minor ravenscar-thread cleanup
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
0b302171 5# Copyright (C) 1998-2012 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
be7811ad 341i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
97030eea 343i:int:byte_order:::BFD_ENDIAN_BIG
9d4fde75 344i:int:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 345#
97030eea 346i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 347#
30737ed9 348i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
352v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
66b43ecb
AC
354# Number of bits in a char or unsigned char for the target machine.
355# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 356# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
357#
358# Number of bits in a short or unsigned short for the target machine.
97030eea 359v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in an int or unsigned int for the target machine.
97030eea 361v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 362# Number of bits in a long or unsigned long for the target machine.
97030eea 363v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
364# Number of bits in a long long or unsigned long long for the target
365# machine.
be7811ad 366v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
205c306f
DM
367# Alignment of a long long or unsigned long long for the target
368# machine.
369v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94 370
f9e9243a
UW
371# The ABI default bit-size and format for "half", "float", "double", and
372# "long double". These bit/format pairs should eventually be combined
373# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
374# Each format describes both the big and little endian layouts (if
375# useful).
456fcf94 376
f9e9243a
UW
377v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
97030eea 379v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 380v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 381v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 382v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 383v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 384v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 385
52204a0b
DT
386# For most targets, a pointer on the target and its representation as an
387# address in GDB have the same size and "look the same". For such a
17a912b6 388# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
389# / addr_bit will be set from it.
390#
17a912b6 391# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
392# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393# gdbarch_address_to_pointer as well.
52204a0b
DT
394#
395# ptr_bit is the size of a pointer on the target
be7811ad 396v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 397# addr_bit is the size of a target address as represented in gdb
be7811ad 398v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 399#
8da614df
CV
400# dwarf2_addr_size is the target address size as used in the Dwarf debug
401# info. For .debug_frame FDEs, this is supposed to be the target address
402# size from the associated CU header, and which is equivalent to the
403# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404# Unfortunately there is no good way to determine this value. Therefore
405# dwarf2_addr_size simply defaults to the target pointer size.
406#
407# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408# defined using the target's pointer size so far.
409#
410# Note that dwarf2_addr_size only needs to be redefined by a target if the
411# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412# and if Dwarf versions < 4 need to be supported.
413v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414#
4e409299 415# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 416v:int:char_signed:::1:-1:1
4e409299 417#
97030eea
UW
418F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
420# Function for getting target's idea of a frame pointer. FIXME: GDB's
421# whole scheme for dealing with "frames" and "frame pointers" needs a
422# serious shakedown.
a54fba4c 423m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 424#
05d1431c 425M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
3543a589
TT
426# Read a register into a new struct value. If the register is wholly
427# or partly unavailable, this should call mark_value_bytes_unavailable
428# as appropriate. If this is defined, then pseudo_register_read will
429# never be called.
430M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
97030eea 431M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 432#
97030eea 433v:int:num_regs:::0:-1
0aba1244
EZ
434# This macro gives the number of pseudo-registers that live in the
435# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
436# These pseudo-registers may be aliases for other registers,
437# combinations of other registers, or they may be computed by GDB.
97030eea 438v:int:num_pseudo_regs:::0:0::0
c2169756 439
175ff332
HZ
440# Assemble agent expression bytecode to collect pseudo-register REG.
441# Return -1 if something goes wrong, 0 otherwise.
442M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444# Assemble agent expression bytecode to push the value of pseudo-register
445# REG on the interpreter stack.
446# Return -1 if something goes wrong, 0 otherwise.
447M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
c2169756
AC
449# GDB's standard (or well known) register numbers. These can map onto
450# a real register or a pseudo (computed) register or not be defined at
1200cd6e 451# all (-1).
3e8c568d 452# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
453v:int:sp_regnum:::-1:-1::0
454v:int:pc_regnum:::-1:-1::0
455v:int:ps_regnum:::-1:-1::0
456v:int:fp0_regnum:::0:-1::0
88c72b7d 457# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 458m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 459# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 460m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 461# Convert from an sdb register number to an internal gdb register number.
d3f73121 462m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 463# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 464m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 465m:const char *:register_name:int regnr:regnr::0
9c04cab7 466
7b9ee6a8
DJ
467# Return the type of a register specified by the architecture. Only
468# the register cache should call this function directly; others should
469# use "register_type".
97030eea 470M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 471
f3be58bc 472# See gdbint.texinfo, and PUSH_DUMMY_CALL.
669fac23
DJ
473M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
474# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 475# deprecated_fp_regnum.
97030eea 476v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 477
a86c5fc9 478# See gdbint.texinfo. See infcall.c.
97030eea
UW
479M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
480v:int:call_dummy_location::::AT_ENTRY_POINT::0
481M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 482
97030eea
UW
483m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
484M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
485M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
486# MAP a GDB RAW register number onto a simulator register number. See
487# also include/...-sim.h.
e7faf938 488m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
489m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
490m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
9df628e0 491# setjmp/longjmp support.
97030eea 492F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
104c1213 493#
97030eea 494v:int:believe_pcc_promotion:::::::
104c1213 495#
0abe36f5 496m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
8dccd430 497f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
97030eea 498f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0
UW
499# Construct a value representing the contents of register REGNUM in
500# frame FRAME, interpreted as type TYPE. The routine needs to
501# allocate and return a struct value with all value attributes
502# (but not the value contents) filled in.
97030eea 503f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
104c1213 504#
9898f801
UW
505m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
506m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 507M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 508
6a3a010b
MR
509# Return the return-value convention that will be used by FUNCTION
510# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
511# case the return convention is computed based only on VALTYPE.
512#
513# If READBUF is not NULL, extract the return value and save it in this buffer.
514#
515# If WRITEBUF is not NULL, it contains a return value which will be
516# stored into the appropriate register. This can be used when we want
517# to force the value returned by a function (see the "return" command
518# for instance).
6a3a010b 519M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
92ad9cd9 520
18648a37
YQ
521# Return true if the return value of function is stored in the first hidden
522# parameter. In theory, this feature should be language-dependent, specified
523# by language and its ABI, such as C++. Unfortunately, compiler may
524# implement it to a target-dependent feature. So that we need such hook here
525# to be aware of this in GDB.
526m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
527
6093d2eb 528m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 529M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
97030eea 530f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 531m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
532# Return the adjusted address and kind to use for Z0/Z1 packets.
533# KIND is usually the memory length of the breakpoint, but may have a
534# different target-specific meaning.
0e05dfcb 535m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 536M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
537m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
538m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 539v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
540
541# A function can be addressed by either it's "pointer" (possibly a
542# descriptor address) or "entry point" (first executable instruction).
543# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 544# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
545# a simplified subset of that functionality - the function's address
546# corresponds to the "function pointer" and the function's start
547# corresponds to the "function entry point" - and hence is redundant.
548
97030eea 549v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 550
123dc839
DJ
551# Return the remote protocol register number associated with this
552# register. Normally the identity mapping.
97030eea 553m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 554
b2756930 555# Fetch the target specific address used to represent a load module.
97030eea 556F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 557#
97030eea
UW
558v:CORE_ADDR:frame_args_skip:::0:::0
559M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
560M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
561# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
562# frame-base. Enable frame-base before frame-unwind.
97030eea 563F:int:frame_num_args:struct frame_info *frame:frame
104c1213 564#
97030eea
UW
565M:CORE_ADDR:frame_align:CORE_ADDR address:address
566m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
567v:int:frame_red_zone_size
f0d4cc9e 568#
97030eea 569m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
570# On some machines there are bits in addresses which are not really
571# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 572# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
573# we get a "real" address such as one would find in a symbol table.
574# This is used only for addresses of instructions, and even then I'm
575# not sure it's used in all contexts. It exists to deal with there
576# being a few stray bits in the PC which would mislead us, not as some
577# sort of generic thing to handle alignment or segmentation (it's
578# possible it should be in TARGET_READ_PC instead).
24568a2c 579m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
580
581# FIXME/cagney/2001-01-18: This should be split in two. A target method that
582# indicates if the target needs software single step. An ISA method to
583# implement it.
584#
585# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
586# breakpoints using the breakpoint system instead of blatting memory directly
587# (as with rs6000).
64c4637f 588#
e6590a1b
UW
589# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
590# target can single step. If not, then implement single step using breakpoints.
64c4637f 591#
6f112b18 592# A return value of 1 means that the software_single_step breakpoints
e6590a1b 593# were inserted; 0 means they were not.
97030eea 594F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 595
3352ef37
AC
596# Return non-zero if the processor is executing a delay slot and a
597# further single-step is needed before the instruction finishes.
97030eea 598M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 599# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 600# disassembler. Perhaps objdump can handle it?
97030eea
UW
601f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
602f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
603
604
cfd8ab24 605# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
606# evaluates non-zero, this is the address where the debugger will place
607# a step-resume breakpoint to get us past the dynamic linker.
97030eea 608m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 609# Some systems also have trampoline code for returning from shared libs.
2c02bd72 610m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 611
c12260ac
CV
612# A target might have problems with watchpoints as soon as the stack
613# frame of the current function has been destroyed. This mostly happens
614# as the first action in a funtion's epilogue. in_function_epilogue_p()
615# is defined to return a non-zero value if either the given addr is one
616# instruction after the stack destroying instruction up to the trailing
617# return instruction or if we can figure out that the stack frame has
618# already been invalidated regardless of the value of addr. Targets
619# which don't suffer from that problem could just let this functionality
620# untouched.
97030eea 621m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
97030eea
UW
622f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
623f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
97030eea
UW
624v:int:cannot_step_breakpoint:::0:0::0
625v:int:have_nonsteppable_watchpoint:::0:0::0
626F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
627M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
628M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 629# Is a register in a group
97030eea 630m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 631# Fetch the pointer to the ith function argument.
97030eea 632F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
633
634# Return the appropriate register set for a core file section with
635# name SECT_NAME and size SECT_SIZE.
97030eea 636M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
0d5de010 637
17ea7499
CES
638# Supported register notes in a core file.
639v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
640
6432734d
UW
641# Create core file notes
642M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
643
35c2fab7
UW
644# Find core file memory regions
645M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
646
de584861
PA
647# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
648# core file into buffer READBUF with length LEN.
97030eea 649M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
de584861 650
c0edd9ed 651# How the core target converts a PTID from a core file to a string.
28439f5e
PA
652M:char *:core_pid_to_str:ptid_t ptid:ptid
653
a78c2d62 654# BFD target to use when generating a core file.
86ba1042 655V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
a78c2d62 656
0d5de010
DJ
657# If the elements of C++ vtables are in-place function descriptors rather
658# than normal function pointers (which may point to code or a descriptor),
659# set this to one.
97030eea 660v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
661
662# Set if the least significant bit of the delta is used instead of the least
663# significant bit of the pfn for pointers to virtual member functions.
97030eea 664v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
665
666# Advance PC to next instruction in order to skip a permanent breakpoint.
97030eea 667F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
1c772458 668
1668ae25 669# The maximum length of an instruction on this architecture in bytes.
237fc4c9
PA
670V:ULONGEST:max_insn_length:::0:0
671
672# Copy the instruction at FROM to TO, and make any adjustments
673# necessary to single-step it at that address.
674#
675# REGS holds the state the thread's registers will have before
676# executing the copied instruction; the PC in REGS will refer to FROM,
677# not the copy at TO. The caller should update it to point at TO later.
678#
679# Return a pointer to data of the architecture's choice to be passed
680# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
681# the instruction's effects have been completely simulated, with the
682# resulting state written back to REGS.
683#
684# For a general explanation of displaced stepping and how GDB uses it,
685# see the comments in infrun.c.
686#
687# The TO area is only guaranteed to have space for
688# gdbarch_max_insn_length (arch) bytes, so this function must not
689# write more bytes than that to that area.
690#
691# If you do not provide this function, GDB assumes that the
692# architecture does not support displaced stepping.
693#
694# If your architecture doesn't need to adjust instructions before
695# single-stepping them, consider using simple_displaced_step_copy_insn
696# here.
697M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
698
99e40580
UW
699# Return true if GDB should use hardware single-stepping to execute
700# the displaced instruction identified by CLOSURE. If false,
701# GDB will simply restart execution at the displaced instruction
702# location, and it is up to the target to ensure GDB will receive
703# control again (e.g. by placing a software breakpoint instruction
704# into the displaced instruction buffer).
705#
706# The default implementation returns false on all targets that
707# provide a gdbarch_software_single_step routine, and true otherwise.
708m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
709
237fc4c9
PA
710# Fix up the state resulting from successfully single-stepping a
711# displaced instruction, to give the result we would have gotten from
712# stepping the instruction in its original location.
713#
714# REGS is the register state resulting from single-stepping the
715# displaced instruction.
716#
717# CLOSURE is the result from the matching call to
718# gdbarch_displaced_step_copy_insn.
719#
720# If you provide gdbarch_displaced_step_copy_insn.but not this
721# function, then GDB assumes that no fixup is needed after
722# single-stepping the instruction.
723#
724# For a general explanation of displaced stepping and how GDB uses it,
725# see the comments in infrun.c.
726M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
727
728# Free a closure returned by gdbarch_displaced_step_copy_insn.
729#
730# If you provide gdbarch_displaced_step_copy_insn, you must provide
731# this function as well.
732#
733# If your architecture uses closures that don't need to be freed, then
734# you can use simple_displaced_step_free_closure here.
735#
736# For a general explanation of displaced stepping and how GDB uses it,
737# see the comments in infrun.c.
738m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
739
740# Return the address of an appropriate place to put displaced
741# instructions while we step over them. There need only be one such
742# place, since we're only stepping one thread over a breakpoint at a
743# time.
744#
745# For a general explanation of displaced stepping and how GDB uses it,
746# see the comments in infrun.c.
747m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
748
dde08ee1
PA
749# Relocate an instruction to execute at a different address. OLDLOC
750# is the address in the inferior memory where the instruction to
751# relocate is currently at. On input, TO points to the destination
752# where we want the instruction to be copied (and possibly adjusted)
753# to. On output, it points to one past the end of the resulting
754# instruction(s). The effect of executing the instruction at TO shall
755# be the same as if executing it at FROM. For example, call
756# instructions that implicitly push the return address on the stack
757# should be adjusted to return to the instruction after OLDLOC;
758# relative branches, and other PC-relative instructions need the
759# offset adjusted; etc.
760M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
761
1c772458 762# Refresh overlay mapped state for section OSECT.
97030eea 763F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 764
97030eea 765M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
766
767# Handle special encoding of static variables in stabs debug info.
0d5cff50 768F:const char *:static_transform_name:const char *name:name
203c3895 769# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 770v:int:sofun_address_maybe_missing:::0:0::0
1cded358 771
0508c3ec
HZ
772# Parse the instruction at ADDR storing in the record execution log
773# the registers REGCACHE and memory ranges that will be affected when
774# the instruction executes, along with their current values.
775# Return -1 if something goes wrong, 0 otherwise.
776M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
777
3846b520
HZ
778# Save process state after a signal.
779# Return -1 if something goes wrong, 0 otherwise.
2ea28649 780M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
3846b520 781
22203bbf 782# Signal translation: translate inferior's signal (target's) number
86b49880
PA
783# into GDB's representation. The implementation of this method must
784# be host independent. IOW, don't rely on symbols of the NAT_FILE
785# header (the nm-*.h files), the host <signal.h> header, or similar
786# headers. This is mainly used when cross-debugging core files ---
787# "Live" targets hide the translation behind the target interface
1f8cf220
PA
788# (target_wait, target_resume, etc.).
789M:enum gdb_signal:gdb_signal_from_target:int signo:signo
60c5725c 790
4aa995e1
PA
791# Extra signal info inspection.
792#
793# Return a type suitable to inspect extra signal information.
794M:struct type *:get_siginfo_type:void:
795
60c5725c
DJ
796# Record architecture-specific information from the symbol table.
797M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 798
a96d9b2e
SDJ
799# Function for the 'catch syscall' feature.
800
801# Get architecture-specific system calls information from registers.
802M:LONGEST:get_syscall_number:ptid_t ptid:ptid
803
55aa24fb
SDJ
804# SystemTap related fields and functions.
805
806# Prefix used to mark an integer constant on the architecture's assembly
807# For example, on x86 integer constants are written as:
808#
809# \$10 ;; integer constant 10
810#
811# in this case, this prefix would be the character \`\$\'.
08af7a40 812v:const char *:stap_integer_prefix:::0:0::0:pstring (gdbarch->stap_integer_prefix)
55aa24fb
SDJ
813
814# Suffix used to mark an integer constant on the architecture's assembly.
08af7a40 815v:const char *:stap_integer_suffix:::0:0::0:pstring (gdbarch->stap_integer_suffix)
55aa24fb
SDJ
816
817# Prefix used to mark a register name on the architecture's assembly.
818# For example, on x86 the register name is written as:
819#
820# \%eax ;; register eax
821#
822# in this case, this prefix would be the character \`\%\'.
08af7a40 823v:const char *:stap_register_prefix:::0:0::0:pstring (gdbarch->stap_register_prefix)
55aa24fb
SDJ
824
825# Suffix used to mark a register name on the architecture's assembly
08af7a40 826v:const char *:stap_register_suffix:::0:0::0:pstring (gdbarch->stap_register_suffix)
55aa24fb
SDJ
827
828# Prefix used to mark a register indirection on the architecture's assembly.
829# For example, on x86 the register indirection is written as:
830#
831# \(\%eax\) ;; indirecting eax
832#
833# in this case, this prefix would be the charater \`\(\'.
834#
835# Please note that we use the indirection prefix also for register
836# displacement, e.g., \`4\(\%eax\)\' on x86.
08af7a40 837v:const char *:stap_register_indirection_prefix:::0:0::0:pstring (gdbarch->stap_register_indirection_prefix)
55aa24fb
SDJ
838
839# Suffix used to mark a register indirection on the architecture's assembly.
840# For example, on x86 the register indirection is written as:
841#
842# \(\%eax\) ;; indirecting eax
843#
844# in this case, this prefix would be the charater \`\)\'.
845#
846# Please note that we use the indirection suffix also for register
847# displacement, e.g., \`4\(\%eax\)\' on x86.
08af7a40 848v:const char *:stap_register_indirection_suffix:::0:0::0:pstring (gdbarch->stap_register_indirection_suffix)
55aa24fb
SDJ
849
850# Prefix used to name a register using GDB's nomenclature.
851#
852# For example, on PPC a register is represented by a number in the assembly
853# language (e.g., \`10\' is the 10th general-purpose register). However,
854# inside GDB this same register has an \`r\' appended to its name, so the 10th
855# register would be represented as \`r10\' internally.
08af7a40 856v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
857
858# Suffix used to name a register using GDB's nomenclature.
08af7a40 859v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
860
861# Check if S is a single operand.
862#
863# Single operands can be:
864# \- Literal integers, e.g. \`\$10\' on x86
865# \- Register access, e.g. \`\%eax\' on x86
866# \- Register indirection, e.g. \`\(\%eax\)\' on x86
867# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
868#
869# This function should check for these patterns on the string
870# and return 1 if some were found, or zero otherwise. Please try to match
871# as much info as you can from the string, i.e., if you have to match
872# something like \`\(\%\', do not match just the \`\(\'.
873M:int:stap_is_single_operand:const char *s:s
874
875# Function used to handle a "special case" in the parser.
876#
877# A "special case" is considered to be an unknown token, i.e., a token
878# that the parser does not know how to parse. A good example of special
879# case would be ARM's register displacement syntax:
880#
881# [R0, #4] ;; displacing R0 by 4
882#
883# Since the parser assumes that a register displacement is of the form:
884#
885# <number> <indirection_prefix> <register_name> <indirection_suffix>
886#
887# it means that it will not be able to recognize and parse this odd syntax.
888# Therefore, we should add a special case function that will handle this token.
889#
890# This function should generate the proper expression form of the expression
891# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
892# and so on). It should also return 1 if the parsing was successful, or zero
893# if the token was not recognized as a special token (in this case, returning
894# zero means that the special parser is deferring the parsing to the generic
895# parser), and should advance the buffer pointer (p->arg).
896M:int:stap_parse_special_token:struct stap_parse_info *p:p
897
898
50c71eaf
PA
899# True if the list of shared libraries is one and only for all
900# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
901# This usually means that all processes, although may or may not share
902# an address space, will see the same set of symbols at the same
903# addresses.
50c71eaf 904v:int:has_global_solist:::0:0::0
2567c7d9
PA
905
906# On some targets, even though each inferior has its own private
907# address space, the debug interface takes care of making breakpoints
908# visible to all address spaces automatically. For such cases,
909# this property should be set to true.
910v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
911
912# True if inferiors share an address space (e.g., uClinux).
913m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
914
915# True if a fast tracepoint can be set at an address.
916m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
75cebea9 917
f870a310
TT
918# Return the "auto" target charset.
919f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
920# Return the "auto" target wide charset.
921f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
922
923# If non-empty, this is a file extension that will be opened in place
924# of the file extension reported by the shared library list.
925#
926# This is most useful for toolchains that use a post-linker tool,
927# where the names of the files run on the target differ in extension
928# compared to the names of the files GDB should load for debug info.
929v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
930
931# If true, the target OS has DOS-based file system semantics. That
932# is, absolute paths include a drive name, and the backslash is
933# considered a directory separator.
934v:int:has_dos_based_file_system:::0:0::0
6710bf39
SS
935
936# Generate bytecodes to collect the return address in a frame.
937# Since the bytecodes run on the target, possibly with GDB not even
938# connected, the full unwinding machinery is not available, and
939# typically this function will issue bytecodes for one or more likely
940# places that the return address may be found.
941m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
942
3030c96e
UW
943# Implement the "info proc" command.
944M:void:info_proc:char *args, enum info_proc_what what:args, what
945
451b7c33
TT
946# Implement the "info proc" command for core files. Noe that there
947# are two "info_proc"-like methods on gdbarch -- one for core files,
948# one for live targets.
949M:void:core_info_proc:char *args, enum info_proc_what what:args, what
950
19630284
JB
951# Iterate over all objfiles in the order that makes the most sense
952# for the architecture to make global symbol searches.
953#
954# CB is a callback function where OBJFILE is the objfile to be searched,
955# and CB_DATA a pointer to user-defined data (the same data that is passed
956# when calling this gdbarch method). The iteration stops if this function
957# returns nonzero.
958#
959# CB_DATA is a pointer to some user-defined data to be passed to
960# the callback.
961#
962# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
963# inspected when the symbol search was requested.
964m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
965
104c1213 966EOF
104c1213
JM
967}
968
0b8f9e4d
AC
969#
970# The .log file
971#
972exec > new-gdbarch.log
34620563 973function_list | while do_read
0b8f9e4d
AC
974do
975 cat <<EOF
2f9b146e 976${class} ${returntype} ${function} ($formal)
104c1213 977EOF
3d9a5942
AC
978 for r in ${read}
979 do
980 eval echo \"\ \ \ \ ${r}=\${${r}}\"
981 done
f0d4cc9e 982 if class_is_predicate_p && fallback_default_p
0b8f9e4d 983 then
66d659b1 984 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
985 kill $$
986 exit 1
987 fi
72e74a21 988 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
989 then
990 echo "Error: postdefault is useless when invalid_p=0" 1>&2
991 kill $$
992 exit 1
993 fi
a72293e2
AC
994 if class_is_multiarch_p
995 then
996 if class_is_predicate_p ; then :
997 elif test "x${predefault}" = "x"
998 then
2f9b146e 999 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1000 kill $$
1001 exit 1
1002 fi
1003 fi
3d9a5942 1004 echo ""
0b8f9e4d
AC
1005done
1006
1007exec 1>&2
1008compare_new gdbarch.log
1009
104c1213
JM
1010
1011copyright ()
1012{
1013cat <<EOF
c4bfde41
JK
1014/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1015/* vi:set ro: */
59233f88 1016
104c1213 1017/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1018
f801e1e0
MS
1019 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
1020 2007, 2008, 2009 Free Software Foundation, Inc.
104c1213
JM
1021
1022 This file is part of GDB.
1023
1024 This program is free software; you can redistribute it and/or modify
1025 it under the terms of the GNU General Public License as published by
50efebf8 1026 the Free Software Foundation; either version 3 of the License, or
104c1213 1027 (at your option) any later version.
50efebf8 1028
104c1213
JM
1029 This program is distributed in the hope that it will be useful,
1030 but WITHOUT ANY WARRANTY; without even the implied warranty of
1031 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1032 GNU General Public License for more details.
50efebf8 1033
104c1213 1034 You should have received a copy of the GNU General Public License
50efebf8 1035 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1036
104c1213
JM
1037/* This file was created with the aid of \`\`gdbarch.sh''.
1038
52204a0b 1039 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1040 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1041 against the existing \`\`gdbarch.[hc]''. Any differences found
1042 being reported.
1043
1044 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1045 changes into that script. Conversely, when making sweeping changes
104c1213 1046 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1047 easier. */
104c1213
JM
1048
1049EOF
1050}
1051
1052#
1053# The .h file
1054#
1055
1056exec > new-gdbarch.h
1057copyright
1058cat <<EOF
1059#ifndef GDBARCH_H
1060#define GDBARCH_H
1061
da3331ec
AC
1062struct floatformat;
1063struct ui_file;
104c1213
JM
1064struct frame_info;
1065struct value;
b6af0555 1066struct objfile;
1c772458 1067struct obj_section;
a2cf933a 1068struct minimal_symbol;
049ee0e4 1069struct regcache;
b59ff9d5 1070struct reggroup;
6ce6d90f 1071struct regset;
a89aa300 1072struct disassemble_info;
e2d0e7eb 1073struct target_ops;
030f20e1 1074struct obstack;
8181d85f 1075struct bp_target_info;
424163ea 1076struct target_desc;
237fc4c9 1077struct displaced_step_closure;
17ea7499 1078struct core_regset_section;
a96d9b2e 1079struct syscall;
175ff332 1080struct agent_expr;
6710bf39 1081struct axs_value;
55aa24fb 1082struct stap_parse_info;
104c1213 1083
6ecd4729
PA
1084/* The architecture associated with the inferior through the
1085 connection to the target.
1086
1087 The architecture vector provides some information that is really a
1088 property of the inferior, accessed through a particular target:
1089 ptrace operations; the layout of certain RSP packets; the solib_ops
1090 vector; etc. To differentiate architecture accesses to
1091 per-inferior/target properties from
1092 per-thread/per-frame/per-objfile properties, accesses to
1093 per-inferior/target properties should be made through this
1094 gdbarch. */
1095
1096/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1097extern struct gdbarch *target_gdbarch (void);
6ecd4729
PA
1098
1099/* The initial, default architecture. It uses host values (for want of a better
1100 choice). */
1101extern struct gdbarch startup_gdbarch;
1102
19630284
JB
1103
1104/* Callback type for the 'iterate_over_objfiles_in_search_order'
1105 gdbarch method. */
1106
1107typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1108 (struct objfile *objfile, void *cb_data);
104c1213
JM
1109EOF
1110
1111# function typedef's
3d9a5942
AC
1112printf "\n"
1113printf "\n"
0963b4bd 1114printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1115function_list | while do_read
104c1213 1116do
2ada493a
AC
1117 if class_is_info_p
1118 then
3d9a5942
AC
1119 printf "\n"
1120 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1121 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1122 fi
104c1213
JM
1123done
1124
1125# function typedef's
3d9a5942
AC
1126printf "\n"
1127printf "\n"
0963b4bd 1128printf "/* The following are initialized by the target dependent code. */\n"
34620563 1129function_list | while do_read
104c1213 1130do
72e74a21 1131 if [ -n "${comment}" ]
34620563
AC
1132 then
1133 echo "${comment}" | sed \
1134 -e '2 s,#,/*,' \
1135 -e '3,$ s,#, ,' \
1136 -e '$ s,$, */,'
1137 fi
412d5987
AC
1138
1139 if class_is_predicate_p
2ada493a 1140 then
412d5987
AC
1141 printf "\n"
1142 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1143 fi
2ada493a
AC
1144 if class_is_variable_p
1145 then
3d9a5942
AC
1146 printf "\n"
1147 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1148 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1149 fi
1150 if class_is_function_p
1151 then
3d9a5942 1152 printf "\n"
72e74a21 1153 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1154 then
1155 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1156 elif class_is_multiarch_p
1157 then
1158 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1159 else
1160 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1161 fi
72e74a21 1162 if [ "x${formal}" = "xvoid" ]
104c1213 1163 then
3d9a5942 1164 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1165 else
3d9a5942 1166 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1167 fi
3d9a5942 1168 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1169 fi
104c1213
JM
1170done
1171
1172# close it off
1173cat <<EOF
1174
a96d9b2e
SDJ
1175/* Definition for an unknown syscall, used basically in error-cases. */
1176#define UNKNOWN_SYSCALL (-1)
1177
104c1213
JM
1178extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1179
1180
1181/* Mechanism for co-ordinating the selection of a specific
1182 architecture.
1183
1184 GDB targets (*-tdep.c) can register an interest in a specific
1185 architecture. Other GDB components can register a need to maintain
1186 per-architecture data.
1187
1188 The mechanisms below ensures that there is only a loose connection
1189 between the set-architecture command and the various GDB
0fa6923a 1190 components. Each component can independently register their need
104c1213
JM
1191 to maintain architecture specific data with gdbarch.
1192
1193 Pragmatics:
1194
1195 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1196 didn't scale.
1197
1198 The more traditional mega-struct containing architecture specific
1199 data for all the various GDB components was also considered. Since
0fa6923a 1200 GDB is built from a variable number of (fairly independent)
104c1213 1201 components it was determined that the global aproach was not
0963b4bd 1202 applicable. */
104c1213
JM
1203
1204
1205/* Register a new architectural family with GDB.
1206
1207 Register support for the specified ARCHITECTURE with GDB. When
1208 gdbarch determines that the specified architecture has been
1209 selected, the corresponding INIT function is called.
1210
1211 --
1212
1213 The INIT function takes two parameters: INFO which contains the
1214 information available to gdbarch about the (possibly new)
1215 architecture; ARCHES which is a list of the previously created
1216 \`\`struct gdbarch'' for this architecture.
1217
0f79675b 1218 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1219 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1220
1221 The ARCHES parameter is a linked list (sorted most recently used)
1222 of all the previously created architures for this architecture
1223 family. The (possibly NULL) ARCHES->gdbarch can used to access
1224 values from the previously selected architecture for this
59837fe0 1225 architecture family.
104c1213
JM
1226
1227 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1228 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1229 gdbarch'' from the ARCHES list - indicating that the new
1230 architecture is just a synonym for an earlier architecture (see
1231 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1232 - that describes the selected architecture (see gdbarch_alloc()).
1233
1234 The DUMP_TDEP function shall print out all target specific values.
1235 Care should be taken to ensure that the function works in both the
0963b4bd 1236 multi-arch and non- multi-arch cases. */
104c1213
JM
1237
1238struct gdbarch_list
1239{
1240 struct gdbarch *gdbarch;
1241 struct gdbarch_list *next;
1242};
1243
1244struct gdbarch_info
1245{
0963b4bd 1246 /* Use default: NULL (ZERO). */
104c1213
JM
1247 const struct bfd_arch_info *bfd_arch_info;
1248
428721aa 1249 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
1250 int byte_order;
1251
9d4fde75
SS
1252 int byte_order_for_code;
1253
0963b4bd 1254 /* Use default: NULL (ZERO). */
104c1213
JM
1255 bfd *abfd;
1256
0963b4bd 1257 /* Use default: NULL (ZERO). */
104c1213 1258 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1259
1260 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1261 enum gdb_osabi osabi;
424163ea
DJ
1262
1263 /* Use default: NULL (ZERO). */
1264 const struct target_desc *target_desc;
104c1213
JM
1265};
1266
1267typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1268typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1269
4b9b3959 1270/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1271extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1272
4b9b3959
AC
1273extern void gdbarch_register (enum bfd_architecture architecture,
1274 gdbarch_init_ftype *,
1275 gdbarch_dump_tdep_ftype *);
1276
104c1213 1277
b4a20239
AC
1278/* Return a freshly allocated, NULL terminated, array of the valid
1279 architecture names. Since architectures are registered during the
1280 _initialize phase this function only returns useful information
0963b4bd 1281 once initialization has been completed. */
b4a20239
AC
1282
1283extern const char **gdbarch_printable_names (void);
1284
1285
104c1213 1286/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1287 matches the information provided by INFO. */
104c1213 1288
424163ea 1289extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1290
1291
1292/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1293 basic initialization using values obtained from the INFO and TDEP
104c1213 1294 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1295 initialization of the object. */
104c1213
JM
1296
1297extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1298
1299
4b9b3959
AC
1300/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1301 It is assumed that the caller freeds the \`\`struct
0963b4bd 1302 gdbarch_tdep''. */
4b9b3959 1303
058f20d5
JB
1304extern void gdbarch_free (struct gdbarch *);
1305
1306
aebd7893
AC
1307/* Helper function. Allocate memory from the \`\`struct gdbarch''
1308 obstack. The memory is freed when the corresponding architecture
1309 is also freed. */
1310
1311extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1312#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1313#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1314
1315
0963b4bd 1316/* Helper function. Force an update of the current architecture.
104c1213 1317
b732d07d
AC
1318 The actual architecture selected is determined by INFO, \`\`(gdb) set
1319 architecture'' et.al., the existing architecture and BFD's default
1320 architecture. INFO should be initialized to zero and then selected
1321 fields should be updated.
104c1213 1322
0963b4bd 1323 Returns non-zero if the update succeeds. */
16f33e29
AC
1324
1325extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1326
1327
ebdba546
AC
1328/* Helper function. Find an architecture matching info.
1329
1330 INFO should be initialized using gdbarch_info_init, relevant fields
1331 set, and then finished using gdbarch_info_fill.
1332
1333 Returns the corresponding architecture, or NULL if no matching
59837fe0 1334 architecture was found. */
ebdba546
AC
1335
1336extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1337
1338
aff68abb 1339/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1340
aff68abb 1341extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1342
104c1213
JM
1343
1344/* Register per-architecture data-pointer.
1345
1346 Reserve space for a per-architecture data-pointer. An identifier
1347 for the reserved data-pointer is returned. That identifer should
95160752 1348 be saved in a local static variable.
104c1213 1349
fcc1c85c
AC
1350 Memory for the per-architecture data shall be allocated using
1351 gdbarch_obstack_zalloc. That memory will be deleted when the
1352 corresponding architecture object is deleted.
104c1213 1353
95160752
AC
1354 When a previously created architecture is re-selected, the
1355 per-architecture data-pointer for that previous architecture is
76860b5f 1356 restored. INIT() is not re-called.
104c1213
JM
1357
1358 Multiple registrarants for any architecture are allowed (and
1359 strongly encouraged). */
1360
95160752 1361struct gdbarch_data;
104c1213 1362
030f20e1
AC
1363typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1364extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1365typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1366extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1367extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1368 struct gdbarch_data *data,
1369 void *pointer);
104c1213 1370
451fbdda 1371extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1372
1373
0fa6923a 1374/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1375 byte-order, ...) using information found in the BFD. */
104c1213
JM
1376
1377extern void set_gdbarch_from_file (bfd *);
1378
1379
e514a9d6
JM
1380/* Initialize the current architecture to the "first" one we find on
1381 our list. */
1382
1383extern void initialize_current_architecture (void);
1384
104c1213 1385/* gdbarch trace variable */
ccce17b0 1386extern unsigned int gdbarch_debug;
104c1213 1387
4b9b3959 1388extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1389
1390#endif
1391EOF
1392exec 1>&2
1393#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1394compare_new gdbarch.h
104c1213
JM
1395
1396
1397#
1398# C file
1399#
1400
1401exec > new-gdbarch.c
1402copyright
1403cat <<EOF
1404
1405#include "defs.h"
7355ddba 1406#include "arch-utils.h"
104c1213 1407
104c1213 1408#include "gdbcmd.h"
faaf634c 1409#include "inferior.h"
104c1213
JM
1410#include "symcat.h"
1411
f0d4cc9e 1412#include "floatformat.h"
104c1213 1413
95160752 1414#include "gdb_assert.h"
b66d6d2e 1415#include "gdb_string.h"
b59ff9d5 1416#include "reggroups.h"
4be87837 1417#include "osabi.h"
aebd7893 1418#include "gdb_obstack.h"
383f836e 1419#include "observer.h"
a3ecef73 1420#include "regcache.h"
19630284 1421#include "objfiles.h"
95160752 1422
104c1213
JM
1423/* Static function declarations */
1424
b3cc3077 1425static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1426
104c1213
JM
1427/* Non-zero if we want to trace architecture code. */
1428
1429#ifndef GDBARCH_DEBUG
1430#define GDBARCH_DEBUG 0
1431#endif
ccce17b0 1432unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1433static void
1434show_gdbarch_debug (struct ui_file *file, int from_tty,
1435 struct cmd_list_element *c, const char *value)
1436{
1437 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1438}
104c1213 1439
456fcf94 1440static const char *
8da61cc4 1441pformat (const struct floatformat **format)
456fcf94
AC
1442{
1443 if (format == NULL)
1444 return "(null)";
1445 else
8da61cc4
DJ
1446 /* Just print out one of them - this is only for diagnostics. */
1447 return format[0]->name;
456fcf94
AC
1448}
1449
08105857
PA
1450static const char *
1451pstring (const char *string)
1452{
1453 if (string == NULL)
1454 return "(null)";
1455 return string;
1456}
1457
104c1213
JM
1458EOF
1459
1460# gdbarch open the gdbarch object
3d9a5942 1461printf "\n"
0963b4bd 1462printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1463printf "\n"
1464printf "struct gdbarch\n"
1465printf "{\n"
76860b5f
AC
1466printf " /* Has this architecture been fully initialized? */\n"
1467printf " int initialized_p;\n"
aebd7893
AC
1468printf "\n"
1469printf " /* An obstack bound to the lifetime of the architecture. */\n"
1470printf " struct obstack *obstack;\n"
1471printf "\n"
0963b4bd 1472printf " /* basic architectural information. */\n"
34620563 1473function_list | while do_read
104c1213 1474do
2ada493a
AC
1475 if class_is_info_p
1476 then
3d9a5942 1477 printf " ${returntype} ${function};\n"
2ada493a 1478 fi
104c1213 1479done
3d9a5942 1480printf "\n"
0963b4bd 1481printf " /* target specific vector. */\n"
3d9a5942
AC
1482printf " struct gdbarch_tdep *tdep;\n"
1483printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1484printf "\n"
0963b4bd 1485printf " /* per-architecture data-pointers. */\n"
95160752 1486printf " unsigned nr_data;\n"
3d9a5942
AC
1487printf " void **data;\n"
1488printf "\n"
104c1213
JM
1489cat <<EOF
1490 /* Multi-arch values.
1491
1492 When extending this structure you must:
1493
1494 Add the field below.
1495
1496 Declare set/get functions and define the corresponding
1497 macro in gdbarch.h.
1498
1499 gdbarch_alloc(): If zero/NULL is not a suitable default,
1500 initialize the new field.
1501
1502 verify_gdbarch(): Confirm that the target updated the field
1503 correctly.
1504
7e73cedf 1505 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1506 field is dumped out
1507
c0e8c252 1508 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1509 variable (base values on the host's c-type system).
1510
1511 get_gdbarch(): Implement the set/get functions (probably using
1512 the macro's as shortcuts).
1513
1514 */
1515
1516EOF
34620563 1517function_list | while do_read
104c1213 1518do
2ada493a
AC
1519 if class_is_variable_p
1520 then
3d9a5942 1521 printf " ${returntype} ${function};\n"
2ada493a
AC
1522 elif class_is_function_p
1523 then
2f9b146e 1524 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1525 fi
104c1213 1526done
3d9a5942 1527printf "};\n"
104c1213
JM
1528
1529# A pre-initialized vector
3d9a5942
AC
1530printf "\n"
1531printf "\n"
104c1213
JM
1532cat <<EOF
1533/* The default architecture uses host values (for want of a better
0963b4bd 1534 choice). */
104c1213 1535EOF
3d9a5942
AC
1536printf "\n"
1537printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1538printf "\n"
1539printf "struct gdbarch startup_gdbarch =\n"
1540printf "{\n"
76860b5f 1541printf " 1, /* Always initialized. */\n"
aebd7893 1542printf " NULL, /* The obstack. */\n"
0963b4bd 1543printf " /* basic architecture information. */\n"
4b9b3959 1544function_list | while do_read
104c1213 1545do
2ada493a
AC
1546 if class_is_info_p
1547 then
ec5cbaec 1548 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1549 fi
104c1213
JM
1550done
1551cat <<EOF
0963b4bd 1552 /* target specific vector and its dump routine. */
4b9b3959 1553 NULL, NULL,
c66fb220
TT
1554 /*per-architecture data-pointers. */
1555 0, NULL,
104c1213
JM
1556 /* Multi-arch values */
1557EOF
34620563 1558function_list | while do_read
104c1213 1559do
2ada493a
AC
1560 if class_is_function_p || class_is_variable_p
1561 then
ec5cbaec 1562 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1563 fi
104c1213
JM
1564done
1565cat <<EOF
c0e8c252 1566 /* startup_gdbarch() */
104c1213 1567};
4b9b3959 1568
104c1213
JM
1569EOF
1570
1571# Create a new gdbarch struct
104c1213 1572cat <<EOF
7de2341d 1573
66b43ecb 1574/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1575 \`\`struct gdbarch_info''. */
104c1213 1576EOF
3d9a5942 1577printf "\n"
104c1213
JM
1578cat <<EOF
1579struct gdbarch *
1580gdbarch_alloc (const struct gdbarch_info *info,
1581 struct gdbarch_tdep *tdep)
1582{
be7811ad 1583 struct gdbarch *gdbarch;
aebd7893
AC
1584
1585 /* Create an obstack for allocating all the per-architecture memory,
1586 then use that to allocate the architecture vector. */
1587 struct obstack *obstack = XMALLOC (struct obstack);
1588 obstack_init (obstack);
be7811ad
MD
1589 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1590 memset (gdbarch, 0, sizeof (*gdbarch));
1591 gdbarch->obstack = obstack;
85de9627 1592
be7811ad 1593 alloc_gdbarch_data (gdbarch);
85de9627 1594
be7811ad 1595 gdbarch->tdep = tdep;
104c1213 1596EOF
3d9a5942 1597printf "\n"
34620563 1598function_list | while do_read
104c1213 1599do
2ada493a
AC
1600 if class_is_info_p
1601 then
be7811ad 1602 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1603 fi
104c1213 1604done
3d9a5942 1605printf "\n"
0963b4bd 1606printf " /* Force the explicit initialization of these. */\n"
34620563 1607function_list | while do_read
104c1213 1608do
2ada493a
AC
1609 if class_is_function_p || class_is_variable_p
1610 then
72e74a21 1611 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1612 then
be7811ad 1613 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1614 fi
2ada493a 1615 fi
104c1213
JM
1616done
1617cat <<EOF
1618 /* gdbarch_alloc() */
1619
be7811ad 1620 return gdbarch;
104c1213
JM
1621}
1622EOF
1623
058f20d5 1624# Free a gdbarch struct.
3d9a5942
AC
1625printf "\n"
1626printf "\n"
058f20d5 1627cat <<EOF
aebd7893
AC
1628/* Allocate extra space using the per-architecture obstack. */
1629
1630void *
1631gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1632{
1633 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1634
aebd7893
AC
1635 memset (data, 0, size);
1636 return data;
1637}
1638
1639
058f20d5
JB
1640/* Free a gdbarch struct. This should never happen in normal
1641 operation --- once you've created a gdbarch, you keep it around.
1642 However, if an architecture's init function encounters an error
1643 building the structure, it may need to clean up a partially
1644 constructed gdbarch. */
4b9b3959 1645
058f20d5
JB
1646void
1647gdbarch_free (struct gdbarch *arch)
1648{
aebd7893 1649 struct obstack *obstack;
05c547f6 1650
95160752 1651 gdb_assert (arch != NULL);
aebd7893
AC
1652 gdb_assert (!arch->initialized_p);
1653 obstack = arch->obstack;
1654 obstack_free (obstack, 0); /* Includes the ARCH. */
1655 xfree (obstack);
058f20d5
JB
1656}
1657EOF
1658
104c1213 1659# verify a new architecture
104c1213 1660cat <<EOF
db446970
AC
1661
1662
1663/* Ensure that all values in a GDBARCH are reasonable. */
1664
104c1213 1665static void
be7811ad 1666verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1667{
f16a1923
AC
1668 struct ui_file *log;
1669 struct cleanup *cleanups;
759ef836 1670 long length;
f16a1923 1671 char *buf;
05c547f6 1672
f16a1923
AC
1673 log = mem_fileopen ();
1674 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1675 /* fundamental */
be7811ad 1676 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1677 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1678 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1679 fprintf_unfiltered (log, "\n\tbfd_arch_info");
0963b4bd 1680 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1681EOF
34620563 1682function_list | while do_read
104c1213 1683do
2ada493a
AC
1684 if class_is_function_p || class_is_variable_p
1685 then
72e74a21 1686 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1687 then
3d9a5942 1688 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1689 elif class_is_predicate_p
1690 then
0963b4bd 1691 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1692 # FIXME: See do_read for potential simplification
72e74a21 1693 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1694 then
3d9a5942 1695 printf " if (${invalid_p})\n"
be7811ad 1696 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1697 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1698 then
be7811ad
MD
1699 printf " if (gdbarch->${function} == ${predefault})\n"
1700 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1701 elif [ -n "${postdefault}" ]
f0d4cc9e 1702 then
be7811ad
MD
1703 printf " if (gdbarch->${function} == 0)\n"
1704 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1705 elif [ -n "${invalid_p}" ]
104c1213 1706 then
4d60522e 1707 printf " if (${invalid_p})\n"
f16a1923 1708 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1709 elif [ -n "${predefault}" ]
104c1213 1710 then
be7811ad 1711 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1712 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1713 fi
2ada493a 1714 fi
104c1213
JM
1715done
1716cat <<EOF
759ef836 1717 buf = ui_file_xstrdup (log, &length);
f16a1923 1718 make_cleanup (xfree, buf);
759ef836 1719 if (length > 0)
f16a1923 1720 internal_error (__FILE__, __LINE__,
85c07804 1721 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1722 buf);
1723 do_cleanups (cleanups);
104c1213
JM
1724}
1725EOF
1726
1727# dump the structure
3d9a5942
AC
1728printf "\n"
1729printf "\n"
104c1213 1730cat <<EOF
0963b4bd 1731/* Print out the details of the current architecture. */
4b9b3959 1732
104c1213 1733void
be7811ad 1734gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1735{
b78960be 1736 const char *gdb_nm_file = "<not-defined>";
05c547f6 1737
b78960be
AC
1738#if defined (GDB_NM_FILE)
1739 gdb_nm_file = GDB_NM_FILE;
1740#endif
1741 fprintf_unfiltered (file,
1742 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1743 gdb_nm_file);
104c1213 1744EOF
97030eea 1745function_list | sort -t: -k 3 | while do_read
104c1213 1746do
1e9f55d0
AC
1747 # First the predicate
1748 if class_is_predicate_p
1749 then
7996bcec 1750 printf " fprintf_unfiltered (file,\n"
48f7351b 1751 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1752 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1753 fi
48f7351b 1754 # Print the corresponding value.
283354d8 1755 if class_is_function_p
4b9b3959 1756 then
7996bcec 1757 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1758 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1759 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1760 else
48f7351b 1761 # It is a variable
2f9b146e
AC
1762 case "${print}:${returntype}" in
1763 :CORE_ADDR )
0b1553bc
UW
1764 fmt="%s"
1765 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1766 ;;
2f9b146e 1767 :* )
48f7351b 1768 fmt="%s"
623d3eb1 1769 print="plongest (gdbarch->${function})"
48f7351b
AC
1770 ;;
1771 * )
2f9b146e 1772 fmt="%s"
48f7351b
AC
1773 ;;
1774 esac
3d9a5942 1775 printf " fprintf_unfiltered (file,\n"
48f7351b 1776 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1777 printf " ${print});\n"
2ada493a 1778 fi
104c1213 1779done
381323f4 1780cat <<EOF
be7811ad
MD
1781 if (gdbarch->dump_tdep != NULL)
1782 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1783}
1784EOF
104c1213
JM
1785
1786
1787# GET/SET
3d9a5942 1788printf "\n"
104c1213
JM
1789cat <<EOF
1790struct gdbarch_tdep *
1791gdbarch_tdep (struct gdbarch *gdbarch)
1792{
1793 if (gdbarch_debug >= 2)
3d9a5942 1794 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1795 return gdbarch->tdep;
1796}
1797EOF
3d9a5942 1798printf "\n"
34620563 1799function_list | while do_read
104c1213 1800do
2ada493a
AC
1801 if class_is_predicate_p
1802 then
3d9a5942
AC
1803 printf "\n"
1804 printf "int\n"
1805 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1806 printf "{\n"
8de9bdc4 1807 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1808 printf " return ${predicate};\n"
3d9a5942 1809 printf "}\n"
2ada493a
AC
1810 fi
1811 if class_is_function_p
1812 then
3d9a5942
AC
1813 printf "\n"
1814 printf "${returntype}\n"
72e74a21 1815 if [ "x${formal}" = "xvoid" ]
104c1213 1816 then
3d9a5942 1817 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1818 else
3d9a5942 1819 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1820 fi
3d9a5942 1821 printf "{\n"
8de9bdc4 1822 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1823 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1824 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1825 then
1826 # Allow a call to a function with a predicate.
956ac328 1827 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1828 fi
3d9a5942
AC
1829 printf " if (gdbarch_debug >= 2)\n"
1830 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1831 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1832 then
1833 if class_is_multiarch_p
1834 then
1835 params="gdbarch"
1836 else
1837 params=""
1838 fi
1839 else
1840 if class_is_multiarch_p
1841 then
1842 params="gdbarch, ${actual}"
1843 else
1844 params="${actual}"
1845 fi
1846 fi
72e74a21 1847 if [ "x${returntype}" = "xvoid" ]
104c1213 1848 then
4a5c6a1d 1849 printf " gdbarch->${function} (${params});\n"
104c1213 1850 else
4a5c6a1d 1851 printf " return gdbarch->${function} (${params});\n"
104c1213 1852 fi
3d9a5942
AC
1853 printf "}\n"
1854 printf "\n"
1855 printf "void\n"
1856 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1857 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1858 printf "{\n"
1859 printf " gdbarch->${function} = ${function};\n"
1860 printf "}\n"
2ada493a
AC
1861 elif class_is_variable_p
1862 then
3d9a5942
AC
1863 printf "\n"
1864 printf "${returntype}\n"
1865 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1866 printf "{\n"
8de9bdc4 1867 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1868 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1869 then
3d9a5942 1870 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1871 elif [ -n "${invalid_p}" ]
104c1213 1872 then
956ac328
AC
1873 printf " /* Check variable is valid. */\n"
1874 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1875 elif [ -n "${predefault}" ]
104c1213 1876 then
956ac328
AC
1877 printf " /* Check variable changed from pre-default. */\n"
1878 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1879 fi
3d9a5942
AC
1880 printf " if (gdbarch_debug >= 2)\n"
1881 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1882 printf " return gdbarch->${function};\n"
1883 printf "}\n"
1884 printf "\n"
1885 printf "void\n"
1886 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1887 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1888 printf "{\n"
1889 printf " gdbarch->${function} = ${function};\n"
1890 printf "}\n"
2ada493a
AC
1891 elif class_is_info_p
1892 then
3d9a5942
AC
1893 printf "\n"
1894 printf "${returntype}\n"
1895 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1896 printf "{\n"
8de9bdc4 1897 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1898 printf " if (gdbarch_debug >= 2)\n"
1899 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1900 printf " return gdbarch->${function};\n"
1901 printf "}\n"
2ada493a 1902 fi
104c1213
JM
1903done
1904
1905# All the trailing guff
1906cat <<EOF
1907
1908
f44c642f 1909/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 1910 modules. */
104c1213
JM
1911
1912struct gdbarch_data
1913{
95160752 1914 unsigned index;
76860b5f 1915 int init_p;
030f20e1
AC
1916 gdbarch_data_pre_init_ftype *pre_init;
1917 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1918};
1919
1920struct gdbarch_data_registration
1921{
104c1213
JM
1922 struct gdbarch_data *data;
1923 struct gdbarch_data_registration *next;
1924};
1925
f44c642f 1926struct gdbarch_data_registry
104c1213 1927{
95160752 1928 unsigned nr;
104c1213
JM
1929 struct gdbarch_data_registration *registrations;
1930};
1931
f44c642f 1932struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1933{
1934 0, NULL,
1935};
1936
030f20e1
AC
1937static struct gdbarch_data *
1938gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1939 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
1940{
1941 struct gdbarch_data_registration **curr;
05c547f6
MS
1942
1943 /* Append the new registration. */
f44c642f 1944 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1945 (*curr) != NULL;
1946 curr = &(*curr)->next);
1947 (*curr) = XMALLOC (struct gdbarch_data_registration);
1948 (*curr)->next = NULL;
104c1213 1949 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1950 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
1951 (*curr)->data->pre_init = pre_init;
1952 (*curr)->data->post_init = post_init;
76860b5f 1953 (*curr)->data->init_p = 1;
104c1213
JM
1954 return (*curr)->data;
1955}
1956
030f20e1
AC
1957struct gdbarch_data *
1958gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1959{
1960 return gdbarch_data_register (pre_init, NULL);
1961}
1962
1963struct gdbarch_data *
1964gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1965{
1966 return gdbarch_data_register (NULL, post_init);
1967}
104c1213 1968
0963b4bd 1969/* Create/delete the gdbarch data vector. */
95160752
AC
1970
1971static void
b3cc3077 1972alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1973{
b3cc3077
JB
1974 gdb_assert (gdbarch->data == NULL);
1975 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 1976 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 1977}
3c875b6f 1978
76860b5f 1979/* Initialize the current value of the specified per-architecture
0963b4bd 1980 data-pointer. */
b3cc3077 1981
95160752 1982void
030f20e1
AC
1983deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1984 struct gdbarch_data *data,
1985 void *pointer)
95160752
AC
1986{
1987 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 1988 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 1989 gdb_assert (data->pre_init == NULL);
95160752
AC
1990 gdbarch->data[data->index] = pointer;
1991}
1992
104c1213 1993/* Return the current value of the specified per-architecture
0963b4bd 1994 data-pointer. */
104c1213
JM
1995
1996void *
451fbdda 1997gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 1998{
451fbdda 1999 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2000 if (gdbarch->data[data->index] == NULL)
76860b5f 2001 {
030f20e1
AC
2002 /* The data-pointer isn't initialized, call init() to get a
2003 value. */
2004 if (data->pre_init != NULL)
2005 /* Mid architecture creation: pass just the obstack, and not
2006 the entire architecture, as that way it isn't possible for
2007 pre-init code to refer to undefined architecture
2008 fields. */
2009 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2010 else if (gdbarch->initialized_p
2011 && data->post_init != NULL)
2012 /* Post architecture creation: pass the entire architecture
2013 (as all fields are valid), but be careful to also detect
2014 recursive references. */
2015 {
2016 gdb_assert (data->init_p);
2017 data->init_p = 0;
2018 gdbarch->data[data->index] = data->post_init (gdbarch);
2019 data->init_p = 1;
2020 }
2021 else
2022 /* The architecture initialization hasn't completed - punt -
2023 hope that the caller knows what they are doing. Once
2024 deprecated_set_gdbarch_data has been initialized, this can be
2025 changed to an internal error. */
2026 return NULL;
76860b5f
AC
2027 gdb_assert (gdbarch->data[data->index] != NULL);
2028 }
451fbdda 2029 return gdbarch->data[data->index];
104c1213
JM
2030}
2031
2032
0963b4bd 2033/* Keep a registry of the architectures known by GDB. */
104c1213 2034
4b9b3959 2035struct gdbarch_registration
104c1213
JM
2036{
2037 enum bfd_architecture bfd_architecture;
2038 gdbarch_init_ftype *init;
4b9b3959 2039 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2040 struct gdbarch_list *arches;
4b9b3959 2041 struct gdbarch_registration *next;
104c1213
JM
2042};
2043
f44c642f 2044static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2045
b4a20239
AC
2046static void
2047append_name (const char ***buf, int *nr, const char *name)
2048{
2049 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2050 (*buf)[*nr] = name;
2051 *nr += 1;
2052}
2053
2054const char **
2055gdbarch_printable_names (void)
2056{
7996bcec 2057 /* Accumulate a list of names based on the registed list of
0963b4bd 2058 architectures. */
7996bcec
AC
2059 int nr_arches = 0;
2060 const char **arches = NULL;
2061 struct gdbarch_registration *rego;
05c547f6 2062
7996bcec
AC
2063 for (rego = gdbarch_registry;
2064 rego != NULL;
2065 rego = rego->next)
b4a20239 2066 {
7996bcec
AC
2067 const struct bfd_arch_info *ap;
2068 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2069 if (ap == NULL)
2070 internal_error (__FILE__, __LINE__,
85c07804 2071 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2072 do
2073 {
2074 append_name (&arches, &nr_arches, ap->printable_name);
2075 ap = ap->next;
2076 }
2077 while (ap != NULL);
b4a20239 2078 }
7996bcec
AC
2079 append_name (&arches, &nr_arches, NULL);
2080 return arches;
b4a20239
AC
2081}
2082
2083
104c1213 2084void
4b9b3959
AC
2085gdbarch_register (enum bfd_architecture bfd_architecture,
2086 gdbarch_init_ftype *init,
2087 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2088{
4b9b3959 2089 struct gdbarch_registration **curr;
104c1213 2090 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2091
ec3d358c 2092 /* Check that BFD recognizes this architecture */
104c1213
JM
2093 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2094 if (bfd_arch_info == NULL)
2095 {
8e65ff28 2096 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2097 _("gdbarch: Attempt to register "
2098 "unknown architecture (%d)"),
8e65ff28 2099 bfd_architecture);
104c1213 2100 }
0963b4bd 2101 /* Check that we haven't seen this architecture before. */
f44c642f 2102 for (curr = &gdbarch_registry;
104c1213
JM
2103 (*curr) != NULL;
2104 curr = &(*curr)->next)
2105 {
2106 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2107 internal_error (__FILE__, __LINE__,
64b9b334 2108 _("gdbarch: Duplicate registration "
0963b4bd 2109 "of architecture (%s)"),
8e65ff28 2110 bfd_arch_info->printable_name);
104c1213
JM
2111 }
2112 /* log it */
2113 if (gdbarch_debug)
30737ed9 2114 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2115 bfd_arch_info->printable_name,
30737ed9 2116 host_address_to_string (init));
104c1213 2117 /* Append it */
4b9b3959 2118 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
2119 (*curr)->bfd_architecture = bfd_architecture;
2120 (*curr)->init = init;
4b9b3959 2121 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2122 (*curr)->arches = NULL;
2123 (*curr)->next = NULL;
4b9b3959
AC
2124}
2125
2126void
2127register_gdbarch_init (enum bfd_architecture bfd_architecture,
2128 gdbarch_init_ftype *init)
2129{
2130 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2131}
104c1213
JM
2132
2133
424163ea 2134/* Look for an architecture using gdbarch_info. */
104c1213
JM
2135
2136struct gdbarch_list *
2137gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2138 const struct gdbarch_info *info)
2139{
2140 for (; arches != NULL; arches = arches->next)
2141 {
2142 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2143 continue;
2144 if (info->byte_order != arches->gdbarch->byte_order)
2145 continue;
4be87837
DJ
2146 if (info->osabi != arches->gdbarch->osabi)
2147 continue;
424163ea
DJ
2148 if (info->target_desc != arches->gdbarch->target_desc)
2149 continue;
104c1213
JM
2150 return arches;
2151 }
2152 return NULL;
2153}
2154
2155
ebdba546 2156/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2157 architecture if needed. Return that new architecture. */
104c1213 2158
59837fe0
UW
2159struct gdbarch *
2160gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2161{
2162 struct gdbarch *new_gdbarch;
4b9b3959 2163 struct gdbarch_registration *rego;
104c1213 2164
b732d07d 2165 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2166 sources: "set ..."; INFOabfd supplied; and the global
2167 defaults. */
2168 gdbarch_info_fill (&info);
4be87837 2169
0963b4bd 2170 /* Must have found some sort of architecture. */
b732d07d 2171 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2172
2173 if (gdbarch_debug)
2174 {
2175 fprintf_unfiltered (gdb_stdlog,
59837fe0 2176 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2177 (info.bfd_arch_info != NULL
2178 ? info.bfd_arch_info->printable_name
2179 : "(null)"));
2180 fprintf_unfiltered (gdb_stdlog,
59837fe0 2181 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2182 info.byte_order,
d7449b42 2183 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2184 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2185 : "default"));
4be87837 2186 fprintf_unfiltered (gdb_stdlog,
59837fe0 2187 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2188 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2189 fprintf_unfiltered (gdb_stdlog,
59837fe0 2190 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2191 host_address_to_string (info.abfd));
104c1213 2192 fprintf_unfiltered (gdb_stdlog,
59837fe0 2193 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2194 host_address_to_string (info.tdep_info));
104c1213
JM
2195 }
2196
ebdba546 2197 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2198 for (rego = gdbarch_registry;
2199 rego != NULL;
2200 rego = rego->next)
2201 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2202 break;
2203 if (rego == NULL)
2204 {
2205 if (gdbarch_debug)
59837fe0 2206 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2207 "No matching architecture\n");
b732d07d
AC
2208 return 0;
2209 }
2210
ebdba546 2211 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2212 new_gdbarch = rego->init (info, rego->arches);
2213
ebdba546
AC
2214 /* Did the tdep code like it? No. Reject the change and revert to
2215 the old architecture. */
104c1213
JM
2216 if (new_gdbarch == NULL)
2217 {
2218 if (gdbarch_debug)
59837fe0 2219 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2220 "Target rejected architecture\n");
2221 return NULL;
104c1213
JM
2222 }
2223
ebdba546
AC
2224 /* Is this a pre-existing architecture (as determined by already
2225 being initialized)? Move it to the front of the architecture
2226 list (keeping the list sorted Most Recently Used). */
2227 if (new_gdbarch->initialized_p)
104c1213 2228 {
ebdba546
AC
2229 struct gdbarch_list **list;
2230 struct gdbarch_list *this;
104c1213 2231 if (gdbarch_debug)
59837fe0 2232 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2233 "Previous architecture %s (%s) selected\n",
2234 host_address_to_string (new_gdbarch),
104c1213 2235 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2236 /* Find the existing arch in the list. */
2237 for (list = &rego->arches;
2238 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2239 list = &(*list)->next);
2240 /* It had better be in the list of architectures. */
2241 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2242 /* Unlink THIS. */
2243 this = (*list);
2244 (*list) = this->next;
2245 /* Insert THIS at the front. */
2246 this->next = rego->arches;
2247 rego->arches = this;
2248 /* Return it. */
2249 return new_gdbarch;
104c1213
JM
2250 }
2251
ebdba546
AC
2252 /* It's a new architecture. */
2253 if (gdbarch_debug)
59837fe0 2254 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2255 "New architecture %s (%s) selected\n",
2256 host_address_to_string (new_gdbarch),
ebdba546
AC
2257 new_gdbarch->bfd_arch_info->printable_name);
2258
2259 /* Insert the new architecture into the front of the architecture
2260 list (keep the list sorted Most Recently Used). */
0f79675b
AC
2261 {
2262 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2263 this->next = rego->arches;
2264 this->gdbarch = new_gdbarch;
2265 rego->arches = this;
2266 }
104c1213 2267
4b9b3959
AC
2268 /* Check that the newly installed architecture is valid. Plug in
2269 any post init values. */
2270 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2271 verify_gdbarch (new_gdbarch);
ebdba546 2272 new_gdbarch->initialized_p = 1;
104c1213 2273
4b9b3959 2274 if (gdbarch_debug)
ebdba546
AC
2275 gdbarch_dump (new_gdbarch, gdb_stdlog);
2276
2277 return new_gdbarch;
2278}
2279
e487cc15 2280/* Make the specified architecture current. */
ebdba546
AC
2281
2282void
aff68abb 2283set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2284{
2285 gdb_assert (new_gdbarch != NULL);
ebdba546 2286 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2287 current_inferior ()->gdbarch = new_gdbarch;
383f836e 2288 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2289 registers_changed ();
ebdba546 2290}
104c1213 2291
f5656ead 2292/* Return the current inferior's arch. */
6ecd4729
PA
2293
2294struct gdbarch *
f5656ead 2295target_gdbarch (void)
6ecd4729
PA
2296{
2297 return current_inferior ()->gdbarch;
2298}
2299
104c1213 2300extern void _initialize_gdbarch (void);
b4a20239 2301
104c1213 2302void
34620563 2303_initialize_gdbarch (void)
104c1213 2304{
ccce17b0 2305 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2306Set architecture debugging."), _("\\
2307Show architecture debugging."), _("\\
2308When non-zero, architecture debugging is enabled."),
2309 NULL,
920d2a44 2310 show_gdbarch_debug,
85c07804 2311 &setdebuglist, &showdebuglist);
104c1213
JM
2312}
2313EOF
2314
2315# close things off
2316exec 1>&2
2317#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2318compare_new gdbarch.c
This page took 1.294764 seconds and 4 git commands to generate.