2004-03-15 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4
AC
4#
5# Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
6# Foundation, Inc.
7#
104c1213
JM
8#
9# This file is part of GDB.
10#
11# This program is free software; you can redistribute it and/or modify
12# it under the terms of the GNU General Public License as published by
13# the Free Software Foundation; either version 2 of the License, or
14# (at your option) any later version.
15#
16# This program is distributed in the hope that it will be useful,
17# but WITHOUT ANY WARRANTY; without even the implied warranty of
18# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19# GNU General Public License for more details.
20#
21# You should have received a copy of the GNU General Public License
22# along with this program; if not, write to the Free Software
23# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24
d8864532
AC
25# Make certain that the script is running in an internationalized
26# environment.
27LANG=c ; export LANG
1bd316f0 28LC_ALL=c ; export LC_ALL
d8864532
AC
29
30
59233f88
AC
31compare_new ()
32{
33 file=$1
66b43ecb 34 if test ! -r ${file}
59233f88
AC
35 then
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 37 elif diff -u ${file} new-${file}
59233f88
AC
38 then
39 echo "${file} unchanged" 1>&2
40 else
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
42 fi
43}
44
45
46# Format of the input table
0b8f9e4d 47read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
c0e8c252
AC
48
49do_read ()
50{
34620563
AC
51 comment=""
52 class=""
53 while read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
3d9a5942
AC
78 # .... and then going back through each field and strip out those
79 # that ended up with just that space character.
80 for r in ${read}
81 do
82 if eval test \"\${${r}}\" = \"\ \"
83 then
84 eval ${r}=""
85 fi
86 done
87
50248794
AC
88 case "${level}" in
89 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
90 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
e669114a 91 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
50248794
AC
92 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
93 esac
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14
AC
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
34620563
AC
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
06b25f14 117
ae45cd16
AC
118 case "${class}" in
119 F | V | M )
120 case "${invalid_p}" in
34620563 121 "" )
f7968451 122 if test -n "${predefault}"
34620563
AC
123 then
124 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 125 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
126 elif class_is_variable_p
127 then
128 predicate="gdbarch->${function} != 0"
129 elif class_is_function_p
130 then
131 predicate="gdbarch->${function} != NULL"
34620563
AC
132 fi
133 ;;
ae45cd16 134 * )
1e9f55d0 135 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
136 kill $$
137 exit 1
138 ;;
139 esac
34620563
AC
140 esac
141
142 # PREDEFAULT is a valid fallback definition of MEMBER when
143 # multi-arch is not enabled. This ensures that the
144 # default value, when multi-arch is the same as the
145 # default value when not multi-arch. POSTDEFAULT is
146 # always a valid definition of MEMBER as this again
147 # ensures consistency.
148
72e74a21 149 if [ -n "${postdefault}" ]
34620563
AC
150 then
151 fallbackdefault="${postdefault}"
72e74a21 152 elif [ -n "${predefault}" ]
34620563
AC
153 then
154 fallbackdefault="${predefault}"
155 else
73d3c16e 156 fallbackdefault="0"
34620563
AC
157 fi
158
159 #NOT YET: See gdbarch.log for basic verification of
160 # database
161
162 break
f0d4cc9e 163 fi
34620563 164 done
72e74a21 165 if [ -n "${class}" ]
34620563
AC
166 then
167 true
c0e8c252
AC
168 else
169 false
170 fi
171}
172
104c1213 173
f0d4cc9e
AC
174fallback_default_p ()
175{
72e74a21
JB
176 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
177 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
178}
179
180class_is_variable_p ()
181{
4a5c6a1d
AC
182 case "${class}" in
183 *v* | *V* ) true ;;
184 * ) false ;;
185 esac
f0d4cc9e
AC
186}
187
188class_is_function_p ()
189{
4a5c6a1d
AC
190 case "${class}" in
191 *f* | *F* | *m* | *M* ) true ;;
192 * ) false ;;
193 esac
194}
195
196class_is_multiarch_p ()
197{
198 case "${class}" in
199 *m* | *M* ) true ;;
200 * ) false ;;
201 esac
f0d4cc9e
AC
202}
203
204class_is_predicate_p ()
205{
4a5c6a1d
AC
206 case "${class}" in
207 *F* | *V* | *M* ) true ;;
208 * ) false ;;
209 esac
f0d4cc9e
AC
210}
211
212class_is_info_p ()
213{
4a5c6a1d
AC
214 case "${class}" in
215 *i* ) true ;;
216 * ) false ;;
217 esac
f0d4cc9e
AC
218}
219
220
cff3e48b
JM
221# dump out/verify the doco
222for field in ${read}
223do
224 case ${field} in
225
226 class ) : ;;
c4093a6a 227
c0e8c252
AC
228 # # -> line disable
229 # f -> function
230 # hiding a function
2ada493a
AC
231 # F -> function + predicate
232 # hiding a function + predicate to test function validity
c0e8c252
AC
233 # v -> variable
234 # hiding a variable
2ada493a
AC
235 # V -> variable + predicate
236 # hiding a variable + predicate to test variables validity
c0e8c252
AC
237 # i -> set from info
238 # hiding something from the ``struct info'' object
4a5c6a1d
AC
239 # m -> multi-arch function
240 # hiding a multi-arch function (parameterised with the architecture)
241 # M -> multi-arch function + predicate
242 # hiding a multi-arch function + predicate to test function validity
cff3e48b
JM
243
244 level ) : ;;
245
c0e8c252
AC
246 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
247 # LEVEL is a predicate on checking that a given method is
248 # initialized (using INVALID_P).
cff3e48b
JM
249
250 macro ) : ;;
251
c0e8c252 252 # The name of the MACRO that this method is to be accessed by.
cff3e48b
JM
253
254 returntype ) : ;;
255
c0e8c252 256 # For functions, the return type; for variables, the data type
cff3e48b
JM
257
258 function ) : ;;
259
c0e8c252
AC
260 # For functions, the member function name; for variables, the
261 # variable name. Member function names are always prefixed with
262 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
263
264 formal ) : ;;
265
c0e8c252
AC
266 # The formal argument list. It is assumed that the formal
267 # argument list includes the actual name of each list element.
268 # A function with no arguments shall have ``void'' as the
269 # formal argument list.
cff3e48b
JM
270
271 actual ) : ;;
272
c0e8c252
AC
273 # The list of actual arguments. The arguments specified shall
274 # match the FORMAL list given above. Functions with out
275 # arguments leave this blank.
cff3e48b
JM
276
277 attrib ) : ;;
278
c0e8c252
AC
279 # Any GCC attributes that should be attached to the function
280 # declaration. At present this field is unused.
cff3e48b 281
0b8f9e4d 282 staticdefault ) : ;;
c0e8c252
AC
283
284 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
285 # created. STATICDEFAULT is the value to insert into that
286 # static gdbarch object. Since this a static object only
287 # simple expressions can be used.
cff3e48b 288
0b8f9e4d 289 # If STATICDEFAULT is empty, zero is used.
c0e8c252 290
0b8f9e4d 291 predefault ) : ;;
cff3e48b 292
10312cc4
AC
293 # An initial value to assign to MEMBER of the freshly
294 # malloc()ed gdbarch object. After initialization, the
295 # freshly malloc()ed object is passed to the target
296 # architecture code for further updates.
cff3e48b 297
0b8f9e4d
AC
298 # If PREDEFAULT is empty, zero is used.
299
10312cc4
AC
300 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
301 # INVALID_P are specified, PREDEFAULT will be used as the
302 # default for the non- multi-arch target.
303
304 # A zero PREDEFAULT function will force the fallback to call
305 # internal_error().
f0d4cc9e
AC
306
307 # Variable declarations can refer to ``gdbarch'' which will
308 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
309
310 postdefault ) : ;;
311
312 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
313 # the target architecture code fail to change the PREDEFAULT
314 # value.
0b8f9e4d
AC
315
316 # If POSTDEFAULT is empty, no post update is performed.
317
318 # If both INVALID_P and POSTDEFAULT are non-empty then
319 # INVALID_P will be used to determine if MEMBER should be
320 # changed to POSTDEFAULT.
321
10312cc4
AC
322 # If a non-empty POSTDEFAULT and a zero INVALID_P are
323 # specified, POSTDEFAULT will be used as the default for the
324 # non- multi-arch target (regardless of the value of
325 # PREDEFAULT).
326
f0d4cc9e
AC
327 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
328
db446970
AC
329 # Variable declarations can refer to ``current_gdbarch'' which
330 # will contain the current architecture. Care should be
331 # taken.
cff3e48b 332
c4093a6a 333 invalid_p ) : ;;
cff3e48b 334
0b8f9e4d 335 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 336 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
337 # initialize MEMBER or the initialized the member is invalid.
338 # If POSTDEFAULT is non-empty then MEMBER will be updated to
339 # that value. If POSTDEFAULT is empty then internal_error()
340 # is called.
341
342 # If INVALID_P is empty, a check that MEMBER is no longer
343 # equal to PREDEFAULT is used.
344
f0d4cc9e
AC
345 # The expression ``0'' disables the INVALID_P check making
346 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
347
348 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b
JM
349
350 fmt ) : ;;
351
c0e8c252
AC
352 # printf style format string that can be used to print out the
353 # MEMBER. Sometimes "%s" is useful. For functions, this is
354 # ignored and the function address is printed.
355
0b8f9e4d 356 # If FMT is empty, ``%ld'' is used.
cff3e48b
JM
357
358 print ) : ;;
359
c0e8c252
AC
360 # An optional equation that casts MEMBER to a value suitable
361 # for formatting by FMT.
362
0b8f9e4d 363 # If PRINT is empty, ``(long)'' is used.
cff3e48b
JM
364
365 print_p ) : ;;
366
c0e8c252
AC
367 # An optional indicator for any predicte to wrap around the
368 # print member code.
369
4b9b3959 370 # () -> Call a custom function to do the dump.
c0e8c252
AC
371 # exp -> Wrap print up in ``if (${print_p}) ...
372 # ``'' -> No predicate
cff3e48b 373
0b8f9e4d
AC
374 # If PRINT_P is empty, ``1'' is always used.
375
cff3e48b
JM
376 description ) : ;;
377
0b8f9e4d 378 # Currently unused.
cff3e48b 379
50248794
AC
380 *)
381 echo "Bad field ${field}"
382 exit 1;;
cff3e48b
JM
383 esac
384done
385
cff3e48b 386
104c1213
JM
387function_list ()
388{
cff3e48b 389 # See below (DOCO) for description of each field
34620563 390 cat <<EOF
0b8f9e4d 391i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
104c1213 392#
d7449b42 393i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
4be87837
DJ
394#
395i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
66b43ecb
AC
396# Number of bits in a char or unsigned char for the target machine.
397# Just like CHAR_BIT in <limits.h> but describes the target machine.
e669114a 398# v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
399#
400# Number of bits in a short or unsigned short for the target machine.
e669114a 401v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 402# Number of bits in an int or unsigned int for the target machine.
e669114a 403v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 404# Number of bits in a long or unsigned long for the target machine.
e669114a 405v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
406# Number of bits in a long long or unsigned long long for the target
407# machine.
e669114a 408v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
66b43ecb 409# Number of bits in a float for the target machine.
e669114a 410v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
66b43ecb 411# Number of bits in a double for the target machine.
e669114a 412v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
66b43ecb 413# Number of bits in a long double for the target machine.
e669114a 414v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
52204a0b
DT
415# For most targets, a pointer on the target and its representation as an
416# address in GDB have the same size and "look the same". For such a
417# target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
418# / addr_bit will be set from it.
419#
420# If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
421# also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
422#
423# ptr_bit is the size of a pointer on the target
e669114a 424v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
52204a0b 425# addr_bit is the size of a target address as represented in gdb
e669114a 426v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
66b43ecb 427# Number of bits in a BFD_VMA for the target object file format.
e669114a 428v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
104c1213 429#
4e409299 430# One if \`char' acts like \`signed char', zero if \`unsigned char'.
e669114a 431v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
4e409299 432#
cde9ea48 433F:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
e669114a 434f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
a9e5fdc2 435# UNWIND_SP is a direct replacement for TARGET_READ_SP.
bd1ce8ba 436F:2:TARGET_READ_SP:CORE_ADDR:read_sp:void
39d4ef09
AC
437# Function for getting target's idea of a frame pointer. FIXME: GDB's
438# whole scheme for dealing with "frames" and "frame pointers" needs a
439# serious shakedown.
e669114a 440f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
66b43ecb 441#
f7968451
AC
442M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
443M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
61a0eb5b 444#
104c1213 445v:2:NUM_REGS:int:num_regs::::0:-1
0aba1244
EZ
446# This macro gives the number of pseudo-registers that live in the
447# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
448# These pseudo-registers may be aliases for other registers,
449# combinations of other registers, or they may be computed by GDB.
0aba1244 450v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
c2169756
AC
451
452# GDB's standard (or well known) register numbers. These can map onto
453# a real register or a pseudo (computed) register or not be defined at
1200cd6e 454# all (-1).
a9e5fdc2 455# SP_REGNUM will hopefully be replaced by UNWIND_SP.
1200cd6e 456v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
1200cd6e 457v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
c2169756 458v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
0b8f9e4d 459v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
88c72b7d
AC
460# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
461f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
462# Provide a default mapping from a ecoff register number to a gdb REGNUM.
463f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
464# Provide a default mapping from a DWARF register number to a gdb REGNUM.
465f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
466# Convert from an sdb register number to an internal gdb register number.
88c72b7d
AC
467f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
468f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
e23457df 469f::REGISTER_NAME:const char *:register_name:int regnr:regnr
9c04cab7 470
2e092625 471# REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
f7968451 472M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr
2e092625
AC
473# REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
474F:2:DEPRECATED_REGISTER_VIRTUAL_TYPE:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr
9c04cab7
AC
475# DEPRECATED_REGISTER_BYTES can be deleted. The value is computed
476# from REGISTER_TYPE.
b8b527c5 477v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
f3be58bc
AC
478# If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
479# register offsets computed using just REGISTER_TYPE, this can be
480# deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
481# function with predicate has a valid (callable) initial value. As a
482# consequence, even when the predicate is false, the corresponding
483# function works. This simplifies the migration process - old code,
484# calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
62700349 485F::DEPRECATED_REGISTER_BYTE:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
f3be58bc
AC
486# If all registers have identical raw and virtual sizes and those
487# sizes agree with the value computed from REGISTER_TYPE,
488# DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print
489# registers.
12c266ea 490F:2:DEPRECATED_REGISTER_RAW_SIZE:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
f3be58bc
AC
491# If all registers have identical raw and virtual sizes and those
492# sizes agree with the value computed from REGISTER_TYPE,
493# DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print
494# registers.
f30992d4 495F:2:DEPRECATED_REGISTER_VIRTUAL_SIZE:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
9c04cab7
AC
496# DEPRECATED_MAX_REGISTER_RAW_SIZE can be deleted. It has been
497# replaced by the constant MAX_REGISTER_SIZE.
a0ed5532 498V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
9c04cab7
AC
499# DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE can be deleted. It has been
500# replaced by the constant MAX_REGISTER_SIZE.
a0ed5532 501V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
9c04cab7 502
f3be58bc 503# See gdbint.texinfo, and PUSH_DUMMY_CALL.
f7968451 504M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info
f3be58bc
AC
505# Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
506# SAVE_DUMMY_FRAME_TOS.
a59fe496 507F:2:DEPRECATED_SAVE_DUMMY_FRAME_TOS:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp
f3be58bc
AC
508# Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
509# DEPRECATED_FP_REGNUM.
510v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
511# Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
512# DEPRECATED_TARGET_READ_FP.
513F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
514
b8de8283
AC
515# See gdbint.texinfo. See infcall.c. New, all singing all dancing,
516# replacement for DEPRECATED_PUSH_ARGUMENTS.
517M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:func_addr, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
518# PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
519F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
520# DEPRECATED_USE_GENERIC_DUMMY_FRAMES can be deleted. Always true.
521v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
522# Implement PUSH_RETURN_ADDRESS, and then merge in
523# DEPRECATED_PUSH_RETURN_ADDRESS.
f7968451 524F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp
b8de8283
AC
525# Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
526F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
527# DEPRECATED_REGISTER_SIZE can be deleted.
528v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
529v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
b8de8283
AC
530# DEPRECATED_CALL_DUMMY_START_OFFSET can be deleted.
531v::DEPRECATED_CALL_DUMMY_START_OFFSET:CORE_ADDR:deprecated_call_dummy_start_offset
532# DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET can be deleted.
533v::DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:deprecated_call_dummy_breakpoint_offset
534# DEPRECATED_CALL_DUMMY_LENGTH can be deleted.
535v::DEPRECATED_CALL_DUMMY_LENGTH:int:deprecated_call_dummy_length
536# DEPRECATED_CALL_DUMMY_WORDS can be deleted.
537v::DEPRECATED_CALL_DUMMY_WORDS:LONGEST *:deprecated_call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
538# Implement PUSH_DUMMY_CALL, then delete DEPRECATED_SIZEOF_CALL_DUMMY_WORDS.
539v::DEPRECATED_SIZEOF_CALL_DUMMY_WORDS:int:deprecated_sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
b8de8283
AC
540# DEPRECATED_FIX_CALL_DUMMY can be deleted. For the SPARC, implement
541# PUSH_DUMMY_CODE and set CALL_DUMMY_LOCATION to ON_STACK.
542F::DEPRECATED_FIX_CALL_DUMMY:void:deprecated_fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
543# This is a replacement for DEPRECATED_FIX_CALL_DUMMY et.al.
f7968451 544M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
b8de8283 545# Implement PUSH_DUMMY_CALL, then delete DEPRECATED_PUSH_DUMMY_FRAME.
f7968451 546F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-
b8de8283 547
903ad3a6 548F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
0ab7a791 549m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
23e3a7ac 550M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
e76f1f2e 551M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
552# MAP a GDB RAW register number onto a simulator register number. See
553# also include/...-sim.h.
8238d0bf 554f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
f7968451 555F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes
01fb7433
AC
556f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
557f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
9df628e0 558# setjmp/longjmp support.
f7968451 559F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc
ae45cd16
AC
560# NOTE: cagney/2002-11-24: This function with predicate has a valid
561# (callable) initial value. As a consequence, even when the predicate
562# is false, the corresponding function works. This simplifies the
563# migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
564# doesn't need to be modified.
55e1d7e7 565F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
97f46953 566F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
e669114a 567F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
104c1213 568#
f0d4cc9e 569v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
e669114a 570v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
129c1cd6 571F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
104c1213 572#
781a750d
AC
573# For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
574# For raw <-> cooked register conversions, replaced by pseudo registers.
cd0bfa36 575F::DEPRECATED_REGISTER_CONVERTIBLE:int:deprecated_register_convertible:int nr:nr
781a750d
AC
576# For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
577# For raw <-> cooked register conversions, replaced by pseudo registers.
578f:2:DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL:void:deprecated_register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
579# For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
580# For raw <-> cooked register conversions, replaced by pseudo registers.
581f:2:DEPRECATED_REGISTER_CONVERT_TO_RAW:void:deprecated_register_convert_to_raw:struct type *type, int regnum, const char *from, char *to:type, regnum, from, to:::0::0
13d01224 582#
ff2e87ac
AC
583f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum, struct type *type:regnum, type::0:legacy_convert_register_p::0
584f:1:REGISTER_TO_VALUE:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0:legacy_register_to_value::0
585f:1:VALUE_TO_REGISTER:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0:legacy_value_to_register::0
104c1213 586#
66140c26 587f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
ac2e2ef7 588f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
fc0c74b1 589F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
4478b372 590#
f7968451 591F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-
4183d812 592# NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
f7968451 593F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
92ad9cd9
AC
594
595# It has been suggested that this, well actually its predecessor,
596# should take the type/value of the function to be called and not the
597# return type. This is left as an exercise for the reader.
598
963e2bb7 599M:::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, void *readbuf, const void *writebuf:valtype, regcache, readbuf, writebuf
92ad9cd9
AC
600
601# The deprecated methods RETURN_VALUE_ON_STACK, EXTRACT_RETURN_VALUE,
602# STORE_RETURN_VALUE and USE_STRUCT_CONVENTION have all been folded
74055713 603# into RETURN_VALUE.
92ad9cd9
AC
604
605f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
e669114a
AC
606f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
607f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
608f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
609f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
92ad9cd9
AC
610f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
611
74055713
AC
612# As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
613# ABI suitable for the implementation of a robust extract
614# struct-convention return-value address method (the sparc saves the
615# address in the callers frame). All the other cases so far examined,
616# the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
617# erreneous - the code was incorrectly assuming that the return-value
618# address, stored in a register, was preserved across the entire
619# function call.
620
621# For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
622# the ABIs that are still to be analyzed - perhaps this should simply
623# be deleted. The commented out extract_returned_value_address method
624# is provided as a starting point for the 32-bit SPARC. It, or
625# something like it, along with changes to both infcmd.c and stack.c
626# will be needed for that case to work. NB: It is passed the callers
627# frame since it is only after the callee has returned that this
628# function is used.
629
630#M:::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
631F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
632
f7968451
AC
633F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame
634F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame
104c1213
JM
635#
636f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
637f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
aaab4dba 638f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
a1131521 639M:2:ADJUST_BREAKPOINT_ADDRESS:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
0b8f9e4d
AC
640f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
641f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
71bd6bd4 642v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:::0
6503b91e 643v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:::0
104c1213 644#
f6684c31 645m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
104c1213 646#
5867a2fb 647v::FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:::0
19772a2c
AC
648# DEPRECATED_FRAMELESS_FUNCTION_INVOCATION is not needed. The new
649# frame code works regardless of the type of frame - frameless,
650# stackless, or normal.
651F::DEPRECATED_FRAMELESS_FUNCTION_INVOCATION:int:deprecated_frameless_function_invocation:struct frame_info *fi:fi
f7968451
AC
652F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame
653F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe
8bedc050
AC
654# DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
655# note, per UNWIND_PC's doco, that while the two have similar
656# interfaces they have very different underlying implementations.
f7968451
AC
657F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi
658M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
659M::UNWIND_SP:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
660# DEPRECATED_FRAME_ARGS_ADDRESS as been replaced by the per-frame
661# frame-base. Enable frame-base before frame-unwind.
662F::DEPRECATED_FRAME_ARGS_ADDRESS:CORE_ADDR:deprecated_frame_args_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
663# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
664# frame-base. Enable frame-base before frame-unwind.
665F::DEPRECATED_FRAME_LOCALS_ADDRESS:CORE_ADDR:deprecated_frame_locals_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
6913c89a 666F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
983a287a 667F:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
104c1213 668#
f27dd7fd
AC
669# DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
670# to frame_align and the requirement that methods such as
671# push_dummy_call and frame_red_zone_size maintain correct stack/frame
672# alignment.
673F:2:DEPRECATED_STACK_ALIGN:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
dc604539 674M:::CORE_ADDR:frame_align:CORE_ADDR address:address
192cb3d4
MK
675# DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
676# stabs_argument_has_addr.
8e823e25 677F:2:DEPRECATED_REG_STRUCT_HAS_ADDR:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
192cb3d4 678m:::int:stabs_argument_has_addr:struct type *type:type:::default_stabs_argument_has_addr::0
8b148df9 679v::FRAME_RED_ZONE_SIZE:int:frame_red_zone_size
58d5518e 680v:2:PARM_BOUNDARY:int:parm_boundary
f0d4cc9e 681#
db446970
AC
682v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (current_gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
683v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
684v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
e2d0e7eb 685m:::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ:::convert_from_func_ptr_addr_identity::0
875e1767
AC
686# On some machines there are bits in addresses which are not really
687# part of the address, but are used by the kernel, the hardware, etc.
688# for special purposes. ADDR_BITS_REMOVE takes out any such bits so
689# we get a "real" address such as one would find in a symbol table.
690# This is used only for addresses of instructions, and even then I'm
691# not sure it's used in all contexts. It exists to deal with there
692# being a few stray bits in the PC which would mislead us, not as some
693# sort of generic thing to handle alignment or segmentation (it's
694# possible it should be in TARGET_READ_PC instead).
695f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
f6214256 696# It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
181c1381
RE
697# ADDR_BITS_REMOVE.
698f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
64c4637f
AC
699# FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
700# the target needs software single step. An ISA method to implement it.
701#
702# FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
703# using the breakpoint system instead of blatting memory directly (as with rs6000).
704#
705# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
706# single step. If not, then implement single step using breakpoints.
f7968451 707F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
f6c40618
AC
708# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
709# disassembler. Perhaphs objdump can handle it?
a89aa300 710f::TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info:::0:
bdcd319a 711f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
d50355b6
MS
712
713
dea0c52f
MK
714# If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
715# evaluates non-zero, this is the address where the debugger will place
716# a step-resume breakpoint to get us past the dynamic linker.
4c8c40e6 717m:2:SKIP_SOLIB_RESOLVER:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc:::generic_skip_solib_resolver::0
68e9cc94
CV
718# For SVR4 shared libraries, each call goes through a small piece of
719# trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
d50355b6 720# to nonzero if we are currently stopped in one of these.
68e9cc94 721f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
d50355b6
MS
722
723# Some systems also have trampoline code for returning from shared libs.
724f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
725
d7bd68ca
AC
726# Sigtramp is a routine that the kernel calls (which then calls the
727# signal handler). On most machines it is a library routine that is
728# linked into the executable.
729#
730# This macro, given a program counter value and the name of the
731# function in which that PC resides (which can be null if the name is
732# not known), returns nonzero if the PC and name show that we are in
733# sigtramp.
734#
735# On most machines just see if the name is sigtramp (and if we have
736# no name, assume we are not in sigtramp).
737#
738# FIXME: cagney/2002-04-21: The function find_pc_partial_function
739# calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
740# This means PC_IN_SIGTRAMP function can't be implemented by doing its
741# own local NAME lookup.
742#
743# FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
744# Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
745# does not.
746f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
43156d82 747F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
e669114a 748F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
c12260ac
CV
749# A target might have problems with watchpoints as soon as the stack
750# frame of the current function has been destroyed. This mostly happens
751# as the first action in a funtion's epilogue. in_function_epilogue_p()
752# is defined to return a non-zero value if either the given addr is one
753# instruction after the stack destroying instruction up to the trailing
754# return instruction or if we can figure out that the stack frame has
755# already been invalidated regardless of the value of addr. Targets
756# which don't suffer from that problem could just let this functionality
757# untouched.
758m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
552c04a7
TT
759# Given a vector of command-line arguments, return a newly allocated
760# string which, when passed to the create_inferior function, will be
761# parsed (on Unix systems, by the shell) to yield the same vector.
762# This function should call error() if the argument vector is not
763# representable for this target or if this target does not support
764# command-line arguments.
765# ARGC is the number of elements in the vector.
766# ARGV is an array of strings, one per argument.
767m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
a2cf933a
EZ
768f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
769f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
e669114a
AC
770v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
771v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
772v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
8b2dbe47 773F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
f7968451 774M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags
321432c0 775M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 776# Is a register in a group
7e20f3fb 777m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
f6214256 778# Fetch the pointer to the ith function argument.
f7968451 779F::FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
780
781# Return the appropriate register set for a core file section with
782# name SECT_NAME and size SECT_SIZE.
783M:::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
104c1213 784EOF
104c1213
JM
785}
786
0b8f9e4d
AC
787#
788# The .log file
789#
790exec > new-gdbarch.log
34620563 791function_list | while do_read
0b8f9e4d
AC
792do
793 cat <<EOF
104c1213
JM
794${class} ${macro}(${actual})
795 ${returntype} ${function} ($formal)${attrib}
104c1213 796EOF
3d9a5942
AC
797 for r in ${read}
798 do
799 eval echo \"\ \ \ \ ${r}=\${${r}}\"
800 done
f0d4cc9e 801 if class_is_predicate_p && fallback_default_p
0b8f9e4d 802 then
66b43ecb 803 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
804 kill $$
805 exit 1
806 fi
72e74a21 807 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
808 then
809 echo "Error: postdefault is useless when invalid_p=0" 1>&2
810 kill $$
811 exit 1
812 fi
a72293e2
AC
813 if class_is_multiarch_p
814 then
815 if class_is_predicate_p ; then :
816 elif test "x${predefault}" = "x"
817 then
818 echo "Error: pure multi-arch function must have a predefault" 1>&2
819 kill $$
820 exit 1
821 fi
822 fi
3d9a5942 823 echo ""
0b8f9e4d
AC
824done
825
826exec 1>&2
827compare_new gdbarch.log
828
104c1213
JM
829
830copyright ()
831{
832cat <<EOF
59233f88
AC
833/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
834
104c1213 835/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4
AC
836
837 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
838 Software Foundation, Inc.
104c1213
JM
839
840 This file is part of GDB.
841
842 This program is free software; you can redistribute it and/or modify
843 it under the terms of the GNU General Public License as published by
844 the Free Software Foundation; either version 2 of the License, or
845 (at your option) any later version.
846
847 This program is distributed in the hope that it will be useful,
848 but WITHOUT ANY WARRANTY; without even the implied warranty of
849 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
850 GNU General Public License for more details.
851
852 You should have received a copy of the GNU General Public License
853 along with this program; if not, write to the Free Software
854 Foundation, Inc., 59 Temple Place - Suite 330,
855 Boston, MA 02111-1307, USA. */
856
104c1213
JM
857/* This file was created with the aid of \`\`gdbarch.sh''.
858
52204a0b 859 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
860 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
861 against the existing \`\`gdbarch.[hc]''. Any differences found
862 being reported.
863
864 If editing this file, please also run gdbarch.sh and merge any
52204a0b 865 changes into that script. Conversely, when making sweeping changes
104c1213
JM
866 to this file, modifying gdbarch.sh and using its output may prove
867 easier. */
868
869EOF
870}
871
872#
873# The .h file
874#
875
876exec > new-gdbarch.h
877copyright
878cat <<EOF
879#ifndef GDBARCH_H
880#define GDBARCH_H
881
da3331ec
AC
882struct floatformat;
883struct ui_file;
104c1213
JM
884struct frame_info;
885struct value;
b6af0555 886struct objfile;
a2cf933a 887struct minimal_symbol;
049ee0e4 888struct regcache;
b59ff9d5 889struct reggroup;
6ce6d90f 890struct regset;
a89aa300 891struct disassemble_info;
e2d0e7eb 892struct target_ops;
104c1213 893
104c1213
JM
894extern struct gdbarch *current_gdbarch;
895
896
104c1213
JM
897/* If any of the following are defined, the target wasn't correctly
898 converted. */
899
83905903
AC
900#if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
901#error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
902#endif
104c1213
JM
903EOF
904
905# function typedef's
3d9a5942
AC
906printf "\n"
907printf "\n"
908printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 909function_list | while do_read
104c1213 910do
2ada493a
AC
911 if class_is_info_p
912 then
3d9a5942
AC
913 printf "\n"
914 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
915 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
028c194b 916 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
83905903
AC
917 printf "#error \"Non multi-arch definition of ${macro}\"\n"
918 printf "#endif\n"
c25083af 919 printf "#if !defined (${macro})\n"
3d9a5942
AC
920 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
921 printf "#endif\n"
2ada493a 922 fi
104c1213
JM
923done
924
925# function typedef's
3d9a5942
AC
926printf "\n"
927printf "\n"
928printf "/* The following are initialized by the target dependent code. */\n"
34620563 929function_list | while do_read
104c1213 930do
72e74a21 931 if [ -n "${comment}" ]
34620563
AC
932 then
933 echo "${comment}" | sed \
934 -e '2 s,#,/*,' \
935 -e '3,$ s,#, ,' \
936 -e '$ s,$, */,'
937 fi
b77be6cf 938 if class_is_multiarch_p
2ada493a 939 then
b77be6cf
AC
940 if class_is_predicate_p
941 then
942 printf "\n"
943 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
944 fi
945 else
946 if class_is_predicate_p
947 then
948 printf "\n"
949 printf "#if defined (${macro})\n"
950 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
951 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
eee30e78 952 printf "#if !defined (${macro}_P)\n"
b77be6cf
AC
953 printf "#define ${macro}_P() (1)\n"
954 printf "#endif\n"
eee30e78 955 printf "#endif\n"
b77be6cf 956 printf "\n"
b77be6cf 957 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
028c194b 958 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
83905903
AC
959 printf "#error \"Non multi-arch definition of ${macro}\"\n"
960 printf "#endif\n"
028c194b 961 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
b77be6cf
AC
962 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
963 printf "#endif\n"
964 fi
4a5c6a1d 965 fi
2ada493a
AC
966 if class_is_variable_p
967 then
3d9a5942
AC
968 printf "\n"
969 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
970 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
028c194b 971 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
83905903
AC
972 printf "#error \"Non multi-arch definition of ${macro}\"\n"
973 printf "#endif\n"
c25083af
AC
974 printf "#if !defined (${macro})\n"
975 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
976 printf "#endif\n"
2ada493a
AC
977 fi
978 if class_is_function_p
979 then
3d9a5942 980 printf "\n"
72e74a21 981 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
982 then
983 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
984 elif class_is_multiarch_p
985 then
986 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
987 else
988 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
989 fi
72e74a21 990 if [ "x${formal}" = "xvoid" ]
104c1213 991 then
3d9a5942 992 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 993 else
3d9a5942 994 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 995 fi
3d9a5942 996 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
b77be6cf
AC
997 if class_is_multiarch_p ; then :
998 else
028c194b 999 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
83905903
AC
1000 printf "#error \"Non multi-arch definition of ${macro}\"\n"
1001 printf "#endif\n"
c25083af
AC
1002 if [ "x${actual}" = "x" ]
1003 then
1004 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
1005 elif [ "x${actual}" = "x-" ]
1006 then
1007 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
1008 else
1009 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
1010 fi
1011 printf "#if !defined (${macro})\n"
72e74a21 1012 if [ "x${actual}" = "x" ]
4a5c6a1d
AC
1013 then
1014 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
72e74a21 1015 elif [ "x${actual}" = "x-" ]
4a5c6a1d
AC
1016 then
1017 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
1018 else
1019 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
1020 fi
1021 printf "#endif\n"
104c1213 1022 fi
2ada493a 1023 fi
104c1213
JM
1024done
1025
1026# close it off
1027cat <<EOF
1028
1029extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1030
1031
1032/* Mechanism for co-ordinating the selection of a specific
1033 architecture.
1034
1035 GDB targets (*-tdep.c) can register an interest in a specific
1036 architecture. Other GDB components can register a need to maintain
1037 per-architecture data.
1038
1039 The mechanisms below ensures that there is only a loose connection
1040 between the set-architecture command and the various GDB
0fa6923a 1041 components. Each component can independently register their need
104c1213
JM
1042 to maintain architecture specific data with gdbarch.
1043
1044 Pragmatics:
1045
1046 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1047 didn't scale.
1048
1049 The more traditional mega-struct containing architecture specific
1050 data for all the various GDB components was also considered. Since
0fa6923a 1051 GDB is built from a variable number of (fairly independent)
104c1213
JM
1052 components it was determined that the global aproach was not
1053 applicable. */
1054
1055
1056/* Register a new architectural family with GDB.
1057
1058 Register support for the specified ARCHITECTURE with GDB. When
1059 gdbarch determines that the specified architecture has been
1060 selected, the corresponding INIT function is called.
1061
1062 --
1063
1064 The INIT function takes two parameters: INFO which contains the
1065 information available to gdbarch about the (possibly new)
1066 architecture; ARCHES which is a list of the previously created
1067 \`\`struct gdbarch'' for this architecture.
1068
0f79675b
AC
1069 The INFO parameter is, as far as possible, be pre-initialized with
1070 information obtained from INFO.ABFD or the previously selected
1071 architecture.
1072
1073 The ARCHES parameter is a linked list (sorted most recently used)
1074 of all the previously created architures for this architecture
1075 family. The (possibly NULL) ARCHES->gdbarch can used to access
1076 values from the previously selected architecture for this
1077 architecture family. The global \`\`current_gdbarch'' shall not be
1078 used.
104c1213
JM
1079
1080 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1081 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1082 gdbarch'' from the ARCHES list - indicating that the new
1083 architecture is just a synonym for an earlier architecture (see
1084 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1085 - that describes the selected architecture (see gdbarch_alloc()).
1086
1087 The DUMP_TDEP function shall print out all target specific values.
1088 Care should be taken to ensure that the function works in both the
1089 multi-arch and non- multi-arch cases. */
104c1213
JM
1090
1091struct gdbarch_list
1092{
1093 struct gdbarch *gdbarch;
1094 struct gdbarch_list *next;
1095};
1096
1097struct gdbarch_info
1098{
104c1213
JM
1099 /* Use default: NULL (ZERO). */
1100 const struct bfd_arch_info *bfd_arch_info;
1101
428721aa 1102 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
1103 int byte_order;
1104
1105 /* Use default: NULL (ZERO). */
1106 bfd *abfd;
1107
1108 /* Use default: NULL (ZERO). */
1109 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1110
1111 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1112 enum gdb_osabi osabi;
104c1213
JM
1113};
1114
1115typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1116typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1117
4b9b3959 1118/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1119extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1120
4b9b3959
AC
1121extern void gdbarch_register (enum bfd_architecture architecture,
1122 gdbarch_init_ftype *,
1123 gdbarch_dump_tdep_ftype *);
1124
104c1213 1125
b4a20239
AC
1126/* Return a freshly allocated, NULL terminated, array of the valid
1127 architecture names. Since architectures are registered during the
1128 _initialize phase this function only returns useful information
1129 once initialization has been completed. */
1130
1131extern const char **gdbarch_printable_names (void);
1132
1133
104c1213
JM
1134/* Helper function. Search the list of ARCHES for a GDBARCH that
1135 matches the information provided by INFO. */
1136
1137extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1138
1139
1140/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1141 basic initialization using values obtained from the INFO andTDEP
1142 parameters. set_gdbarch_*() functions are called to complete the
1143 initialization of the object. */
1144
1145extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1146
1147
4b9b3959
AC
1148/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1149 It is assumed that the caller freeds the \`\`struct
1150 gdbarch_tdep''. */
1151
058f20d5
JB
1152extern void gdbarch_free (struct gdbarch *);
1153
1154
aebd7893
AC
1155/* Helper function. Allocate memory from the \`\`struct gdbarch''
1156 obstack. The memory is freed when the corresponding architecture
1157 is also freed. */
1158
1159extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1160#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1161#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1162
1163
b732d07d 1164/* Helper function. Force an update of the current architecture.
104c1213 1165
b732d07d
AC
1166 The actual architecture selected is determined by INFO, \`\`(gdb) set
1167 architecture'' et.al., the existing architecture and BFD's default
1168 architecture. INFO should be initialized to zero and then selected
1169 fields should be updated.
104c1213 1170
16f33e29
AC
1171 Returns non-zero if the update succeeds */
1172
1173extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1174
1175
ebdba546
AC
1176/* Helper function. Find an architecture matching info.
1177
1178 INFO should be initialized using gdbarch_info_init, relevant fields
1179 set, and then finished using gdbarch_info_fill.
1180
1181 Returns the corresponding architecture, or NULL if no matching
1182 architecture was found. "current_gdbarch" is not updated. */
1183
1184extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1185
1186
1187/* Helper function. Set the global "current_gdbarch" to "gdbarch".
1188
1189 FIXME: kettenis/20031124: Of the functions that follow, only
1190 gdbarch_from_bfd is supposed to survive. The others will
1191 dissappear since in the future GDB will (hopefully) be truly
1192 multi-arch. However, for now we're still stuck with the concept of
1193 a single active architecture. */
1194
1195extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1196
104c1213
JM
1197
1198/* Register per-architecture data-pointer.
1199
1200 Reserve space for a per-architecture data-pointer. An identifier
1201 for the reserved data-pointer is returned. That identifer should
95160752 1202 be saved in a local static variable.
104c1213 1203
76860b5f
AC
1204 The per-architecture data-pointer is either initialized explicitly
1205 (set_gdbarch_data()) or implicitly (by INIT() via a call to
fcc1c85c
AC
1206 gdbarch_data()).
1207
1208 Memory for the per-architecture data shall be allocated using
1209 gdbarch_obstack_zalloc. That memory will be deleted when the
1210 corresponding architecture object is deleted.
104c1213 1211
95160752
AC
1212 When a previously created architecture is re-selected, the
1213 per-architecture data-pointer for that previous architecture is
76860b5f 1214 restored. INIT() is not re-called.
104c1213
JM
1215
1216 Multiple registrarants for any architecture are allowed (and
1217 strongly encouraged). */
1218
95160752 1219struct gdbarch_data;
104c1213 1220
95160752 1221typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
fcc1c85c 1222extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init);
95160752
AC
1223extern void set_gdbarch_data (struct gdbarch *gdbarch,
1224 struct gdbarch_data *data,
1225 void *pointer);
104c1213 1226
451fbdda 1227extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1228
1229
a8cf2722 1230
104c1213
JM
1231/* Register per-architecture memory region.
1232
1233 Provide a memory-region swap mechanism. Per-architecture memory
1234 region are created. These memory regions are swapped whenever the
1235 architecture is changed. For a new architecture, the memory region
1236 is initialized with zero (0) and the INIT function is called.
1237
1238 Memory regions are swapped / initialized in the order that they are
1239 registered. NULL DATA and/or INIT values can be specified.
1240
1241 New code should use register_gdbarch_data(). */
1242
1243typedef void (gdbarch_swap_ftype) (void);
046a4708
AC
1244extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1245#define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
104c1213
JM
1246
1247
1248
0fa6923a 1249/* Set the dynamic target-system-dependent parameters (architecture,
104c1213
JM
1250 byte-order, ...) using information found in the BFD */
1251
1252extern void set_gdbarch_from_file (bfd *);
1253
1254
e514a9d6
JM
1255/* Initialize the current architecture to the "first" one we find on
1256 our list. */
1257
1258extern void initialize_current_architecture (void);
1259
104c1213
JM
1260/* gdbarch trace variable */
1261extern int gdbarch_debug;
1262
4b9b3959 1263extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1264
1265#endif
1266EOF
1267exec 1>&2
1268#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1269compare_new gdbarch.h
104c1213
JM
1270
1271
1272#
1273# C file
1274#
1275
1276exec > new-gdbarch.c
1277copyright
1278cat <<EOF
1279
1280#include "defs.h"
7355ddba 1281#include "arch-utils.h"
104c1213 1282
104c1213
JM
1283#include "gdbcmd.h"
1284#include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
104c1213
JM
1285#include "symcat.h"
1286
f0d4cc9e 1287#include "floatformat.h"
104c1213 1288
95160752 1289#include "gdb_assert.h"
b66d6d2e 1290#include "gdb_string.h"
67c2c32c 1291#include "gdb-events.h"
b59ff9d5 1292#include "reggroups.h"
4be87837 1293#include "osabi.h"
aebd7893 1294#include "gdb_obstack.h"
95160752 1295
104c1213
JM
1296/* Static function declarations */
1297
b3cc3077 1298static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1299
104c1213
JM
1300/* Non-zero if we want to trace architecture code. */
1301
1302#ifndef GDBARCH_DEBUG
1303#define GDBARCH_DEBUG 0
1304#endif
1305int gdbarch_debug = GDBARCH_DEBUG;
1306
1307EOF
1308
1309# gdbarch open the gdbarch object
3d9a5942
AC
1310printf "\n"
1311printf "/* Maintain the struct gdbarch object */\n"
1312printf "\n"
1313printf "struct gdbarch\n"
1314printf "{\n"
76860b5f
AC
1315printf " /* Has this architecture been fully initialized? */\n"
1316printf " int initialized_p;\n"
aebd7893
AC
1317printf "\n"
1318printf " /* An obstack bound to the lifetime of the architecture. */\n"
1319printf " struct obstack *obstack;\n"
1320printf "\n"
3d9a5942 1321printf " /* basic architectural information */\n"
34620563 1322function_list | while do_read
104c1213 1323do
2ada493a
AC
1324 if class_is_info_p
1325 then
3d9a5942 1326 printf " ${returntype} ${function};\n"
2ada493a 1327 fi
104c1213 1328done
3d9a5942
AC
1329printf "\n"
1330printf " /* target specific vector. */\n"
1331printf " struct gdbarch_tdep *tdep;\n"
1332printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1333printf "\n"
1334printf " /* per-architecture data-pointers */\n"
95160752 1335printf " unsigned nr_data;\n"
3d9a5942
AC
1336printf " void **data;\n"
1337printf "\n"
1338printf " /* per-architecture swap-regions */\n"
1339printf " struct gdbarch_swap *swap;\n"
1340printf "\n"
104c1213
JM
1341cat <<EOF
1342 /* Multi-arch values.
1343
1344 When extending this structure you must:
1345
1346 Add the field below.
1347
1348 Declare set/get functions and define the corresponding
1349 macro in gdbarch.h.
1350
1351 gdbarch_alloc(): If zero/NULL is not a suitable default,
1352 initialize the new field.
1353
1354 verify_gdbarch(): Confirm that the target updated the field
1355 correctly.
1356
7e73cedf 1357 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1358 field is dumped out
1359
c0e8c252 1360 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1361 variable (base values on the host's c-type system).
1362
1363 get_gdbarch(): Implement the set/get functions (probably using
1364 the macro's as shortcuts).
1365
1366 */
1367
1368EOF
34620563 1369function_list | while do_read
104c1213 1370do
2ada493a
AC
1371 if class_is_variable_p
1372 then
3d9a5942 1373 printf " ${returntype} ${function};\n"
2ada493a
AC
1374 elif class_is_function_p
1375 then
3d9a5942 1376 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
2ada493a 1377 fi
104c1213 1378done
3d9a5942 1379printf "};\n"
104c1213
JM
1380
1381# A pre-initialized vector
3d9a5942
AC
1382printf "\n"
1383printf "\n"
104c1213
JM
1384cat <<EOF
1385/* The default architecture uses host values (for want of a better
1386 choice). */
1387EOF
3d9a5942
AC
1388printf "\n"
1389printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1390printf "\n"
1391printf "struct gdbarch startup_gdbarch =\n"
1392printf "{\n"
76860b5f 1393printf " 1, /* Always initialized. */\n"
aebd7893 1394printf " NULL, /* The obstack. */\n"
3d9a5942 1395printf " /* basic architecture information */\n"
4b9b3959 1396function_list | while do_read
104c1213 1397do
2ada493a
AC
1398 if class_is_info_p
1399 then
ec5cbaec 1400 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1401 fi
104c1213
JM
1402done
1403cat <<EOF
4b9b3959
AC
1404 /* target specific vector and its dump routine */
1405 NULL, NULL,
104c1213
JM
1406 /*per-architecture data-pointers and swap regions */
1407 0, NULL, NULL,
1408 /* Multi-arch values */
1409EOF
34620563 1410function_list | while do_read
104c1213 1411do
2ada493a
AC
1412 if class_is_function_p || class_is_variable_p
1413 then
ec5cbaec 1414 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1415 fi
104c1213
JM
1416done
1417cat <<EOF
c0e8c252 1418 /* startup_gdbarch() */
104c1213 1419};
4b9b3959 1420
c0e8c252 1421struct gdbarch *current_gdbarch = &startup_gdbarch;
104c1213
JM
1422EOF
1423
1424# Create a new gdbarch struct
104c1213 1425cat <<EOF
7de2341d 1426
66b43ecb 1427/* Create a new \`\`struct gdbarch'' based on information provided by
104c1213
JM
1428 \`\`struct gdbarch_info''. */
1429EOF
3d9a5942 1430printf "\n"
104c1213
JM
1431cat <<EOF
1432struct gdbarch *
1433gdbarch_alloc (const struct gdbarch_info *info,
1434 struct gdbarch_tdep *tdep)
1435{
85de9627
AC
1436 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1437 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1438 the current local architecture and not the previous global
1439 architecture. This ensures that the new architectures initial
1440 values are not influenced by the previous architecture. Once
1441 everything is parameterised with gdbarch, this will go away. */
aebd7893
AC
1442 struct gdbarch *current_gdbarch;
1443
1444 /* Create an obstack for allocating all the per-architecture memory,
1445 then use that to allocate the architecture vector. */
1446 struct obstack *obstack = XMALLOC (struct obstack);
1447 obstack_init (obstack);
1448 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
85de9627 1449 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
aebd7893 1450 current_gdbarch->obstack = obstack;
85de9627
AC
1451
1452 alloc_gdbarch_data (current_gdbarch);
1453
1454 current_gdbarch->tdep = tdep;
104c1213 1455EOF
3d9a5942 1456printf "\n"
34620563 1457function_list | while do_read
104c1213 1458do
2ada493a
AC
1459 if class_is_info_p
1460 then
85de9627 1461 printf " current_gdbarch->${function} = info->${function};\n"
2ada493a 1462 fi
104c1213 1463done
3d9a5942
AC
1464printf "\n"
1465printf " /* Force the explicit initialization of these. */\n"
34620563 1466function_list | while do_read
104c1213 1467do
2ada493a
AC
1468 if class_is_function_p || class_is_variable_p
1469 then
72e74a21 1470 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1471 then
85de9627 1472 printf " current_gdbarch->${function} = ${predefault};\n"
104c1213 1473 fi
2ada493a 1474 fi
104c1213
JM
1475done
1476cat <<EOF
1477 /* gdbarch_alloc() */
1478
85de9627 1479 return current_gdbarch;
104c1213
JM
1480}
1481EOF
1482
058f20d5 1483# Free a gdbarch struct.
3d9a5942
AC
1484printf "\n"
1485printf "\n"
058f20d5 1486cat <<EOF
aebd7893
AC
1487/* Allocate extra space using the per-architecture obstack. */
1488
1489void *
1490gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1491{
1492 void *data = obstack_alloc (arch->obstack, size);
1493 memset (data, 0, size);
1494 return data;
1495}
1496
1497
058f20d5
JB
1498/* Free a gdbarch struct. This should never happen in normal
1499 operation --- once you've created a gdbarch, you keep it around.
1500 However, if an architecture's init function encounters an error
1501 building the structure, it may need to clean up a partially
1502 constructed gdbarch. */
4b9b3959 1503
058f20d5
JB
1504void
1505gdbarch_free (struct gdbarch *arch)
1506{
aebd7893 1507 struct obstack *obstack;
95160752 1508 gdb_assert (arch != NULL);
aebd7893
AC
1509 gdb_assert (!arch->initialized_p);
1510 obstack = arch->obstack;
1511 obstack_free (obstack, 0); /* Includes the ARCH. */
1512 xfree (obstack);
058f20d5
JB
1513}
1514EOF
1515
104c1213 1516# verify a new architecture
104c1213 1517cat <<EOF
db446970
AC
1518
1519
1520/* Ensure that all values in a GDBARCH are reasonable. */
1521
1522/* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1523 just happens to match the global variable \`\`current_gdbarch''. That
1524 way macros refering to that variable get the local and not the global
1525 version - ulgh. Once everything is parameterised with gdbarch, this
1526 will go away. */
1527
104c1213 1528static void
db446970 1529verify_gdbarch (struct gdbarch *current_gdbarch)
104c1213 1530{
f16a1923
AC
1531 struct ui_file *log;
1532 struct cleanup *cleanups;
1533 long dummy;
1534 char *buf;
f16a1923
AC
1535 log = mem_fileopen ();
1536 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1537 /* fundamental */
db446970 1538 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1539 fprintf_unfiltered (log, "\n\tbyte-order");
db446970 1540 if (current_gdbarch->bfd_arch_info == NULL)
f16a1923 1541 fprintf_unfiltered (log, "\n\tbfd_arch_info");
104c1213
JM
1542 /* Check those that need to be defined for the given multi-arch level. */
1543EOF
34620563 1544function_list | while do_read
104c1213 1545do
2ada493a
AC
1546 if class_is_function_p || class_is_variable_p
1547 then
72e74a21 1548 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1549 then
3d9a5942 1550 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1551 elif class_is_predicate_p
1552 then
3d9a5942 1553 printf " /* Skip verify of ${function}, has predicate */\n"
f0d4cc9e 1554 # FIXME: See do_read for potential simplification
72e74a21 1555 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1556 then
3d9a5942 1557 printf " if (${invalid_p})\n"
db446970 1558 printf " current_gdbarch->${function} = ${postdefault};\n"
72e74a21 1559 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1560 then
db446970
AC
1561 printf " if (current_gdbarch->${function} == ${predefault})\n"
1562 printf " current_gdbarch->${function} = ${postdefault};\n"
72e74a21 1563 elif [ -n "${postdefault}" ]
f0d4cc9e 1564 then
db446970
AC
1565 printf " if (current_gdbarch->${function} == 0)\n"
1566 printf " current_gdbarch->${function} = ${postdefault};\n"
72e74a21 1567 elif [ -n "${invalid_p}" ]
104c1213 1568 then
50248794 1569 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
3d9a5942 1570 printf " && (${invalid_p}))\n"
f16a1923 1571 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1572 elif [ -n "${predefault}" ]
104c1213 1573 then
50248794 1574 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
db446970 1575 printf " && (current_gdbarch->${function} == ${predefault}))\n"
f16a1923 1576 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1577 fi
2ada493a 1578 fi
104c1213
JM
1579done
1580cat <<EOF
f16a1923
AC
1581 buf = ui_file_xstrdup (log, &dummy);
1582 make_cleanup (xfree, buf);
1583 if (strlen (buf) > 0)
1584 internal_error (__FILE__, __LINE__,
1585 "verify_gdbarch: the following are invalid ...%s",
1586 buf);
1587 do_cleanups (cleanups);
104c1213
JM
1588}
1589EOF
1590
1591# dump the structure
3d9a5942
AC
1592printf "\n"
1593printf "\n"
104c1213 1594cat <<EOF
4b9b3959
AC
1595/* Print out the details of the current architecture. */
1596
1597/* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1598 just happens to match the global variable \`\`current_gdbarch''. That
1599 way macros refering to that variable get the local and not the global
1600 version - ulgh. Once everything is parameterised with gdbarch, this
1601 will go away. */
1602
104c1213 1603void
db446970 1604gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
104c1213 1605{
4b9b3959
AC
1606 fprintf_unfiltered (file,
1607 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1608 GDB_MULTI_ARCH);
104c1213 1609EOF
9ba8d803 1610function_list | sort -t: -k 3 | while do_read
104c1213 1611do
1e9f55d0
AC
1612 # First the predicate
1613 if class_is_predicate_p
1614 then
1615 if class_is_multiarch_p
1616 then
7996bcec
AC
1617 printf " fprintf_unfiltered (file,\n"
1618 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1619 printf " gdbarch_${function}_p (current_gdbarch));\n"
1e9f55d0
AC
1620 else
1621 printf "#ifdef ${macro}_P\n"
1622 printf " fprintf_unfiltered (file,\n"
1623 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1624 printf " \"${macro}_P()\",\n"
1625 printf " XSTRING (${macro}_P ()));\n"
1626 printf " fprintf_unfiltered (file,\n"
1627 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1628 printf " ${macro}_P ());\n"
1629 printf "#endif\n"
1630 fi
1631 fi
4a5c6a1d 1632 # multiarch functions don't have macros.
08e45a40
AC
1633 if class_is_multiarch_p
1634 then
7996bcec
AC
1635 printf " fprintf_unfiltered (file,\n"
1636 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1637 printf " (long) current_gdbarch->${function});\n"
08e45a40
AC
1638 continue
1639 fi
06b25f14 1640 # Print the macro definition.
08e45a40 1641 printf "#ifdef ${macro}\n"
2ada493a
AC
1642 if class_is_function_p
1643 then
3d9a5942
AC
1644 printf " fprintf_unfiltered (file,\n"
1645 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1646 printf " \"${macro}(${actual})\",\n"
1647 printf " XSTRING (${macro} (${actual})));\n"
2ada493a 1648 else
3d9a5942
AC
1649 printf " fprintf_unfiltered (file,\n"
1650 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1651 printf " XSTRING (${macro}));\n"
4b9b3959 1652 fi
72e74a21 1653 if [ "x${print_p}" = "x()" ]
4b9b3959 1654 then
4a5c6a1d 1655 printf " gdbarch_dump_${function} (current_gdbarch);\n"
72e74a21 1656 elif [ "x${print_p}" = "x0" ]
4b9b3959 1657 then
4a5c6a1d 1658 printf " /* skip print of ${macro}, print_p == 0. */\n"
72e74a21 1659 elif [ -n "${print_p}" ]
4b9b3959 1660 then
4a5c6a1d 1661 printf " if (${print_p})\n"
3d9a5942
AC
1662 printf " fprintf_unfiltered (file,\n"
1663 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1664 printf " ${print});\n"
4b9b3959
AC
1665 elif class_is_function_p
1666 then
7996bcec
AC
1667 printf " fprintf_unfiltered (file,\n"
1668 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1669 printf " (long) current_gdbarch->${function}\n"
1670 printf " /*${macro} ()*/);\n"
4b9b3959 1671 else
3d9a5942
AC
1672 printf " fprintf_unfiltered (file,\n"
1673 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1674 printf " ${print});\n"
2ada493a 1675 fi
3d9a5942 1676 printf "#endif\n"
104c1213 1677done
381323f4 1678cat <<EOF
4b9b3959
AC
1679 if (current_gdbarch->dump_tdep != NULL)
1680 current_gdbarch->dump_tdep (current_gdbarch, file);
381323f4
AC
1681}
1682EOF
104c1213
JM
1683
1684
1685# GET/SET
3d9a5942 1686printf "\n"
104c1213
JM
1687cat <<EOF
1688struct gdbarch_tdep *
1689gdbarch_tdep (struct gdbarch *gdbarch)
1690{
1691 if (gdbarch_debug >= 2)
3d9a5942 1692 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1693 return gdbarch->tdep;
1694}
1695EOF
3d9a5942 1696printf "\n"
34620563 1697function_list | while do_read
104c1213 1698do
2ada493a
AC
1699 if class_is_predicate_p
1700 then
3d9a5942
AC
1701 printf "\n"
1702 printf "int\n"
1703 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1704 printf "{\n"
8de9bdc4 1705 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1706 printf " return ${predicate};\n"
3d9a5942 1707 printf "}\n"
2ada493a
AC
1708 fi
1709 if class_is_function_p
1710 then
3d9a5942
AC
1711 printf "\n"
1712 printf "${returntype}\n"
72e74a21 1713 if [ "x${formal}" = "xvoid" ]
104c1213 1714 then
3d9a5942 1715 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1716 else
3d9a5942 1717 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1718 fi
3d9a5942 1719 printf "{\n"
8de9bdc4 1720 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1721 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1722 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1723 then
1724 # Allow a call to a function with a predicate.
956ac328 1725 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1726 fi
3d9a5942
AC
1727 printf " if (gdbarch_debug >= 2)\n"
1728 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1729 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1730 then
1731 if class_is_multiarch_p
1732 then
1733 params="gdbarch"
1734 else
1735 params=""
1736 fi
1737 else
1738 if class_is_multiarch_p
1739 then
1740 params="gdbarch, ${actual}"
1741 else
1742 params="${actual}"
1743 fi
1744 fi
72e74a21 1745 if [ "x${returntype}" = "xvoid" ]
104c1213 1746 then
4a5c6a1d 1747 printf " gdbarch->${function} (${params});\n"
104c1213 1748 else
4a5c6a1d 1749 printf " return gdbarch->${function} (${params});\n"
104c1213 1750 fi
3d9a5942
AC
1751 printf "}\n"
1752 printf "\n"
1753 printf "void\n"
1754 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1755 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1756 printf "{\n"
1757 printf " gdbarch->${function} = ${function};\n"
1758 printf "}\n"
2ada493a
AC
1759 elif class_is_variable_p
1760 then
3d9a5942
AC
1761 printf "\n"
1762 printf "${returntype}\n"
1763 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1764 printf "{\n"
8de9bdc4 1765 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1766 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1767 then
3d9a5942 1768 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1769 elif [ -n "${invalid_p}" ]
104c1213 1770 then
956ac328
AC
1771 printf " /* Check variable is valid. */\n"
1772 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1773 elif [ -n "${predefault}" ]
104c1213 1774 then
956ac328
AC
1775 printf " /* Check variable changed from pre-default. */\n"
1776 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1777 fi
3d9a5942
AC
1778 printf " if (gdbarch_debug >= 2)\n"
1779 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1780 printf " return gdbarch->${function};\n"
1781 printf "}\n"
1782 printf "\n"
1783 printf "void\n"
1784 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1785 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1786 printf "{\n"
1787 printf " gdbarch->${function} = ${function};\n"
1788 printf "}\n"
2ada493a
AC
1789 elif class_is_info_p
1790 then
3d9a5942
AC
1791 printf "\n"
1792 printf "${returntype}\n"
1793 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1794 printf "{\n"
8de9bdc4 1795 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1796 printf " if (gdbarch_debug >= 2)\n"
1797 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1798 printf " return gdbarch->${function};\n"
1799 printf "}\n"
2ada493a 1800 fi
104c1213
JM
1801done
1802
1803# All the trailing guff
1804cat <<EOF
1805
1806
f44c642f 1807/* Keep a registry of per-architecture data-pointers required by GDB
104c1213
JM
1808 modules. */
1809
1810struct gdbarch_data
1811{
95160752 1812 unsigned index;
76860b5f 1813 int init_p;
95160752 1814 gdbarch_data_init_ftype *init;
104c1213
JM
1815};
1816
1817struct gdbarch_data_registration
1818{
104c1213
JM
1819 struct gdbarch_data *data;
1820 struct gdbarch_data_registration *next;
1821};
1822
f44c642f 1823struct gdbarch_data_registry
104c1213 1824{
95160752 1825 unsigned nr;
104c1213
JM
1826 struct gdbarch_data_registration *registrations;
1827};
1828
f44c642f 1829struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1830{
1831 0, NULL,
1832};
1833
1834struct gdbarch_data *
fcc1c85c 1835register_gdbarch_data (gdbarch_data_init_ftype *init)
104c1213
JM
1836{
1837 struct gdbarch_data_registration **curr;
76860b5f 1838 /* Append the new registraration. */
f44c642f 1839 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1840 (*curr) != NULL;
1841 curr = &(*curr)->next);
1842 (*curr) = XMALLOC (struct gdbarch_data_registration);
1843 (*curr)->next = NULL;
104c1213 1844 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1845 (*curr)->data->index = gdbarch_data_registry.nr++;
95160752 1846 (*curr)->data->init = init;
76860b5f 1847 (*curr)->data->init_p = 1;
104c1213
JM
1848 return (*curr)->data;
1849}
1850
1851
b3cc3077 1852/* Create/delete the gdbarch data vector. */
95160752
AC
1853
1854static void
b3cc3077 1855alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1856{
b3cc3077
JB
1857 gdb_assert (gdbarch->data == NULL);
1858 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 1859 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 1860}
3c875b6f 1861
76860b5f 1862/* Initialize the current value of the specified per-architecture
b3cc3077
JB
1863 data-pointer. */
1864
95160752
AC
1865void
1866set_gdbarch_data (struct gdbarch *gdbarch,
1867 struct gdbarch_data *data,
1868 void *pointer)
1869{
1870 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 1871 gdb_assert (gdbarch->data[data->index] == NULL);
95160752
AC
1872 gdbarch->data[data->index] = pointer;
1873}
1874
104c1213
JM
1875/* Return the current value of the specified per-architecture
1876 data-pointer. */
1877
1878void *
451fbdda 1879gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 1880{
451fbdda 1881 gdb_assert (data->index < gdbarch->nr_data);
76860b5f
AC
1882 /* The data-pointer isn't initialized, call init() to get a value but
1883 only if the architecture initializaiton has completed. Otherwise
1884 punt - hope that the caller knows what they are doing. */
1885 if (gdbarch->data[data->index] == NULL
1886 && gdbarch->initialized_p)
1887 {
1888 /* Be careful to detect an initialization cycle. */
1889 gdb_assert (data->init_p);
1890 data->init_p = 0;
1891 gdb_assert (data->init != NULL);
1892 gdbarch->data[data->index] = data->init (gdbarch);
1893 data->init_p = 1;
1894 gdb_assert (gdbarch->data[data->index] != NULL);
1895 }
451fbdda 1896 return gdbarch->data[data->index];
104c1213
JM
1897}
1898
1899
1900
f44c642f 1901/* Keep a registry of swapped data required by GDB modules. */
104c1213
JM
1902
1903struct gdbarch_swap
1904{
1905 void *swap;
1906 struct gdbarch_swap_registration *source;
1907 struct gdbarch_swap *next;
1908};
1909
1910struct gdbarch_swap_registration
1911{
1912 void *data;
1913 unsigned long sizeof_data;
1914 gdbarch_swap_ftype *init;
1915 struct gdbarch_swap_registration *next;
1916};
1917
f44c642f 1918struct gdbarch_swap_registry
104c1213
JM
1919{
1920 int nr;
1921 struct gdbarch_swap_registration *registrations;
1922};
1923
f44c642f 1924struct gdbarch_swap_registry gdbarch_swap_registry =
104c1213
JM
1925{
1926 0, NULL,
1927};
1928
1929void
046a4708
AC
1930deprecated_register_gdbarch_swap (void *data,
1931 unsigned long sizeof_data,
1932 gdbarch_swap_ftype *init)
104c1213
JM
1933{
1934 struct gdbarch_swap_registration **rego;
f44c642f 1935 for (rego = &gdbarch_swap_registry.registrations;
104c1213
JM
1936 (*rego) != NULL;
1937 rego = &(*rego)->next);
1938 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1939 (*rego)->next = NULL;
1940 (*rego)->init = init;
1941 (*rego)->data = data;
1942 (*rego)->sizeof_data = sizeof_data;
1943}
1944
40af4b0c 1945static void
7de2341d 1946current_gdbarch_swap_init_hack (void)
104c1213
JM
1947{
1948 struct gdbarch_swap_registration *rego;
7de2341d 1949 struct gdbarch_swap **curr = &current_gdbarch->swap;
f44c642f 1950 for (rego = gdbarch_swap_registry.registrations;
104c1213
JM
1951 rego != NULL;
1952 rego = rego->next)
1953 {
1954 if (rego->data != NULL)
1955 {
7de2341d
AC
1956 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1957 struct gdbarch_swap);
104c1213 1958 (*curr)->source = rego;
7de2341d
AC
1959 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1960 rego->sizeof_data);
104c1213 1961 (*curr)->next = NULL;
104c1213
JM
1962 curr = &(*curr)->next;
1963 }
1964 if (rego->init != NULL)
1965 rego->init ();
1966 }
1967}
1968
7de2341d
AC
1969static struct gdbarch *
1970current_gdbarch_swap_out_hack (void)
104c1213 1971{
7de2341d 1972 struct gdbarch *old_gdbarch = current_gdbarch;
104c1213 1973 struct gdbarch_swap *curr;
7de2341d
AC
1974
1975 gdb_assert (old_gdbarch != NULL);
1976 for (curr = old_gdbarch->swap;
104c1213
JM
1977 curr != NULL;
1978 curr = curr->next)
7de2341d
AC
1979 {
1980 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1981 memset (curr->source->data, 0, curr->source->sizeof_data);
1982 }
1983 current_gdbarch = NULL;
1984 return old_gdbarch;
104c1213
JM
1985}
1986
1987static void
7de2341d 1988current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
104c1213
JM
1989{
1990 struct gdbarch_swap *curr;
7de2341d
AC
1991
1992 gdb_assert (current_gdbarch == NULL);
1993 for (curr = new_gdbarch->swap;
104c1213
JM
1994 curr != NULL;
1995 curr = curr->next)
1996 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
7de2341d 1997 current_gdbarch = new_gdbarch;
104c1213
JM
1998}
1999
2000
f44c642f 2001/* Keep a registry of the architectures known by GDB. */
104c1213 2002
4b9b3959 2003struct gdbarch_registration
104c1213
JM
2004{
2005 enum bfd_architecture bfd_architecture;
2006 gdbarch_init_ftype *init;
4b9b3959 2007 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2008 struct gdbarch_list *arches;
4b9b3959 2009 struct gdbarch_registration *next;
104c1213
JM
2010};
2011
f44c642f 2012static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2013
b4a20239
AC
2014static void
2015append_name (const char ***buf, int *nr, const char *name)
2016{
2017 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2018 (*buf)[*nr] = name;
2019 *nr += 1;
2020}
2021
2022const char **
2023gdbarch_printable_names (void)
2024{
7996bcec
AC
2025 /* Accumulate a list of names based on the registed list of
2026 architectures. */
2027 enum bfd_architecture a;
2028 int nr_arches = 0;
2029 const char **arches = NULL;
2030 struct gdbarch_registration *rego;
2031 for (rego = gdbarch_registry;
2032 rego != NULL;
2033 rego = rego->next)
b4a20239 2034 {
7996bcec
AC
2035 const struct bfd_arch_info *ap;
2036 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2037 if (ap == NULL)
2038 internal_error (__FILE__, __LINE__,
2039 "gdbarch_architecture_names: multi-arch unknown");
2040 do
2041 {
2042 append_name (&arches, &nr_arches, ap->printable_name);
2043 ap = ap->next;
2044 }
2045 while (ap != NULL);
b4a20239 2046 }
7996bcec
AC
2047 append_name (&arches, &nr_arches, NULL);
2048 return arches;
b4a20239
AC
2049}
2050
2051
104c1213 2052void
4b9b3959
AC
2053gdbarch_register (enum bfd_architecture bfd_architecture,
2054 gdbarch_init_ftype *init,
2055 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2056{
4b9b3959 2057 struct gdbarch_registration **curr;
104c1213 2058 const struct bfd_arch_info *bfd_arch_info;
ec3d358c 2059 /* Check that BFD recognizes this architecture */
104c1213
JM
2060 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2061 if (bfd_arch_info == NULL)
2062 {
8e65ff28
AC
2063 internal_error (__FILE__, __LINE__,
2064 "gdbarch: Attempt to register unknown architecture (%d)",
2065 bfd_architecture);
104c1213
JM
2066 }
2067 /* Check that we haven't seen this architecture before */
f44c642f 2068 for (curr = &gdbarch_registry;
104c1213
JM
2069 (*curr) != NULL;
2070 curr = &(*curr)->next)
2071 {
2072 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28
AC
2073 internal_error (__FILE__, __LINE__,
2074 "gdbarch: Duplicate registraration of architecture (%s)",
2075 bfd_arch_info->printable_name);
104c1213
JM
2076 }
2077 /* log it */
2078 if (gdbarch_debug)
2079 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2080 bfd_arch_info->printable_name,
2081 (long) init);
2082 /* Append it */
4b9b3959 2083 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
2084 (*curr)->bfd_architecture = bfd_architecture;
2085 (*curr)->init = init;
4b9b3959 2086 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2087 (*curr)->arches = NULL;
2088 (*curr)->next = NULL;
4b9b3959
AC
2089}
2090
2091void
2092register_gdbarch_init (enum bfd_architecture bfd_architecture,
2093 gdbarch_init_ftype *init)
2094{
2095 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2096}
104c1213
JM
2097
2098
2099/* Look for an architecture using gdbarch_info. Base search on only
2100 BFD_ARCH_INFO and BYTE_ORDER. */
2101
2102struct gdbarch_list *
2103gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2104 const struct gdbarch_info *info)
2105{
2106 for (; arches != NULL; arches = arches->next)
2107 {
2108 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2109 continue;
2110 if (info->byte_order != arches->gdbarch->byte_order)
2111 continue;
4be87837
DJ
2112 if (info->osabi != arches->gdbarch->osabi)
2113 continue;
104c1213
JM
2114 return arches;
2115 }
2116 return NULL;
2117}
2118
2119
ebdba546
AC
2120/* Find an architecture that matches the specified INFO. Create a new
2121 architecture if needed. Return that new architecture. Assumes
2122 that there is no current architecture. */
104c1213 2123
ebdba546
AC
2124static struct gdbarch *
2125find_arch_by_info (struct gdbarch *old_gdbarch, struct gdbarch_info info)
104c1213
JM
2126{
2127 struct gdbarch *new_gdbarch;
4b9b3959 2128 struct gdbarch_registration *rego;
104c1213 2129
ebdba546
AC
2130 /* The existing architecture has been swapped out - all this code
2131 works from a clean slate. */
2132 gdb_assert (current_gdbarch == NULL);
2133
b732d07d 2134 /* Fill in missing parts of the INFO struct using a number of
ebdba546
AC
2135 sources: "set ..."; INFOabfd supplied; and the existing
2136 architecture. */
2137 gdbarch_info_fill (old_gdbarch, &info);
4be87837 2138
b732d07d
AC
2139 /* Must have found some sort of architecture. */
2140 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2141
2142 if (gdbarch_debug)
2143 {
2144 fprintf_unfiltered (gdb_stdlog,
ebdba546 2145 "find_arch_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2146 (info.bfd_arch_info != NULL
2147 ? info.bfd_arch_info->printable_name
2148 : "(null)"));
2149 fprintf_unfiltered (gdb_stdlog,
ebdba546 2150 "find_arch_by_info: info.byte_order %d (%s)\n",
104c1213 2151 info.byte_order,
d7449b42 2152 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2153 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2154 : "default"));
4be87837 2155 fprintf_unfiltered (gdb_stdlog,
ebdba546 2156 "find_arch_by_info: info.osabi %d (%s)\n",
4be87837 2157 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2158 fprintf_unfiltered (gdb_stdlog,
ebdba546 2159 "find_arch_by_info: info.abfd 0x%lx\n",
104c1213
JM
2160 (long) info.abfd);
2161 fprintf_unfiltered (gdb_stdlog,
ebdba546 2162 "find_arch_by_info: info.tdep_info 0x%lx\n",
104c1213
JM
2163 (long) info.tdep_info);
2164 }
2165
ebdba546 2166 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2167 for (rego = gdbarch_registry;
2168 rego != NULL;
2169 rego = rego->next)
2170 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2171 break;
2172 if (rego == NULL)
2173 {
2174 if (gdbarch_debug)
ebdba546
AC
2175 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2176 "No matching architecture\n");
b732d07d
AC
2177 return 0;
2178 }
2179
ebdba546 2180 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2181 new_gdbarch = rego->init (info, rego->arches);
2182
ebdba546
AC
2183 /* Did the tdep code like it? No. Reject the change and revert to
2184 the old architecture. */
104c1213
JM
2185 if (new_gdbarch == NULL)
2186 {
2187 if (gdbarch_debug)
ebdba546
AC
2188 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2189 "Target rejected architecture\n");
2190 return NULL;
104c1213
JM
2191 }
2192
ebdba546
AC
2193 /* Is this a pre-existing architecture (as determined by already
2194 being initialized)? Move it to the front of the architecture
2195 list (keeping the list sorted Most Recently Used). */
2196 if (new_gdbarch->initialized_p)
104c1213 2197 {
ebdba546
AC
2198 struct gdbarch_list **list;
2199 struct gdbarch_list *this;
104c1213 2200 if (gdbarch_debug)
ebdba546
AC
2201 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2202 "Previous architecture 0x%08lx (%s) selected\n",
104c1213
JM
2203 (long) new_gdbarch,
2204 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2205 /* Find the existing arch in the list. */
2206 for (list = &rego->arches;
2207 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2208 list = &(*list)->next);
2209 /* It had better be in the list of architectures. */
2210 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2211 /* Unlink THIS. */
2212 this = (*list);
2213 (*list) = this->next;
2214 /* Insert THIS at the front. */
2215 this->next = rego->arches;
2216 rego->arches = this;
2217 /* Return it. */
2218 return new_gdbarch;
104c1213
JM
2219 }
2220
ebdba546
AC
2221 /* It's a new architecture. */
2222 if (gdbarch_debug)
2223 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2224 "New architecture 0x%08lx (%s) selected\n",
2225 (long) new_gdbarch,
2226 new_gdbarch->bfd_arch_info->printable_name);
2227
2228 /* Insert the new architecture into the front of the architecture
2229 list (keep the list sorted Most Recently Used). */
0f79675b
AC
2230 {
2231 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2232 this->next = rego->arches;
2233 this->gdbarch = new_gdbarch;
2234 rego->arches = this;
2235 }
104c1213 2236
4b9b3959
AC
2237 /* Check that the newly installed architecture is valid. Plug in
2238 any post init values. */
2239 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2240 verify_gdbarch (new_gdbarch);
ebdba546 2241 new_gdbarch->initialized_p = 1;
104c1213 2242
ebdba546
AC
2243 /* Initialize any per-architecture swap areas. This phase requires
2244 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2245 swap the entire architecture out. */
2246 current_gdbarch = new_gdbarch;
7de2341d 2247 current_gdbarch_swap_init_hack ();
ebdba546 2248 current_gdbarch_swap_out_hack ();
67c2c32c 2249
4b9b3959 2250 if (gdbarch_debug)
ebdba546
AC
2251 gdbarch_dump (new_gdbarch, gdb_stdlog);
2252
2253 return new_gdbarch;
2254}
2255
2256struct gdbarch *
2257gdbarch_find_by_info (struct gdbarch_info info)
2258{
2259 /* Save the previously selected architecture, setting the global to
2260 NULL. This stops things like gdbarch->init() trying to use the
2261 previous architecture's configuration. The previous architecture
2262 may not even be of the same architecture family. The most recent
2263 architecture of the same family is found at the head of the
2264 rego->arches list. */
2265 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2266
2267 /* Find the specified architecture. */
2268 struct gdbarch *new_gdbarch = find_arch_by_info (old_gdbarch, info);
2269
2270 /* Restore the existing architecture. */
2271 gdb_assert (current_gdbarch == NULL);
2272 current_gdbarch_swap_in_hack (old_gdbarch);
4b9b3959 2273
ebdba546 2274 return new_gdbarch;
104c1213
JM
2275}
2276
ebdba546
AC
2277/* Make the specified architecture current, swapping the existing one
2278 out. */
2279
2280void
2281deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2282{
2283 gdb_assert (new_gdbarch != NULL);
2284 gdb_assert (current_gdbarch != NULL);
2285 gdb_assert (new_gdbarch->initialized_p);
2286 current_gdbarch_swap_out_hack ();
2287 current_gdbarch_swap_in_hack (new_gdbarch);
2288 architecture_changed_event ();
2289}
104c1213 2290
104c1213 2291extern void _initialize_gdbarch (void);
b4a20239 2292
104c1213 2293void
34620563 2294_initialize_gdbarch (void)
104c1213 2295{
59233f88
AC
2296 struct cmd_list_element *c;
2297
59233f88 2298 add_show_from_set (add_set_cmd ("arch",
104c1213
JM
2299 class_maintenance,
2300 var_zinteger,
2301 (char *)&gdbarch_debug,
3d9a5942 2302 "Set architecture debugging.\\n\\
59233f88
AC
2303When non-zero, architecture debugging is enabled.", &setdebuglist),
2304 &showdebuglist);
2305 c = add_set_cmd ("archdebug",
2306 class_maintenance,
2307 var_zinteger,
2308 (char *)&gdbarch_debug,
3d9a5942 2309 "Set architecture debugging.\\n\\
59233f88
AC
2310When non-zero, architecture debugging is enabled.", &setlist);
2311
2312 deprecate_cmd (c, "set debug arch");
2313 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
104c1213
JM
2314}
2315EOF
2316
2317# close things off
2318exec 1>&2
2319#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2320compare_new gdbarch.c
This page took 0.466576 seconds and 4 git commands to generate.