Clear addr bit in next_pcs vector
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
618f726f 5# Copyright (C) 1998-2016 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
be7811ad 341i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
94123b4f
YQ
343i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 345#
97030eea 346i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 347#
30737ed9 348i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
352v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
66b43ecb
AC
354# Number of bits in a char or unsigned char for the target machine.
355# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 356# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
357#
358# Number of bits in a short or unsigned short for the target machine.
97030eea 359v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in an int or unsigned int for the target machine.
97030eea 361v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 362# Number of bits in a long or unsigned long for the target machine.
97030eea 363v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
364# Number of bits in a long long or unsigned long long for the target
365# machine.
be7811ad 366v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
205c306f
DM
367# Alignment of a long long or unsigned long long for the target
368# machine.
369v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94 370
f9e9243a
UW
371# The ABI default bit-size and format for "half", "float", "double", and
372# "long double". These bit/format pairs should eventually be combined
373# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
374# Each format describes both the big and little endian layouts (if
375# useful).
456fcf94 376
f9e9243a
UW
377v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
97030eea 379v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 380v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 381v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 382v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 383v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 384v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 385
9b790ce7
UW
386# Returns the floating-point format to be used for values of length LENGTH.
387# NAME, if non-NULL, is the type name, which may be used to distinguish
388# different target formats of the same length.
389m:const struct floatformat **:floatformat_for_type:const char *name, int length:name, length:0:default_floatformat_for_type::0
390
52204a0b
DT
391# For most targets, a pointer on the target and its representation as an
392# address in GDB have the same size and "look the same". For such a
17a912b6 393# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
394# / addr_bit will be set from it.
395#
17a912b6 396# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
397# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
398# gdbarch_address_to_pointer as well.
52204a0b
DT
399#
400# ptr_bit is the size of a pointer on the target
be7811ad 401v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 402# addr_bit is the size of a target address as represented in gdb
be7811ad 403v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 404#
8da614df
CV
405# dwarf2_addr_size is the target address size as used in the Dwarf debug
406# info. For .debug_frame FDEs, this is supposed to be the target address
407# size from the associated CU header, and which is equivalent to the
408# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
409# Unfortunately there is no good way to determine this value. Therefore
410# dwarf2_addr_size simply defaults to the target pointer size.
411#
412# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
413# defined using the target's pointer size so far.
414#
415# Note that dwarf2_addr_size only needs to be redefined by a target if the
416# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
417# and if Dwarf versions < 4 need to be supported.
418v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
419#
4e409299 420# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 421v:int:char_signed:::1:-1:1
4e409299 422#
97030eea
UW
423F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
424F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
425# Function for getting target's idea of a frame pointer. FIXME: GDB's
426# whole scheme for dealing with "frames" and "frame pointers" needs a
427# serious shakedown.
a54fba4c 428m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 429#
05d1431c 430M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
3543a589
TT
431# Read a register into a new struct value. If the register is wholly
432# or partly unavailable, this should call mark_value_bytes_unavailable
433# as appropriate. If this is defined, then pseudo_register_read will
434# never be called.
435M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
97030eea 436M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 437#
97030eea 438v:int:num_regs:::0:-1
0aba1244
EZ
439# This macro gives the number of pseudo-registers that live in the
440# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
441# These pseudo-registers may be aliases for other registers,
442# combinations of other registers, or they may be computed by GDB.
97030eea 443v:int:num_pseudo_regs:::0:0::0
c2169756 444
175ff332
HZ
445# Assemble agent expression bytecode to collect pseudo-register REG.
446# Return -1 if something goes wrong, 0 otherwise.
447M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
448
449# Assemble agent expression bytecode to push the value of pseudo-register
450# REG on the interpreter stack.
451# Return -1 if something goes wrong, 0 otherwise.
452M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
453
012b3a21
WT
454# Some targets/architectures can do extra processing/display of
455# segmentation faults. E.g., Intel MPX boundary faults.
456# Call the architecture dependent function to handle the fault.
457# UIOUT is the output stream where the handler will place information.
458M:void:handle_segmentation_fault:struct ui_out *uiout:uiout
459
c2169756
AC
460# GDB's standard (or well known) register numbers. These can map onto
461# a real register or a pseudo (computed) register or not be defined at
1200cd6e 462# all (-1).
3e8c568d 463# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
464v:int:sp_regnum:::-1:-1::0
465v:int:pc_regnum:::-1:-1::0
466v:int:ps_regnum:::-1:-1::0
467v:int:fp0_regnum:::0:-1::0
88c72b7d 468# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 469m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 470# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 471m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 472# Convert from an sdb register number to an internal gdb register number.
d3f73121 473m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 474# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
0fde2c53 475# Return -1 for bad REGNUM. Note: Several targets get this wrong.
d3f73121 476m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 477m:const char *:register_name:int regnr:regnr::0
9c04cab7 478
7b9ee6a8
DJ
479# Return the type of a register specified by the architecture. Only
480# the register cache should call this function directly; others should
481# use "register_type".
97030eea 482M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 483
669fac23
DJ
484M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
485# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 486# deprecated_fp_regnum.
97030eea 487v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 488
97030eea
UW
489M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
490v:int:call_dummy_location::::AT_ENTRY_POINT::0
491M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 492
7eb89530
YQ
493# Return true if the code of FRAME is writable.
494m:int:code_of_frame_writable:struct frame_info *frame:frame::default_code_of_frame_writable::0
495
97030eea 496m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
cc86d1cb 497m:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args::default_print_float_info::0
97030eea 498M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
499# MAP a GDB RAW register number onto a simulator register number. See
500# also include/...-sim.h.
e7faf938 501m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
502m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
503m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
eade6471
JB
504
505# Determine the address where a longjmp will land and save this address
506# in PC. Return nonzero on success.
507#
508# FRAME corresponds to the longjmp frame.
97030eea 509F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
eade6471 510
104c1213 511#
97030eea 512v:int:believe_pcc_promotion:::::::
104c1213 513#
0abe36f5 514m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
8dccd430 515f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
97030eea 516f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0 517# Construct a value representing the contents of register REGNUM in
2ed3c037 518# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
519# allocate and return a struct value with all value attributes
520# (but not the value contents) filled in.
2ed3c037 521m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
104c1213 522#
9898f801
UW
523m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
524m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 525M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 526
6a3a010b
MR
527# Return the return-value convention that will be used by FUNCTION
528# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
529# case the return convention is computed based only on VALTYPE.
530#
531# If READBUF is not NULL, extract the return value and save it in this buffer.
532#
533# If WRITEBUF is not NULL, it contains a return value which will be
534# stored into the appropriate register. This can be used when we want
535# to force the value returned by a function (see the "return" command
536# for instance).
6a3a010b 537M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
92ad9cd9 538
18648a37
YQ
539# Return true if the return value of function is stored in the first hidden
540# parameter. In theory, this feature should be language-dependent, specified
541# by language and its ABI, such as C++. Unfortunately, compiler may
542# implement it to a target-dependent feature. So that we need such hook here
543# to be aware of this in GDB.
544m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
545
6093d2eb 546m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 547M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
591a12a1
UW
548# On some platforms, a single function may provide multiple entry points,
549# e.g. one that is used for function-pointer calls and a different one
550# that is used for direct function calls.
551# In order to ensure that breakpoints set on the function will trigger
552# no matter via which entry point the function is entered, a platform
553# may provide the skip_entrypoint callback. It is called with IP set
554# to the main entry point of a function (as determined by the symbol table),
555# and should return the address of the innermost entry point, where the
556# actual breakpoint needs to be set. Note that skip_entrypoint is used
557# by GDB common code even when debugging optimized code, where skip_prologue
558# is not used.
559M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
560
97030eea 561f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
22f13eb8 562m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:0:default_breakpoint_from_pc::0
cd6c3b4f
YQ
563
564# Return the breakpoint kind for this target based on *PCPTR.
565m:int:breakpoint_kind_from_pc:CORE_ADDR *pcptr:pcptr::0:
566
567# Return the software breakpoint from KIND. KIND can have target
568# specific meaning like the Z0 kind parameter.
569# SIZE is set to the software breakpoint's length in memory.
570m:const gdb_byte *:sw_breakpoint_from_kind:int kind, int *size:kind, size::NULL::0
571
833b7ab5
YQ
572# Return the breakpoint kind for this target based on the current
573# processor state (e.g. the current instruction mode on ARM) and the
574# *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
575m:int:breakpoint_kind_from_current_state:struct regcache *regcache, CORE_ADDR *pcptr:regcache, pcptr:0:default_breakpoint_kind_from_current_state::0
576
97030eea 577M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
578m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
579m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 580v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
581
582# A function can be addressed by either it's "pointer" (possibly a
583# descriptor address) or "entry point" (first executable instruction).
584# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 585# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
586# a simplified subset of that functionality - the function's address
587# corresponds to the "function pointer" and the function's start
588# corresponds to the "function entry point" - and hence is redundant.
589
97030eea 590v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 591
123dc839
DJ
592# Return the remote protocol register number associated with this
593# register. Normally the identity mapping.
97030eea 594m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 595
b2756930 596# Fetch the target specific address used to represent a load module.
97030eea 597F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 598#
97030eea
UW
599v:CORE_ADDR:frame_args_skip:::0:::0
600M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
601M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
602# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
603# frame-base. Enable frame-base before frame-unwind.
97030eea 604F:int:frame_num_args:struct frame_info *frame:frame
104c1213 605#
97030eea
UW
606M:CORE_ADDR:frame_align:CORE_ADDR address:address
607m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
608v:int:frame_red_zone_size
f0d4cc9e 609#
97030eea 610m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
611# On some machines there are bits in addresses which are not really
612# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 613# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
614# we get a "real" address such as one would find in a symbol table.
615# This is used only for addresses of instructions, and even then I'm
616# not sure it's used in all contexts. It exists to deal with there
617# being a few stray bits in the PC which would mislead us, not as some
618# sort of generic thing to handle alignment or segmentation (it's
619# possible it should be in TARGET_READ_PC instead).
24568a2c 620m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
621
622# FIXME/cagney/2001-01-18: This should be split in two. A target method that
623# indicates if the target needs software single step. An ISA method to
624# implement it.
625#
e6590a1b
UW
626# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
627# target can single step. If not, then implement single step using breakpoints.
64c4637f 628#
6f112b18 629# A return value of 1 means that the software_single_step breakpoints
21edc42f
YQ
630# were inserted; 0 means they were not. Multiple breakpoints may be
631# inserted for some instructions such as conditional branch. However,
632# each implementation must always evaluate the condition and only put
633# the breakpoint at the branch destination if the condition is true, so
634# that we ensure forward progress when stepping past a conditional
635# branch to self.
97030eea 636F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 637
3352ef37
AC
638# Return non-zero if the processor is executing a delay slot and a
639# further single-step is needed before the instruction finishes.
97030eea 640M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 641# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 642# disassembler. Perhaps objdump can handle it?
97030eea
UW
643f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
644f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
645
646
cfd8ab24 647# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
648# evaluates non-zero, this is the address where the debugger will place
649# a step-resume breakpoint to get us past the dynamic linker.
97030eea 650m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 651# Some systems also have trampoline code for returning from shared libs.
2c02bd72 652m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 653
c12260ac
CV
654# A target might have problems with watchpoints as soon as the stack
655# frame of the current function has been destroyed. This mostly happens
c9cf6e20 656# as the first action in a function's epilogue. stack_frame_destroyed_p()
c12260ac
CV
657# is defined to return a non-zero value if either the given addr is one
658# instruction after the stack destroying instruction up to the trailing
659# return instruction or if we can figure out that the stack frame has
660# already been invalidated regardless of the value of addr. Targets
661# which don't suffer from that problem could just let this functionality
662# untouched.
c9cf6e20 663m:int:stack_frame_destroyed_p:CORE_ADDR addr:addr:0:generic_stack_frame_destroyed_p::0
3e29f34a
MR
664# Process an ELF symbol in the minimal symbol table in a backend-specific
665# way. Normally this hook is supposed to do nothing, however if required,
666# then this hook can be used to apply tranformations to symbols that are
667# considered special in some way. For example the MIPS backend uses it
668# to interpret \`st_other' information to mark compressed code symbols so
669# that they can be treated in the appropriate manner in the processing of
670# the main symbol table and DWARF-2 records.
671F:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym
97030eea 672f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
3e29f34a
MR
673# Process a symbol in the main symbol table in a backend-specific way.
674# Normally this hook is supposed to do nothing, however if required,
675# then this hook can be used to apply tranformations to symbols that
676# are considered special in some way. This is currently used by the
677# MIPS backend to make sure compressed code symbols have the ISA bit
678# set. This in turn is needed for symbol values seen in GDB to match
679# the values used at the runtime by the program itself, for function
680# and label references.
681f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objfile::default_make_symbol_special::0
682# Adjust the address retrieved from a DWARF-2 record other than a line
683# entry in a backend-specific way. Normally this hook is supposed to
684# return the address passed unchanged, however if that is incorrect for
685# any reason, then this hook can be used to fix the address up in the
686# required manner. This is currently used by the MIPS backend to make
687# sure addresses in FDE, range records, etc. referring to compressed
688# code have the ISA bit set, matching line information and the symbol
689# table.
690f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0
691# Adjust the address updated by a line entry in a backend-specific way.
692# Normally this hook is supposed to return the address passed unchanged,
693# however in the case of inconsistencies in these records, this hook can
694# be used to fix them up in the required manner. This is currently used
695# by the MIPS backend to make sure all line addresses in compressed code
696# are presented with the ISA bit set, which is not always the case. This
697# in turn ensures breakpoint addresses are correctly matched against the
698# stop PC.
699f:CORE_ADDR:adjust_dwarf2_line:CORE_ADDR addr, int rel:addr, rel::default_adjust_dwarf2_line::0
97030eea
UW
700v:int:cannot_step_breakpoint:::0:0::0
701v:int:have_nonsteppable_watchpoint:::0:0::0
702F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
703M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
69f97648
SM
704
705# Return the appropriate type_flags for the supplied address class.
706# This function should return 1 if the address class was recognized and
707# type_flags was set, zero otherwise.
97030eea 708M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 709# Is a register in a group
97030eea 710m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 711# Fetch the pointer to the ith function argument.
97030eea 712F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f 713
5aa82d05
AA
714# Iterate over all supported register notes in a core file. For each
715# supported register note section, the iterator must call CB and pass
716# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
717# the supported register note sections based on the current register
718# values. Otherwise it should enumerate all supported register note
719# sections.
720M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
17ea7499 721
6432734d
UW
722# Create core file notes
723M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
724
b3ac9c77
SDJ
725# The elfcore writer hook to use to write Linux prpsinfo notes to core
726# files. Most Linux architectures use the same prpsinfo32 or
727# prpsinfo64 layouts, and so won't need to provide this hook, as we
728# call the Linux generic routines in bfd to write prpsinfo notes by
729# default.
730F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
731
35c2fab7
UW
732# Find core file memory regions
733M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
734
de584861 735# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
736# core file into buffer READBUF with length LEN. Return the number of bytes read
737# (zero indicates failure).
738# failed, otherwise, return the red length of READBUF.
739M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
de584861 740
356a5233
JB
741# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
742# libraries list from core file into buffer READBUF with length LEN.
c09f20e4
YQ
743# Return the number of bytes read (zero indicates failure).
744M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
356a5233 745
c0edd9ed 746# How the core target converts a PTID from a core file to a string.
28439f5e
PA
747M:char *:core_pid_to_str:ptid_t ptid:ptid
748
4dfc5dbc
JB
749# How the core target extracts the name of a thread from a core file.
750M:const char *:core_thread_name:struct thread_info *thr:thr
751
a78c2d62 752# BFD target to use when generating a core file.
86ba1042 753V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
a78c2d62 754
0d5de010
DJ
755# If the elements of C++ vtables are in-place function descriptors rather
756# than normal function pointers (which may point to code or a descriptor),
757# set this to one.
97030eea 758v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
759
760# Set if the least significant bit of the delta is used instead of the least
761# significant bit of the pfn for pointers to virtual member functions.
97030eea 762v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
763
764# Advance PC to next instruction in order to skip a permanent breakpoint.
ae9bb220 765f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0
1c772458 766
1668ae25 767# The maximum length of an instruction on this architecture in bytes.
237fc4c9
PA
768V:ULONGEST:max_insn_length:::0:0
769
770# Copy the instruction at FROM to TO, and make any adjustments
771# necessary to single-step it at that address.
772#
773# REGS holds the state the thread's registers will have before
774# executing the copied instruction; the PC in REGS will refer to FROM,
775# not the copy at TO. The caller should update it to point at TO later.
776#
777# Return a pointer to data of the architecture's choice to be passed
778# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
779# the instruction's effects have been completely simulated, with the
780# resulting state written back to REGS.
781#
782# For a general explanation of displaced stepping and how GDB uses it,
783# see the comments in infrun.c.
784#
785# The TO area is only guaranteed to have space for
786# gdbarch_max_insn_length (arch) bytes, so this function must not
787# write more bytes than that to that area.
788#
789# If you do not provide this function, GDB assumes that the
790# architecture does not support displaced stepping.
791#
792# If your architecture doesn't need to adjust instructions before
793# single-stepping them, consider using simple_displaced_step_copy_insn
794# here.
7f03bd92
PA
795#
796# If the instruction cannot execute out of line, return NULL. The
797# core falls back to stepping past the instruction in-line instead in
798# that case.
237fc4c9
PA
799M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
800
99e40580
UW
801# Return true if GDB should use hardware single-stepping to execute
802# the displaced instruction identified by CLOSURE. If false,
803# GDB will simply restart execution at the displaced instruction
804# location, and it is up to the target to ensure GDB will receive
805# control again (e.g. by placing a software breakpoint instruction
806# into the displaced instruction buffer).
807#
808# The default implementation returns false on all targets that
809# provide a gdbarch_software_single_step routine, and true otherwise.
810m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
811
237fc4c9
PA
812# Fix up the state resulting from successfully single-stepping a
813# displaced instruction, to give the result we would have gotten from
814# stepping the instruction in its original location.
815#
816# REGS is the register state resulting from single-stepping the
817# displaced instruction.
818#
819# CLOSURE is the result from the matching call to
820# gdbarch_displaced_step_copy_insn.
821#
822# If you provide gdbarch_displaced_step_copy_insn.but not this
823# function, then GDB assumes that no fixup is needed after
824# single-stepping the instruction.
825#
826# For a general explanation of displaced stepping and how GDB uses it,
827# see the comments in infrun.c.
828M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
829
830# Free a closure returned by gdbarch_displaced_step_copy_insn.
831#
832# If you provide gdbarch_displaced_step_copy_insn, you must provide
833# this function as well.
834#
835# If your architecture uses closures that don't need to be freed, then
836# you can use simple_displaced_step_free_closure here.
837#
838# For a general explanation of displaced stepping and how GDB uses it,
839# see the comments in infrun.c.
840m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
841
842# Return the address of an appropriate place to put displaced
843# instructions while we step over them. There need only be one such
844# place, since we're only stepping one thread over a breakpoint at a
845# time.
846#
847# For a general explanation of displaced stepping and how GDB uses it,
848# see the comments in infrun.c.
849m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
850
dde08ee1
PA
851# Relocate an instruction to execute at a different address. OLDLOC
852# is the address in the inferior memory where the instruction to
853# relocate is currently at. On input, TO points to the destination
854# where we want the instruction to be copied (and possibly adjusted)
855# to. On output, it points to one past the end of the resulting
856# instruction(s). The effect of executing the instruction at TO shall
857# be the same as if executing it at FROM. For example, call
858# instructions that implicitly push the return address on the stack
859# should be adjusted to return to the instruction after OLDLOC;
860# relative branches, and other PC-relative instructions need the
861# offset adjusted; etc.
862M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
863
1c772458 864# Refresh overlay mapped state for section OSECT.
97030eea 865F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 866
97030eea 867M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
868
869# Handle special encoding of static variables in stabs debug info.
0d5cff50 870F:const char *:static_transform_name:const char *name:name
203c3895 871# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 872v:int:sofun_address_maybe_missing:::0:0::0
1cded358 873
0508c3ec
HZ
874# Parse the instruction at ADDR storing in the record execution log
875# the registers REGCACHE and memory ranges that will be affected when
876# the instruction executes, along with their current values.
877# Return -1 if something goes wrong, 0 otherwise.
878M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
879
3846b520
HZ
880# Save process state after a signal.
881# Return -1 if something goes wrong, 0 otherwise.
2ea28649 882M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
3846b520 883
22203bbf 884# Signal translation: translate inferior's signal (target's) number
86b49880
PA
885# into GDB's representation. The implementation of this method must
886# be host independent. IOW, don't rely on symbols of the NAT_FILE
887# header (the nm-*.h files), the host <signal.h> header, or similar
888# headers. This is mainly used when cross-debugging core files ---
889# "Live" targets hide the translation behind the target interface
1f8cf220
PA
890# (target_wait, target_resume, etc.).
891M:enum gdb_signal:gdb_signal_from_target:int signo:signo
60c5725c 892
eb14d406
SDJ
893# Signal translation: translate the GDB's internal signal number into
894# the inferior's signal (target's) representation. The implementation
895# of this method must be host independent. IOW, don't rely on symbols
896# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
897# header, or similar headers.
898# Return the target signal number if found, or -1 if the GDB internal
899# signal number is invalid.
900M:int:gdb_signal_to_target:enum gdb_signal signal:signal
901
4aa995e1
PA
902# Extra signal info inspection.
903#
904# Return a type suitable to inspect extra signal information.
905M:struct type *:get_siginfo_type:void:
906
60c5725c
DJ
907# Record architecture-specific information from the symbol table.
908M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 909
a96d9b2e
SDJ
910# Function for the 'catch syscall' feature.
911
912# Get architecture-specific system calls information from registers.
913M:LONGEST:get_syscall_number:ptid_t ptid:ptid
914
458c8db8
SDJ
915# The filename of the XML syscall for this architecture.
916v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file)
917
918# Information about system calls from this architecture
919v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info)
920
55aa24fb
SDJ
921# SystemTap related fields and functions.
922
05c0465e
SDJ
923# A NULL-terminated array of prefixes used to mark an integer constant
924# on the architecture's assembly.
55aa24fb
SDJ
925# For example, on x86 integer constants are written as:
926#
927# \$10 ;; integer constant 10
928#
929# in this case, this prefix would be the character \`\$\'.
05c0465e 930v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 931
05c0465e
SDJ
932# A NULL-terminated array of suffixes used to mark an integer constant
933# on the architecture's assembly.
934v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 935
05c0465e
SDJ
936# A NULL-terminated array of prefixes used to mark a register name on
937# the architecture's assembly.
55aa24fb
SDJ
938# For example, on x86 the register name is written as:
939#
940# \%eax ;; register eax
941#
942# in this case, this prefix would be the character \`\%\'.
05c0465e 943v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 944
05c0465e
SDJ
945# A NULL-terminated array of suffixes used to mark a register name on
946# the architecture's assembly.
947v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 948
05c0465e
SDJ
949# A NULL-terminated array of prefixes used to mark a register
950# indirection on the architecture's assembly.
55aa24fb
SDJ
951# For example, on x86 the register indirection is written as:
952#
953# \(\%eax\) ;; indirecting eax
954#
955# in this case, this prefix would be the charater \`\(\'.
956#
957# Please note that we use the indirection prefix also for register
958# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 959v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 960
05c0465e
SDJ
961# A NULL-terminated array of suffixes used to mark a register
962# indirection on the architecture's assembly.
55aa24fb
SDJ
963# For example, on x86 the register indirection is written as:
964#
965# \(\%eax\) ;; indirecting eax
966#
967# in this case, this prefix would be the charater \`\)\'.
968#
969# Please note that we use the indirection suffix also for register
970# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 971v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 972
05c0465e 973# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
974#
975# For example, on PPC a register is represented by a number in the assembly
976# language (e.g., \`10\' is the 10th general-purpose register). However,
977# inside GDB this same register has an \`r\' appended to its name, so the 10th
978# register would be represented as \`r10\' internally.
08af7a40 979v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
980
981# Suffix used to name a register using GDB's nomenclature.
08af7a40 982v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
983
984# Check if S is a single operand.
985#
986# Single operands can be:
987# \- Literal integers, e.g. \`\$10\' on x86
988# \- Register access, e.g. \`\%eax\' on x86
989# \- Register indirection, e.g. \`\(\%eax\)\' on x86
990# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
991#
992# This function should check for these patterns on the string
993# and return 1 if some were found, or zero otherwise. Please try to match
994# as much info as you can from the string, i.e., if you have to match
995# something like \`\(\%\', do not match just the \`\(\'.
996M:int:stap_is_single_operand:const char *s:s
997
998# Function used to handle a "special case" in the parser.
999#
1000# A "special case" is considered to be an unknown token, i.e., a token
1001# that the parser does not know how to parse. A good example of special
1002# case would be ARM's register displacement syntax:
1003#
1004# [R0, #4] ;; displacing R0 by 4
1005#
1006# Since the parser assumes that a register displacement is of the form:
1007#
1008# <number> <indirection_prefix> <register_name> <indirection_suffix>
1009#
1010# it means that it will not be able to recognize and parse this odd syntax.
1011# Therefore, we should add a special case function that will handle this token.
1012#
1013# This function should generate the proper expression form of the expression
1014# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1015# and so on). It should also return 1 if the parsing was successful, or zero
1016# if the token was not recognized as a special token (in this case, returning
1017# zero means that the special parser is deferring the parsing to the generic
1018# parser), and should advance the buffer pointer (p->arg).
1019M:int:stap_parse_special_token:struct stap_parse_info *p:p
1020
8b367e17
JM
1021# DTrace related functions.
1022
1023# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1024# NARG must be >= 0.
1025M:void:dtrace_parse_probe_argument:struct parser_state *pstate, int narg:pstate, narg
1026
1027# True if the given ADDR does not contain the instruction sequence
1028# corresponding to a disabled DTrace is-enabled probe.
1029M:int:dtrace_probe_is_enabled:CORE_ADDR addr:addr
1030
1031# Enable a DTrace is-enabled probe at ADDR.
1032M:void:dtrace_enable_probe:CORE_ADDR addr:addr
1033
1034# Disable a DTrace is-enabled probe at ADDR.
1035M:void:dtrace_disable_probe:CORE_ADDR addr:addr
55aa24fb 1036
50c71eaf
PA
1037# True if the list of shared libraries is one and only for all
1038# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
1039# This usually means that all processes, although may or may not share
1040# an address space, will see the same set of symbols at the same
1041# addresses.
50c71eaf 1042v:int:has_global_solist:::0:0::0
2567c7d9
PA
1043
1044# On some targets, even though each inferior has its own private
1045# address space, the debug interface takes care of making breakpoints
1046# visible to all address spaces automatically. For such cases,
1047# this property should be set to true.
1048v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
1049
1050# True if inferiors share an address space (e.g., uClinux).
1051m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
1052
1053# True if a fast tracepoint can be set at an address.
6b940e6a 1054m:int:fast_tracepoint_valid_at:CORE_ADDR addr, char **msg:addr, msg::default_fast_tracepoint_valid_at::0
75cebea9 1055
5f034a78
MK
1056# Guess register state based on tracepoint location. Used for tracepoints
1057# where no registers have been collected, but there's only one location,
1058# allowing us to guess the PC value, and perhaps some other registers.
1059# On entry, regcache has all registers marked as unavailable.
1060m:void:guess_tracepoint_registers:struct regcache *regcache, CORE_ADDR addr:regcache, addr::default_guess_tracepoint_registers::0
1061
f870a310
TT
1062# Return the "auto" target charset.
1063f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
1064# Return the "auto" target wide charset.
1065f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
1066
1067# If non-empty, this is a file extension that will be opened in place
1068# of the file extension reported by the shared library list.
1069#
1070# This is most useful for toolchains that use a post-linker tool,
1071# where the names of the files run on the target differ in extension
1072# compared to the names of the files GDB should load for debug info.
1073v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
1074
1075# If true, the target OS has DOS-based file system semantics. That
1076# is, absolute paths include a drive name, and the backslash is
1077# considered a directory separator.
1078v:int:has_dos_based_file_system:::0:0::0
6710bf39
SS
1079
1080# Generate bytecodes to collect the return address in a frame.
1081# Since the bytecodes run on the target, possibly with GDB not even
1082# connected, the full unwinding machinery is not available, and
1083# typically this function will issue bytecodes for one or more likely
1084# places that the return address may be found.
1085m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
1086
3030c96e 1087# Implement the "info proc" command.
7bc112c1 1088M:void:info_proc:const char *args, enum info_proc_what what:args, what
3030c96e 1089
451b7c33
TT
1090# Implement the "info proc" command for core files. Noe that there
1091# are two "info_proc"-like methods on gdbarch -- one for core files,
1092# one for live targets.
7bc112c1 1093M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
451b7c33 1094
19630284
JB
1095# Iterate over all objfiles in the order that makes the most sense
1096# for the architecture to make global symbol searches.
1097#
1098# CB is a callback function where OBJFILE is the objfile to be searched,
1099# and CB_DATA a pointer to user-defined data (the same data that is passed
1100# when calling this gdbarch method). The iteration stops if this function
1101# returns nonzero.
1102#
1103# CB_DATA is a pointer to some user-defined data to be passed to
1104# the callback.
1105#
1106# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1107# inspected when the symbol search was requested.
1108m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1109
7e35103a
JB
1110# Ravenscar arch-dependent ops.
1111v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1112
1113# Return non-zero if the instruction at ADDR is a call; zero otherwise.
1114m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1115
1116# Return non-zero if the instruction at ADDR is a return; zero otherwise.
1117m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1118
1119# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1120m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
27a48a92
MK
1121
1122# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1123# Return 0 if *READPTR is already at the end of the buffer.
1124# Return -1 if there is insufficient buffer for a whole entry.
1125# Return 1 if an entry was read into *TYPEP and *VALP.
1126M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
3437254d 1127
2faa3447
JB
1128# Print the description of a single auxv entry described by TYPE and VAL
1129# to FILE.
1130m:void:print_auxv_entry:struct ui_file *file, CORE_ADDR type, CORE_ADDR val:file, type, val::default_print_auxv_entry::0
1131
3437254d
PA
1132# Find the address range of the current inferior's vsyscall/vDSO, and
1133# write it to *RANGE. If the vsyscall's length can't be determined, a
1134# range with zero length is returned. Returns true if the vsyscall is
1135# found, false otherwise.
1136m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
f208eee0
JK
1137
1138# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1139# PROT has GDB_MMAP_PROT_* bitmask format.
1140# Throw an error if it is not possible. Returned address is always valid.
1141f:CORE_ADDR:infcall_mmap:CORE_ADDR size, unsigned prot:size, prot::default_infcall_mmap::0
1142
7f361056
JK
1143# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1144# Print a warning if it is not possible.
1145f:void:infcall_munmap:CORE_ADDR addr, CORE_ADDR size:addr, size::default_infcall_munmap::0
1146
f208eee0
JK
1147# Return string (caller has to use xfree for it) with options for GCC
1148# to produce code for this target, typically "-m64", "-m32" or "-m31".
1149# These options are put before CU's DW_AT_producer compilation options so that
1150# they can override it. Method may also return NULL.
1151m:char *:gcc_target_options:void:::default_gcc_target_options::0
ac04f72b
TT
1152
1153# Return a regular expression that matches names used by this
1154# architecture in GNU configury triplets. The result is statically
1155# allocated and must not be freed. The default implementation simply
1156# returns the BFD architecture name, which is correct in nearly every
1157# case.
1158m:const char *:gnu_triplet_regexp:void:::default_gnu_triplet_regexp::0
3374165f
SM
1159
1160# Return the size in 8-bit bytes of an addressable memory unit on this
1161# architecture. This corresponds to the number of 8-bit bytes associated to
1162# each address in memory.
1163m:int:addressable_memory_unit_size:void:::default_addressable_memory_unit_size::0
1164
104c1213 1165EOF
104c1213
JM
1166}
1167
0b8f9e4d
AC
1168#
1169# The .log file
1170#
1171exec > new-gdbarch.log
34620563 1172function_list | while do_read
0b8f9e4d
AC
1173do
1174 cat <<EOF
2f9b146e 1175${class} ${returntype} ${function} ($formal)
104c1213 1176EOF
3d9a5942
AC
1177 for r in ${read}
1178 do
1179 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1180 done
f0d4cc9e 1181 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1182 then
66d659b1 1183 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1184 kill $$
1185 exit 1
1186 fi
72e74a21 1187 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1188 then
1189 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1190 kill $$
1191 exit 1
1192 fi
a72293e2
AC
1193 if class_is_multiarch_p
1194 then
1195 if class_is_predicate_p ; then :
1196 elif test "x${predefault}" = "x"
1197 then
2f9b146e 1198 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1199 kill $$
1200 exit 1
1201 fi
1202 fi
3d9a5942 1203 echo ""
0b8f9e4d
AC
1204done
1205
1206exec 1>&2
1207compare_new gdbarch.log
1208
104c1213
JM
1209
1210copyright ()
1211{
1212cat <<EOF
c4bfde41
JK
1213/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1214/* vi:set ro: */
59233f88 1215
104c1213 1216/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1217
618f726f 1218 Copyright (C) 1998-2016 Free Software Foundation, Inc.
104c1213
JM
1219
1220 This file is part of GDB.
1221
1222 This program is free software; you can redistribute it and/or modify
1223 it under the terms of the GNU General Public License as published by
50efebf8 1224 the Free Software Foundation; either version 3 of the License, or
104c1213 1225 (at your option) any later version.
618f726f 1226
104c1213
JM
1227 This program is distributed in the hope that it will be useful,
1228 but WITHOUT ANY WARRANTY; without even the implied warranty of
1229 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1230 GNU General Public License for more details.
618f726f 1231
104c1213 1232 You should have received a copy of the GNU General Public License
50efebf8 1233 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1234
104c1213
JM
1235/* This file was created with the aid of \`\`gdbarch.sh''.
1236
52204a0b 1237 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1238 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1239 against the existing \`\`gdbarch.[hc]''. Any differences found
1240 being reported.
1241
1242 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1243 changes into that script. Conversely, when making sweeping changes
104c1213 1244 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1245 easier. */
104c1213
JM
1246
1247EOF
1248}
1249
1250#
1251# The .h file
1252#
1253
1254exec > new-gdbarch.h
1255copyright
1256cat <<EOF
1257#ifndef GDBARCH_H
1258#define GDBARCH_H
1259
eb7a547a
JB
1260#include "frame.h"
1261
da3331ec
AC
1262struct floatformat;
1263struct ui_file;
104c1213 1264struct value;
b6af0555 1265struct objfile;
1c772458 1266struct obj_section;
a2cf933a 1267struct minimal_symbol;
049ee0e4 1268struct regcache;
b59ff9d5 1269struct reggroup;
6ce6d90f 1270struct regset;
a89aa300 1271struct disassemble_info;
e2d0e7eb 1272struct target_ops;
030f20e1 1273struct obstack;
8181d85f 1274struct bp_target_info;
424163ea 1275struct target_desc;
3e29f34a
MR
1276struct objfile;
1277struct symbol;
237fc4c9 1278struct displaced_step_closure;
a96d9b2e 1279struct syscall;
175ff332 1280struct agent_expr;
6710bf39 1281struct axs_value;
55aa24fb 1282struct stap_parse_info;
8b367e17 1283struct parser_state;
7e35103a 1284struct ravenscar_arch_ops;
b3ac9c77 1285struct elf_internal_linux_prpsinfo;
3437254d 1286struct mem_range;
458c8db8 1287struct syscalls_info;
4dfc5dbc 1288struct thread_info;
012b3a21 1289struct ui_out;
104c1213 1290
8a526fa6
PA
1291#include "regcache.h"
1292
6ecd4729
PA
1293/* The architecture associated with the inferior through the
1294 connection to the target.
1295
1296 The architecture vector provides some information that is really a
1297 property of the inferior, accessed through a particular target:
1298 ptrace operations; the layout of certain RSP packets; the solib_ops
1299 vector; etc. To differentiate architecture accesses to
1300 per-inferior/target properties from
1301 per-thread/per-frame/per-objfile properties, accesses to
1302 per-inferior/target properties should be made through this
1303 gdbarch. */
1304
1305/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1306extern struct gdbarch *target_gdbarch (void);
6ecd4729 1307
19630284
JB
1308/* Callback type for the 'iterate_over_objfiles_in_search_order'
1309 gdbarch method. */
1310
1311typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1312 (struct objfile *objfile, void *cb_data);
5aa82d05 1313
1528345d
AA
1314/* Callback type for regset section iterators. The callback usually
1315 invokes the REGSET's supply or collect method, to which it must
1316 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1317 section name, and HUMAN_NAME is used for diagnostic messages.
1318 CB_DATA should have been passed unchanged through the iterator. */
1319
5aa82d05 1320typedef void (iterate_over_regset_sections_cb)
8f0435f7
AA
1321 (const char *sect_name, int size, const struct regset *regset,
1322 const char *human_name, void *cb_data);
104c1213
JM
1323EOF
1324
1325# function typedef's
3d9a5942
AC
1326printf "\n"
1327printf "\n"
0963b4bd 1328printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1329function_list | while do_read
104c1213 1330do
2ada493a
AC
1331 if class_is_info_p
1332 then
3d9a5942
AC
1333 printf "\n"
1334 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1335 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1336 fi
104c1213
JM
1337done
1338
1339# function typedef's
3d9a5942
AC
1340printf "\n"
1341printf "\n"
0963b4bd 1342printf "/* The following are initialized by the target dependent code. */\n"
34620563 1343function_list | while do_read
104c1213 1344do
72e74a21 1345 if [ -n "${comment}" ]
34620563
AC
1346 then
1347 echo "${comment}" | sed \
1348 -e '2 s,#,/*,' \
1349 -e '3,$ s,#, ,' \
1350 -e '$ s,$, */,'
1351 fi
412d5987
AC
1352
1353 if class_is_predicate_p
2ada493a 1354 then
412d5987
AC
1355 printf "\n"
1356 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1357 fi
2ada493a
AC
1358 if class_is_variable_p
1359 then
3d9a5942
AC
1360 printf "\n"
1361 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1362 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1363 fi
1364 if class_is_function_p
1365 then
3d9a5942 1366 printf "\n"
72e74a21 1367 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1368 then
1369 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1370 elif class_is_multiarch_p
1371 then
1372 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1373 else
1374 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1375 fi
72e74a21 1376 if [ "x${formal}" = "xvoid" ]
104c1213 1377 then
3d9a5942 1378 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1379 else
3d9a5942 1380 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1381 fi
3d9a5942 1382 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1383 fi
104c1213
JM
1384done
1385
1386# close it off
1387cat <<EOF
1388
a96d9b2e
SDJ
1389/* Definition for an unknown syscall, used basically in error-cases. */
1390#define UNKNOWN_SYSCALL (-1)
1391
104c1213
JM
1392extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1393
1394
1395/* Mechanism for co-ordinating the selection of a specific
1396 architecture.
1397
1398 GDB targets (*-tdep.c) can register an interest in a specific
1399 architecture. Other GDB components can register a need to maintain
1400 per-architecture data.
1401
1402 The mechanisms below ensures that there is only a loose connection
1403 between the set-architecture command and the various GDB
0fa6923a 1404 components. Each component can independently register their need
104c1213
JM
1405 to maintain architecture specific data with gdbarch.
1406
1407 Pragmatics:
1408
1409 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1410 didn't scale.
1411
1412 The more traditional mega-struct containing architecture specific
1413 data for all the various GDB components was also considered. Since
0fa6923a 1414 GDB is built from a variable number of (fairly independent)
104c1213 1415 components it was determined that the global aproach was not
0963b4bd 1416 applicable. */
104c1213
JM
1417
1418
1419/* Register a new architectural family with GDB.
1420
1421 Register support for the specified ARCHITECTURE with GDB. When
1422 gdbarch determines that the specified architecture has been
1423 selected, the corresponding INIT function is called.
1424
1425 --
1426
1427 The INIT function takes two parameters: INFO which contains the
1428 information available to gdbarch about the (possibly new)
1429 architecture; ARCHES which is a list of the previously created
1430 \`\`struct gdbarch'' for this architecture.
1431
0f79675b 1432 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1433 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1434
1435 The ARCHES parameter is a linked list (sorted most recently used)
1436 of all the previously created architures for this architecture
1437 family. The (possibly NULL) ARCHES->gdbarch can used to access
1438 values from the previously selected architecture for this
59837fe0 1439 architecture family.
104c1213
JM
1440
1441 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1442 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1443 gdbarch'' from the ARCHES list - indicating that the new
1444 architecture is just a synonym for an earlier architecture (see
1445 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1446 - that describes the selected architecture (see gdbarch_alloc()).
1447
1448 The DUMP_TDEP function shall print out all target specific values.
1449 Care should be taken to ensure that the function works in both the
0963b4bd 1450 multi-arch and non- multi-arch cases. */
104c1213
JM
1451
1452struct gdbarch_list
1453{
1454 struct gdbarch *gdbarch;
1455 struct gdbarch_list *next;
1456};
1457
1458struct gdbarch_info
1459{
0963b4bd 1460 /* Use default: NULL (ZERO). */
104c1213
JM
1461 const struct bfd_arch_info *bfd_arch_info;
1462
428721aa 1463 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1464 enum bfd_endian byte_order;
104c1213 1465
94123b4f 1466 enum bfd_endian byte_order_for_code;
9d4fde75 1467
0963b4bd 1468 /* Use default: NULL (ZERO). */
104c1213
JM
1469 bfd *abfd;
1470
0963b4bd 1471 /* Use default: NULL (ZERO). */
ede5f151 1472 void *tdep_info;
4be87837
DJ
1473
1474 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1475 enum gdb_osabi osabi;
424163ea
DJ
1476
1477 /* Use default: NULL (ZERO). */
1478 const struct target_desc *target_desc;
104c1213
JM
1479};
1480
1481typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1482typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1483
4b9b3959 1484/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1485extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1486
4b9b3959
AC
1487extern void gdbarch_register (enum bfd_architecture architecture,
1488 gdbarch_init_ftype *,
1489 gdbarch_dump_tdep_ftype *);
1490
104c1213 1491
b4a20239
AC
1492/* Return a freshly allocated, NULL terminated, array of the valid
1493 architecture names. Since architectures are registered during the
1494 _initialize phase this function only returns useful information
0963b4bd 1495 once initialization has been completed. */
b4a20239
AC
1496
1497extern const char **gdbarch_printable_names (void);
1498
1499
104c1213 1500/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1501 matches the information provided by INFO. */
104c1213 1502
424163ea 1503extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1504
1505
1506/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1507 basic initialization using values obtained from the INFO and TDEP
104c1213 1508 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1509 initialization of the object. */
104c1213
JM
1510
1511extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1512
1513
4b9b3959
AC
1514/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1515 It is assumed that the caller freeds the \`\`struct
0963b4bd 1516 gdbarch_tdep''. */
4b9b3959 1517
058f20d5
JB
1518extern void gdbarch_free (struct gdbarch *);
1519
1520
aebd7893
AC
1521/* Helper function. Allocate memory from the \`\`struct gdbarch''
1522 obstack. The memory is freed when the corresponding architecture
1523 is also freed. */
1524
1525extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1526#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1527#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1528
6c214e7c
PP
1529/* Duplicate STRING, returning an equivalent string that's allocated on the
1530 obstack associated with GDBARCH. The string is freed when the corresponding
1531 architecture is also freed. */
1532
1533extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
aebd7893 1534
0963b4bd 1535/* Helper function. Force an update of the current architecture.
104c1213 1536
b732d07d
AC
1537 The actual architecture selected is determined by INFO, \`\`(gdb) set
1538 architecture'' et.al., the existing architecture and BFD's default
1539 architecture. INFO should be initialized to zero and then selected
1540 fields should be updated.
104c1213 1541
0963b4bd 1542 Returns non-zero if the update succeeds. */
16f33e29
AC
1543
1544extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1545
1546
ebdba546
AC
1547/* Helper function. Find an architecture matching info.
1548
1549 INFO should be initialized using gdbarch_info_init, relevant fields
1550 set, and then finished using gdbarch_info_fill.
1551
1552 Returns the corresponding architecture, or NULL if no matching
59837fe0 1553 architecture was found. */
ebdba546
AC
1554
1555extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1556
1557
aff68abb 1558/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1559
aff68abb 1560extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1561
104c1213
JM
1562
1563/* Register per-architecture data-pointer.
1564
1565 Reserve space for a per-architecture data-pointer. An identifier
1566 for the reserved data-pointer is returned. That identifer should
95160752 1567 be saved in a local static variable.
104c1213 1568
fcc1c85c
AC
1569 Memory for the per-architecture data shall be allocated using
1570 gdbarch_obstack_zalloc. That memory will be deleted when the
1571 corresponding architecture object is deleted.
104c1213 1572
95160752
AC
1573 When a previously created architecture is re-selected, the
1574 per-architecture data-pointer for that previous architecture is
76860b5f 1575 restored. INIT() is not re-called.
104c1213
JM
1576
1577 Multiple registrarants for any architecture are allowed (and
1578 strongly encouraged). */
1579
95160752 1580struct gdbarch_data;
104c1213 1581
030f20e1
AC
1582typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1583extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1584typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1585extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1586extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1587 struct gdbarch_data *data,
1588 void *pointer);
104c1213 1589
451fbdda 1590extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1591
1592
0fa6923a 1593/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1594 byte-order, ...) using information found in the BFD. */
104c1213
JM
1595
1596extern void set_gdbarch_from_file (bfd *);
1597
1598
e514a9d6
JM
1599/* Initialize the current architecture to the "first" one we find on
1600 our list. */
1601
1602extern void initialize_current_architecture (void);
1603
104c1213 1604/* gdbarch trace variable */
ccce17b0 1605extern unsigned int gdbarch_debug;
104c1213 1606
4b9b3959 1607extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1608
1609#endif
1610EOF
1611exec 1>&2
1612#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1613compare_new gdbarch.h
104c1213
JM
1614
1615
1616#
1617# C file
1618#
1619
1620exec > new-gdbarch.c
1621copyright
1622cat <<EOF
1623
1624#include "defs.h"
7355ddba 1625#include "arch-utils.h"
104c1213 1626
104c1213 1627#include "gdbcmd.h"
faaf634c 1628#include "inferior.h"
104c1213
JM
1629#include "symcat.h"
1630
f0d4cc9e 1631#include "floatformat.h"
b59ff9d5 1632#include "reggroups.h"
4be87837 1633#include "osabi.h"
aebd7893 1634#include "gdb_obstack.h"
383f836e 1635#include "observer.h"
a3ecef73 1636#include "regcache.h"
19630284 1637#include "objfiles.h"
2faa3447 1638#include "auxv.h"
95160752 1639
104c1213
JM
1640/* Static function declarations */
1641
b3cc3077 1642static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1643
104c1213
JM
1644/* Non-zero if we want to trace architecture code. */
1645
1646#ifndef GDBARCH_DEBUG
1647#define GDBARCH_DEBUG 0
1648#endif
ccce17b0 1649unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1650static void
1651show_gdbarch_debug (struct ui_file *file, int from_tty,
1652 struct cmd_list_element *c, const char *value)
1653{
1654 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1655}
104c1213 1656
456fcf94 1657static const char *
8da61cc4 1658pformat (const struct floatformat **format)
456fcf94
AC
1659{
1660 if (format == NULL)
1661 return "(null)";
1662 else
8da61cc4
DJ
1663 /* Just print out one of them - this is only for diagnostics. */
1664 return format[0]->name;
456fcf94
AC
1665}
1666
08105857
PA
1667static const char *
1668pstring (const char *string)
1669{
1670 if (string == NULL)
1671 return "(null)";
1672 return string;
05c0465e
SDJ
1673}
1674
1675/* Helper function to print a list of strings, represented as "const
1676 char *const *". The list is printed comma-separated. */
1677
1678static char *
1679pstring_list (const char *const *list)
1680{
1681 static char ret[100];
1682 const char *const *p;
1683 size_t offset = 0;
1684
1685 if (list == NULL)
1686 return "(null)";
1687
1688 ret[0] = '\0';
1689 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1690 {
1691 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1692 offset += 2 + s;
1693 }
1694
1695 if (offset > 0)
1696 {
1697 gdb_assert (offset - 2 < sizeof (ret));
1698 ret[offset - 2] = '\0';
1699 }
1700
1701 return ret;
08105857
PA
1702}
1703
104c1213
JM
1704EOF
1705
1706# gdbarch open the gdbarch object
3d9a5942 1707printf "\n"
0963b4bd 1708printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1709printf "\n"
1710printf "struct gdbarch\n"
1711printf "{\n"
76860b5f
AC
1712printf " /* Has this architecture been fully initialized? */\n"
1713printf " int initialized_p;\n"
aebd7893
AC
1714printf "\n"
1715printf " /* An obstack bound to the lifetime of the architecture. */\n"
1716printf " struct obstack *obstack;\n"
1717printf "\n"
0963b4bd 1718printf " /* basic architectural information. */\n"
34620563 1719function_list | while do_read
104c1213 1720do
2ada493a
AC
1721 if class_is_info_p
1722 then
3d9a5942 1723 printf " ${returntype} ${function};\n"
2ada493a 1724 fi
104c1213 1725done
3d9a5942 1726printf "\n"
0963b4bd 1727printf " /* target specific vector. */\n"
3d9a5942
AC
1728printf " struct gdbarch_tdep *tdep;\n"
1729printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1730printf "\n"
0963b4bd 1731printf " /* per-architecture data-pointers. */\n"
95160752 1732printf " unsigned nr_data;\n"
3d9a5942
AC
1733printf " void **data;\n"
1734printf "\n"
104c1213
JM
1735cat <<EOF
1736 /* Multi-arch values.
1737
1738 When extending this structure you must:
1739
1740 Add the field below.
1741
1742 Declare set/get functions and define the corresponding
1743 macro in gdbarch.h.
1744
1745 gdbarch_alloc(): If zero/NULL is not a suitable default,
1746 initialize the new field.
1747
1748 verify_gdbarch(): Confirm that the target updated the field
1749 correctly.
1750
7e73cedf 1751 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1752 field is dumped out
1753
104c1213
JM
1754 get_gdbarch(): Implement the set/get functions (probably using
1755 the macro's as shortcuts).
1756
1757 */
1758
1759EOF
34620563 1760function_list | while do_read
104c1213 1761do
2ada493a
AC
1762 if class_is_variable_p
1763 then
3d9a5942 1764 printf " ${returntype} ${function};\n"
2ada493a
AC
1765 elif class_is_function_p
1766 then
2f9b146e 1767 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1768 fi
104c1213 1769done
3d9a5942 1770printf "};\n"
104c1213 1771
104c1213 1772# Create a new gdbarch struct
104c1213 1773cat <<EOF
7de2341d 1774
66b43ecb 1775/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1776 \`\`struct gdbarch_info''. */
104c1213 1777EOF
3d9a5942 1778printf "\n"
104c1213
JM
1779cat <<EOF
1780struct gdbarch *
1781gdbarch_alloc (const struct gdbarch_info *info,
1782 struct gdbarch_tdep *tdep)
1783{
be7811ad 1784 struct gdbarch *gdbarch;
aebd7893
AC
1785
1786 /* Create an obstack for allocating all the per-architecture memory,
1787 then use that to allocate the architecture vector. */
70ba0933 1788 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1789 obstack_init (obstack);
8d749320 1790 gdbarch = XOBNEW (obstack, struct gdbarch);
be7811ad
MD
1791 memset (gdbarch, 0, sizeof (*gdbarch));
1792 gdbarch->obstack = obstack;
85de9627 1793
be7811ad 1794 alloc_gdbarch_data (gdbarch);
85de9627 1795
be7811ad 1796 gdbarch->tdep = tdep;
104c1213 1797EOF
3d9a5942 1798printf "\n"
34620563 1799function_list | while do_read
104c1213 1800do
2ada493a
AC
1801 if class_is_info_p
1802 then
be7811ad 1803 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1804 fi
104c1213 1805done
3d9a5942 1806printf "\n"
0963b4bd 1807printf " /* Force the explicit initialization of these. */\n"
34620563 1808function_list | while do_read
104c1213 1809do
2ada493a
AC
1810 if class_is_function_p || class_is_variable_p
1811 then
72e74a21 1812 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1813 then
be7811ad 1814 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1815 fi
2ada493a 1816 fi
104c1213
JM
1817done
1818cat <<EOF
1819 /* gdbarch_alloc() */
1820
be7811ad 1821 return gdbarch;
104c1213
JM
1822}
1823EOF
1824
058f20d5 1825# Free a gdbarch struct.
3d9a5942
AC
1826printf "\n"
1827printf "\n"
058f20d5 1828cat <<EOF
aebd7893
AC
1829/* Allocate extra space using the per-architecture obstack. */
1830
1831void *
1832gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1833{
1834 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1835
aebd7893
AC
1836 memset (data, 0, size);
1837 return data;
1838}
1839
6c214e7c
PP
1840/* See gdbarch.h. */
1841
1842char *
1843gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1844{
1845 return obstack_strdup (arch->obstack, string);
1846}
1847
aebd7893 1848
058f20d5
JB
1849/* Free a gdbarch struct. This should never happen in normal
1850 operation --- once you've created a gdbarch, you keep it around.
1851 However, if an architecture's init function encounters an error
1852 building the structure, it may need to clean up a partially
1853 constructed gdbarch. */
4b9b3959 1854
058f20d5
JB
1855void
1856gdbarch_free (struct gdbarch *arch)
1857{
aebd7893 1858 struct obstack *obstack;
05c547f6 1859
95160752 1860 gdb_assert (arch != NULL);
aebd7893
AC
1861 gdb_assert (!arch->initialized_p);
1862 obstack = arch->obstack;
1863 obstack_free (obstack, 0); /* Includes the ARCH. */
1864 xfree (obstack);
058f20d5
JB
1865}
1866EOF
1867
104c1213 1868# verify a new architecture
104c1213 1869cat <<EOF
db446970
AC
1870
1871
1872/* Ensure that all values in a GDBARCH are reasonable. */
1873
104c1213 1874static void
be7811ad 1875verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1876{
f16a1923
AC
1877 struct ui_file *log;
1878 struct cleanup *cleanups;
759ef836 1879 long length;
f16a1923 1880 char *buf;
05c547f6 1881
f16a1923
AC
1882 log = mem_fileopen ();
1883 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1884 /* fundamental */
be7811ad 1885 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1886 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1887 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1888 fprintf_unfiltered (log, "\n\tbfd_arch_info");
0963b4bd 1889 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1890EOF
34620563 1891function_list | while do_read
104c1213 1892do
2ada493a
AC
1893 if class_is_function_p || class_is_variable_p
1894 then
72e74a21 1895 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1896 then
3d9a5942 1897 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1898 elif class_is_predicate_p
1899 then
0963b4bd 1900 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1901 # FIXME: See do_read for potential simplification
72e74a21 1902 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1903 then
3d9a5942 1904 printf " if (${invalid_p})\n"
be7811ad 1905 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1906 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1907 then
be7811ad
MD
1908 printf " if (gdbarch->${function} == ${predefault})\n"
1909 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1910 elif [ -n "${postdefault}" ]
f0d4cc9e 1911 then
be7811ad
MD
1912 printf " if (gdbarch->${function} == 0)\n"
1913 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1914 elif [ -n "${invalid_p}" ]
104c1213 1915 then
4d60522e 1916 printf " if (${invalid_p})\n"
f16a1923 1917 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1918 elif [ -n "${predefault}" ]
104c1213 1919 then
be7811ad 1920 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1921 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1922 fi
2ada493a 1923 fi
104c1213
JM
1924done
1925cat <<EOF
759ef836 1926 buf = ui_file_xstrdup (log, &length);
f16a1923 1927 make_cleanup (xfree, buf);
759ef836 1928 if (length > 0)
f16a1923 1929 internal_error (__FILE__, __LINE__,
85c07804 1930 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1931 buf);
1932 do_cleanups (cleanups);
104c1213
JM
1933}
1934EOF
1935
1936# dump the structure
3d9a5942
AC
1937printf "\n"
1938printf "\n"
104c1213 1939cat <<EOF
0963b4bd 1940/* Print out the details of the current architecture. */
4b9b3959 1941
104c1213 1942void
be7811ad 1943gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1944{
b78960be 1945 const char *gdb_nm_file = "<not-defined>";
05c547f6 1946
b78960be
AC
1947#if defined (GDB_NM_FILE)
1948 gdb_nm_file = GDB_NM_FILE;
1949#endif
1950 fprintf_unfiltered (file,
1951 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1952 gdb_nm_file);
104c1213 1953EOF
97030eea 1954function_list | sort -t: -k 3 | while do_read
104c1213 1955do
1e9f55d0
AC
1956 # First the predicate
1957 if class_is_predicate_p
1958 then
7996bcec 1959 printf " fprintf_unfiltered (file,\n"
48f7351b 1960 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1961 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1962 fi
48f7351b 1963 # Print the corresponding value.
283354d8 1964 if class_is_function_p
4b9b3959 1965 then
7996bcec 1966 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1967 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1968 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1969 else
48f7351b 1970 # It is a variable
2f9b146e
AC
1971 case "${print}:${returntype}" in
1972 :CORE_ADDR )
0b1553bc
UW
1973 fmt="%s"
1974 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1975 ;;
2f9b146e 1976 :* )
48f7351b 1977 fmt="%s"
623d3eb1 1978 print="plongest (gdbarch->${function})"
48f7351b
AC
1979 ;;
1980 * )
2f9b146e 1981 fmt="%s"
48f7351b
AC
1982 ;;
1983 esac
3d9a5942 1984 printf " fprintf_unfiltered (file,\n"
48f7351b 1985 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1986 printf " ${print});\n"
2ada493a 1987 fi
104c1213 1988done
381323f4 1989cat <<EOF
be7811ad
MD
1990 if (gdbarch->dump_tdep != NULL)
1991 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1992}
1993EOF
104c1213
JM
1994
1995
1996# GET/SET
3d9a5942 1997printf "\n"
104c1213
JM
1998cat <<EOF
1999struct gdbarch_tdep *
2000gdbarch_tdep (struct gdbarch *gdbarch)
2001{
2002 if (gdbarch_debug >= 2)
3d9a5942 2003 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
2004 return gdbarch->tdep;
2005}
2006EOF
3d9a5942 2007printf "\n"
34620563 2008function_list | while do_read
104c1213 2009do
2ada493a
AC
2010 if class_is_predicate_p
2011 then
3d9a5942
AC
2012 printf "\n"
2013 printf "int\n"
2014 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
2015 printf "{\n"
8de9bdc4 2016 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 2017 printf " return ${predicate};\n"
3d9a5942 2018 printf "}\n"
2ada493a
AC
2019 fi
2020 if class_is_function_p
2021 then
3d9a5942
AC
2022 printf "\n"
2023 printf "${returntype}\n"
72e74a21 2024 if [ "x${formal}" = "xvoid" ]
104c1213 2025 then
3d9a5942 2026 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 2027 else
3d9a5942 2028 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 2029 fi
3d9a5942 2030 printf "{\n"
8de9bdc4 2031 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 2032 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 2033 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
2034 then
2035 # Allow a call to a function with a predicate.
956ac328 2036 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 2037 fi
3d9a5942
AC
2038 printf " if (gdbarch_debug >= 2)\n"
2039 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 2040 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
2041 then
2042 if class_is_multiarch_p
2043 then
2044 params="gdbarch"
2045 else
2046 params=""
2047 fi
2048 else
2049 if class_is_multiarch_p
2050 then
2051 params="gdbarch, ${actual}"
2052 else
2053 params="${actual}"
2054 fi
2055 fi
72e74a21 2056 if [ "x${returntype}" = "xvoid" ]
104c1213 2057 then
4a5c6a1d 2058 printf " gdbarch->${function} (${params});\n"
104c1213 2059 else
4a5c6a1d 2060 printf " return gdbarch->${function} (${params});\n"
104c1213 2061 fi
3d9a5942
AC
2062 printf "}\n"
2063 printf "\n"
2064 printf "void\n"
2065 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2066 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2067 printf "{\n"
2068 printf " gdbarch->${function} = ${function};\n"
2069 printf "}\n"
2ada493a
AC
2070 elif class_is_variable_p
2071 then
3d9a5942
AC
2072 printf "\n"
2073 printf "${returntype}\n"
2074 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2075 printf "{\n"
8de9bdc4 2076 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 2077 if [ "x${invalid_p}" = "x0" ]
c0e8c252 2078 then
3d9a5942 2079 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 2080 elif [ -n "${invalid_p}" ]
104c1213 2081 then
956ac328
AC
2082 printf " /* Check variable is valid. */\n"
2083 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 2084 elif [ -n "${predefault}" ]
104c1213 2085 then
956ac328
AC
2086 printf " /* Check variable changed from pre-default. */\n"
2087 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 2088 fi
3d9a5942
AC
2089 printf " if (gdbarch_debug >= 2)\n"
2090 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2091 printf " return gdbarch->${function};\n"
2092 printf "}\n"
2093 printf "\n"
2094 printf "void\n"
2095 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2096 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2097 printf "{\n"
2098 printf " gdbarch->${function} = ${function};\n"
2099 printf "}\n"
2ada493a
AC
2100 elif class_is_info_p
2101 then
3d9a5942
AC
2102 printf "\n"
2103 printf "${returntype}\n"
2104 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2105 printf "{\n"
8de9bdc4 2106 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
2107 printf " if (gdbarch_debug >= 2)\n"
2108 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2109 printf " return gdbarch->${function};\n"
2110 printf "}\n"
2ada493a 2111 fi
104c1213
JM
2112done
2113
2114# All the trailing guff
2115cat <<EOF
2116
2117
f44c642f 2118/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2119 modules. */
104c1213
JM
2120
2121struct gdbarch_data
2122{
95160752 2123 unsigned index;
76860b5f 2124 int init_p;
030f20e1
AC
2125 gdbarch_data_pre_init_ftype *pre_init;
2126 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2127};
2128
2129struct gdbarch_data_registration
2130{
104c1213
JM
2131 struct gdbarch_data *data;
2132 struct gdbarch_data_registration *next;
2133};
2134
f44c642f 2135struct gdbarch_data_registry
104c1213 2136{
95160752 2137 unsigned nr;
104c1213
JM
2138 struct gdbarch_data_registration *registrations;
2139};
2140
f44c642f 2141struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2142{
2143 0, NULL,
2144};
2145
030f20e1
AC
2146static struct gdbarch_data *
2147gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2148 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2149{
2150 struct gdbarch_data_registration **curr;
05c547f6
MS
2151
2152 /* Append the new registration. */
f44c642f 2153 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2154 (*curr) != NULL;
2155 curr = &(*curr)->next);
70ba0933 2156 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2157 (*curr)->next = NULL;
70ba0933 2158 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2159 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2160 (*curr)->data->pre_init = pre_init;
2161 (*curr)->data->post_init = post_init;
76860b5f 2162 (*curr)->data->init_p = 1;
104c1213
JM
2163 return (*curr)->data;
2164}
2165
030f20e1
AC
2166struct gdbarch_data *
2167gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2168{
2169 return gdbarch_data_register (pre_init, NULL);
2170}
2171
2172struct gdbarch_data *
2173gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2174{
2175 return gdbarch_data_register (NULL, post_init);
2176}
104c1213 2177
0963b4bd 2178/* Create/delete the gdbarch data vector. */
95160752
AC
2179
2180static void
b3cc3077 2181alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2182{
b3cc3077
JB
2183 gdb_assert (gdbarch->data == NULL);
2184 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2185 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2186}
3c875b6f 2187
76860b5f 2188/* Initialize the current value of the specified per-architecture
0963b4bd 2189 data-pointer. */
b3cc3077 2190
95160752 2191void
030f20e1
AC
2192deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2193 struct gdbarch_data *data,
2194 void *pointer)
95160752
AC
2195{
2196 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2197 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2198 gdb_assert (data->pre_init == NULL);
95160752
AC
2199 gdbarch->data[data->index] = pointer;
2200}
2201
104c1213 2202/* Return the current value of the specified per-architecture
0963b4bd 2203 data-pointer. */
104c1213
JM
2204
2205void *
451fbdda 2206gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2207{
451fbdda 2208 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2209 if (gdbarch->data[data->index] == NULL)
76860b5f 2210 {
030f20e1
AC
2211 /* The data-pointer isn't initialized, call init() to get a
2212 value. */
2213 if (data->pre_init != NULL)
2214 /* Mid architecture creation: pass just the obstack, and not
2215 the entire architecture, as that way it isn't possible for
2216 pre-init code to refer to undefined architecture
2217 fields. */
2218 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2219 else if (gdbarch->initialized_p
2220 && data->post_init != NULL)
2221 /* Post architecture creation: pass the entire architecture
2222 (as all fields are valid), but be careful to also detect
2223 recursive references. */
2224 {
2225 gdb_assert (data->init_p);
2226 data->init_p = 0;
2227 gdbarch->data[data->index] = data->post_init (gdbarch);
2228 data->init_p = 1;
2229 }
2230 else
2231 /* The architecture initialization hasn't completed - punt -
2232 hope that the caller knows what they are doing. Once
2233 deprecated_set_gdbarch_data has been initialized, this can be
2234 changed to an internal error. */
2235 return NULL;
76860b5f
AC
2236 gdb_assert (gdbarch->data[data->index] != NULL);
2237 }
451fbdda 2238 return gdbarch->data[data->index];
104c1213
JM
2239}
2240
2241
0963b4bd 2242/* Keep a registry of the architectures known by GDB. */
104c1213 2243
4b9b3959 2244struct gdbarch_registration
104c1213
JM
2245{
2246 enum bfd_architecture bfd_architecture;
2247 gdbarch_init_ftype *init;
4b9b3959 2248 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2249 struct gdbarch_list *arches;
4b9b3959 2250 struct gdbarch_registration *next;
104c1213
JM
2251};
2252
f44c642f 2253static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2254
b4a20239
AC
2255static void
2256append_name (const char ***buf, int *nr, const char *name)
2257{
1dc7a623 2258 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
b4a20239
AC
2259 (*buf)[*nr] = name;
2260 *nr += 1;
2261}
2262
2263const char **
2264gdbarch_printable_names (void)
2265{
7996bcec 2266 /* Accumulate a list of names based on the registed list of
0963b4bd 2267 architectures. */
7996bcec
AC
2268 int nr_arches = 0;
2269 const char **arches = NULL;
2270 struct gdbarch_registration *rego;
05c547f6 2271
7996bcec
AC
2272 for (rego = gdbarch_registry;
2273 rego != NULL;
2274 rego = rego->next)
b4a20239 2275 {
7996bcec
AC
2276 const struct bfd_arch_info *ap;
2277 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2278 if (ap == NULL)
2279 internal_error (__FILE__, __LINE__,
85c07804 2280 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2281 do
2282 {
2283 append_name (&arches, &nr_arches, ap->printable_name);
2284 ap = ap->next;
2285 }
2286 while (ap != NULL);
b4a20239 2287 }
7996bcec
AC
2288 append_name (&arches, &nr_arches, NULL);
2289 return arches;
b4a20239
AC
2290}
2291
2292
104c1213 2293void
4b9b3959
AC
2294gdbarch_register (enum bfd_architecture bfd_architecture,
2295 gdbarch_init_ftype *init,
2296 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2297{
4b9b3959 2298 struct gdbarch_registration **curr;
104c1213 2299 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2300
ec3d358c 2301 /* Check that BFD recognizes this architecture */
104c1213
JM
2302 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2303 if (bfd_arch_info == NULL)
2304 {
8e65ff28 2305 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2306 _("gdbarch: Attempt to register "
2307 "unknown architecture (%d)"),
8e65ff28 2308 bfd_architecture);
104c1213 2309 }
0963b4bd 2310 /* Check that we haven't seen this architecture before. */
f44c642f 2311 for (curr = &gdbarch_registry;
104c1213
JM
2312 (*curr) != NULL;
2313 curr = &(*curr)->next)
2314 {
2315 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2316 internal_error (__FILE__, __LINE__,
64b9b334 2317 _("gdbarch: Duplicate registration "
0963b4bd 2318 "of architecture (%s)"),
8e65ff28 2319 bfd_arch_info->printable_name);
104c1213
JM
2320 }
2321 /* log it */
2322 if (gdbarch_debug)
30737ed9 2323 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2324 bfd_arch_info->printable_name,
30737ed9 2325 host_address_to_string (init));
104c1213 2326 /* Append it */
70ba0933 2327 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2328 (*curr)->bfd_architecture = bfd_architecture;
2329 (*curr)->init = init;
4b9b3959 2330 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2331 (*curr)->arches = NULL;
2332 (*curr)->next = NULL;
4b9b3959
AC
2333}
2334
2335void
2336register_gdbarch_init (enum bfd_architecture bfd_architecture,
2337 gdbarch_init_ftype *init)
2338{
2339 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2340}
104c1213
JM
2341
2342
424163ea 2343/* Look for an architecture using gdbarch_info. */
104c1213
JM
2344
2345struct gdbarch_list *
2346gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2347 const struct gdbarch_info *info)
2348{
2349 for (; arches != NULL; arches = arches->next)
2350 {
2351 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2352 continue;
2353 if (info->byte_order != arches->gdbarch->byte_order)
2354 continue;
4be87837
DJ
2355 if (info->osabi != arches->gdbarch->osabi)
2356 continue;
424163ea
DJ
2357 if (info->target_desc != arches->gdbarch->target_desc)
2358 continue;
104c1213
JM
2359 return arches;
2360 }
2361 return NULL;
2362}
2363
2364
ebdba546 2365/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2366 architecture if needed. Return that new architecture. */
104c1213 2367
59837fe0
UW
2368struct gdbarch *
2369gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2370{
2371 struct gdbarch *new_gdbarch;
4b9b3959 2372 struct gdbarch_registration *rego;
104c1213 2373
b732d07d 2374 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2375 sources: "set ..."; INFOabfd supplied; and the global
2376 defaults. */
2377 gdbarch_info_fill (&info);
4be87837 2378
0963b4bd 2379 /* Must have found some sort of architecture. */
b732d07d 2380 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2381
2382 if (gdbarch_debug)
2383 {
2384 fprintf_unfiltered (gdb_stdlog,
59837fe0 2385 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2386 (info.bfd_arch_info != NULL
2387 ? info.bfd_arch_info->printable_name
2388 : "(null)"));
2389 fprintf_unfiltered (gdb_stdlog,
59837fe0 2390 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2391 info.byte_order,
d7449b42 2392 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2393 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2394 : "default"));
4be87837 2395 fprintf_unfiltered (gdb_stdlog,
59837fe0 2396 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2397 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2398 fprintf_unfiltered (gdb_stdlog,
59837fe0 2399 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2400 host_address_to_string (info.abfd));
104c1213 2401 fprintf_unfiltered (gdb_stdlog,
59837fe0 2402 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2403 host_address_to_string (info.tdep_info));
104c1213
JM
2404 }
2405
ebdba546 2406 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2407 for (rego = gdbarch_registry;
2408 rego != NULL;
2409 rego = rego->next)
2410 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2411 break;
2412 if (rego == NULL)
2413 {
2414 if (gdbarch_debug)
59837fe0 2415 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2416 "No matching architecture\n");
b732d07d
AC
2417 return 0;
2418 }
2419
ebdba546 2420 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2421 new_gdbarch = rego->init (info, rego->arches);
2422
ebdba546
AC
2423 /* Did the tdep code like it? No. Reject the change and revert to
2424 the old architecture. */
104c1213
JM
2425 if (new_gdbarch == NULL)
2426 {
2427 if (gdbarch_debug)
59837fe0 2428 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2429 "Target rejected architecture\n");
2430 return NULL;
104c1213
JM
2431 }
2432
ebdba546
AC
2433 /* Is this a pre-existing architecture (as determined by already
2434 being initialized)? Move it to the front of the architecture
2435 list (keeping the list sorted Most Recently Used). */
2436 if (new_gdbarch->initialized_p)
104c1213 2437 {
ebdba546 2438 struct gdbarch_list **list;
fe978cb0 2439 struct gdbarch_list *self;
104c1213 2440 if (gdbarch_debug)
59837fe0 2441 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2442 "Previous architecture %s (%s) selected\n",
2443 host_address_to_string (new_gdbarch),
104c1213 2444 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2445 /* Find the existing arch in the list. */
2446 for (list = &rego->arches;
2447 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2448 list = &(*list)->next);
2449 /* It had better be in the list of architectures. */
2450 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
fe978cb0
PA
2451 /* Unlink SELF. */
2452 self = (*list);
2453 (*list) = self->next;
2454 /* Insert SELF at the front. */
2455 self->next = rego->arches;
2456 rego->arches = self;
ebdba546
AC
2457 /* Return it. */
2458 return new_gdbarch;
104c1213
JM
2459 }
2460
ebdba546
AC
2461 /* It's a new architecture. */
2462 if (gdbarch_debug)
59837fe0 2463 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2464 "New architecture %s (%s) selected\n",
2465 host_address_to_string (new_gdbarch),
ebdba546
AC
2466 new_gdbarch->bfd_arch_info->printable_name);
2467
2468 /* Insert the new architecture into the front of the architecture
2469 list (keep the list sorted Most Recently Used). */
0f79675b 2470 {
fe978cb0
PA
2471 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2472 self->next = rego->arches;
2473 self->gdbarch = new_gdbarch;
2474 rego->arches = self;
0f79675b 2475 }
104c1213 2476
4b9b3959
AC
2477 /* Check that the newly installed architecture is valid. Plug in
2478 any post init values. */
2479 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2480 verify_gdbarch (new_gdbarch);
ebdba546 2481 new_gdbarch->initialized_p = 1;
104c1213 2482
4b9b3959 2483 if (gdbarch_debug)
ebdba546
AC
2484 gdbarch_dump (new_gdbarch, gdb_stdlog);
2485
2486 return new_gdbarch;
2487}
2488
e487cc15 2489/* Make the specified architecture current. */
ebdba546
AC
2490
2491void
aff68abb 2492set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2493{
2494 gdb_assert (new_gdbarch != NULL);
ebdba546 2495 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2496 current_inferior ()->gdbarch = new_gdbarch;
383f836e 2497 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2498 registers_changed ();
ebdba546 2499}
104c1213 2500
f5656ead 2501/* Return the current inferior's arch. */
6ecd4729
PA
2502
2503struct gdbarch *
f5656ead 2504target_gdbarch (void)
6ecd4729
PA
2505{
2506 return current_inferior ()->gdbarch;
2507}
2508
104c1213 2509extern void _initialize_gdbarch (void);
b4a20239 2510
104c1213 2511void
34620563 2512_initialize_gdbarch (void)
104c1213 2513{
ccce17b0 2514 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2515Set architecture debugging."), _("\\
2516Show architecture debugging."), _("\\
2517When non-zero, architecture debugging is enabled."),
2518 NULL,
920d2a44 2519 show_gdbarch_debug,
85c07804 2520 &setdebuglist, &showdebuglist);
104c1213
JM
2521}
2522EOF
2523
2524# close things off
2525exec 1>&2
2526#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2527compare_new gdbarch.c
This page took 1.439005 seconds and 4 git commands to generate.