* ld-elfcomm/elfcomm.exp: Add appropriate emulation option
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
9b254dd1 5# Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
0fb0cc75 6# 2008, 2009 Free Software Foundation, Inc.
104c1213
JM
7#
8# This file is part of GDB.
9#
10# This program is free software; you can redistribute it and/or modify
11# it under the terms of the GNU General Public License as published by
50efebf8 12# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
13# (at your option) any later version.
14#
15# This program is distributed in the hope that it will be useful,
16# but WITHOUT ANY WARRANTY; without even the implied warranty of
17# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18# GNU General Public License for more details.
19#
20# You should have received a copy of the GNU General Public License
50efebf8 21# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 22
6e2c7fa1 23# Make certain that the script is not running in an internationalized
d8864532
AC
24# environment.
25LANG=c ; export LANG
1bd316f0 26LC_ALL=c ; export LC_ALL
d8864532
AC
27
28
59233f88
AC
29compare_new ()
30{
31 file=$1
66b43ecb 32 if test ! -r ${file}
59233f88
AC
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 35 elif diff -u ${file} new-${file}
59233f88
AC
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41}
42
43
44# Format of the input table
97030eea 45read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
46
47do_read ()
48{
34620563
AC
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 57 then
34620563
AC
58 continue
59 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 60 then
34620563
AC
61 comment="${comment}
62${line}"
f0d4cc9e 63 else
3d9a5942
AC
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
34620563
AC
71 eval read ${read} <<EOF
72${line}
73EOF
74 IFS="${OFS}"
75
283354d8
AC
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
3d9a5942
AC
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
a72293e2
AC
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
06b25f14 98
ae45cd16
AC
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
34620563 102 "" )
f7968451 103 if test -n "${predefault}"
34620563
AC
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 106 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
34620563
AC
113 fi
114 ;;
ae45cd16 115 * )
1e9f55d0 116 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
117 kill $$
118 exit 1
119 ;;
120 esac
34620563
AC
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
72e74a21 130 if [ -n "${postdefault}" ]
34620563
AC
131 then
132 fallbackdefault="${postdefault}"
72e74a21 133 elif [ -n "${predefault}" ]
34620563
AC
134 then
135 fallbackdefault="${predefault}"
136 else
73d3c16e 137 fallbackdefault="0"
34620563
AC
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
f0d4cc9e 144 fi
34620563 145 done
72e74a21 146 if [ -n "${class}" ]
34620563
AC
147 then
148 true
c0e8c252
AC
149 else
150 false
151 fi
152}
153
104c1213 154
f0d4cc9e
AC
155fallback_default_p ()
156{
72e74a21
JB
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
159}
160
161class_is_variable_p ()
162{
4a5c6a1d
AC
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
f0d4cc9e
AC
167}
168
169class_is_function_p ()
170{
4a5c6a1d
AC
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175}
176
177class_is_multiarch_p ()
178{
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
f0d4cc9e
AC
183}
184
185class_is_predicate_p ()
186{
4a5c6a1d
AC
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
f0d4cc9e
AC
191}
192
193class_is_info_p ()
194{
4a5c6a1d
AC
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
f0d4cc9e
AC
199}
200
201
cff3e48b
JM
202# dump out/verify the doco
203for field in ${read}
204do
205 case ${field} in
206
207 class ) : ;;
c4093a6a 208
c0e8c252
AC
209 # # -> line disable
210 # f -> function
211 # hiding a function
2ada493a
AC
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
c0e8c252
AC
214 # v -> variable
215 # hiding a variable
2ada493a
AC
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
c0e8c252
AC
218 # i -> set from info
219 # hiding something from the ``struct info'' object
4a5c6a1d
AC
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
cff3e48b 224
cff3e48b
JM
225 returntype ) : ;;
226
c0e8c252 227 # For functions, the return type; for variables, the data type
cff3e48b
JM
228
229 function ) : ;;
230
c0e8c252
AC
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
234
235 formal ) : ;;
236
c0e8c252
AC
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
cff3e48b
JM
241
242 actual ) : ;;
243
c0e8c252
AC
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
cff3e48b 247
0b8f9e4d 248 staticdefault ) : ;;
c0e8c252
AC
249
250 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
cff3e48b 254
0b8f9e4d 255 # If STATICDEFAULT is empty, zero is used.
c0e8c252 256
0b8f9e4d 257 predefault ) : ;;
cff3e48b 258
10312cc4
AC
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
cff3e48b 263
0b8f9e4d
AC
264 # If PREDEFAULT is empty, zero is used.
265
10312cc4
AC
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
f0d4cc9e
AC
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
0b8f9e4d
AC
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
10312cc4
AC
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
f0d4cc9e
AC
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
be7811ad 295 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
296 # will contain the current architecture. Care should be
297 # taken.
cff3e48b 298
c4093a6a 299 invalid_p ) : ;;
cff3e48b 300
0b8f9e4d 301 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 302 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
f0d4cc9e
AC
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
313
314 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 315
cff3e48b
JM
316 print ) : ;;
317
2f9b146e
AC
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
c0e8c252 320
0b1553bc
UW
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
cff3e48b 323
283354d8 324 garbage_at_eol ) : ;;
0b8f9e4d 325
283354d8 326 # Catches stray fields.
cff3e48b 327
50248794
AC
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
cff3e48b
JM
331 esac
332done
333
cff3e48b 334
104c1213
JM
335function_list ()
336{
cff3e48b 337 # See below (DOCO) for description of each field
34620563 338 cat <<EOF
be7811ad 339i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 340#
97030eea 341i:int:byte_order:::BFD_ENDIAN_BIG
9d4fde75 342i:int:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 343#
97030eea 344i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 345#
30737ed9 346i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
347
348# The bit byte-order has to do just with numbering of bits in debugging symbols
349# and such. Conceptually, it's quite separate from byte/word byte order.
350v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
66b43ecb
AC
352# Number of bits in a char or unsigned char for the target machine.
353# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 354# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
355#
356# Number of bits in a short or unsigned short for the target machine.
97030eea 357v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 358# Number of bits in an int or unsigned int for the target machine.
97030eea 359v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in a long or unsigned long for the target machine.
97030eea 361v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
362# Number of bits in a long long or unsigned long long for the target
363# machine.
be7811ad 364v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94
AC
365
366# The ABI default bit-size and format for "float", "double", and "long
367# double". These bit/format pairs should eventually be combined into
368# a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
369# Each format describes both the big and little endian layouts (if
370# useful).
456fcf94 371
97030eea 372v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 373v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 374v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 375v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 376v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 377v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 378
52204a0b
DT
379# For most targets, a pointer on the target and its representation as an
380# address in GDB have the same size and "look the same". For such a
17a912b6 381# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
382# / addr_bit will be set from it.
383#
17a912b6 384# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
76e71323
UW
385# also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386# as well.
52204a0b
DT
387#
388# ptr_bit is the size of a pointer on the target
be7811ad 389v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 390# addr_bit is the size of a target address as represented in gdb
be7811ad 391v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 392#
4e409299 393# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 394v:int:char_signed:::1:-1:1
4e409299 395#
97030eea
UW
396F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
398# Function for getting target's idea of a frame pointer. FIXME: GDB's
399# whole scheme for dealing with "frames" and "frame pointers" needs a
400# serious shakedown.
a54fba4c 401m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 402#
97030eea
UW
403M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 405#
97030eea 406v:int:num_regs:::0:-1
0aba1244
EZ
407# This macro gives the number of pseudo-registers that live in the
408# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
409# These pseudo-registers may be aliases for other registers,
410# combinations of other registers, or they may be computed by GDB.
97030eea 411v:int:num_pseudo_regs:::0:0::0
c2169756
AC
412
413# GDB's standard (or well known) register numbers. These can map onto
414# a real register or a pseudo (computed) register or not be defined at
1200cd6e 415# all (-1).
3e8c568d 416# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
417v:int:sp_regnum:::-1:-1::0
418v:int:pc_regnum:::-1:-1::0
419v:int:ps_regnum:::-1:-1::0
420v:int:fp0_regnum:::0:-1::0
88c72b7d 421# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 422m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 423# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 424m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 425# Convert from an sdb register number to an internal gdb register number.
d3f73121 426m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 427# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 428m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 429m:const char *:register_name:int regnr:regnr::0
9c04cab7 430
7b9ee6a8
DJ
431# Return the type of a register specified by the architecture. Only
432# the register cache should call this function directly; others should
433# use "register_type".
97030eea 434M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 435
f3be58bc 436# See gdbint.texinfo, and PUSH_DUMMY_CALL.
669fac23
DJ
437M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 439# deprecated_fp_regnum.
97030eea 440v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 441
a86c5fc9 442# See gdbint.texinfo. See infcall.c.
97030eea
UW
443M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444v:int:call_dummy_location::::AT_ENTRY_POINT::0
445M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 446
97030eea
UW
447m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
450# MAP a GDB RAW register number onto a simulator register number. See
451# also include/...-sim.h.
e7faf938 452m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
453m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
9df628e0 455# setjmp/longjmp support.
97030eea 456F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
104c1213 457#
97030eea 458v:int:believe_pcc_promotion:::::::
104c1213 459#
0abe36f5 460m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
97030eea
UW
461f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0
UW
463# Construct a value representing the contents of register REGNUM in
464# frame FRAME, interpreted as type TYPE. The routine needs to
465# allocate and return a struct value with all value attributes
466# (but not the value contents) filled in.
97030eea 467f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
104c1213 468#
9898f801
UW
469m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 471M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 472
ea42b34a
JB
473# Return the return-value convention that will be used by FUNCTYPE
474# to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475# case the return convention is computed based only on VALTYPE.
476#
477# If READBUF is not NULL, extract the return value and save it in this buffer.
478#
479# If WRITEBUF is not NULL, it contains a return value which will be
480# stored into the appropriate register. This can be used when we want
481# to force the value returned by a function (see the "return" command
482# for instance).
c055b101 483M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
92ad9cd9 484
6093d2eb 485m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 486M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
97030eea 487f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 488m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
97030eea 489M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
490m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
491m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 492v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
493
494# A function can be addressed by either it's "pointer" (possibly a
495# descriptor address) or "entry point" (first executable instruction).
496# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 497# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
498# a simplified subset of that functionality - the function's address
499# corresponds to the "function pointer" and the function's start
500# corresponds to the "function entry point" - and hence is redundant.
501
97030eea 502v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 503
123dc839
DJ
504# Return the remote protocol register number associated with this
505# register. Normally the identity mapping.
97030eea 506m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 507
b2756930 508# Fetch the target specific address used to represent a load module.
97030eea 509F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 510#
97030eea
UW
511v:CORE_ADDR:frame_args_skip:::0:::0
512M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
513M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
514# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
515# frame-base. Enable frame-base before frame-unwind.
97030eea 516F:int:frame_num_args:struct frame_info *frame:frame
104c1213 517#
97030eea
UW
518M:CORE_ADDR:frame_align:CORE_ADDR address:address
519m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
520v:int:frame_red_zone_size
f0d4cc9e 521#
97030eea 522m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
523# On some machines there are bits in addresses which are not really
524# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 525# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
526# we get a "real" address such as one would find in a symbol table.
527# This is used only for addresses of instructions, and even then I'm
528# not sure it's used in all contexts. It exists to deal with there
529# being a few stray bits in the PC which would mislead us, not as some
530# sort of generic thing to handle alignment or segmentation (it's
531# possible it should be in TARGET_READ_PC instead).
24568a2c 532m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
260edbc2 533# It is not at all clear why gdbarch_smash_text_address is not folded into
bf6ae464 534# gdbarch_addr_bits_remove.
24568a2c 535m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
536
537# FIXME/cagney/2001-01-18: This should be split in two. A target method that
538# indicates if the target needs software single step. An ISA method to
539# implement it.
540#
541# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
542# breakpoints using the breakpoint system instead of blatting memory directly
543# (as with rs6000).
64c4637f 544#
e6590a1b
UW
545# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
546# target can single step. If not, then implement single step using breakpoints.
64c4637f 547#
e6590a1b
UW
548# A return value of 1 means that the software_single_step breakpoints
549# were inserted; 0 means they were not.
97030eea 550F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 551
3352ef37
AC
552# Return non-zero if the processor is executing a delay slot and a
553# further single-step is needed before the instruction finishes.
97030eea 554M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 555# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 556# disassembler. Perhaps objdump can handle it?
97030eea
UW
557f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
558f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
559
560
cfd8ab24 561# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
562# evaluates non-zero, this is the address where the debugger will place
563# a step-resume breakpoint to get us past the dynamic linker.
97030eea 564m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 565# Some systems also have trampoline code for returning from shared libs.
e17a4113 566m:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 567
c12260ac
CV
568# A target might have problems with watchpoints as soon as the stack
569# frame of the current function has been destroyed. This mostly happens
570# as the first action in a funtion's epilogue. in_function_epilogue_p()
571# is defined to return a non-zero value if either the given addr is one
572# instruction after the stack destroying instruction up to the trailing
573# return instruction or if we can figure out that the stack frame has
574# already been invalidated regardless of the value of addr. Targets
575# which don't suffer from that problem could just let this functionality
576# untouched.
97030eea 577m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
97030eea
UW
578f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
579f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
97030eea
UW
580v:int:cannot_step_breakpoint:::0:0::0
581v:int:have_nonsteppable_watchpoint:::0:0::0
582F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
583M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
584M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 585# Is a register in a group
97030eea 586m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 587# Fetch the pointer to the ith function argument.
97030eea 588F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
589
590# Return the appropriate register set for a core file section with
591# name SECT_NAME and size SECT_SIZE.
97030eea 592M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
0d5de010 593
959b8724
PA
594# When creating core dumps, some systems encode the PID in addition
595# to the LWP id in core file register section names. In those cases, the
596# "XXX" in ".reg/XXX" is encoded as [LWPID << 16 | PID]. This setting
597# is set to true for such architectures; false if "XXX" represents an LWP
598# or thread id with no special encoding.
599v:int:core_reg_section_encodes_pid:::0:0::0
600
17ea7499
CES
601# Supported register notes in a core file.
602v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
603
de584861
PA
604# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
605# core file into buffer READBUF with length LEN.
97030eea 606M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
de584861 607
28439f5e
PA
608# How the core_stratum layer converts a PTID from a core file to a
609# string.
610M:char *:core_pid_to_str:ptid_t ptid:ptid
611
a78c2d62
UW
612# BFD target to use when generating a core file.
613V:const char *:gcore_bfd_target:::0:0:::gdbarch->gcore_bfd_target
614
0d5de010
DJ
615# If the elements of C++ vtables are in-place function descriptors rather
616# than normal function pointers (which may point to code or a descriptor),
617# set this to one.
97030eea 618v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
619
620# Set if the least significant bit of the delta is used instead of the least
621# significant bit of the pfn for pointers to virtual member functions.
97030eea 622v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
623
624# Advance PC to next instruction in order to skip a permanent breakpoint.
97030eea 625F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
1c772458 626
237fc4c9
PA
627# The maximum length of an instruction on this architecture.
628V:ULONGEST:max_insn_length:::0:0
629
630# Copy the instruction at FROM to TO, and make any adjustments
631# necessary to single-step it at that address.
632#
633# REGS holds the state the thread's registers will have before
634# executing the copied instruction; the PC in REGS will refer to FROM,
635# not the copy at TO. The caller should update it to point at TO later.
636#
637# Return a pointer to data of the architecture's choice to be passed
638# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
639# the instruction's effects have been completely simulated, with the
640# resulting state written back to REGS.
641#
642# For a general explanation of displaced stepping and how GDB uses it,
643# see the comments in infrun.c.
644#
645# The TO area is only guaranteed to have space for
646# gdbarch_max_insn_length (arch) bytes, so this function must not
647# write more bytes than that to that area.
648#
649# If you do not provide this function, GDB assumes that the
650# architecture does not support displaced stepping.
651#
652# If your architecture doesn't need to adjust instructions before
653# single-stepping them, consider using simple_displaced_step_copy_insn
654# here.
655M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
656
657# Fix up the state resulting from successfully single-stepping a
658# displaced instruction, to give the result we would have gotten from
659# stepping the instruction in its original location.
660#
661# REGS is the register state resulting from single-stepping the
662# displaced instruction.
663#
664# CLOSURE is the result from the matching call to
665# gdbarch_displaced_step_copy_insn.
666#
667# If you provide gdbarch_displaced_step_copy_insn.but not this
668# function, then GDB assumes that no fixup is needed after
669# single-stepping the instruction.
670#
671# For a general explanation of displaced stepping and how GDB uses it,
672# see the comments in infrun.c.
673M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
674
675# Free a closure returned by gdbarch_displaced_step_copy_insn.
676#
677# If you provide gdbarch_displaced_step_copy_insn, you must provide
678# this function as well.
679#
680# If your architecture uses closures that don't need to be freed, then
681# you can use simple_displaced_step_free_closure here.
682#
683# For a general explanation of displaced stepping and how GDB uses it,
684# see the comments in infrun.c.
685m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
686
687# Return the address of an appropriate place to put displaced
688# instructions while we step over them. There need only be one such
689# place, since we're only stepping one thread over a breakpoint at a
690# time.
691#
692# For a general explanation of displaced stepping and how GDB uses it,
693# see the comments in infrun.c.
694m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
695
1c772458 696# Refresh overlay mapped state for section OSECT.
97030eea 697F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 698
97030eea 699M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
700
701# Handle special encoding of static variables in stabs debug info.
97030eea 702F:char *:static_transform_name:char *name:name
203c3895 703# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 704v:int:sofun_address_maybe_missing:::0:0::0
1cded358 705
0508c3ec
HZ
706# Parse the instruction at ADDR storing in the record execution log
707# the registers REGCACHE and memory ranges that will be affected when
708# the instruction executes, along with their current values.
709# Return -1 if something goes wrong, 0 otherwise.
710M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
711
1cded358
AR
712# Signal translation: translate inferior's signal (host's) number into
713# GDB's representation.
714m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
715# Signal translation: translate GDB's signal number into inferior's host
716# signal number.
717m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
60c5725c 718
4aa995e1
PA
719# Extra signal info inspection.
720#
721# Return a type suitable to inspect extra signal information.
722M:struct type *:get_siginfo_type:void:
723
60c5725c
DJ
724# Record architecture-specific information from the symbol table.
725M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf
PA
726
727# True if the list of shared libraries is one and only for all
728# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
729# This usually means that all processes, although may or may not share
730# an address space, will see the same set of symbols at the same
731# addresses.
50c71eaf 732v:int:has_global_solist:::0:0::0
2567c7d9
PA
733
734# On some targets, even though each inferior has its own private
735# address space, the debug interface takes care of making breakpoints
736# visible to all address spaces automatically. For such cases,
737# this property should be set to true.
738v:int:has_global_breakpoints:::0:0::0
104c1213 739EOF
104c1213
JM
740}
741
0b8f9e4d
AC
742#
743# The .log file
744#
745exec > new-gdbarch.log
34620563 746function_list | while do_read
0b8f9e4d
AC
747do
748 cat <<EOF
2f9b146e 749${class} ${returntype} ${function} ($formal)
104c1213 750EOF
3d9a5942
AC
751 for r in ${read}
752 do
753 eval echo \"\ \ \ \ ${r}=\${${r}}\"
754 done
f0d4cc9e 755 if class_is_predicate_p && fallback_default_p
0b8f9e4d 756 then
66d659b1 757 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
758 kill $$
759 exit 1
760 fi
72e74a21 761 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
762 then
763 echo "Error: postdefault is useless when invalid_p=0" 1>&2
764 kill $$
765 exit 1
766 fi
a72293e2
AC
767 if class_is_multiarch_p
768 then
769 if class_is_predicate_p ; then :
770 elif test "x${predefault}" = "x"
771 then
2f9b146e 772 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
773 kill $$
774 exit 1
775 fi
776 fi
3d9a5942 777 echo ""
0b8f9e4d
AC
778done
779
780exec 1>&2
781compare_new gdbarch.log
782
104c1213
JM
783
784copyright ()
785{
786cat <<EOF
59233f88
AC
787/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
788
104c1213 789/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 790
50efebf8 791 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
424163ea 792 Free Software Foundation, Inc.
104c1213
JM
793
794 This file is part of GDB.
795
796 This program is free software; you can redistribute it and/or modify
797 it under the terms of the GNU General Public License as published by
50efebf8 798 the Free Software Foundation; either version 3 of the License, or
104c1213 799 (at your option) any later version.
50efebf8 800
104c1213
JM
801 This program is distributed in the hope that it will be useful,
802 but WITHOUT ANY WARRANTY; without even the implied warranty of
803 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
804 GNU General Public License for more details.
50efebf8 805
104c1213 806 You should have received a copy of the GNU General Public License
50efebf8 807 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 808
104c1213
JM
809/* This file was created with the aid of \`\`gdbarch.sh''.
810
52204a0b 811 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
812 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
813 against the existing \`\`gdbarch.[hc]''. Any differences found
814 being reported.
815
816 If editing this file, please also run gdbarch.sh and merge any
52204a0b 817 changes into that script. Conversely, when making sweeping changes
104c1213
JM
818 to this file, modifying gdbarch.sh and using its output may prove
819 easier. */
820
821EOF
822}
823
824#
825# The .h file
826#
827
828exec > new-gdbarch.h
829copyright
830cat <<EOF
831#ifndef GDBARCH_H
832#define GDBARCH_H
833
da3331ec
AC
834struct floatformat;
835struct ui_file;
104c1213
JM
836struct frame_info;
837struct value;
b6af0555 838struct objfile;
1c772458 839struct obj_section;
a2cf933a 840struct minimal_symbol;
049ee0e4 841struct regcache;
b59ff9d5 842struct reggroup;
6ce6d90f 843struct regset;
a89aa300 844struct disassemble_info;
e2d0e7eb 845struct target_ops;
030f20e1 846struct obstack;
8181d85f 847struct bp_target_info;
424163ea 848struct target_desc;
237fc4c9 849struct displaced_step_closure;
17ea7499 850struct core_regset_section;
104c1213 851
9e2ace22
JB
852/* The architecture associated with the connection to the target.
853
854 The architecture vector provides some information that is really
855 a property of the target: The layout of certain packets, for instance;
856 or the solib_ops vector. Etc. To differentiate architecture accesses
857 to per-target properties from per-thread/per-frame/per-objfile properties,
858 accesses to per-target properties should be made through target_gdbarch.
859
860 Eventually, when support for multiple targets is implemented in
861 GDB, this global should be made target-specific. */
1cf3db46 862extern struct gdbarch *target_gdbarch;
104c1213
JM
863EOF
864
865# function typedef's
3d9a5942
AC
866printf "\n"
867printf "\n"
868printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 869function_list | while do_read
104c1213 870do
2ada493a
AC
871 if class_is_info_p
872 then
3d9a5942
AC
873 printf "\n"
874 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
875 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 876 fi
104c1213
JM
877done
878
879# function typedef's
3d9a5942
AC
880printf "\n"
881printf "\n"
882printf "/* The following are initialized by the target dependent code. */\n"
34620563 883function_list | while do_read
104c1213 884do
72e74a21 885 if [ -n "${comment}" ]
34620563
AC
886 then
887 echo "${comment}" | sed \
888 -e '2 s,#,/*,' \
889 -e '3,$ s,#, ,' \
890 -e '$ s,$, */,'
891 fi
412d5987
AC
892
893 if class_is_predicate_p
2ada493a 894 then
412d5987
AC
895 printf "\n"
896 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 897 fi
2ada493a
AC
898 if class_is_variable_p
899 then
3d9a5942
AC
900 printf "\n"
901 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
902 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
903 fi
904 if class_is_function_p
905 then
3d9a5942 906 printf "\n"
72e74a21 907 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
908 then
909 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
910 elif class_is_multiarch_p
911 then
912 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
913 else
914 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
915 fi
72e74a21 916 if [ "x${formal}" = "xvoid" ]
104c1213 917 then
3d9a5942 918 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 919 else
3d9a5942 920 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 921 fi
3d9a5942 922 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 923 fi
104c1213
JM
924done
925
926# close it off
927cat <<EOF
928
929extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
930
931
932/* Mechanism for co-ordinating the selection of a specific
933 architecture.
934
935 GDB targets (*-tdep.c) can register an interest in a specific
936 architecture. Other GDB components can register a need to maintain
937 per-architecture data.
938
939 The mechanisms below ensures that there is only a loose connection
940 between the set-architecture command and the various GDB
0fa6923a 941 components. Each component can independently register their need
104c1213
JM
942 to maintain architecture specific data with gdbarch.
943
944 Pragmatics:
945
946 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
947 didn't scale.
948
949 The more traditional mega-struct containing architecture specific
950 data for all the various GDB components was also considered. Since
0fa6923a 951 GDB is built from a variable number of (fairly independent)
104c1213
JM
952 components it was determined that the global aproach was not
953 applicable. */
954
955
956/* Register a new architectural family with GDB.
957
958 Register support for the specified ARCHITECTURE with GDB. When
959 gdbarch determines that the specified architecture has been
960 selected, the corresponding INIT function is called.
961
962 --
963
964 The INIT function takes two parameters: INFO which contains the
965 information available to gdbarch about the (possibly new)
966 architecture; ARCHES which is a list of the previously created
967 \`\`struct gdbarch'' for this architecture.
968
0f79675b 969 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 970 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
971
972 The ARCHES parameter is a linked list (sorted most recently used)
973 of all the previously created architures for this architecture
974 family. The (possibly NULL) ARCHES->gdbarch can used to access
975 values from the previously selected architecture for this
59837fe0 976 architecture family.
104c1213
JM
977
978 The INIT function shall return any of: NULL - indicating that it
ec3d358c 979 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
980 gdbarch'' from the ARCHES list - indicating that the new
981 architecture is just a synonym for an earlier architecture (see
982 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
983 - that describes the selected architecture (see gdbarch_alloc()).
984
985 The DUMP_TDEP function shall print out all target specific values.
986 Care should be taken to ensure that the function works in both the
987 multi-arch and non- multi-arch cases. */
104c1213
JM
988
989struct gdbarch_list
990{
991 struct gdbarch *gdbarch;
992 struct gdbarch_list *next;
993};
994
995struct gdbarch_info
996{
104c1213
JM
997 /* Use default: NULL (ZERO). */
998 const struct bfd_arch_info *bfd_arch_info;
999
428721aa 1000 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
1001 int byte_order;
1002
9d4fde75
SS
1003 int byte_order_for_code;
1004
104c1213
JM
1005 /* Use default: NULL (ZERO). */
1006 bfd *abfd;
1007
1008 /* Use default: NULL (ZERO). */
1009 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1010
1011 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1012 enum gdb_osabi osabi;
424163ea
DJ
1013
1014 /* Use default: NULL (ZERO). */
1015 const struct target_desc *target_desc;
104c1213
JM
1016};
1017
1018typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1019typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1020
4b9b3959 1021/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1022extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1023
4b9b3959
AC
1024extern void gdbarch_register (enum bfd_architecture architecture,
1025 gdbarch_init_ftype *,
1026 gdbarch_dump_tdep_ftype *);
1027
104c1213 1028
b4a20239
AC
1029/* Return a freshly allocated, NULL terminated, array of the valid
1030 architecture names. Since architectures are registered during the
1031 _initialize phase this function only returns useful information
1032 once initialization has been completed. */
1033
1034extern const char **gdbarch_printable_names (void);
1035
1036
104c1213
JM
1037/* Helper function. Search the list of ARCHES for a GDBARCH that
1038 matches the information provided by INFO. */
1039
424163ea 1040extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1041
1042
1043/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1044 basic initialization using values obtained from the INFO and TDEP
104c1213
JM
1045 parameters. set_gdbarch_*() functions are called to complete the
1046 initialization of the object. */
1047
1048extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1049
1050
4b9b3959
AC
1051/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1052 It is assumed that the caller freeds the \`\`struct
1053 gdbarch_tdep''. */
1054
058f20d5
JB
1055extern void gdbarch_free (struct gdbarch *);
1056
1057
aebd7893
AC
1058/* Helper function. Allocate memory from the \`\`struct gdbarch''
1059 obstack. The memory is freed when the corresponding architecture
1060 is also freed. */
1061
1062extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1063#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1064#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1065
1066
b732d07d 1067/* Helper function. Force an update of the current architecture.
104c1213 1068
b732d07d
AC
1069 The actual architecture selected is determined by INFO, \`\`(gdb) set
1070 architecture'' et.al., the existing architecture and BFD's default
1071 architecture. INFO should be initialized to zero and then selected
1072 fields should be updated.
104c1213 1073
16f33e29
AC
1074 Returns non-zero if the update succeeds */
1075
1076extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1077
1078
ebdba546
AC
1079/* Helper function. Find an architecture matching info.
1080
1081 INFO should be initialized using gdbarch_info_init, relevant fields
1082 set, and then finished using gdbarch_info_fill.
1083
1084 Returns the corresponding architecture, or NULL if no matching
59837fe0 1085 architecture was found. */
ebdba546
AC
1086
1087extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1088
1089
59837fe0 1090/* Helper function. Set the global "target_gdbarch" to "gdbarch".
ebdba546
AC
1091
1092 FIXME: kettenis/20031124: Of the functions that follow, only
1093 gdbarch_from_bfd is supposed to survive. The others will
1094 dissappear since in the future GDB will (hopefully) be truly
1095 multi-arch. However, for now we're still stuck with the concept of
1096 a single active architecture. */
1097
59837fe0 1098extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
ebdba546 1099
104c1213
JM
1100
1101/* Register per-architecture data-pointer.
1102
1103 Reserve space for a per-architecture data-pointer. An identifier
1104 for the reserved data-pointer is returned. That identifer should
95160752 1105 be saved in a local static variable.
104c1213 1106
fcc1c85c
AC
1107 Memory for the per-architecture data shall be allocated using
1108 gdbarch_obstack_zalloc. That memory will be deleted when the
1109 corresponding architecture object is deleted.
104c1213 1110
95160752
AC
1111 When a previously created architecture is re-selected, the
1112 per-architecture data-pointer for that previous architecture is
76860b5f 1113 restored. INIT() is not re-called.
104c1213
JM
1114
1115 Multiple registrarants for any architecture are allowed (and
1116 strongly encouraged). */
1117
95160752 1118struct gdbarch_data;
104c1213 1119
030f20e1
AC
1120typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1121extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1122typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1123extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1124extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1125 struct gdbarch_data *data,
1126 void *pointer);
104c1213 1127
451fbdda 1128extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1129
1130
0fa6923a 1131/* Set the dynamic target-system-dependent parameters (architecture,
104c1213
JM
1132 byte-order, ...) using information found in the BFD */
1133
1134extern void set_gdbarch_from_file (bfd *);
1135
1136
e514a9d6
JM
1137/* Initialize the current architecture to the "first" one we find on
1138 our list. */
1139
1140extern void initialize_current_architecture (void);
1141
104c1213
JM
1142/* gdbarch trace variable */
1143extern int gdbarch_debug;
1144
4b9b3959 1145extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1146
1147#endif
1148EOF
1149exec 1>&2
1150#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1151compare_new gdbarch.h
104c1213
JM
1152
1153
1154#
1155# C file
1156#
1157
1158exec > new-gdbarch.c
1159copyright
1160cat <<EOF
1161
1162#include "defs.h"
7355ddba 1163#include "arch-utils.h"
104c1213 1164
104c1213 1165#include "gdbcmd.h"
faaf634c 1166#include "inferior.h"
104c1213
JM
1167#include "symcat.h"
1168
f0d4cc9e 1169#include "floatformat.h"
104c1213 1170
95160752 1171#include "gdb_assert.h"
b66d6d2e 1172#include "gdb_string.h"
b59ff9d5 1173#include "reggroups.h"
4be87837 1174#include "osabi.h"
aebd7893 1175#include "gdb_obstack.h"
383f836e 1176#include "observer.h"
a3ecef73 1177#include "regcache.h"
95160752 1178
104c1213
JM
1179/* Static function declarations */
1180
b3cc3077 1181static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1182
104c1213
JM
1183/* Non-zero if we want to trace architecture code. */
1184
1185#ifndef GDBARCH_DEBUG
1186#define GDBARCH_DEBUG 0
1187#endif
1188int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1189static void
1190show_gdbarch_debug (struct ui_file *file, int from_tty,
1191 struct cmd_list_element *c, const char *value)
1192{
1193 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1194}
104c1213 1195
456fcf94 1196static const char *
8da61cc4 1197pformat (const struct floatformat **format)
456fcf94
AC
1198{
1199 if (format == NULL)
1200 return "(null)";
1201 else
8da61cc4
DJ
1202 /* Just print out one of them - this is only for diagnostics. */
1203 return format[0]->name;
456fcf94
AC
1204}
1205
104c1213
JM
1206EOF
1207
1208# gdbarch open the gdbarch object
3d9a5942
AC
1209printf "\n"
1210printf "/* Maintain the struct gdbarch object */\n"
1211printf "\n"
1212printf "struct gdbarch\n"
1213printf "{\n"
76860b5f
AC
1214printf " /* Has this architecture been fully initialized? */\n"
1215printf " int initialized_p;\n"
aebd7893
AC
1216printf "\n"
1217printf " /* An obstack bound to the lifetime of the architecture. */\n"
1218printf " struct obstack *obstack;\n"
1219printf "\n"
3d9a5942 1220printf " /* basic architectural information */\n"
34620563 1221function_list | while do_read
104c1213 1222do
2ada493a
AC
1223 if class_is_info_p
1224 then
3d9a5942 1225 printf " ${returntype} ${function};\n"
2ada493a 1226 fi
104c1213 1227done
3d9a5942
AC
1228printf "\n"
1229printf " /* target specific vector. */\n"
1230printf " struct gdbarch_tdep *tdep;\n"
1231printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1232printf "\n"
1233printf " /* per-architecture data-pointers */\n"
95160752 1234printf " unsigned nr_data;\n"
3d9a5942
AC
1235printf " void **data;\n"
1236printf "\n"
1237printf " /* per-architecture swap-regions */\n"
1238printf " struct gdbarch_swap *swap;\n"
1239printf "\n"
104c1213
JM
1240cat <<EOF
1241 /* Multi-arch values.
1242
1243 When extending this structure you must:
1244
1245 Add the field below.
1246
1247 Declare set/get functions and define the corresponding
1248 macro in gdbarch.h.
1249
1250 gdbarch_alloc(): If zero/NULL is not a suitable default,
1251 initialize the new field.
1252
1253 verify_gdbarch(): Confirm that the target updated the field
1254 correctly.
1255
7e73cedf 1256 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1257 field is dumped out
1258
c0e8c252 1259 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1260 variable (base values on the host's c-type system).
1261
1262 get_gdbarch(): Implement the set/get functions (probably using
1263 the macro's as shortcuts).
1264
1265 */
1266
1267EOF
34620563 1268function_list | while do_read
104c1213 1269do
2ada493a
AC
1270 if class_is_variable_p
1271 then
3d9a5942 1272 printf " ${returntype} ${function};\n"
2ada493a
AC
1273 elif class_is_function_p
1274 then
2f9b146e 1275 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1276 fi
104c1213 1277done
3d9a5942 1278printf "};\n"
104c1213
JM
1279
1280# A pre-initialized vector
3d9a5942
AC
1281printf "\n"
1282printf "\n"
104c1213
JM
1283cat <<EOF
1284/* The default architecture uses host values (for want of a better
1285 choice). */
1286EOF
3d9a5942
AC
1287printf "\n"
1288printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1289printf "\n"
1290printf "struct gdbarch startup_gdbarch =\n"
1291printf "{\n"
76860b5f 1292printf " 1, /* Always initialized. */\n"
aebd7893 1293printf " NULL, /* The obstack. */\n"
3d9a5942 1294printf " /* basic architecture information */\n"
4b9b3959 1295function_list | while do_read
104c1213 1296do
2ada493a
AC
1297 if class_is_info_p
1298 then
ec5cbaec 1299 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1300 fi
104c1213
JM
1301done
1302cat <<EOF
4b9b3959
AC
1303 /* target specific vector and its dump routine */
1304 NULL, NULL,
104c1213
JM
1305 /*per-architecture data-pointers and swap regions */
1306 0, NULL, NULL,
1307 /* Multi-arch values */
1308EOF
34620563 1309function_list | while do_read
104c1213 1310do
2ada493a
AC
1311 if class_is_function_p || class_is_variable_p
1312 then
ec5cbaec 1313 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1314 fi
104c1213
JM
1315done
1316cat <<EOF
c0e8c252 1317 /* startup_gdbarch() */
104c1213 1318};
4b9b3959 1319
1cf3db46 1320struct gdbarch *target_gdbarch = &startup_gdbarch;
104c1213
JM
1321EOF
1322
1323# Create a new gdbarch struct
104c1213 1324cat <<EOF
7de2341d 1325
66b43ecb 1326/* Create a new \`\`struct gdbarch'' based on information provided by
104c1213
JM
1327 \`\`struct gdbarch_info''. */
1328EOF
3d9a5942 1329printf "\n"
104c1213
JM
1330cat <<EOF
1331struct gdbarch *
1332gdbarch_alloc (const struct gdbarch_info *info,
1333 struct gdbarch_tdep *tdep)
1334{
be7811ad 1335 struct gdbarch *gdbarch;
aebd7893
AC
1336
1337 /* Create an obstack for allocating all the per-architecture memory,
1338 then use that to allocate the architecture vector. */
1339 struct obstack *obstack = XMALLOC (struct obstack);
1340 obstack_init (obstack);
be7811ad
MD
1341 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1342 memset (gdbarch, 0, sizeof (*gdbarch));
1343 gdbarch->obstack = obstack;
85de9627 1344
be7811ad 1345 alloc_gdbarch_data (gdbarch);
85de9627 1346
be7811ad 1347 gdbarch->tdep = tdep;
104c1213 1348EOF
3d9a5942 1349printf "\n"
34620563 1350function_list | while do_read
104c1213 1351do
2ada493a
AC
1352 if class_is_info_p
1353 then
be7811ad 1354 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1355 fi
104c1213 1356done
3d9a5942
AC
1357printf "\n"
1358printf " /* Force the explicit initialization of these. */\n"
34620563 1359function_list | while do_read
104c1213 1360do
2ada493a
AC
1361 if class_is_function_p || class_is_variable_p
1362 then
72e74a21 1363 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1364 then
be7811ad 1365 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1366 fi
2ada493a 1367 fi
104c1213
JM
1368done
1369cat <<EOF
1370 /* gdbarch_alloc() */
1371
be7811ad 1372 return gdbarch;
104c1213
JM
1373}
1374EOF
1375
058f20d5 1376# Free a gdbarch struct.
3d9a5942
AC
1377printf "\n"
1378printf "\n"
058f20d5 1379cat <<EOF
aebd7893
AC
1380/* Allocate extra space using the per-architecture obstack. */
1381
1382void *
1383gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1384{
1385 void *data = obstack_alloc (arch->obstack, size);
1386 memset (data, 0, size);
1387 return data;
1388}
1389
1390
058f20d5
JB
1391/* Free a gdbarch struct. This should never happen in normal
1392 operation --- once you've created a gdbarch, you keep it around.
1393 However, if an architecture's init function encounters an error
1394 building the structure, it may need to clean up a partially
1395 constructed gdbarch. */
4b9b3959 1396
058f20d5
JB
1397void
1398gdbarch_free (struct gdbarch *arch)
1399{
aebd7893 1400 struct obstack *obstack;
95160752 1401 gdb_assert (arch != NULL);
aebd7893
AC
1402 gdb_assert (!arch->initialized_p);
1403 obstack = arch->obstack;
1404 obstack_free (obstack, 0); /* Includes the ARCH. */
1405 xfree (obstack);
058f20d5
JB
1406}
1407EOF
1408
104c1213 1409# verify a new architecture
104c1213 1410cat <<EOF
db446970
AC
1411
1412
1413/* Ensure that all values in a GDBARCH are reasonable. */
1414
104c1213 1415static void
be7811ad 1416verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1417{
f16a1923
AC
1418 struct ui_file *log;
1419 struct cleanup *cleanups;
759ef836 1420 long length;
f16a1923 1421 char *buf;
f16a1923
AC
1422 log = mem_fileopen ();
1423 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1424 /* fundamental */
be7811ad 1425 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1426 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1427 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1428 fprintf_unfiltered (log, "\n\tbfd_arch_info");
104c1213
JM
1429 /* Check those that need to be defined for the given multi-arch level. */
1430EOF
34620563 1431function_list | while do_read
104c1213 1432do
2ada493a
AC
1433 if class_is_function_p || class_is_variable_p
1434 then
72e74a21 1435 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1436 then
3d9a5942 1437 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1438 elif class_is_predicate_p
1439 then
3d9a5942 1440 printf " /* Skip verify of ${function}, has predicate */\n"
f0d4cc9e 1441 # FIXME: See do_read for potential simplification
72e74a21 1442 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1443 then
3d9a5942 1444 printf " if (${invalid_p})\n"
be7811ad 1445 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1446 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1447 then
be7811ad
MD
1448 printf " if (gdbarch->${function} == ${predefault})\n"
1449 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1450 elif [ -n "${postdefault}" ]
f0d4cc9e 1451 then
be7811ad
MD
1452 printf " if (gdbarch->${function} == 0)\n"
1453 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1454 elif [ -n "${invalid_p}" ]
104c1213 1455 then
4d60522e 1456 printf " if (${invalid_p})\n"
f16a1923 1457 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1458 elif [ -n "${predefault}" ]
104c1213 1459 then
be7811ad 1460 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1461 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1462 fi
2ada493a 1463 fi
104c1213
JM
1464done
1465cat <<EOF
759ef836 1466 buf = ui_file_xstrdup (log, &length);
f16a1923 1467 make_cleanup (xfree, buf);
759ef836 1468 if (length > 0)
f16a1923 1469 internal_error (__FILE__, __LINE__,
85c07804 1470 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1471 buf);
1472 do_cleanups (cleanups);
104c1213
JM
1473}
1474EOF
1475
1476# dump the structure
3d9a5942
AC
1477printf "\n"
1478printf "\n"
104c1213 1479cat <<EOF
4b9b3959
AC
1480/* Print out the details of the current architecture. */
1481
104c1213 1482void
be7811ad 1483gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1484{
b78960be 1485 const char *gdb_nm_file = "<not-defined>";
b78960be
AC
1486#if defined (GDB_NM_FILE)
1487 gdb_nm_file = GDB_NM_FILE;
1488#endif
1489 fprintf_unfiltered (file,
1490 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1491 gdb_nm_file);
104c1213 1492EOF
97030eea 1493function_list | sort -t: -k 3 | while do_read
104c1213 1494do
1e9f55d0
AC
1495 # First the predicate
1496 if class_is_predicate_p
1497 then
7996bcec 1498 printf " fprintf_unfiltered (file,\n"
48f7351b 1499 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1500 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1501 fi
48f7351b 1502 # Print the corresponding value.
283354d8 1503 if class_is_function_p
4b9b3959 1504 then
7996bcec 1505 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1506 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1507 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1508 else
48f7351b 1509 # It is a variable
2f9b146e
AC
1510 case "${print}:${returntype}" in
1511 :CORE_ADDR )
0b1553bc
UW
1512 fmt="%s"
1513 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1514 ;;
2f9b146e 1515 :* )
48f7351b 1516 fmt="%s"
623d3eb1 1517 print="plongest (gdbarch->${function})"
48f7351b
AC
1518 ;;
1519 * )
2f9b146e 1520 fmt="%s"
48f7351b
AC
1521 ;;
1522 esac
3d9a5942 1523 printf " fprintf_unfiltered (file,\n"
48f7351b 1524 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1525 printf " ${print});\n"
2ada493a 1526 fi
104c1213 1527done
381323f4 1528cat <<EOF
be7811ad
MD
1529 if (gdbarch->dump_tdep != NULL)
1530 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1531}
1532EOF
104c1213
JM
1533
1534
1535# GET/SET
3d9a5942 1536printf "\n"
104c1213
JM
1537cat <<EOF
1538struct gdbarch_tdep *
1539gdbarch_tdep (struct gdbarch *gdbarch)
1540{
1541 if (gdbarch_debug >= 2)
3d9a5942 1542 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1543 return gdbarch->tdep;
1544}
1545EOF
3d9a5942 1546printf "\n"
34620563 1547function_list | while do_read
104c1213 1548do
2ada493a
AC
1549 if class_is_predicate_p
1550 then
3d9a5942
AC
1551 printf "\n"
1552 printf "int\n"
1553 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1554 printf "{\n"
8de9bdc4 1555 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1556 printf " return ${predicate};\n"
3d9a5942 1557 printf "}\n"
2ada493a
AC
1558 fi
1559 if class_is_function_p
1560 then
3d9a5942
AC
1561 printf "\n"
1562 printf "${returntype}\n"
72e74a21 1563 if [ "x${formal}" = "xvoid" ]
104c1213 1564 then
3d9a5942 1565 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1566 else
3d9a5942 1567 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1568 fi
3d9a5942 1569 printf "{\n"
8de9bdc4 1570 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1571 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1572 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1573 then
1574 # Allow a call to a function with a predicate.
956ac328 1575 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1576 fi
3d9a5942
AC
1577 printf " if (gdbarch_debug >= 2)\n"
1578 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1579 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1580 then
1581 if class_is_multiarch_p
1582 then
1583 params="gdbarch"
1584 else
1585 params=""
1586 fi
1587 else
1588 if class_is_multiarch_p
1589 then
1590 params="gdbarch, ${actual}"
1591 else
1592 params="${actual}"
1593 fi
1594 fi
72e74a21 1595 if [ "x${returntype}" = "xvoid" ]
104c1213 1596 then
4a5c6a1d 1597 printf " gdbarch->${function} (${params});\n"
104c1213 1598 else
4a5c6a1d 1599 printf " return gdbarch->${function} (${params});\n"
104c1213 1600 fi
3d9a5942
AC
1601 printf "}\n"
1602 printf "\n"
1603 printf "void\n"
1604 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1605 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1606 printf "{\n"
1607 printf " gdbarch->${function} = ${function};\n"
1608 printf "}\n"
2ada493a
AC
1609 elif class_is_variable_p
1610 then
3d9a5942
AC
1611 printf "\n"
1612 printf "${returntype}\n"
1613 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1614 printf "{\n"
8de9bdc4 1615 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1616 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1617 then
3d9a5942 1618 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1619 elif [ -n "${invalid_p}" ]
104c1213 1620 then
956ac328
AC
1621 printf " /* Check variable is valid. */\n"
1622 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1623 elif [ -n "${predefault}" ]
104c1213 1624 then
956ac328
AC
1625 printf " /* Check variable changed from pre-default. */\n"
1626 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1627 fi
3d9a5942
AC
1628 printf " if (gdbarch_debug >= 2)\n"
1629 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1630 printf " return gdbarch->${function};\n"
1631 printf "}\n"
1632 printf "\n"
1633 printf "void\n"
1634 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1635 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1636 printf "{\n"
1637 printf " gdbarch->${function} = ${function};\n"
1638 printf "}\n"
2ada493a
AC
1639 elif class_is_info_p
1640 then
3d9a5942
AC
1641 printf "\n"
1642 printf "${returntype}\n"
1643 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1644 printf "{\n"
8de9bdc4 1645 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1646 printf " if (gdbarch_debug >= 2)\n"
1647 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1648 printf " return gdbarch->${function};\n"
1649 printf "}\n"
2ada493a 1650 fi
104c1213
JM
1651done
1652
1653# All the trailing guff
1654cat <<EOF
1655
1656
f44c642f 1657/* Keep a registry of per-architecture data-pointers required by GDB
104c1213
JM
1658 modules. */
1659
1660struct gdbarch_data
1661{
95160752 1662 unsigned index;
76860b5f 1663 int init_p;
030f20e1
AC
1664 gdbarch_data_pre_init_ftype *pre_init;
1665 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1666};
1667
1668struct gdbarch_data_registration
1669{
104c1213
JM
1670 struct gdbarch_data *data;
1671 struct gdbarch_data_registration *next;
1672};
1673
f44c642f 1674struct gdbarch_data_registry
104c1213 1675{
95160752 1676 unsigned nr;
104c1213
JM
1677 struct gdbarch_data_registration *registrations;
1678};
1679
f44c642f 1680struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1681{
1682 0, NULL,
1683};
1684
030f20e1
AC
1685static struct gdbarch_data *
1686gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1687 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
1688{
1689 struct gdbarch_data_registration **curr;
76860b5f 1690 /* Append the new registraration. */
f44c642f 1691 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1692 (*curr) != NULL;
1693 curr = &(*curr)->next);
1694 (*curr) = XMALLOC (struct gdbarch_data_registration);
1695 (*curr)->next = NULL;
104c1213 1696 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1697 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
1698 (*curr)->data->pre_init = pre_init;
1699 (*curr)->data->post_init = post_init;
76860b5f 1700 (*curr)->data->init_p = 1;
104c1213
JM
1701 return (*curr)->data;
1702}
1703
030f20e1
AC
1704struct gdbarch_data *
1705gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1706{
1707 return gdbarch_data_register (pre_init, NULL);
1708}
1709
1710struct gdbarch_data *
1711gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1712{
1713 return gdbarch_data_register (NULL, post_init);
1714}
104c1213 1715
b3cc3077 1716/* Create/delete the gdbarch data vector. */
95160752
AC
1717
1718static void
b3cc3077 1719alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1720{
b3cc3077
JB
1721 gdb_assert (gdbarch->data == NULL);
1722 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 1723 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 1724}
3c875b6f 1725
76860b5f 1726/* Initialize the current value of the specified per-architecture
b3cc3077
JB
1727 data-pointer. */
1728
95160752 1729void
030f20e1
AC
1730deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1731 struct gdbarch_data *data,
1732 void *pointer)
95160752
AC
1733{
1734 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 1735 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 1736 gdb_assert (data->pre_init == NULL);
95160752
AC
1737 gdbarch->data[data->index] = pointer;
1738}
1739
104c1213
JM
1740/* Return the current value of the specified per-architecture
1741 data-pointer. */
1742
1743void *
451fbdda 1744gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 1745{
451fbdda 1746 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 1747 if (gdbarch->data[data->index] == NULL)
76860b5f 1748 {
030f20e1
AC
1749 /* The data-pointer isn't initialized, call init() to get a
1750 value. */
1751 if (data->pre_init != NULL)
1752 /* Mid architecture creation: pass just the obstack, and not
1753 the entire architecture, as that way it isn't possible for
1754 pre-init code to refer to undefined architecture
1755 fields. */
1756 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1757 else if (gdbarch->initialized_p
1758 && data->post_init != NULL)
1759 /* Post architecture creation: pass the entire architecture
1760 (as all fields are valid), but be careful to also detect
1761 recursive references. */
1762 {
1763 gdb_assert (data->init_p);
1764 data->init_p = 0;
1765 gdbarch->data[data->index] = data->post_init (gdbarch);
1766 data->init_p = 1;
1767 }
1768 else
1769 /* The architecture initialization hasn't completed - punt -
1770 hope that the caller knows what they are doing. Once
1771 deprecated_set_gdbarch_data has been initialized, this can be
1772 changed to an internal error. */
1773 return NULL;
76860b5f
AC
1774 gdb_assert (gdbarch->data[data->index] != NULL);
1775 }
451fbdda 1776 return gdbarch->data[data->index];
104c1213
JM
1777}
1778
1779
f44c642f 1780/* Keep a registry of the architectures known by GDB. */
104c1213 1781
4b9b3959 1782struct gdbarch_registration
104c1213
JM
1783{
1784 enum bfd_architecture bfd_architecture;
1785 gdbarch_init_ftype *init;
4b9b3959 1786 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 1787 struct gdbarch_list *arches;
4b9b3959 1788 struct gdbarch_registration *next;
104c1213
JM
1789};
1790
f44c642f 1791static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 1792
b4a20239
AC
1793static void
1794append_name (const char ***buf, int *nr, const char *name)
1795{
1796 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1797 (*buf)[*nr] = name;
1798 *nr += 1;
1799}
1800
1801const char **
1802gdbarch_printable_names (void)
1803{
7996bcec
AC
1804 /* Accumulate a list of names based on the registed list of
1805 architectures. */
1806 enum bfd_architecture a;
1807 int nr_arches = 0;
1808 const char **arches = NULL;
1809 struct gdbarch_registration *rego;
1810 for (rego = gdbarch_registry;
1811 rego != NULL;
1812 rego = rego->next)
b4a20239 1813 {
7996bcec
AC
1814 const struct bfd_arch_info *ap;
1815 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1816 if (ap == NULL)
1817 internal_error (__FILE__, __LINE__,
85c07804 1818 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
1819 do
1820 {
1821 append_name (&arches, &nr_arches, ap->printable_name);
1822 ap = ap->next;
1823 }
1824 while (ap != NULL);
b4a20239 1825 }
7996bcec
AC
1826 append_name (&arches, &nr_arches, NULL);
1827 return arches;
b4a20239
AC
1828}
1829
1830
104c1213 1831void
4b9b3959
AC
1832gdbarch_register (enum bfd_architecture bfd_architecture,
1833 gdbarch_init_ftype *init,
1834 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 1835{
4b9b3959 1836 struct gdbarch_registration **curr;
104c1213 1837 const struct bfd_arch_info *bfd_arch_info;
ec3d358c 1838 /* Check that BFD recognizes this architecture */
104c1213
JM
1839 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1840 if (bfd_arch_info == NULL)
1841 {
8e65ff28 1842 internal_error (__FILE__, __LINE__,
85c07804 1843 _("gdbarch: Attempt to register unknown architecture (%d)"),
8e65ff28 1844 bfd_architecture);
104c1213
JM
1845 }
1846 /* Check that we haven't seen this architecture before */
f44c642f 1847 for (curr = &gdbarch_registry;
104c1213
JM
1848 (*curr) != NULL;
1849 curr = &(*curr)->next)
1850 {
1851 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 1852 internal_error (__FILE__, __LINE__,
85c07804 1853 _("gdbarch: Duplicate registraration of architecture (%s)"),
8e65ff28 1854 bfd_arch_info->printable_name);
104c1213
JM
1855 }
1856 /* log it */
1857 if (gdbarch_debug)
30737ed9 1858 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 1859 bfd_arch_info->printable_name,
30737ed9 1860 host_address_to_string (init));
104c1213 1861 /* Append it */
4b9b3959 1862 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
1863 (*curr)->bfd_architecture = bfd_architecture;
1864 (*curr)->init = init;
4b9b3959 1865 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
1866 (*curr)->arches = NULL;
1867 (*curr)->next = NULL;
4b9b3959
AC
1868}
1869
1870void
1871register_gdbarch_init (enum bfd_architecture bfd_architecture,
1872 gdbarch_init_ftype *init)
1873{
1874 gdbarch_register (bfd_architecture, init, NULL);
104c1213 1875}
104c1213
JM
1876
1877
424163ea 1878/* Look for an architecture using gdbarch_info. */
104c1213
JM
1879
1880struct gdbarch_list *
1881gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1882 const struct gdbarch_info *info)
1883{
1884 for (; arches != NULL; arches = arches->next)
1885 {
1886 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1887 continue;
1888 if (info->byte_order != arches->gdbarch->byte_order)
1889 continue;
4be87837
DJ
1890 if (info->osabi != arches->gdbarch->osabi)
1891 continue;
424163ea
DJ
1892 if (info->target_desc != arches->gdbarch->target_desc)
1893 continue;
104c1213
JM
1894 return arches;
1895 }
1896 return NULL;
1897}
1898
1899
ebdba546 1900/* Find an architecture that matches the specified INFO. Create a new
59837fe0 1901 architecture if needed. Return that new architecture. */
104c1213 1902
59837fe0
UW
1903struct gdbarch *
1904gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
1905{
1906 struct gdbarch *new_gdbarch;
4b9b3959 1907 struct gdbarch_registration *rego;
104c1213 1908
b732d07d 1909 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
1910 sources: "set ..."; INFOabfd supplied; and the global
1911 defaults. */
1912 gdbarch_info_fill (&info);
4be87837 1913
b732d07d
AC
1914 /* Must have found some sort of architecture. */
1915 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
1916
1917 if (gdbarch_debug)
1918 {
1919 fprintf_unfiltered (gdb_stdlog,
59837fe0 1920 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
1921 (info.bfd_arch_info != NULL
1922 ? info.bfd_arch_info->printable_name
1923 : "(null)"));
1924 fprintf_unfiltered (gdb_stdlog,
59837fe0 1925 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 1926 info.byte_order,
d7449b42 1927 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 1928 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 1929 : "default"));
4be87837 1930 fprintf_unfiltered (gdb_stdlog,
59837fe0 1931 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 1932 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 1933 fprintf_unfiltered (gdb_stdlog,
59837fe0 1934 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 1935 host_address_to_string (info.abfd));
104c1213 1936 fprintf_unfiltered (gdb_stdlog,
59837fe0 1937 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 1938 host_address_to_string (info.tdep_info));
104c1213
JM
1939 }
1940
ebdba546 1941 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
1942 for (rego = gdbarch_registry;
1943 rego != NULL;
1944 rego = rego->next)
1945 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1946 break;
1947 if (rego == NULL)
1948 {
1949 if (gdbarch_debug)
59837fe0 1950 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 1951 "No matching architecture\n");
b732d07d
AC
1952 return 0;
1953 }
1954
ebdba546 1955 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
1956 new_gdbarch = rego->init (info, rego->arches);
1957
ebdba546
AC
1958 /* Did the tdep code like it? No. Reject the change and revert to
1959 the old architecture. */
104c1213
JM
1960 if (new_gdbarch == NULL)
1961 {
1962 if (gdbarch_debug)
59837fe0 1963 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
1964 "Target rejected architecture\n");
1965 return NULL;
104c1213
JM
1966 }
1967
ebdba546
AC
1968 /* Is this a pre-existing architecture (as determined by already
1969 being initialized)? Move it to the front of the architecture
1970 list (keeping the list sorted Most Recently Used). */
1971 if (new_gdbarch->initialized_p)
104c1213 1972 {
ebdba546
AC
1973 struct gdbarch_list **list;
1974 struct gdbarch_list *this;
104c1213 1975 if (gdbarch_debug)
59837fe0 1976 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
1977 "Previous architecture %s (%s) selected\n",
1978 host_address_to_string (new_gdbarch),
104c1213 1979 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
1980 /* Find the existing arch in the list. */
1981 for (list = &rego->arches;
1982 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
1983 list = &(*list)->next);
1984 /* It had better be in the list of architectures. */
1985 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
1986 /* Unlink THIS. */
1987 this = (*list);
1988 (*list) = this->next;
1989 /* Insert THIS at the front. */
1990 this->next = rego->arches;
1991 rego->arches = this;
1992 /* Return it. */
1993 return new_gdbarch;
104c1213
JM
1994 }
1995
ebdba546
AC
1996 /* It's a new architecture. */
1997 if (gdbarch_debug)
59837fe0 1998 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
1999 "New architecture %s (%s) selected\n",
2000 host_address_to_string (new_gdbarch),
ebdba546
AC
2001 new_gdbarch->bfd_arch_info->printable_name);
2002
2003 /* Insert the new architecture into the front of the architecture
2004 list (keep the list sorted Most Recently Used). */
0f79675b
AC
2005 {
2006 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2007 this->next = rego->arches;
2008 this->gdbarch = new_gdbarch;
2009 rego->arches = this;
2010 }
104c1213 2011
4b9b3959
AC
2012 /* Check that the newly installed architecture is valid. Plug in
2013 any post init values. */
2014 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2015 verify_gdbarch (new_gdbarch);
ebdba546 2016 new_gdbarch->initialized_p = 1;
104c1213 2017
4b9b3959 2018 if (gdbarch_debug)
ebdba546
AC
2019 gdbarch_dump (new_gdbarch, gdb_stdlog);
2020
2021 return new_gdbarch;
2022}
2023
e487cc15 2024/* Make the specified architecture current. */
ebdba546
AC
2025
2026void
59837fe0 2027deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
ebdba546
AC
2028{
2029 gdb_assert (new_gdbarch != NULL);
ebdba546 2030 gdb_assert (new_gdbarch->initialized_p);
1cf3db46 2031 target_gdbarch = new_gdbarch;
383f836e 2032 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2033 registers_changed ();
ebdba546 2034}
104c1213 2035
104c1213 2036extern void _initialize_gdbarch (void);
b4a20239 2037
104c1213 2038void
34620563 2039_initialize_gdbarch (void)
104c1213 2040{
59233f88
AC
2041 struct cmd_list_element *c;
2042
85c07804
AC
2043 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2044Set architecture debugging."), _("\\
2045Show architecture debugging."), _("\\
2046When non-zero, architecture debugging is enabled."),
2047 NULL,
920d2a44 2048 show_gdbarch_debug,
85c07804 2049 &setdebuglist, &showdebuglist);
104c1213
JM
2050}
2051EOF
2052
2053# close things off
2054exec 1>&2
2055#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2056compare_new gdbarch.c
This page took 0.847836 seconds and 4 git commands to generate.