide gdbarch_displaced_step_copy_insn.but not this
809# function, then GDB assumes that no fixup is needed after
810# single-stepping the instruction.
811#
812# For a general explanation of displaced stepping and how GDB uses it,
813# see the comments in infrun.c.
ea480a30 814M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
237fc4c9 815
237fc4c9
PA
816# Return the address of an appropriate place to put displaced
817# instructions while we step over them. There need only be one such
818# place, since we're only stepping one thread over a breakpoint at a
819# time.
820#
821# For a general explanation of displaced stepping and how GDB uses it,
822# see the comments in infrun.c.
ea480a30 823m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
237fc4c9 824
dde08ee1
PA
825# Relocate an instruction to execute at a different address. OLDLOC
826# is the address in the inferior memory where the instruction to
827# relocate is currently at. On input, TO points to the destination
828# where we want the instruction to be copied (and possibly adjusted)
829# to. On output, it points to one past the end of the resulting
830# instruction(s). The effect of executing the instruction at TO shall
831# be the same as if executing it at FROM. For example, call
832# instructions that implicitly push the return address on the stack
833# should be adjusted to return to the instruction after OLDLOC;
834# relative branches, and other PC-relative instructions need the
835# offset adjusted; etc.
ea480a30 836M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
dde08ee1 837
1c772458 838# Refresh overlay mapped state for section OSECT.
ea480a30 839F;void;overlay_update;struct obj_section *osect;osect
4eb0ad19 840
ea480a30 841M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
149ad273 842
203c3895 843# Set if the address in N_SO or N_FUN stabs may be zero.
ea480a30 844v;int;sofun_address_maybe_missing;;;0;0;;0
1cded358 845
0508c3ec
HZ
846# Parse the instruction at ADDR storing in the record execution log
847# the registers REGCACHE and memory ranges that will be affected when
848# the instruction executes, along with their current values.
849# Return -1 if something goes wrong, 0 otherwise.
ea480a30 850M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
0508c3ec 851
3846b520
HZ
852# Save process state after a signal.
853# Return -1 if something goes wrong, 0 otherwise.
ea480a30 854M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
3846b520 855
22203bbf 856# Signal translation: translate inferior's signal (target's) number
86b49880
PA
857# into GDB's representation. The implementation of this method must
858# be host independent. IOW, don't rely on symbols of the NAT_FILE
859# header (the nm-*.h files), the host <signal.h> header, or similar
860# headers. This is mainly used when cross-debugging core files ---
861# "Live" targets hide the translation behind the target interface
1f8cf220 862# (target_wait, target_resume, etc.).
ea480a30 863M;enum gdb_signal;gdb_signal_from_target;int signo;signo
60c5725c 864
eb14d406
SDJ
865# Signal translation: translate the GDB's internal signal number into
866# the inferior's signal (target's) representation. The implementation
867# of this method must be host independent. IOW, don't rely on symbols
868# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
869# header, or similar headers.
870# Return the target signal number if found, or -1 if the GDB internal
871# signal number is invalid.
ea480a30 872M;int;gdb_signal_to_target;enum gdb_signal signal;signal
eb14d406 873
4aa995e1
PA
874# Extra signal info inspection.
875#
876# Return a type suitable to inspect extra signal information.
ea480a30 877M;struct type *;get_siginfo_type;void;
4aa995e1 878
60c5725c 879# Record architecture-specific information from the symbol table.
ea480a30 880M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
50c71eaf 881
a96d9b2e
SDJ
882# Function for the 'catch syscall' feature.
883
884# Get architecture-specific system calls information from registers.
00431a78 885M;LONGEST;get_syscall_number;thread_info *thread;thread
a96d9b2e 886
458c8db8 887# The filename of the XML syscall for this architecture.
ea480a30 888v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
458c8db8
SDJ
889
890# Information about system calls from this architecture
ea480a30 891v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
458c8db8 892
55aa24fb
SDJ
893# SystemTap related fields and functions.
894
05c0465e
SDJ
895# A NULL-terminated array of prefixes used to mark an integer constant
896# on the architecture's assembly.
55aa24fb
SDJ
897# For example, on x86 integer constants are written as:
898#
899# \$10 ;; integer constant 10
900#
901# in this case, this prefix would be the character \`\$\'.
ea480a30 902v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 903
05c0465e
SDJ
904# A NULL-terminated array of suffixes used to mark an integer constant
905# on the architecture's assembly.
ea480a30 906v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 907
05c0465e
SDJ
908# A NULL-terminated array of prefixes used to mark a register name on
909# the architecture's assembly.
55aa24fb
SDJ
910# For example, on x86 the register name is written as:
911#
912# \%eax ;; register eax
913#
914# in this case, this prefix would be the character \`\%\'.
ea480a30 915v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 916
05c0465e
SDJ
917# A NULL-terminated array of suffixes used to mark a register name on
918# the architecture's assembly.
ea480a30 919v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 920
05c0465e
SDJ
921# A NULL-terminated array of prefixes used to mark a register
922# indirection on the architecture's assembly.
55aa24fb
SDJ
923# For example, on x86 the register indirection is written as:
924#
925# \(\%eax\) ;; indirecting eax
926#
927# in this case, this prefix would be the charater \`\(\'.
928#
929# Please note that we use the indirection prefix also for register
930# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 931v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 932
05c0465e
SDJ
933# A NULL-terminated array of suffixes used to mark a register
934# indirection on the architecture's assembly.
55aa24fb
SDJ
935# For example, on x86 the register indirection is written as:
936#
937# \(\%eax\) ;; indirecting eax
938#
939# in this case, this prefix would be the charater \`\)\'.
940#
941# Please note that we use the indirection suffix also for register
942# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 943v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 944
05c0465e 945# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
946#
947# For example, on PPC a register is represented by a number in the assembly
948# language (e.g., \`10\' is the 10th general-purpose register). However,
949# inside GDB this same register has an \`r\' appended to its name, so the 10th
950# register would be represented as \`r10\' internally.
ea480a30 951v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
952
953# Suffix used to name a register using GDB's nomenclature.
ea480a30 954v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
955
956# Check if S is a single operand.
957#
958# Single operands can be:
959# \- Literal integers, e.g. \`\$10\' on x86
960# \- Register access, e.g. \`\%eax\' on x86
961# \- Register indirection, e.g. \`\(\%eax\)\' on x86
962# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
963#
964# This function should check for these patterns on the string
965# and return 1 if some were found, or zero otherwise. Please try to match
966# as much info as you can from the string, i.e., if you have to match
967# something like \`\(\%\', do not match just the \`\(\'.
ea480a30 968M;int;stap_is_single_operand;const char *s;s
55aa24fb
SDJ
969
970# Function used to handle a "special case" in the parser.
971#
972# A "special case" is considered to be an unknown token, i.e., a token
973# that the parser does not know how to parse. A good example of special
974# case would be ARM's register displacement syntax:
975#
976# [R0, #4] ;; displacing R0 by 4
977#
978# Since the parser assumes that a register displacement is of the form:
979#
980# <number> <indirection_prefix> <register_name> <indirection_suffix>
981#
982# it means that it will not be able to recognize and parse this odd syntax.
983# Therefore, we should add a special case function that will handle this token.
984#
985# This function should generate the proper expression form of the expression
986# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
987# and so on). It should also return 1 if the parsing was successful, or zero
988# if the token was not recognized as a special token (in this case, returning
989# zero means that the special parser is deferring the parsing to the generic
990# parser), and should advance the buffer pointer (p->arg).
ea480a30 991M;int;stap_parse_special_token;struct stap_parse_info *p;p
55aa24fb 992
7d7571f0
SDJ
993# Perform arch-dependent adjustments to a register name.
994#
995# In very specific situations, it may be necessary for the register
996# name present in a SystemTap probe's argument to be handled in a
997# special way. For example, on i386, GCC may over-optimize the
998# register allocation and use smaller registers than necessary. In
999# such cases, the client that is reading and evaluating the SystemTap
1000# probe (ourselves) will need to actually fetch values from the wider
1001# version of the register in question.
1002#
1003# To illustrate the example, consider the following probe argument
1004# (i386):
1005#
1006# 4@%ax
1007#
1008# This argument says that its value can be found at the %ax register,
1009# which is a 16-bit register. However, the argument's prefix says
1010# that its type is "uint32_t", which is 32-bit in size. Therefore, in
1011# this case, GDB should actually fetch the probe's value from register
1012# %eax, not %ax. In this scenario, this function would actually
1013# replace the register name from %ax to %eax.
1014#
1015# The rationale for this can be found at PR breakpoints/24541.
6b78c3f8 1016M;std::string;stap_adjust_register;struct stap_parse_info *p, const std::string \&regname, int regnum;p, regname, regnum
7d7571f0 1017
8b367e17
JM
1018# DTrace related functions.
1019
1020# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1021# NARG must be >= 0.
37eedb39 1022M;void;dtrace_parse_probe_argument;struct expr_builder *builder, int narg;builder, narg
8b367e17
JM
1023
1024# True if the given ADDR does not contain the instruction sequence
1025# corresponding to a disabled DTrace is-enabled probe.
ea480a30 1026M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
8b367e17
JM
1027
1028# Enable a DTrace is-enabled probe at ADDR.
ea480a30 1029M;void;dtrace_enable_probe;CORE_ADDR addr;addr
8b367e17
JM
1030
1031# Disable a DTrace is-enabled probe at ADDR.
ea480a30 1032M;void;dtrace_disable_probe;CORE_ADDR addr;addr
55aa24fb 1033
50c71eaf
PA
1034# True if the list of shared libraries is one and only for all
1035# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
1036# This usually means that all processes, although may or may not share
1037# an address space, will see the same set of symbols at the same
1038# addresses.
ea480a30 1039v;int;has_global_solist;;;0;0;;0
2567c7d9
PA
1040
1041# On some targets, even though each inferior has its own private
1042# address space, the debug interface takes care of making breakpoints
1043# visible to all address spaces automatically. For such cases,
1044# this property should be set to true.
ea480a30 1045v;int;has_global_breakpoints;;;0;0;;0
6c95b8df
PA
1046
1047# True if inferiors share an address space (e.g., uClinux).
ea480a30 1048m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
7a697b8d
SS
1049
1050# True if a fast tracepoint can be set at an address.
281d762b 1051m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
75cebea9 1052
5f034a78
MK
1053# Guess register state based on tracepoint location. Used for tracepoints
1054# where no registers have been collected, but there's only one location,
1055# allowing us to guess the PC value, and perhaps some other registers.
1056# On entry, regcache has all registers marked as unavailable.
ea480a30 1057m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
5f034a78 1058
f870a310 1059# Return the "auto" target charset.
ea480a30 1060f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
f870a310 1061# Return the "auto" target wide charset.
ea480a30 1062f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
08105857
PA
1063
1064# If non-empty, this is a file extension that will be opened in place
1065# of the file extension reported by the shared library list.
1066#
1067# This is most useful for toolchains that use a post-linker tool,
1068# where the names of the files run on the target differ in extension
1069# compared to the names of the files GDB should load for debug info.
ea480a30 1070v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
1071
1072# If true, the target OS has DOS-based file system semantics. That
1073# is, absolute paths include a drive name, and the backslash is
1074# considered a directory separator.
ea480a30 1075v;int;has_dos_based_file_system;;;0;0;;0
6710bf39
SS
1076
1077# Generate bytecodes to collect the return address in a frame.
1078# Since the bytecodes run on the target, possibly with GDB not even
1079# connected, the full unwinding machinery is not available, and
1080# typically this function will issue bytecodes for one or more likely
1081# places that the return address may be found.
ea480a30 1082m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
6710bf39 1083
3030c96e 1084# Implement the "info proc" command.
ea480a30 1085M;void;info_proc;const char *args, enum info_proc_what what;args, what
3030c96e 1086
451b7c33
TT
1087# Implement the "info proc" command for core files. Noe that there
1088# are two "info_proc"-like methods on gdbarch -- one for core files,
1089# one for live targets.
ea480a30 1090M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
451b7c33 1091
19630284
JB
1092# Iterate over all objfiles in the order that makes the most sense
1093# for the architecture to make global symbol searches.
1094#
1095# CB is a callback function where OBJFILE is the objfile to be searched,
1096# and CB_DATA a pointer to user-defined data (the same data that is passed
1097# when calling this gdbarch method). The iteration stops if this function
1098# returns nonzero.
1099#
1100# CB_DATA is a pointer to some user-defined data to be passed to
1101# the callback.
1102#
1103# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1104# inspected when the symbol search was requested.
ea480a30 1105m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
19630284 1106
7e35103a 1107# Ravenscar arch-dependent ops.
ea480a30 1108v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1109
1110# Return non-zero if the instruction at ADDR is a call; zero otherwise.
ea480a30 1111m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
c2170eef
MM
1112
1113# Return non-zero if the instruction at ADDR is a return; zero otherwise.
ea480a30 1114m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
c2170eef
MM
1115
1116# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
ea480a30 1117m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
27a48a92 1118
5133a315
LM
1119# Return true if there's a program/permanent breakpoint planted in
1120# memory at ADDRESS, return false otherwise.
1121m;bool;program_breakpoint_here_p;CORE_ADDR address;address;;default_program_breakpoint_here_p;;0
1122
27a48a92
MK
1123# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1124# Return 0 if *READPTR is already at the end of the buffer.
1125# Return -1 if there is insufficient buffer for a whole entry.
1126# Return 1 if an entry was read into *TYPEP and *VALP.
ea480a30 1127M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
3437254d 1128
2faa3447
JB
1129# Print the description of a single auxv entry described by TYPE and VAL
1130# to FILE.
ea480a30 1131m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
2faa3447 1132
3437254d
PA
1133# Find the address range of the current inferior's vsyscall/vDSO, and
1134# write it to *RANGE. If the vsyscall's length can't be determined, a
1135# range with zero length is returned. Returns true if the vsyscall is
1136# found, false otherwise.
ea480a30 1137m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
f208eee0
JK
1138
1139# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1140# PROT has GDB_MMAP_PROT_* bitmask format.
1141# Throw an error if it is not possible. Returned address is always valid.
ea480a30 1142f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
f208eee0 1143
7f361056
JK
1144# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1145# Print a warning if it is not possible.
ea480a30 1146f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
7f361056 1147
f208eee0
JK
1148# Return string (caller has to use xfree for it) with options for GCC
1149# to produce code for this target, typically "-m64", "-m32" or "-m31".
1150# These options are put before CU's DW_AT_producer compilation options so that
953cff56
TT
1151# they can override it.
1152m;std::string;gcc_target_options;void;;;default_gcc_target_options;;0
ac04f72b
TT
1153
1154# Return a regular expression that matches names used by this
1155# architecture in GNU configury triplets. The result is statically
1156# allocated and must not be freed. The default implementation simply
1157# returns the BFD architecture name, which is correct in nearly every
1158# case.
ea480a30 1159m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
3374165f
SM
1160
1161# Return the size in 8-bit bytes of an addressable memory unit on this
1162# architecture. This corresponds to the number of 8-bit bytes associated to
1163# each address in memory.
ea480a30 1164m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
3374165f 1165
65b48a81 1166# Functions for allowing a target to modify its disassembler options.
471b9d15 1167v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
ea480a30 1168v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
471b9d15 1169v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
65b48a81 1170
5561fc30
AB
1171# Type alignment override method. Return the architecture specific
1172# alignment required for TYPE. If there is no special handling
1173# required for TYPE then return the value 0, GDB will then apply the
1174# default rules as laid out in gdbtypes.c:type_align.
2b4424c3
TT
1175m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1176
aa7ca1bb
AH
1177# Return a string containing any flags for the given PC in the given FRAME.
1178f;std::string;get_pc_address_flags;frame_info *frame, CORE_ADDR pc;frame, pc;;default_get_pc_address_flags;;0
1179
104c1213 1180EOF
104c1213
JM
1181}
1182
0b8f9e4d
AC
1183#
1184# The .log file
1185#
41a77cba 1186exec > gdbarch.log
34620563 1187function_list | while do_read
0b8f9e4d
AC
1188do
1189 cat <<EOF
1207375d 1190${class} ${returntype:-} ${function} (${formal:-})
104c1213 1191EOF
3d9a5942
AC
1192 for r in ${read}
1193 do
a6fc5ffc 1194 eval echo "\" ${r}=\${${r}}\""
3d9a5942 1195 done
f0d4cc9e 1196 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1197 then
66d659b1 1198 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1199 kill $$
1200 exit 1
1201 fi
759cea5e 1202 if [ "x${invalid_p}" = "x0" ] && [ -n "${postdefault}" ]
f0d4cc9e
AC
1203 then
1204 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1205 kill $$
1206 exit 1
1207 fi
a72293e2
AC
1208 if class_is_multiarch_p
1209 then
1210 if class_is_predicate_p ; then :
1211 elif test "x${predefault}" = "x"
1212 then
2f9b146e 1213 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1214 kill $$
1215 exit 1
1216 fi
1217 fi
3d9a5942 1218 echo ""
0b8f9e4d
AC
1219done
1220
1221exec 1>&2
0b8f9e4d 1222
104c1213
JM
1223
1224copyright ()
1225{
1226cat <<EOF
c4bfde41
JK
1227/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1228/* vi:set ro: */
59233f88 1229
104c1213 1230/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1231
e5d78223 1232 Copyright (C) 1998-2020 Free Software Foundation, Inc.
104c1213
JM
1233
1234 This file is part of GDB.
1235
1236 This program is free software; you can redistribute it and/or modify
1237 it under the terms of the GNU General Public License as published by
50efebf8 1238 the Free Software Foundation; either version 3 of the License, or
104c1213 1239 (at your option) any later version.
618f726f 1240
104c1213
JM
1241 This program is distributed in the hope that it will be useful,
1242 but WITHOUT ANY WARRANTY; without even the implied warranty of
1243 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1244 GNU General Public License for more details.
618f726f 1245
104c1213 1246 You should have received a copy of the GNU General Public License
50efebf8 1247 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1248
41a77cba 1249/* This file was created with the aid of \`\`gdbarch.sh''. */
104c1213
JM
1250
1251EOF
1252}
1253
1254#
1255# The .h file
1256#
1257
1258exec > new-gdbarch.h
1259copyright
1260cat <<EOF
1261#ifndef GDBARCH_H
1262#define GDBARCH_H
1263
a0ff9e1a 1264#include <vector>
eb7a547a 1265#include "frame.h"
65b48a81 1266#include "dis-asm.h"
284a0e3c 1267#include "gdb_obstack.h"
fdb61c6c 1268#include "infrun.h"
fe4b2ee6 1269#include "osabi.h"
eb7a547a 1270
da3331ec
AC
1271struct floatformat;
1272struct ui_file;
104c1213 1273struct value;
b6af0555 1274struct objfile;
1c772458 1275struct obj_section;
a2cf933a 1276struct minimal_symbol;
049ee0e4 1277struct regcache;
b59ff9d5 1278struct reggroup;
6ce6d90f 1279struct regset;
a89aa300 1280struct disassemble_info;
e2d0e7eb 1281struct target_ops;
030f20e1 1282struct obstack;
8181d85f 1283struct bp_target_info;
424163ea 1284struct target_desc;
3e29f34a 1285struct symbol;
a96d9b2e 1286struct syscall;
175ff332 1287struct agent_expr;
6710bf39 1288struct axs_value;
55aa24fb 1289struct stap_parse_info;
37eedb39 1290struct expr_builder;
7e35103a 1291struct ravenscar_arch_ops;
3437254d 1292struct mem_range;
458c8db8 1293struct syscalls_info;
4dfc5dbc 1294struct thread_info;
012b3a21 1295struct ui_out;
104c1213 1296
8a526fa6
PA
1297#include "regcache.h"
1298
6ecd4729
PA
1299/* The architecture associated with the inferior through the
1300 connection to the target.
1301
1302 The architecture vector provides some information that is really a
1303 property of the inferior, accessed through a particular target:
1304 ptrace operations; the layout of certain RSP packets; the solib_ops
1305 vector; etc. To differentiate architecture accesses to
1306 per-inferior/target properties from
1307 per-thread/per-frame/per-objfile properties, accesses to
1308 per-inferior/target properties should be made through this
1309 gdbarch. */
1310
1311/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1312extern struct gdbarch *target_gdbarch (void);
6ecd4729 1313
19630284
JB
1314/* Callback type for the 'iterate_over_objfiles_in_search_order'
1315 gdbarch method. */
1316
1317typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1318 (struct objfile *objfile, void *cb_data);
5aa82d05 1319
1528345d
AA
1320/* Callback type for regset section iterators. The callback usually
1321 invokes the REGSET's supply or collect method, to which it must
a616bb94
AH
1322 pass a buffer - for collects this buffer will need to be created using
1323 COLLECT_SIZE, for supply the existing buffer being read from should
1324 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1325 is used for diagnostic messages. CB_DATA should have been passed
1326 unchanged through the iterator. */
1528345d 1327
5aa82d05 1328typedef void (iterate_over_regset_sections_cb)
a616bb94
AH
1329 (const char *sect_name, int supply_size, int collect_size,
1330 const struct regset *regset, const char *human_name, void *cb_data);
c5ac5cbb
AH
1331
1332/* For a function call, does the function return a value using a
1333 normal value return or a structure return - passing a hidden
1334 argument pointing to storage. For the latter, there are two
1335 cases: language-mandated structure return and target ABI
1336 structure return. */
1337
1338enum function_call_return_method
1339{
1340 /* Standard value return. */
1341 return_method_normal = 0,
1342
1343 /* Language ABI structure return. This is handled
1344 by passing the return location as the first parameter to
1345 the function, even preceding "this". */
1346 return_method_hidden_param,
1347
1348 /* Target ABI struct return. This is target-specific; for instance,
1349 on ia64 the first argument is passed in out0 but the hidden
1350 structure return pointer would normally be passed in r8. */
1351 return_method_struct,
1352};
1353
104c1213
JM
1354EOF
1355
1356# function typedef's
3d9a5942
AC
1357printf "\n"
1358printf "\n"
0963b4bd 1359printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1360function_list | while do_read
104c1213 1361do
2ada493a
AC
1362 if class_is_info_p
1363 then
3d9a5942 1364 printf "\n"
8d113d13
SM
1365 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1366 printf "/* set_gdbarch_%s() - not applicable - pre-initialized. */\n" "$function"
2ada493a 1367 fi
104c1213
JM
1368done
1369
1370# function typedef's
3d9a5942
AC
1371printf "\n"
1372printf "\n"
0963b4bd 1373printf "/* The following are initialized by the target dependent code. */\n"
34620563 1374function_list | while do_read
104c1213 1375do
72e74a21 1376 if [ -n "${comment}" ]
34620563
AC
1377 then
1378 echo "${comment}" | sed \
1379 -e '2 s,#,/*,' \
1380 -e '3,$ s,#, ,' \
1381 -e '$ s,$, */,'
1382 fi
412d5987
AC
1383
1384 if class_is_predicate_p
2ada493a 1385 then
412d5987 1386 printf "\n"
8d113d13 1387 printf "extern int gdbarch_%s_p (struct gdbarch *gdbarch);\n" "$function"
4a5c6a1d 1388 fi
2ada493a
AC
1389 if class_is_variable_p
1390 then
3d9a5942 1391 printf "\n"
8d113d13
SM
1392 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1393 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, %s %s);\n" "$function" "$returntype" "$function"
2ada493a
AC
1394 fi
1395 if class_is_function_p
1396 then
3d9a5942 1397 printf "\n"
72e74a21 1398 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d 1399 then
8d113d13 1400 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch);\n" "$returntype" "$function"
4a5c6a1d
AC
1401 elif class_is_multiarch_p
1402 then
8d113d13 1403 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
4a5c6a1d 1404 else
8d113d13 1405 printf "typedef %s (gdbarch_%s_ftype) (%s);\n" "$returntype" "$function" "$formal"
4a5c6a1d 1406 fi
72e74a21 1407 if [ "x${formal}" = "xvoid" ]
104c1213 1408 then
8d113d13 1409 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
104c1213 1410 else
8d113d13 1411 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
104c1213 1412 fi
8d113d13 1413 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, gdbarch_%s_ftype *%s);\n" "$function" "$function" "$function"
2ada493a 1414 fi
104c1213
JM
1415done
1416
1417# close it off
1418cat <<EOF
1419
1420extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1421
1422
1423/* Mechanism for co-ordinating the selection of a specific
1424 architecture.
1425
1426 GDB targets (*-tdep.c) can register an interest in a specific
1427 architecture. Other GDB components can register a need to maintain
1428 per-architecture data.
1429
1430 The mechanisms below ensures that there is only a loose connection
1431 between the set-architecture command and the various GDB
0fa6923a 1432 components. Each component can independently register their need
104c1213
JM
1433 to maintain architecture specific data with gdbarch.
1434
1435 Pragmatics:
1436
1437 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1438 didn't scale.
1439
1440 The more traditional mega-struct containing architecture specific
1441 data for all the various GDB components was also considered. Since
0fa6923a 1442 GDB is built from a variable number of (fairly independent)
104c1213 1443 components it was determined that the global aproach was not
0963b4bd 1444 applicable. */
104c1213
JM
1445
1446
1447/* Register a new architectural family with GDB.
1448
1449 Register support for the specified ARCHITECTURE with GDB. When
1450 gdbarch determines that the specified architecture has been
1451 selected, the corresponding INIT function is called.
1452
1453 --
1454
1455 The INIT function takes two parameters: INFO which contains the
1456 information available to gdbarch about the (possibly new)
1457 architecture; ARCHES which is a list of the previously created
1458 \`\`struct gdbarch'' for this architecture.
1459
0f79675b 1460 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1461 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1462
1463 The ARCHES parameter is a linked list (sorted most recently used)
1464 of all the previously created architures for this architecture
1465 family. The (possibly NULL) ARCHES->gdbarch can used to access
1466 values from the previously selected architecture for this
59837fe0 1467 architecture family.
104c1213
JM
1468
1469 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1470 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1471 gdbarch'' from the ARCHES list - indicating that the new
1472 architecture is just a synonym for an earlier architecture (see
1473 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1474 - that describes the selected architecture (see gdbarch_alloc()).
1475
1476 The DUMP_TDEP function shall print out all target specific values.
1477 Care should be taken to ensure that the function works in both the
0963b4bd 1478 multi-arch and non- multi-arch cases. */
104c1213
JM
1479
1480struct gdbarch_list
1481{
1482 struct gdbarch *gdbarch;
1483 struct gdbarch_list *next;
1484};
1485
1486struct gdbarch_info
1487{
0963b4bd 1488 /* Use default: NULL (ZERO). */
104c1213
JM
1489 const struct bfd_arch_info *bfd_arch_info;
1490
428721aa 1491 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1492 enum bfd_endian byte_order;
104c1213 1493
94123b4f 1494 enum bfd_endian byte_order_for_code;
9d4fde75 1495
0963b4bd 1496 /* Use default: NULL (ZERO). */
104c1213
JM
1497 bfd *abfd;
1498
0963b4bd 1499 /* Use default: NULL (ZERO). */
0dba2a6c
MR
1500 union
1501 {
1502 /* Architecture-specific information. The generic form for targets
1503 that have extra requirements. */
1504 struct gdbarch_tdep_info *tdep_info;
1505
1506 /* Architecture-specific target description data. Numerous targets
1507 need only this, so give them an easy way to hold it. */
1508 struct tdesc_arch_data *tdesc_data;
1509
1510 /* SPU file system ID. This is a single integer, so using the
1511 generic form would only complicate code. Other targets may
1512 reuse this member if suitable. */
1513 int *id;
1514 };
4be87837
DJ
1515
1516 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1517 enum gdb_osabi osabi;
424163ea
DJ
1518
1519 /* Use default: NULL (ZERO). */
1520 const struct target_desc *target_desc;
104c1213
JM
1521};
1522
1523typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1524typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1525
4b9b3959 1526/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1527extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1528
4b9b3959
AC
1529extern void gdbarch_register (enum bfd_architecture architecture,
1530 gdbarch_init_ftype *,
1531 gdbarch_dump_tdep_ftype *);
1532
104c1213 1533
b4a20239
AC
1534/* Return a freshly allocated, NULL terminated, array of the valid
1535 architecture names. Since architectures are registered during the
1536 _initialize phase this function only returns useful information
0963b4bd 1537 once initialization has been completed. */
b4a20239
AC
1538
1539extern const char **gdbarch_printable_names (void);
1540
1541
104c1213 1542/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1543 matches the information provided by INFO. */
104c1213 1544
424163ea 1545extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1546
1547
1548/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1549 basic initialization using values obtained from the INFO and TDEP
104c1213 1550 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1551 initialization of the object. */
104c1213
JM
1552
1553extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1554
1555
4b9b3959
AC
1556/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1557 It is assumed that the caller freeds the \`\`struct
0963b4bd 1558 gdbarch_tdep''. */
4b9b3959 1559
058f20d5
JB
1560extern void gdbarch_free (struct gdbarch *);
1561
284a0e3c
SM
1562/* Get the obstack owned by ARCH. */
1563
1564extern obstack *gdbarch_obstack (gdbarch *arch);
058f20d5 1565
aebd7893
AC
1566/* Helper function. Allocate memory from the \`\`struct gdbarch''
1567 obstack. The memory is freed when the corresponding architecture
1568 is also freed. */
1569
284a0e3c
SM
1570#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1571 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1572
1573#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1574 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
aebd7893 1575
6c214e7c
PP
1576/* Duplicate STRING, returning an equivalent string that's allocated on the
1577 obstack associated with GDBARCH. The string is freed when the corresponding
1578 architecture is also freed. */
1579
1580extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
aebd7893 1581
0963b4bd 1582/* Helper function. Force an update of the current architecture.
104c1213 1583
b732d07d
AC
1584 The actual architecture selected is determined by INFO, \`\`(gdb) set
1585 architecture'' et.al., the existing architecture and BFD's default
1586 architecture. INFO should be initialized to zero and then selected
1587 fields should be updated.
104c1213 1588
0963b4bd 1589 Returns non-zero if the update succeeds. */
16f33e29
AC
1590
1591extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1592
1593
ebdba546
AC
1594/* Helper function. Find an architecture matching info.
1595
1596 INFO should be initialized using gdbarch_info_init, relevant fields
1597 set, and then finished using gdbarch_info_fill.
1598
1599 Returns the corresponding architecture, or NULL if no matching
59837fe0 1600 architecture was found. */
ebdba546
AC
1601
1602extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1603
1604
aff68abb 1605/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1606
aff68abb 1607extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1608
104c1213
JM
1609
1610/* Register per-architecture data-pointer.
1611
1612 Reserve space for a per-architecture data-pointer. An identifier
1613 for the reserved data-pointer is returned. That identifer should
95160752 1614 be saved in a local static variable.
104c1213 1615
fcc1c85c
AC
1616 Memory for the per-architecture data shall be allocated using
1617 gdbarch_obstack_zalloc. That memory will be deleted when the
1618 corresponding architecture object is deleted.
104c1213 1619
95160752
AC
1620 When a previously created architecture is re-selected, the
1621 per-architecture data-pointer for that previous architecture is
76860b5f 1622 restored. INIT() is not re-called.
104c1213
JM
1623
1624 Multiple registrarants for any architecture are allowed (and
1625 strongly encouraged). */
1626
95160752 1627struct gdbarch_data;
104c1213 1628
030f20e1
AC
1629typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1630extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1631typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1632extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1633extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1634 struct gdbarch_data *data,
1635 void *pointer);
104c1213 1636
451fbdda 1637extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1638
1639
0fa6923a 1640/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1641 byte-order, ...) using information found in the BFD. */
104c1213
JM
1642
1643extern void set_gdbarch_from_file (bfd *);
1644
1645
e514a9d6
JM
1646/* Initialize the current architecture to the "first" one we find on
1647 our list. */
1648
1649extern void initialize_current_architecture (void);
1650
104c1213 1651/* gdbarch trace variable */
ccce17b0 1652extern unsigned int gdbarch_debug;
104c1213 1653
4b9b3959 1654extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1655
f6efe3f8
SM
1656/* Return the number of cooked registers (raw + pseudo) for ARCH. */
1657
1658static inline int
1659gdbarch_num_cooked_regs (gdbarch *arch)
1660{
1661 return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
1662}
1663
104c1213
JM
1664#endif
1665EOF
1666exec 1>&2
41a77cba
SM
1667../move-if-change new-gdbarch.h gdbarch.h
1668rm -f new-gdbarch.h
104c1213
JM
1669
1670
1671#
1672# C file
1673#
1674
1675exec > new-gdbarch.c
1676copyright
1677cat <<EOF
1678
1679#include "defs.h"
7355ddba 1680#include "arch-utils.h"
104c1213 1681
104c1213 1682#include "gdbcmd.h"
faaf634c 1683#include "inferior.h"
104c1213
JM
1684#include "symcat.h"
1685
f0d4cc9e 1686#include "floatformat.h"
b59ff9d5 1687#include "reggroups.h"
4be87837 1688#include "osabi.h"
aebd7893 1689#include "gdb_obstack.h"
0bee6dd4 1690#include "observable.h"
a3ecef73 1691#include "regcache.h"
19630284 1692#include "objfiles.h"
2faa3447 1693#include "auxv.h"
8bcb5208
AB
1694#include "frame-unwind.h"
1695#include "dummy-frame.h"
95160752 1696
104c1213
JM
1697/* Static function declarations */
1698
b3cc3077 1699static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1700
104c1213
JM
1701/* Non-zero if we want to trace architecture code. */
1702
1703#ifndef GDBARCH_DEBUG
1704#define GDBARCH_DEBUG 0
1705#endif
ccce17b0 1706unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1707static void
1708show_gdbarch_debug (struct ui_file *file, int from_tty,
1709 struct cmd_list_element *c, const char *value)
1710{
1711 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1712}
104c1213 1713
456fcf94 1714static const char *
8da61cc4 1715pformat (const struct floatformat **format)
456fcf94
AC
1716{
1717 if (format == NULL)
1718 return "(null)";
1719 else
8da61cc4
DJ
1720 /* Just print out one of them - this is only for diagnostics. */
1721 return format[0]->name;
456fcf94
AC
1722}
1723
08105857
PA
1724static const char *
1725pstring (const char *string)
1726{
1727 if (string == NULL)
1728 return "(null)";
1729 return string;
05c0465e
SDJ
1730}
1731
a121b7c1 1732static const char *
f7bb4e3a
PB
1733pstring_ptr (char **string)
1734{
1735 if (string == NULL || *string == NULL)
1736 return "(null)";
1737 return *string;
1738}
1739
05c0465e
SDJ
1740/* Helper function to print a list of strings, represented as "const
1741 char *const *". The list is printed comma-separated. */
1742
a121b7c1 1743static const char *
05c0465e
SDJ
1744pstring_list (const char *const *list)
1745{
1746 static char ret[100];
1747 const char *const *p;
1748 size_t offset = 0;
1749
1750 if (list == NULL)
1751 return "(null)";
1752
1753 ret[0] = '\0';
1754 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1755 {
1756 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1757 offset += 2 + s;
1758 }
1759
1760 if (offset > 0)
1761 {
1762 gdb_assert (offset - 2 < sizeof (ret));
1763 ret[offset - 2] = '\0';
1764 }
1765
1766 return ret;
08105857
PA
1767}
1768
104c1213
JM
1769EOF
1770
1771# gdbarch open the gdbarch object
3d9a5942 1772printf "\n"
0963b4bd 1773printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1774printf "\n"
1775printf "struct gdbarch\n"
1776printf "{\n"
76860b5f
AC
1777printf " /* Has this architecture been fully initialized? */\n"
1778printf " int initialized_p;\n"
aebd7893
AC
1779printf "\n"
1780printf " /* An obstack bound to the lifetime of the architecture. */\n"
1781printf " struct obstack *obstack;\n"
1782printf "\n"
0963b4bd 1783printf " /* basic architectural information. */\n"
34620563 1784function_list | while do_read
104c1213 1785do
2ada493a
AC
1786 if class_is_info_p
1787 then
8d113d13 1788 printf " %s %s;\n" "$returntype" "$function"
2ada493a 1789 fi
104c1213 1790done
3d9a5942 1791printf "\n"
0963b4bd 1792printf " /* target specific vector. */\n"
3d9a5942
AC
1793printf " struct gdbarch_tdep *tdep;\n"
1794printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1795printf "\n"
0963b4bd 1796printf " /* per-architecture data-pointers. */\n"
95160752 1797printf " unsigned nr_data;\n"
3d9a5942
AC
1798printf " void **data;\n"
1799printf "\n"
104c1213
JM
1800cat <<EOF
1801 /* Multi-arch values.
1802
1803 When extending this structure you must:
1804
1805 Add the field below.
1806
1807 Declare set/get functions and define the corresponding
1808 macro in gdbarch.h.
1809
1810 gdbarch_alloc(): If zero/NULL is not a suitable default,
1811 initialize the new field.
1812
1813 verify_gdbarch(): Confirm that the target updated the field
1814 correctly.
1815
7e73cedf 1816 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1817 field is dumped out
1818
104c1213
JM
1819 get_gdbarch(): Implement the set/get functions (probably using
1820 the macro's as shortcuts).
1821
1822 */
1823
1824EOF
34620563 1825function_list | while do_read
104c1213 1826do
2ada493a
AC
1827 if class_is_variable_p
1828 then
8d113d13 1829 printf " %s %s;\n" "$returntype" "$function"
2ada493a
AC
1830 elif class_is_function_p
1831 then
8d113d13 1832 printf " gdbarch_%s_ftype *%s;\n" "$function" "$function"
2ada493a 1833 fi
104c1213 1834done
3d9a5942 1835printf "};\n"
104c1213 1836
104c1213 1837# Create a new gdbarch struct
104c1213 1838cat <<EOF
7de2341d 1839
66b43ecb 1840/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1841 \`\`struct gdbarch_info''. */
104c1213 1842EOF
3d9a5942 1843printf "\n"
104c1213
JM
1844cat <<EOF
1845struct gdbarch *
1846gdbarch_alloc (const struct gdbarch_info *info,
1847 struct gdbarch_tdep *tdep)
1848{
be7811ad 1849 struct gdbarch *gdbarch;
aebd7893
AC
1850
1851 /* Create an obstack for allocating all the per-architecture memory,
1852 then use that to allocate the architecture vector. */
70ba0933 1853 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1854 obstack_init (obstack);
8d749320 1855 gdbarch = XOBNEW (obstack, struct gdbarch);
be7811ad
MD
1856 memset (gdbarch, 0, sizeof (*gdbarch));
1857 gdbarch->obstack = obstack;
85de9627 1858
be7811ad 1859 alloc_gdbarch_data (gdbarch);
85de9627 1860
be7811ad 1861 gdbarch->tdep = tdep;
104c1213 1862EOF
3d9a5942 1863printf "\n"
34620563 1864function_list | while do_read
104c1213 1865do
2ada493a
AC
1866 if class_is_info_p
1867 then
8d113d13 1868 printf " gdbarch->%s = info->%s;\n" "$function" "$function"
2ada493a 1869 fi
104c1213 1870done
3d9a5942 1871printf "\n"
0963b4bd 1872printf " /* Force the explicit initialization of these. */\n"
34620563 1873function_list | while do_read
104c1213 1874do
2ada493a
AC
1875 if class_is_function_p || class_is_variable_p
1876 then
759cea5e 1877 if [ -n "${predefault}" ] && [ "x${predefault}" != "x0" ]
104c1213 1878 then
8d113d13 1879 printf " gdbarch->%s = %s;\n" "$function" "$predefault"
104c1213 1880 fi
2ada493a 1881 fi
104c1213
JM
1882done
1883cat <<EOF
1884 /* gdbarch_alloc() */
1885
be7811ad 1886 return gdbarch;
104c1213
JM
1887}
1888EOF
1889
058f20d5 1890# Free a gdbarch struct.
3d9a5942
AC
1891printf "\n"
1892printf "\n"
058f20d5 1893cat <<EOF
aebd7893 1894
284a0e3c 1895obstack *gdbarch_obstack (gdbarch *arch)
aebd7893 1896{
284a0e3c 1897 return arch->obstack;
aebd7893
AC
1898}
1899
6c214e7c
PP
1900/* See gdbarch.h. */
1901
1902char *
1903gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1904{
1905 return obstack_strdup (arch->obstack, string);
1906}
1907
aebd7893 1908
058f20d5
JB
1909/* Free a gdbarch struct. This should never happen in normal
1910 operation --- once you've created a gdbarch, you keep it around.
1911 However, if an architecture's init function encounters an error
1912 building the structure, it may need to clean up a partially
1913 constructed gdbarch. */
4b9b3959 1914
058f20d5
JB
1915void
1916gdbarch_free (struct gdbarch *arch)
1917{
aebd7893 1918 struct obstack *obstack;
05c547f6 1919
95160752 1920 gdb_assert (arch != NULL);
aebd7893
AC
1921 gdb_assert (!arch->initialized_p);
1922 obstack = arch->obstack;
1923 obstack_free (obstack, 0); /* Includes the ARCH. */
1924 xfree (obstack);
058f20d5
JB
1925}
1926EOF
1927
104c1213 1928# verify a new architecture
104c1213 1929cat <<EOF
db446970
AC
1930
1931
1932/* Ensure that all values in a GDBARCH are reasonable. */
1933
104c1213 1934static void
be7811ad 1935verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1936{
d7e74731 1937 string_file log;
05c547f6 1938
104c1213 1939 /* fundamental */
be7811ad 1940 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
d7e74731 1941 log.puts ("\n\tbyte-order");
be7811ad 1942 if (gdbarch->bfd_arch_info == NULL)
d7e74731 1943 log.puts ("\n\tbfd_arch_info");
0963b4bd 1944 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1945EOF
34620563 1946function_list | while do_read
104c1213 1947do
2ada493a
AC
1948 if class_is_function_p || class_is_variable_p
1949 then
72e74a21 1950 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1951 then
8d113d13 1952 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
2ada493a
AC
1953 elif class_is_predicate_p
1954 then
8d113d13 1955 printf " /* Skip verify of %s, has predicate. */\n" "$function"
f0d4cc9e 1956 # FIXME: See do_read for potential simplification
759cea5e 1957 elif [ -n "${invalid_p}" ] && [ -n "${postdefault}" ]
f0d4cc9e 1958 then
8d113d13
SM
1959 printf " if (%s)\n" "$invalid_p"
1960 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
759cea5e 1961 elif [ -n "${predefault}" ] && [ -n "${postdefault}" ]
f0d4cc9e 1962 then
8d113d13
SM
1963 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
1964 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
72e74a21 1965 elif [ -n "${postdefault}" ]
f0d4cc9e 1966 then
8d113d13
SM
1967 printf " if (gdbarch->%s == 0)\n" "$function"
1968 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
72e74a21 1969 elif [ -n "${invalid_p}" ]
104c1213 1970 then
8d113d13
SM
1971 printf " if (%s)\n" "$invalid_p"
1972 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
72e74a21 1973 elif [ -n "${predefault}" ]
104c1213 1974 then
8d113d13
SM
1975 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
1976 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
104c1213 1977 fi
2ada493a 1978 fi
104c1213
JM
1979done
1980cat <<EOF
d7e74731 1981 if (!log.empty ())
f16a1923 1982 internal_error (__FILE__, __LINE__,
85c07804 1983 _("verify_gdbarch: the following are invalid ...%s"),
d7e74731 1984 log.c_str ());
104c1213
JM
1985}
1986EOF
1987
1988# dump the structure
3d9a5942
AC
1989printf "\n"
1990printf "\n"
104c1213 1991cat <<EOF
0963b4bd 1992/* Print out the details of the current architecture. */
4b9b3959 1993
104c1213 1994void
be7811ad 1995gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1996{
b78960be 1997 const char *gdb_nm_file = "<not-defined>";
05c547f6 1998
b78960be
AC
1999#if defined (GDB_NM_FILE)
2000 gdb_nm_file = GDB_NM_FILE;
2001#endif
2002 fprintf_unfiltered (file,
2003 "gdbarch_dump: GDB_NM_FILE = %s\\n",
2004 gdb_nm_file);
104c1213 2005EOF
ea480a30 2006function_list | sort '-t;' -k 3 | while do_read
104c1213 2007do
1e9f55d0
AC
2008 # First the predicate
2009 if class_is_predicate_p
2010 then
7996bcec 2011 printf " fprintf_unfiltered (file,\n"
8d113d13
SM
2012 printf " \"gdbarch_dump: gdbarch_%s_p() = %%d\\\\n\",\n" "$function"
2013 printf " gdbarch_%s_p (gdbarch));\n" "$function"
08e45a40 2014 fi
48f7351b 2015 # Print the corresponding value.
283354d8 2016 if class_is_function_p
4b9b3959 2017 then
7996bcec 2018 printf " fprintf_unfiltered (file,\n"
8d113d13
SM
2019 printf " \"gdbarch_dump: %s = <%%s>\\\\n\",\n" "$function"
2020 printf " host_address_to_string (gdbarch->%s));\n" "$function"
4b9b3959 2021 else
48f7351b 2022 # It is a variable
2f9b146e
AC
2023 case "${print}:${returntype}" in
2024 :CORE_ADDR )
0b1553bc
UW
2025 fmt="%s"
2026 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 2027 ;;
2f9b146e 2028 :* )
48f7351b 2029 fmt="%s"
623d3eb1 2030 print="plongest (gdbarch->${function})"
48f7351b
AC
2031 ;;
2032 * )
2f9b146e 2033 fmt="%s"
48f7351b
AC
2034 ;;
2035 esac
3d9a5942 2036 printf " fprintf_unfiltered (file,\n"
8d113d13
SM
2037 printf " \"gdbarch_dump: %s = %s\\\\n\",\n" "$function" "$fmt"
2038 printf " %s);\n" "$print"
2ada493a 2039 fi
104c1213 2040done
381323f4 2041cat <<EOF
be7811ad
MD
2042 if (gdbarch->dump_tdep != NULL)
2043 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
2044}
2045EOF
104c1213
JM
2046
2047
2048# GET/SET
3d9a5942 2049printf "\n"
104c1213
JM
2050cat <<EOF
2051struct gdbarch_tdep *
2052gdbarch_tdep (struct gdbarch *gdbarch)
2053{
2054 if (gdbarch_debug >= 2)
3d9a5942 2055 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
2056 return gdbarch->tdep;
2057}
2058EOF
3d9a5942 2059printf "\n"
34620563 2060function_list | while do_read
104c1213 2061do
2ada493a
AC
2062 if class_is_predicate_p
2063 then
3d9a5942
AC
2064 printf "\n"
2065 printf "int\n"
8d113d13 2066 printf "gdbarch_%s_p (struct gdbarch *gdbarch)\n" "$function"
3d9a5942 2067 printf "{\n"
8de9bdc4 2068 printf " gdb_assert (gdbarch != NULL);\n"
8d113d13 2069 printf " return %s;\n" "$predicate"
3d9a5942 2070 printf "}\n"
2ada493a
AC
2071 fi
2072 if class_is_function_p
2073 then
3d9a5942 2074 printf "\n"
8d113d13 2075 printf "%s\n" "$returntype"
72e74a21 2076 if [ "x${formal}" = "xvoid" ]
104c1213 2077 then
8d113d13 2078 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
104c1213 2079 else
8d113d13 2080 printf "gdbarch_%s (struct gdbarch *gdbarch, %s)\n" "$function" "$formal"
104c1213 2081 fi
3d9a5942 2082 printf "{\n"
8de9bdc4 2083 printf " gdb_assert (gdbarch != NULL);\n"
8d113d13 2084 printf " gdb_assert (gdbarch->%s != NULL);\n" "$function"
f7968451 2085 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
2086 then
2087 # Allow a call to a function with a predicate.
8d113d13 2088 printf " /* Do not check predicate: %s, allow call. */\n" "$predicate"
ae45cd16 2089 fi
3d9a5942 2090 printf " if (gdbarch_debug >= 2)\n"
8d113d13 2091 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
1207375d 2092 if [ "x${actual:-}" = "x-" ] || [ "x${actual:-}" = "x" ]
4a5c6a1d
AC
2093 then
2094 if class_is_multiarch_p
2095 then
2096 params="gdbarch"
2097 else
2098 params=""
2099 fi
2100 else
2101 if class_is_multiarch_p
2102 then
2103 params="gdbarch, ${actual}"
2104 else
2105 params="${actual}"
2106 fi
2107 fi
72e74a21 2108 if [ "x${returntype}" = "xvoid" ]
104c1213 2109 then
8d113d13 2110 printf " gdbarch->%s (%s);\n" "$function" "$params"
104c1213 2111 else
8d113d13 2112 printf " return gdbarch->%s (%s);\n" "$function" "$params"
104c1213 2113 fi
3d9a5942
AC
2114 printf "}\n"
2115 printf "\n"
2116 printf "void\n"
8d113d13 2117 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
cb02ab24 2118 printf " %s gdbarch_%s_ftype %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$function" "$function"
3d9a5942 2119 printf "{\n"
8d113d13 2120 printf " gdbarch->%s = %s;\n" "$function" "$function"
3d9a5942 2121 printf "}\n"
2ada493a
AC
2122 elif class_is_variable_p
2123 then
3d9a5942 2124 printf "\n"
8d113d13
SM
2125 printf "%s\n" "$returntype"
2126 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
3d9a5942 2127 printf "{\n"
8de9bdc4 2128 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 2129 if [ "x${invalid_p}" = "x0" ]
c0e8c252 2130 then
8d113d13 2131 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
72e74a21 2132 elif [ -n "${invalid_p}" ]
104c1213 2133 then
956ac328 2134 printf " /* Check variable is valid. */\n"
8d113d13 2135 printf " gdb_assert (!(%s));\n" "$invalid_p"
72e74a21 2136 elif [ -n "${predefault}" ]
104c1213 2137 then
956ac328 2138 printf " /* Check variable changed from pre-default. */\n"
8d113d13 2139 printf " gdb_assert (gdbarch->%s != %s);\n" "$function" "$predefault"
104c1213 2140 fi
3d9a5942 2141 printf " if (gdbarch_debug >= 2)\n"
8d113d13
SM
2142 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2143 printf " return gdbarch->%s;\n" "$function"
3d9a5942
AC
2144 printf "}\n"
2145 printf "\n"
2146 printf "void\n"
8d113d13 2147 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
cb02ab24 2148 printf " %s %s %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$returntype" "$function"
3d9a5942 2149 printf "{\n"
8d113d13 2150 printf " gdbarch->%s = %s;\n" "$function" "$function"
3d9a5942 2151 printf "}\n"
2ada493a
AC
2152 elif class_is_info_p
2153 then
3d9a5942 2154 printf "\n"
8d113d13
SM
2155 printf "%s\n" "$returntype"
2156 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
3d9a5942 2157 printf "{\n"
8de9bdc4 2158 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942 2159 printf " if (gdbarch_debug >= 2)\n"
8d113d13
SM
2160 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2161 printf " return gdbarch->%s;\n" "$function"
3d9a5942 2162 printf "}\n"
2ada493a 2163 fi
104c1213
JM
2164done
2165
2166# All the trailing guff
2167cat <<EOF
2168
2169
f44c642f 2170/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2171 modules. */
104c1213
JM
2172
2173struct gdbarch_data
2174{
95160752 2175 unsigned index;
76860b5f 2176 int init_p;
030f20e1
AC
2177 gdbarch_data_pre_init_ftype *pre_init;
2178 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2179};
2180
2181struct gdbarch_data_registration
2182{
104c1213
JM
2183 struct gdbarch_data *data;
2184 struct gdbarch_data_registration *next;
2185};
2186
f44c642f 2187struct gdbarch_data_registry
104c1213 2188{
95160752 2189 unsigned nr;
104c1213
JM
2190 struct gdbarch_data_registration *registrations;
2191};
2192
f44c642f 2193struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2194{
2195 0, NULL,
2196};
2197
030f20e1
AC
2198static struct gdbarch_data *
2199gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2200 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2201{
2202 struct gdbarch_data_registration **curr;
05c547f6
MS
2203
2204 /* Append the new registration. */
f44c642f 2205 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2206 (*curr) != NULL;
2207 curr = &(*curr)->next);
70ba0933 2208 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2209 (*curr)->next = NULL;
70ba0933 2210 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2211 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2212 (*curr)->data->pre_init = pre_init;
2213 (*curr)->data->post_init = post_init;
76860b5f 2214 (*curr)->data->init_p = 1;
104c1213
JM
2215 return (*curr)->data;
2216}
2217
030f20e1
AC
2218struct gdbarch_data *
2219gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2220{
2221 return gdbarch_data_register (pre_init, NULL);
2222}
2223
2224struct gdbarch_data *
2225gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2226{
2227 return gdbarch_data_register (NULL, post_init);
2228}
104c1213 2229
0963b4bd 2230/* Create/delete the gdbarch data vector. */
95160752
AC
2231
2232static void
b3cc3077 2233alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2234{
b3cc3077
JB
2235 gdb_assert (gdbarch->data == NULL);
2236 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2237 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2238}
3c875b6f 2239
76860b5f 2240/* Initialize the current value of the specified per-architecture
0963b4bd 2241 data-pointer. */
b3cc3077 2242
95160752 2243void
030f20e1
AC
2244deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2245 struct gdbarch_data *data,
2246 void *pointer)
95160752
AC
2247{
2248 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2249 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2250 gdb_assert (data->pre_init == NULL);
95160752
AC
2251 gdbarch->data[data->index] = pointer;
2252}
2253
104c1213 2254/* Return the current value of the specified per-architecture
0963b4bd 2255 data-pointer. */
104c1213
JM
2256
2257void *
451fbdda 2258gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2259{
451fbdda 2260 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2261 if (gdbarch->data[data->index] == NULL)
76860b5f 2262 {
030f20e1
AC
2263 /* The data-pointer isn't initialized, call init() to get a
2264 value. */
2265 if (data->pre_init != NULL)
2266 /* Mid architecture creation: pass just the obstack, and not
2267 the entire architecture, as that way it isn't possible for
2268 pre-init code to refer to undefined architecture
2269 fields. */
2270 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2271 else if (gdbarch->initialized_p
2272 && data->post_init != NULL)
2273 /* Post architecture creation: pass the entire architecture
2274 (as all fields are valid), but be careful to also detect
2275 recursive references. */
2276 {
2277 gdb_assert (data->init_p);
2278 data->init_p = 0;
2279 gdbarch->data[data->index] = data->post_init (gdbarch);
2280 data->init_p = 1;
2281 }
2282 else
2283 /* The architecture initialization hasn't completed - punt -
2284 hope that the caller knows what they are doing. Once
2285 deprecated_set_gdbarch_data has been initialized, this can be
2286 changed to an internal error. */
2287 return NULL;
76860b5f
AC
2288 gdb_assert (gdbarch->data[data->index] != NULL);
2289 }
451fbdda 2290 return gdbarch->data[data->index];
104c1213
JM
2291}
2292
2293
0963b4bd 2294/* Keep a registry of the architectures known by GDB. */
104c1213 2295
4b9b3959 2296struct gdbarch_registration
104c1213
JM
2297{
2298 enum bfd_architecture bfd_architecture;
2299 gdbarch_init_ftype *init;
4b9b3959 2300 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2301 struct gdbarch_list *arches;
4b9b3959 2302 struct gdbarch_registration *next;
104c1213
JM
2303};
2304
f44c642f 2305static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2306
b4a20239
AC
2307static void
2308append_name (const char ***buf, int *nr, const char *name)
2309{
1dc7a623 2310 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
b4a20239
AC
2311 (*buf)[*nr] = name;
2312 *nr += 1;
2313}
2314
2315const char **
2316gdbarch_printable_names (void)
2317{
7996bcec 2318 /* Accumulate a list of names based on the registed list of
0963b4bd 2319 architectures. */
7996bcec
AC
2320 int nr_arches = 0;
2321 const char **arches = NULL;
2322 struct gdbarch_registration *rego;
05c547f6 2323
7996bcec
AC
2324 for (rego = gdbarch_registry;
2325 rego != NULL;
2326 rego = rego->next)
b4a20239 2327 {
7996bcec
AC
2328 const struct bfd_arch_info *ap;
2329 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2330 if (ap == NULL)
2331 internal_error (__FILE__, __LINE__,
85c07804 2332 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2333 do
2334 {
2335 append_name (&arches, &nr_arches, ap->printable_name);
2336 ap = ap->next;
2337 }
2338 while (ap != NULL);
b4a20239 2339 }
7996bcec
AC
2340 append_name (&arches, &nr_arches, NULL);
2341 return arches;
b4a20239
AC
2342}
2343
2344
104c1213 2345void
4b9b3959
AC
2346gdbarch_register (enum bfd_architecture bfd_architecture,
2347 gdbarch_init_ftype *init,
2348 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2349{
4b9b3959 2350 struct gdbarch_registration **curr;
104c1213 2351 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2352
ec3d358c 2353 /* Check that BFD recognizes this architecture */
104c1213
JM
2354 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2355 if (bfd_arch_info == NULL)
2356 {
8e65ff28 2357 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2358 _("gdbarch: Attempt to register "
2359 "unknown architecture (%d)"),
8e65ff28 2360 bfd_architecture);
104c1213 2361 }
0963b4bd 2362 /* Check that we haven't seen this architecture before. */
f44c642f 2363 for (curr = &gdbarch_registry;
104c1213
JM
2364 (*curr) != NULL;
2365 curr = &(*curr)->next)
2366 {
2367 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2368 internal_error (__FILE__, __LINE__,
64b9b334 2369 _("gdbarch: Duplicate registration "
0963b4bd 2370 "of architecture (%s)"),
8e65ff28 2371 bfd_arch_info->printable_name);
104c1213
JM
2372 }
2373 /* log it */
2374 if (gdbarch_debug)
30737ed9 2375 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2376 bfd_arch_info->printable_name,
30737ed9 2377 host_address_to_string (init));
104c1213 2378 /* Append it */
70ba0933 2379 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2380 (*curr)->bfd_architecture = bfd_architecture;
2381 (*curr)->init = init;
4b9b3959 2382 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2383 (*curr)->arches = NULL;
2384 (*curr)->next = NULL;
4b9b3959
AC
2385}
2386
2387void
2388register_gdbarch_init (enum bfd_architecture bfd_architecture,
2389 gdbarch_init_ftype *init)
2390{
2391 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2392}
104c1213
JM
2393
2394
424163ea 2395/* Look for an architecture using gdbarch_info. */
104c1213
JM
2396
2397struct gdbarch_list *
2398gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2399 const struct gdbarch_info *info)
2400{
2401 for (; arches != NULL; arches = arches->next)
2402 {
2403 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2404 continue;
2405 if (info->byte_order != arches->gdbarch->byte_order)
2406 continue;
4be87837
DJ
2407 if (info->osabi != arches->gdbarch->osabi)
2408 continue;
424163ea
DJ
2409 if (info->target_desc != arches->gdbarch->target_desc)
2410 continue;
104c1213
JM
2411 return arches;
2412 }
2413 return NULL;
2414}
2415
2416
ebdba546 2417/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2418 architecture if needed. Return that new architecture. */
104c1213 2419
59837fe0
UW
2420struct gdbarch *
2421gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2422{
2423 struct gdbarch *new_gdbarch;
4b9b3959 2424 struct gdbarch_registration *rego;
104c1213 2425
b732d07d 2426 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2427 sources: "set ..."; INFOabfd supplied; and the global
2428 defaults. */
2429 gdbarch_info_fill (&info);
4be87837 2430
0963b4bd 2431 /* Must have found some sort of architecture. */
b732d07d 2432 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2433
2434 if (gdbarch_debug)
2435 {
2436 fprintf_unfiltered (gdb_stdlog,
59837fe0 2437 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2438 (info.bfd_arch_info != NULL
2439 ? info.bfd_arch_info->printable_name
2440 : "(null)"));
2441 fprintf_unfiltered (gdb_stdlog,
59837fe0 2442 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2443 info.byte_order,
d7449b42 2444 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2445 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2446 : "default"));
4be87837 2447 fprintf_unfiltered (gdb_stdlog,
59837fe0 2448 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2449 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2450 fprintf_unfiltered (gdb_stdlog,
59837fe0 2451 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2452 host_address_to_string (info.abfd));
104c1213 2453 fprintf_unfiltered (gdb_stdlog,
59837fe0 2454 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2455 host_address_to_string (info.tdep_info));
104c1213
JM
2456 }
2457
ebdba546 2458 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2459 for (rego = gdbarch_registry;
2460 rego != NULL;
2461 rego = rego->next)
2462 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2463 break;
2464 if (rego == NULL)
2465 {
2466 if (gdbarch_debug)
59837fe0 2467 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2468 "No matching architecture\n");
b732d07d
AC
2469 return 0;
2470 }
2471
ebdba546 2472 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2473 new_gdbarch = rego->init (info, rego->arches);
2474
ebdba546
AC
2475 /* Did the tdep code like it? No. Reject the change and revert to
2476 the old architecture. */
104c1213
JM
2477 if (new_gdbarch == NULL)
2478 {
2479 if (gdbarch_debug)
59837fe0 2480 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2481 "Target rejected architecture\n");
2482 return NULL;
104c1213
JM
2483 }
2484
ebdba546
AC
2485 /* Is this a pre-existing architecture (as determined by already
2486 being initialized)? Move it to the front of the architecture
2487 list (keeping the list sorted Most Recently Used). */
2488 if (new_gdbarch->initialized_p)
104c1213 2489 {
ebdba546 2490 struct gdbarch_list **list;
fe978cb0 2491 struct gdbarch_list *self;
104c1213 2492 if (gdbarch_debug)
59837fe0 2493 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2494 "Previous architecture %s (%s) selected\n",
2495 host_address_to_string (new_gdbarch),
104c1213 2496 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2497 /* Find the existing arch in the list. */
2498 for (list = &rego->arches;
2499 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2500 list = &(*list)->next);
2501 /* It had better be in the list of architectures. */
2502 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
fe978cb0
PA
2503 /* Unlink SELF. */
2504 self = (*list);
2505 (*list) = self->next;
2506 /* Insert SELF at the front. */
2507 self->next = rego->arches;
2508 rego->arches = self;
ebdba546
AC
2509 /* Return it. */
2510 return new_gdbarch;
104c1213
JM
2511 }
2512
ebdba546
AC
2513 /* It's a new architecture. */
2514 if (gdbarch_debug)
59837fe0 2515 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2516 "New architecture %s (%s) selected\n",
2517 host_address_to_string (new_gdbarch),
ebdba546
AC
2518 new_gdbarch->bfd_arch_info->printable_name);
2519
2520 /* Insert the new architecture into the front of the architecture
2521 list (keep the list sorted Most Recently Used). */
0f79675b 2522 {
fe978cb0
PA
2523 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2524 self->next = rego->arches;
2525 self->gdbarch = new_gdbarch;
2526 rego->arches = self;
0f79675b 2527 }
104c1213 2528
4b9b3959
AC
2529 /* Check that the newly installed architecture is valid. Plug in
2530 any post init values. */
2531 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2532 verify_gdbarch (new_gdbarch);
ebdba546 2533 new_gdbarch->initialized_p = 1;
104c1213 2534
4b9b3959 2535 if (gdbarch_debug)
ebdba546
AC
2536 gdbarch_dump (new_gdbarch, gdb_stdlog);
2537
2538 return new_gdbarch;
2539}
2540
e487cc15 2541/* Make the specified architecture current. */
ebdba546
AC
2542
2543void
aff68abb 2544set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2545{
2546 gdb_assert (new_gdbarch != NULL);
ebdba546 2547 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2548 current_inferior ()->gdbarch = new_gdbarch;
0bee6dd4 2549 gdb::observers::architecture_changed.notify (new_gdbarch);
a3ecef73 2550 registers_changed ();
ebdba546 2551}
104c1213 2552
f5656ead 2553/* Return the current inferior's arch. */
6ecd4729
PA
2554
2555struct gdbarch *
f5656ead 2556target_gdbarch (void)
6ecd4729
PA
2557{
2558 return current_inferior ()->gdbarch;
2559}
2560
a1237872 2561void _initialize_gdbarch ();
104c1213 2562void
a1237872 2563_initialize_gdbarch ()
104c1213 2564{
ccce17b0 2565 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2566Set architecture debugging."), _("\\
2567Show architecture debugging."), _("\\
2568When non-zero, architecture debugging is enabled."),
2569 NULL,
920d2a44 2570 show_gdbarch_debug,
85c07804 2571 &setdebuglist, &showdebuglist);
104c1213
JM
2572}
2573EOF
2574
2575# close things off
2576exec 1>&2
41a77cba
SM
2577../move-if-change new-gdbarch.c gdbarch.c
2578rm -f new-gdbarch.c
This page took 1.767162 seconds and 4 git commands to generate.