gdb/riscv: Take CSR names from target description
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
b811d2c2 5# Copyright (C) 1998-2020 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532 26
59233f88 27# Format of the input table
97030eea 28read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
29
30do_read ()
31{
34620563
AC
32 comment=""
33 class=""
c9023fb3
PA
34 # On some SH's, 'read' trims leading and trailing whitespace by
35 # default (e.g., bash), while on others (e.g., dash), it doesn't.
36 # Set IFS to empty to disable the trimming everywhere.
ffc2844e 37 # shellcheck disable=SC2162
c9023fb3 38 while IFS='' read line
34620563
AC
39 do
40 if test "${line}" = ""
41 then
42 continue
43 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 44 then
34620563
AC
45 continue
46 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 47 then
34620563
AC
48 comment="${comment}
49${line}"
f0d4cc9e 50 else
3d9a5942
AC
51
52 # The semantics of IFS varies between different SH's. Some
ea480a30
SM
53 # treat ``;;' as three fields while some treat it as just two.
54 # Work around this by eliminating ``;;'' ....
cb02ab24 55 line="$(echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g')"
3d9a5942 56
ea480a30 57 OFS="${IFS}" ; IFS="[;]"
a6fc5ffc 58 eval read "${read}" <<EOF
34620563
AC
59${line}
60EOF
61 IFS="${OFS}"
62
1207375d 63 if test -n "${garbage_at_eol:-}"
283354d8
AC
64 then
65 echo "Garbage at end-of-line in ${line}" 1>&2
66 kill $$
67 exit 1
68 fi
69
3d9a5942
AC
70 # .... and then going back through each field and strip out those
71 # that ended up with just that space character.
72 for r in ${read}
73 do
a6fc5ffc 74 if eval test "\"\${${r}}\" = ' '"
3d9a5942 75 then
a6fc5ffc 76 eval "${r}="
3d9a5942
AC
77 fi
78 done
79
a72293e2 80 case "${class}" in
1207375d 81 m ) staticdefault="${predefault:-}" ;;
a72293e2
AC
82 M ) staticdefault="0" ;;
83 * ) test "${staticdefault}" || staticdefault=0 ;;
84 esac
06b25f14 85
ae45cd16
AC
86 case "${class}" in
87 F | V | M )
1207375d 88 case "${invalid_p:-}" in
34620563 89 "" )
f7968451 90 if test -n "${predefault}"
34620563
AC
91 then
92 #invalid_p="gdbarch->${function} == ${predefault}"
1207375d 93 predicate="gdbarch->${function:-} != ${predefault}"
f7968451
AC
94 elif class_is_variable_p
95 then
96 predicate="gdbarch->${function} != 0"
97 elif class_is_function_p
98 then
99 predicate="gdbarch->${function} != NULL"
34620563
AC
100 fi
101 ;;
ae45cd16 102 * )
1e9f55d0 103 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
104 kill $$
105 exit 1
106 ;;
107 esac
34620563
AC
108 esac
109
34620563
AC
110 #NOT YET: See gdbarch.log for basic verification of
111 # database
112
113 break
f0d4cc9e 114 fi
34620563 115 done
72e74a21 116 if [ -n "${class}" ]
34620563
AC
117 then
118 true
c0e8c252
AC
119 else
120 false
121 fi
122}
123
104c1213 124
f0d4cc9e
AC
125fallback_default_p ()
126{
1207375d 127 { [ -n "${postdefault:-}" ] && [ "x${invalid_p}" != "x0" ]; } \
9fdb2916 128 || { [ -n "${predefault}" ] && [ "x${invalid_p}" = "x0" ]; }
f0d4cc9e
AC
129}
130
131class_is_variable_p ()
132{
4a5c6a1d
AC
133 case "${class}" in
134 *v* | *V* ) true ;;
135 * ) false ;;
136 esac
f0d4cc9e
AC
137}
138
139class_is_function_p ()
140{
4a5c6a1d
AC
141 case "${class}" in
142 *f* | *F* | *m* | *M* ) true ;;
143 * ) false ;;
144 esac
145}
146
147class_is_multiarch_p ()
148{
149 case "${class}" in
150 *m* | *M* ) true ;;
151 * ) false ;;
152 esac
f0d4cc9e
AC
153}
154
155class_is_predicate_p ()
156{
4a5c6a1d
AC
157 case "${class}" in
158 *F* | *V* | *M* ) true ;;
159 * ) false ;;
160 esac
f0d4cc9e
AC
161}
162
163class_is_info_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *i* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171
cff3e48b
JM
172# dump out/verify the doco
173for field in ${read}
174do
175 case ${field} in
176
177 class ) : ;;
c4093a6a 178
c0e8c252
AC
179 # # -> line disable
180 # f -> function
181 # hiding a function
2ada493a
AC
182 # F -> function + predicate
183 # hiding a function + predicate to test function validity
c0e8c252
AC
184 # v -> variable
185 # hiding a variable
2ada493a
AC
186 # V -> variable + predicate
187 # hiding a variable + predicate to test variables validity
c0e8c252
AC
188 # i -> set from info
189 # hiding something from the ``struct info'' object
4a5c6a1d
AC
190 # m -> multi-arch function
191 # hiding a multi-arch function (parameterised with the architecture)
192 # M -> multi-arch function + predicate
193 # hiding a multi-arch function + predicate to test function validity
cff3e48b 194
cff3e48b
JM
195 returntype ) : ;;
196
c0e8c252 197 # For functions, the return type; for variables, the data type
cff3e48b
JM
198
199 function ) : ;;
200
c0e8c252
AC
201 # For functions, the member function name; for variables, the
202 # variable name. Member function names are always prefixed with
203 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
204
205 formal ) : ;;
206
c0e8c252
AC
207 # The formal argument list. It is assumed that the formal
208 # argument list includes the actual name of each list element.
209 # A function with no arguments shall have ``void'' as the
210 # formal argument list.
cff3e48b
JM
211
212 actual ) : ;;
213
c0e8c252
AC
214 # The list of actual arguments. The arguments specified shall
215 # match the FORMAL list given above. Functions with out
216 # arguments leave this blank.
cff3e48b 217
0b8f9e4d 218 staticdefault ) : ;;
c0e8c252
AC
219
220 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
221 # created. STATICDEFAULT is the value to insert into that
222 # static gdbarch object. Since this a static object only
223 # simple expressions can be used.
cff3e48b 224
0b8f9e4d 225 # If STATICDEFAULT is empty, zero is used.
c0e8c252 226
0b8f9e4d 227 predefault ) : ;;
cff3e48b 228
10312cc4
AC
229 # An initial value to assign to MEMBER of the freshly
230 # malloc()ed gdbarch object. After initialization, the
231 # freshly malloc()ed object is passed to the target
232 # architecture code for further updates.
cff3e48b 233
0b8f9e4d
AC
234 # If PREDEFAULT is empty, zero is used.
235
10312cc4
AC
236 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
237 # INVALID_P are specified, PREDEFAULT will be used as the
238 # default for the non- multi-arch target.
239
240 # A zero PREDEFAULT function will force the fallback to call
241 # internal_error().
f0d4cc9e
AC
242
243 # Variable declarations can refer to ``gdbarch'' which will
244 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
245
246 postdefault ) : ;;
247
248 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
249 # the target architecture code fail to change the PREDEFAULT
250 # value.
0b8f9e4d
AC
251
252 # If POSTDEFAULT is empty, no post update is performed.
253
254 # If both INVALID_P and POSTDEFAULT are non-empty then
255 # INVALID_P will be used to determine if MEMBER should be
256 # changed to POSTDEFAULT.
257
10312cc4
AC
258 # If a non-empty POSTDEFAULT and a zero INVALID_P are
259 # specified, POSTDEFAULT will be used as the default for the
260 # non- multi-arch target (regardless of the value of
261 # PREDEFAULT).
262
f0d4cc9e
AC
263 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
264
be7811ad 265 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
266 # will contain the current architecture. Care should be
267 # taken.
cff3e48b 268
c4093a6a 269 invalid_p ) : ;;
cff3e48b 270
0b8f9e4d 271 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 272 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
273 # initialize MEMBER or the initialized the member is invalid.
274 # If POSTDEFAULT is non-empty then MEMBER will be updated to
275 # that value. If POSTDEFAULT is empty then internal_error()
276 # is called.
277
278 # If INVALID_P is empty, a check that MEMBER is no longer
279 # equal to PREDEFAULT is used.
280
f0d4cc9e
AC
281 # The expression ``0'' disables the INVALID_P check making
282 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
283
284 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 285
cff3e48b
JM
286 print ) : ;;
287
2f9b146e
AC
288 # An optional expression that convers MEMBER to a value
289 # suitable for formatting using %s.
c0e8c252 290
0b1553bc
UW
291 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
292 # or plongest (anything else) is used.
cff3e48b 293
283354d8 294 garbage_at_eol ) : ;;
0b8f9e4d 295
283354d8 296 # Catches stray fields.
cff3e48b 297
50248794
AC
298 *)
299 echo "Bad field ${field}"
300 exit 1;;
cff3e48b
JM
301 esac
302done
303
cff3e48b 304
104c1213
JM
305function_list ()
306{
cff3e48b 307 # See below (DOCO) for description of each field
34620563 308 cat <<EOF
ea480a30 309i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 310#
ea480a30
SM
311i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
312i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
4be87837 313#
ea480a30 314i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
424163ea 315#
ea480a30 316i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
32c9a795 317
66b43ecb 318# Number of bits in a short or unsigned short for the target machine.
ea480a30 319v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
66b43ecb 320# Number of bits in an int or unsigned int for the target machine.
ea480a30 321v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
66b43ecb 322# Number of bits in a long or unsigned long for the target machine.
ea480a30 323v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
66b43ecb
AC
324# Number of bits in a long long or unsigned long long for the target
325# machine.
ea480a30 326v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
456fcf94 327
f9e9243a
UW
328# The ABI default bit-size and format for "half", "float", "double", and
329# "long double". These bit/format pairs should eventually be combined
330# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
331# Each format describes both the big and little endian layouts (if
332# useful).
456fcf94 333
ea480a30
SM
334v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
335v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
336v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
337v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
338v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
339v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
340v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
341v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
456fcf94 342
53375380
PA
343# The ABI default bit-size for "wchar_t". wchar_t is a built-in type
344# starting with C++11.
ea480a30 345v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
53375380 346# One if \`wchar_t' is signed, zero if unsigned.
ea480a30 347v;int;wchar_signed;;;1;-1;1
53375380 348
9b790ce7
UW
349# Returns the floating-point format to be used for values of length LENGTH.
350# NAME, if non-NULL, is the type name, which may be used to distinguish
351# different target formats of the same length.
ea480a30 352m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
9b790ce7 353
52204a0b
DT
354# For most targets, a pointer on the target and its representation as an
355# address in GDB have the same size and "look the same". For such a
17a912b6 356# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
357# / addr_bit will be set from it.
358#
17a912b6 359# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
360# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
361# gdbarch_address_to_pointer as well.
52204a0b
DT
362#
363# ptr_bit is the size of a pointer on the target
ea480a30 364v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
52204a0b 365# addr_bit is the size of a target address as represented in gdb
ea480a30 366v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
104c1213 367#
8da614df
CV
368# dwarf2_addr_size is the target address size as used in the Dwarf debug
369# info. For .debug_frame FDEs, this is supposed to be the target address
370# size from the associated CU header, and which is equivalent to the
371# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
372# Unfortunately there is no good way to determine this value. Therefore
373# dwarf2_addr_size simply defaults to the target pointer size.
374#
375# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
376# defined using the target's pointer size so far.
377#
378# Note that dwarf2_addr_size only needs to be redefined by a target if the
379# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
380# and if Dwarf versions < 4 need to be supported.
ea480a30 381v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
8da614df 382#
4e409299 383# One if \`char' acts like \`signed char', zero if \`unsigned char'.
ea480a30 384v;int;char_signed;;;1;-1;1
4e409299 385#
c113ed0c 386F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
ea480a30 387F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
39d4ef09
AC
388# Function for getting target's idea of a frame pointer. FIXME: GDB's
389# whole scheme for dealing with "frames" and "frame pointers" needs a
390# serious shakedown.
ea480a30 391m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
66b43ecb 392#
849d0ba8 393M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
3543a589
TT
394# Read a register into a new struct value. If the register is wholly
395# or partly unavailable, this should call mark_value_bytes_unavailable
396# as appropriate. If this is defined, then pseudo_register_read will
397# never be called.
849d0ba8 398M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
ea480a30 399M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
61a0eb5b 400#
ea480a30 401v;int;num_regs;;;0;-1
0aba1244
EZ
402# This macro gives the number of pseudo-registers that live in the
403# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
404# These pseudo-registers may be aliases for other registers,
405# combinations of other registers, or they may be computed by GDB.
ea480a30 406v;int;num_pseudo_regs;;;0;0;;0
c2169756 407
175ff332
HZ
408# Assemble agent expression bytecode to collect pseudo-register REG.
409# Return -1 if something goes wrong, 0 otherwise.
ea480a30 410M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
175ff332
HZ
411
412# Assemble agent expression bytecode to push the value of pseudo-register
413# REG on the interpreter stack.
414# Return -1 if something goes wrong, 0 otherwise.
ea480a30 415M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
175ff332 416
012b3a21
WT
417# Some targets/architectures can do extra processing/display of
418# segmentation faults. E.g., Intel MPX boundary faults.
419# Call the architecture dependent function to handle the fault.
420# UIOUT is the output stream where the handler will place information.
ea480a30 421M;void;handle_segmentation_fault;struct ui_out *uiout;uiout
012b3a21 422
c2169756
AC
423# GDB's standard (or well known) register numbers. These can map onto
424# a real register or a pseudo (computed) register or not be defined at
1200cd6e 425# all (-1).
3e8c568d 426# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
ea480a30
SM
427v;int;sp_regnum;;;-1;-1;;0
428v;int;pc_regnum;;;-1;-1;;0
429v;int;ps_regnum;;;-1;-1;;0
430v;int;fp0_regnum;;;0;-1;;0
88c72b7d 431# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
ea480a30 432m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
88c72b7d 433# Provide a default mapping from a ecoff register number to a gdb REGNUM.
ea480a30 434m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
88c72b7d 435# Convert from an sdb register number to an internal gdb register number.
ea480a30 436m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
ba2b1c56 437# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
0fde2c53 438# Return -1 for bad REGNUM. Note: Several targets get this wrong.
ea480a30
SM
439m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
440m;const char *;register_name;int regnr;regnr;;0
9c04cab7 441
7b9ee6a8
DJ
442# Return the type of a register specified by the architecture. Only
443# the register cache should call this function directly; others should
444# use "register_type".
ea480a30 445M;struct type *;register_type;int reg_nr;reg_nr
9c04cab7 446
8bcb5208
AB
447# Generate a dummy frame_id for THIS_FRAME assuming that the frame is
448# a dummy frame. A dummy frame is created before an inferior call,
449# the frame_id returned here must match the frame_id that was built
450# for the inferior call. Usually this means the returned frame_id's
451# stack address should match the address returned by
452# gdbarch_push_dummy_call, and the returned frame_id's code address
453# should match the address at which the breakpoint was set in the dummy
454# frame.
455m;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame;;default_dummy_id;;0
669fac23 456# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 457# deprecated_fp_regnum.
ea480a30 458v;int;deprecated_fp_regnum;;;-1;-1;;0
f3be58bc 459
cf84fa6b 460M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, function_call_return_method return_method, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, return_method, struct_addr
ea480a30
SM
461v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
462M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 463
7eb89530 464# Return true if the code of FRAME is writable.
ea480a30 465m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
7eb89530 466
ea480a30
SM
467m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
468m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
469M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
7c7651b2
AC
470# MAP a GDB RAW register number onto a simulator register number. See
471# also include/...-sim.h.
ea480a30
SM
472m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
473m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
474m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
eade6471
JB
475
476# Determine the address where a longjmp will land and save this address
477# in PC. Return nonzero on success.
478#
479# FRAME corresponds to the longjmp frame.
ea480a30 480F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
eade6471 481
104c1213 482#
ea480a30 483v;int;believe_pcc_promotion;;;;;;;
104c1213 484#
ea480a30
SM
485m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
486f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
487f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
9acbedc0 488# Construct a value representing the contents of register REGNUM in
2ed3c037 489# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
490# allocate and return a struct value with all value attributes
491# (but not the value contents) filled in.
ea480a30 492m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
104c1213 493#
ea480a30
SM
494m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
495m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
496M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
92ad9cd9 497
6a3a010b
MR
498# Return the return-value convention that will be used by FUNCTION
499# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
500# case the return convention is computed based only on VALTYPE.
501#
502# If READBUF is not NULL, extract the return value and save it in this buffer.
503#
504# If WRITEBUF is not NULL, it contains a return value which will be
505# stored into the appropriate register. This can be used when we want
506# to force the value returned by a function (see the "return" command
507# for instance).
ea480a30 508M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
92ad9cd9 509
18648a37
YQ
510# Return true if the return value of function is stored in the first hidden
511# parameter. In theory, this feature should be language-dependent, specified
512# by language and its ABI, such as C++. Unfortunately, compiler may
513# implement it to a target-dependent feature. So that we need such hook here
514# to be aware of this in GDB.
ea480a30 515m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
18648a37 516
ea480a30
SM
517m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
518M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
591a12a1
UW
519# On some platforms, a single function may provide multiple entry points,
520# e.g. one that is used for function-pointer calls and a different one
521# that is used for direct function calls.
522# In order to ensure that breakpoints set on the function will trigger
523# no matter via which entry point the function is entered, a platform
524# may provide the skip_entrypoint callback. It is called with IP set
525# to the main entry point of a function (as determined by the symbol table),
526# and should return the address of the innermost entry point, where the
527# actual breakpoint needs to be set. Note that skip_entrypoint is used
528# by GDB common code even when debugging optimized code, where skip_prologue
529# is not used.
ea480a30 530M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
591a12a1 531
ea480a30
SM
532f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
533m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
cd6c3b4f
YQ
534
535# Return the breakpoint kind for this target based on *PCPTR.
ea480a30 536m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
cd6c3b4f
YQ
537
538# Return the software breakpoint from KIND. KIND can have target
539# specific meaning like the Z0 kind parameter.
540# SIZE is set to the software breakpoint's length in memory.
ea480a30 541m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
cd6c3b4f 542
833b7ab5
YQ
543# Return the breakpoint kind for this target based on the current
544# processor state (e.g. the current instruction mode on ARM) and the
545# *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
ea480a30 546m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
833b7ab5 547
ea480a30
SM
548M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
549m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
550m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
551v;CORE_ADDR;decr_pc_after_break;;;0;;;0
782263ab
AC
552
553# A function can be addressed by either it's "pointer" (possibly a
554# descriptor address) or "entry point" (first executable instruction).
555# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 556# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
557# a simplified subset of that functionality - the function's address
558# corresponds to the "function pointer" and the function's start
559# corresponds to the "function entry point" - and hence is redundant.
560
ea480a30 561v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
782263ab 562
123dc839
DJ
563# Return the remote protocol register number associated with this
564# register. Normally the identity mapping.
ea480a30 565m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
123dc839 566
b2756930 567# Fetch the target specific address used to represent a load module.
ea480a30 568F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
6e056c81
JB
569
570# Return the thread-local address at OFFSET in the thread-local
571# storage for the thread PTID and the shared library or executable
572# file given by LM_ADDR. If that block of thread-local storage hasn't
573# been allocated yet, this function may throw an error. LM_ADDR may
574# be zero for statically linked multithreaded inferiors.
575
576M;CORE_ADDR;get_thread_local_address;ptid_t ptid, CORE_ADDR lm_addr, CORE_ADDR offset;ptid, lm_addr, offset
104c1213 577#
ea480a30 578v;CORE_ADDR;frame_args_skip;;;0;;;0
8bcb5208
AB
579m;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame;;default_unwind_pc;;0
580m;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame;;default_unwind_sp;;0
42efa47a
AC
581# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
582# frame-base. Enable frame-base before frame-unwind.
ea480a30 583F;int;frame_num_args;struct frame_info *frame;frame
104c1213 584#
ea480a30
SM
585M;CORE_ADDR;frame_align;CORE_ADDR address;address
586m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
587v;int;frame_red_zone_size
f0d4cc9e 588#
ea480a30 589m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
875e1767
AC
590# On some machines there are bits in addresses which are not really
591# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 592# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
593# we get a "real" address such as one would find in a symbol table.
594# This is used only for addresses of instructions, and even then I'm
595# not sure it's used in all contexts. It exists to deal with there
596# being a few stray bits in the PC which would mislead us, not as some
597# sort of generic thing to handle alignment or segmentation (it's
598# possible it should be in TARGET_READ_PC instead).
ea480a30 599m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
e6590a1b 600
a738ea1d
YQ
601# On some machines, not all bits of an address word are significant.
602# For example, on AArch64, the top bits of an address known as the "tag"
603# are ignored by the kernel, the hardware, etc. and can be regarded as
604# additional data associated with the address.
5969f0db 605v;int;significant_addr_bit;;;;;;0
a738ea1d 606
e6590a1b
UW
607# FIXME/cagney/2001-01-18: This should be split in two. A target method that
608# indicates if the target needs software single step. An ISA method to
609# implement it.
610#
e6590a1b
UW
611# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
612# target can single step. If not, then implement single step using breakpoints.
64c4637f 613#
93f9a11f
YQ
614# Return a vector of addresses on which the software single step
615# breakpoints should be inserted. NULL means software single step is
616# not used.
617# Multiple breakpoints may be inserted for some instructions such as
618# conditional branch. However, each implementation must always evaluate
619# the condition and only put the breakpoint at the branch destination if
620# the condition is true, so that we ensure forward progress when stepping
621# past a conditional branch to self.
a0ff9e1a 622F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
e6590a1b 623
3352ef37
AC
624# Return non-zero if the processor is executing a delay slot and a
625# further single-step is needed before the instruction finishes.
ea480a30 626M;int;single_step_through_delay;struct frame_info *frame;frame
f6c40618 627# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 628# disassembler. Perhaps objdump can handle it?
39503f82 629f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
ea480a30 630f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
d50355b6
MS
631
632
cfd8ab24 633# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
634# evaluates non-zero, this is the address where the debugger will place
635# a step-resume breakpoint to get us past the dynamic linker.
ea480a30 636m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
d50355b6 637# Some systems also have trampoline code for returning from shared libs.
ea480a30 638m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
d50355b6 639
1d509aa6
MM
640# Return true if PC lies inside an indirect branch thunk.
641m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
642
c12260ac
CV
643# A target might have problems with watchpoints as soon as the stack
644# frame of the current function has been destroyed. This mostly happens
c9cf6e20 645# as the first action in a function's epilogue. stack_frame_destroyed_p()
c12260ac
CV
646# is defined to return a non-zero value if either the given addr is one
647# instruction after the stack destroying instruction up to the trailing
648# return instruction or if we can figure out that the stack frame has
649# already been invalidated regardless of the value of addr. Targets
650# which don't suffer from that problem could just let this functionality
651# untouched.
ea480a30 652m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
3e29f34a
MR
653# Process an ELF symbol in the minimal symbol table in a backend-specific
654# way. Normally this hook is supposed to do nothing, however if required,
655# then this hook can be used to apply tranformations to symbols that are
656# considered special in some way. For example the MIPS backend uses it
657# to interpret \`st_other' information to mark compressed code symbols so
658# that they can be treated in the appropriate manner in the processing of
659# the main symbol table and DWARF-2 records.
ea480a30
SM
660F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
661f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
3e29f34a
MR
662# Process a symbol in the main symbol table in a backend-specific way.
663# Normally this hook is supposed to do nothing, however if required,
664# then this hook can be used to apply tranformations to symbols that
665# are considered special in some way. This is currently used by the
666# MIPS backend to make sure compressed code symbols have the ISA bit
667# set. This in turn is needed for symbol values seen in GDB to match
668# the values used at the runtime by the program itself, for function
669# and label references.
ea480a30 670f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
3e29f34a
MR
671# Adjust the address retrieved from a DWARF-2 record other than a line
672# entry in a backend-specific way. Normally this hook is supposed to
673# return the address passed unchanged, however if that is incorrect for
674# any reason, then this hook can be used to fix the address up in the
675# required manner. This is currently used by the MIPS backend to make
676# sure addresses in FDE, range records, etc. referring to compressed
677# code have the ISA bit set, matching line information and the symbol
678# table.
ea480a30 679f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
3e29f34a
MR
680# Adjust the address updated by a line entry in a backend-specific way.
681# Normally this hook is supposed to return the address passed unchanged,
682# however in the case of inconsistencies in these records, this hook can
683# be used to fix them up in the required manner. This is currently used
684# by the MIPS backend to make sure all line addresses in compressed code
685# are presented with the ISA bit set, which is not always the case. This
686# in turn ensures breakpoint addresses are correctly matched against the
687# stop PC.
ea480a30
SM
688f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
689v;int;cannot_step_breakpoint;;;0;0;;0
7ea65f08
PA
690# See comment in target.h about continuable, steppable and
691# non-steppable watchpoints.
ea480a30
SM
692v;int;have_nonsteppable_watchpoint;;;0;0;;0
693F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
694M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
b41c5a85
JW
695# Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
696# FS are passed from the generic execute_cfa_program function.
ea480a30 697m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
69f97648
SM
698
699# Return the appropriate type_flags for the supplied address class.
700# This function should return 1 if the address class was recognized and
701# type_flags was set, zero otherwise.
ea480a30 702M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
b59ff9d5 703# Is a register in a group
ea480a30 704m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
f6214256 705# Fetch the pointer to the ith function argument.
ea480a30 706F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
6ce6d90f 707
5aa82d05
AA
708# Iterate over all supported register notes in a core file. For each
709# supported register note section, the iterator must call CB and pass
710# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
711# the supported register note sections based on the current register
712# values. Otherwise it should enumerate all supported register note
713# sections.
ea480a30 714M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
17ea7499 715
6432734d 716# Create core file notes
ea480a30 717M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
6432734d 718
35c2fab7 719# Find core file memory regions
ea480a30 720M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
35c2fab7 721
de584861 722# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
723# core file into buffer READBUF with length LEN. Return the number of bytes read
724# (zero indicates failure).
725# failed, otherwise, return the red length of READBUF.
ea480a30 726M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
de584861 727
356a5233
JB
728# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
729# libraries list from core file into buffer READBUF with length LEN.
c09f20e4 730# Return the number of bytes read (zero indicates failure).
ea480a30 731M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
356a5233 732
c0edd9ed 733# How the core target converts a PTID from a core file to a string.
a068643d 734M;std::string;core_pid_to_str;ptid_t ptid;ptid
28439f5e 735
4dfc5dbc 736# How the core target extracts the name of a thread from a core file.
ea480a30 737M;const char *;core_thread_name;struct thread_info *thr;thr
4dfc5dbc 738
382b69bb
JB
739# Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
740# from core file into buffer READBUF with length LEN. Return the number
741# of bytes read (zero indicates EOF, a negative value indicates failure).
742M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
743
a78c2d62 744# BFD target to use when generating a core file.
ea480a30 745V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
a78c2d62 746
0d5de010
DJ
747# If the elements of C++ vtables are in-place function descriptors rather
748# than normal function pointers (which may point to code or a descriptor),
749# set this to one.
ea480a30 750v;int;vtable_function_descriptors;;;0;0;;0
0d5de010
DJ
751
752# Set if the least significant bit of the delta is used instead of the least
753# significant bit of the pfn for pointers to virtual member functions.
ea480a30 754v;int;vbit_in_delta;;;0;0;;0
6d350bb5
UW
755
756# Advance PC to next instruction in order to skip a permanent breakpoint.
ea480a30 757f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
1c772458 758
1668ae25 759# The maximum length of an instruction on this architecture in bytes.
ea480a30 760V;ULONGEST;max_insn_length;;;0;0
237fc4c9
PA
761
762# Copy the instruction at FROM to TO, and make any adjustments
763# necessary to single-step it at that address.
764#
765# REGS holds the state the thread's registers will have before
766# executing the copied instruction; the PC in REGS will refer to FROM,
767# not the copy at TO. The caller should update it to point at TO later.
768#
769# Return a pointer to data of the architecture's choice to be passed
770# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
771# the instruction's effects have been completely simulated, with the
772# resulting state written back to REGS.
773#
774# For a general explanation of displaced stepping and how GDB uses it,
775# see the comments in infrun.c.
776#
777# The TO area is only guaranteed to have space for
778# gdbarch_max_insn_length (arch) bytes, so this function must not
779# write more bytes than that to that area.
780#
781# If you do not provide this function, GDB assumes that the
782# architecture does not support displaced stepping.
783#
7f03bd92
PA
784# If the instruction cannot execute out of line, return NULL. The
785# core falls back to stepping past the instruction in-line instead in
786# that case.
fdb61c6c 787M;displaced_step_closure_up;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
237fc4c9 788
99e40580
UW
789# Return true if GDB should use hardware single-stepping to execute
790# the displaced instruction identified by CLOSURE. If false,
791# GDB will simply restart execution at the displaced instruction
792# location, and it is up to the target to ensure GDB will receive
793# control again (e.g. by placing a software breakpoint instruction
794# into the displaced instruction buffer).
795#
796# The default implementation returns false on all targets that
797# provide a gdbarch_software_single_step routine, and true otherwise.
ea480a30 798m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
99e40580 799
237fc4c9
PA
800# Fix up the state resulting from successfully single-stepping a
801# displaced instruction, to give the result we would have gotten from
802# stepping the instruction in its original location.
803#
804# REGS is the register state resulting from single-stepping the
805# displaced instruction.
806#
807# CLOSURE is the result from the matching call to
808# gdbarch_displaced_step_copy_insn.
809#
810# If you provide gdbarch_displaced_step_copy_insn.but not this
811# function, then GDB assumes that no fixup is needed after
812# single-stepping the instruction.
813#
814# For a general explanation of displaced stepping and how GDB uses it,
815# see the comments in infrun.c.
ea480a30 816M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
237fc4c9 817
237fc4c9
PA
818# Return the address of an appropriate place to put displaced
819# instructions while we step over them. There need only be one such
820# place, since we're only stepping one thread over a breakpoint at a
821# time.
822#
823# For a general explanation of displaced stepping and how GDB uses it,
824# see the comments in infrun.c.
ea480a30 825m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
237fc4c9 826
dde08ee1
PA
827# Relocate an instruction to execute at a different address. OLDLOC
828# is the address in the inferior memory where the instruction to
829# relocate is currently at. On input, TO points to the destination
830# where we want the instruction to be copied (and possibly adjusted)
831# to. On output, it points to one past the end of the resulting
832# instruction(s). The effect of executing the instruction at TO shall
833# be the same as if executing it at FROM. For example, call
834# instructions that implicitly push the return address on the stack
835# should be adjusted to return to the instruction after OLDLOC;
836# relative branches, and other PC-relative instructions need the
837# offset adjusted; etc.
ea480a30 838M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
dde08ee1 839
1c772458 840# Refresh overlay mapped state for section OSECT.
ea480a30 841F;void;overlay_update;struct obj_section *osect;osect
4eb0ad19 842
ea480a30 843M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
149ad273 844
203c3895 845# Set if the address in N_SO or N_FUN stabs may be zero.
ea480a30 846v;int;sofun_address_maybe_missing;;;0;0;;0
1cded358 847
0508c3ec
HZ
848# Parse the instruction at ADDR storing in the record execution log
849# the registers REGCACHE and memory ranges that will be affected when
850# the instruction executes, along with their current values.
851# Return -1 if something goes wrong, 0 otherwise.
ea480a30 852M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
0508c3ec 853
3846b520
HZ
854# Save process state after a signal.
855# Return -1 if something goes wrong, 0 otherwise.
ea480a30 856M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
3846b520 857
22203bbf 858# Signal translation: translate inferior's signal (target's) number
86b49880
PA
859# into GDB's representation. The implementation of this method must
860# be host independent. IOW, don't rely on symbols of the NAT_FILE
861# header (the nm-*.h files), the host <signal.h> header, or similar
862# headers. This is mainly used when cross-debugging core files ---
863# "Live" targets hide the translation behind the target interface
1f8cf220 864# (target_wait, target_resume, etc.).
ea480a30 865M;enum gdb_signal;gdb_signal_from_target;int signo;signo
60c5725c 866
eb14d406
SDJ
867# Signal translation: translate the GDB's internal signal number into
868# the inferior's signal (target's) representation. The implementation
869# of this method must be host independent. IOW, don't rely on symbols
870# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
871# header, or similar headers.
872# Return the target signal number if found, or -1 if the GDB internal
873# signal number is invalid.
ea480a30 874M;int;gdb_signal_to_target;enum gdb_signal signal;signal
eb14d406 875
4aa995e1
PA
876# Extra signal info inspection.
877#
878# Return a type suitable to inspect extra signal information.
ea480a30 879M;struct type *;get_siginfo_type;void;
4aa995e1 880
60c5725c 881# Record architecture-specific information from the symbol table.
ea480a30 882M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
50c71eaf 883
a96d9b2e
SDJ
884# Function for the 'catch syscall' feature.
885
886# Get architecture-specific system calls information from registers.
00431a78 887M;LONGEST;get_syscall_number;thread_info *thread;thread
a96d9b2e 888
458c8db8 889# The filename of the XML syscall for this architecture.
ea480a30 890v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
458c8db8
SDJ
891
892# Information about system calls from this architecture
ea480a30 893v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
458c8db8 894
55aa24fb
SDJ
895# SystemTap related fields and functions.
896
05c0465e
SDJ
897# A NULL-terminated array of prefixes used to mark an integer constant
898# on the architecture's assembly.
55aa24fb
SDJ
899# For example, on x86 integer constants are written as:
900#
901# \$10 ;; integer constant 10
902#
903# in this case, this prefix would be the character \`\$\'.
ea480a30 904v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 905
05c0465e
SDJ
906# A NULL-terminated array of suffixes used to mark an integer constant
907# on the architecture's assembly.
ea480a30 908v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 909
05c0465e
SDJ
910# A NULL-terminated array of prefixes used to mark a register name on
911# the architecture's assembly.
55aa24fb
SDJ
912# For example, on x86 the register name is written as:
913#
914# \%eax ;; register eax
915#
916# in this case, this prefix would be the character \`\%\'.
ea480a30 917v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 918
05c0465e
SDJ
919# A NULL-terminated array of suffixes used to mark a register name on
920# the architecture's assembly.
ea480a30 921v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 922
05c0465e
SDJ
923# A NULL-terminated array of prefixes used to mark a register
924# indirection on the architecture's assembly.
55aa24fb
SDJ
925# For example, on x86 the register indirection is written as:
926#
927# \(\%eax\) ;; indirecting eax
928#
929# in this case, this prefix would be the charater \`\(\'.
930#
931# Please note that we use the indirection prefix also for register
932# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 933v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 934
05c0465e
SDJ
935# A NULL-terminated array of suffixes used to mark a register
936# indirection on the architecture's assembly.
55aa24fb
SDJ
937# For example, on x86 the register indirection is written as:
938#
939# \(\%eax\) ;; indirecting eax
940#
941# in this case, this prefix would be the charater \`\)\'.
942#
943# Please note that we use the indirection suffix also for register
944# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 945v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 946
05c0465e 947# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
948#
949# For example, on PPC a register is represented by a number in the assembly
950# language (e.g., \`10\' is the 10th general-purpose register). However,
951# inside GDB this same register has an \`r\' appended to its name, so the 10th
952# register would be represented as \`r10\' internally.
ea480a30 953v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
954
955# Suffix used to name a register using GDB's nomenclature.
ea480a30 956v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
957
958# Check if S is a single operand.
959#
960# Single operands can be:
961# \- Literal integers, e.g. \`\$10\' on x86
962# \- Register access, e.g. \`\%eax\' on x86
963# \- Register indirection, e.g. \`\(\%eax\)\' on x86
964# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
965#
966# This function should check for these patterns on the string
967# and return 1 if some were found, or zero otherwise. Please try to match
968# as much info as you can from the string, i.e., if you have to match
969# something like \`\(\%\', do not match just the \`\(\'.
ea480a30 970M;int;stap_is_single_operand;const char *s;s
55aa24fb
SDJ
971
972# Function used to handle a "special case" in the parser.
973#
974# A "special case" is considered to be an unknown token, i.e., a token
975# that the parser does not know how to parse. A good example of special
976# case would be ARM's register displacement syntax:
977#
978# [R0, #4] ;; displacing R0 by 4
979#
980# Since the parser assumes that a register displacement is of the form:
981#
982# <number> <indirection_prefix> <register_name> <indirection_suffix>
983#
984# it means that it will not be able to recognize and parse this odd syntax.
985# Therefore, we should add a special case function that will handle this token.
986#
987# This function should generate the proper expression form of the expression
988# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
989# and so on). It should also return 1 if the parsing was successful, or zero
990# if the token was not recognized as a special token (in this case, returning
991# zero means that the special parser is deferring the parsing to the generic
992# parser), and should advance the buffer pointer (p->arg).
ea480a30 993M;int;stap_parse_special_token;struct stap_parse_info *p;p
55aa24fb 994
7d7571f0
SDJ
995# Perform arch-dependent adjustments to a register name.
996#
997# In very specific situations, it may be necessary for the register
998# name present in a SystemTap probe's argument to be handled in a
999# special way. For example, on i386, GCC may over-optimize the
1000# register allocation and use smaller registers than necessary. In
1001# such cases, the client that is reading and evaluating the SystemTap
1002# probe (ourselves) will need to actually fetch values from the wider
1003# version of the register in question.
1004#
1005# To illustrate the example, consider the following probe argument
1006# (i386):
1007#
1008# 4@%ax
1009#
1010# This argument says that its value can be found at the %ax register,
1011# which is a 16-bit register. However, the argument's prefix says
1012# that its type is "uint32_t", which is 32-bit in size. Therefore, in
1013# this case, GDB should actually fetch the probe's value from register
1014# %eax, not %ax. In this scenario, this function would actually
1015# replace the register name from %ax to %eax.
1016#
1017# The rationale for this can be found at PR breakpoints/24541.
6b78c3f8 1018M;std::string;stap_adjust_register;struct stap_parse_info *p, const std::string \&regname, int regnum;p, regname, regnum
7d7571f0 1019
8b367e17
JM
1020# DTrace related functions.
1021
1022# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1023# NARG must be >= 0.
37eedb39 1024M;void;dtrace_parse_probe_argument;struct expr_builder *builder, int narg;builder, narg
8b367e17
JM
1025
1026# True if the given ADDR does not contain the instruction sequence
1027# corresponding to a disabled DTrace is-enabled probe.
ea480a30 1028M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
8b367e17
JM
1029
1030# Enable a DTrace is-enabled probe at ADDR.
ea480a30 1031M;void;dtrace_enable_probe;CORE_ADDR addr;addr
8b367e17
JM
1032
1033# Disable a DTrace is-enabled probe at ADDR.
ea480a30 1034M;void;dtrace_disable_probe;CORE_ADDR addr;addr
55aa24fb 1035
50c71eaf
PA
1036# True if the list of shared libraries is one and only for all
1037# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
1038# This usually means that all processes, although may or may not share
1039# an address space, will see the same set of symbols at the same
1040# addresses.
ea480a30 1041v;int;has_global_solist;;;0;0;;0
2567c7d9
PA
1042
1043# On some targets, even though each inferior has its own private
1044# address space, the debug interface takes care of making breakpoints
1045# visible to all address spaces automatically. For such cases,
1046# this property should be set to true.
ea480a30 1047v;int;has_global_breakpoints;;;0;0;;0
6c95b8df
PA
1048
1049# True if inferiors share an address space (e.g., uClinux).
ea480a30 1050m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
7a697b8d
SS
1051
1052# True if a fast tracepoint can be set at an address.
281d762b 1053m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
75cebea9 1054
5f034a78
MK
1055# Guess register state based on tracepoint location. Used for tracepoints
1056# where no registers have been collected, but there's only one location,
1057# allowing us to guess the PC value, and perhaps some other registers.
1058# On entry, regcache has all registers marked as unavailable.
ea480a30 1059m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
5f034a78 1060
f870a310 1061# Return the "auto" target charset.
ea480a30 1062f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
f870a310 1063# Return the "auto" target wide charset.
ea480a30 1064f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
08105857
PA
1065
1066# If non-empty, this is a file extension that will be opened in place
1067# of the file extension reported by the shared library list.
1068#
1069# This is most useful for toolchains that use a post-linker tool,
1070# where the names of the files run on the target differ in extension
1071# compared to the names of the files GDB should load for debug info.
ea480a30 1072v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
1073
1074# If true, the target OS has DOS-based file system semantics. That
1075# is, absolute paths include a drive name, and the backslash is
1076# considered a directory separator.
ea480a30 1077v;int;has_dos_based_file_system;;;0;0;;0
6710bf39
SS
1078
1079# Generate bytecodes to collect the return address in a frame.
1080# Since the bytecodes run on the target, possibly with GDB not even
1081# connected, the full unwinding machinery is not available, and
1082# typically this function will issue bytecodes for one or more likely
1083# places that the return address may be found.
ea480a30 1084m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
6710bf39 1085
3030c96e 1086# Implement the "info proc" command.
ea480a30 1087M;void;info_proc;const char *args, enum info_proc_what what;args, what
3030c96e 1088
451b7c33
TT
1089# Implement the "info proc" command for core files. Noe that there
1090# are two "info_proc"-like methods on gdbarch -- one for core files,
1091# one for live targets.
ea480a30 1092M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
451b7c33 1093
19630284
JB
1094# Iterate over all objfiles in the order that makes the most sense
1095# for the architecture to make global symbol searches.
1096#
1097# CB is a callback function where OBJFILE is the objfile to be searched,
1098# and CB_DATA a pointer to user-defined data (the same data that is passed
1099# when calling this gdbarch method). The iteration stops if this function
1100# returns nonzero.
1101#
1102# CB_DATA is a pointer to some user-defined data to be passed to
1103# the callback.
1104#
1105# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1106# inspected when the symbol search was requested.
ea480a30 1107m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
19630284 1108
7e35103a 1109# Ravenscar arch-dependent ops.
ea480a30 1110v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1111
1112# Return non-zero if the instruction at ADDR is a call; zero otherwise.
ea480a30 1113m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
c2170eef
MM
1114
1115# Return non-zero if the instruction at ADDR is a return; zero otherwise.
ea480a30 1116m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
c2170eef
MM
1117
1118# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
ea480a30 1119m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
27a48a92 1120
5133a315
LM
1121# Return true if there's a program/permanent breakpoint planted in
1122# memory at ADDRESS, return false otherwise.
1123m;bool;program_breakpoint_here_p;CORE_ADDR address;address;;default_program_breakpoint_here_p;;0
1124
27a48a92
MK
1125# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1126# Return 0 if *READPTR is already at the end of the buffer.
1127# Return -1 if there is insufficient buffer for a whole entry.
1128# Return 1 if an entry was read into *TYPEP and *VALP.
ea480a30 1129M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
3437254d 1130
2faa3447
JB
1131# Print the description of a single auxv entry described by TYPE and VAL
1132# to FILE.
ea480a30 1133m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
2faa3447 1134
3437254d
PA
1135# Find the address range of the current inferior's vsyscall/vDSO, and
1136# write it to *RANGE. If the vsyscall's length can't be determined, a
1137# range with zero length is returned. Returns true if the vsyscall is
1138# found, false otherwise.
ea480a30 1139m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
f208eee0
JK
1140
1141# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1142# PROT has GDB_MMAP_PROT_* bitmask format.
1143# Throw an error if it is not possible. Returned address is always valid.
ea480a30 1144f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
f208eee0 1145
7f361056
JK
1146# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1147# Print a warning if it is not possible.
ea480a30 1148f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
7f361056 1149
f208eee0
JK
1150# Return string (caller has to use xfree for it) with options for GCC
1151# to produce code for this target, typically "-m64", "-m32" or "-m31".
1152# These options are put before CU's DW_AT_producer compilation options so that
953cff56
TT
1153# they can override it.
1154m;std::string;gcc_target_options;void;;;default_gcc_target_options;;0
ac04f72b
TT
1155
1156# Return a regular expression that matches names used by this
1157# architecture in GNU configury triplets. The result is statically
1158# allocated and must not be freed. The default implementation simply
1159# returns the BFD architecture name, which is correct in nearly every
1160# case.
ea480a30 1161m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
3374165f
SM
1162
1163# Return the size in 8-bit bytes of an addressable memory unit on this
1164# architecture. This corresponds to the number of 8-bit bytes associated to
1165# each address in memory.
ea480a30 1166m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
3374165f 1167
65b48a81 1168# Functions for allowing a target to modify its disassembler options.
471b9d15 1169v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
ea480a30 1170v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
471b9d15 1171v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
65b48a81 1172
5561fc30
AB
1173# Type alignment override method. Return the architecture specific
1174# alignment required for TYPE. If there is no special handling
1175# required for TYPE then return the value 0, GDB will then apply the
1176# default rules as laid out in gdbtypes.c:type_align.
2b4424c3
TT
1177m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1178
aa7ca1bb
AH
1179# Return a string containing any flags for the given PC in the given FRAME.
1180f;std::string;get_pc_address_flags;frame_info *frame, CORE_ADDR pc;frame, pc;;default_get_pc_address_flags;;0
1181
104c1213 1182EOF
104c1213
JM
1183}
1184
0b8f9e4d
AC
1185#
1186# The .log file
1187#
41a77cba 1188exec > gdbarch.log
34620563 1189function_list | while do_read
0b8f9e4d
AC
1190do
1191 cat <<EOF
1207375d 1192${class} ${returntype:-} ${function} (${formal:-})
104c1213 1193EOF
3d9a5942
AC
1194 for r in ${read}
1195 do
a6fc5ffc 1196 eval echo "\" ${r}=\${${r}}\""
3d9a5942 1197 done
f0d4cc9e 1198 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1199 then
66d659b1 1200 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1201 kill $$
1202 exit 1
1203 fi
759cea5e 1204 if [ "x${invalid_p}" = "x0" ] && [ -n "${postdefault}" ]
f0d4cc9e
AC
1205 then
1206 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1207 kill $$
1208 exit 1
1209 fi
a72293e2
AC
1210 if class_is_multiarch_p
1211 then
1212 if class_is_predicate_p ; then :
1213 elif test "x${predefault}" = "x"
1214 then
2f9b146e 1215 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1216 kill $$
1217 exit 1
1218 fi
1219 fi
3d9a5942 1220 echo ""
0b8f9e4d
AC
1221done
1222
1223exec 1>&2
0b8f9e4d 1224
104c1213
JM
1225
1226copyright ()
1227{
1228cat <<EOF
c4bfde41
JK
1229/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1230/* vi:set ro: */
59233f88 1231
104c1213 1232/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1233
e5d78223 1234 Copyright (C) 1998-2020 Free Software Foundation, Inc.
104c1213
JM
1235
1236 This file is part of GDB.
1237
1238 This program is free software; you can redistribute it and/or modify
1239 it under the terms of the GNU General Public License as published by
50efebf8 1240 the Free Software Foundation; either version 3 of the License, or
104c1213 1241 (at your option) any later version.
618f726f 1242
104c1213
JM
1243 This program is distributed in the hope that it will be useful,
1244 but WITHOUT ANY WARRANTY; without even the implied warranty of
1245 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1246 GNU General Public License for more details.
618f726f 1247
104c1213 1248 You should have received a copy of the GNU General Public License
50efebf8 1249 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1250
41a77cba 1251/* This file was created with the aid of \`\`gdbarch.sh''. */
104c1213
JM
1252
1253EOF
1254}
1255
1256#
1257# The .h file
1258#
1259
1260exec > new-gdbarch.h
1261copyright
1262cat <<EOF
1263#ifndef GDBARCH_H
1264#define GDBARCH_H
1265
a0ff9e1a 1266#include <vector>
eb7a547a 1267#include "frame.h"
65b48a81 1268#include "dis-asm.h"
284a0e3c 1269#include "gdb_obstack.h"
fdb61c6c 1270#include "infrun.h"
fe4b2ee6 1271#include "osabi.h"
eb7a547a 1272
da3331ec
AC
1273struct floatformat;
1274struct ui_file;
104c1213 1275struct value;
b6af0555 1276struct objfile;
1c772458 1277struct obj_section;
a2cf933a 1278struct minimal_symbol;
049ee0e4 1279struct regcache;
b59ff9d5 1280struct reggroup;
6ce6d90f 1281struct regset;
a89aa300 1282struct disassemble_info;
e2d0e7eb 1283struct target_ops;
030f20e1 1284struct obstack;
8181d85f 1285struct bp_target_info;
424163ea 1286struct target_desc;
3e29f34a 1287struct symbol;
a96d9b2e 1288struct syscall;
175ff332 1289struct agent_expr;
6710bf39 1290struct axs_value;
55aa24fb 1291struct stap_parse_info;
37eedb39 1292struct expr_builder;
7e35103a 1293struct ravenscar_arch_ops;
3437254d 1294struct mem_range;
458c8db8 1295struct syscalls_info;
4dfc5dbc 1296struct thread_info;
012b3a21 1297struct ui_out;
104c1213 1298
8a526fa6
PA
1299#include "regcache.h"
1300
6ecd4729
PA
1301/* The architecture associated with the inferior through the
1302 connection to the target.
1303
1304 The architecture vector provides some information that is really a
1305 property of the inferior, accessed through a particular target:
1306 ptrace operations; the layout of certain RSP packets; the solib_ops
1307 vector; etc. To differentiate architecture accesses to
1308 per-inferior/target properties from
1309 per-thread/per-frame/per-objfile properties, accesses to
1310 per-inferior/target properties should be made through this
1311 gdbarch. */
1312
1313/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1314extern struct gdbarch *target_gdbarch (void);
6ecd4729 1315
19630284
JB
1316/* Callback type for the 'iterate_over_objfiles_in_search_order'
1317 gdbarch method. */
1318
1319typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1320 (struct objfile *objfile, void *cb_data);
5aa82d05 1321
1528345d
AA
1322/* Callback type for regset section iterators. The callback usually
1323 invokes the REGSET's supply or collect method, to which it must
a616bb94
AH
1324 pass a buffer - for collects this buffer will need to be created using
1325 COLLECT_SIZE, for supply the existing buffer being read from should
1326 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1327 is used for diagnostic messages. CB_DATA should have been passed
1328 unchanged through the iterator. */
1528345d 1329
5aa82d05 1330typedef void (iterate_over_regset_sections_cb)
a616bb94
AH
1331 (const char *sect_name, int supply_size, int collect_size,
1332 const struct regset *regset, const char *human_name, void *cb_data);
c5ac5cbb
AH
1333
1334/* For a function call, does the function return a value using a
1335 normal value return or a structure return - passing a hidden
1336 argument pointing to storage. For the latter, there are two
1337 cases: language-mandated structure return and target ABI
1338 structure return. */
1339
1340enum function_call_return_method
1341{
1342 /* Standard value return. */
1343 return_method_normal = 0,
1344
1345 /* Language ABI structure return. This is handled
1346 by passing the return location as the first parameter to
1347 the function, even preceding "this". */
1348 return_method_hidden_param,
1349
1350 /* Target ABI struct return. This is target-specific; for instance,
1351 on ia64 the first argument is passed in out0 but the hidden
1352 structure return pointer would normally be passed in r8. */
1353 return_method_struct,
1354};
1355
104c1213
JM
1356EOF
1357
1358# function typedef's
3d9a5942
AC
1359printf "\n"
1360printf "\n"
0963b4bd 1361printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1362function_list | while do_read
104c1213 1363do
2ada493a
AC
1364 if class_is_info_p
1365 then
3d9a5942 1366 printf "\n"
8d113d13
SM
1367 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1368 printf "/* set_gdbarch_%s() - not applicable - pre-initialized. */\n" "$function"
2ada493a 1369 fi
104c1213
JM
1370done
1371
1372# function typedef's
3d9a5942
AC
1373printf "\n"
1374printf "\n"
0963b4bd 1375printf "/* The following are initialized by the target dependent code. */\n"
34620563 1376function_list | while do_read
104c1213 1377do
72e74a21 1378 if [ -n "${comment}" ]
34620563
AC
1379 then
1380 echo "${comment}" | sed \
1381 -e '2 s,#,/*,' \
1382 -e '3,$ s,#, ,' \
1383 -e '$ s,$, */,'
1384 fi
412d5987
AC
1385
1386 if class_is_predicate_p
2ada493a 1387 then
412d5987 1388 printf "\n"
8d113d13 1389 printf "extern int gdbarch_%s_p (struct gdbarch *gdbarch);\n" "$function"
4a5c6a1d 1390 fi
2ada493a
AC
1391 if class_is_variable_p
1392 then
3d9a5942 1393 printf "\n"
8d113d13
SM
1394 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1395 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, %s %s);\n" "$function" "$returntype" "$function"
2ada493a
AC
1396 fi
1397 if class_is_function_p
1398 then
3d9a5942 1399 printf "\n"
72e74a21 1400 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d 1401 then
8d113d13 1402 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch);\n" "$returntype" "$function"
4a5c6a1d
AC
1403 elif class_is_multiarch_p
1404 then
8d113d13 1405 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
4a5c6a1d 1406 else
8d113d13 1407 printf "typedef %s (gdbarch_%s_ftype) (%s);\n" "$returntype" "$function" "$formal"
4a5c6a1d 1408 fi
72e74a21 1409 if [ "x${formal}" = "xvoid" ]
104c1213 1410 then
8d113d13 1411 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
104c1213 1412 else
8d113d13 1413 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
104c1213 1414 fi
8d113d13 1415 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, gdbarch_%s_ftype *%s);\n" "$function" "$function" "$function"
2ada493a 1416 fi
104c1213
JM
1417done
1418
1419# close it off
1420cat <<EOF
1421
1422extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1423
1424
1425/* Mechanism for co-ordinating the selection of a specific
1426 architecture.
1427
1428 GDB targets (*-tdep.c) can register an interest in a specific
1429 architecture. Other GDB components can register a need to maintain
1430 per-architecture data.
1431
1432 The mechanisms below ensures that there is only a loose connection
1433 between the set-architecture command and the various GDB
0fa6923a 1434 components. Each component can independently register their need
104c1213
JM
1435 to maintain architecture specific data with gdbarch.
1436
1437 Pragmatics:
1438
1439 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1440 didn't scale.
1441
1442 The more traditional mega-struct containing architecture specific
1443 data for all the various GDB components was also considered. Since
0fa6923a 1444 GDB is built from a variable number of (fairly independent)
104c1213 1445 components it was determined that the global aproach was not
0963b4bd 1446 applicable. */
104c1213
JM
1447
1448
1449/* Register a new architectural family with GDB.
1450
1451 Register support for the specified ARCHITECTURE with GDB. When
1452 gdbarch determines that the specified architecture has been
1453 selected, the corresponding INIT function is called.
1454
1455 --
1456
1457 The INIT function takes two parameters: INFO which contains the
1458 information available to gdbarch about the (possibly new)
1459 architecture; ARCHES which is a list of the previously created
1460 \`\`struct gdbarch'' for this architecture.
1461
0f79675b 1462 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1463 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1464
1465 The ARCHES parameter is a linked list (sorted most recently used)
1466 of all the previously created architures for this architecture
1467 family. The (possibly NULL) ARCHES->gdbarch can used to access
1468 values from the previously selected architecture for this
59837fe0 1469 architecture family.
104c1213
JM
1470
1471 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1472 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1473 gdbarch'' from the ARCHES list - indicating that the new
1474 architecture is just a synonym for an earlier architecture (see
1475 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1476 - that describes the selected architecture (see gdbarch_alloc()).
1477
1478 The DUMP_TDEP function shall print out all target specific values.
1479 Care should be taken to ensure that the function works in both the
0963b4bd 1480 multi-arch and non- multi-arch cases. */
104c1213
JM
1481
1482struct gdbarch_list
1483{
1484 struct gdbarch *gdbarch;
1485 struct gdbarch_list *next;
1486};
1487
1488struct gdbarch_info
1489{
0963b4bd 1490 /* Use default: NULL (ZERO). */
104c1213
JM
1491 const struct bfd_arch_info *bfd_arch_info;
1492
428721aa 1493 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1494 enum bfd_endian byte_order;
104c1213 1495
94123b4f 1496 enum bfd_endian byte_order_for_code;
9d4fde75 1497
0963b4bd 1498 /* Use default: NULL (ZERO). */
104c1213
JM
1499 bfd *abfd;
1500
0963b4bd 1501 /* Use default: NULL (ZERO). */
0dba2a6c
MR
1502 union
1503 {
1504 /* Architecture-specific information. The generic form for targets
1505 that have extra requirements. */
1506 struct gdbarch_tdep_info *tdep_info;
1507
1508 /* Architecture-specific target description data. Numerous targets
1509 need only this, so give them an easy way to hold it. */
1510 struct tdesc_arch_data *tdesc_data;
1511
1512 /* SPU file system ID. This is a single integer, so using the
1513 generic form would only complicate code. Other targets may
1514 reuse this member if suitable. */
1515 int *id;
1516 };
4be87837
DJ
1517
1518 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1519 enum gdb_osabi osabi;
424163ea
DJ
1520
1521 /* Use default: NULL (ZERO). */
1522 const struct target_desc *target_desc;
104c1213
JM
1523};
1524
1525typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1526typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1527
4b9b3959 1528/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1529extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1530
4b9b3959
AC
1531extern void gdbarch_register (enum bfd_architecture architecture,
1532 gdbarch_init_ftype *,
1533 gdbarch_dump_tdep_ftype *);
1534
104c1213 1535
b4a20239
AC
1536/* Return a freshly allocated, NULL terminated, array of the valid
1537 architecture names. Since architectures are registered during the
1538 _initialize phase this function only returns useful information
0963b4bd 1539 once initialization has been completed. */
b4a20239
AC
1540
1541extern const char **gdbarch_printable_names (void);
1542
1543
104c1213 1544/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1545 matches the information provided by INFO. */
104c1213 1546
424163ea 1547extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1548
1549
1550/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1551 basic initialization using values obtained from the INFO and TDEP
104c1213 1552 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1553 initialization of the object. */
104c1213
JM
1554
1555extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1556
1557
4b9b3959
AC
1558/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1559 It is assumed that the caller freeds the \`\`struct
0963b4bd 1560 gdbarch_tdep''. */
4b9b3959 1561
058f20d5
JB
1562extern void gdbarch_free (struct gdbarch *);
1563
284a0e3c
SM
1564/* Get the obstack owned by ARCH. */
1565
1566extern obstack *gdbarch_obstack (gdbarch *arch);
058f20d5 1567
aebd7893
AC
1568/* Helper function. Allocate memory from the \`\`struct gdbarch''
1569 obstack. The memory is freed when the corresponding architecture
1570 is also freed. */
1571
284a0e3c
SM
1572#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1573 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1574
1575#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1576 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
aebd7893 1577
6c214e7c
PP
1578/* Duplicate STRING, returning an equivalent string that's allocated on the
1579 obstack associated with GDBARCH. The string is freed when the corresponding
1580 architecture is also freed. */
1581
1582extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
aebd7893 1583
0963b4bd 1584/* Helper function. Force an update of the current architecture.
104c1213 1585
b732d07d
AC
1586 The actual architecture selected is determined by INFO, \`\`(gdb) set
1587 architecture'' et.al., the existing architecture and BFD's default
1588 architecture. INFO should be initialized to zero and then selected
1589 fields should be updated.
104c1213 1590
0963b4bd 1591 Returns non-zero if the update succeeds. */
16f33e29
AC
1592
1593extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1594
1595
ebdba546
AC
1596/* Helper function. Find an architecture matching info.
1597
1598 INFO should be initialized using gdbarch_info_init, relevant fields
1599 set, and then finished using gdbarch_info_fill.
1600
1601 Returns the corresponding architecture, or NULL if no matching
59837fe0 1602 architecture was found. */
ebdba546
AC
1603
1604extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1605
1606
aff68abb 1607/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1608
aff68abb 1609extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1610
104c1213
JM
1611
1612/* Register per-architecture data-pointer.
1613
1614 Reserve space for a per-architecture data-pointer. An identifier
1615 for the reserved data-pointer is returned. That identifer should
95160752 1616 be saved in a local static variable.
104c1213 1617
fcc1c85c
AC
1618 Memory for the per-architecture data shall be allocated using
1619 gdbarch_obstack_zalloc. That memory will be deleted when the
1620 corresponding architecture object is deleted.
104c1213 1621
95160752
AC
1622 When a previously created architecture is re-selected, the
1623 per-architecture data-pointer for that previous architecture is
76860b5f 1624 restored. INIT() is not re-called.
104c1213
JM
1625
1626 Multiple registrarants for any architecture are allowed (and
1627 strongly encouraged). */
1628
95160752 1629struct gdbarch_data;
104c1213 1630
030f20e1
AC
1631typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1632extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1633typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1634extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1635extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1636 struct gdbarch_data *data,
1637 void *pointer);
104c1213 1638
451fbdda 1639extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1640
1641
0fa6923a 1642/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1643 byte-order, ...) using information found in the BFD. */
104c1213
JM
1644
1645extern void set_gdbarch_from_file (bfd *);
1646
1647
e514a9d6
JM
1648/* Initialize the current architecture to the "first" one we find on
1649 our list. */
1650
1651extern void initialize_current_architecture (void);
1652
104c1213 1653/* gdbarch trace variable */
ccce17b0 1654extern unsigned int gdbarch_debug;
104c1213 1655
4b9b3959 1656extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1657
f6efe3f8
SM
1658/* Return the number of cooked registers (raw + pseudo) for ARCH. */
1659
1660static inline int
1661gdbarch_num_cooked_regs (gdbarch *arch)
1662{
1663 return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
1664}
1665
104c1213
JM
1666#endif
1667EOF
1668exec 1>&2
41a77cba
SM
1669../move-if-change new-gdbarch.h gdbarch.h
1670rm -f new-gdbarch.h
104c1213
JM
1671
1672
1673#
1674# C file
1675#
1676
1677exec > new-gdbarch.c
1678copyright
1679cat <<EOF
1680
1681#include "defs.h"
7355ddba 1682#include "arch-utils.h"
104c1213 1683
104c1213 1684#include "gdbcmd.h"
faaf634c 1685#include "inferior.h"
104c1213
JM
1686#include "symcat.h"
1687
f0d4cc9e 1688#include "floatformat.h"
b59ff9d5 1689#include "reggroups.h"
4be87837 1690#include "osabi.h"
aebd7893 1691#include "gdb_obstack.h"
0bee6dd4 1692#include "observable.h"
a3ecef73 1693#include "regcache.h"
19630284 1694#include "objfiles.h"
2faa3447 1695#include "auxv.h"
8bcb5208
AB
1696#include "frame-unwind.h"
1697#include "dummy-frame.h"
95160752 1698
104c1213
JM
1699/* Static function declarations */
1700
b3cc3077 1701static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1702
104c1213
JM
1703/* Non-zero if we want to trace architecture code. */
1704
1705#ifndef GDBARCH_DEBUG
1706#define GDBARCH_DEBUG 0
1707#endif
ccce17b0 1708unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1709static void
1710show_gdbarch_debug (struct ui_file *file, int from_tty,
1711 struct cmd_list_element *c, const char *value)
1712{
1713 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1714}
104c1213 1715
456fcf94 1716static const char *
8da61cc4 1717pformat (const struct floatformat **format)
456fcf94
AC
1718{
1719 if (format == NULL)
1720 return "(null)";
1721 else
8da61cc4
DJ
1722 /* Just print out one of them - this is only for diagnostics. */
1723 return format[0]->name;
456fcf94
AC
1724}
1725
08105857
PA
1726static const char *
1727pstring (const char *string)
1728{
1729 if (string == NULL)
1730 return "(null)";
1731 return string;
05c0465e
SDJ
1732}
1733
a121b7c1 1734static const char *
f7bb4e3a
PB
1735pstring_ptr (char **string)
1736{
1737 if (string == NULL || *string == NULL)
1738 return "(null)";
1739 return *string;
1740}
1741
05c0465e
SDJ
1742/* Helper function to print a list of strings, represented as "const
1743 char *const *". The list is printed comma-separated. */
1744
a121b7c1 1745static const char *
05c0465e
SDJ
1746pstring_list (const char *const *list)
1747{
1748 static char ret[100];
1749 const char *const *p;
1750 size_t offset = 0;
1751
1752 if (list == NULL)
1753 return "(null)";
1754
1755 ret[0] = '\0';
1756 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1757 {
1758 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1759 offset += 2 + s;
1760 }
1761
1762 if (offset > 0)
1763 {
1764 gdb_assert (offset - 2 < sizeof (ret));
1765 ret[offset - 2] = '\0';
1766 }
1767
1768 return ret;
08105857
PA
1769}
1770
104c1213
JM
1771EOF
1772
1773# gdbarch open the gdbarch object
3d9a5942 1774printf "\n"
0963b4bd 1775printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1776printf "\n"
1777printf "struct gdbarch\n"
1778printf "{\n"
76860b5f
AC
1779printf " /* Has this architecture been fully initialized? */\n"
1780printf " int initialized_p;\n"
aebd7893
AC
1781printf "\n"
1782printf " /* An obstack bound to the lifetime of the architecture. */\n"
1783printf " struct obstack *obstack;\n"
1784printf "\n"
0963b4bd 1785printf " /* basic architectural information. */\n"
34620563 1786function_list | while do_read
104c1213 1787do
2ada493a
AC
1788 if class_is_info_p
1789 then
8d113d13 1790 printf " %s %s;\n" "$returntype" "$function"
2ada493a 1791 fi
104c1213 1792done
3d9a5942 1793printf "\n"
0963b4bd 1794printf " /* target specific vector. */\n"
3d9a5942
AC
1795printf " struct gdbarch_tdep *tdep;\n"
1796printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1797printf "\n"
0963b4bd 1798printf " /* per-architecture data-pointers. */\n"
95160752 1799printf " unsigned nr_data;\n"
3d9a5942
AC
1800printf " void **data;\n"
1801printf "\n"
104c1213
JM
1802cat <<EOF
1803 /* Multi-arch values.
1804
1805 When extending this structure you must:
1806
1807 Add the field below.
1808
1809 Declare set/get functions and define the corresponding
1810 macro in gdbarch.h.
1811
1812 gdbarch_alloc(): If zero/NULL is not a suitable default,
1813 initialize the new field.
1814
1815 verify_gdbarch(): Confirm that the target updated the field
1816 correctly.
1817
7e73cedf 1818 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1819 field is dumped out
1820
104c1213
JM
1821 get_gdbarch(): Implement the set/get functions (probably using
1822 the macro's as shortcuts).
1823
1824 */
1825
1826EOF
34620563 1827function_list | while do_read
104c1213 1828do
2ada493a
AC
1829 if class_is_variable_p
1830 then
8d113d13 1831 printf " %s %s;\n" "$returntype" "$function"
2ada493a
AC
1832 elif class_is_function_p
1833 then
8d113d13 1834 printf " gdbarch_%s_ftype *%s;\n" "$function" "$function"
2ada493a 1835 fi
104c1213 1836done
3d9a5942 1837printf "};\n"
104c1213 1838
104c1213 1839# Create a new gdbarch struct
104c1213 1840cat <<EOF
7de2341d 1841
66b43ecb 1842/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1843 \`\`struct gdbarch_info''. */
104c1213 1844EOF
3d9a5942 1845printf "\n"
104c1213
JM
1846cat <<EOF
1847struct gdbarch *
1848gdbarch_alloc (const struct gdbarch_info *info,
1849 struct gdbarch_tdep *tdep)
1850{
be7811ad 1851 struct gdbarch *gdbarch;
aebd7893
AC
1852
1853 /* Create an obstack for allocating all the per-architecture memory,
1854 then use that to allocate the architecture vector. */
70ba0933 1855 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1856 obstack_init (obstack);
8d749320 1857 gdbarch = XOBNEW (obstack, struct gdbarch);
be7811ad
MD
1858 memset (gdbarch, 0, sizeof (*gdbarch));
1859 gdbarch->obstack = obstack;
85de9627 1860
be7811ad 1861 alloc_gdbarch_data (gdbarch);
85de9627 1862
be7811ad 1863 gdbarch->tdep = tdep;
104c1213 1864EOF
3d9a5942 1865printf "\n"
34620563 1866function_list | while do_read
104c1213 1867do
2ada493a
AC
1868 if class_is_info_p
1869 then
8d113d13 1870 printf " gdbarch->%s = info->%s;\n" "$function" "$function"
2ada493a 1871 fi
104c1213 1872done
3d9a5942 1873printf "\n"
0963b4bd 1874printf " /* Force the explicit initialization of these. */\n"
34620563 1875function_list | while do_read
104c1213 1876do
2ada493a
AC
1877 if class_is_function_p || class_is_variable_p
1878 then
759cea5e 1879 if [ -n "${predefault}" ] && [ "x${predefault}" != "x0" ]
104c1213 1880 then
8d113d13 1881 printf " gdbarch->%s = %s;\n" "$function" "$predefault"
104c1213 1882 fi
2ada493a 1883 fi
104c1213
JM
1884done
1885cat <<EOF
1886 /* gdbarch_alloc() */
1887
be7811ad 1888 return gdbarch;
104c1213
JM
1889}
1890EOF
1891
058f20d5 1892# Free a gdbarch struct.
3d9a5942
AC
1893printf "\n"
1894printf "\n"
058f20d5 1895cat <<EOF
aebd7893 1896
284a0e3c 1897obstack *gdbarch_obstack (gdbarch *arch)
aebd7893 1898{
284a0e3c 1899 return arch->obstack;
aebd7893
AC
1900}
1901
6c214e7c
PP
1902/* See gdbarch.h. */
1903
1904char *
1905gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1906{
1907 return obstack_strdup (arch->obstack, string);
1908}
1909
aebd7893 1910
058f20d5
JB
1911/* Free a gdbarch struct. This should never happen in normal
1912 operation --- once you've created a gdbarch, you keep it around.
1913 However, if an architecture's init function encounters an error
1914 building the structure, it may need to clean up a partially
1915 constructed gdbarch. */
4b9b3959 1916
058f20d5
JB
1917void
1918gdbarch_free (struct gdbarch *arch)
1919{
aebd7893 1920 struct obstack *obstack;
05c547f6 1921
95160752 1922 gdb_assert (arch != NULL);
aebd7893
AC
1923 gdb_assert (!arch->initialized_p);
1924 obstack = arch->obstack;
1925 obstack_free (obstack, 0); /* Includes the ARCH. */
1926 xfree (obstack);
058f20d5
JB
1927}
1928EOF
1929
104c1213 1930# verify a new architecture
104c1213 1931cat <<EOF
db446970
AC
1932
1933
1934/* Ensure that all values in a GDBARCH are reasonable. */
1935
104c1213 1936static void
be7811ad 1937verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1938{
d7e74731 1939 string_file log;
05c547f6 1940
104c1213 1941 /* fundamental */
be7811ad 1942 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
d7e74731 1943 log.puts ("\n\tbyte-order");
be7811ad 1944 if (gdbarch->bfd_arch_info == NULL)
d7e74731 1945 log.puts ("\n\tbfd_arch_info");
0963b4bd 1946 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1947EOF
34620563 1948function_list | while do_read
104c1213 1949do
2ada493a
AC
1950 if class_is_function_p || class_is_variable_p
1951 then
72e74a21 1952 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1953 then
8d113d13 1954 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
2ada493a
AC
1955 elif class_is_predicate_p
1956 then
8d113d13 1957 printf " /* Skip verify of %s, has predicate. */\n" "$function"
f0d4cc9e 1958 # FIXME: See do_read for potential simplification
759cea5e 1959 elif [ -n "${invalid_p}" ] && [ -n "${postdefault}" ]
f0d4cc9e 1960 then
8d113d13
SM
1961 printf " if (%s)\n" "$invalid_p"
1962 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
759cea5e 1963 elif [ -n "${predefault}" ] && [ -n "${postdefault}" ]
f0d4cc9e 1964 then
8d113d13
SM
1965 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
1966 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
72e74a21 1967 elif [ -n "${postdefault}" ]
f0d4cc9e 1968 then
8d113d13
SM
1969 printf " if (gdbarch->%s == 0)\n" "$function"
1970 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
72e74a21 1971 elif [ -n "${invalid_p}" ]
104c1213 1972 then
8d113d13
SM
1973 printf " if (%s)\n" "$invalid_p"
1974 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
72e74a21 1975 elif [ -n "${predefault}" ]
104c1213 1976 then
8d113d13
SM
1977 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
1978 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
104c1213 1979 fi
2ada493a 1980 fi
104c1213
JM
1981done
1982cat <<EOF
d7e74731 1983 if (!log.empty ())
f16a1923 1984 internal_error (__FILE__, __LINE__,
85c07804 1985 _("verify_gdbarch: the following are invalid ...%s"),
d7e74731 1986 log.c_str ());
104c1213
JM
1987}
1988EOF
1989
1990# dump the structure
3d9a5942
AC
1991printf "\n"
1992printf "\n"
104c1213 1993cat <<EOF
0963b4bd 1994/* Print out the details of the current architecture. */
4b9b3959 1995
104c1213 1996void
be7811ad 1997gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1998{
b78960be 1999 const char *gdb_nm_file = "<not-defined>";
05c547f6 2000
b78960be
AC
2001#if defined (GDB_NM_FILE)
2002 gdb_nm_file = GDB_NM_FILE;
2003#endif
2004 fprintf_unfiltered (file,
2005 "gdbarch_dump: GDB_NM_FILE = %s\\n",
2006 gdb_nm_file);
104c1213 2007EOF
ea480a30 2008function_list | sort '-t;' -k 3 | while do_read
104c1213 2009do
1e9f55d0
AC
2010 # First the predicate
2011 if class_is_predicate_p
2012 then
7996bcec 2013 printf " fprintf_unfiltered (file,\n"
8d113d13
SM
2014 printf " \"gdbarch_dump: gdbarch_%s_p() = %%d\\\\n\",\n" "$function"
2015 printf " gdbarch_%s_p (gdbarch));\n" "$function"
08e45a40 2016 fi
48f7351b 2017 # Print the corresponding value.
283354d8 2018 if class_is_function_p
4b9b3959 2019 then
7996bcec 2020 printf " fprintf_unfiltered (file,\n"
8d113d13
SM
2021 printf " \"gdbarch_dump: %s = <%%s>\\\\n\",\n" "$function"
2022 printf " host_address_to_string (gdbarch->%s));\n" "$function"
4b9b3959 2023 else
48f7351b 2024 # It is a variable
2f9b146e
AC
2025 case "${print}:${returntype}" in
2026 :CORE_ADDR )
0b1553bc
UW
2027 fmt="%s"
2028 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 2029 ;;
2f9b146e 2030 :* )
48f7351b 2031 fmt="%s"
623d3eb1 2032 print="plongest (gdbarch->${function})"
48f7351b
AC
2033 ;;
2034 * )
2f9b146e 2035 fmt="%s"
48f7351b
AC
2036 ;;
2037 esac
3d9a5942 2038 printf " fprintf_unfiltered (file,\n"
8d113d13
SM
2039 printf " \"gdbarch_dump: %s = %s\\\\n\",\n" "$function" "$fmt"
2040 printf " %s);\n" "$print"
2ada493a 2041 fi
104c1213 2042done
381323f4 2043cat <<EOF
be7811ad
MD
2044 if (gdbarch->dump_tdep != NULL)
2045 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
2046}
2047EOF
104c1213
JM
2048
2049
2050# GET/SET
3d9a5942 2051printf "\n"
104c1213
JM
2052cat <<EOF
2053struct gdbarch_tdep *
2054gdbarch_tdep (struct gdbarch *gdbarch)
2055{
2056 if (gdbarch_debug >= 2)
3d9a5942 2057 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
2058 return gdbarch->tdep;
2059}
2060EOF
3d9a5942 2061printf "\n"
34620563 2062function_list | while do_read
104c1213 2063do
2ada493a
AC
2064 if class_is_predicate_p
2065 then
3d9a5942
AC
2066 printf "\n"
2067 printf "int\n"
8d113d13 2068 printf "gdbarch_%s_p (struct gdbarch *gdbarch)\n" "$function"
3d9a5942 2069 printf "{\n"
8de9bdc4 2070 printf " gdb_assert (gdbarch != NULL);\n"
8d113d13 2071 printf " return %s;\n" "$predicate"
3d9a5942 2072 printf "}\n"
2ada493a
AC
2073 fi
2074 if class_is_function_p
2075 then
3d9a5942 2076 printf "\n"
8d113d13 2077 printf "%s\n" "$returntype"
72e74a21 2078 if [ "x${formal}" = "xvoid" ]
104c1213 2079 then
8d113d13 2080 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
104c1213 2081 else
8d113d13 2082 printf "gdbarch_%s (struct gdbarch *gdbarch, %s)\n" "$function" "$formal"
104c1213 2083 fi
3d9a5942 2084 printf "{\n"
8de9bdc4 2085 printf " gdb_assert (gdbarch != NULL);\n"
8d113d13 2086 printf " gdb_assert (gdbarch->%s != NULL);\n" "$function"
f7968451 2087 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
2088 then
2089 # Allow a call to a function with a predicate.
8d113d13 2090 printf " /* Do not check predicate: %s, allow call. */\n" "$predicate"
ae45cd16 2091 fi
3d9a5942 2092 printf " if (gdbarch_debug >= 2)\n"
8d113d13 2093 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
1207375d 2094 if [ "x${actual:-}" = "x-" ] || [ "x${actual:-}" = "x" ]
4a5c6a1d
AC
2095 then
2096 if class_is_multiarch_p
2097 then
2098 params="gdbarch"
2099 else
2100 params=""
2101 fi
2102 else
2103 if class_is_multiarch_p
2104 then
2105 params="gdbarch, ${actual}"
2106 else
2107 params="${actual}"
2108 fi
2109 fi
72e74a21 2110 if [ "x${returntype}" = "xvoid" ]
104c1213 2111 then
8d113d13 2112 printf " gdbarch->%s (%s);\n" "$function" "$params"
104c1213 2113 else
8d113d13 2114 printf " return gdbarch->%s (%s);\n" "$function" "$params"
104c1213 2115 fi
3d9a5942
AC
2116 printf "}\n"
2117 printf "\n"
2118 printf "void\n"
8d113d13 2119 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
cb02ab24 2120 printf " %s gdbarch_%s_ftype %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$function" "$function"
3d9a5942 2121 printf "{\n"
8d113d13 2122 printf " gdbarch->%s = %s;\n" "$function" "$function"
3d9a5942 2123 printf "}\n"
2ada493a
AC
2124 elif class_is_variable_p
2125 then
3d9a5942 2126 printf "\n"
8d113d13
SM
2127 printf "%s\n" "$returntype"
2128 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
3d9a5942 2129 printf "{\n"
8de9bdc4 2130 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 2131 if [ "x${invalid_p}" = "x0" ]
c0e8c252 2132 then
8d113d13 2133 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
72e74a21 2134 elif [ -n "${invalid_p}" ]
104c1213 2135 then
956ac328 2136 printf " /* Check variable is valid. */\n"
8d113d13 2137 printf " gdb_assert (!(%s));\n" "$invalid_p"
72e74a21 2138 elif [ -n "${predefault}" ]
104c1213 2139 then
956ac328 2140 printf " /* Check variable changed from pre-default. */\n"
8d113d13 2141 printf " gdb_assert (gdbarch->%s != %s);\n" "$function" "$predefault"
104c1213 2142 fi
3d9a5942 2143 printf " if (gdbarch_debug >= 2)\n"
8d113d13
SM
2144 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2145 printf " return gdbarch->%s;\n" "$function"
3d9a5942
AC
2146 printf "}\n"
2147 printf "\n"
2148 printf "void\n"
8d113d13 2149 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
cb02ab24 2150 printf " %s %s %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$returntype" "$function"
3d9a5942 2151 printf "{\n"
8d113d13 2152 printf " gdbarch->%s = %s;\n" "$function" "$function"
3d9a5942 2153 printf "}\n"
2ada493a
AC
2154 elif class_is_info_p
2155 then
3d9a5942 2156 printf "\n"
8d113d13
SM
2157 printf "%s\n" "$returntype"
2158 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
3d9a5942 2159 printf "{\n"
8de9bdc4 2160 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942 2161 printf " if (gdbarch_debug >= 2)\n"
8d113d13
SM
2162 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2163 printf " return gdbarch->%s;\n" "$function"
3d9a5942 2164 printf "}\n"
2ada493a 2165 fi
104c1213
JM
2166done
2167
2168# All the trailing guff
2169cat <<EOF
2170
2171
f44c642f 2172/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2173 modules. */
104c1213
JM
2174
2175struct gdbarch_data
2176{
95160752 2177 unsigned index;
76860b5f 2178 int init_p;
030f20e1
AC
2179 gdbarch_data_pre_init_ftype *pre_init;
2180 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2181};
2182
2183struct gdbarch_data_registration
2184{
104c1213
JM
2185 struct gdbarch_data *data;
2186 struct gdbarch_data_registration *next;
2187};
2188
f44c642f 2189struct gdbarch_data_registry
104c1213 2190{
95160752 2191 unsigned nr;
104c1213
JM
2192 struct gdbarch_data_registration *registrations;
2193};
2194
f44c642f 2195struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2196{
2197 0, NULL,
2198};
2199
030f20e1
AC
2200static struct gdbarch_data *
2201gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2202 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2203{
2204 struct gdbarch_data_registration **curr;
05c547f6
MS
2205
2206 /* Append the new registration. */
f44c642f 2207 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2208 (*curr) != NULL;
2209 curr = &(*curr)->next);
70ba0933 2210 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2211 (*curr)->next = NULL;
70ba0933 2212 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2213 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2214 (*curr)->data->pre_init = pre_init;
2215 (*curr)->data->post_init = post_init;
76860b5f 2216 (*curr)->data->init_p = 1;
104c1213
JM
2217 return (*curr)->data;
2218}
2219
030f20e1
AC
2220struct gdbarch_data *
2221gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2222{
2223 return gdbarch_data_register (pre_init, NULL);
2224}
2225
2226struct gdbarch_data *
2227gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2228{
2229 return gdbarch_data_register (NULL, post_init);
2230}
104c1213 2231
0963b4bd 2232/* Create/delete the gdbarch data vector. */
95160752
AC
2233
2234static void
b3cc3077 2235alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2236{
b3cc3077
JB
2237 gdb_assert (gdbarch->data == NULL);
2238 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2239 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2240}
3c875b6f 2241
76860b5f 2242/* Initialize the current value of the specified per-architecture
0963b4bd 2243 data-pointer. */
b3cc3077 2244
95160752 2245void
030f20e1
AC
2246deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2247 struct gdbarch_data *data,
2248 void *pointer)
95160752
AC
2249{
2250 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2251 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2252 gdb_assert (data->pre_init == NULL);
95160752
AC
2253 gdbarch->data[data->index] = pointer;
2254}
2255
104c1213 2256/* Return the current value of the specified per-architecture
0963b4bd 2257 data-pointer. */
104c1213
JM
2258
2259void *
451fbdda 2260gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2261{
451fbdda 2262 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2263 if (gdbarch->data[data->index] == NULL)
76860b5f 2264 {
030f20e1
AC
2265 /* The data-pointer isn't initialized, call init() to get a
2266 value. */
2267 if (data->pre_init != NULL)
2268 /* Mid architecture creation: pass just the obstack, and not
2269 the entire architecture, as that way it isn't possible for
2270 pre-init code to refer to undefined architecture
2271 fields. */
2272 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2273 else if (gdbarch->initialized_p
2274 && data->post_init != NULL)
2275 /* Post architecture creation: pass the entire architecture
2276 (as all fields are valid), but be careful to also detect
2277 recursive references. */
2278 {
2279 gdb_assert (data->init_p);
2280 data->init_p = 0;
2281 gdbarch->data[data->index] = data->post_init (gdbarch);
2282 data->init_p = 1;
2283 }
2284 else
2285 /* The architecture initialization hasn't completed - punt -
2286 hope that the caller knows what they are doing. Once
2287 deprecated_set_gdbarch_data has been initialized, this can be
2288 changed to an internal error. */
2289 return NULL;
76860b5f
AC
2290 gdb_assert (gdbarch->data[data->index] != NULL);
2291 }
451fbdda 2292 return gdbarch->data[data->index];
104c1213
JM
2293}
2294
2295
0963b4bd 2296/* Keep a registry of the architectures known by GDB. */
104c1213 2297
4b9b3959 2298struct gdbarch_registration
104c1213
JM
2299{
2300 enum bfd_architecture bfd_architecture;
2301 gdbarch_init_ftype *init;
4b9b3959 2302 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2303 struct gdbarch_list *arches;
4b9b3959 2304 struct gdbarch_registration *next;
104c1213
JM
2305};
2306
f44c642f 2307static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2308
b4a20239
AC
2309static void
2310append_name (const char ***buf, int *nr, const char *name)
2311{
1dc7a623 2312 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
b4a20239
AC
2313 (*buf)[*nr] = name;
2314 *nr += 1;
2315}
2316
2317const char **
2318gdbarch_printable_names (void)
2319{
7996bcec 2320 /* Accumulate a list of names based on the registed list of
0963b4bd 2321 architectures. */
7996bcec
AC
2322 int nr_arches = 0;
2323 const char **arches = NULL;
2324 struct gdbarch_registration *rego;
05c547f6 2325
7996bcec
AC
2326 for (rego = gdbarch_registry;
2327 rego != NULL;
2328 rego = rego->next)
b4a20239 2329 {
7996bcec
AC
2330 const struct bfd_arch_info *ap;
2331 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2332 if (ap == NULL)
2333 internal_error (__FILE__, __LINE__,
85c07804 2334 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2335 do
2336 {
2337 append_name (&arches, &nr_arches, ap->printable_name);
2338 ap = ap->next;
2339 }
2340 while (ap != NULL);
b4a20239 2341 }
7996bcec
AC
2342 append_name (&arches, &nr_arches, NULL);
2343 return arches;
b4a20239
AC
2344}
2345
2346
104c1213 2347void
4b9b3959
AC
2348gdbarch_register (enum bfd_architecture bfd_architecture,
2349 gdbarch_init_ftype *init,
2350 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2351{
4b9b3959 2352 struct gdbarch_registration **curr;
104c1213 2353 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2354
ec3d358c 2355 /* Check that BFD recognizes this architecture */
104c1213
JM
2356 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2357 if (bfd_arch_info == NULL)
2358 {
8e65ff28 2359 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2360 _("gdbarch: Attempt to register "
2361 "unknown architecture (%d)"),
8e65ff28 2362 bfd_architecture);
104c1213 2363 }
0963b4bd 2364 /* Check that we haven't seen this architecture before. */
f44c642f 2365 for (curr = &gdbarch_registry;
104c1213
JM
2366 (*curr) != NULL;
2367 curr = &(*curr)->next)
2368 {
2369 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2370 internal_error (__FILE__, __LINE__,
64b9b334 2371 _("gdbarch: Duplicate registration "
0963b4bd 2372 "of architecture (%s)"),
8e65ff28 2373 bfd_arch_info->printable_name);
104c1213
JM
2374 }
2375 /* log it */
2376 if (gdbarch_debug)
30737ed9 2377 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2378 bfd_arch_info->printable_name,
30737ed9 2379 host_address_to_string (init));
104c1213 2380 /* Append it */
70ba0933 2381 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2382 (*curr)->bfd_architecture = bfd_architecture;
2383 (*curr)->init = init;
4b9b3959 2384 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2385 (*curr)->arches = NULL;
2386 (*curr)->next = NULL;
4b9b3959
AC
2387}
2388
2389void
2390register_gdbarch_init (enum bfd_architecture bfd_architecture,
2391 gdbarch_init_ftype *init)
2392{
2393 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2394}
104c1213
JM
2395
2396
424163ea 2397/* Look for an architecture using gdbarch_info. */
104c1213
JM
2398
2399struct gdbarch_list *
2400gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2401 const struct gdbarch_info *info)
2402{
2403 for (; arches != NULL; arches = arches->next)
2404 {
2405 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2406 continue;
2407 if (info->byte_order != arches->gdbarch->byte_order)
2408 continue;
4be87837
DJ
2409 if (info->osabi != arches->gdbarch->osabi)
2410 continue;
424163ea
DJ
2411 if (info->target_desc != arches->gdbarch->target_desc)
2412 continue;
104c1213
JM
2413 return arches;
2414 }
2415 return NULL;
2416}
2417
2418
ebdba546 2419/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2420 architecture if needed. Return that new architecture. */
104c1213 2421
59837fe0
UW
2422struct gdbarch *
2423gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2424{
2425 struct gdbarch *new_gdbarch;
4b9b3959 2426 struct gdbarch_registration *rego;
104c1213 2427
b732d07d 2428 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2429 sources: "set ..."; INFOabfd supplied; and the global
2430 defaults. */
2431 gdbarch_info_fill (&info);
4be87837 2432
0963b4bd 2433 /* Must have found some sort of architecture. */
b732d07d 2434 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2435
2436 if (gdbarch_debug)
2437 {
2438 fprintf_unfiltered (gdb_stdlog,
59837fe0 2439 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2440 (info.bfd_arch_info != NULL
2441 ? info.bfd_arch_info->printable_name
2442 : "(null)"));
2443 fprintf_unfiltered (gdb_stdlog,
59837fe0 2444 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2445 info.byte_order,
d7449b42 2446 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2447 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2448 : "default"));
4be87837 2449 fprintf_unfiltered (gdb_stdlog,
59837fe0 2450 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2451 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2452 fprintf_unfiltered (gdb_stdlog,
59837fe0 2453 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2454 host_address_to_string (info.abfd));
104c1213 2455 fprintf_unfiltered (gdb_stdlog,
59837fe0 2456 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2457 host_address_to_string (info.tdep_info));
104c1213
JM
2458 }
2459
ebdba546 2460 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2461 for (rego = gdbarch_registry;
2462 rego != NULL;
2463 rego = rego->next)
2464 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2465 break;
2466 if (rego == NULL)
2467 {
2468 if (gdbarch_debug)
59837fe0 2469 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2470 "No matching architecture\n");
b732d07d
AC
2471 return 0;
2472 }
2473
ebdba546 2474 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2475 new_gdbarch = rego->init (info, rego->arches);
2476
ebdba546
AC
2477 /* Did the tdep code like it? No. Reject the change and revert to
2478 the old architecture. */
104c1213
JM
2479 if (new_gdbarch == NULL)
2480 {
2481 if (gdbarch_debug)
59837fe0 2482 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2483 "Target rejected architecture\n");
2484 return NULL;
104c1213
JM
2485 }
2486
ebdba546
AC
2487 /* Is this a pre-existing architecture (as determined by already
2488 being initialized)? Move it to the front of the architecture
2489 list (keeping the list sorted Most Recently Used). */
2490 if (new_gdbarch->initialized_p)
104c1213 2491 {
ebdba546 2492 struct gdbarch_list **list;
fe978cb0 2493 struct gdbarch_list *self;
104c1213 2494 if (gdbarch_debug)
59837fe0 2495 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2496 "Previous architecture %s (%s) selected\n",
2497 host_address_to_string (new_gdbarch),
104c1213 2498 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2499 /* Find the existing arch in the list. */
2500 for (list = &rego->arches;
2501 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2502 list = &(*list)->next);
2503 /* It had better be in the list of architectures. */
2504 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
fe978cb0
PA
2505 /* Unlink SELF. */
2506 self = (*list);
2507 (*list) = self->next;
2508 /* Insert SELF at the front. */
2509 self->next = rego->arches;
2510 rego->arches = self;
ebdba546
AC
2511 /* Return it. */
2512 return new_gdbarch;
104c1213
JM
2513 }
2514
ebdba546
AC
2515 /* It's a new architecture. */
2516 if (gdbarch_debug)
59837fe0 2517 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2518 "New architecture %s (%s) selected\n",
2519 host_address_to_string (new_gdbarch),
ebdba546
AC
2520 new_gdbarch->bfd_arch_info->printable_name);
2521
2522 /* Insert the new architecture into the front of the architecture
2523 list (keep the list sorted Most Recently Used). */
0f79675b 2524 {
fe978cb0
PA
2525 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2526 self->next = rego->arches;
2527 self->gdbarch = new_gdbarch;
2528 rego->arches = self;
0f79675b 2529 }
104c1213 2530
4b9b3959
AC
2531 /* Check that the newly installed architecture is valid. Plug in
2532 any post init values. */
2533 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2534 verify_gdbarch (new_gdbarch);
ebdba546 2535 new_gdbarch->initialized_p = 1;
104c1213 2536
4b9b3959 2537 if (gdbarch_debug)
ebdba546
AC
2538 gdbarch_dump (new_gdbarch, gdb_stdlog);
2539
2540 return new_gdbarch;
2541}
2542
e487cc15 2543/* Make the specified architecture current. */
ebdba546
AC
2544
2545void
aff68abb 2546set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2547{
2548 gdb_assert (new_gdbarch != NULL);
ebdba546 2549 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2550 current_inferior ()->gdbarch = new_gdbarch;
0bee6dd4 2551 gdb::observers::architecture_changed.notify (new_gdbarch);
a3ecef73 2552 registers_changed ();
ebdba546 2553}
104c1213 2554
f5656ead 2555/* Return the current inferior's arch. */
6ecd4729
PA
2556
2557struct gdbarch *
f5656ead 2558target_gdbarch (void)
6ecd4729
PA
2559{
2560 return current_inferior ()->gdbarch;
2561}
2562
a1237872 2563void _initialize_gdbarch ();
104c1213 2564void
a1237872 2565_initialize_gdbarch ()
104c1213 2566{
ccce17b0 2567 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2568Set architecture debugging."), _("\\
2569Show architecture debugging."), _("\\
2570When non-zero, architecture debugging is enabled."),
2571 NULL,
920d2a44 2572 show_gdbarch_debug,
85c07804 2573 &setdebuglist, &showdebuglist);
104c1213
JM
2574}
2575EOF
2576
2577# close things off
2578exec 1>&2
41a77cba
SM
2579../move-if-change new-gdbarch.c gdbarch.c
2580rm -f new-gdbarch.c
This page took 1.781804 seconds and 4 git commands to generate.