*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
1e698235 4# Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
104c1213
JM
5#
6# This file is part of GDB.
7#
8# This program is free software; you can redistribute it and/or modify
9# it under the terms of the GNU General Public License as published by
10# the Free Software Foundation; either version 2 of the License, or
11# (at your option) any later version.
12#
13# This program is distributed in the hope that it will be useful,
14# but WITHOUT ANY WARRANTY; without even the implied warranty of
15# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16# GNU General Public License for more details.
17#
18# You should have received a copy of the GNU General Public License
19# along with this program; if not, write to the Free Software
20# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
d8864532
AC
22# Make certain that the script is running in an internationalized
23# environment.
24LANG=c ; export LANG
1bd316f0 25LC_ALL=c ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
0b8f9e4d 44read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 56 then
34620563
AC
57 continue
58 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 59 then
34620563
AC
60 comment="${comment}
61${line}"
f0d4cc9e 62 else
3d9a5942
AC
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
34620563
AC
70 eval read ${read} <<EOF
71${line}
72EOF
73 IFS="${OFS}"
74
3d9a5942
AC
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
50248794
AC
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
e669114a 88 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
50248794
AC
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
a72293e2
AC
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
06b25f14
AC
97
98 # come up with a format, use a few guesses for variables
99 case ":${class}:${fmt}:${print}:" in
100 :[vV]::: )
101 if [ "${returntype}" = int ]
102 then
103 fmt="%d"
104 print="${macro}"
105 elif [ "${returntype}" = long ]
106 then
107 fmt="%ld"
108 print="${macro}"
109 fi
110 ;;
111 esac
34620563
AC
112 test "${fmt}" || fmt="%ld"
113 test "${print}" || print="(long) ${macro}"
06b25f14 114
ae45cd16
AC
115 case "${class}" in
116 F | V | M )
117 case "${invalid_p}" in
34620563 118 "" )
f7968451 119 if test -n "${predefault}"
34620563
AC
120 then
121 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 122 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
123 elif class_is_variable_p
124 then
125 predicate="gdbarch->${function} != 0"
126 elif class_is_function_p
127 then
128 predicate="gdbarch->${function} != NULL"
34620563
AC
129 fi
130 ;;
ae45cd16 131 * )
1e9f55d0 132 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
133 kill $$
134 exit 1
135 ;;
136 esac
34620563
AC
137 esac
138
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
145
72e74a21 146 if [ -n "${postdefault}" ]
34620563
AC
147 then
148 fallbackdefault="${postdefault}"
72e74a21 149 elif [ -n "${predefault}" ]
34620563
AC
150 then
151 fallbackdefault="${predefault}"
152 else
73d3c16e 153 fallbackdefault="0"
34620563
AC
154 fi
155
156 #NOT YET: See gdbarch.log for basic verification of
157 # database
158
159 break
f0d4cc9e 160 fi
34620563 161 done
72e74a21 162 if [ -n "${class}" ]
34620563
AC
163 then
164 true
c0e8c252
AC
165 else
166 false
167 fi
168}
169
104c1213 170
f0d4cc9e
AC
171fallback_default_p ()
172{
72e74a21
JB
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
175}
176
177class_is_variable_p ()
178{
4a5c6a1d
AC
179 case "${class}" in
180 *v* | *V* ) true ;;
181 * ) false ;;
182 esac
f0d4cc9e
AC
183}
184
185class_is_function_p ()
186{
4a5c6a1d
AC
187 case "${class}" in
188 *f* | *F* | *m* | *M* ) true ;;
189 * ) false ;;
190 esac
191}
192
193class_is_multiarch_p ()
194{
195 case "${class}" in
196 *m* | *M* ) true ;;
197 * ) false ;;
198 esac
f0d4cc9e
AC
199}
200
201class_is_predicate_p ()
202{
4a5c6a1d
AC
203 case "${class}" in
204 *F* | *V* | *M* ) true ;;
205 * ) false ;;
206 esac
f0d4cc9e
AC
207}
208
209class_is_info_p ()
210{
4a5c6a1d
AC
211 case "${class}" in
212 *i* ) true ;;
213 * ) false ;;
214 esac
f0d4cc9e
AC
215}
216
217
cff3e48b
JM
218# dump out/verify the doco
219for field in ${read}
220do
221 case ${field} in
222
223 class ) : ;;
c4093a6a 224
c0e8c252
AC
225 # # -> line disable
226 # f -> function
227 # hiding a function
2ada493a
AC
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
c0e8c252
AC
230 # v -> variable
231 # hiding a variable
2ada493a
AC
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
c0e8c252
AC
234 # i -> set from info
235 # hiding something from the ``struct info'' object
4a5c6a1d
AC
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
cff3e48b
JM
240
241 level ) : ;;
242
c0e8c252
AC
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
cff3e48b
JM
246
247 macro ) : ;;
248
c0e8c252 249 # The name of the MACRO that this method is to be accessed by.
cff3e48b
JM
250
251 returntype ) : ;;
252
c0e8c252 253 # For functions, the return type; for variables, the data type
cff3e48b
JM
254
255 function ) : ;;
256
c0e8c252
AC
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
260
261 formal ) : ;;
262
c0e8c252
AC
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
cff3e48b
JM
267
268 actual ) : ;;
269
c0e8c252
AC
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
cff3e48b
JM
273
274 attrib ) : ;;
275
c0e8c252
AC
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
cff3e48b 278
0b8f9e4d 279 staticdefault ) : ;;
c0e8c252
AC
280
281 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
cff3e48b 285
0b8f9e4d 286 # If STATICDEFAULT is empty, zero is used.
c0e8c252 287
0b8f9e4d 288 predefault ) : ;;
cff3e48b 289
10312cc4
AC
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
cff3e48b 294
0b8f9e4d
AC
295 # If PREDEFAULT is empty, zero is used.
296
10312cc4
AC
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
f0d4cc9e
AC
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
0b8f9e4d
AC
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
10312cc4
AC
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
f0d4cc9e
AC
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
cff3e48b 328
c4093a6a 329 invalid_p ) : ;;
cff3e48b 330
0b8f9e4d 331 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 332 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
336 # is called.
337
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
340
f0d4cc9e
AC
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
343
344 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b
JM
345
346 fmt ) : ;;
347
c0e8c252
AC
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
351
0b8f9e4d 352 # If FMT is empty, ``%ld'' is used.
cff3e48b
JM
353
354 print ) : ;;
355
c0e8c252
AC
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
358
0b8f9e4d 359 # If PRINT is empty, ``(long)'' is used.
cff3e48b
JM
360
361 print_p ) : ;;
362
c0e8c252
AC
363 # An optional indicator for any predicte to wrap around the
364 # print member code.
365
4b9b3959 366 # () -> Call a custom function to do the dump.
c0e8c252
AC
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
cff3e48b 369
0b8f9e4d
AC
370 # If PRINT_P is empty, ``1'' is always used.
371
cff3e48b
JM
372 description ) : ;;
373
0b8f9e4d 374 # Currently unused.
cff3e48b 375
50248794
AC
376 *)
377 echo "Bad field ${field}"
378 exit 1;;
cff3e48b
JM
379 esac
380done
381
cff3e48b 382
104c1213
JM
383function_list ()
384{
cff3e48b 385 # See below (DOCO) for description of each field
34620563 386 cat <<EOF
0b8f9e4d 387i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
104c1213 388#
d7449b42 389i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
4be87837
DJ
390#
391i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
66b43ecb
AC
392# Number of bits in a char or unsigned char for the target machine.
393# Just like CHAR_BIT in <limits.h> but describes the target machine.
e669114a 394# v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
395#
396# Number of bits in a short or unsigned short for the target machine.
e669114a 397v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 398# Number of bits in an int or unsigned int for the target machine.
e669114a 399v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 400# Number of bits in a long or unsigned long for the target machine.
e669114a 401v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
402# Number of bits in a long long or unsigned long long for the target
403# machine.
e669114a 404v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
66b43ecb 405# Number of bits in a float for the target machine.
e669114a 406v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
66b43ecb 407# Number of bits in a double for the target machine.
e669114a 408v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
66b43ecb 409# Number of bits in a long double for the target machine.
e669114a 410v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
52204a0b
DT
411# For most targets, a pointer on the target and its representation as an
412# address in GDB have the same size and "look the same". For such a
413# target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
414# / addr_bit will be set from it.
415#
416# If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
417# also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
418#
419# ptr_bit is the size of a pointer on the target
e669114a 420v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
52204a0b 421# addr_bit is the size of a target address as represented in gdb
e669114a 422v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
66b43ecb 423# Number of bits in a BFD_VMA for the target object file format.
e669114a 424v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
104c1213 425#
4e409299 426# One if \`char' acts like \`signed char', zero if \`unsigned char'.
e669114a 427v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
4e409299 428#
cde9ea48 429F:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
e669114a 430f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
a9e5fdc2 431# UNWIND_SP is a direct replacement for TARGET_READ_SP.
bd1ce8ba 432F:2:TARGET_READ_SP:CORE_ADDR:read_sp:void
39d4ef09
AC
433# Function for getting target's idea of a frame pointer. FIXME: GDB's
434# whole scheme for dealing with "frames" and "frame pointers" needs a
435# serious shakedown.
e669114a 436f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
66b43ecb 437#
f7968451
AC
438M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
439M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
61a0eb5b 440#
104c1213 441v:2:NUM_REGS:int:num_regs::::0:-1
0aba1244
EZ
442# This macro gives the number of pseudo-registers that live in the
443# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
444# These pseudo-registers may be aliases for other registers,
445# combinations of other registers, or they may be computed by GDB.
0aba1244 446v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
c2169756
AC
447
448# GDB's standard (or well known) register numbers. These can map onto
449# a real register or a pseudo (computed) register or not be defined at
1200cd6e 450# all (-1).
a9e5fdc2 451# SP_REGNUM will hopefully be replaced by UNWIND_SP.
1200cd6e 452v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
1200cd6e 453v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
c2169756 454v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
0b8f9e4d 455v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
efe59759
AC
456# Replace DEPRECATED_NPC_REGNUM with an implementation of WRITE_PC
457# that updates PC, NPC and even NNPC.
458v:2:DEPRECATED_NPC_REGNUM:int:deprecated_npc_regnum::::0:-1::0
88c72b7d
AC
459# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
460f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
461# Provide a default mapping from a ecoff register number to a gdb REGNUM.
462f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
463# Provide a default mapping from a DWARF register number to a gdb REGNUM.
464f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
465# Convert from an sdb register number to an internal gdb register number.
88c72b7d
AC
466f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
467f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
e23457df 468f::REGISTER_NAME:const char *:register_name:int regnr:regnr
9c04cab7 469
2e092625 470# REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
f7968451 471M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr
2e092625
AC
472# REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
473F:2:DEPRECATED_REGISTER_VIRTUAL_TYPE:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr
9c04cab7
AC
474# DEPRECATED_REGISTER_BYTES can be deleted. The value is computed
475# from REGISTER_TYPE.
b8b527c5 476v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
f3be58bc
AC
477# If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
478# register offsets computed using just REGISTER_TYPE, this can be
479# deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
480# function with predicate has a valid (callable) initial value. As a
481# consequence, even when the predicate is false, the corresponding
482# function works. This simplifies the migration process - old code,
483# calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
62700349 484F::DEPRECATED_REGISTER_BYTE:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
f3be58bc
AC
485# If all registers have identical raw and virtual sizes and those
486# sizes agree with the value computed from REGISTER_TYPE,
487# DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print
488# registers.
12c266ea 489F:2:DEPRECATED_REGISTER_RAW_SIZE:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
f3be58bc
AC
490# If all registers have identical raw and virtual sizes and those
491# sizes agree with the value computed from REGISTER_TYPE,
492# DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print
493# registers.
f30992d4 494F:2:DEPRECATED_REGISTER_VIRTUAL_SIZE:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
9c04cab7
AC
495# DEPRECATED_MAX_REGISTER_RAW_SIZE can be deleted. It has been
496# replaced by the constant MAX_REGISTER_SIZE.
a0ed5532 497V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
9c04cab7
AC
498# DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE can be deleted. It has been
499# replaced by the constant MAX_REGISTER_SIZE.
a0ed5532 500V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
9c04cab7 501
f3be58bc 502# See gdbint.texinfo, and PUSH_DUMMY_CALL.
f7968451 503M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info
f3be58bc
AC
504# Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
505# SAVE_DUMMY_FRAME_TOS.
a59fe496 506F:2:DEPRECATED_SAVE_DUMMY_FRAME_TOS:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp
f3be58bc
AC
507# Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
508# DEPRECATED_FP_REGNUM.
509v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
510# Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
511# DEPRECATED_TARGET_READ_FP.
512F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
513
b8de8283
AC
514# See gdbint.texinfo. See infcall.c. New, all singing all dancing,
515# replacement for DEPRECATED_PUSH_ARGUMENTS.
516M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:func_addr, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
517# PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
518F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
519# DEPRECATED_USE_GENERIC_DUMMY_FRAMES can be deleted. Always true.
520v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
521# Implement PUSH_RETURN_ADDRESS, and then merge in
522# DEPRECATED_PUSH_RETURN_ADDRESS.
f7968451 523F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp
b8de8283
AC
524# Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
525F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
526# DEPRECATED_REGISTER_SIZE can be deleted.
527v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
528v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
88a82a65 529F::DEPRECATED_CALL_DUMMY_ADDRESS:CORE_ADDR:deprecated_call_dummy_address:void
b8de8283
AC
530# DEPRECATED_CALL_DUMMY_START_OFFSET can be deleted.
531v::DEPRECATED_CALL_DUMMY_START_OFFSET:CORE_ADDR:deprecated_call_dummy_start_offset
532# DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET can be deleted.
533v::DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:deprecated_call_dummy_breakpoint_offset
534# DEPRECATED_CALL_DUMMY_LENGTH can be deleted.
535v::DEPRECATED_CALL_DUMMY_LENGTH:int:deprecated_call_dummy_length
536# DEPRECATED_CALL_DUMMY_WORDS can be deleted.
537v::DEPRECATED_CALL_DUMMY_WORDS:LONGEST *:deprecated_call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
538# Implement PUSH_DUMMY_CALL, then delete DEPRECATED_SIZEOF_CALL_DUMMY_WORDS.
539v::DEPRECATED_SIZEOF_CALL_DUMMY_WORDS:int:deprecated_sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
540# Implement PUSH_DUMMY_CALL, then delete DEPRECATED_CALL_DUMMY_STACK_ADJUST.
f7968451 541V:2:DEPRECATED_CALL_DUMMY_STACK_ADJUST:int:deprecated_call_dummy_stack_adjust
b8de8283
AC
542# DEPRECATED_FIX_CALL_DUMMY can be deleted. For the SPARC, implement
543# PUSH_DUMMY_CODE and set CALL_DUMMY_LOCATION to ON_STACK.
544F::DEPRECATED_FIX_CALL_DUMMY:void:deprecated_fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
545# This is a replacement for DEPRECATED_FIX_CALL_DUMMY et.al.
f7968451 546M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
b8de8283 547# Implement PUSH_DUMMY_CALL, then delete DEPRECATED_PUSH_DUMMY_FRAME.
f7968451 548F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-
b8de8283
AC
549# Implement PUSH_DUMMY_CALL, then delete
550# DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED.
551v:2:DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED:int:deprecated_extra_stack_alignment_needed::::0:0::0:::
552
903ad3a6 553F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
0ab7a791 554m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
23e3a7ac 555M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
e76f1f2e 556M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
557# MAP a GDB RAW register number onto a simulator register number. See
558# also include/...-sim.h.
8238d0bf 559f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
f7968451 560F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes
01fb7433
AC
561f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
562f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
9df628e0 563# setjmp/longjmp support.
f7968451 564F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc
ae45cd16
AC
565# NOTE: cagney/2002-11-24: This function with predicate has a valid
566# (callable) initial value. As a consequence, even when the predicate
567# is false, the corresponding function works. This simplifies the
568# migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
569# doesn't need to be modified.
55e1d7e7 570F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
97f46953 571F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
e669114a 572F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
104c1213 573#
f0d4cc9e 574v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
e669114a 575v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
129c1cd6 576F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
104c1213 577#
781a750d
AC
578# For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
579# For raw <-> cooked register conversions, replaced by pseudo registers.
580f:2:DEPRECATED_REGISTER_CONVERTIBLE:int:deprecated_register_convertible:int nr:nr:::deprecated_register_convertible_not::0
581# For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
582# For raw <-> cooked register conversions, replaced by pseudo registers.
583f:2:DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL:void:deprecated_register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
584# For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
585# For raw <-> cooked register conversions, replaced by pseudo registers.
586f:2:DEPRECATED_REGISTER_CONVERT_TO_RAW:void:deprecated_register_convert_to_raw:struct type *type, int regnum, const char *from, char *to:type, regnum, from, to:::0::0
13d01224 587#
ff2e87ac
AC
588f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum, struct type *type:regnum, type::0:legacy_convert_register_p::0
589f:1:REGISTER_TO_VALUE:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0:legacy_register_to_value::0
590f:1:VALUE_TO_REGISTER:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0:legacy_value_to_register::0
104c1213 591#
66140c26 592f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
ac2e2ef7 593f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
fc0c74b1 594F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
4478b372 595#
f7968451 596F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-
4183d812 597# NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
f7968451 598F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
92ad9cd9
AC
599
600# It has been suggested that this, well actually its predecessor,
601# should take the type/value of the function to be called and not the
602# return type. This is left as an exercise for the reader.
603
604M:::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, const void *inval, void *outval:valtype, regcache, inval, outval
605
606# The deprecated methods RETURN_VALUE_ON_STACK, EXTRACT_RETURN_VALUE,
607# STORE_RETURN_VALUE and USE_STRUCT_CONVENTION have all been folded
608# into RETURN_VALUE. For the moment do not try to fold in
609# EXTRACT_STRUCT_VALUE_ADDRESS as, dependant on the ABI, the debug
610# info, and the level of effort, it may well be possible to find the
611# address of a structure being return on the stack. Someone else can
612# make that change.
613
614f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
e669114a
AC
615f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
616f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
617f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
618f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
92ad9cd9
AC
619f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
620
f7968451
AC
621F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache
622F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf
104c1213 623#
f7968451
AC
624F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame
625F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame
104c1213
JM
626#
627f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
0b8f9e4d 628f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
104c1213 629f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
aaab4dba 630f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
a1131521 631M:2:ADJUST_BREAKPOINT_ADDRESS:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
0b8f9e4d
AC
632f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
633f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
104c1213
JM
634v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
635v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
636#
f6684c31 637m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
104c1213
JM
638#
639v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
0b8f9e4d 640f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
f7968451
AC
641F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame
642F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe
8bedc050
AC
643# DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
644# note, per UNWIND_PC's doco, that while the two have similar
645# interfaces they have very different underlying implementations.
f7968451
AC
646F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi
647M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
648M::UNWIND_SP:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
649# DEPRECATED_FRAME_ARGS_ADDRESS as been replaced by the per-frame
650# frame-base. Enable frame-base before frame-unwind.
651F::DEPRECATED_FRAME_ARGS_ADDRESS:CORE_ADDR:deprecated_frame_args_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
652# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
653# frame-base. Enable frame-base before frame-unwind.
654F::DEPRECATED_FRAME_LOCALS_ADDRESS:CORE_ADDR:deprecated_frame_locals_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
6913c89a 655F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
983a287a 656F:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
104c1213 657#
f27dd7fd
AC
658# DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
659# to frame_align and the requirement that methods such as
660# push_dummy_call and frame_red_zone_size maintain correct stack/frame
661# alignment.
662F:2:DEPRECATED_STACK_ALIGN:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
dc604539 663M:::CORE_ADDR:frame_align:CORE_ADDR address:address
192cb3d4
MK
664# DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
665# stabs_argument_has_addr.
8e823e25 666F:2:DEPRECATED_REG_STRUCT_HAS_ADDR:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
192cb3d4 667m:::int:stabs_argument_has_addr:struct type *type:type:::default_stabs_argument_has_addr::0
8b148df9 668v::FRAME_RED_ZONE_SIZE:int:frame_red_zone_size
58d5518e 669v:2:PARM_BOUNDARY:int:parm_boundary
f0d4cc9e 670#
52f87c51
AC
671v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
672v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
673v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
e2d0e7eb 674m:::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ:::convert_from_func_ptr_addr_identity::0
875e1767
AC
675# On some machines there are bits in addresses which are not really
676# part of the address, but are used by the kernel, the hardware, etc.
677# for special purposes. ADDR_BITS_REMOVE takes out any such bits so
678# we get a "real" address such as one would find in a symbol table.
679# This is used only for addresses of instructions, and even then I'm
680# not sure it's used in all contexts. It exists to deal with there
681# being a few stray bits in the PC which would mislead us, not as some
682# sort of generic thing to handle alignment or segmentation (it's
683# possible it should be in TARGET_READ_PC instead).
684f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
f6214256 685# It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
181c1381
RE
686# ADDR_BITS_REMOVE.
687f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
64c4637f
AC
688# FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
689# the target needs software single step. An ISA method to implement it.
690#
691# FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
692# using the breakpoint system instead of blatting memory directly (as with rs6000).
693#
694# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
695# single step. If not, then implement single step using breakpoints.
f7968451 696F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
f6c40618
AC
697# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
698# disassembler. Perhaphs objdump can handle it?
a89aa300 699f::TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info:::0:
bdcd319a 700f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
d50355b6
MS
701
702
68e9cc94
CV
703# For SVR4 shared libraries, each call goes through a small piece of
704# trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
d50355b6 705# to nonzero if we are currently stopped in one of these.
68e9cc94 706f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
d50355b6
MS
707
708# Some systems also have trampoline code for returning from shared libs.
709f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
710
d7bd68ca
AC
711# Sigtramp is a routine that the kernel calls (which then calls the
712# signal handler). On most machines it is a library routine that is
713# linked into the executable.
714#
715# This macro, given a program counter value and the name of the
716# function in which that PC resides (which can be null if the name is
717# not known), returns nonzero if the PC and name show that we are in
718# sigtramp.
719#
720# On most machines just see if the name is sigtramp (and if we have
721# no name, assume we are not in sigtramp).
722#
723# FIXME: cagney/2002-04-21: The function find_pc_partial_function
724# calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
725# This means PC_IN_SIGTRAMP function can't be implemented by doing its
726# own local NAME lookup.
727#
728# FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
729# Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
730# does not.
731f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
43156d82 732F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
e669114a 733F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
c12260ac
CV
734# A target might have problems with watchpoints as soon as the stack
735# frame of the current function has been destroyed. This mostly happens
736# as the first action in a funtion's epilogue. in_function_epilogue_p()
737# is defined to return a non-zero value if either the given addr is one
738# instruction after the stack destroying instruction up to the trailing
739# return instruction or if we can figure out that the stack frame has
740# already been invalidated regardless of the value of addr. Targets
741# which don't suffer from that problem could just let this functionality
742# untouched.
743m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
552c04a7
TT
744# Given a vector of command-line arguments, return a newly allocated
745# string which, when passed to the create_inferior function, will be
746# parsed (on Unix systems, by the shell) to yield the same vector.
747# This function should call error() if the argument vector is not
748# representable for this target or if this target does not support
749# command-line arguments.
750# ARGC is the number of elements in the vector.
751# ARGV is an array of strings, one per argument.
752m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
a2cf933a
EZ
753f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
754f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
e669114a
AC
755v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
756v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
757v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
8b2dbe47 758F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
f7968451 759M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags
321432c0 760M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 761# Is a register in a group
7e20f3fb 762m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
f6214256 763# Fetch the pointer to the ith function argument.
f7968451 764F::FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
765
766# Return the appropriate register set for a core file section with
767# name SECT_NAME and size SECT_SIZE.
768M:::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
104c1213 769EOF
104c1213
JM
770}
771
0b8f9e4d
AC
772#
773# The .log file
774#
775exec > new-gdbarch.log
34620563 776function_list | while do_read
0b8f9e4d
AC
777do
778 cat <<EOF
104c1213
JM
779${class} ${macro}(${actual})
780 ${returntype} ${function} ($formal)${attrib}
104c1213 781EOF
3d9a5942
AC
782 for r in ${read}
783 do
784 eval echo \"\ \ \ \ ${r}=\${${r}}\"
785 done
f0d4cc9e 786 if class_is_predicate_p && fallback_default_p
0b8f9e4d 787 then
66b43ecb 788 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
789 kill $$
790 exit 1
791 fi
72e74a21 792 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
793 then
794 echo "Error: postdefault is useless when invalid_p=0" 1>&2
795 kill $$
796 exit 1
797 fi
a72293e2
AC
798 if class_is_multiarch_p
799 then
800 if class_is_predicate_p ; then :
801 elif test "x${predefault}" = "x"
802 then
803 echo "Error: pure multi-arch function must have a predefault" 1>&2
804 kill $$
805 exit 1
806 fi
807 fi
3d9a5942 808 echo ""
0b8f9e4d
AC
809done
810
811exec 1>&2
812compare_new gdbarch.log
813
104c1213
JM
814
815copyright ()
816{
817cat <<EOF
59233f88
AC
818/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
819
104c1213 820/* Dynamic architecture support for GDB, the GNU debugger.
1e698235 821 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
104c1213
JM
822
823 This file is part of GDB.
824
825 This program is free software; you can redistribute it and/or modify
826 it under the terms of the GNU General Public License as published by
827 the Free Software Foundation; either version 2 of the License, or
828 (at your option) any later version.
829
830 This program is distributed in the hope that it will be useful,
831 but WITHOUT ANY WARRANTY; without even the implied warranty of
832 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
833 GNU General Public License for more details.
834
835 You should have received a copy of the GNU General Public License
836 along with this program; if not, write to the Free Software
837 Foundation, Inc., 59 Temple Place - Suite 330,
838 Boston, MA 02111-1307, USA. */
839
104c1213
JM
840/* This file was created with the aid of \`\`gdbarch.sh''.
841
52204a0b 842 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
843 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
844 against the existing \`\`gdbarch.[hc]''. Any differences found
845 being reported.
846
847 If editing this file, please also run gdbarch.sh and merge any
52204a0b 848 changes into that script. Conversely, when making sweeping changes
104c1213
JM
849 to this file, modifying gdbarch.sh and using its output may prove
850 easier. */
851
852EOF
853}
854
855#
856# The .h file
857#
858
859exec > new-gdbarch.h
860copyright
861cat <<EOF
862#ifndef GDBARCH_H
863#define GDBARCH_H
864
da3331ec
AC
865struct floatformat;
866struct ui_file;
104c1213
JM
867struct frame_info;
868struct value;
b6af0555 869struct objfile;
a2cf933a 870struct minimal_symbol;
049ee0e4 871struct regcache;
b59ff9d5 872struct reggroup;
6ce6d90f 873struct regset;
a89aa300 874struct disassemble_info;
e2d0e7eb 875struct target_ops;
104c1213 876
104c1213
JM
877extern struct gdbarch *current_gdbarch;
878
879
104c1213
JM
880/* If any of the following are defined, the target wasn't correctly
881 converted. */
882
83905903
AC
883#if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
884#error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
885#endif
104c1213
JM
886EOF
887
888# function typedef's
3d9a5942
AC
889printf "\n"
890printf "\n"
891printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 892function_list | while do_read
104c1213 893do
2ada493a
AC
894 if class_is_info_p
895 then
3d9a5942
AC
896 printf "\n"
897 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
898 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
028c194b 899 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
83905903
AC
900 printf "#error \"Non multi-arch definition of ${macro}\"\n"
901 printf "#endif\n"
c25083af 902 printf "#if !defined (${macro})\n"
3d9a5942
AC
903 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
904 printf "#endif\n"
2ada493a 905 fi
104c1213
JM
906done
907
908# function typedef's
3d9a5942
AC
909printf "\n"
910printf "\n"
911printf "/* The following are initialized by the target dependent code. */\n"
34620563 912function_list | while do_read
104c1213 913do
72e74a21 914 if [ -n "${comment}" ]
34620563
AC
915 then
916 echo "${comment}" | sed \
917 -e '2 s,#,/*,' \
918 -e '3,$ s,#, ,' \
919 -e '$ s,$, */,'
920 fi
b77be6cf 921 if class_is_multiarch_p
2ada493a 922 then
b77be6cf
AC
923 if class_is_predicate_p
924 then
925 printf "\n"
926 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
927 fi
928 else
929 if class_is_predicate_p
930 then
931 printf "\n"
932 printf "#if defined (${macro})\n"
933 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
934 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
eee30e78 935 printf "#if !defined (${macro}_P)\n"
b77be6cf
AC
936 printf "#define ${macro}_P() (1)\n"
937 printf "#endif\n"
eee30e78 938 printf "#endif\n"
b77be6cf 939 printf "\n"
b77be6cf 940 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
028c194b 941 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
83905903
AC
942 printf "#error \"Non multi-arch definition of ${macro}\"\n"
943 printf "#endif\n"
028c194b 944 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
b77be6cf
AC
945 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
946 printf "#endif\n"
947 fi
4a5c6a1d 948 fi
2ada493a
AC
949 if class_is_variable_p
950 then
3d9a5942
AC
951 printf "\n"
952 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
953 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
028c194b 954 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
83905903
AC
955 printf "#error \"Non multi-arch definition of ${macro}\"\n"
956 printf "#endif\n"
c25083af
AC
957 printf "#if !defined (${macro})\n"
958 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
959 printf "#endif\n"
2ada493a
AC
960 fi
961 if class_is_function_p
962 then
3d9a5942 963 printf "\n"
72e74a21 964 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
965 then
966 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
967 elif class_is_multiarch_p
968 then
969 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
970 else
971 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
972 fi
72e74a21 973 if [ "x${formal}" = "xvoid" ]
104c1213 974 then
3d9a5942 975 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 976 else
3d9a5942 977 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 978 fi
3d9a5942 979 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
b77be6cf
AC
980 if class_is_multiarch_p ; then :
981 else
028c194b 982 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
83905903
AC
983 printf "#error \"Non multi-arch definition of ${macro}\"\n"
984 printf "#endif\n"
c25083af
AC
985 if [ "x${actual}" = "x" ]
986 then
987 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
988 elif [ "x${actual}" = "x-" ]
989 then
990 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
991 else
992 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
993 fi
994 printf "#if !defined (${macro})\n"
72e74a21 995 if [ "x${actual}" = "x" ]
4a5c6a1d
AC
996 then
997 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
72e74a21 998 elif [ "x${actual}" = "x-" ]
4a5c6a1d
AC
999 then
1000 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
1001 else
1002 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
1003 fi
1004 printf "#endif\n"
104c1213 1005 fi
2ada493a 1006 fi
104c1213
JM
1007done
1008
1009# close it off
1010cat <<EOF
1011
1012extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1013
1014
1015/* Mechanism for co-ordinating the selection of a specific
1016 architecture.
1017
1018 GDB targets (*-tdep.c) can register an interest in a specific
1019 architecture. Other GDB components can register a need to maintain
1020 per-architecture data.
1021
1022 The mechanisms below ensures that there is only a loose connection
1023 between the set-architecture command and the various GDB
0fa6923a 1024 components. Each component can independently register their need
104c1213
JM
1025 to maintain architecture specific data with gdbarch.
1026
1027 Pragmatics:
1028
1029 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1030 didn't scale.
1031
1032 The more traditional mega-struct containing architecture specific
1033 data for all the various GDB components was also considered. Since
0fa6923a 1034 GDB is built from a variable number of (fairly independent)
104c1213
JM
1035 components it was determined that the global aproach was not
1036 applicable. */
1037
1038
1039/* Register a new architectural family with GDB.
1040
1041 Register support for the specified ARCHITECTURE with GDB. When
1042 gdbarch determines that the specified architecture has been
1043 selected, the corresponding INIT function is called.
1044
1045 --
1046
1047 The INIT function takes two parameters: INFO which contains the
1048 information available to gdbarch about the (possibly new)
1049 architecture; ARCHES which is a list of the previously created
1050 \`\`struct gdbarch'' for this architecture.
1051
0f79675b
AC
1052 The INFO parameter is, as far as possible, be pre-initialized with
1053 information obtained from INFO.ABFD or the previously selected
1054 architecture.
1055
1056 The ARCHES parameter is a linked list (sorted most recently used)
1057 of all the previously created architures for this architecture
1058 family. The (possibly NULL) ARCHES->gdbarch can used to access
1059 values from the previously selected architecture for this
1060 architecture family. The global \`\`current_gdbarch'' shall not be
1061 used.
104c1213
JM
1062
1063 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1064 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1065 gdbarch'' from the ARCHES list - indicating that the new
1066 architecture is just a synonym for an earlier architecture (see
1067 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1068 - that describes the selected architecture (see gdbarch_alloc()).
1069
1070 The DUMP_TDEP function shall print out all target specific values.
1071 Care should be taken to ensure that the function works in both the
1072 multi-arch and non- multi-arch cases. */
104c1213
JM
1073
1074struct gdbarch_list
1075{
1076 struct gdbarch *gdbarch;
1077 struct gdbarch_list *next;
1078};
1079
1080struct gdbarch_info
1081{
104c1213
JM
1082 /* Use default: NULL (ZERO). */
1083 const struct bfd_arch_info *bfd_arch_info;
1084
428721aa 1085 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
1086 int byte_order;
1087
1088 /* Use default: NULL (ZERO). */
1089 bfd *abfd;
1090
1091 /* Use default: NULL (ZERO). */
1092 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1093
1094 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1095 enum gdb_osabi osabi;
104c1213
JM
1096};
1097
1098typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1099typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1100
4b9b3959 1101/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1102extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1103
4b9b3959
AC
1104extern void gdbarch_register (enum bfd_architecture architecture,
1105 gdbarch_init_ftype *,
1106 gdbarch_dump_tdep_ftype *);
1107
104c1213 1108
b4a20239
AC
1109/* Return a freshly allocated, NULL terminated, array of the valid
1110 architecture names. Since architectures are registered during the
1111 _initialize phase this function only returns useful information
1112 once initialization has been completed. */
1113
1114extern const char **gdbarch_printable_names (void);
1115
1116
104c1213
JM
1117/* Helper function. Search the list of ARCHES for a GDBARCH that
1118 matches the information provided by INFO. */
1119
1120extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1121
1122
1123/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1124 basic initialization using values obtained from the INFO andTDEP
1125 parameters. set_gdbarch_*() functions are called to complete the
1126 initialization of the object. */
1127
1128extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1129
1130
4b9b3959
AC
1131/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1132 It is assumed that the caller freeds the \`\`struct
1133 gdbarch_tdep''. */
1134
058f20d5
JB
1135extern void gdbarch_free (struct gdbarch *);
1136
1137
aebd7893
AC
1138/* Helper function. Allocate memory from the \`\`struct gdbarch''
1139 obstack. The memory is freed when the corresponding architecture
1140 is also freed. */
1141
1142extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1143#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1144#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1145
1146
b732d07d 1147/* Helper function. Force an update of the current architecture.
104c1213 1148
b732d07d
AC
1149 The actual architecture selected is determined by INFO, \`\`(gdb) set
1150 architecture'' et.al., the existing architecture and BFD's default
1151 architecture. INFO should be initialized to zero and then selected
1152 fields should be updated.
104c1213 1153
16f33e29
AC
1154 Returns non-zero if the update succeeds */
1155
1156extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1157
1158
1159
1160/* Register per-architecture data-pointer.
1161
1162 Reserve space for a per-architecture data-pointer. An identifier
1163 for the reserved data-pointer is returned. That identifer should
95160752 1164 be saved in a local static variable.
104c1213 1165
76860b5f
AC
1166 The per-architecture data-pointer is either initialized explicitly
1167 (set_gdbarch_data()) or implicitly (by INIT() via a call to
fcc1c85c
AC
1168 gdbarch_data()).
1169
1170 Memory for the per-architecture data shall be allocated using
1171 gdbarch_obstack_zalloc. That memory will be deleted when the
1172 corresponding architecture object is deleted.
104c1213 1173
95160752
AC
1174 When a previously created architecture is re-selected, the
1175 per-architecture data-pointer for that previous architecture is
76860b5f 1176 restored. INIT() is not re-called.
104c1213
JM
1177
1178 Multiple registrarants for any architecture are allowed (and
1179 strongly encouraged). */
1180
95160752 1181struct gdbarch_data;
104c1213 1182
95160752 1183typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
fcc1c85c 1184extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init);
95160752
AC
1185extern void set_gdbarch_data (struct gdbarch *gdbarch,
1186 struct gdbarch_data *data,
1187 void *pointer);
104c1213 1188
451fbdda 1189extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1190
1191
104c1213
JM
1192/* Register per-architecture memory region.
1193
1194 Provide a memory-region swap mechanism. Per-architecture memory
1195 region are created. These memory regions are swapped whenever the
1196 architecture is changed. For a new architecture, the memory region
1197 is initialized with zero (0) and the INIT function is called.
1198
1199 Memory regions are swapped / initialized in the order that they are
1200 registered. NULL DATA and/or INIT values can be specified.
1201
1202 New code should use register_gdbarch_data(). */
1203
1204typedef void (gdbarch_swap_ftype) (void);
1205extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
e514a9d6 1206#define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
104c1213
JM
1207
1208
1209
0fa6923a 1210/* The target-system-dependent byte order is dynamic */
104c1213 1211
104c1213 1212extern int target_byte_order;
104c1213
JM
1213#ifndef TARGET_BYTE_ORDER
1214#define TARGET_BYTE_ORDER (target_byte_order + 0)
1215#endif
1216
1217extern int target_byte_order_auto;
1218#ifndef TARGET_BYTE_ORDER_AUTO
1219#define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1220#endif
1221
1222
1223
0fa6923a 1224/* The target-system-dependent BFD architecture is dynamic */
104c1213
JM
1225
1226extern int target_architecture_auto;
1227#ifndef TARGET_ARCHITECTURE_AUTO
1228#define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1229#endif
1230
1231extern const struct bfd_arch_info *target_architecture;
1232#ifndef TARGET_ARCHITECTURE
1233#define TARGET_ARCHITECTURE (target_architecture + 0)
1234#endif
1235
104c1213 1236
0fa6923a 1237/* Set the dynamic target-system-dependent parameters (architecture,
104c1213
JM
1238 byte-order, ...) using information found in the BFD */
1239
1240extern void set_gdbarch_from_file (bfd *);
1241
1242
e514a9d6
JM
1243/* Initialize the current architecture to the "first" one we find on
1244 our list. */
1245
1246extern void initialize_current_architecture (void);
1247
ceaa8edf
JB
1248/* For non-multiarched targets, do any initialization of the default
1249 gdbarch object necessary after the _initialize_MODULE functions
1250 have run. */
5ae5f592 1251extern void initialize_non_multiarch (void);
104c1213
JM
1252
1253/* gdbarch trace variable */
1254extern int gdbarch_debug;
1255
4b9b3959 1256extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1257
1258#endif
1259EOF
1260exec 1>&2
1261#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1262compare_new gdbarch.h
104c1213
JM
1263
1264
1265#
1266# C file
1267#
1268
1269exec > new-gdbarch.c
1270copyright
1271cat <<EOF
1272
1273#include "defs.h"
7355ddba 1274#include "arch-utils.h"
104c1213 1275
104c1213
JM
1276#include "gdbcmd.h"
1277#include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
104c1213
JM
1278#include "symcat.h"
1279
f0d4cc9e 1280#include "floatformat.h"
104c1213 1281
95160752 1282#include "gdb_assert.h"
b66d6d2e 1283#include "gdb_string.h"
67c2c32c 1284#include "gdb-events.h"
b59ff9d5 1285#include "reggroups.h"
4be87837 1286#include "osabi.h"
e9a2674e 1287#include "symfile.h" /* For entry_point_address. */
aebd7893 1288#include "gdb_obstack.h"
95160752 1289
104c1213
JM
1290/* Static function declarations */
1291
1292static void verify_gdbarch (struct gdbarch *gdbarch);
b3cc3077 1293static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1294static void init_gdbarch_swap (struct gdbarch *);
40af4b0c 1295static void clear_gdbarch_swap (struct gdbarch *);
104c1213
JM
1296static void swapout_gdbarch_swap (struct gdbarch *);
1297static void swapin_gdbarch_swap (struct gdbarch *);
1298
104c1213
JM
1299/* Non-zero if we want to trace architecture code. */
1300
1301#ifndef GDBARCH_DEBUG
1302#define GDBARCH_DEBUG 0
1303#endif
1304int gdbarch_debug = GDBARCH_DEBUG;
1305
1306EOF
1307
1308# gdbarch open the gdbarch object
3d9a5942
AC
1309printf "\n"
1310printf "/* Maintain the struct gdbarch object */\n"
1311printf "\n"
1312printf "struct gdbarch\n"
1313printf "{\n"
76860b5f
AC
1314printf " /* Has this architecture been fully initialized? */\n"
1315printf " int initialized_p;\n"
aebd7893
AC
1316printf "\n"
1317printf " /* An obstack bound to the lifetime of the architecture. */\n"
1318printf " struct obstack *obstack;\n"
1319printf "\n"
3d9a5942 1320printf " /* basic architectural information */\n"
34620563 1321function_list | while do_read
104c1213 1322do
2ada493a
AC
1323 if class_is_info_p
1324 then
3d9a5942 1325 printf " ${returntype} ${function};\n"
2ada493a 1326 fi
104c1213 1327done
3d9a5942
AC
1328printf "\n"
1329printf " /* target specific vector. */\n"
1330printf " struct gdbarch_tdep *tdep;\n"
1331printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1332printf "\n"
1333printf " /* per-architecture data-pointers */\n"
95160752 1334printf " unsigned nr_data;\n"
3d9a5942
AC
1335printf " void **data;\n"
1336printf "\n"
1337printf " /* per-architecture swap-regions */\n"
1338printf " struct gdbarch_swap *swap;\n"
1339printf "\n"
104c1213
JM
1340cat <<EOF
1341 /* Multi-arch values.
1342
1343 When extending this structure you must:
1344
1345 Add the field below.
1346
1347 Declare set/get functions and define the corresponding
1348 macro in gdbarch.h.
1349
1350 gdbarch_alloc(): If zero/NULL is not a suitable default,
1351 initialize the new field.
1352
1353 verify_gdbarch(): Confirm that the target updated the field
1354 correctly.
1355
7e73cedf 1356 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1357 field is dumped out
1358
c0e8c252 1359 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1360 variable (base values on the host's c-type system).
1361
1362 get_gdbarch(): Implement the set/get functions (probably using
1363 the macro's as shortcuts).
1364
1365 */
1366
1367EOF
34620563 1368function_list | while do_read
104c1213 1369do
2ada493a
AC
1370 if class_is_variable_p
1371 then
3d9a5942 1372 printf " ${returntype} ${function};\n"
2ada493a
AC
1373 elif class_is_function_p
1374 then
3d9a5942 1375 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
2ada493a 1376 fi
104c1213 1377done
3d9a5942 1378printf "};\n"
104c1213
JM
1379
1380# A pre-initialized vector
3d9a5942
AC
1381printf "\n"
1382printf "\n"
104c1213
JM
1383cat <<EOF
1384/* The default architecture uses host values (for want of a better
1385 choice). */
1386EOF
3d9a5942
AC
1387printf "\n"
1388printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1389printf "\n"
1390printf "struct gdbarch startup_gdbarch =\n"
1391printf "{\n"
76860b5f 1392printf " 1, /* Always initialized. */\n"
aebd7893 1393printf " NULL, /* The obstack. */\n"
3d9a5942 1394printf " /* basic architecture information */\n"
4b9b3959 1395function_list | while do_read
104c1213 1396do
2ada493a
AC
1397 if class_is_info_p
1398 then
ec5cbaec 1399 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1400 fi
104c1213
JM
1401done
1402cat <<EOF
4b9b3959
AC
1403 /* target specific vector and its dump routine */
1404 NULL, NULL,
104c1213
JM
1405 /*per-architecture data-pointers and swap regions */
1406 0, NULL, NULL,
1407 /* Multi-arch values */
1408EOF
34620563 1409function_list | while do_read
104c1213 1410do
2ada493a
AC
1411 if class_is_function_p || class_is_variable_p
1412 then
ec5cbaec 1413 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1414 fi
104c1213
JM
1415done
1416cat <<EOF
c0e8c252 1417 /* startup_gdbarch() */
104c1213 1418};
4b9b3959 1419
c0e8c252 1420struct gdbarch *current_gdbarch = &startup_gdbarch;
ceaa8edf
JB
1421
1422/* Do any initialization needed for a non-multiarch configuration
1423 after the _initialize_MODULE functions have been run. */
1424void
5ae5f592 1425initialize_non_multiarch (void)
ceaa8edf
JB
1426{
1427 alloc_gdbarch_data (&startup_gdbarch);
40af4b0c
AC
1428 /* Ensure that all swap areas are zeroed so that they again think
1429 they are starting from scratch. */
1430 clear_gdbarch_swap (&startup_gdbarch);
6c1e5d11 1431 init_gdbarch_swap (&startup_gdbarch);
ceaa8edf 1432}
104c1213
JM
1433EOF
1434
1435# Create a new gdbarch struct
3d9a5942
AC
1436printf "\n"
1437printf "\n"
104c1213 1438cat <<EOF
66b43ecb 1439/* Create a new \`\`struct gdbarch'' based on information provided by
104c1213
JM
1440 \`\`struct gdbarch_info''. */
1441EOF
3d9a5942 1442printf "\n"
104c1213
JM
1443cat <<EOF
1444struct gdbarch *
1445gdbarch_alloc (const struct gdbarch_info *info,
1446 struct gdbarch_tdep *tdep)
1447{
85de9627
AC
1448 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1449 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1450 the current local architecture and not the previous global
1451 architecture. This ensures that the new architectures initial
1452 values are not influenced by the previous architecture. Once
1453 everything is parameterised with gdbarch, this will go away. */
aebd7893
AC
1454 struct gdbarch *current_gdbarch;
1455
1456 /* Create an obstack for allocating all the per-architecture memory,
1457 then use that to allocate the architecture vector. */
1458 struct obstack *obstack = XMALLOC (struct obstack);
1459 obstack_init (obstack);
1460 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
85de9627 1461 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
aebd7893 1462 current_gdbarch->obstack = obstack;
85de9627
AC
1463
1464 alloc_gdbarch_data (current_gdbarch);
1465
1466 current_gdbarch->tdep = tdep;
104c1213 1467EOF
3d9a5942 1468printf "\n"
34620563 1469function_list | while do_read
104c1213 1470do
2ada493a
AC
1471 if class_is_info_p
1472 then
85de9627 1473 printf " current_gdbarch->${function} = info->${function};\n"
2ada493a 1474 fi
104c1213 1475done
3d9a5942
AC
1476printf "\n"
1477printf " /* Force the explicit initialization of these. */\n"
34620563 1478function_list | while do_read
104c1213 1479do
2ada493a
AC
1480 if class_is_function_p || class_is_variable_p
1481 then
72e74a21 1482 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1483 then
85de9627 1484 printf " current_gdbarch->${function} = ${predefault};\n"
104c1213 1485 fi
2ada493a 1486 fi
104c1213
JM
1487done
1488cat <<EOF
1489 /* gdbarch_alloc() */
1490
85de9627 1491 return current_gdbarch;
104c1213
JM
1492}
1493EOF
1494
058f20d5 1495# Free a gdbarch struct.
3d9a5942
AC
1496printf "\n"
1497printf "\n"
058f20d5 1498cat <<EOF
aebd7893
AC
1499/* Allocate extra space using the per-architecture obstack. */
1500
1501void *
1502gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1503{
1504 void *data = obstack_alloc (arch->obstack, size);
1505 memset (data, 0, size);
1506 return data;
1507}
1508
1509
058f20d5
JB
1510/* Free a gdbarch struct. This should never happen in normal
1511 operation --- once you've created a gdbarch, you keep it around.
1512 However, if an architecture's init function encounters an error
1513 building the structure, it may need to clean up a partially
1514 constructed gdbarch. */
4b9b3959 1515
058f20d5
JB
1516void
1517gdbarch_free (struct gdbarch *arch)
1518{
aebd7893 1519 struct obstack *obstack;
95160752 1520 gdb_assert (arch != NULL);
aebd7893
AC
1521 gdb_assert (!arch->initialized_p);
1522 obstack = arch->obstack;
1523 obstack_free (obstack, 0); /* Includes the ARCH. */
1524 xfree (obstack);
058f20d5
JB
1525}
1526EOF
1527
104c1213 1528# verify a new architecture
3d9a5942
AC
1529printf "\n"
1530printf "\n"
1531printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1532printf "\n"
104c1213
JM
1533cat <<EOF
1534static void
1535verify_gdbarch (struct gdbarch *gdbarch)
1536{
f16a1923
AC
1537 struct ui_file *log;
1538 struct cleanup *cleanups;
1539 long dummy;
1540 char *buf;
f16a1923
AC
1541 log = mem_fileopen ();
1542 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1543 /* fundamental */
428721aa 1544 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1545 fprintf_unfiltered (log, "\n\tbyte-order");
104c1213 1546 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1547 fprintf_unfiltered (log, "\n\tbfd_arch_info");
104c1213
JM
1548 /* Check those that need to be defined for the given multi-arch level. */
1549EOF
34620563 1550function_list | while do_read
104c1213 1551do
2ada493a
AC
1552 if class_is_function_p || class_is_variable_p
1553 then
72e74a21 1554 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1555 then
3d9a5942 1556 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1557 elif class_is_predicate_p
1558 then
3d9a5942 1559 printf " /* Skip verify of ${function}, has predicate */\n"
f0d4cc9e 1560 # FIXME: See do_read for potential simplification
72e74a21 1561 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1562 then
3d9a5942
AC
1563 printf " if (${invalid_p})\n"
1564 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1565 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1566 then
3d9a5942
AC
1567 printf " if (gdbarch->${function} == ${predefault})\n"
1568 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1569 elif [ -n "${postdefault}" ]
f0d4cc9e 1570 then
3d9a5942
AC
1571 printf " if (gdbarch->${function} == 0)\n"
1572 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1573 elif [ -n "${invalid_p}" ]
104c1213 1574 then
50248794 1575 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
3d9a5942 1576 printf " && (${invalid_p}))\n"
f16a1923 1577 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1578 elif [ -n "${predefault}" ]
104c1213 1579 then
50248794 1580 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
3d9a5942 1581 printf " && (gdbarch->${function} == ${predefault}))\n"
f16a1923 1582 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1583 fi
2ada493a 1584 fi
104c1213
JM
1585done
1586cat <<EOF
f16a1923
AC
1587 buf = ui_file_xstrdup (log, &dummy);
1588 make_cleanup (xfree, buf);
1589 if (strlen (buf) > 0)
1590 internal_error (__FILE__, __LINE__,
1591 "verify_gdbarch: the following are invalid ...%s",
1592 buf);
1593 do_cleanups (cleanups);
104c1213
JM
1594}
1595EOF
1596
1597# dump the structure
3d9a5942
AC
1598printf "\n"
1599printf "\n"
104c1213 1600cat <<EOF
4b9b3959
AC
1601/* Print out the details of the current architecture. */
1602
1603/* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1604 just happens to match the global variable \`\`current_gdbarch''. That
1605 way macros refering to that variable get the local and not the global
1606 version - ulgh. Once everything is parameterised with gdbarch, this
1607 will go away. */
1608
104c1213 1609void
4b9b3959 1610gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1611{
4b9b3959
AC
1612 fprintf_unfiltered (file,
1613 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1614 GDB_MULTI_ARCH);
104c1213 1615EOF
9ba8d803 1616function_list | sort -t: -k 3 | while do_read
104c1213 1617do
1e9f55d0
AC
1618 # First the predicate
1619 if class_is_predicate_p
1620 then
1621 if class_is_multiarch_p
1622 then
7996bcec
AC
1623 printf " fprintf_unfiltered (file,\n"
1624 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1625 printf " gdbarch_${function}_p (current_gdbarch));\n"
1e9f55d0
AC
1626 else
1627 printf "#ifdef ${macro}_P\n"
1628 printf " fprintf_unfiltered (file,\n"
1629 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1630 printf " \"${macro}_P()\",\n"
1631 printf " XSTRING (${macro}_P ()));\n"
1632 printf " fprintf_unfiltered (file,\n"
1633 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1634 printf " ${macro}_P ());\n"
1635 printf "#endif\n"
1636 fi
1637 fi
4a5c6a1d 1638 # multiarch functions don't have macros.
08e45a40
AC
1639 if class_is_multiarch_p
1640 then
7996bcec
AC
1641 printf " fprintf_unfiltered (file,\n"
1642 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1643 printf " (long) current_gdbarch->${function});\n"
08e45a40
AC
1644 continue
1645 fi
06b25f14 1646 # Print the macro definition.
08e45a40 1647 printf "#ifdef ${macro}\n"
2ada493a
AC
1648 if class_is_function_p
1649 then
3d9a5942
AC
1650 printf " fprintf_unfiltered (file,\n"
1651 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1652 printf " \"${macro}(${actual})\",\n"
1653 printf " XSTRING (${macro} (${actual})));\n"
2ada493a 1654 else
3d9a5942
AC
1655 printf " fprintf_unfiltered (file,\n"
1656 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1657 printf " XSTRING (${macro}));\n"
4b9b3959 1658 fi
72e74a21 1659 if [ "x${print_p}" = "x()" ]
4b9b3959 1660 then
4a5c6a1d 1661 printf " gdbarch_dump_${function} (current_gdbarch);\n"
72e74a21 1662 elif [ "x${print_p}" = "x0" ]
4b9b3959 1663 then
4a5c6a1d 1664 printf " /* skip print of ${macro}, print_p == 0. */\n"
72e74a21 1665 elif [ -n "${print_p}" ]
4b9b3959 1666 then
4a5c6a1d 1667 printf " if (${print_p})\n"
3d9a5942
AC
1668 printf " fprintf_unfiltered (file,\n"
1669 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1670 printf " ${print});\n"
4b9b3959
AC
1671 elif class_is_function_p
1672 then
7996bcec
AC
1673 printf " fprintf_unfiltered (file,\n"
1674 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1675 printf " (long) current_gdbarch->${function}\n"
1676 printf " /*${macro} ()*/);\n"
4b9b3959 1677 else
3d9a5942
AC
1678 printf " fprintf_unfiltered (file,\n"
1679 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1680 printf " ${print});\n"
2ada493a 1681 fi
3d9a5942 1682 printf "#endif\n"
104c1213 1683done
381323f4 1684cat <<EOF
4b9b3959
AC
1685 if (current_gdbarch->dump_tdep != NULL)
1686 current_gdbarch->dump_tdep (current_gdbarch, file);
381323f4
AC
1687}
1688EOF
104c1213
JM
1689
1690
1691# GET/SET
3d9a5942 1692printf "\n"
104c1213
JM
1693cat <<EOF
1694struct gdbarch_tdep *
1695gdbarch_tdep (struct gdbarch *gdbarch)
1696{
1697 if (gdbarch_debug >= 2)
3d9a5942 1698 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1699 return gdbarch->tdep;
1700}
1701EOF
3d9a5942 1702printf "\n"
34620563 1703function_list | while do_read
104c1213 1704do
2ada493a
AC
1705 if class_is_predicate_p
1706 then
3d9a5942
AC
1707 printf "\n"
1708 printf "int\n"
1709 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1710 printf "{\n"
8de9bdc4 1711 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1712 printf " return ${predicate};\n"
3d9a5942 1713 printf "}\n"
2ada493a
AC
1714 fi
1715 if class_is_function_p
1716 then
3d9a5942
AC
1717 printf "\n"
1718 printf "${returntype}\n"
72e74a21 1719 if [ "x${formal}" = "xvoid" ]
104c1213 1720 then
3d9a5942 1721 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1722 else
3d9a5942 1723 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1724 fi
3d9a5942 1725 printf "{\n"
8de9bdc4 1726 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1727 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1728 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1729 then
1730 # Allow a call to a function with a predicate.
956ac328 1731 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1732 fi
3d9a5942
AC
1733 printf " if (gdbarch_debug >= 2)\n"
1734 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1735 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1736 then
1737 if class_is_multiarch_p
1738 then
1739 params="gdbarch"
1740 else
1741 params=""
1742 fi
1743 else
1744 if class_is_multiarch_p
1745 then
1746 params="gdbarch, ${actual}"
1747 else
1748 params="${actual}"
1749 fi
1750 fi
72e74a21 1751 if [ "x${returntype}" = "xvoid" ]
104c1213 1752 then
4a5c6a1d 1753 printf " gdbarch->${function} (${params});\n"
104c1213 1754 else
4a5c6a1d 1755 printf " return gdbarch->${function} (${params});\n"
104c1213 1756 fi
3d9a5942
AC
1757 printf "}\n"
1758 printf "\n"
1759 printf "void\n"
1760 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1761 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1762 printf "{\n"
1763 printf " gdbarch->${function} = ${function};\n"
1764 printf "}\n"
2ada493a
AC
1765 elif class_is_variable_p
1766 then
3d9a5942
AC
1767 printf "\n"
1768 printf "${returntype}\n"
1769 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1770 printf "{\n"
8de9bdc4 1771 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1772 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1773 then
3d9a5942 1774 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1775 elif [ -n "${invalid_p}" ]
104c1213 1776 then
956ac328
AC
1777 printf " /* Check variable is valid. */\n"
1778 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1779 elif [ -n "${predefault}" ]
104c1213 1780 then
956ac328
AC
1781 printf " /* Check variable changed from pre-default. */\n"
1782 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1783 fi
3d9a5942
AC
1784 printf " if (gdbarch_debug >= 2)\n"
1785 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1786 printf " return gdbarch->${function};\n"
1787 printf "}\n"
1788 printf "\n"
1789 printf "void\n"
1790 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1791 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1792 printf "{\n"
1793 printf " gdbarch->${function} = ${function};\n"
1794 printf "}\n"
2ada493a
AC
1795 elif class_is_info_p
1796 then
3d9a5942
AC
1797 printf "\n"
1798 printf "${returntype}\n"
1799 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1800 printf "{\n"
8de9bdc4 1801 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1802 printf " if (gdbarch_debug >= 2)\n"
1803 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1804 printf " return gdbarch->${function};\n"
1805 printf "}\n"
2ada493a 1806 fi
104c1213
JM
1807done
1808
1809# All the trailing guff
1810cat <<EOF
1811
1812
f44c642f 1813/* Keep a registry of per-architecture data-pointers required by GDB
104c1213
JM
1814 modules. */
1815
1816struct gdbarch_data
1817{
95160752 1818 unsigned index;
76860b5f 1819 int init_p;
95160752 1820 gdbarch_data_init_ftype *init;
104c1213
JM
1821};
1822
1823struct gdbarch_data_registration
1824{
104c1213
JM
1825 struct gdbarch_data *data;
1826 struct gdbarch_data_registration *next;
1827};
1828
f44c642f 1829struct gdbarch_data_registry
104c1213 1830{
95160752 1831 unsigned nr;
104c1213
JM
1832 struct gdbarch_data_registration *registrations;
1833};
1834
f44c642f 1835struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1836{
1837 0, NULL,
1838};
1839
1840struct gdbarch_data *
fcc1c85c 1841register_gdbarch_data (gdbarch_data_init_ftype *init)
104c1213
JM
1842{
1843 struct gdbarch_data_registration **curr;
76860b5f 1844 /* Append the new registraration. */
f44c642f 1845 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1846 (*curr) != NULL;
1847 curr = &(*curr)->next);
1848 (*curr) = XMALLOC (struct gdbarch_data_registration);
1849 (*curr)->next = NULL;
104c1213 1850 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1851 (*curr)->data->index = gdbarch_data_registry.nr++;
95160752 1852 (*curr)->data->init = init;
76860b5f 1853 (*curr)->data->init_p = 1;
104c1213
JM
1854 return (*curr)->data;
1855}
1856
1857
b3cc3077 1858/* Create/delete the gdbarch data vector. */
95160752
AC
1859
1860static void
b3cc3077 1861alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1862{
b3cc3077
JB
1863 gdb_assert (gdbarch->data == NULL);
1864 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 1865 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 1866}
3c875b6f 1867
76860b5f 1868/* Initialize the current value of the specified per-architecture
b3cc3077
JB
1869 data-pointer. */
1870
95160752
AC
1871void
1872set_gdbarch_data (struct gdbarch *gdbarch,
1873 struct gdbarch_data *data,
1874 void *pointer)
1875{
1876 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 1877 gdb_assert (gdbarch->data[data->index] == NULL);
95160752
AC
1878 gdbarch->data[data->index] = pointer;
1879}
1880
104c1213
JM
1881/* Return the current value of the specified per-architecture
1882 data-pointer. */
1883
1884void *
451fbdda 1885gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 1886{
451fbdda 1887 gdb_assert (data->index < gdbarch->nr_data);
76860b5f
AC
1888 /* The data-pointer isn't initialized, call init() to get a value but
1889 only if the architecture initializaiton has completed. Otherwise
1890 punt - hope that the caller knows what they are doing. */
1891 if (gdbarch->data[data->index] == NULL
1892 && gdbarch->initialized_p)
1893 {
1894 /* Be careful to detect an initialization cycle. */
1895 gdb_assert (data->init_p);
1896 data->init_p = 0;
1897 gdb_assert (data->init != NULL);
1898 gdbarch->data[data->index] = data->init (gdbarch);
1899 data->init_p = 1;
1900 gdb_assert (gdbarch->data[data->index] != NULL);
1901 }
451fbdda 1902 return gdbarch->data[data->index];
104c1213
JM
1903}
1904
1905
1906
f44c642f 1907/* Keep a registry of swapped data required by GDB modules. */
104c1213
JM
1908
1909struct gdbarch_swap
1910{
1911 void *swap;
1912 struct gdbarch_swap_registration *source;
1913 struct gdbarch_swap *next;
1914};
1915
1916struct gdbarch_swap_registration
1917{
1918 void *data;
1919 unsigned long sizeof_data;
1920 gdbarch_swap_ftype *init;
1921 struct gdbarch_swap_registration *next;
1922};
1923
f44c642f 1924struct gdbarch_swap_registry
104c1213
JM
1925{
1926 int nr;
1927 struct gdbarch_swap_registration *registrations;
1928};
1929
f44c642f 1930struct gdbarch_swap_registry gdbarch_swap_registry =
104c1213
JM
1931{
1932 0, NULL,
1933};
1934
1935void
1936register_gdbarch_swap (void *data,
1937 unsigned long sizeof_data,
1938 gdbarch_swap_ftype *init)
1939{
1940 struct gdbarch_swap_registration **rego;
f44c642f 1941 for (rego = &gdbarch_swap_registry.registrations;
104c1213
JM
1942 (*rego) != NULL;
1943 rego = &(*rego)->next);
1944 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1945 (*rego)->next = NULL;
1946 (*rego)->init = init;
1947 (*rego)->data = data;
1948 (*rego)->sizeof_data = sizeof_data;
1949}
1950
40af4b0c
AC
1951static void
1952clear_gdbarch_swap (struct gdbarch *gdbarch)
1953{
1954 struct gdbarch_swap *curr;
1955 for (curr = gdbarch->swap;
1956 curr != NULL;
1957 curr = curr->next)
1958 {
1959 memset (curr->source->data, 0, curr->source->sizeof_data);
1960 }
1961}
104c1213
JM
1962
1963static void
1964init_gdbarch_swap (struct gdbarch *gdbarch)
1965{
1966 struct gdbarch_swap_registration *rego;
1967 struct gdbarch_swap **curr = &gdbarch->swap;
f44c642f 1968 for (rego = gdbarch_swap_registry.registrations;
104c1213
JM
1969 rego != NULL;
1970 rego = rego->next)
1971 {
1972 if (rego->data != NULL)
1973 {
aebd7893 1974 (*curr) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct gdbarch_swap);
104c1213 1975 (*curr)->source = rego;
aebd7893 1976 (*curr)->swap = gdbarch_obstack_zalloc (gdbarch, rego->sizeof_data);
104c1213 1977 (*curr)->next = NULL;
104c1213
JM
1978 curr = &(*curr)->next;
1979 }
1980 if (rego->init != NULL)
1981 rego->init ();
1982 }
1983}
1984
1985static void
1986swapout_gdbarch_swap (struct gdbarch *gdbarch)
1987{
1988 struct gdbarch_swap *curr;
1989 for (curr = gdbarch->swap;
1990 curr != NULL;
1991 curr = curr->next)
1992 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1993}
1994
1995static void
1996swapin_gdbarch_swap (struct gdbarch *gdbarch)
1997{
1998 struct gdbarch_swap *curr;
1999 for (curr = gdbarch->swap;
2000 curr != NULL;
2001 curr = curr->next)
2002 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2003}
2004
2005
f44c642f 2006/* Keep a registry of the architectures known by GDB. */
104c1213 2007
4b9b3959 2008struct gdbarch_registration
104c1213
JM
2009{
2010 enum bfd_architecture bfd_architecture;
2011 gdbarch_init_ftype *init;
4b9b3959 2012 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2013 struct gdbarch_list *arches;
4b9b3959 2014 struct gdbarch_registration *next;
104c1213
JM
2015};
2016
f44c642f 2017static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2018
b4a20239
AC
2019static void
2020append_name (const char ***buf, int *nr, const char *name)
2021{
2022 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2023 (*buf)[*nr] = name;
2024 *nr += 1;
2025}
2026
2027const char **
2028gdbarch_printable_names (void)
2029{
7996bcec
AC
2030 /* Accumulate a list of names based on the registed list of
2031 architectures. */
2032 enum bfd_architecture a;
2033 int nr_arches = 0;
2034 const char **arches = NULL;
2035 struct gdbarch_registration *rego;
2036 for (rego = gdbarch_registry;
2037 rego != NULL;
2038 rego = rego->next)
b4a20239 2039 {
7996bcec
AC
2040 const struct bfd_arch_info *ap;
2041 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2042 if (ap == NULL)
2043 internal_error (__FILE__, __LINE__,
2044 "gdbarch_architecture_names: multi-arch unknown");
2045 do
2046 {
2047 append_name (&arches, &nr_arches, ap->printable_name);
2048 ap = ap->next;
2049 }
2050 while (ap != NULL);
b4a20239 2051 }
7996bcec
AC
2052 append_name (&arches, &nr_arches, NULL);
2053 return arches;
b4a20239
AC
2054}
2055
2056
104c1213 2057void
4b9b3959
AC
2058gdbarch_register (enum bfd_architecture bfd_architecture,
2059 gdbarch_init_ftype *init,
2060 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2061{
4b9b3959 2062 struct gdbarch_registration **curr;
104c1213 2063 const struct bfd_arch_info *bfd_arch_info;
ec3d358c 2064 /* Check that BFD recognizes this architecture */
104c1213
JM
2065 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2066 if (bfd_arch_info == NULL)
2067 {
8e65ff28
AC
2068 internal_error (__FILE__, __LINE__,
2069 "gdbarch: Attempt to register unknown architecture (%d)",
2070 bfd_architecture);
104c1213
JM
2071 }
2072 /* Check that we haven't seen this architecture before */
f44c642f 2073 for (curr = &gdbarch_registry;
104c1213
JM
2074 (*curr) != NULL;
2075 curr = &(*curr)->next)
2076 {
2077 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28
AC
2078 internal_error (__FILE__, __LINE__,
2079 "gdbarch: Duplicate registraration of architecture (%s)",
2080 bfd_arch_info->printable_name);
104c1213
JM
2081 }
2082 /* log it */
2083 if (gdbarch_debug)
2084 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2085 bfd_arch_info->printable_name,
2086 (long) init);
2087 /* Append it */
4b9b3959 2088 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
2089 (*curr)->bfd_architecture = bfd_architecture;
2090 (*curr)->init = init;
4b9b3959 2091 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2092 (*curr)->arches = NULL;
2093 (*curr)->next = NULL;
4b9b3959
AC
2094}
2095
2096void
2097register_gdbarch_init (enum bfd_architecture bfd_architecture,
2098 gdbarch_init_ftype *init)
2099{
2100 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2101}
104c1213
JM
2102
2103
2104/* Look for an architecture using gdbarch_info. Base search on only
2105 BFD_ARCH_INFO and BYTE_ORDER. */
2106
2107struct gdbarch_list *
2108gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2109 const struct gdbarch_info *info)
2110{
2111 for (; arches != NULL; arches = arches->next)
2112 {
2113 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2114 continue;
2115 if (info->byte_order != arches->gdbarch->byte_order)
2116 continue;
4be87837
DJ
2117 if (info->osabi != arches->gdbarch->osabi)
2118 continue;
104c1213
JM
2119 return arches;
2120 }
2121 return NULL;
2122}
2123
2124
2125/* Update the current architecture. Return ZERO if the update request
2126 failed. */
2127
2128int
16f33e29 2129gdbarch_update_p (struct gdbarch_info info)
104c1213
JM
2130{
2131 struct gdbarch *new_gdbarch;
40af4b0c 2132 struct gdbarch *old_gdbarch;
4b9b3959 2133 struct gdbarch_registration *rego;
104c1213 2134
b732d07d
AC
2135 /* Fill in missing parts of the INFO struct using a number of
2136 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2137
2138 /* \`\`(gdb) set architecture ...'' */
2139 if (info.bfd_arch_info == NULL
2140 && !TARGET_ARCHITECTURE_AUTO)
2141 info.bfd_arch_info = TARGET_ARCHITECTURE;
2142 if (info.bfd_arch_info == NULL
2143 && info.abfd != NULL
2144 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2145 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2146 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
104c1213 2147 if (info.bfd_arch_info == NULL)
b732d07d
AC
2148 info.bfd_arch_info = TARGET_ARCHITECTURE;
2149
2150 /* \`\`(gdb) set byte-order ...'' */
428721aa 2151 if (info.byte_order == BFD_ENDIAN_UNKNOWN
b732d07d
AC
2152 && !TARGET_BYTE_ORDER_AUTO)
2153 info.byte_order = TARGET_BYTE_ORDER;
2154 /* From the INFO struct. */
428721aa 2155 if (info.byte_order == BFD_ENDIAN_UNKNOWN
b732d07d 2156 && info.abfd != NULL)
d7449b42 2157 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
778eb05e 2158 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
428721aa 2159 : BFD_ENDIAN_UNKNOWN);
b732d07d 2160 /* From the current target. */
428721aa 2161 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
b732d07d 2162 info.byte_order = TARGET_BYTE_ORDER;
104c1213 2163
4be87837
DJ
2164 /* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */
2165 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2166 info.osabi = gdbarch_lookup_osabi (info.abfd);
2167 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2168 info.osabi = current_gdbarch->osabi;
2169
b732d07d
AC
2170 /* Must have found some sort of architecture. */
2171 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2172
2173 if (gdbarch_debug)
2174 {
2175 fprintf_unfiltered (gdb_stdlog,
b732d07d 2176 "gdbarch_update: info.bfd_arch_info %s\n",
104c1213
JM
2177 (info.bfd_arch_info != NULL
2178 ? info.bfd_arch_info->printable_name
2179 : "(null)"));
2180 fprintf_unfiltered (gdb_stdlog,
b732d07d 2181 "gdbarch_update: info.byte_order %d (%s)\n",
104c1213 2182 info.byte_order,
d7449b42 2183 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2184 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2185 : "default"));
4be87837
DJ
2186 fprintf_unfiltered (gdb_stdlog,
2187 "gdbarch_update: info.osabi %d (%s)\n",
2188 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2189 fprintf_unfiltered (gdb_stdlog,
b732d07d 2190 "gdbarch_update: info.abfd 0x%lx\n",
104c1213
JM
2191 (long) info.abfd);
2192 fprintf_unfiltered (gdb_stdlog,
b732d07d 2193 "gdbarch_update: info.tdep_info 0x%lx\n",
104c1213
JM
2194 (long) info.tdep_info);
2195 }
2196
b732d07d
AC
2197 /* Find the target that knows about this architecture. */
2198 for (rego = gdbarch_registry;
2199 rego != NULL;
2200 rego = rego->next)
2201 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2202 break;
2203 if (rego == NULL)
2204 {
2205 if (gdbarch_debug)
2206 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2207 return 0;
2208 }
2209
40af4b0c
AC
2210 /* Swap the data belonging to the old target out setting the
2211 installed data to zero. This stops the ->init() function trying
2212 to refer to the previous architecture's global data structures. */
2213 swapout_gdbarch_swap (current_gdbarch);
2214 clear_gdbarch_swap (current_gdbarch);
2215
2216 /* Save the previously selected architecture, setting the global to
2217 NULL. This stops ->init() trying to use the previous
2218 architecture's configuration. The previous architecture may not
2219 even be of the same architecture family. The most recent
2220 architecture of the same family is found at the head of the
2221 rego->arches list. */
2222 old_gdbarch = current_gdbarch;
2223 current_gdbarch = NULL;
2224
104c1213
JM
2225 /* Ask the target for a replacement architecture. */
2226 new_gdbarch = rego->init (info, rego->arches);
2227
40af4b0c
AC
2228 /* Did the target like it? No. Reject the change and revert to the
2229 old architecture. */
104c1213
JM
2230 if (new_gdbarch == NULL)
2231 {
2232 if (gdbarch_debug)
3d9a5942 2233 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
40af4b0c
AC
2234 swapin_gdbarch_swap (old_gdbarch);
2235 current_gdbarch = old_gdbarch;
104c1213
JM
2236 return 0;
2237 }
2238
40af4b0c
AC
2239 /* Did the architecture change? No. Oops, put the old architecture
2240 back. */
2241 if (old_gdbarch == new_gdbarch)
104c1213
JM
2242 {
2243 if (gdbarch_debug)
3d9a5942 2244 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
104c1213
JM
2245 (long) new_gdbarch,
2246 new_gdbarch->bfd_arch_info->printable_name);
40af4b0c
AC
2247 swapin_gdbarch_swap (old_gdbarch);
2248 current_gdbarch = old_gdbarch;
104c1213
JM
2249 return 1;
2250 }
2251
0f79675b
AC
2252 /* Is this a pre-existing architecture? Yes. Move it to the front
2253 of the list of architectures (keeping the list sorted Most
2254 Recently Used) and then copy it in. */
2255 {
2256 struct gdbarch_list **list;
2257 for (list = &rego->arches;
2258 (*list) != NULL;
2259 list = &(*list)->next)
2260 {
2261 if ((*list)->gdbarch == new_gdbarch)
2262 {
2263 struct gdbarch_list *this;
2264 if (gdbarch_debug)
2265 fprintf_unfiltered (gdb_stdlog,
2266 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2267 (long) new_gdbarch,
2268 new_gdbarch->bfd_arch_info->printable_name);
2269 /* Unlink this. */
2270 this = (*list);
2271 (*list) = this->next;
2272 /* Insert in the front. */
2273 this->next = rego->arches;
2274 rego->arches = this;
2275 /* Copy the new architecture in. */
2276 current_gdbarch = new_gdbarch;
2277 swapin_gdbarch_swap (new_gdbarch);
2278 architecture_changed_event ();
2279 return 1;
2280 }
2281 }
2282 }
2283
2284 /* Prepend this new architecture to the architecture list (keep the
2285 list sorted Most Recently Used). */
2286 {
2287 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2288 this->next = rego->arches;
2289 this->gdbarch = new_gdbarch;
2290 rego->arches = this;
2291 }
104c1213 2292
76860b5f 2293 /* Switch to this new architecture marking it initialized. */
104c1213 2294 current_gdbarch = new_gdbarch;
76860b5f 2295 current_gdbarch->initialized_p = 1;
104c1213
JM
2296 if (gdbarch_debug)
2297 {
2298 fprintf_unfiltered (gdb_stdlog,
3d9a5942 2299 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
104c1213
JM
2300 (long) new_gdbarch,
2301 new_gdbarch->bfd_arch_info->printable_name);
104c1213
JM
2302 }
2303
4b9b3959
AC
2304 /* Check that the newly installed architecture is valid. Plug in
2305 any post init values. */
2306 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213
JM
2307 verify_gdbarch (new_gdbarch);
2308
cf17c188
AC
2309 /* Initialize the per-architecture memory (swap) areas.
2310 CURRENT_GDBARCH must be update before these modules are
2311 called. */
2312 init_gdbarch_swap (new_gdbarch);
2313
76860b5f 2314 /* Initialize the per-architecture data. CURRENT_GDBARCH
cf17c188 2315 must be updated before these modules are called. */
67c2c32c
KS
2316 architecture_changed_event ();
2317
4b9b3959
AC
2318 if (gdbarch_debug)
2319 gdbarch_dump (current_gdbarch, gdb_stdlog);
2320
104c1213
JM
2321 return 1;
2322}
2323
2324
104c1213 2325extern void _initialize_gdbarch (void);
b4a20239 2326
104c1213 2327void
34620563 2328_initialize_gdbarch (void)
104c1213 2329{
59233f88
AC
2330 struct cmd_list_element *c;
2331
59233f88 2332 add_show_from_set (add_set_cmd ("arch",
104c1213
JM
2333 class_maintenance,
2334 var_zinteger,
2335 (char *)&gdbarch_debug,
3d9a5942 2336 "Set architecture debugging.\\n\\
59233f88
AC
2337When non-zero, architecture debugging is enabled.", &setdebuglist),
2338 &showdebuglist);
2339 c = add_set_cmd ("archdebug",
2340 class_maintenance,
2341 var_zinteger,
2342 (char *)&gdbarch_debug,
3d9a5942 2343 "Set architecture debugging.\\n\\
59233f88
AC
2344When non-zero, architecture debugging is enabled.", &setlist);
2345
2346 deprecate_cmd (c, "set debug arch");
2347 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
104c1213
JM
2348}
2349EOF
2350
2351# close things off
2352exec 1>&2
2353#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2354compare_new gdbarch.c
This page took 0.6147 seconds and 4 git commands to generate.