daily update
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
ecd75fc8 5# Copyright (C) 1998-2014 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
be7811ad 341i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
94123b4f
YQ
343i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 345#
97030eea 346i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 347#
30737ed9 348i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
352v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
66b43ecb
AC
354# Number of bits in a char or unsigned char for the target machine.
355# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 356# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
357#
358# Number of bits in a short or unsigned short for the target machine.
97030eea 359v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in an int or unsigned int for the target machine.
97030eea 361v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 362# Number of bits in a long or unsigned long for the target machine.
97030eea 363v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
364# Number of bits in a long long or unsigned long long for the target
365# machine.
be7811ad 366v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
205c306f
DM
367# Alignment of a long long or unsigned long long for the target
368# machine.
369v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94 370
f9e9243a
UW
371# The ABI default bit-size and format for "half", "float", "double", and
372# "long double". These bit/format pairs should eventually be combined
373# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
374# Each format describes both the big and little endian layouts (if
375# useful).
456fcf94 376
f9e9243a
UW
377v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
97030eea 379v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 380v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 381v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 382v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 383v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 384v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 385
52204a0b
DT
386# For most targets, a pointer on the target and its representation as an
387# address in GDB have the same size and "look the same". For such a
17a912b6 388# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
389# / addr_bit will be set from it.
390#
17a912b6 391# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
392# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393# gdbarch_address_to_pointer as well.
52204a0b
DT
394#
395# ptr_bit is the size of a pointer on the target
be7811ad 396v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 397# addr_bit is the size of a target address as represented in gdb
be7811ad 398v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 399#
8da614df
CV
400# dwarf2_addr_size is the target address size as used in the Dwarf debug
401# info. For .debug_frame FDEs, this is supposed to be the target address
402# size from the associated CU header, and which is equivalent to the
403# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404# Unfortunately there is no good way to determine this value. Therefore
405# dwarf2_addr_size simply defaults to the target pointer size.
406#
407# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408# defined using the target's pointer size so far.
409#
410# Note that dwarf2_addr_size only needs to be redefined by a target if the
411# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412# and if Dwarf versions < 4 need to be supported.
413v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414#
4e409299 415# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 416v:int:char_signed:::1:-1:1
4e409299 417#
97030eea
UW
418F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
420# Function for getting target's idea of a frame pointer. FIXME: GDB's
421# whole scheme for dealing with "frames" and "frame pointers" needs a
422# serious shakedown.
a54fba4c 423m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 424#
05d1431c 425M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
3543a589
TT
426# Read a register into a new struct value. If the register is wholly
427# or partly unavailable, this should call mark_value_bytes_unavailable
428# as appropriate. If this is defined, then pseudo_register_read will
429# never be called.
430M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
97030eea 431M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 432#
97030eea 433v:int:num_regs:::0:-1
0aba1244
EZ
434# This macro gives the number of pseudo-registers that live in the
435# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
436# These pseudo-registers may be aliases for other registers,
437# combinations of other registers, or they may be computed by GDB.
97030eea 438v:int:num_pseudo_regs:::0:0::0
c2169756 439
175ff332
HZ
440# Assemble agent expression bytecode to collect pseudo-register REG.
441# Return -1 if something goes wrong, 0 otherwise.
442M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444# Assemble agent expression bytecode to push the value of pseudo-register
445# REG on the interpreter stack.
446# Return -1 if something goes wrong, 0 otherwise.
447M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
c2169756
AC
449# GDB's standard (or well known) register numbers. These can map onto
450# a real register or a pseudo (computed) register or not be defined at
1200cd6e 451# all (-1).
3e8c568d 452# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
453v:int:sp_regnum:::-1:-1::0
454v:int:pc_regnum:::-1:-1::0
455v:int:ps_regnum:::-1:-1::0
456v:int:fp0_regnum:::0:-1::0
88c72b7d 457# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 458m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 459# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 460m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 461# Convert from an sdb register number to an internal gdb register number.
d3f73121 462m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 463# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 464m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 465m:const char *:register_name:int regnr:regnr::0
9c04cab7 466
7b9ee6a8
DJ
467# Return the type of a register specified by the architecture. Only
468# the register cache should call this function directly; others should
469# use "register_type".
97030eea 470M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 471
669fac23
DJ
472M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 474# deprecated_fp_regnum.
97030eea 475v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 476
97030eea
UW
477M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478v:int:call_dummy_location::::AT_ENTRY_POINT::0
479M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 480
97030eea
UW
481m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
482M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
484# MAP a GDB RAW register number onto a simulator register number. See
485# also include/...-sim.h.
e7faf938 486m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
487m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
eade6471
JB
489
490# Determine the address where a longjmp will land and save this address
491# in PC. Return nonzero on success.
492#
493# FRAME corresponds to the longjmp frame.
97030eea 494F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
eade6471 495
104c1213 496#
97030eea 497v:int:believe_pcc_promotion:::::::
104c1213 498#
0abe36f5 499m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
8dccd430 500f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
97030eea 501f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0
UW
502# Construct a value representing the contents of register REGNUM in
503# frame FRAME, interpreted as type TYPE. The routine needs to
504# allocate and return a struct value with all value attributes
505# (but not the value contents) filled in.
97030eea 506f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
104c1213 507#
9898f801
UW
508m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
509m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 510M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 511
6a3a010b
MR
512# Return the return-value convention that will be used by FUNCTION
513# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
514# case the return convention is computed based only on VALTYPE.
515#
516# If READBUF is not NULL, extract the return value and save it in this buffer.
517#
518# If WRITEBUF is not NULL, it contains a return value which will be
519# stored into the appropriate register. This can be used when we want
520# to force the value returned by a function (see the "return" command
521# for instance).
6a3a010b 522M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
92ad9cd9 523
18648a37
YQ
524# Return true if the return value of function is stored in the first hidden
525# parameter. In theory, this feature should be language-dependent, specified
526# by language and its ABI, such as C++. Unfortunately, compiler may
527# implement it to a target-dependent feature. So that we need such hook here
528# to be aware of this in GDB.
529m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
530
6093d2eb 531m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 532M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
591a12a1
UW
533# On some platforms, a single function may provide multiple entry points,
534# e.g. one that is used for function-pointer calls and a different one
535# that is used for direct function calls.
536# In order to ensure that breakpoints set on the function will trigger
537# no matter via which entry point the function is entered, a platform
538# may provide the skip_entrypoint callback. It is called with IP set
539# to the main entry point of a function (as determined by the symbol table),
540# and should return the address of the innermost entry point, where the
541# actual breakpoint needs to be set. Note that skip_entrypoint is used
542# by GDB common code even when debugging optimized code, where skip_prologue
543# is not used.
544M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
545
97030eea 546f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 547m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
548# Return the adjusted address and kind to use for Z0/Z1 packets.
549# KIND is usually the memory length of the breakpoint, but may have a
550# different target-specific meaning.
0e05dfcb 551m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 552M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
553m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
554m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 555v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
556
557# A function can be addressed by either it's "pointer" (possibly a
558# descriptor address) or "entry point" (first executable instruction).
559# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 560# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
561# a simplified subset of that functionality - the function's address
562# corresponds to the "function pointer" and the function's start
563# corresponds to the "function entry point" - and hence is redundant.
564
97030eea 565v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 566
123dc839
DJ
567# Return the remote protocol register number associated with this
568# register. Normally the identity mapping.
97030eea 569m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 570
b2756930 571# Fetch the target specific address used to represent a load module.
97030eea 572F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 573#
97030eea
UW
574v:CORE_ADDR:frame_args_skip:::0:::0
575M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
576M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
577# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
578# frame-base. Enable frame-base before frame-unwind.
97030eea 579F:int:frame_num_args:struct frame_info *frame:frame
104c1213 580#
97030eea
UW
581M:CORE_ADDR:frame_align:CORE_ADDR address:address
582m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
583v:int:frame_red_zone_size
f0d4cc9e 584#
97030eea 585m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
586# On some machines there are bits in addresses which are not really
587# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 588# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
589# we get a "real" address such as one would find in a symbol table.
590# This is used only for addresses of instructions, and even then I'm
591# not sure it's used in all contexts. It exists to deal with there
592# being a few stray bits in the PC which would mislead us, not as some
593# sort of generic thing to handle alignment or segmentation (it's
594# possible it should be in TARGET_READ_PC instead).
24568a2c 595m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
596
597# FIXME/cagney/2001-01-18: This should be split in two. A target method that
598# indicates if the target needs software single step. An ISA method to
599# implement it.
600#
601# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
602# breakpoints using the breakpoint system instead of blatting memory directly
603# (as with rs6000).
64c4637f 604#
e6590a1b
UW
605# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
606# target can single step. If not, then implement single step using breakpoints.
64c4637f 607#
6f112b18 608# A return value of 1 means that the software_single_step breakpoints
e6590a1b 609# were inserted; 0 means they were not.
97030eea 610F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 611
3352ef37
AC
612# Return non-zero if the processor is executing a delay slot and a
613# further single-step is needed before the instruction finishes.
97030eea 614M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 615# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 616# disassembler. Perhaps objdump can handle it?
97030eea
UW
617f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
618f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
619
620
cfd8ab24 621# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
622# evaluates non-zero, this is the address where the debugger will place
623# a step-resume breakpoint to get us past the dynamic linker.
97030eea 624m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 625# Some systems also have trampoline code for returning from shared libs.
2c02bd72 626m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 627
c12260ac
CV
628# A target might have problems with watchpoints as soon as the stack
629# frame of the current function has been destroyed. This mostly happens
630# as the first action in a funtion's epilogue. in_function_epilogue_p()
631# is defined to return a non-zero value if either the given addr is one
632# instruction after the stack destroying instruction up to the trailing
633# return instruction or if we can figure out that the stack frame has
634# already been invalidated regardless of the value of addr. Targets
635# which don't suffer from that problem could just let this functionality
636# untouched.
97030eea 637m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
97030eea
UW
638f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
639f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
97030eea
UW
640v:int:cannot_step_breakpoint:::0:0::0
641v:int:have_nonsteppable_watchpoint:::0:0::0
642F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
643M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
69f97648
SM
644
645# Return the appropriate type_flags for the supplied address class.
646# This function should return 1 if the address class was recognized and
647# type_flags was set, zero otherwise.
97030eea 648M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 649# Is a register in a group
97030eea 650m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 651# Fetch the pointer to the ith function argument.
97030eea 652F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
653
654# Return the appropriate register set for a core file section with
655# name SECT_NAME and size SECT_SIZE.
97030eea 656M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
0d5de010 657
17ea7499
CES
658# Supported register notes in a core file.
659v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
660
6432734d
UW
661# Create core file notes
662M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
663
b3ac9c77
SDJ
664# The elfcore writer hook to use to write Linux prpsinfo notes to core
665# files. Most Linux architectures use the same prpsinfo32 or
666# prpsinfo64 layouts, and so won't need to provide this hook, as we
667# call the Linux generic routines in bfd to write prpsinfo notes by
668# default.
669F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
670
35c2fab7
UW
671# Find core file memory regions
672M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
673
de584861 674# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
675# core file into buffer READBUF with length LEN. Return the number of bytes read
676# (zero indicates failure).
677# failed, otherwise, return the red length of READBUF.
678M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
de584861 679
356a5233
JB
680# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
681# libraries list from core file into buffer READBUF with length LEN.
c09f20e4
YQ
682# Return the number of bytes read (zero indicates failure).
683M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
356a5233 684
c0edd9ed 685# How the core target converts a PTID from a core file to a string.
28439f5e
PA
686M:char *:core_pid_to_str:ptid_t ptid:ptid
687
a78c2d62 688# BFD target to use when generating a core file.
86ba1042 689V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
a78c2d62 690
0d5de010
DJ
691# If the elements of C++ vtables are in-place function descriptors rather
692# than normal function pointers (which may point to code or a descriptor),
693# set this to one.
97030eea 694v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
695
696# Set if the least significant bit of the delta is used instead of the least
697# significant bit of the pfn for pointers to virtual member functions.
97030eea 698v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
699
700# Advance PC to next instruction in order to skip a permanent breakpoint.
97030eea 701F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
1c772458 702
1668ae25 703# The maximum length of an instruction on this architecture in bytes.
237fc4c9
PA
704V:ULONGEST:max_insn_length:::0:0
705
706# Copy the instruction at FROM to TO, and make any adjustments
707# necessary to single-step it at that address.
708#
709# REGS holds the state the thread's registers will have before
710# executing the copied instruction; the PC in REGS will refer to FROM,
711# not the copy at TO. The caller should update it to point at TO later.
712#
713# Return a pointer to data of the architecture's choice to be passed
714# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
715# the instruction's effects have been completely simulated, with the
716# resulting state written back to REGS.
717#
718# For a general explanation of displaced stepping and how GDB uses it,
719# see the comments in infrun.c.
720#
721# The TO area is only guaranteed to have space for
722# gdbarch_max_insn_length (arch) bytes, so this function must not
723# write more bytes than that to that area.
724#
725# If you do not provide this function, GDB assumes that the
726# architecture does not support displaced stepping.
727#
728# If your architecture doesn't need to adjust instructions before
729# single-stepping them, consider using simple_displaced_step_copy_insn
730# here.
731M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
732
99e40580
UW
733# Return true if GDB should use hardware single-stepping to execute
734# the displaced instruction identified by CLOSURE. If false,
735# GDB will simply restart execution at the displaced instruction
736# location, and it is up to the target to ensure GDB will receive
737# control again (e.g. by placing a software breakpoint instruction
738# into the displaced instruction buffer).
739#
740# The default implementation returns false on all targets that
741# provide a gdbarch_software_single_step routine, and true otherwise.
742m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
743
237fc4c9
PA
744# Fix up the state resulting from successfully single-stepping a
745# displaced instruction, to give the result we would have gotten from
746# stepping the instruction in its original location.
747#
748# REGS is the register state resulting from single-stepping the
749# displaced instruction.
750#
751# CLOSURE is the result from the matching call to
752# gdbarch_displaced_step_copy_insn.
753#
754# If you provide gdbarch_displaced_step_copy_insn.but not this
755# function, then GDB assumes that no fixup is needed after
756# single-stepping the instruction.
757#
758# For a general explanation of displaced stepping and how GDB uses it,
759# see the comments in infrun.c.
760M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
761
762# Free a closure returned by gdbarch_displaced_step_copy_insn.
763#
764# If you provide gdbarch_displaced_step_copy_insn, you must provide
765# this function as well.
766#
767# If your architecture uses closures that don't need to be freed, then
768# you can use simple_displaced_step_free_closure here.
769#
770# For a general explanation of displaced stepping and how GDB uses it,
771# see the comments in infrun.c.
772m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
773
774# Return the address of an appropriate place to put displaced
775# instructions while we step over them. There need only be one such
776# place, since we're only stepping one thread over a breakpoint at a
777# time.
778#
779# For a general explanation of displaced stepping and how GDB uses it,
780# see the comments in infrun.c.
781m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
782
dde08ee1
PA
783# Relocate an instruction to execute at a different address. OLDLOC
784# is the address in the inferior memory where the instruction to
785# relocate is currently at. On input, TO points to the destination
786# where we want the instruction to be copied (and possibly adjusted)
787# to. On output, it points to one past the end of the resulting
788# instruction(s). The effect of executing the instruction at TO shall
789# be the same as if executing it at FROM. For example, call
790# instructions that implicitly push the return address on the stack
791# should be adjusted to return to the instruction after OLDLOC;
792# relative branches, and other PC-relative instructions need the
793# offset adjusted; etc.
794M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
795
1c772458 796# Refresh overlay mapped state for section OSECT.
97030eea 797F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 798
97030eea 799M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
800
801# Handle special encoding of static variables in stabs debug info.
0d5cff50 802F:const char *:static_transform_name:const char *name:name
203c3895 803# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 804v:int:sofun_address_maybe_missing:::0:0::0
1cded358 805
0508c3ec
HZ
806# Parse the instruction at ADDR storing in the record execution log
807# the registers REGCACHE and memory ranges that will be affected when
808# the instruction executes, along with their current values.
809# Return -1 if something goes wrong, 0 otherwise.
810M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
811
3846b520
HZ
812# Save process state after a signal.
813# Return -1 if something goes wrong, 0 otherwise.
2ea28649 814M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
3846b520 815
22203bbf 816# Signal translation: translate inferior's signal (target's) number
86b49880
PA
817# into GDB's representation. The implementation of this method must
818# be host independent. IOW, don't rely on symbols of the NAT_FILE
819# header (the nm-*.h files), the host <signal.h> header, or similar
820# headers. This is mainly used when cross-debugging core files ---
821# "Live" targets hide the translation behind the target interface
1f8cf220
PA
822# (target_wait, target_resume, etc.).
823M:enum gdb_signal:gdb_signal_from_target:int signo:signo
60c5725c 824
eb14d406
SDJ
825# Signal translation: translate the GDB's internal signal number into
826# the inferior's signal (target's) representation. The implementation
827# of this method must be host independent. IOW, don't rely on symbols
828# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
829# header, or similar headers.
830# Return the target signal number if found, or -1 if the GDB internal
831# signal number is invalid.
832M:int:gdb_signal_to_target:enum gdb_signal signal:signal
833
4aa995e1
PA
834# Extra signal info inspection.
835#
836# Return a type suitable to inspect extra signal information.
837M:struct type *:get_siginfo_type:void:
838
60c5725c
DJ
839# Record architecture-specific information from the symbol table.
840M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 841
a96d9b2e
SDJ
842# Function for the 'catch syscall' feature.
843
844# Get architecture-specific system calls information from registers.
845M:LONGEST:get_syscall_number:ptid_t ptid:ptid
846
55aa24fb
SDJ
847# SystemTap related fields and functions.
848
05c0465e
SDJ
849# A NULL-terminated array of prefixes used to mark an integer constant
850# on the architecture's assembly.
55aa24fb
SDJ
851# For example, on x86 integer constants are written as:
852#
853# \$10 ;; integer constant 10
854#
855# in this case, this prefix would be the character \`\$\'.
05c0465e 856v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 857
05c0465e
SDJ
858# A NULL-terminated array of suffixes used to mark an integer constant
859# on the architecture's assembly.
860v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 861
05c0465e
SDJ
862# A NULL-terminated array of prefixes used to mark a register name on
863# the architecture's assembly.
55aa24fb
SDJ
864# For example, on x86 the register name is written as:
865#
866# \%eax ;; register eax
867#
868# in this case, this prefix would be the character \`\%\'.
05c0465e 869v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 870
05c0465e
SDJ
871# A NULL-terminated array of suffixes used to mark a register name on
872# the architecture's assembly.
873v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 874
05c0465e
SDJ
875# A NULL-terminated array of prefixes used to mark a register
876# indirection on the architecture's assembly.
55aa24fb
SDJ
877# For example, on x86 the register indirection is written as:
878#
879# \(\%eax\) ;; indirecting eax
880#
881# in this case, this prefix would be the charater \`\(\'.
882#
883# Please note that we use the indirection prefix also for register
884# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 885v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 886
05c0465e
SDJ
887# A NULL-terminated array of suffixes used to mark a register
888# indirection on the architecture's assembly.
55aa24fb
SDJ
889# For example, on x86 the register indirection is written as:
890#
891# \(\%eax\) ;; indirecting eax
892#
893# in this case, this prefix would be the charater \`\)\'.
894#
895# Please note that we use the indirection suffix also for register
896# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 897v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 898
05c0465e 899# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
900#
901# For example, on PPC a register is represented by a number in the assembly
902# language (e.g., \`10\' is the 10th general-purpose register). However,
903# inside GDB this same register has an \`r\' appended to its name, so the 10th
904# register would be represented as \`r10\' internally.
08af7a40 905v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
906
907# Suffix used to name a register using GDB's nomenclature.
08af7a40 908v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
909
910# Check if S is a single operand.
911#
912# Single operands can be:
913# \- Literal integers, e.g. \`\$10\' on x86
914# \- Register access, e.g. \`\%eax\' on x86
915# \- Register indirection, e.g. \`\(\%eax\)\' on x86
916# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
917#
918# This function should check for these patterns on the string
919# and return 1 if some were found, or zero otherwise. Please try to match
920# as much info as you can from the string, i.e., if you have to match
921# something like \`\(\%\', do not match just the \`\(\'.
922M:int:stap_is_single_operand:const char *s:s
923
924# Function used to handle a "special case" in the parser.
925#
926# A "special case" is considered to be an unknown token, i.e., a token
927# that the parser does not know how to parse. A good example of special
928# case would be ARM's register displacement syntax:
929#
930# [R0, #4] ;; displacing R0 by 4
931#
932# Since the parser assumes that a register displacement is of the form:
933#
934# <number> <indirection_prefix> <register_name> <indirection_suffix>
935#
936# it means that it will not be able to recognize and parse this odd syntax.
937# Therefore, we should add a special case function that will handle this token.
938#
939# This function should generate the proper expression form of the expression
940# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
941# and so on). It should also return 1 if the parsing was successful, or zero
942# if the token was not recognized as a special token (in this case, returning
943# zero means that the special parser is deferring the parsing to the generic
944# parser), and should advance the buffer pointer (p->arg).
945M:int:stap_parse_special_token:struct stap_parse_info *p:p
946
947
50c71eaf
PA
948# True if the list of shared libraries is one and only for all
949# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
950# This usually means that all processes, although may or may not share
951# an address space, will see the same set of symbols at the same
952# addresses.
50c71eaf 953v:int:has_global_solist:::0:0::0
2567c7d9
PA
954
955# On some targets, even though each inferior has its own private
956# address space, the debug interface takes care of making breakpoints
957# visible to all address spaces automatically. For such cases,
958# this property should be set to true.
959v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
960
961# True if inferiors share an address space (e.g., uClinux).
962m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
963
964# True if a fast tracepoint can be set at an address.
965m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
75cebea9 966
f870a310
TT
967# Return the "auto" target charset.
968f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
969# Return the "auto" target wide charset.
970f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
971
972# If non-empty, this is a file extension that will be opened in place
973# of the file extension reported by the shared library list.
974#
975# This is most useful for toolchains that use a post-linker tool,
976# where the names of the files run on the target differ in extension
977# compared to the names of the files GDB should load for debug info.
978v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
979
980# If true, the target OS has DOS-based file system semantics. That
981# is, absolute paths include a drive name, and the backslash is
982# considered a directory separator.
983v:int:has_dos_based_file_system:::0:0::0
6710bf39
SS
984
985# Generate bytecodes to collect the return address in a frame.
986# Since the bytecodes run on the target, possibly with GDB not even
987# connected, the full unwinding machinery is not available, and
988# typically this function will issue bytecodes for one or more likely
989# places that the return address may be found.
990m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
991
3030c96e
UW
992# Implement the "info proc" command.
993M:void:info_proc:char *args, enum info_proc_what what:args, what
994
451b7c33
TT
995# Implement the "info proc" command for core files. Noe that there
996# are two "info_proc"-like methods on gdbarch -- one for core files,
997# one for live targets.
998M:void:core_info_proc:char *args, enum info_proc_what what:args, what
999
19630284
JB
1000# Iterate over all objfiles in the order that makes the most sense
1001# for the architecture to make global symbol searches.
1002#
1003# CB is a callback function where OBJFILE is the objfile to be searched,
1004# and CB_DATA a pointer to user-defined data (the same data that is passed
1005# when calling this gdbarch method). The iteration stops if this function
1006# returns nonzero.
1007#
1008# CB_DATA is a pointer to some user-defined data to be passed to
1009# the callback.
1010#
1011# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1012# inspected when the symbol search was requested.
1013m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1014
7e35103a
JB
1015# Ravenscar arch-dependent ops.
1016v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1017
1018# Return non-zero if the instruction at ADDR is a call; zero otherwise.
1019m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1020
1021# Return non-zero if the instruction at ADDR is a return; zero otherwise.
1022m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1023
1024# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1025m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
104c1213 1026EOF
104c1213
JM
1027}
1028
0b8f9e4d
AC
1029#
1030# The .log file
1031#
1032exec > new-gdbarch.log
34620563 1033function_list | while do_read
0b8f9e4d
AC
1034do
1035 cat <<EOF
2f9b146e 1036${class} ${returntype} ${function} ($formal)
104c1213 1037EOF
3d9a5942
AC
1038 for r in ${read}
1039 do
1040 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1041 done
f0d4cc9e 1042 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1043 then
66d659b1 1044 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1045 kill $$
1046 exit 1
1047 fi
72e74a21 1048 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1049 then
1050 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1051 kill $$
1052 exit 1
1053 fi
a72293e2
AC
1054 if class_is_multiarch_p
1055 then
1056 if class_is_predicate_p ; then :
1057 elif test "x${predefault}" = "x"
1058 then
2f9b146e 1059 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1060 kill $$
1061 exit 1
1062 fi
1063 fi
3d9a5942 1064 echo ""
0b8f9e4d
AC
1065done
1066
1067exec 1>&2
1068compare_new gdbarch.log
1069
104c1213
JM
1070
1071copyright ()
1072{
1073cat <<EOF
c4bfde41
JK
1074/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1075/* vi:set ro: */
59233f88 1076
104c1213 1077/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1078
ecd75fc8 1079 Copyright (C) 1998-2014 Free Software Foundation, Inc.
104c1213
JM
1080
1081 This file is part of GDB.
1082
1083 This program is free software; you can redistribute it and/or modify
1084 it under the terms of the GNU General Public License as published by
50efebf8 1085 the Free Software Foundation; either version 3 of the License, or
104c1213 1086 (at your option) any later version.
50efebf8 1087
104c1213
JM
1088 This program is distributed in the hope that it will be useful,
1089 but WITHOUT ANY WARRANTY; without even the implied warranty of
1090 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1091 GNU General Public License for more details.
50efebf8 1092
104c1213 1093 You should have received a copy of the GNU General Public License
50efebf8 1094 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1095
104c1213
JM
1096/* This file was created with the aid of \`\`gdbarch.sh''.
1097
52204a0b 1098 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1099 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1100 against the existing \`\`gdbarch.[hc]''. Any differences found
1101 being reported.
1102
1103 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1104 changes into that script. Conversely, when making sweeping changes
104c1213 1105 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1106 easier. */
104c1213
JM
1107
1108EOF
1109}
1110
1111#
1112# The .h file
1113#
1114
1115exec > new-gdbarch.h
1116copyright
1117cat <<EOF
1118#ifndef GDBARCH_H
1119#define GDBARCH_H
1120
da3331ec
AC
1121struct floatformat;
1122struct ui_file;
104c1213
JM
1123struct frame_info;
1124struct value;
b6af0555 1125struct objfile;
1c772458 1126struct obj_section;
a2cf933a 1127struct minimal_symbol;
049ee0e4 1128struct regcache;
b59ff9d5 1129struct reggroup;
6ce6d90f 1130struct regset;
a89aa300 1131struct disassemble_info;
e2d0e7eb 1132struct target_ops;
030f20e1 1133struct obstack;
8181d85f 1134struct bp_target_info;
424163ea 1135struct target_desc;
237fc4c9 1136struct displaced_step_closure;
17ea7499 1137struct core_regset_section;
a96d9b2e 1138struct syscall;
175ff332 1139struct agent_expr;
6710bf39 1140struct axs_value;
55aa24fb 1141struct stap_parse_info;
7e35103a 1142struct ravenscar_arch_ops;
b3ac9c77 1143struct elf_internal_linux_prpsinfo;
104c1213 1144
6ecd4729
PA
1145/* The architecture associated with the inferior through the
1146 connection to the target.
1147
1148 The architecture vector provides some information that is really a
1149 property of the inferior, accessed through a particular target:
1150 ptrace operations; the layout of certain RSP packets; the solib_ops
1151 vector; etc. To differentiate architecture accesses to
1152 per-inferior/target properties from
1153 per-thread/per-frame/per-objfile properties, accesses to
1154 per-inferior/target properties should be made through this
1155 gdbarch. */
1156
1157/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1158extern struct gdbarch *target_gdbarch (void);
6ecd4729 1159
19630284
JB
1160/* Callback type for the 'iterate_over_objfiles_in_search_order'
1161 gdbarch method. */
1162
1163typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1164 (struct objfile *objfile, void *cb_data);
104c1213
JM
1165EOF
1166
1167# function typedef's
3d9a5942
AC
1168printf "\n"
1169printf "\n"
0963b4bd 1170printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1171function_list | while do_read
104c1213 1172do
2ada493a
AC
1173 if class_is_info_p
1174 then
3d9a5942
AC
1175 printf "\n"
1176 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1177 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1178 fi
104c1213
JM
1179done
1180
1181# function typedef's
3d9a5942
AC
1182printf "\n"
1183printf "\n"
0963b4bd 1184printf "/* The following are initialized by the target dependent code. */\n"
34620563 1185function_list | while do_read
104c1213 1186do
72e74a21 1187 if [ -n "${comment}" ]
34620563
AC
1188 then
1189 echo "${comment}" | sed \
1190 -e '2 s,#,/*,' \
1191 -e '3,$ s,#, ,' \
1192 -e '$ s,$, */,'
1193 fi
412d5987
AC
1194
1195 if class_is_predicate_p
2ada493a 1196 then
412d5987
AC
1197 printf "\n"
1198 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1199 fi
2ada493a
AC
1200 if class_is_variable_p
1201 then
3d9a5942
AC
1202 printf "\n"
1203 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1204 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1205 fi
1206 if class_is_function_p
1207 then
3d9a5942 1208 printf "\n"
72e74a21 1209 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1210 then
1211 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1212 elif class_is_multiarch_p
1213 then
1214 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1215 else
1216 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1217 fi
72e74a21 1218 if [ "x${formal}" = "xvoid" ]
104c1213 1219 then
3d9a5942 1220 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1221 else
3d9a5942 1222 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1223 fi
3d9a5942 1224 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1225 fi
104c1213
JM
1226done
1227
1228# close it off
1229cat <<EOF
1230
a96d9b2e
SDJ
1231/* Definition for an unknown syscall, used basically in error-cases. */
1232#define UNKNOWN_SYSCALL (-1)
1233
104c1213
JM
1234extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1235
1236
1237/* Mechanism for co-ordinating the selection of a specific
1238 architecture.
1239
1240 GDB targets (*-tdep.c) can register an interest in a specific
1241 architecture. Other GDB components can register a need to maintain
1242 per-architecture data.
1243
1244 The mechanisms below ensures that there is only a loose connection
1245 between the set-architecture command and the various GDB
0fa6923a 1246 components. Each component can independently register their need
104c1213
JM
1247 to maintain architecture specific data with gdbarch.
1248
1249 Pragmatics:
1250
1251 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1252 didn't scale.
1253
1254 The more traditional mega-struct containing architecture specific
1255 data for all the various GDB components was also considered. Since
0fa6923a 1256 GDB is built from a variable number of (fairly independent)
104c1213 1257 components it was determined that the global aproach was not
0963b4bd 1258 applicable. */
104c1213
JM
1259
1260
1261/* Register a new architectural family with GDB.
1262
1263 Register support for the specified ARCHITECTURE with GDB. When
1264 gdbarch determines that the specified architecture has been
1265 selected, the corresponding INIT function is called.
1266
1267 --
1268
1269 The INIT function takes two parameters: INFO which contains the
1270 information available to gdbarch about the (possibly new)
1271 architecture; ARCHES which is a list of the previously created
1272 \`\`struct gdbarch'' for this architecture.
1273
0f79675b 1274 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1275 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1276
1277 The ARCHES parameter is a linked list (sorted most recently used)
1278 of all the previously created architures for this architecture
1279 family. The (possibly NULL) ARCHES->gdbarch can used to access
1280 values from the previously selected architecture for this
59837fe0 1281 architecture family.
104c1213
JM
1282
1283 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1284 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1285 gdbarch'' from the ARCHES list - indicating that the new
1286 architecture is just a synonym for an earlier architecture (see
1287 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1288 - that describes the selected architecture (see gdbarch_alloc()).
1289
1290 The DUMP_TDEP function shall print out all target specific values.
1291 Care should be taken to ensure that the function works in both the
0963b4bd 1292 multi-arch and non- multi-arch cases. */
104c1213
JM
1293
1294struct gdbarch_list
1295{
1296 struct gdbarch *gdbarch;
1297 struct gdbarch_list *next;
1298};
1299
1300struct gdbarch_info
1301{
0963b4bd 1302 /* Use default: NULL (ZERO). */
104c1213
JM
1303 const struct bfd_arch_info *bfd_arch_info;
1304
428721aa 1305 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1306 enum bfd_endian byte_order;
104c1213 1307
94123b4f 1308 enum bfd_endian byte_order_for_code;
9d4fde75 1309
0963b4bd 1310 /* Use default: NULL (ZERO). */
104c1213
JM
1311 bfd *abfd;
1312
0963b4bd 1313 /* Use default: NULL (ZERO). */
104c1213 1314 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1315
1316 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1317 enum gdb_osabi osabi;
424163ea
DJ
1318
1319 /* Use default: NULL (ZERO). */
1320 const struct target_desc *target_desc;
104c1213
JM
1321};
1322
1323typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1324typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1325
4b9b3959 1326/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1327extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1328
4b9b3959
AC
1329extern void gdbarch_register (enum bfd_architecture architecture,
1330 gdbarch_init_ftype *,
1331 gdbarch_dump_tdep_ftype *);
1332
104c1213 1333
b4a20239
AC
1334/* Return a freshly allocated, NULL terminated, array of the valid
1335 architecture names. Since architectures are registered during the
1336 _initialize phase this function only returns useful information
0963b4bd 1337 once initialization has been completed. */
b4a20239
AC
1338
1339extern const char **gdbarch_printable_names (void);
1340
1341
104c1213 1342/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1343 matches the information provided by INFO. */
104c1213 1344
424163ea 1345extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1346
1347
1348/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1349 basic initialization using values obtained from the INFO and TDEP
104c1213 1350 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1351 initialization of the object. */
104c1213
JM
1352
1353extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1354
1355
4b9b3959
AC
1356/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1357 It is assumed that the caller freeds the \`\`struct
0963b4bd 1358 gdbarch_tdep''. */
4b9b3959 1359
058f20d5
JB
1360extern void gdbarch_free (struct gdbarch *);
1361
1362
aebd7893
AC
1363/* Helper function. Allocate memory from the \`\`struct gdbarch''
1364 obstack. The memory is freed when the corresponding architecture
1365 is also freed. */
1366
1367extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1368#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1369#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1370
1371
0963b4bd 1372/* Helper function. Force an update of the current architecture.
104c1213 1373
b732d07d
AC
1374 The actual architecture selected is determined by INFO, \`\`(gdb) set
1375 architecture'' et.al., the existing architecture and BFD's default
1376 architecture. INFO should be initialized to zero and then selected
1377 fields should be updated.
104c1213 1378
0963b4bd 1379 Returns non-zero if the update succeeds. */
16f33e29
AC
1380
1381extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1382
1383
ebdba546
AC
1384/* Helper function. Find an architecture matching info.
1385
1386 INFO should be initialized using gdbarch_info_init, relevant fields
1387 set, and then finished using gdbarch_info_fill.
1388
1389 Returns the corresponding architecture, or NULL if no matching
59837fe0 1390 architecture was found. */
ebdba546
AC
1391
1392extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1393
1394
aff68abb 1395/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1396
aff68abb 1397extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1398
104c1213
JM
1399
1400/* Register per-architecture data-pointer.
1401
1402 Reserve space for a per-architecture data-pointer. An identifier
1403 for the reserved data-pointer is returned. That identifer should
95160752 1404 be saved in a local static variable.
104c1213 1405
fcc1c85c
AC
1406 Memory for the per-architecture data shall be allocated using
1407 gdbarch_obstack_zalloc. That memory will be deleted when the
1408 corresponding architecture object is deleted.
104c1213 1409
95160752
AC
1410 When a previously created architecture is re-selected, the
1411 per-architecture data-pointer for that previous architecture is
76860b5f 1412 restored. INIT() is not re-called.
104c1213
JM
1413
1414 Multiple registrarants for any architecture are allowed (and
1415 strongly encouraged). */
1416
95160752 1417struct gdbarch_data;
104c1213 1418
030f20e1
AC
1419typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1420extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1421typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1422extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1423extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1424 struct gdbarch_data *data,
1425 void *pointer);
104c1213 1426
451fbdda 1427extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1428
1429
0fa6923a 1430/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1431 byte-order, ...) using information found in the BFD. */
104c1213
JM
1432
1433extern void set_gdbarch_from_file (bfd *);
1434
1435
e514a9d6
JM
1436/* Initialize the current architecture to the "first" one we find on
1437 our list. */
1438
1439extern void initialize_current_architecture (void);
1440
104c1213 1441/* gdbarch trace variable */
ccce17b0 1442extern unsigned int gdbarch_debug;
104c1213 1443
4b9b3959 1444extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1445
1446#endif
1447EOF
1448exec 1>&2
1449#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1450compare_new gdbarch.h
104c1213
JM
1451
1452
1453#
1454# C file
1455#
1456
1457exec > new-gdbarch.c
1458copyright
1459cat <<EOF
1460
1461#include "defs.h"
7355ddba 1462#include "arch-utils.h"
104c1213 1463
104c1213 1464#include "gdbcmd.h"
faaf634c 1465#include "inferior.h"
104c1213
JM
1466#include "symcat.h"
1467
f0d4cc9e 1468#include "floatformat.h"
104c1213 1469
95160752 1470#include "gdb_assert.h"
e7b12392 1471#include <string.h>
b59ff9d5 1472#include "reggroups.h"
4be87837 1473#include "osabi.h"
aebd7893 1474#include "gdb_obstack.h"
383f836e 1475#include "observer.h"
a3ecef73 1476#include "regcache.h"
19630284 1477#include "objfiles.h"
95160752 1478
104c1213
JM
1479/* Static function declarations */
1480
b3cc3077 1481static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1482
104c1213
JM
1483/* Non-zero if we want to trace architecture code. */
1484
1485#ifndef GDBARCH_DEBUG
1486#define GDBARCH_DEBUG 0
1487#endif
ccce17b0 1488unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1489static void
1490show_gdbarch_debug (struct ui_file *file, int from_tty,
1491 struct cmd_list_element *c, const char *value)
1492{
1493 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1494}
104c1213 1495
456fcf94 1496static const char *
8da61cc4 1497pformat (const struct floatformat **format)
456fcf94
AC
1498{
1499 if (format == NULL)
1500 return "(null)";
1501 else
8da61cc4
DJ
1502 /* Just print out one of them - this is only for diagnostics. */
1503 return format[0]->name;
456fcf94
AC
1504}
1505
08105857
PA
1506static const char *
1507pstring (const char *string)
1508{
1509 if (string == NULL)
1510 return "(null)";
1511 return string;
05c0465e
SDJ
1512}
1513
1514/* Helper function to print a list of strings, represented as "const
1515 char *const *". The list is printed comma-separated. */
1516
1517static char *
1518pstring_list (const char *const *list)
1519{
1520 static char ret[100];
1521 const char *const *p;
1522 size_t offset = 0;
1523
1524 if (list == NULL)
1525 return "(null)";
1526
1527 ret[0] = '\0';
1528 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1529 {
1530 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1531 offset += 2 + s;
1532 }
1533
1534 if (offset > 0)
1535 {
1536 gdb_assert (offset - 2 < sizeof (ret));
1537 ret[offset - 2] = '\0';
1538 }
1539
1540 return ret;
08105857
PA
1541}
1542
104c1213
JM
1543EOF
1544
1545# gdbarch open the gdbarch object
3d9a5942 1546printf "\n"
0963b4bd 1547printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1548printf "\n"
1549printf "struct gdbarch\n"
1550printf "{\n"
76860b5f
AC
1551printf " /* Has this architecture been fully initialized? */\n"
1552printf " int initialized_p;\n"
aebd7893
AC
1553printf "\n"
1554printf " /* An obstack bound to the lifetime of the architecture. */\n"
1555printf " struct obstack *obstack;\n"
1556printf "\n"
0963b4bd 1557printf " /* basic architectural information. */\n"
34620563 1558function_list | while do_read
104c1213 1559do
2ada493a
AC
1560 if class_is_info_p
1561 then
3d9a5942 1562 printf " ${returntype} ${function};\n"
2ada493a 1563 fi
104c1213 1564done
3d9a5942 1565printf "\n"
0963b4bd 1566printf " /* target specific vector. */\n"
3d9a5942
AC
1567printf " struct gdbarch_tdep *tdep;\n"
1568printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1569printf "\n"
0963b4bd 1570printf " /* per-architecture data-pointers. */\n"
95160752 1571printf " unsigned nr_data;\n"
3d9a5942
AC
1572printf " void **data;\n"
1573printf "\n"
104c1213
JM
1574cat <<EOF
1575 /* Multi-arch values.
1576
1577 When extending this structure you must:
1578
1579 Add the field below.
1580
1581 Declare set/get functions and define the corresponding
1582 macro in gdbarch.h.
1583
1584 gdbarch_alloc(): If zero/NULL is not a suitable default,
1585 initialize the new field.
1586
1587 verify_gdbarch(): Confirm that the target updated the field
1588 correctly.
1589
7e73cedf 1590 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1591 field is dumped out
1592
104c1213
JM
1593 get_gdbarch(): Implement the set/get functions (probably using
1594 the macro's as shortcuts).
1595
1596 */
1597
1598EOF
34620563 1599function_list | while do_read
104c1213 1600do
2ada493a
AC
1601 if class_is_variable_p
1602 then
3d9a5942 1603 printf " ${returntype} ${function};\n"
2ada493a
AC
1604 elif class_is_function_p
1605 then
2f9b146e 1606 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1607 fi
104c1213 1608done
3d9a5942 1609printf "};\n"
104c1213 1610
104c1213 1611# Create a new gdbarch struct
104c1213 1612cat <<EOF
7de2341d 1613
66b43ecb 1614/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1615 \`\`struct gdbarch_info''. */
104c1213 1616EOF
3d9a5942 1617printf "\n"
104c1213
JM
1618cat <<EOF
1619struct gdbarch *
1620gdbarch_alloc (const struct gdbarch_info *info,
1621 struct gdbarch_tdep *tdep)
1622{
be7811ad 1623 struct gdbarch *gdbarch;
aebd7893
AC
1624
1625 /* Create an obstack for allocating all the per-architecture memory,
1626 then use that to allocate the architecture vector. */
70ba0933 1627 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1628 obstack_init (obstack);
be7811ad
MD
1629 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1630 memset (gdbarch, 0, sizeof (*gdbarch));
1631 gdbarch->obstack = obstack;
85de9627 1632
be7811ad 1633 alloc_gdbarch_data (gdbarch);
85de9627 1634
be7811ad 1635 gdbarch->tdep = tdep;
104c1213 1636EOF
3d9a5942 1637printf "\n"
34620563 1638function_list | while do_read
104c1213 1639do
2ada493a
AC
1640 if class_is_info_p
1641 then
be7811ad 1642 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1643 fi
104c1213 1644done
3d9a5942 1645printf "\n"
0963b4bd 1646printf " /* Force the explicit initialization of these. */\n"
34620563 1647function_list | while do_read
104c1213 1648do
2ada493a
AC
1649 if class_is_function_p || class_is_variable_p
1650 then
72e74a21 1651 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1652 then
be7811ad 1653 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1654 fi
2ada493a 1655 fi
104c1213
JM
1656done
1657cat <<EOF
1658 /* gdbarch_alloc() */
1659
be7811ad 1660 return gdbarch;
104c1213
JM
1661}
1662EOF
1663
058f20d5 1664# Free a gdbarch struct.
3d9a5942
AC
1665printf "\n"
1666printf "\n"
058f20d5 1667cat <<EOF
aebd7893
AC
1668/* Allocate extra space using the per-architecture obstack. */
1669
1670void *
1671gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1672{
1673 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1674
aebd7893
AC
1675 memset (data, 0, size);
1676 return data;
1677}
1678
1679
058f20d5
JB
1680/* Free a gdbarch struct. This should never happen in normal
1681 operation --- once you've created a gdbarch, you keep it around.
1682 However, if an architecture's init function encounters an error
1683 building the structure, it may need to clean up a partially
1684 constructed gdbarch. */
4b9b3959 1685
058f20d5
JB
1686void
1687gdbarch_free (struct gdbarch *arch)
1688{
aebd7893 1689 struct obstack *obstack;
05c547f6 1690
95160752 1691 gdb_assert (arch != NULL);
aebd7893
AC
1692 gdb_assert (!arch->initialized_p);
1693 obstack = arch->obstack;
1694 obstack_free (obstack, 0); /* Includes the ARCH. */
1695 xfree (obstack);
058f20d5
JB
1696}
1697EOF
1698
104c1213 1699# verify a new architecture
104c1213 1700cat <<EOF
db446970
AC
1701
1702
1703/* Ensure that all values in a GDBARCH are reasonable. */
1704
104c1213 1705static void
be7811ad 1706verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1707{
f16a1923
AC
1708 struct ui_file *log;
1709 struct cleanup *cleanups;
759ef836 1710 long length;
f16a1923 1711 char *buf;
05c547f6 1712
f16a1923
AC
1713 log = mem_fileopen ();
1714 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1715 /* fundamental */
be7811ad 1716 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1717 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1718 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1719 fprintf_unfiltered (log, "\n\tbfd_arch_info");
0963b4bd 1720 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1721EOF
34620563 1722function_list | while do_read
104c1213 1723do
2ada493a
AC
1724 if class_is_function_p || class_is_variable_p
1725 then
72e74a21 1726 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1727 then
3d9a5942 1728 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1729 elif class_is_predicate_p
1730 then
0963b4bd 1731 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1732 # FIXME: See do_read for potential simplification
72e74a21 1733 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1734 then
3d9a5942 1735 printf " if (${invalid_p})\n"
be7811ad 1736 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1737 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1738 then
be7811ad
MD
1739 printf " if (gdbarch->${function} == ${predefault})\n"
1740 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1741 elif [ -n "${postdefault}" ]
f0d4cc9e 1742 then
be7811ad
MD
1743 printf " if (gdbarch->${function} == 0)\n"
1744 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1745 elif [ -n "${invalid_p}" ]
104c1213 1746 then
4d60522e 1747 printf " if (${invalid_p})\n"
f16a1923 1748 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1749 elif [ -n "${predefault}" ]
104c1213 1750 then
be7811ad 1751 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1752 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1753 fi
2ada493a 1754 fi
104c1213
JM
1755done
1756cat <<EOF
759ef836 1757 buf = ui_file_xstrdup (log, &length);
f16a1923 1758 make_cleanup (xfree, buf);
759ef836 1759 if (length > 0)
f16a1923 1760 internal_error (__FILE__, __LINE__,
85c07804 1761 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1762 buf);
1763 do_cleanups (cleanups);
104c1213
JM
1764}
1765EOF
1766
1767# dump the structure
3d9a5942
AC
1768printf "\n"
1769printf "\n"
104c1213 1770cat <<EOF
0963b4bd 1771/* Print out the details of the current architecture. */
4b9b3959 1772
104c1213 1773void
be7811ad 1774gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1775{
b78960be 1776 const char *gdb_nm_file = "<not-defined>";
05c547f6 1777
b78960be
AC
1778#if defined (GDB_NM_FILE)
1779 gdb_nm_file = GDB_NM_FILE;
1780#endif
1781 fprintf_unfiltered (file,
1782 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1783 gdb_nm_file);
104c1213 1784EOF
97030eea 1785function_list | sort -t: -k 3 | while do_read
104c1213 1786do
1e9f55d0
AC
1787 # First the predicate
1788 if class_is_predicate_p
1789 then
7996bcec 1790 printf " fprintf_unfiltered (file,\n"
48f7351b 1791 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1792 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1793 fi
48f7351b 1794 # Print the corresponding value.
283354d8 1795 if class_is_function_p
4b9b3959 1796 then
7996bcec 1797 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1798 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1799 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1800 else
48f7351b 1801 # It is a variable
2f9b146e
AC
1802 case "${print}:${returntype}" in
1803 :CORE_ADDR )
0b1553bc
UW
1804 fmt="%s"
1805 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1806 ;;
2f9b146e 1807 :* )
48f7351b 1808 fmt="%s"
623d3eb1 1809 print="plongest (gdbarch->${function})"
48f7351b
AC
1810 ;;
1811 * )
2f9b146e 1812 fmt="%s"
48f7351b
AC
1813 ;;
1814 esac
3d9a5942 1815 printf " fprintf_unfiltered (file,\n"
48f7351b 1816 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1817 printf " ${print});\n"
2ada493a 1818 fi
104c1213 1819done
381323f4 1820cat <<EOF
be7811ad
MD
1821 if (gdbarch->dump_tdep != NULL)
1822 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1823}
1824EOF
104c1213
JM
1825
1826
1827# GET/SET
3d9a5942 1828printf "\n"
104c1213
JM
1829cat <<EOF
1830struct gdbarch_tdep *
1831gdbarch_tdep (struct gdbarch *gdbarch)
1832{
1833 if (gdbarch_debug >= 2)
3d9a5942 1834 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1835 return gdbarch->tdep;
1836}
1837EOF
3d9a5942 1838printf "\n"
34620563 1839function_list | while do_read
104c1213 1840do
2ada493a
AC
1841 if class_is_predicate_p
1842 then
3d9a5942
AC
1843 printf "\n"
1844 printf "int\n"
1845 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1846 printf "{\n"
8de9bdc4 1847 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1848 printf " return ${predicate};\n"
3d9a5942 1849 printf "}\n"
2ada493a
AC
1850 fi
1851 if class_is_function_p
1852 then
3d9a5942
AC
1853 printf "\n"
1854 printf "${returntype}\n"
72e74a21 1855 if [ "x${formal}" = "xvoid" ]
104c1213 1856 then
3d9a5942 1857 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1858 else
3d9a5942 1859 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1860 fi
3d9a5942 1861 printf "{\n"
8de9bdc4 1862 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1863 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1864 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1865 then
1866 # Allow a call to a function with a predicate.
956ac328 1867 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1868 fi
3d9a5942
AC
1869 printf " if (gdbarch_debug >= 2)\n"
1870 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1871 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1872 then
1873 if class_is_multiarch_p
1874 then
1875 params="gdbarch"
1876 else
1877 params=""
1878 fi
1879 else
1880 if class_is_multiarch_p
1881 then
1882 params="gdbarch, ${actual}"
1883 else
1884 params="${actual}"
1885 fi
1886 fi
72e74a21 1887 if [ "x${returntype}" = "xvoid" ]
104c1213 1888 then
4a5c6a1d 1889 printf " gdbarch->${function} (${params});\n"
104c1213 1890 else
4a5c6a1d 1891 printf " return gdbarch->${function} (${params});\n"
104c1213 1892 fi
3d9a5942
AC
1893 printf "}\n"
1894 printf "\n"
1895 printf "void\n"
1896 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1897 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1898 printf "{\n"
1899 printf " gdbarch->${function} = ${function};\n"
1900 printf "}\n"
2ada493a
AC
1901 elif class_is_variable_p
1902 then
3d9a5942
AC
1903 printf "\n"
1904 printf "${returntype}\n"
1905 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1906 printf "{\n"
8de9bdc4 1907 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1908 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1909 then
3d9a5942 1910 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1911 elif [ -n "${invalid_p}" ]
104c1213 1912 then
956ac328
AC
1913 printf " /* Check variable is valid. */\n"
1914 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1915 elif [ -n "${predefault}" ]
104c1213 1916 then
956ac328
AC
1917 printf " /* Check variable changed from pre-default. */\n"
1918 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1919 fi
3d9a5942
AC
1920 printf " if (gdbarch_debug >= 2)\n"
1921 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1922 printf " return gdbarch->${function};\n"
1923 printf "}\n"
1924 printf "\n"
1925 printf "void\n"
1926 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1927 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1928 printf "{\n"
1929 printf " gdbarch->${function} = ${function};\n"
1930 printf "}\n"
2ada493a
AC
1931 elif class_is_info_p
1932 then
3d9a5942
AC
1933 printf "\n"
1934 printf "${returntype}\n"
1935 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1936 printf "{\n"
8de9bdc4 1937 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1938 printf " if (gdbarch_debug >= 2)\n"
1939 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1940 printf " return gdbarch->${function};\n"
1941 printf "}\n"
2ada493a 1942 fi
104c1213
JM
1943done
1944
1945# All the trailing guff
1946cat <<EOF
1947
1948
f44c642f 1949/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 1950 modules. */
104c1213
JM
1951
1952struct gdbarch_data
1953{
95160752 1954 unsigned index;
76860b5f 1955 int init_p;
030f20e1
AC
1956 gdbarch_data_pre_init_ftype *pre_init;
1957 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1958};
1959
1960struct gdbarch_data_registration
1961{
104c1213
JM
1962 struct gdbarch_data *data;
1963 struct gdbarch_data_registration *next;
1964};
1965
f44c642f 1966struct gdbarch_data_registry
104c1213 1967{
95160752 1968 unsigned nr;
104c1213
JM
1969 struct gdbarch_data_registration *registrations;
1970};
1971
f44c642f 1972struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1973{
1974 0, NULL,
1975};
1976
030f20e1
AC
1977static struct gdbarch_data *
1978gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1979 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
1980{
1981 struct gdbarch_data_registration **curr;
05c547f6
MS
1982
1983 /* Append the new registration. */
f44c642f 1984 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1985 (*curr) != NULL;
1986 curr = &(*curr)->next);
70ba0933 1987 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 1988 (*curr)->next = NULL;
70ba0933 1989 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 1990 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
1991 (*curr)->data->pre_init = pre_init;
1992 (*curr)->data->post_init = post_init;
76860b5f 1993 (*curr)->data->init_p = 1;
104c1213
JM
1994 return (*curr)->data;
1995}
1996
030f20e1
AC
1997struct gdbarch_data *
1998gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1999{
2000 return gdbarch_data_register (pre_init, NULL);
2001}
2002
2003struct gdbarch_data *
2004gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2005{
2006 return gdbarch_data_register (NULL, post_init);
2007}
104c1213 2008
0963b4bd 2009/* Create/delete the gdbarch data vector. */
95160752
AC
2010
2011static void
b3cc3077 2012alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2013{
b3cc3077
JB
2014 gdb_assert (gdbarch->data == NULL);
2015 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2016 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2017}
3c875b6f 2018
76860b5f 2019/* Initialize the current value of the specified per-architecture
0963b4bd 2020 data-pointer. */
b3cc3077 2021
95160752 2022void
030f20e1
AC
2023deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2024 struct gdbarch_data *data,
2025 void *pointer)
95160752
AC
2026{
2027 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2028 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2029 gdb_assert (data->pre_init == NULL);
95160752
AC
2030 gdbarch->data[data->index] = pointer;
2031}
2032
104c1213 2033/* Return the current value of the specified per-architecture
0963b4bd 2034 data-pointer. */
104c1213
JM
2035
2036void *
451fbdda 2037gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2038{
451fbdda 2039 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2040 if (gdbarch->data[data->index] == NULL)
76860b5f 2041 {
030f20e1
AC
2042 /* The data-pointer isn't initialized, call init() to get a
2043 value. */
2044 if (data->pre_init != NULL)
2045 /* Mid architecture creation: pass just the obstack, and not
2046 the entire architecture, as that way it isn't possible for
2047 pre-init code to refer to undefined architecture
2048 fields. */
2049 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2050 else if (gdbarch->initialized_p
2051 && data->post_init != NULL)
2052 /* Post architecture creation: pass the entire architecture
2053 (as all fields are valid), but be careful to also detect
2054 recursive references. */
2055 {
2056 gdb_assert (data->init_p);
2057 data->init_p = 0;
2058 gdbarch->data[data->index] = data->post_init (gdbarch);
2059 data->init_p = 1;
2060 }
2061 else
2062 /* The architecture initialization hasn't completed - punt -
2063 hope that the caller knows what they are doing. Once
2064 deprecated_set_gdbarch_data has been initialized, this can be
2065 changed to an internal error. */
2066 return NULL;
76860b5f
AC
2067 gdb_assert (gdbarch->data[data->index] != NULL);
2068 }
451fbdda 2069 return gdbarch->data[data->index];
104c1213
JM
2070}
2071
2072
0963b4bd 2073/* Keep a registry of the architectures known by GDB. */
104c1213 2074
4b9b3959 2075struct gdbarch_registration
104c1213
JM
2076{
2077 enum bfd_architecture bfd_architecture;
2078 gdbarch_init_ftype *init;
4b9b3959 2079 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2080 struct gdbarch_list *arches;
4b9b3959 2081 struct gdbarch_registration *next;
104c1213
JM
2082};
2083
f44c642f 2084static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2085
b4a20239
AC
2086static void
2087append_name (const char ***buf, int *nr, const char *name)
2088{
2089 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2090 (*buf)[*nr] = name;
2091 *nr += 1;
2092}
2093
2094const char **
2095gdbarch_printable_names (void)
2096{
7996bcec 2097 /* Accumulate a list of names based on the registed list of
0963b4bd 2098 architectures. */
7996bcec
AC
2099 int nr_arches = 0;
2100 const char **arches = NULL;
2101 struct gdbarch_registration *rego;
05c547f6 2102
7996bcec
AC
2103 for (rego = gdbarch_registry;
2104 rego != NULL;
2105 rego = rego->next)
b4a20239 2106 {
7996bcec
AC
2107 const struct bfd_arch_info *ap;
2108 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2109 if (ap == NULL)
2110 internal_error (__FILE__, __LINE__,
85c07804 2111 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2112 do
2113 {
2114 append_name (&arches, &nr_arches, ap->printable_name);
2115 ap = ap->next;
2116 }
2117 while (ap != NULL);
b4a20239 2118 }
7996bcec
AC
2119 append_name (&arches, &nr_arches, NULL);
2120 return arches;
b4a20239
AC
2121}
2122
2123
104c1213 2124void
4b9b3959
AC
2125gdbarch_register (enum bfd_architecture bfd_architecture,
2126 gdbarch_init_ftype *init,
2127 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2128{
4b9b3959 2129 struct gdbarch_registration **curr;
104c1213 2130 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2131
ec3d358c 2132 /* Check that BFD recognizes this architecture */
104c1213
JM
2133 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2134 if (bfd_arch_info == NULL)
2135 {
8e65ff28 2136 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2137 _("gdbarch: Attempt to register "
2138 "unknown architecture (%d)"),
8e65ff28 2139 bfd_architecture);
104c1213 2140 }
0963b4bd 2141 /* Check that we haven't seen this architecture before. */
f44c642f 2142 for (curr = &gdbarch_registry;
104c1213
JM
2143 (*curr) != NULL;
2144 curr = &(*curr)->next)
2145 {
2146 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2147 internal_error (__FILE__, __LINE__,
64b9b334 2148 _("gdbarch: Duplicate registration "
0963b4bd 2149 "of architecture (%s)"),
8e65ff28 2150 bfd_arch_info->printable_name);
104c1213
JM
2151 }
2152 /* log it */
2153 if (gdbarch_debug)
30737ed9 2154 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2155 bfd_arch_info->printable_name,
30737ed9 2156 host_address_to_string (init));
104c1213 2157 /* Append it */
70ba0933 2158 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2159 (*curr)->bfd_architecture = bfd_architecture;
2160 (*curr)->init = init;
4b9b3959 2161 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2162 (*curr)->arches = NULL;
2163 (*curr)->next = NULL;
4b9b3959
AC
2164}
2165
2166void
2167register_gdbarch_init (enum bfd_architecture bfd_architecture,
2168 gdbarch_init_ftype *init)
2169{
2170 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2171}
104c1213
JM
2172
2173
424163ea 2174/* Look for an architecture using gdbarch_info. */
104c1213
JM
2175
2176struct gdbarch_list *
2177gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2178 const struct gdbarch_info *info)
2179{
2180 for (; arches != NULL; arches = arches->next)
2181 {
2182 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2183 continue;
2184 if (info->byte_order != arches->gdbarch->byte_order)
2185 continue;
4be87837
DJ
2186 if (info->osabi != arches->gdbarch->osabi)
2187 continue;
424163ea
DJ
2188 if (info->target_desc != arches->gdbarch->target_desc)
2189 continue;
104c1213
JM
2190 return arches;
2191 }
2192 return NULL;
2193}
2194
2195
ebdba546 2196/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2197 architecture if needed. Return that new architecture. */
104c1213 2198
59837fe0
UW
2199struct gdbarch *
2200gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2201{
2202 struct gdbarch *new_gdbarch;
4b9b3959 2203 struct gdbarch_registration *rego;
104c1213 2204
b732d07d 2205 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2206 sources: "set ..."; INFOabfd supplied; and the global
2207 defaults. */
2208 gdbarch_info_fill (&info);
4be87837 2209
0963b4bd 2210 /* Must have found some sort of architecture. */
b732d07d 2211 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2212
2213 if (gdbarch_debug)
2214 {
2215 fprintf_unfiltered (gdb_stdlog,
59837fe0 2216 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2217 (info.bfd_arch_info != NULL
2218 ? info.bfd_arch_info->printable_name
2219 : "(null)"));
2220 fprintf_unfiltered (gdb_stdlog,
59837fe0 2221 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2222 info.byte_order,
d7449b42 2223 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2224 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2225 : "default"));
4be87837 2226 fprintf_unfiltered (gdb_stdlog,
59837fe0 2227 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2228 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2229 fprintf_unfiltered (gdb_stdlog,
59837fe0 2230 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2231 host_address_to_string (info.abfd));
104c1213 2232 fprintf_unfiltered (gdb_stdlog,
59837fe0 2233 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2234 host_address_to_string (info.tdep_info));
104c1213
JM
2235 }
2236
ebdba546 2237 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2238 for (rego = gdbarch_registry;
2239 rego != NULL;
2240 rego = rego->next)
2241 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2242 break;
2243 if (rego == NULL)
2244 {
2245 if (gdbarch_debug)
59837fe0 2246 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2247 "No matching architecture\n");
b732d07d
AC
2248 return 0;
2249 }
2250
ebdba546 2251 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2252 new_gdbarch = rego->init (info, rego->arches);
2253
ebdba546
AC
2254 /* Did the tdep code like it? No. Reject the change and revert to
2255 the old architecture. */
104c1213
JM
2256 if (new_gdbarch == NULL)
2257 {
2258 if (gdbarch_debug)
59837fe0 2259 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2260 "Target rejected architecture\n");
2261 return NULL;
104c1213
JM
2262 }
2263
ebdba546
AC
2264 /* Is this a pre-existing architecture (as determined by already
2265 being initialized)? Move it to the front of the architecture
2266 list (keeping the list sorted Most Recently Used). */
2267 if (new_gdbarch->initialized_p)
104c1213 2268 {
ebdba546
AC
2269 struct gdbarch_list **list;
2270 struct gdbarch_list *this;
104c1213 2271 if (gdbarch_debug)
59837fe0 2272 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2273 "Previous architecture %s (%s) selected\n",
2274 host_address_to_string (new_gdbarch),
104c1213 2275 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2276 /* Find the existing arch in the list. */
2277 for (list = &rego->arches;
2278 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2279 list = &(*list)->next);
2280 /* It had better be in the list of architectures. */
2281 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2282 /* Unlink THIS. */
2283 this = (*list);
2284 (*list) = this->next;
2285 /* Insert THIS at the front. */
2286 this->next = rego->arches;
2287 rego->arches = this;
2288 /* Return it. */
2289 return new_gdbarch;
104c1213
JM
2290 }
2291
ebdba546
AC
2292 /* It's a new architecture. */
2293 if (gdbarch_debug)
59837fe0 2294 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2295 "New architecture %s (%s) selected\n",
2296 host_address_to_string (new_gdbarch),
ebdba546
AC
2297 new_gdbarch->bfd_arch_info->printable_name);
2298
2299 /* Insert the new architecture into the front of the architecture
2300 list (keep the list sorted Most Recently Used). */
0f79675b 2301 {
70ba0933 2302 struct gdbarch_list *this = XNEW (struct gdbarch_list);
0f79675b
AC
2303 this->next = rego->arches;
2304 this->gdbarch = new_gdbarch;
2305 rego->arches = this;
2306 }
104c1213 2307
4b9b3959
AC
2308 /* Check that the newly installed architecture is valid. Plug in
2309 any post init values. */
2310 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2311 verify_gdbarch (new_gdbarch);
ebdba546 2312 new_gdbarch->initialized_p = 1;
104c1213 2313
4b9b3959 2314 if (gdbarch_debug)
ebdba546
AC
2315 gdbarch_dump (new_gdbarch, gdb_stdlog);
2316
2317 return new_gdbarch;
2318}
2319
e487cc15 2320/* Make the specified architecture current. */
ebdba546
AC
2321
2322void
aff68abb 2323set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2324{
2325 gdb_assert (new_gdbarch != NULL);
ebdba546 2326 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2327 current_inferior ()->gdbarch = new_gdbarch;
383f836e 2328 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2329 registers_changed ();
ebdba546 2330}
104c1213 2331
f5656ead 2332/* Return the current inferior's arch. */
6ecd4729
PA
2333
2334struct gdbarch *
f5656ead 2335target_gdbarch (void)
6ecd4729
PA
2336{
2337 return current_inferior ()->gdbarch;
2338}
2339
104c1213 2340extern void _initialize_gdbarch (void);
b4a20239 2341
104c1213 2342void
34620563 2343_initialize_gdbarch (void)
104c1213 2344{
ccce17b0 2345 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2346Set architecture debugging."), _("\\
2347Show architecture debugging."), _("\\
2348When non-zero, architecture debugging is enabled."),
2349 NULL,
920d2a44 2350 show_gdbarch_debug,
85c07804 2351 &setdebuglist, &showdebuglist);
104c1213
JM
2352}
2353EOF
2354
2355# close things off
2356exec 1>&2
2357#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2358compare_new gdbarch.c
This page took 1.214075 seconds and 4 git commands to generate.