Fix native follow-exec-mode "new"
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
32d0add0 5# Copyright (C) 1998-2015 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
be7811ad 341i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
94123b4f
YQ
343i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 345#
97030eea 346i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 347#
30737ed9 348i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
352v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
66b43ecb
AC
354# Number of bits in a char or unsigned char for the target machine.
355# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 356# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
357#
358# Number of bits in a short or unsigned short for the target machine.
97030eea 359v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in an int or unsigned int for the target machine.
97030eea 361v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 362# Number of bits in a long or unsigned long for the target machine.
97030eea 363v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
364# Number of bits in a long long or unsigned long long for the target
365# machine.
be7811ad 366v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
205c306f
DM
367# Alignment of a long long or unsigned long long for the target
368# machine.
369v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94 370
f9e9243a
UW
371# The ABI default bit-size and format for "half", "float", "double", and
372# "long double". These bit/format pairs should eventually be combined
373# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
374# Each format describes both the big and little endian layouts (if
375# useful).
456fcf94 376
f9e9243a
UW
377v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
97030eea 379v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 380v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 381v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 382v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 383v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 384v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 385
52204a0b
DT
386# For most targets, a pointer on the target and its representation as an
387# address in GDB have the same size and "look the same". For such a
17a912b6 388# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
389# / addr_bit will be set from it.
390#
17a912b6 391# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
392# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393# gdbarch_address_to_pointer as well.
52204a0b
DT
394#
395# ptr_bit is the size of a pointer on the target
be7811ad 396v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 397# addr_bit is the size of a target address as represented in gdb
be7811ad 398v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 399#
8da614df
CV
400# dwarf2_addr_size is the target address size as used in the Dwarf debug
401# info. For .debug_frame FDEs, this is supposed to be the target address
402# size from the associated CU header, and which is equivalent to the
403# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404# Unfortunately there is no good way to determine this value. Therefore
405# dwarf2_addr_size simply defaults to the target pointer size.
406#
407# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408# defined using the target's pointer size so far.
409#
410# Note that dwarf2_addr_size only needs to be redefined by a target if the
411# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412# and if Dwarf versions < 4 need to be supported.
413v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414#
4e409299 415# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 416v:int:char_signed:::1:-1:1
4e409299 417#
97030eea
UW
418F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
420# Function for getting target's idea of a frame pointer. FIXME: GDB's
421# whole scheme for dealing with "frames" and "frame pointers" needs a
422# serious shakedown.
a54fba4c 423m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 424#
05d1431c 425M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
3543a589
TT
426# Read a register into a new struct value. If the register is wholly
427# or partly unavailable, this should call mark_value_bytes_unavailable
428# as appropriate. If this is defined, then pseudo_register_read will
429# never be called.
430M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
97030eea 431M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 432#
97030eea 433v:int:num_regs:::0:-1
0aba1244
EZ
434# This macro gives the number of pseudo-registers that live in the
435# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
436# These pseudo-registers may be aliases for other registers,
437# combinations of other registers, or they may be computed by GDB.
97030eea 438v:int:num_pseudo_regs:::0:0::0
c2169756 439
175ff332
HZ
440# Assemble agent expression bytecode to collect pseudo-register REG.
441# Return -1 if something goes wrong, 0 otherwise.
442M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444# Assemble agent expression bytecode to push the value of pseudo-register
445# REG on the interpreter stack.
446# Return -1 if something goes wrong, 0 otherwise.
447M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
c2169756
AC
449# GDB's standard (or well known) register numbers. These can map onto
450# a real register or a pseudo (computed) register or not be defined at
1200cd6e 451# all (-1).
3e8c568d 452# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
453v:int:sp_regnum:::-1:-1::0
454v:int:pc_regnum:::-1:-1::0
455v:int:ps_regnum:::-1:-1::0
456v:int:fp0_regnum:::0:-1::0
88c72b7d 457# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 458m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 459# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 460m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 461# Convert from an sdb register number to an internal gdb register number.
d3f73121 462m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 463# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 464m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 465m:const char *:register_name:int regnr:regnr::0
9c04cab7 466
7b9ee6a8
DJ
467# Return the type of a register specified by the architecture. Only
468# the register cache should call this function directly; others should
469# use "register_type".
97030eea 470M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 471
669fac23
DJ
472M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 474# deprecated_fp_regnum.
97030eea 475v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 476
97030eea
UW
477M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478v:int:call_dummy_location::::AT_ENTRY_POINT::0
479M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 480
97030eea 481m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
cc86d1cb 482m:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args::default_print_float_info::0
97030eea 483M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
484# MAP a GDB RAW register number onto a simulator register number. See
485# also include/...-sim.h.
e7faf938 486m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
487m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
eade6471
JB
489
490# Determine the address where a longjmp will land and save this address
491# in PC. Return nonzero on success.
492#
493# FRAME corresponds to the longjmp frame.
97030eea 494F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
eade6471 495
104c1213 496#
97030eea 497v:int:believe_pcc_promotion:::::::
104c1213 498#
0abe36f5 499m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
8dccd430 500f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
97030eea 501f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0 502# Construct a value representing the contents of register REGNUM in
2ed3c037 503# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
504# allocate and return a struct value with all value attributes
505# (but not the value contents) filled in.
2ed3c037 506m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
104c1213 507#
9898f801
UW
508m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
509m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 510M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 511
6a3a010b
MR
512# Return the return-value convention that will be used by FUNCTION
513# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
514# case the return convention is computed based only on VALTYPE.
515#
516# If READBUF is not NULL, extract the return value and save it in this buffer.
517#
518# If WRITEBUF is not NULL, it contains a return value which will be
519# stored into the appropriate register. This can be used when we want
520# to force the value returned by a function (see the "return" command
521# for instance).
6a3a010b 522M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
92ad9cd9 523
18648a37
YQ
524# Return true if the return value of function is stored in the first hidden
525# parameter. In theory, this feature should be language-dependent, specified
526# by language and its ABI, such as C++. Unfortunately, compiler may
527# implement it to a target-dependent feature. So that we need such hook here
528# to be aware of this in GDB.
529m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
530
6093d2eb 531m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 532M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
591a12a1
UW
533# On some platforms, a single function may provide multiple entry points,
534# e.g. one that is used for function-pointer calls and a different one
535# that is used for direct function calls.
536# In order to ensure that breakpoints set on the function will trigger
537# no matter via which entry point the function is entered, a platform
538# may provide the skip_entrypoint callback. It is called with IP set
539# to the main entry point of a function (as determined by the symbol table),
540# and should return the address of the innermost entry point, where the
541# actual breakpoint needs to be set. Note that skip_entrypoint is used
542# by GDB common code even when debugging optimized code, where skip_prologue
543# is not used.
544M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
545
97030eea 546f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 547m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
548# Return the adjusted address and kind to use for Z0/Z1 packets.
549# KIND is usually the memory length of the breakpoint, but may have a
550# different target-specific meaning.
0e05dfcb 551m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 552M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
553m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
554m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 555v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
556
557# A function can be addressed by either it's "pointer" (possibly a
558# descriptor address) or "entry point" (first executable instruction).
559# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 560# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
561# a simplified subset of that functionality - the function's address
562# corresponds to the "function pointer" and the function's start
563# corresponds to the "function entry point" - and hence is redundant.
564
97030eea 565v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 566
123dc839
DJ
567# Return the remote protocol register number associated with this
568# register. Normally the identity mapping.
97030eea 569m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 570
b2756930 571# Fetch the target specific address used to represent a load module.
97030eea 572F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 573#
97030eea
UW
574v:CORE_ADDR:frame_args_skip:::0:::0
575M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
576M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
577# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
578# frame-base. Enable frame-base before frame-unwind.
97030eea 579F:int:frame_num_args:struct frame_info *frame:frame
104c1213 580#
97030eea
UW
581M:CORE_ADDR:frame_align:CORE_ADDR address:address
582m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
583v:int:frame_red_zone_size
f0d4cc9e 584#
97030eea 585m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
586# On some machines there are bits in addresses which are not really
587# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 588# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
589# we get a "real" address such as one would find in a symbol table.
590# This is used only for addresses of instructions, and even then I'm
591# not sure it's used in all contexts. It exists to deal with there
592# being a few stray bits in the PC which would mislead us, not as some
593# sort of generic thing to handle alignment or segmentation (it's
594# possible it should be in TARGET_READ_PC instead).
24568a2c 595m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
596
597# FIXME/cagney/2001-01-18: This should be split in two. A target method that
598# indicates if the target needs software single step. An ISA method to
599# implement it.
600#
601# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
602# breakpoints using the breakpoint system instead of blatting memory directly
603# (as with rs6000).
64c4637f 604#
e6590a1b
UW
605# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
606# target can single step. If not, then implement single step using breakpoints.
64c4637f 607#
6f112b18 608# A return value of 1 means that the software_single_step breakpoints
e6590a1b 609# were inserted; 0 means they were not.
97030eea 610F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 611
3352ef37
AC
612# Return non-zero if the processor is executing a delay slot and a
613# further single-step is needed before the instruction finishes.
97030eea 614M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 615# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 616# disassembler. Perhaps objdump can handle it?
97030eea
UW
617f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
618f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
619
620
cfd8ab24 621# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
622# evaluates non-zero, this is the address where the debugger will place
623# a step-resume breakpoint to get us past the dynamic linker.
97030eea 624m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 625# Some systems also have trampoline code for returning from shared libs.
2c02bd72 626m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 627
c12260ac
CV
628# A target might have problems with watchpoints as soon as the stack
629# frame of the current function has been destroyed. This mostly happens
c9cf6e20 630# as the first action in a function's epilogue. stack_frame_destroyed_p()
c12260ac
CV
631# is defined to return a non-zero value if either the given addr is one
632# instruction after the stack destroying instruction up to the trailing
633# return instruction or if we can figure out that the stack frame has
634# already been invalidated regardless of the value of addr. Targets
635# which don't suffer from that problem could just let this functionality
636# untouched.
c9cf6e20 637m:int:stack_frame_destroyed_p:CORE_ADDR addr:addr:0:generic_stack_frame_destroyed_p::0
3e29f34a
MR
638# Process an ELF symbol in the minimal symbol table in a backend-specific
639# way. Normally this hook is supposed to do nothing, however if required,
640# then this hook can be used to apply tranformations to symbols that are
641# considered special in some way. For example the MIPS backend uses it
642# to interpret \`st_other' information to mark compressed code symbols so
643# that they can be treated in the appropriate manner in the processing of
644# the main symbol table and DWARF-2 records.
645F:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym
97030eea 646f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
3e29f34a
MR
647# Process a symbol in the main symbol table in a backend-specific way.
648# Normally this hook is supposed to do nothing, however if required,
649# then this hook can be used to apply tranformations to symbols that
650# are considered special in some way. This is currently used by the
651# MIPS backend to make sure compressed code symbols have the ISA bit
652# set. This in turn is needed for symbol values seen in GDB to match
653# the values used at the runtime by the program itself, for function
654# and label references.
655f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objfile::default_make_symbol_special::0
656# Adjust the address retrieved from a DWARF-2 record other than a line
657# entry in a backend-specific way. Normally this hook is supposed to
658# return the address passed unchanged, however if that is incorrect for
659# any reason, then this hook can be used to fix the address up in the
660# required manner. This is currently used by the MIPS backend to make
661# sure addresses in FDE, range records, etc. referring to compressed
662# code have the ISA bit set, matching line information and the symbol
663# table.
664f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0
665# Adjust the address updated by a line entry in a backend-specific way.
666# Normally this hook is supposed to return the address passed unchanged,
667# however in the case of inconsistencies in these records, this hook can
668# be used to fix them up in the required manner. This is currently used
669# by the MIPS backend to make sure all line addresses in compressed code
670# are presented with the ISA bit set, which is not always the case. This
671# in turn ensures breakpoint addresses are correctly matched against the
672# stop PC.
673f:CORE_ADDR:adjust_dwarf2_line:CORE_ADDR addr, int rel:addr, rel::default_adjust_dwarf2_line::0
97030eea
UW
674v:int:cannot_step_breakpoint:::0:0::0
675v:int:have_nonsteppable_watchpoint:::0:0::0
676F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
677M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
69f97648
SM
678
679# Return the appropriate type_flags for the supplied address class.
680# This function should return 1 if the address class was recognized and
681# type_flags was set, zero otherwise.
97030eea 682M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 683# Is a register in a group
97030eea 684m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 685# Fetch the pointer to the ith function argument.
97030eea 686F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f 687
5aa82d05
AA
688# Iterate over all supported register notes in a core file. For each
689# supported register note section, the iterator must call CB and pass
690# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
691# the supported register note sections based on the current register
692# values. Otherwise it should enumerate all supported register note
693# sections.
694M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
17ea7499 695
6432734d
UW
696# Create core file notes
697M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
698
b3ac9c77
SDJ
699# The elfcore writer hook to use to write Linux prpsinfo notes to core
700# files. Most Linux architectures use the same prpsinfo32 or
701# prpsinfo64 layouts, and so won't need to provide this hook, as we
702# call the Linux generic routines in bfd to write prpsinfo notes by
703# default.
704F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
705
35c2fab7
UW
706# Find core file memory regions
707M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
708
de584861 709# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
710# core file into buffer READBUF with length LEN. Return the number of bytes read
711# (zero indicates failure).
712# failed, otherwise, return the red length of READBUF.
713M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
de584861 714
356a5233
JB
715# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
716# libraries list from core file into buffer READBUF with length LEN.
c09f20e4
YQ
717# Return the number of bytes read (zero indicates failure).
718M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
356a5233 719
c0edd9ed 720# How the core target converts a PTID from a core file to a string.
28439f5e
PA
721M:char *:core_pid_to_str:ptid_t ptid:ptid
722
a78c2d62 723# BFD target to use when generating a core file.
86ba1042 724V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
a78c2d62 725
0d5de010
DJ
726# If the elements of C++ vtables are in-place function descriptors rather
727# than normal function pointers (which may point to code or a descriptor),
728# set this to one.
97030eea 729v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
730
731# Set if the least significant bit of the delta is used instead of the least
732# significant bit of the pfn for pointers to virtual member functions.
97030eea 733v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
734
735# Advance PC to next instruction in order to skip a permanent breakpoint.
ae9bb220 736f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0
1c772458 737
1668ae25 738# The maximum length of an instruction on this architecture in bytes.
237fc4c9
PA
739V:ULONGEST:max_insn_length:::0:0
740
741# Copy the instruction at FROM to TO, and make any adjustments
742# necessary to single-step it at that address.
743#
744# REGS holds the state the thread's registers will have before
745# executing the copied instruction; the PC in REGS will refer to FROM,
746# not the copy at TO. The caller should update it to point at TO later.
747#
748# Return a pointer to data of the architecture's choice to be passed
749# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
750# the instruction's effects have been completely simulated, with the
751# resulting state written back to REGS.
752#
753# For a general explanation of displaced stepping and how GDB uses it,
754# see the comments in infrun.c.
755#
756# The TO area is only guaranteed to have space for
757# gdbarch_max_insn_length (arch) bytes, so this function must not
758# write more bytes than that to that area.
759#
760# If you do not provide this function, GDB assumes that the
761# architecture does not support displaced stepping.
762#
763# If your architecture doesn't need to adjust instructions before
764# single-stepping them, consider using simple_displaced_step_copy_insn
765# here.
7f03bd92
PA
766#
767# If the instruction cannot execute out of line, return NULL. The
768# core falls back to stepping past the instruction in-line instead in
769# that case.
237fc4c9
PA
770M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
771
99e40580
UW
772# Return true if GDB should use hardware single-stepping to execute
773# the displaced instruction identified by CLOSURE. If false,
774# GDB will simply restart execution at the displaced instruction
775# location, and it is up to the target to ensure GDB will receive
776# control again (e.g. by placing a software breakpoint instruction
777# into the displaced instruction buffer).
778#
779# The default implementation returns false on all targets that
780# provide a gdbarch_software_single_step routine, and true otherwise.
781m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
782
237fc4c9
PA
783# Fix up the state resulting from successfully single-stepping a
784# displaced instruction, to give the result we would have gotten from
785# stepping the instruction in its original location.
786#
787# REGS is the register state resulting from single-stepping the
788# displaced instruction.
789#
790# CLOSURE is the result from the matching call to
791# gdbarch_displaced_step_copy_insn.
792#
793# If you provide gdbarch_displaced_step_copy_insn.but not this
794# function, then GDB assumes that no fixup is needed after
795# single-stepping the instruction.
796#
797# For a general explanation of displaced stepping and how GDB uses it,
798# see the comments in infrun.c.
799M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
800
801# Free a closure returned by gdbarch_displaced_step_copy_insn.
802#
803# If you provide gdbarch_displaced_step_copy_insn, you must provide
804# this function as well.
805#
806# If your architecture uses closures that don't need to be freed, then
807# you can use simple_displaced_step_free_closure here.
808#
809# For a general explanation of displaced stepping and how GDB uses it,
810# see the comments in infrun.c.
811m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
812
813# Return the address of an appropriate place to put displaced
814# instructions while we step over them. There need only be one such
815# place, since we're only stepping one thread over a breakpoint at a
816# time.
817#
818# For a general explanation of displaced stepping and how GDB uses it,
819# see the comments in infrun.c.
820m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
821
dde08ee1
PA
822# Relocate an instruction to execute at a different address. OLDLOC
823# is the address in the inferior memory where the instruction to
824# relocate is currently at. On input, TO points to the destination
825# where we want the instruction to be copied (and possibly adjusted)
826# to. On output, it points to one past the end of the resulting
827# instruction(s). The effect of executing the instruction at TO shall
828# be the same as if executing it at FROM. For example, call
829# instructions that implicitly push the return address on the stack
830# should be adjusted to return to the instruction after OLDLOC;
831# relative branches, and other PC-relative instructions need the
832# offset adjusted; etc.
833M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
834
1c772458 835# Refresh overlay mapped state for section OSECT.
97030eea 836F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 837
97030eea 838M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
839
840# Handle special encoding of static variables in stabs debug info.
0d5cff50 841F:const char *:static_transform_name:const char *name:name
203c3895 842# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 843v:int:sofun_address_maybe_missing:::0:0::0
1cded358 844
0508c3ec
HZ
845# Parse the instruction at ADDR storing in the record execution log
846# the registers REGCACHE and memory ranges that will be affected when
847# the instruction executes, along with their current values.
848# Return -1 if something goes wrong, 0 otherwise.
849M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
850
3846b520
HZ
851# Save process state after a signal.
852# Return -1 if something goes wrong, 0 otherwise.
2ea28649 853M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
3846b520 854
22203bbf 855# Signal translation: translate inferior's signal (target's) number
86b49880
PA
856# into GDB's representation. The implementation of this method must
857# be host independent. IOW, don't rely on symbols of the NAT_FILE
858# header (the nm-*.h files), the host <signal.h> header, or similar
859# headers. This is mainly used when cross-debugging core files ---
860# "Live" targets hide the translation behind the target interface
1f8cf220
PA
861# (target_wait, target_resume, etc.).
862M:enum gdb_signal:gdb_signal_from_target:int signo:signo
60c5725c 863
eb14d406
SDJ
864# Signal translation: translate the GDB's internal signal number into
865# the inferior's signal (target's) representation. The implementation
866# of this method must be host independent. IOW, don't rely on symbols
867# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
868# header, or similar headers.
869# Return the target signal number if found, or -1 if the GDB internal
870# signal number is invalid.
871M:int:gdb_signal_to_target:enum gdb_signal signal:signal
872
4aa995e1
PA
873# Extra signal info inspection.
874#
875# Return a type suitable to inspect extra signal information.
876M:struct type *:get_siginfo_type:void:
877
60c5725c
DJ
878# Record architecture-specific information from the symbol table.
879M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 880
a96d9b2e
SDJ
881# Function for the 'catch syscall' feature.
882
883# Get architecture-specific system calls information from registers.
884M:LONGEST:get_syscall_number:ptid_t ptid:ptid
885
458c8db8
SDJ
886# The filename of the XML syscall for this architecture.
887v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file)
888
889# Information about system calls from this architecture
890v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info)
891
55aa24fb
SDJ
892# SystemTap related fields and functions.
893
05c0465e
SDJ
894# A NULL-terminated array of prefixes used to mark an integer constant
895# on the architecture's assembly.
55aa24fb
SDJ
896# For example, on x86 integer constants are written as:
897#
898# \$10 ;; integer constant 10
899#
900# in this case, this prefix would be the character \`\$\'.
05c0465e 901v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 902
05c0465e
SDJ
903# A NULL-terminated array of suffixes used to mark an integer constant
904# on the architecture's assembly.
905v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 906
05c0465e
SDJ
907# A NULL-terminated array of prefixes used to mark a register name on
908# the architecture's assembly.
55aa24fb
SDJ
909# For example, on x86 the register name is written as:
910#
911# \%eax ;; register eax
912#
913# in this case, this prefix would be the character \`\%\'.
05c0465e 914v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 915
05c0465e
SDJ
916# A NULL-terminated array of suffixes used to mark a register name on
917# the architecture's assembly.
918v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 919
05c0465e
SDJ
920# A NULL-terminated array of prefixes used to mark a register
921# indirection on the architecture's assembly.
55aa24fb
SDJ
922# For example, on x86 the register indirection is written as:
923#
924# \(\%eax\) ;; indirecting eax
925#
926# in this case, this prefix would be the charater \`\(\'.
927#
928# Please note that we use the indirection prefix also for register
929# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 930v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 931
05c0465e
SDJ
932# A NULL-terminated array of suffixes used to mark a register
933# indirection on the architecture's assembly.
55aa24fb
SDJ
934# For example, on x86 the register indirection is written as:
935#
936# \(\%eax\) ;; indirecting eax
937#
938# in this case, this prefix would be the charater \`\)\'.
939#
940# Please note that we use the indirection suffix also for register
941# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 942v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 943
05c0465e 944# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
945#
946# For example, on PPC a register is represented by a number in the assembly
947# language (e.g., \`10\' is the 10th general-purpose register). However,
948# inside GDB this same register has an \`r\' appended to its name, so the 10th
949# register would be represented as \`r10\' internally.
08af7a40 950v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
951
952# Suffix used to name a register using GDB's nomenclature.
08af7a40 953v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
954
955# Check if S is a single operand.
956#
957# Single operands can be:
958# \- Literal integers, e.g. \`\$10\' on x86
959# \- Register access, e.g. \`\%eax\' on x86
960# \- Register indirection, e.g. \`\(\%eax\)\' on x86
961# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
962#
963# This function should check for these patterns on the string
964# and return 1 if some were found, or zero otherwise. Please try to match
965# as much info as you can from the string, i.e., if you have to match
966# something like \`\(\%\', do not match just the \`\(\'.
967M:int:stap_is_single_operand:const char *s:s
968
969# Function used to handle a "special case" in the parser.
970#
971# A "special case" is considered to be an unknown token, i.e., a token
972# that the parser does not know how to parse. A good example of special
973# case would be ARM's register displacement syntax:
974#
975# [R0, #4] ;; displacing R0 by 4
976#
977# Since the parser assumes that a register displacement is of the form:
978#
979# <number> <indirection_prefix> <register_name> <indirection_suffix>
980#
981# it means that it will not be able to recognize and parse this odd syntax.
982# Therefore, we should add a special case function that will handle this token.
983#
984# This function should generate the proper expression form of the expression
985# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
986# and so on). It should also return 1 if the parsing was successful, or zero
987# if the token was not recognized as a special token (in this case, returning
988# zero means that the special parser is deferring the parsing to the generic
989# parser), and should advance the buffer pointer (p->arg).
990M:int:stap_parse_special_token:struct stap_parse_info *p:p
991
8b367e17
JM
992# DTrace related functions.
993
994# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
995# NARG must be >= 0.
996M:void:dtrace_parse_probe_argument:struct parser_state *pstate, int narg:pstate, narg
997
998# True if the given ADDR does not contain the instruction sequence
999# corresponding to a disabled DTrace is-enabled probe.
1000M:int:dtrace_probe_is_enabled:CORE_ADDR addr:addr
1001
1002# Enable a DTrace is-enabled probe at ADDR.
1003M:void:dtrace_enable_probe:CORE_ADDR addr:addr
1004
1005# Disable a DTrace is-enabled probe at ADDR.
1006M:void:dtrace_disable_probe:CORE_ADDR addr:addr
55aa24fb 1007
50c71eaf
PA
1008# True if the list of shared libraries is one and only for all
1009# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
1010# This usually means that all processes, although may or may not share
1011# an address space, will see the same set of symbols at the same
1012# addresses.
50c71eaf 1013v:int:has_global_solist:::0:0::0
2567c7d9
PA
1014
1015# On some targets, even though each inferior has its own private
1016# address space, the debug interface takes care of making breakpoints
1017# visible to all address spaces automatically. For such cases,
1018# this property should be set to true.
1019v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
1020
1021# True if inferiors share an address space (e.g., uClinux).
1022m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
1023
1024# True if a fast tracepoint can be set at an address.
6b940e6a 1025m:int:fast_tracepoint_valid_at:CORE_ADDR addr, char **msg:addr, msg::default_fast_tracepoint_valid_at::0
75cebea9 1026
f870a310
TT
1027# Return the "auto" target charset.
1028f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
1029# Return the "auto" target wide charset.
1030f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
1031
1032# If non-empty, this is a file extension that will be opened in place
1033# of the file extension reported by the shared library list.
1034#
1035# This is most useful for toolchains that use a post-linker tool,
1036# where the names of the files run on the target differ in extension
1037# compared to the names of the files GDB should load for debug info.
1038v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
1039
1040# If true, the target OS has DOS-based file system semantics. That
1041# is, absolute paths include a drive name, and the backslash is
1042# considered a directory separator.
1043v:int:has_dos_based_file_system:::0:0::0
6710bf39
SS
1044
1045# Generate bytecodes to collect the return address in a frame.
1046# Since the bytecodes run on the target, possibly with GDB not even
1047# connected, the full unwinding machinery is not available, and
1048# typically this function will issue bytecodes for one or more likely
1049# places that the return address may be found.
1050m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
1051
3030c96e 1052# Implement the "info proc" command.
7bc112c1 1053M:void:info_proc:const char *args, enum info_proc_what what:args, what
3030c96e 1054
451b7c33
TT
1055# Implement the "info proc" command for core files. Noe that there
1056# are two "info_proc"-like methods on gdbarch -- one for core files,
1057# one for live targets.
7bc112c1 1058M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
451b7c33 1059
19630284
JB
1060# Iterate over all objfiles in the order that makes the most sense
1061# for the architecture to make global symbol searches.
1062#
1063# CB is a callback function where OBJFILE is the objfile to be searched,
1064# and CB_DATA a pointer to user-defined data (the same data that is passed
1065# when calling this gdbarch method). The iteration stops if this function
1066# returns nonzero.
1067#
1068# CB_DATA is a pointer to some user-defined data to be passed to
1069# the callback.
1070#
1071# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1072# inspected when the symbol search was requested.
1073m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1074
7e35103a
JB
1075# Ravenscar arch-dependent ops.
1076v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1077
1078# Return non-zero if the instruction at ADDR is a call; zero otherwise.
1079m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1080
1081# Return non-zero if the instruction at ADDR is a return; zero otherwise.
1082m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1083
1084# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1085m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
27a48a92
MK
1086
1087# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1088# Return 0 if *READPTR is already at the end of the buffer.
1089# Return -1 if there is insufficient buffer for a whole entry.
1090# Return 1 if an entry was read into *TYPEP and *VALP.
1091M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
3437254d
PA
1092
1093# Find the address range of the current inferior's vsyscall/vDSO, and
1094# write it to *RANGE. If the vsyscall's length can't be determined, a
1095# range with zero length is returned. Returns true if the vsyscall is
1096# found, false otherwise.
1097m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
f208eee0
JK
1098
1099# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1100# PROT has GDB_MMAP_PROT_* bitmask format.
1101# Throw an error if it is not possible. Returned address is always valid.
1102f:CORE_ADDR:infcall_mmap:CORE_ADDR size, unsigned prot:size, prot::default_infcall_mmap::0
1103
7f361056
JK
1104# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1105# Print a warning if it is not possible.
1106f:void:infcall_munmap:CORE_ADDR addr, CORE_ADDR size:addr, size::default_infcall_munmap::0
1107
f208eee0
JK
1108# Return string (caller has to use xfree for it) with options for GCC
1109# to produce code for this target, typically "-m64", "-m32" or "-m31".
1110# These options are put before CU's DW_AT_producer compilation options so that
1111# they can override it. Method may also return NULL.
1112m:char *:gcc_target_options:void:::default_gcc_target_options::0
ac04f72b
TT
1113
1114# Return a regular expression that matches names used by this
1115# architecture in GNU configury triplets. The result is statically
1116# allocated and must not be freed. The default implementation simply
1117# returns the BFD architecture name, which is correct in nearly every
1118# case.
1119m:const char *:gnu_triplet_regexp:void:::default_gnu_triplet_regexp::0
3374165f
SM
1120
1121# Return the size in 8-bit bytes of an addressable memory unit on this
1122# architecture. This corresponds to the number of 8-bit bytes associated to
1123# each address in memory.
1124m:int:addressable_memory_unit_size:void:::default_addressable_memory_unit_size::0
1125
104c1213 1126EOF
104c1213
JM
1127}
1128
0b8f9e4d
AC
1129#
1130# The .log file
1131#
1132exec > new-gdbarch.log
34620563 1133function_list | while do_read
0b8f9e4d
AC
1134do
1135 cat <<EOF
2f9b146e 1136${class} ${returntype} ${function} ($formal)
104c1213 1137EOF
3d9a5942
AC
1138 for r in ${read}
1139 do
1140 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1141 done
f0d4cc9e 1142 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1143 then
66d659b1 1144 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1145 kill $$
1146 exit 1
1147 fi
72e74a21 1148 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1149 then
1150 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1151 kill $$
1152 exit 1
1153 fi
a72293e2
AC
1154 if class_is_multiarch_p
1155 then
1156 if class_is_predicate_p ; then :
1157 elif test "x${predefault}" = "x"
1158 then
2f9b146e 1159 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1160 kill $$
1161 exit 1
1162 fi
1163 fi
3d9a5942 1164 echo ""
0b8f9e4d
AC
1165done
1166
1167exec 1>&2
1168compare_new gdbarch.log
1169
104c1213
JM
1170
1171copyright ()
1172{
1173cat <<EOF
c4bfde41
JK
1174/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1175/* vi:set ro: */
59233f88 1176
104c1213 1177/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1178
32d0add0 1179 Copyright (C) 1998-2015 Free Software Foundation, Inc.
104c1213
JM
1180
1181 This file is part of GDB.
1182
1183 This program is free software; you can redistribute it and/or modify
1184 it under the terms of the GNU General Public License as published by
50efebf8 1185 the Free Software Foundation; either version 3 of the License, or
104c1213 1186 (at your option) any later version.
50efebf8 1187
104c1213
JM
1188 This program is distributed in the hope that it will be useful,
1189 but WITHOUT ANY WARRANTY; without even the implied warranty of
1190 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1191 GNU General Public License for more details.
50efebf8 1192
104c1213 1193 You should have received a copy of the GNU General Public License
50efebf8 1194 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1195
104c1213
JM
1196/* This file was created with the aid of \`\`gdbarch.sh''.
1197
52204a0b 1198 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1199 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1200 against the existing \`\`gdbarch.[hc]''. Any differences found
1201 being reported.
1202
1203 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1204 changes into that script. Conversely, when making sweeping changes
104c1213 1205 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1206 easier. */
104c1213
JM
1207
1208EOF
1209}
1210
1211#
1212# The .h file
1213#
1214
1215exec > new-gdbarch.h
1216copyright
1217cat <<EOF
1218#ifndef GDBARCH_H
1219#define GDBARCH_H
1220
eb7a547a
JB
1221#include "frame.h"
1222
da3331ec
AC
1223struct floatformat;
1224struct ui_file;
104c1213 1225struct value;
b6af0555 1226struct objfile;
1c772458 1227struct obj_section;
a2cf933a 1228struct minimal_symbol;
049ee0e4 1229struct regcache;
b59ff9d5 1230struct reggroup;
6ce6d90f 1231struct regset;
a89aa300 1232struct disassemble_info;
e2d0e7eb 1233struct target_ops;
030f20e1 1234struct obstack;
8181d85f 1235struct bp_target_info;
424163ea 1236struct target_desc;
3e29f34a
MR
1237struct objfile;
1238struct symbol;
237fc4c9 1239struct displaced_step_closure;
17ea7499 1240struct core_regset_section;
a96d9b2e 1241struct syscall;
175ff332 1242struct agent_expr;
6710bf39 1243struct axs_value;
55aa24fb 1244struct stap_parse_info;
8b367e17 1245struct parser_state;
7e35103a 1246struct ravenscar_arch_ops;
b3ac9c77 1247struct elf_internal_linux_prpsinfo;
3437254d 1248struct mem_range;
458c8db8 1249struct syscalls_info;
104c1213 1250
8a526fa6
PA
1251#include "regcache.h"
1252
6ecd4729
PA
1253/* The architecture associated with the inferior through the
1254 connection to the target.
1255
1256 The architecture vector provides some information that is really a
1257 property of the inferior, accessed through a particular target:
1258 ptrace operations; the layout of certain RSP packets; the solib_ops
1259 vector; etc. To differentiate architecture accesses to
1260 per-inferior/target properties from
1261 per-thread/per-frame/per-objfile properties, accesses to
1262 per-inferior/target properties should be made through this
1263 gdbarch. */
1264
1265/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1266extern struct gdbarch *target_gdbarch (void);
6ecd4729 1267
19630284
JB
1268/* Callback type for the 'iterate_over_objfiles_in_search_order'
1269 gdbarch method. */
1270
1271typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1272 (struct objfile *objfile, void *cb_data);
5aa82d05 1273
1528345d
AA
1274/* Callback type for regset section iterators. The callback usually
1275 invokes the REGSET's supply or collect method, to which it must
1276 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1277 section name, and HUMAN_NAME is used for diagnostic messages.
1278 CB_DATA should have been passed unchanged through the iterator. */
1279
5aa82d05 1280typedef void (iterate_over_regset_sections_cb)
8f0435f7
AA
1281 (const char *sect_name, int size, const struct regset *regset,
1282 const char *human_name, void *cb_data);
104c1213
JM
1283EOF
1284
1285# function typedef's
3d9a5942
AC
1286printf "\n"
1287printf "\n"
0963b4bd 1288printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1289function_list | while do_read
104c1213 1290do
2ada493a
AC
1291 if class_is_info_p
1292 then
3d9a5942
AC
1293 printf "\n"
1294 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1295 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1296 fi
104c1213
JM
1297done
1298
1299# function typedef's
3d9a5942
AC
1300printf "\n"
1301printf "\n"
0963b4bd 1302printf "/* The following are initialized by the target dependent code. */\n"
34620563 1303function_list | while do_read
104c1213 1304do
72e74a21 1305 if [ -n "${comment}" ]
34620563
AC
1306 then
1307 echo "${comment}" | sed \
1308 -e '2 s,#,/*,' \
1309 -e '3,$ s,#, ,' \
1310 -e '$ s,$, */,'
1311 fi
412d5987
AC
1312
1313 if class_is_predicate_p
2ada493a 1314 then
412d5987
AC
1315 printf "\n"
1316 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1317 fi
2ada493a
AC
1318 if class_is_variable_p
1319 then
3d9a5942
AC
1320 printf "\n"
1321 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1322 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1323 fi
1324 if class_is_function_p
1325 then
3d9a5942 1326 printf "\n"
72e74a21 1327 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1328 then
1329 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1330 elif class_is_multiarch_p
1331 then
1332 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1333 else
1334 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1335 fi
72e74a21 1336 if [ "x${formal}" = "xvoid" ]
104c1213 1337 then
3d9a5942 1338 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1339 else
3d9a5942 1340 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1341 fi
3d9a5942 1342 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1343 fi
104c1213
JM
1344done
1345
1346# close it off
1347cat <<EOF
1348
a96d9b2e
SDJ
1349/* Definition for an unknown syscall, used basically in error-cases. */
1350#define UNKNOWN_SYSCALL (-1)
1351
104c1213
JM
1352extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1353
1354
1355/* Mechanism for co-ordinating the selection of a specific
1356 architecture.
1357
1358 GDB targets (*-tdep.c) can register an interest in a specific
1359 architecture. Other GDB components can register a need to maintain
1360 per-architecture data.
1361
1362 The mechanisms below ensures that there is only a loose connection
1363 between the set-architecture command and the various GDB
0fa6923a 1364 components. Each component can independently register their need
104c1213
JM
1365 to maintain architecture specific data with gdbarch.
1366
1367 Pragmatics:
1368
1369 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1370 didn't scale.
1371
1372 The more traditional mega-struct containing architecture specific
1373 data for all the various GDB components was also considered. Since
0fa6923a 1374 GDB is built from a variable number of (fairly independent)
104c1213 1375 components it was determined that the global aproach was not
0963b4bd 1376 applicable. */
104c1213
JM
1377
1378
1379/* Register a new architectural family with GDB.
1380
1381 Register support for the specified ARCHITECTURE with GDB. When
1382 gdbarch determines that the specified architecture has been
1383 selected, the corresponding INIT function is called.
1384
1385 --
1386
1387 The INIT function takes two parameters: INFO which contains the
1388 information available to gdbarch about the (possibly new)
1389 architecture; ARCHES which is a list of the previously created
1390 \`\`struct gdbarch'' for this architecture.
1391
0f79675b 1392 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1393 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1394
1395 The ARCHES parameter is a linked list (sorted most recently used)
1396 of all the previously created architures for this architecture
1397 family. The (possibly NULL) ARCHES->gdbarch can used to access
1398 values from the previously selected architecture for this
59837fe0 1399 architecture family.
104c1213
JM
1400
1401 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1402 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1403 gdbarch'' from the ARCHES list - indicating that the new
1404 architecture is just a synonym for an earlier architecture (see
1405 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1406 - that describes the selected architecture (see gdbarch_alloc()).
1407
1408 The DUMP_TDEP function shall print out all target specific values.
1409 Care should be taken to ensure that the function works in both the
0963b4bd 1410 multi-arch and non- multi-arch cases. */
104c1213
JM
1411
1412struct gdbarch_list
1413{
1414 struct gdbarch *gdbarch;
1415 struct gdbarch_list *next;
1416};
1417
1418struct gdbarch_info
1419{
0963b4bd 1420 /* Use default: NULL (ZERO). */
104c1213
JM
1421 const struct bfd_arch_info *bfd_arch_info;
1422
428721aa 1423 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1424 enum bfd_endian byte_order;
104c1213 1425
94123b4f 1426 enum bfd_endian byte_order_for_code;
9d4fde75 1427
0963b4bd 1428 /* Use default: NULL (ZERO). */
104c1213
JM
1429 bfd *abfd;
1430
0963b4bd 1431 /* Use default: NULL (ZERO). */
104c1213 1432 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1433
1434 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1435 enum gdb_osabi osabi;
424163ea
DJ
1436
1437 /* Use default: NULL (ZERO). */
1438 const struct target_desc *target_desc;
104c1213
JM
1439};
1440
1441typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1442typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1443
4b9b3959 1444/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1445extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1446
4b9b3959
AC
1447extern void gdbarch_register (enum bfd_architecture architecture,
1448 gdbarch_init_ftype *,
1449 gdbarch_dump_tdep_ftype *);
1450
104c1213 1451
b4a20239
AC
1452/* Return a freshly allocated, NULL terminated, array of the valid
1453 architecture names. Since architectures are registered during the
1454 _initialize phase this function only returns useful information
0963b4bd 1455 once initialization has been completed. */
b4a20239
AC
1456
1457extern const char **gdbarch_printable_names (void);
1458
1459
104c1213 1460/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1461 matches the information provided by INFO. */
104c1213 1462
424163ea 1463extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1464
1465
1466/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1467 basic initialization using values obtained from the INFO and TDEP
104c1213 1468 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1469 initialization of the object. */
104c1213
JM
1470
1471extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1472
1473
4b9b3959
AC
1474/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1475 It is assumed that the caller freeds the \`\`struct
0963b4bd 1476 gdbarch_tdep''. */
4b9b3959 1477
058f20d5
JB
1478extern void gdbarch_free (struct gdbarch *);
1479
1480
aebd7893
AC
1481/* Helper function. Allocate memory from the \`\`struct gdbarch''
1482 obstack. The memory is freed when the corresponding architecture
1483 is also freed. */
1484
1485extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1486#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1487#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1488
1489
0963b4bd 1490/* Helper function. Force an update of the current architecture.
104c1213 1491
b732d07d
AC
1492 The actual architecture selected is determined by INFO, \`\`(gdb) set
1493 architecture'' et.al., the existing architecture and BFD's default
1494 architecture. INFO should be initialized to zero and then selected
1495 fields should be updated.
104c1213 1496
0963b4bd 1497 Returns non-zero if the update succeeds. */
16f33e29
AC
1498
1499extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1500
1501
ebdba546
AC
1502/* Helper function. Find an architecture matching info.
1503
1504 INFO should be initialized using gdbarch_info_init, relevant fields
1505 set, and then finished using gdbarch_info_fill.
1506
1507 Returns the corresponding architecture, or NULL if no matching
59837fe0 1508 architecture was found. */
ebdba546
AC
1509
1510extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1511
1512
aff68abb 1513/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1514
aff68abb 1515extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1516
104c1213
JM
1517
1518/* Register per-architecture data-pointer.
1519
1520 Reserve space for a per-architecture data-pointer. An identifier
1521 for the reserved data-pointer is returned. That identifer should
95160752 1522 be saved in a local static variable.
104c1213 1523
fcc1c85c
AC
1524 Memory for the per-architecture data shall be allocated using
1525 gdbarch_obstack_zalloc. That memory will be deleted when the
1526 corresponding architecture object is deleted.
104c1213 1527
95160752
AC
1528 When a previously created architecture is re-selected, the
1529 per-architecture data-pointer for that previous architecture is
76860b5f 1530 restored. INIT() is not re-called.
104c1213
JM
1531
1532 Multiple registrarants for any architecture are allowed (and
1533 strongly encouraged). */
1534
95160752 1535struct gdbarch_data;
104c1213 1536
030f20e1
AC
1537typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1538extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1539typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1540extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1541extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1542 struct gdbarch_data *data,
1543 void *pointer);
104c1213 1544
451fbdda 1545extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1546
1547
0fa6923a 1548/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1549 byte-order, ...) using information found in the BFD. */
104c1213
JM
1550
1551extern void set_gdbarch_from_file (bfd *);
1552
1553
e514a9d6
JM
1554/* Initialize the current architecture to the "first" one we find on
1555 our list. */
1556
1557extern void initialize_current_architecture (void);
1558
104c1213 1559/* gdbarch trace variable */
ccce17b0 1560extern unsigned int gdbarch_debug;
104c1213 1561
4b9b3959 1562extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1563
1564#endif
1565EOF
1566exec 1>&2
1567#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1568compare_new gdbarch.h
104c1213
JM
1569
1570
1571#
1572# C file
1573#
1574
1575exec > new-gdbarch.c
1576copyright
1577cat <<EOF
1578
1579#include "defs.h"
7355ddba 1580#include "arch-utils.h"
104c1213 1581
104c1213 1582#include "gdbcmd.h"
faaf634c 1583#include "inferior.h"
104c1213
JM
1584#include "symcat.h"
1585
f0d4cc9e 1586#include "floatformat.h"
b59ff9d5 1587#include "reggroups.h"
4be87837 1588#include "osabi.h"
aebd7893 1589#include "gdb_obstack.h"
383f836e 1590#include "observer.h"
a3ecef73 1591#include "regcache.h"
19630284 1592#include "objfiles.h"
95160752 1593
104c1213
JM
1594/* Static function declarations */
1595
b3cc3077 1596static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1597
104c1213
JM
1598/* Non-zero if we want to trace architecture code. */
1599
1600#ifndef GDBARCH_DEBUG
1601#define GDBARCH_DEBUG 0
1602#endif
ccce17b0 1603unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1604static void
1605show_gdbarch_debug (struct ui_file *file, int from_tty,
1606 struct cmd_list_element *c, const char *value)
1607{
1608 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1609}
104c1213 1610
456fcf94 1611static const char *
8da61cc4 1612pformat (const struct floatformat **format)
456fcf94
AC
1613{
1614 if (format == NULL)
1615 return "(null)";
1616 else
8da61cc4
DJ
1617 /* Just print out one of them - this is only for diagnostics. */
1618 return format[0]->name;
456fcf94
AC
1619}
1620
08105857
PA
1621static const char *
1622pstring (const char *string)
1623{
1624 if (string == NULL)
1625 return "(null)";
1626 return string;
05c0465e
SDJ
1627}
1628
1629/* Helper function to print a list of strings, represented as "const
1630 char *const *". The list is printed comma-separated. */
1631
1632static char *
1633pstring_list (const char *const *list)
1634{
1635 static char ret[100];
1636 const char *const *p;
1637 size_t offset = 0;
1638
1639 if (list == NULL)
1640 return "(null)";
1641
1642 ret[0] = '\0';
1643 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1644 {
1645 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1646 offset += 2 + s;
1647 }
1648
1649 if (offset > 0)
1650 {
1651 gdb_assert (offset - 2 < sizeof (ret));
1652 ret[offset - 2] = '\0';
1653 }
1654
1655 return ret;
08105857
PA
1656}
1657
104c1213
JM
1658EOF
1659
1660# gdbarch open the gdbarch object
3d9a5942 1661printf "\n"
0963b4bd 1662printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1663printf "\n"
1664printf "struct gdbarch\n"
1665printf "{\n"
76860b5f
AC
1666printf " /* Has this architecture been fully initialized? */\n"
1667printf " int initialized_p;\n"
aebd7893
AC
1668printf "\n"
1669printf " /* An obstack bound to the lifetime of the architecture. */\n"
1670printf " struct obstack *obstack;\n"
1671printf "\n"
0963b4bd 1672printf " /* basic architectural information. */\n"
34620563 1673function_list | while do_read
104c1213 1674do
2ada493a
AC
1675 if class_is_info_p
1676 then
3d9a5942 1677 printf " ${returntype} ${function};\n"
2ada493a 1678 fi
104c1213 1679done
3d9a5942 1680printf "\n"
0963b4bd 1681printf " /* target specific vector. */\n"
3d9a5942
AC
1682printf " struct gdbarch_tdep *tdep;\n"
1683printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1684printf "\n"
0963b4bd 1685printf " /* per-architecture data-pointers. */\n"
95160752 1686printf " unsigned nr_data;\n"
3d9a5942
AC
1687printf " void **data;\n"
1688printf "\n"
104c1213
JM
1689cat <<EOF
1690 /* Multi-arch values.
1691
1692 When extending this structure you must:
1693
1694 Add the field below.
1695
1696 Declare set/get functions and define the corresponding
1697 macro in gdbarch.h.
1698
1699 gdbarch_alloc(): If zero/NULL is not a suitable default,
1700 initialize the new field.
1701
1702 verify_gdbarch(): Confirm that the target updated the field
1703 correctly.
1704
7e73cedf 1705 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1706 field is dumped out
1707
104c1213
JM
1708 get_gdbarch(): Implement the set/get functions (probably using
1709 the macro's as shortcuts).
1710
1711 */
1712
1713EOF
34620563 1714function_list | while do_read
104c1213 1715do
2ada493a
AC
1716 if class_is_variable_p
1717 then
3d9a5942 1718 printf " ${returntype} ${function};\n"
2ada493a
AC
1719 elif class_is_function_p
1720 then
2f9b146e 1721 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1722 fi
104c1213 1723done
3d9a5942 1724printf "};\n"
104c1213 1725
104c1213 1726# Create a new gdbarch struct
104c1213 1727cat <<EOF
7de2341d 1728
66b43ecb 1729/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1730 \`\`struct gdbarch_info''. */
104c1213 1731EOF
3d9a5942 1732printf "\n"
104c1213
JM
1733cat <<EOF
1734struct gdbarch *
1735gdbarch_alloc (const struct gdbarch_info *info,
1736 struct gdbarch_tdep *tdep)
1737{
be7811ad 1738 struct gdbarch *gdbarch;
aebd7893
AC
1739
1740 /* Create an obstack for allocating all the per-architecture memory,
1741 then use that to allocate the architecture vector. */
70ba0933 1742 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1743 obstack_init (obstack);
be7811ad
MD
1744 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1745 memset (gdbarch, 0, sizeof (*gdbarch));
1746 gdbarch->obstack = obstack;
85de9627 1747
be7811ad 1748 alloc_gdbarch_data (gdbarch);
85de9627 1749
be7811ad 1750 gdbarch->tdep = tdep;
104c1213 1751EOF
3d9a5942 1752printf "\n"
34620563 1753function_list | while do_read
104c1213 1754do
2ada493a
AC
1755 if class_is_info_p
1756 then
be7811ad 1757 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1758 fi
104c1213 1759done
3d9a5942 1760printf "\n"
0963b4bd 1761printf " /* Force the explicit initialization of these. */\n"
34620563 1762function_list | while do_read
104c1213 1763do
2ada493a
AC
1764 if class_is_function_p || class_is_variable_p
1765 then
72e74a21 1766 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1767 then
be7811ad 1768 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1769 fi
2ada493a 1770 fi
104c1213
JM
1771done
1772cat <<EOF
1773 /* gdbarch_alloc() */
1774
be7811ad 1775 return gdbarch;
104c1213
JM
1776}
1777EOF
1778
058f20d5 1779# Free a gdbarch struct.
3d9a5942
AC
1780printf "\n"
1781printf "\n"
058f20d5 1782cat <<EOF
aebd7893
AC
1783/* Allocate extra space using the per-architecture obstack. */
1784
1785void *
1786gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1787{
1788 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1789
aebd7893
AC
1790 memset (data, 0, size);
1791 return data;
1792}
1793
1794
058f20d5
JB
1795/* Free a gdbarch struct. This should never happen in normal
1796 operation --- once you've created a gdbarch, you keep it around.
1797 However, if an architecture's init function encounters an error
1798 building the structure, it may need to clean up a partially
1799 constructed gdbarch. */
4b9b3959 1800
058f20d5
JB
1801void
1802gdbarch_free (struct gdbarch *arch)
1803{
aebd7893 1804 struct obstack *obstack;
05c547f6 1805
95160752 1806 gdb_assert (arch != NULL);
aebd7893
AC
1807 gdb_assert (!arch->initialized_p);
1808 obstack = arch->obstack;
1809 obstack_free (obstack, 0); /* Includes the ARCH. */
1810 xfree (obstack);
058f20d5
JB
1811}
1812EOF
1813
104c1213 1814# verify a new architecture
104c1213 1815cat <<EOF
db446970
AC
1816
1817
1818/* Ensure that all values in a GDBARCH are reasonable. */
1819
104c1213 1820static void
be7811ad 1821verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1822{
f16a1923
AC
1823 struct ui_file *log;
1824 struct cleanup *cleanups;
759ef836 1825 long length;
f16a1923 1826 char *buf;
05c547f6 1827
f16a1923
AC
1828 log = mem_fileopen ();
1829 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1830 /* fundamental */
be7811ad 1831 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1832 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1833 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1834 fprintf_unfiltered (log, "\n\tbfd_arch_info");
0963b4bd 1835 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1836EOF
34620563 1837function_list | while do_read
104c1213 1838do
2ada493a
AC
1839 if class_is_function_p || class_is_variable_p
1840 then
72e74a21 1841 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1842 then
3d9a5942 1843 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1844 elif class_is_predicate_p
1845 then
0963b4bd 1846 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1847 # FIXME: See do_read for potential simplification
72e74a21 1848 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1849 then
3d9a5942 1850 printf " if (${invalid_p})\n"
be7811ad 1851 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1852 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1853 then
be7811ad
MD
1854 printf " if (gdbarch->${function} == ${predefault})\n"
1855 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1856 elif [ -n "${postdefault}" ]
f0d4cc9e 1857 then
be7811ad
MD
1858 printf " if (gdbarch->${function} == 0)\n"
1859 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1860 elif [ -n "${invalid_p}" ]
104c1213 1861 then
4d60522e 1862 printf " if (${invalid_p})\n"
f16a1923 1863 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1864 elif [ -n "${predefault}" ]
104c1213 1865 then
be7811ad 1866 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1867 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1868 fi
2ada493a 1869 fi
104c1213
JM
1870done
1871cat <<EOF
759ef836 1872 buf = ui_file_xstrdup (log, &length);
f16a1923 1873 make_cleanup (xfree, buf);
759ef836 1874 if (length > 0)
f16a1923 1875 internal_error (__FILE__, __LINE__,
85c07804 1876 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1877 buf);
1878 do_cleanups (cleanups);
104c1213
JM
1879}
1880EOF
1881
1882# dump the structure
3d9a5942
AC
1883printf "\n"
1884printf "\n"
104c1213 1885cat <<EOF
0963b4bd 1886/* Print out the details of the current architecture. */
4b9b3959 1887
104c1213 1888void
be7811ad 1889gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1890{
b78960be 1891 const char *gdb_nm_file = "<not-defined>";
05c547f6 1892
b78960be
AC
1893#if defined (GDB_NM_FILE)
1894 gdb_nm_file = GDB_NM_FILE;
1895#endif
1896 fprintf_unfiltered (file,
1897 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1898 gdb_nm_file);
104c1213 1899EOF
97030eea 1900function_list | sort -t: -k 3 | while do_read
104c1213 1901do
1e9f55d0
AC
1902 # First the predicate
1903 if class_is_predicate_p
1904 then
7996bcec 1905 printf " fprintf_unfiltered (file,\n"
48f7351b 1906 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1907 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1908 fi
48f7351b 1909 # Print the corresponding value.
283354d8 1910 if class_is_function_p
4b9b3959 1911 then
7996bcec 1912 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1913 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1914 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1915 else
48f7351b 1916 # It is a variable
2f9b146e
AC
1917 case "${print}:${returntype}" in
1918 :CORE_ADDR )
0b1553bc
UW
1919 fmt="%s"
1920 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1921 ;;
2f9b146e 1922 :* )
48f7351b 1923 fmt="%s"
623d3eb1 1924 print="plongest (gdbarch->${function})"
48f7351b
AC
1925 ;;
1926 * )
2f9b146e 1927 fmt="%s"
48f7351b
AC
1928 ;;
1929 esac
3d9a5942 1930 printf " fprintf_unfiltered (file,\n"
48f7351b 1931 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1932 printf " ${print});\n"
2ada493a 1933 fi
104c1213 1934done
381323f4 1935cat <<EOF
be7811ad
MD
1936 if (gdbarch->dump_tdep != NULL)
1937 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1938}
1939EOF
104c1213
JM
1940
1941
1942# GET/SET
3d9a5942 1943printf "\n"
104c1213
JM
1944cat <<EOF
1945struct gdbarch_tdep *
1946gdbarch_tdep (struct gdbarch *gdbarch)
1947{
1948 if (gdbarch_debug >= 2)
3d9a5942 1949 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1950 return gdbarch->tdep;
1951}
1952EOF
3d9a5942 1953printf "\n"
34620563 1954function_list | while do_read
104c1213 1955do
2ada493a
AC
1956 if class_is_predicate_p
1957 then
3d9a5942
AC
1958 printf "\n"
1959 printf "int\n"
1960 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1961 printf "{\n"
8de9bdc4 1962 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1963 printf " return ${predicate};\n"
3d9a5942 1964 printf "}\n"
2ada493a
AC
1965 fi
1966 if class_is_function_p
1967 then
3d9a5942
AC
1968 printf "\n"
1969 printf "${returntype}\n"
72e74a21 1970 if [ "x${formal}" = "xvoid" ]
104c1213 1971 then
3d9a5942 1972 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1973 else
3d9a5942 1974 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1975 fi
3d9a5942 1976 printf "{\n"
8de9bdc4 1977 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1978 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1979 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1980 then
1981 # Allow a call to a function with a predicate.
956ac328 1982 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1983 fi
3d9a5942
AC
1984 printf " if (gdbarch_debug >= 2)\n"
1985 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1986 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1987 then
1988 if class_is_multiarch_p
1989 then
1990 params="gdbarch"
1991 else
1992 params=""
1993 fi
1994 else
1995 if class_is_multiarch_p
1996 then
1997 params="gdbarch, ${actual}"
1998 else
1999 params="${actual}"
2000 fi
2001 fi
72e74a21 2002 if [ "x${returntype}" = "xvoid" ]
104c1213 2003 then
4a5c6a1d 2004 printf " gdbarch->${function} (${params});\n"
104c1213 2005 else
4a5c6a1d 2006 printf " return gdbarch->${function} (${params});\n"
104c1213 2007 fi
3d9a5942
AC
2008 printf "}\n"
2009 printf "\n"
2010 printf "void\n"
2011 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2012 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2013 printf "{\n"
2014 printf " gdbarch->${function} = ${function};\n"
2015 printf "}\n"
2ada493a
AC
2016 elif class_is_variable_p
2017 then
3d9a5942
AC
2018 printf "\n"
2019 printf "${returntype}\n"
2020 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2021 printf "{\n"
8de9bdc4 2022 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 2023 if [ "x${invalid_p}" = "x0" ]
c0e8c252 2024 then
3d9a5942 2025 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 2026 elif [ -n "${invalid_p}" ]
104c1213 2027 then
956ac328
AC
2028 printf " /* Check variable is valid. */\n"
2029 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 2030 elif [ -n "${predefault}" ]
104c1213 2031 then
956ac328
AC
2032 printf " /* Check variable changed from pre-default. */\n"
2033 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 2034 fi
3d9a5942
AC
2035 printf " if (gdbarch_debug >= 2)\n"
2036 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2037 printf " return gdbarch->${function};\n"
2038 printf "}\n"
2039 printf "\n"
2040 printf "void\n"
2041 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2042 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2043 printf "{\n"
2044 printf " gdbarch->${function} = ${function};\n"
2045 printf "}\n"
2ada493a
AC
2046 elif class_is_info_p
2047 then
3d9a5942
AC
2048 printf "\n"
2049 printf "${returntype}\n"
2050 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2051 printf "{\n"
8de9bdc4 2052 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
2053 printf " if (gdbarch_debug >= 2)\n"
2054 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2055 printf " return gdbarch->${function};\n"
2056 printf "}\n"
2ada493a 2057 fi
104c1213
JM
2058done
2059
2060# All the trailing guff
2061cat <<EOF
2062
2063
f44c642f 2064/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2065 modules. */
104c1213
JM
2066
2067struct gdbarch_data
2068{
95160752 2069 unsigned index;
76860b5f 2070 int init_p;
030f20e1
AC
2071 gdbarch_data_pre_init_ftype *pre_init;
2072 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2073};
2074
2075struct gdbarch_data_registration
2076{
104c1213
JM
2077 struct gdbarch_data *data;
2078 struct gdbarch_data_registration *next;
2079};
2080
f44c642f 2081struct gdbarch_data_registry
104c1213 2082{
95160752 2083 unsigned nr;
104c1213
JM
2084 struct gdbarch_data_registration *registrations;
2085};
2086
f44c642f 2087struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2088{
2089 0, NULL,
2090};
2091
030f20e1
AC
2092static struct gdbarch_data *
2093gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2094 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2095{
2096 struct gdbarch_data_registration **curr;
05c547f6
MS
2097
2098 /* Append the new registration. */
f44c642f 2099 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2100 (*curr) != NULL;
2101 curr = &(*curr)->next);
70ba0933 2102 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2103 (*curr)->next = NULL;
70ba0933 2104 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2105 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2106 (*curr)->data->pre_init = pre_init;
2107 (*curr)->data->post_init = post_init;
76860b5f 2108 (*curr)->data->init_p = 1;
104c1213
JM
2109 return (*curr)->data;
2110}
2111
030f20e1
AC
2112struct gdbarch_data *
2113gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2114{
2115 return gdbarch_data_register (pre_init, NULL);
2116}
2117
2118struct gdbarch_data *
2119gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2120{
2121 return gdbarch_data_register (NULL, post_init);
2122}
104c1213 2123
0963b4bd 2124/* Create/delete the gdbarch data vector. */
95160752
AC
2125
2126static void
b3cc3077 2127alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2128{
b3cc3077
JB
2129 gdb_assert (gdbarch->data == NULL);
2130 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2131 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2132}
3c875b6f 2133
76860b5f 2134/* Initialize the current value of the specified per-architecture
0963b4bd 2135 data-pointer. */
b3cc3077 2136
95160752 2137void
030f20e1
AC
2138deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2139 struct gdbarch_data *data,
2140 void *pointer)
95160752
AC
2141{
2142 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2143 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2144 gdb_assert (data->pre_init == NULL);
95160752
AC
2145 gdbarch->data[data->index] = pointer;
2146}
2147
104c1213 2148/* Return the current value of the specified per-architecture
0963b4bd 2149 data-pointer. */
104c1213
JM
2150
2151void *
451fbdda 2152gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2153{
451fbdda 2154 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2155 if (gdbarch->data[data->index] == NULL)
76860b5f 2156 {
030f20e1
AC
2157 /* The data-pointer isn't initialized, call init() to get a
2158 value. */
2159 if (data->pre_init != NULL)
2160 /* Mid architecture creation: pass just the obstack, and not
2161 the entire architecture, as that way it isn't possible for
2162 pre-init code to refer to undefined architecture
2163 fields. */
2164 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2165 else if (gdbarch->initialized_p
2166 && data->post_init != NULL)
2167 /* Post architecture creation: pass the entire architecture
2168 (as all fields are valid), but be careful to also detect
2169 recursive references. */
2170 {
2171 gdb_assert (data->init_p);
2172 data->init_p = 0;
2173 gdbarch->data[data->index] = data->post_init (gdbarch);
2174 data->init_p = 1;
2175 }
2176 else
2177 /* The architecture initialization hasn't completed - punt -
2178 hope that the caller knows what they are doing. Once
2179 deprecated_set_gdbarch_data has been initialized, this can be
2180 changed to an internal error. */
2181 return NULL;
76860b5f
AC
2182 gdb_assert (gdbarch->data[data->index] != NULL);
2183 }
451fbdda 2184 return gdbarch->data[data->index];
104c1213
JM
2185}
2186
2187
0963b4bd 2188/* Keep a registry of the architectures known by GDB. */
104c1213 2189
4b9b3959 2190struct gdbarch_registration
104c1213
JM
2191{
2192 enum bfd_architecture bfd_architecture;
2193 gdbarch_init_ftype *init;
4b9b3959 2194 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2195 struct gdbarch_list *arches;
4b9b3959 2196 struct gdbarch_registration *next;
104c1213
JM
2197};
2198
f44c642f 2199static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2200
b4a20239
AC
2201static void
2202append_name (const char ***buf, int *nr, const char *name)
2203{
2204 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2205 (*buf)[*nr] = name;
2206 *nr += 1;
2207}
2208
2209const char **
2210gdbarch_printable_names (void)
2211{
7996bcec 2212 /* Accumulate a list of names based on the registed list of
0963b4bd 2213 architectures. */
7996bcec
AC
2214 int nr_arches = 0;
2215 const char **arches = NULL;
2216 struct gdbarch_registration *rego;
05c547f6 2217
7996bcec
AC
2218 for (rego = gdbarch_registry;
2219 rego != NULL;
2220 rego = rego->next)
b4a20239 2221 {
7996bcec
AC
2222 const struct bfd_arch_info *ap;
2223 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2224 if (ap == NULL)
2225 internal_error (__FILE__, __LINE__,
85c07804 2226 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2227 do
2228 {
2229 append_name (&arches, &nr_arches, ap->printable_name);
2230 ap = ap->next;
2231 }
2232 while (ap != NULL);
b4a20239 2233 }
7996bcec
AC
2234 append_name (&arches, &nr_arches, NULL);
2235 return arches;
b4a20239
AC
2236}
2237
2238
104c1213 2239void
4b9b3959
AC
2240gdbarch_register (enum bfd_architecture bfd_architecture,
2241 gdbarch_init_ftype *init,
2242 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2243{
4b9b3959 2244 struct gdbarch_registration **curr;
104c1213 2245 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2246
ec3d358c 2247 /* Check that BFD recognizes this architecture */
104c1213
JM
2248 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2249 if (bfd_arch_info == NULL)
2250 {
8e65ff28 2251 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2252 _("gdbarch: Attempt to register "
2253 "unknown architecture (%d)"),
8e65ff28 2254 bfd_architecture);
104c1213 2255 }
0963b4bd 2256 /* Check that we haven't seen this architecture before. */
f44c642f 2257 for (curr = &gdbarch_registry;
104c1213
JM
2258 (*curr) != NULL;
2259 curr = &(*curr)->next)
2260 {
2261 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2262 internal_error (__FILE__, __LINE__,
64b9b334 2263 _("gdbarch: Duplicate registration "
0963b4bd 2264 "of architecture (%s)"),
8e65ff28 2265 bfd_arch_info->printable_name);
104c1213
JM
2266 }
2267 /* log it */
2268 if (gdbarch_debug)
30737ed9 2269 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2270 bfd_arch_info->printable_name,
30737ed9 2271 host_address_to_string (init));
104c1213 2272 /* Append it */
70ba0933 2273 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2274 (*curr)->bfd_architecture = bfd_architecture;
2275 (*curr)->init = init;
4b9b3959 2276 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2277 (*curr)->arches = NULL;
2278 (*curr)->next = NULL;
4b9b3959
AC
2279}
2280
2281void
2282register_gdbarch_init (enum bfd_architecture bfd_architecture,
2283 gdbarch_init_ftype *init)
2284{
2285 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2286}
104c1213
JM
2287
2288
424163ea 2289/* Look for an architecture using gdbarch_info. */
104c1213
JM
2290
2291struct gdbarch_list *
2292gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2293 const struct gdbarch_info *info)
2294{
2295 for (; arches != NULL; arches = arches->next)
2296 {
2297 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2298 continue;
2299 if (info->byte_order != arches->gdbarch->byte_order)
2300 continue;
4be87837
DJ
2301 if (info->osabi != arches->gdbarch->osabi)
2302 continue;
424163ea
DJ
2303 if (info->target_desc != arches->gdbarch->target_desc)
2304 continue;
104c1213
JM
2305 return arches;
2306 }
2307 return NULL;
2308}
2309
2310
ebdba546 2311/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2312 architecture if needed. Return that new architecture. */
104c1213 2313
59837fe0
UW
2314struct gdbarch *
2315gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2316{
2317 struct gdbarch *new_gdbarch;
4b9b3959 2318 struct gdbarch_registration *rego;
104c1213 2319
b732d07d 2320 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2321 sources: "set ..."; INFOabfd supplied; and the global
2322 defaults. */
2323 gdbarch_info_fill (&info);
4be87837 2324
0963b4bd 2325 /* Must have found some sort of architecture. */
b732d07d 2326 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2327
2328 if (gdbarch_debug)
2329 {
2330 fprintf_unfiltered (gdb_stdlog,
59837fe0 2331 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2332 (info.bfd_arch_info != NULL
2333 ? info.bfd_arch_info->printable_name
2334 : "(null)"));
2335 fprintf_unfiltered (gdb_stdlog,
59837fe0 2336 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2337 info.byte_order,
d7449b42 2338 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2339 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2340 : "default"));
4be87837 2341 fprintf_unfiltered (gdb_stdlog,
59837fe0 2342 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2343 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2344 fprintf_unfiltered (gdb_stdlog,
59837fe0 2345 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2346 host_address_to_string (info.abfd));
104c1213 2347 fprintf_unfiltered (gdb_stdlog,
59837fe0 2348 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2349 host_address_to_string (info.tdep_info));
104c1213
JM
2350 }
2351
ebdba546 2352 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2353 for (rego = gdbarch_registry;
2354 rego != NULL;
2355 rego = rego->next)
2356 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2357 break;
2358 if (rego == NULL)
2359 {
2360 if (gdbarch_debug)
59837fe0 2361 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2362 "No matching architecture\n");
b732d07d
AC
2363 return 0;
2364 }
2365
ebdba546 2366 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2367 new_gdbarch = rego->init (info, rego->arches);
2368
ebdba546
AC
2369 /* Did the tdep code like it? No. Reject the change and revert to
2370 the old architecture. */
104c1213
JM
2371 if (new_gdbarch == NULL)
2372 {
2373 if (gdbarch_debug)
59837fe0 2374 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2375 "Target rejected architecture\n");
2376 return NULL;
104c1213
JM
2377 }
2378
ebdba546
AC
2379 /* Is this a pre-existing architecture (as determined by already
2380 being initialized)? Move it to the front of the architecture
2381 list (keeping the list sorted Most Recently Used). */
2382 if (new_gdbarch->initialized_p)
104c1213 2383 {
ebdba546 2384 struct gdbarch_list **list;
fe978cb0 2385 struct gdbarch_list *self;
104c1213 2386 if (gdbarch_debug)
59837fe0 2387 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2388 "Previous architecture %s (%s) selected\n",
2389 host_address_to_string (new_gdbarch),
104c1213 2390 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2391 /* Find the existing arch in the list. */
2392 for (list = &rego->arches;
2393 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2394 list = &(*list)->next);
2395 /* It had better be in the list of architectures. */
2396 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
fe978cb0
PA
2397 /* Unlink SELF. */
2398 self = (*list);
2399 (*list) = self->next;
2400 /* Insert SELF at the front. */
2401 self->next = rego->arches;
2402 rego->arches = self;
ebdba546
AC
2403 /* Return it. */
2404 return new_gdbarch;
104c1213
JM
2405 }
2406
ebdba546
AC
2407 /* It's a new architecture. */
2408 if (gdbarch_debug)
59837fe0 2409 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2410 "New architecture %s (%s) selected\n",
2411 host_address_to_string (new_gdbarch),
ebdba546
AC
2412 new_gdbarch->bfd_arch_info->printable_name);
2413
2414 /* Insert the new architecture into the front of the architecture
2415 list (keep the list sorted Most Recently Used). */
0f79675b 2416 {
fe978cb0
PA
2417 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2418 self->next = rego->arches;
2419 self->gdbarch = new_gdbarch;
2420 rego->arches = self;
0f79675b 2421 }
104c1213 2422
4b9b3959
AC
2423 /* Check that the newly installed architecture is valid. Plug in
2424 any post init values. */
2425 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2426 verify_gdbarch (new_gdbarch);
ebdba546 2427 new_gdbarch->initialized_p = 1;
104c1213 2428
4b9b3959 2429 if (gdbarch_debug)
ebdba546
AC
2430 gdbarch_dump (new_gdbarch, gdb_stdlog);
2431
2432 return new_gdbarch;
2433}
2434
e487cc15 2435/* Make the specified architecture current. */
ebdba546
AC
2436
2437void
aff68abb 2438set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2439{
2440 gdb_assert (new_gdbarch != NULL);
ebdba546 2441 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2442 current_inferior ()->gdbarch = new_gdbarch;
383f836e 2443 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2444 registers_changed ();
ebdba546 2445}
104c1213 2446
f5656ead 2447/* Return the current inferior's arch. */
6ecd4729
PA
2448
2449struct gdbarch *
f5656ead 2450target_gdbarch (void)
6ecd4729
PA
2451{
2452 return current_inferior ()->gdbarch;
2453}
2454
104c1213 2455extern void _initialize_gdbarch (void);
b4a20239 2456
104c1213 2457void
34620563 2458_initialize_gdbarch (void)
104c1213 2459{
ccce17b0 2460 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2461Set architecture debugging."), _("\\
2462Show architecture debugging."), _("\\
2463When non-zero, architecture debugging is enabled."),
2464 NULL,
920d2a44 2465 show_gdbarch_debug,
85c07804 2466 &setdebuglist, &showdebuglist);
104c1213
JM
2467}
2468EOF
2469
2470# close things off
2471exec 1>&2
2472#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2473compare_new gdbarch.c
This page took 1.464488 seconds and 4 git commands to generate.