binutils/testsuite/:
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
9b254dd1 5# Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
4c38e0a4 6# 2008, 2009, 2010 Free Software Foundation, Inc.
104c1213
JM
7#
8# This file is part of GDB.
9#
10# This program is free software; you can redistribute it and/or modify
11# it under the terms of the GNU General Public License as published by
50efebf8 12# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
13# (at your option) any later version.
14#
15# This program is distributed in the hope that it will be useful,
16# but WITHOUT ANY WARRANTY; without even the implied warranty of
17# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18# GNU General Public License for more details.
19#
20# You should have received a copy of the GNU General Public License
50efebf8 21# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 22
6e2c7fa1 23# Make certain that the script is not running in an internationalized
d8864532 24# environment.
0e05dfcb
DJ
25LANG=C ; export LANG
26LC_ALL=C ; export LC_ALL
d8864532
AC
27
28
59233f88
AC
29compare_new ()
30{
31 file=$1
66b43ecb 32 if test ! -r ${file}
59233f88
AC
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 35 elif diff -u ${file} new-${file}
59233f88
AC
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41}
42
43
44# Format of the input table
97030eea 45read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
46
47do_read ()
48{
34620563
AC
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 57 then
34620563
AC
58 continue
59 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 60 then
34620563
AC
61 comment="${comment}
62${line}"
f0d4cc9e 63 else
3d9a5942
AC
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
34620563
AC
71 eval read ${read} <<EOF
72${line}
73EOF
74 IFS="${OFS}"
75
283354d8
AC
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
3d9a5942
AC
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
a72293e2
AC
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
06b25f14 98
ae45cd16
AC
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
34620563 102 "" )
f7968451 103 if test -n "${predefault}"
34620563
AC
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 106 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
34620563
AC
113 fi
114 ;;
ae45cd16 115 * )
1e9f55d0 116 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
117 kill $$
118 exit 1
119 ;;
120 esac
34620563
AC
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
72e74a21 130 if [ -n "${postdefault}" ]
34620563
AC
131 then
132 fallbackdefault="${postdefault}"
72e74a21 133 elif [ -n "${predefault}" ]
34620563
AC
134 then
135 fallbackdefault="${predefault}"
136 else
73d3c16e 137 fallbackdefault="0"
34620563
AC
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
f0d4cc9e 144 fi
34620563 145 done
72e74a21 146 if [ -n "${class}" ]
34620563
AC
147 then
148 true
c0e8c252
AC
149 else
150 false
151 fi
152}
153
104c1213 154
f0d4cc9e
AC
155fallback_default_p ()
156{
72e74a21
JB
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
159}
160
161class_is_variable_p ()
162{
4a5c6a1d
AC
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
f0d4cc9e
AC
167}
168
169class_is_function_p ()
170{
4a5c6a1d
AC
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175}
176
177class_is_multiarch_p ()
178{
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
f0d4cc9e
AC
183}
184
185class_is_predicate_p ()
186{
4a5c6a1d
AC
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
f0d4cc9e
AC
191}
192
193class_is_info_p ()
194{
4a5c6a1d
AC
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
f0d4cc9e
AC
199}
200
201
cff3e48b
JM
202# dump out/verify the doco
203for field in ${read}
204do
205 case ${field} in
206
207 class ) : ;;
c4093a6a 208
c0e8c252
AC
209 # # -> line disable
210 # f -> function
211 # hiding a function
2ada493a
AC
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
c0e8c252
AC
214 # v -> variable
215 # hiding a variable
2ada493a
AC
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
c0e8c252
AC
218 # i -> set from info
219 # hiding something from the ``struct info'' object
4a5c6a1d
AC
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
cff3e48b 224
cff3e48b
JM
225 returntype ) : ;;
226
c0e8c252 227 # For functions, the return type; for variables, the data type
cff3e48b
JM
228
229 function ) : ;;
230
c0e8c252
AC
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
234
235 formal ) : ;;
236
c0e8c252
AC
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
cff3e48b
JM
241
242 actual ) : ;;
243
c0e8c252
AC
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
cff3e48b 247
0b8f9e4d 248 staticdefault ) : ;;
c0e8c252
AC
249
250 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
cff3e48b 254
0b8f9e4d 255 # If STATICDEFAULT is empty, zero is used.
c0e8c252 256
0b8f9e4d 257 predefault ) : ;;
cff3e48b 258
10312cc4
AC
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
cff3e48b 263
0b8f9e4d
AC
264 # If PREDEFAULT is empty, zero is used.
265
10312cc4
AC
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
f0d4cc9e
AC
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
0b8f9e4d
AC
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
10312cc4
AC
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
f0d4cc9e
AC
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
be7811ad 295 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
296 # will contain the current architecture. Care should be
297 # taken.
cff3e48b 298
c4093a6a 299 invalid_p ) : ;;
cff3e48b 300
0b8f9e4d 301 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 302 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
f0d4cc9e
AC
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
313
314 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 315
cff3e48b
JM
316 print ) : ;;
317
2f9b146e
AC
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
c0e8c252 320
0b1553bc
UW
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
cff3e48b 323
283354d8 324 garbage_at_eol ) : ;;
0b8f9e4d 325
283354d8 326 # Catches stray fields.
cff3e48b 327
50248794
AC
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
cff3e48b
JM
331 esac
332done
333
cff3e48b 334
104c1213
JM
335function_list ()
336{
cff3e48b 337 # See below (DOCO) for description of each field
34620563 338 cat <<EOF
be7811ad 339i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 340#
97030eea 341i:int:byte_order:::BFD_ENDIAN_BIG
9d4fde75 342i:int:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 343#
97030eea 344i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 345#
30737ed9 346i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
347
348# The bit byte-order has to do just with numbering of bits in debugging symbols
349# and such. Conceptually, it's quite separate from byte/word byte order.
350v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
66b43ecb
AC
352# Number of bits in a char or unsigned char for the target machine.
353# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 354# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
355#
356# Number of bits in a short or unsigned short for the target machine.
97030eea 357v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 358# Number of bits in an int or unsigned int for the target machine.
97030eea 359v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in a long or unsigned long for the target machine.
97030eea 361v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
362# Number of bits in a long long or unsigned long long for the target
363# machine.
be7811ad 364v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94 365
f9e9243a
UW
366# The ABI default bit-size and format for "half", "float", "double", and
367# "long double". These bit/format pairs should eventually be combined
368# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
369# Each format describes both the big and little endian layouts (if
370# useful).
456fcf94 371
f9e9243a
UW
372v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
373v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
97030eea 374v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 375v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 376v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 377v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 378v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 379v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 380
52204a0b
DT
381# For most targets, a pointer on the target and its representation as an
382# address in GDB have the same size and "look the same". For such a
17a912b6 383# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
384# / addr_bit will be set from it.
385#
17a912b6 386# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
76e71323
UW
387# also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
388# as well.
52204a0b
DT
389#
390# ptr_bit is the size of a pointer on the target
be7811ad 391v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 392# addr_bit is the size of a target address as represented in gdb
be7811ad 393v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 394#
4e409299 395# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 396v:int:char_signed:::1:-1:1
4e409299 397#
97030eea
UW
398F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
399F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
400# Function for getting target's idea of a frame pointer. FIXME: GDB's
401# whole scheme for dealing with "frames" and "frame pointers" needs a
402# serious shakedown.
a54fba4c 403m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 404#
97030eea
UW
405M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
406M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 407#
97030eea 408v:int:num_regs:::0:-1
0aba1244
EZ
409# This macro gives the number of pseudo-registers that live in the
410# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
411# These pseudo-registers may be aliases for other registers,
412# combinations of other registers, or they may be computed by GDB.
97030eea 413v:int:num_pseudo_regs:::0:0::0
c2169756
AC
414
415# GDB's standard (or well known) register numbers. These can map onto
416# a real register or a pseudo (computed) register or not be defined at
1200cd6e 417# all (-1).
3e8c568d 418# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
419v:int:sp_regnum:::-1:-1::0
420v:int:pc_regnum:::-1:-1::0
421v:int:ps_regnum:::-1:-1::0
422v:int:fp0_regnum:::0:-1::0
88c72b7d 423# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 424m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 425# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 426m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 427# Convert from an sdb register number to an internal gdb register number.
d3f73121 428m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 429# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 430m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 431m:const char *:register_name:int regnr:regnr::0
9c04cab7 432
7b9ee6a8
DJ
433# Return the type of a register specified by the architecture. Only
434# the register cache should call this function directly; others should
435# use "register_type".
97030eea 436M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 437
f3be58bc 438# See gdbint.texinfo, and PUSH_DUMMY_CALL.
669fac23
DJ
439M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
440# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 441# deprecated_fp_regnum.
97030eea 442v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 443
a86c5fc9 444# See gdbint.texinfo. See infcall.c.
97030eea
UW
445M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
446v:int:call_dummy_location::::AT_ENTRY_POINT::0
447M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 448
97030eea
UW
449m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
450M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
451M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
452# MAP a GDB RAW register number onto a simulator register number. See
453# also include/...-sim.h.
e7faf938 454m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
455m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
456m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
9df628e0 457# setjmp/longjmp support.
97030eea 458F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
104c1213 459#
97030eea 460v:int:believe_pcc_promotion:::::::
104c1213 461#
0abe36f5 462m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
97030eea
UW
463f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
464f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0
UW
465# Construct a value representing the contents of register REGNUM in
466# frame FRAME, interpreted as type TYPE. The routine needs to
467# allocate and return a struct value with all value attributes
468# (but not the value contents) filled in.
97030eea 469f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
104c1213 470#
9898f801
UW
471m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
472m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 473M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 474
ea42b34a
JB
475# Return the return-value convention that will be used by FUNCTYPE
476# to return a value of type VALTYPE. FUNCTYPE may be NULL in which
477# case the return convention is computed based only on VALTYPE.
478#
479# If READBUF is not NULL, extract the return value and save it in this buffer.
480#
481# If WRITEBUF is not NULL, it contains a return value which will be
482# stored into the appropriate register. This can be used when we want
483# to force the value returned by a function (see the "return" command
484# for instance).
c055b101 485M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
92ad9cd9 486
6093d2eb 487m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 488M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
97030eea 489f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 490m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
491# Return the adjusted address and kind to use for Z0/Z1 packets.
492# KIND is usually the memory length of the breakpoint, but may have a
493# different target-specific meaning.
0e05dfcb 494m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 495M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
496m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
497m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 498v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
499
500# A function can be addressed by either it's "pointer" (possibly a
501# descriptor address) or "entry point" (first executable instruction).
502# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 503# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
504# a simplified subset of that functionality - the function's address
505# corresponds to the "function pointer" and the function's start
506# corresponds to the "function entry point" - and hence is redundant.
507
97030eea 508v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 509
123dc839
DJ
510# Return the remote protocol register number associated with this
511# register. Normally the identity mapping.
97030eea 512m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 513
b2756930 514# Fetch the target specific address used to represent a load module.
97030eea 515F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 516#
97030eea
UW
517v:CORE_ADDR:frame_args_skip:::0:::0
518M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
519M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
520# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
521# frame-base. Enable frame-base before frame-unwind.
97030eea 522F:int:frame_num_args:struct frame_info *frame:frame
104c1213 523#
97030eea
UW
524M:CORE_ADDR:frame_align:CORE_ADDR address:address
525m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
526v:int:frame_red_zone_size
f0d4cc9e 527#
97030eea 528m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
529# On some machines there are bits in addresses which are not really
530# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 531# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
532# we get a "real" address such as one would find in a symbol table.
533# This is used only for addresses of instructions, and even then I'm
534# not sure it's used in all contexts. It exists to deal with there
535# being a few stray bits in the PC which would mislead us, not as some
536# sort of generic thing to handle alignment or segmentation (it's
537# possible it should be in TARGET_READ_PC instead).
24568a2c 538m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
260edbc2 539# It is not at all clear why gdbarch_smash_text_address is not folded into
bf6ae464 540# gdbarch_addr_bits_remove.
24568a2c 541m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
542
543# FIXME/cagney/2001-01-18: This should be split in two. A target method that
544# indicates if the target needs software single step. An ISA method to
545# implement it.
546#
547# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
548# breakpoints using the breakpoint system instead of blatting memory directly
549# (as with rs6000).
64c4637f 550#
e6590a1b
UW
551# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
552# target can single step. If not, then implement single step using breakpoints.
64c4637f 553#
e6590a1b
UW
554# A return value of 1 means that the software_single_step breakpoints
555# were inserted; 0 means they were not.
97030eea 556F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 557
3352ef37
AC
558# Return non-zero if the processor is executing a delay slot and a
559# further single-step is needed before the instruction finishes.
97030eea 560M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 561# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 562# disassembler. Perhaps objdump can handle it?
97030eea
UW
563f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
564f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
565
566
cfd8ab24 567# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
568# evaluates non-zero, this is the address where the debugger will place
569# a step-resume breakpoint to get us past the dynamic linker.
97030eea 570m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 571# Some systems also have trampoline code for returning from shared libs.
e17a4113 572m:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 573
c12260ac
CV
574# A target might have problems with watchpoints as soon as the stack
575# frame of the current function has been destroyed. This mostly happens
576# as the first action in a funtion's epilogue. in_function_epilogue_p()
577# is defined to return a non-zero value if either the given addr is one
578# instruction after the stack destroying instruction up to the trailing
579# return instruction or if we can figure out that the stack frame has
580# already been invalidated regardless of the value of addr. Targets
581# which don't suffer from that problem could just let this functionality
582# untouched.
97030eea 583m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
97030eea
UW
584f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
585f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
97030eea
UW
586v:int:cannot_step_breakpoint:::0:0::0
587v:int:have_nonsteppable_watchpoint:::0:0::0
588F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
589M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
590M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 591# Is a register in a group
97030eea 592m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 593# Fetch the pointer to the ith function argument.
97030eea 594F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
595
596# Return the appropriate register set for a core file section with
597# name SECT_NAME and size SECT_SIZE.
97030eea 598M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
0d5de010 599
959b8724
PA
600# When creating core dumps, some systems encode the PID in addition
601# to the LWP id in core file register section names. In those cases, the
602# "XXX" in ".reg/XXX" is encoded as [LWPID << 16 | PID]. This setting
603# is set to true for such architectures; false if "XXX" represents an LWP
604# or thread id with no special encoding.
605v:int:core_reg_section_encodes_pid:::0:0::0
606
17ea7499
CES
607# Supported register notes in a core file.
608v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
609
de584861
PA
610# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
611# core file into buffer READBUF with length LEN.
97030eea 612M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
de584861 613
28439f5e
PA
614# How the core_stratum layer converts a PTID from a core file to a
615# string.
616M:char *:core_pid_to_str:ptid_t ptid:ptid
617
a78c2d62
UW
618# BFD target to use when generating a core file.
619V:const char *:gcore_bfd_target:::0:0:::gdbarch->gcore_bfd_target
620
0d5de010
DJ
621# If the elements of C++ vtables are in-place function descriptors rather
622# than normal function pointers (which may point to code or a descriptor),
623# set this to one.
97030eea 624v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
625
626# Set if the least significant bit of the delta is used instead of the least
627# significant bit of the pfn for pointers to virtual member functions.
97030eea 628v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
629
630# Advance PC to next instruction in order to skip a permanent breakpoint.
97030eea 631F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
1c772458 632
237fc4c9
PA
633# The maximum length of an instruction on this architecture.
634V:ULONGEST:max_insn_length:::0:0
635
636# Copy the instruction at FROM to TO, and make any adjustments
637# necessary to single-step it at that address.
638#
639# REGS holds the state the thread's registers will have before
640# executing the copied instruction; the PC in REGS will refer to FROM,
641# not the copy at TO. The caller should update it to point at TO later.
642#
643# Return a pointer to data of the architecture's choice to be passed
644# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
645# the instruction's effects have been completely simulated, with the
646# resulting state written back to REGS.
647#
648# For a general explanation of displaced stepping and how GDB uses it,
649# see the comments in infrun.c.
650#
651# The TO area is only guaranteed to have space for
652# gdbarch_max_insn_length (arch) bytes, so this function must not
653# write more bytes than that to that area.
654#
655# If you do not provide this function, GDB assumes that the
656# architecture does not support displaced stepping.
657#
658# If your architecture doesn't need to adjust instructions before
659# single-stepping them, consider using simple_displaced_step_copy_insn
660# here.
661M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
662
99e40580
UW
663# Return true if GDB should use hardware single-stepping to execute
664# the displaced instruction identified by CLOSURE. If false,
665# GDB will simply restart execution at the displaced instruction
666# location, and it is up to the target to ensure GDB will receive
667# control again (e.g. by placing a software breakpoint instruction
668# into the displaced instruction buffer).
669#
670# The default implementation returns false on all targets that
671# provide a gdbarch_software_single_step routine, and true otherwise.
672m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
673
237fc4c9
PA
674# Fix up the state resulting from successfully single-stepping a
675# displaced instruction, to give the result we would have gotten from
676# stepping the instruction in its original location.
677#
678# REGS is the register state resulting from single-stepping the
679# displaced instruction.
680#
681# CLOSURE is the result from the matching call to
682# gdbarch_displaced_step_copy_insn.
683#
684# If you provide gdbarch_displaced_step_copy_insn.but not this
685# function, then GDB assumes that no fixup is needed after
686# single-stepping the instruction.
687#
688# For a general explanation of displaced stepping and how GDB uses it,
689# see the comments in infrun.c.
690M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
691
692# Free a closure returned by gdbarch_displaced_step_copy_insn.
693#
694# If you provide gdbarch_displaced_step_copy_insn, you must provide
695# this function as well.
696#
697# If your architecture uses closures that don't need to be freed, then
698# you can use simple_displaced_step_free_closure here.
699#
700# For a general explanation of displaced stepping and how GDB uses it,
701# see the comments in infrun.c.
702m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
703
704# Return the address of an appropriate place to put displaced
705# instructions while we step over them. There need only be one such
706# place, since we're only stepping one thread over a breakpoint at a
707# time.
708#
709# For a general explanation of displaced stepping and how GDB uses it,
710# see the comments in infrun.c.
711m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
712
dde08ee1
PA
713# Relocate an instruction to execute at a different address. OLDLOC
714# is the address in the inferior memory where the instruction to
715# relocate is currently at. On input, TO points to the destination
716# where we want the instruction to be copied (and possibly adjusted)
717# to. On output, it points to one past the end of the resulting
718# instruction(s). The effect of executing the instruction at TO shall
719# be the same as if executing it at FROM. For example, call
720# instructions that implicitly push the return address on the stack
721# should be adjusted to return to the instruction after OLDLOC;
722# relative branches, and other PC-relative instructions need the
723# offset adjusted; etc.
724M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
725
1c772458 726# Refresh overlay mapped state for section OSECT.
97030eea 727F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 728
97030eea 729M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
730
731# Handle special encoding of static variables in stabs debug info.
97030eea 732F:char *:static_transform_name:char *name:name
203c3895 733# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 734v:int:sofun_address_maybe_missing:::0:0::0
1cded358 735
0508c3ec
HZ
736# Parse the instruction at ADDR storing in the record execution log
737# the registers REGCACHE and memory ranges that will be affected when
738# the instruction executes, along with their current values.
739# Return -1 if something goes wrong, 0 otherwise.
740M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
741
3846b520
HZ
742# Save process state after a signal.
743# Return -1 if something goes wrong, 0 otherwise.
744M:int:process_record_signal:struct regcache *regcache, enum target_signal signal:regcache, signal
745
1cded358
AR
746# Signal translation: translate inferior's signal (host's) number into
747# GDB's representation.
748m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
749# Signal translation: translate GDB's signal number into inferior's host
750# signal number.
751m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
60c5725c 752
4aa995e1
PA
753# Extra signal info inspection.
754#
755# Return a type suitable to inspect extra signal information.
756M:struct type *:get_siginfo_type:void:
757
60c5725c
DJ
758# Record architecture-specific information from the symbol table.
759M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 760
a96d9b2e
SDJ
761# Function for the 'catch syscall' feature.
762
763# Get architecture-specific system calls information from registers.
764M:LONGEST:get_syscall_number:ptid_t ptid:ptid
765
50c71eaf
PA
766# True if the list of shared libraries is one and only for all
767# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
768# This usually means that all processes, although may or may not share
769# an address space, will see the same set of symbols at the same
770# addresses.
50c71eaf 771v:int:has_global_solist:::0:0::0
2567c7d9
PA
772
773# On some targets, even though each inferior has its own private
774# address space, the debug interface takes care of making breakpoints
775# visible to all address spaces automatically. For such cases,
776# this property should be set to true.
777v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
778
779# True if inferiors share an address space (e.g., uClinux).
780m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
781
782# True if a fast tracepoint can be set at an address.
783m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
75cebea9 784
f870a310
TT
785# Return the "auto" target charset.
786f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
787# Return the "auto" target wide charset.
788f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
789
790# If non-empty, this is a file extension that will be opened in place
791# of the file extension reported by the shared library list.
792#
793# This is most useful for toolchains that use a post-linker tool,
794# where the names of the files run on the target differ in extension
795# compared to the names of the files GDB should load for debug info.
796v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
797
798# If true, the target OS has DOS-based file system semantics. That
799# is, absolute paths include a drive name, and the backslash is
800# considered a directory separator.
801v:int:has_dos_based_file_system:::0:0::0
104c1213 802EOF
104c1213
JM
803}
804
0b8f9e4d
AC
805#
806# The .log file
807#
808exec > new-gdbarch.log
34620563 809function_list | while do_read
0b8f9e4d
AC
810do
811 cat <<EOF
2f9b146e 812${class} ${returntype} ${function} ($formal)
104c1213 813EOF
3d9a5942
AC
814 for r in ${read}
815 do
816 eval echo \"\ \ \ \ ${r}=\${${r}}\"
817 done
f0d4cc9e 818 if class_is_predicate_p && fallback_default_p
0b8f9e4d 819 then
66d659b1 820 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
821 kill $$
822 exit 1
823 fi
72e74a21 824 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
825 then
826 echo "Error: postdefault is useless when invalid_p=0" 1>&2
827 kill $$
828 exit 1
829 fi
a72293e2
AC
830 if class_is_multiarch_p
831 then
832 if class_is_predicate_p ; then :
833 elif test "x${predefault}" = "x"
834 then
2f9b146e 835 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
836 kill $$
837 exit 1
838 fi
839 fi
3d9a5942 840 echo ""
0b8f9e4d
AC
841done
842
843exec 1>&2
844compare_new gdbarch.log
845
104c1213
JM
846
847copyright ()
848{
849cat <<EOF
59233f88
AC
850/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
851
104c1213 852/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 853
f801e1e0
MS
854 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
855 2007, 2008, 2009 Free Software Foundation, Inc.
104c1213
JM
856
857 This file is part of GDB.
858
859 This program is free software; you can redistribute it and/or modify
860 it under the terms of the GNU General Public License as published by
50efebf8 861 the Free Software Foundation; either version 3 of the License, or
104c1213 862 (at your option) any later version.
50efebf8 863
104c1213
JM
864 This program is distributed in the hope that it will be useful,
865 but WITHOUT ANY WARRANTY; without even the implied warranty of
866 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
867 GNU General Public License for more details.
50efebf8 868
104c1213 869 You should have received a copy of the GNU General Public License
50efebf8 870 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 871
104c1213
JM
872/* This file was created with the aid of \`\`gdbarch.sh''.
873
52204a0b 874 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
875 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
876 against the existing \`\`gdbarch.[hc]''. Any differences found
877 being reported.
878
879 If editing this file, please also run gdbarch.sh and merge any
52204a0b 880 changes into that script. Conversely, when making sweeping changes
104c1213
JM
881 to this file, modifying gdbarch.sh and using its output may prove
882 easier. */
883
884EOF
885}
886
887#
888# The .h file
889#
890
891exec > new-gdbarch.h
892copyright
893cat <<EOF
894#ifndef GDBARCH_H
895#define GDBARCH_H
896
da3331ec
AC
897struct floatformat;
898struct ui_file;
104c1213
JM
899struct frame_info;
900struct value;
b6af0555 901struct objfile;
1c772458 902struct obj_section;
a2cf933a 903struct minimal_symbol;
049ee0e4 904struct regcache;
b59ff9d5 905struct reggroup;
6ce6d90f 906struct regset;
a89aa300 907struct disassemble_info;
e2d0e7eb 908struct target_ops;
030f20e1 909struct obstack;
8181d85f 910struct bp_target_info;
424163ea 911struct target_desc;
237fc4c9 912struct displaced_step_closure;
17ea7499 913struct core_regset_section;
a96d9b2e 914struct syscall;
104c1213 915
9e2ace22
JB
916/* The architecture associated with the connection to the target.
917
918 The architecture vector provides some information that is really
919 a property of the target: The layout of certain packets, for instance;
920 or the solib_ops vector. Etc. To differentiate architecture accesses
921 to per-target properties from per-thread/per-frame/per-objfile properties,
922 accesses to per-target properties should be made through target_gdbarch.
923
924 Eventually, when support for multiple targets is implemented in
925 GDB, this global should be made target-specific. */
1cf3db46 926extern struct gdbarch *target_gdbarch;
104c1213
JM
927EOF
928
929# function typedef's
3d9a5942
AC
930printf "\n"
931printf "\n"
932printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 933function_list | while do_read
104c1213 934do
2ada493a
AC
935 if class_is_info_p
936 then
3d9a5942
AC
937 printf "\n"
938 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
939 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 940 fi
104c1213
JM
941done
942
943# function typedef's
3d9a5942
AC
944printf "\n"
945printf "\n"
946printf "/* The following are initialized by the target dependent code. */\n"
34620563 947function_list | while do_read
104c1213 948do
72e74a21 949 if [ -n "${comment}" ]
34620563
AC
950 then
951 echo "${comment}" | sed \
952 -e '2 s,#,/*,' \
953 -e '3,$ s,#, ,' \
954 -e '$ s,$, */,'
955 fi
412d5987
AC
956
957 if class_is_predicate_p
2ada493a 958 then
412d5987
AC
959 printf "\n"
960 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 961 fi
2ada493a
AC
962 if class_is_variable_p
963 then
3d9a5942
AC
964 printf "\n"
965 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
966 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
967 fi
968 if class_is_function_p
969 then
3d9a5942 970 printf "\n"
72e74a21 971 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
972 then
973 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
974 elif class_is_multiarch_p
975 then
976 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
977 else
978 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
979 fi
72e74a21 980 if [ "x${formal}" = "xvoid" ]
104c1213 981 then
3d9a5942 982 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 983 else
3d9a5942 984 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 985 fi
3d9a5942 986 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 987 fi
104c1213
JM
988done
989
990# close it off
991cat <<EOF
992
a96d9b2e
SDJ
993/* Definition for an unknown syscall, used basically in error-cases. */
994#define UNKNOWN_SYSCALL (-1)
995
104c1213
JM
996extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
997
998
999/* Mechanism for co-ordinating the selection of a specific
1000 architecture.
1001
1002 GDB targets (*-tdep.c) can register an interest in a specific
1003 architecture. Other GDB components can register a need to maintain
1004 per-architecture data.
1005
1006 The mechanisms below ensures that there is only a loose connection
1007 between the set-architecture command and the various GDB
0fa6923a 1008 components. Each component can independently register their need
104c1213
JM
1009 to maintain architecture specific data with gdbarch.
1010
1011 Pragmatics:
1012
1013 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1014 didn't scale.
1015
1016 The more traditional mega-struct containing architecture specific
1017 data for all the various GDB components was also considered. Since
0fa6923a 1018 GDB is built from a variable number of (fairly independent)
104c1213
JM
1019 components it was determined that the global aproach was not
1020 applicable. */
1021
1022
1023/* Register a new architectural family with GDB.
1024
1025 Register support for the specified ARCHITECTURE with GDB. When
1026 gdbarch determines that the specified architecture has been
1027 selected, the corresponding INIT function is called.
1028
1029 --
1030
1031 The INIT function takes two parameters: INFO which contains the
1032 information available to gdbarch about the (possibly new)
1033 architecture; ARCHES which is a list of the previously created
1034 \`\`struct gdbarch'' for this architecture.
1035
0f79675b 1036 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1037 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1038
1039 The ARCHES parameter is a linked list (sorted most recently used)
1040 of all the previously created architures for this architecture
1041 family. The (possibly NULL) ARCHES->gdbarch can used to access
1042 values from the previously selected architecture for this
59837fe0 1043 architecture family.
104c1213
JM
1044
1045 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1046 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1047 gdbarch'' from the ARCHES list - indicating that the new
1048 architecture is just a synonym for an earlier architecture (see
1049 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1050 - that describes the selected architecture (see gdbarch_alloc()).
1051
1052 The DUMP_TDEP function shall print out all target specific values.
1053 Care should be taken to ensure that the function works in both the
1054 multi-arch and non- multi-arch cases. */
104c1213
JM
1055
1056struct gdbarch_list
1057{
1058 struct gdbarch *gdbarch;
1059 struct gdbarch_list *next;
1060};
1061
1062struct gdbarch_info
1063{
104c1213
JM
1064 /* Use default: NULL (ZERO). */
1065 const struct bfd_arch_info *bfd_arch_info;
1066
428721aa 1067 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
1068 int byte_order;
1069
9d4fde75
SS
1070 int byte_order_for_code;
1071
104c1213
JM
1072 /* Use default: NULL (ZERO). */
1073 bfd *abfd;
1074
1075 /* Use default: NULL (ZERO). */
1076 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1077
1078 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1079 enum gdb_osabi osabi;
424163ea
DJ
1080
1081 /* Use default: NULL (ZERO). */
1082 const struct target_desc *target_desc;
104c1213
JM
1083};
1084
1085typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1086typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1087
4b9b3959 1088/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1089extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1090
4b9b3959
AC
1091extern void gdbarch_register (enum bfd_architecture architecture,
1092 gdbarch_init_ftype *,
1093 gdbarch_dump_tdep_ftype *);
1094
104c1213 1095
b4a20239
AC
1096/* Return a freshly allocated, NULL terminated, array of the valid
1097 architecture names. Since architectures are registered during the
1098 _initialize phase this function only returns useful information
1099 once initialization has been completed. */
1100
1101extern const char **gdbarch_printable_names (void);
1102
1103
104c1213
JM
1104/* Helper function. Search the list of ARCHES for a GDBARCH that
1105 matches the information provided by INFO. */
1106
424163ea 1107extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1108
1109
1110/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1111 basic initialization using values obtained from the INFO and TDEP
104c1213
JM
1112 parameters. set_gdbarch_*() functions are called to complete the
1113 initialization of the object. */
1114
1115extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1116
1117
4b9b3959
AC
1118/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1119 It is assumed that the caller freeds the \`\`struct
1120 gdbarch_tdep''. */
1121
058f20d5
JB
1122extern void gdbarch_free (struct gdbarch *);
1123
1124
aebd7893
AC
1125/* Helper function. Allocate memory from the \`\`struct gdbarch''
1126 obstack. The memory is freed when the corresponding architecture
1127 is also freed. */
1128
1129extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1130#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1131#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1132
1133
b732d07d 1134/* Helper function. Force an update of the current architecture.
104c1213 1135
b732d07d
AC
1136 The actual architecture selected is determined by INFO, \`\`(gdb) set
1137 architecture'' et.al., the existing architecture and BFD's default
1138 architecture. INFO should be initialized to zero and then selected
1139 fields should be updated.
104c1213 1140
16f33e29
AC
1141 Returns non-zero if the update succeeds */
1142
1143extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1144
1145
ebdba546
AC
1146/* Helper function. Find an architecture matching info.
1147
1148 INFO should be initialized using gdbarch_info_init, relevant fields
1149 set, and then finished using gdbarch_info_fill.
1150
1151 Returns the corresponding architecture, or NULL if no matching
59837fe0 1152 architecture was found. */
ebdba546
AC
1153
1154extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1155
1156
59837fe0 1157/* Helper function. Set the global "target_gdbarch" to "gdbarch".
ebdba546
AC
1158
1159 FIXME: kettenis/20031124: Of the functions that follow, only
1160 gdbarch_from_bfd is supposed to survive. The others will
1161 dissappear since in the future GDB will (hopefully) be truly
1162 multi-arch. However, for now we're still stuck with the concept of
1163 a single active architecture. */
1164
59837fe0 1165extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
ebdba546 1166
104c1213
JM
1167
1168/* Register per-architecture data-pointer.
1169
1170 Reserve space for a per-architecture data-pointer. An identifier
1171 for the reserved data-pointer is returned. That identifer should
95160752 1172 be saved in a local static variable.
104c1213 1173
fcc1c85c
AC
1174 Memory for the per-architecture data shall be allocated using
1175 gdbarch_obstack_zalloc. That memory will be deleted when the
1176 corresponding architecture object is deleted.
104c1213 1177
95160752
AC
1178 When a previously created architecture is re-selected, the
1179 per-architecture data-pointer for that previous architecture is
76860b5f 1180 restored. INIT() is not re-called.
104c1213
JM
1181
1182 Multiple registrarants for any architecture are allowed (and
1183 strongly encouraged). */
1184
95160752 1185struct gdbarch_data;
104c1213 1186
030f20e1
AC
1187typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1188extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1189typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1190extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1191extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1192 struct gdbarch_data *data,
1193 void *pointer);
104c1213 1194
451fbdda 1195extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1196
1197
0fa6923a 1198/* Set the dynamic target-system-dependent parameters (architecture,
104c1213
JM
1199 byte-order, ...) using information found in the BFD */
1200
1201extern void set_gdbarch_from_file (bfd *);
1202
1203
e514a9d6
JM
1204/* Initialize the current architecture to the "first" one we find on
1205 our list. */
1206
1207extern void initialize_current_architecture (void);
1208
104c1213
JM
1209/* gdbarch trace variable */
1210extern int gdbarch_debug;
1211
4b9b3959 1212extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1213
1214#endif
1215EOF
1216exec 1>&2
1217#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1218compare_new gdbarch.h
104c1213
JM
1219
1220
1221#
1222# C file
1223#
1224
1225exec > new-gdbarch.c
1226copyright
1227cat <<EOF
1228
1229#include "defs.h"
7355ddba 1230#include "arch-utils.h"
104c1213 1231
104c1213 1232#include "gdbcmd.h"
faaf634c 1233#include "inferior.h"
104c1213
JM
1234#include "symcat.h"
1235
f0d4cc9e 1236#include "floatformat.h"
104c1213 1237
95160752 1238#include "gdb_assert.h"
b66d6d2e 1239#include "gdb_string.h"
b59ff9d5 1240#include "reggroups.h"
4be87837 1241#include "osabi.h"
aebd7893 1242#include "gdb_obstack.h"
383f836e 1243#include "observer.h"
a3ecef73 1244#include "regcache.h"
95160752 1245
104c1213
JM
1246/* Static function declarations */
1247
b3cc3077 1248static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1249
104c1213
JM
1250/* Non-zero if we want to trace architecture code. */
1251
1252#ifndef GDBARCH_DEBUG
1253#define GDBARCH_DEBUG 0
1254#endif
1255int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1256static void
1257show_gdbarch_debug (struct ui_file *file, int from_tty,
1258 struct cmd_list_element *c, const char *value)
1259{
1260 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1261}
104c1213 1262
456fcf94 1263static const char *
8da61cc4 1264pformat (const struct floatformat **format)
456fcf94
AC
1265{
1266 if (format == NULL)
1267 return "(null)";
1268 else
8da61cc4
DJ
1269 /* Just print out one of them - this is only for diagnostics. */
1270 return format[0]->name;
456fcf94
AC
1271}
1272
08105857
PA
1273static const char *
1274pstring (const char *string)
1275{
1276 if (string == NULL)
1277 return "(null)";
1278 return string;
1279}
1280
104c1213
JM
1281EOF
1282
1283# gdbarch open the gdbarch object
3d9a5942
AC
1284printf "\n"
1285printf "/* Maintain the struct gdbarch object */\n"
1286printf "\n"
1287printf "struct gdbarch\n"
1288printf "{\n"
76860b5f
AC
1289printf " /* Has this architecture been fully initialized? */\n"
1290printf " int initialized_p;\n"
aebd7893
AC
1291printf "\n"
1292printf " /* An obstack bound to the lifetime of the architecture. */\n"
1293printf " struct obstack *obstack;\n"
1294printf "\n"
3d9a5942 1295printf " /* basic architectural information */\n"
34620563 1296function_list | while do_read
104c1213 1297do
2ada493a
AC
1298 if class_is_info_p
1299 then
3d9a5942 1300 printf " ${returntype} ${function};\n"
2ada493a 1301 fi
104c1213 1302done
3d9a5942
AC
1303printf "\n"
1304printf " /* target specific vector. */\n"
1305printf " struct gdbarch_tdep *tdep;\n"
1306printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1307printf "\n"
1308printf " /* per-architecture data-pointers */\n"
95160752 1309printf " unsigned nr_data;\n"
3d9a5942
AC
1310printf " void **data;\n"
1311printf "\n"
1312printf " /* per-architecture swap-regions */\n"
1313printf " struct gdbarch_swap *swap;\n"
1314printf "\n"
104c1213
JM
1315cat <<EOF
1316 /* Multi-arch values.
1317
1318 When extending this structure you must:
1319
1320 Add the field below.
1321
1322 Declare set/get functions and define the corresponding
1323 macro in gdbarch.h.
1324
1325 gdbarch_alloc(): If zero/NULL is not a suitable default,
1326 initialize the new field.
1327
1328 verify_gdbarch(): Confirm that the target updated the field
1329 correctly.
1330
7e73cedf 1331 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1332 field is dumped out
1333
c0e8c252 1334 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1335 variable (base values on the host's c-type system).
1336
1337 get_gdbarch(): Implement the set/get functions (probably using
1338 the macro's as shortcuts).
1339
1340 */
1341
1342EOF
34620563 1343function_list | while do_read
104c1213 1344do
2ada493a
AC
1345 if class_is_variable_p
1346 then
3d9a5942 1347 printf " ${returntype} ${function};\n"
2ada493a
AC
1348 elif class_is_function_p
1349 then
2f9b146e 1350 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1351 fi
104c1213 1352done
3d9a5942 1353printf "};\n"
104c1213
JM
1354
1355# A pre-initialized vector
3d9a5942
AC
1356printf "\n"
1357printf "\n"
104c1213
JM
1358cat <<EOF
1359/* The default architecture uses host values (for want of a better
1360 choice). */
1361EOF
3d9a5942
AC
1362printf "\n"
1363printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1364printf "\n"
1365printf "struct gdbarch startup_gdbarch =\n"
1366printf "{\n"
76860b5f 1367printf " 1, /* Always initialized. */\n"
aebd7893 1368printf " NULL, /* The obstack. */\n"
3d9a5942 1369printf " /* basic architecture information */\n"
4b9b3959 1370function_list | while do_read
104c1213 1371do
2ada493a
AC
1372 if class_is_info_p
1373 then
ec5cbaec 1374 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1375 fi
104c1213
JM
1376done
1377cat <<EOF
4b9b3959
AC
1378 /* target specific vector and its dump routine */
1379 NULL, NULL,
104c1213
JM
1380 /*per-architecture data-pointers and swap regions */
1381 0, NULL, NULL,
1382 /* Multi-arch values */
1383EOF
34620563 1384function_list | while do_read
104c1213 1385do
2ada493a
AC
1386 if class_is_function_p || class_is_variable_p
1387 then
ec5cbaec 1388 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1389 fi
104c1213
JM
1390done
1391cat <<EOF
c0e8c252 1392 /* startup_gdbarch() */
104c1213 1393};
4b9b3959 1394
1cf3db46 1395struct gdbarch *target_gdbarch = &startup_gdbarch;
104c1213
JM
1396EOF
1397
1398# Create a new gdbarch struct
104c1213 1399cat <<EOF
7de2341d 1400
66b43ecb 1401/* Create a new \`\`struct gdbarch'' based on information provided by
104c1213
JM
1402 \`\`struct gdbarch_info''. */
1403EOF
3d9a5942 1404printf "\n"
104c1213
JM
1405cat <<EOF
1406struct gdbarch *
1407gdbarch_alloc (const struct gdbarch_info *info,
1408 struct gdbarch_tdep *tdep)
1409{
be7811ad 1410 struct gdbarch *gdbarch;
aebd7893
AC
1411
1412 /* Create an obstack for allocating all the per-architecture memory,
1413 then use that to allocate the architecture vector. */
1414 struct obstack *obstack = XMALLOC (struct obstack);
1415 obstack_init (obstack);
be7811ad
MD
1416 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1417 memset (gdbarch, 0, sizeof (*gdbarch));
1418 gdbarch->obstack = obstack;
85de9627 1419
be7811ad 1420 alloc_gdbarch_data (gdbarch);
85de9627 1421
be7811ad 1422 gdbarch->tdep = tdep;
104c1213 1423EOF
3d9a5942 1424printf "\n"
34620563 1425function_list | while do_read
104c1213 1426do
2ada493a
AC
1427 if class_is_info_p
1428 then
be7811ad 1429 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1430 fi
104c1213 1431done
3d9a5942
AC
1432printf "\n"
1433printf " /* Force the explicit initialization of these. */\n"
34620563 1434function_list | while do_read
104c1213 1435do
2ada493a
AC
1436 if class_is_function_p || class_is_variable_p
1437 then
72e74a21 1438 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1439 then
be7811ad 1440 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1441 fi
2ada493a 1442 fi
104c1213
JM
1443done
1444cat <<EOF
1445 /* gdbarch_alloc() */
1446
be7811ad 1447 return gdbarch;
104c1213
JM
1448}
1449EOF
1450
058f20d5 1451# Free a gdbarch struct.
3d9a5942
AC
1452printf "\n"
1453printf "\n"
058f20d5 1454cat <<EOF
aebd7893
AC
1455/* Allocate extra space using the per-architecture obstack. */
1456
1457void *
1458gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1459{
1460 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1461
aebd7893
AC
1462 memset (data, 0, size);
1463 return data;
1464}
1465
1466
058f20d5
JB
1467/* Free a gdbarch struct. This should never happen in normal
1468 operation --- once you've created a gdbarch, you keep it around.
1469 However, if an architecture's init function encounters an error
1470 building the structure, it may need to clean up a partially
1471 constructed gdbarch. */
4b9b3959 1472
058f20d5
JB
1473void
1474gdbarch_free (struct gdbarch *arch)
1475{
aebd7893 1476 struct obstack *obstack;
05c547f6 1477
95160752 1478 gdb_assert (arch != NULL);
aebd7893
AC
1479 gdb_assert (!arch->initialized_p);
1480 obstack = arch->obstack;
1481 obstack_free (obstack, 0); /* Includes the ARCH. */
1482 xfree (obstack);
058f20d5
JB
1483}
1484EOF
1485
104c1213 1486# verify a new architecture
104c1213 1487cat <<EOF
db446970
AC
1488
1489
1490/* Ensure that all values in a GDBARCH are reasonable. */
1491
104c1213 1492static void
be7811ad 1493verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1494{
f16a1923
AC
1495 struct ui_file *log;
1496 struct cleanup *cleanups;
759ef836 1497 long length;
f16a1923 1498 char *buf;
05c547f6 1499
f16a1923
AC
1500 log = mem_fileopen ();
1501 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1502 /* fundamental */
be7811ad 1503 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1504 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1505 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1506 fprintf_unfiltered (log, "\n\tbfd_arch_info");
104c1213
JM
1507 /* Check those that need to be defined for the given multi-arch level. */
1508EOF
34620563 1509function_list | while do_read
104c1213 1510do
2ada493a
AC
1511 if class_is_function_p || class_is_variable_p
1512 then
72e74a21 1513 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1514 then
3d9a5942 1515 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1516 elif class_is_predicate_p
1517 then
3d9a5942 1518 printf " /* Skip verify of ${function}, has predicate */\n"
f0d4cc9e 1519 # FIXME: See do_read for potential simplification
72e74a21 1520 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1521 then
3d9a5942 1522 printf " if (${invalid_p})\n"
be7811ad 1523 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1524 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1525 then
be7811ad
MD
1526 printf " if (gdbarch->${function} == ${predefault})\n"
1527 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1528 elif [ -n "${postdefault}" ]
f0d4cc9e 1529 then
be7811ad
MD
1530 printf " if (gdbarch->${function} == 0)\n"
1531 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1532 elif [ -n "${invalid_p}" ]
104c1213 1533 then
4d60522e 1534 printf " if (${invalid_p})\n"
f16a1923 1535 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1536 elif [ -n "${predefault}" ]
104c1213 1537 then
be7811ad 1538 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1539 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1540 fi
2ada493a 1541 fi
104c1213
JM
1542done
1543cat <<EOF
759ef836 1544 buf = ui_file_xstrdup (log, &length);
f16a1923 1545 make_cleanup (xfree, buf);
759ef836 1546 if (length > 0)
f16a1923 1547 internal_error (__FILE__, __LINE__,
85c07804 1548 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1549 buf);
1550 do_cleanups (cleanups);
104c1213
JM
1551}
1552EOF
1553
1554# dump the structure
3d9a5942
AC
1555printf "\n"
1556printf "\n"
104c1213 1557cat <<EOF
4b9b3959
AC
1558/* Print out the details of the current architecture. */
1559
104c1213 1560void
be7811ad 1561gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1562{
b78960be 1563 const char *gdb_nm_file = "<not-defined>";
05c547f6 1564
b78960be
AC
1565#if defined (GDB_NM_FILE)
1566 gdb_nm_file = GDB_NM_FILE;
1567#endif
1568 fprintf_unfiltered (file,
1569 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1570 gdb_nm_file);
104c1213 1571EOF
97030eea 1572function_list | sort -t: -k 3 | while do_read
104c1213 1573do
1e9f55d0
AC
1574 # First the predicate
1575 if class_is_predicate_p
1576 then
7996bcec 1577 printf " fprintf_unfiltered (file,\n"
48f7351b 1578 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1579 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1580 fi
48f7351b 1581 # Print the corresponding value.
283354d8 1582 if class_is_function_p
4b9b3959 1583 then
7996bcec 1584 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1585 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1586 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1587 else
48f7351b 1588 # It is a variable
2f9b146e
AC
1589 case "${print}:${returntype}" in
1590 :CORE_ADDR )
0b1553bc
UW
1591 fmt="%s"
1592 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1593 ;;
2f9b146e 1594 :* )
48f7351b 1595 fmt="%s"
623d3eb1 1596 print="plongest (gdbarch->${function})"
48f7351b
AC
1597 ;;
1598 * )
2f9b146e 1599 fmt="%s"
48f7351b
AC
1600 ;;
1601 esac
3d9a5942 1602 printf " fprintf_unfiltered (file,\n"
48f7351b 1603 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1604 printf " ${print});\n"
2ada493a 1605 fi
104c1213 1606done
381323f4 1607cat <<EOF
be7811ad
MD
1608 if (gdbarch->dump_tdep != NULL)
1609 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1610}
1611EOF
104c1213
JM
1612
1613
1614# GET/SET
3d9a5942 1615printf "\n"
104c1213
JM
1616cat <<EOF
1617struct gdbarch_tdep *
1618gdbarch_tdep (struct gdbarch *gdbarch)
1619{
1620 if (gdbarch_debug >= 2)
3d9a5942 1621 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1622 return gdbarch->tdep;
1623}
1624EOF
3d9a5942 1625printf "\n"
34620563 1626function_list | while do_read
104c1213 1627do
2ada493a
AC
1628 if class_is_predicate_p
1629 then
3d9a5942
AC
1630 printf "\n"
1631 printf "int\n"
1632 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1633 printf "{\n"
8de9bdc4 1634 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1635 printf " return ${predicate};\n"
3d9a5942 1636 printf "}\n"
2ada493a
AC
1637 fi
1638 if class_is_function_p
1639 then
3d9a5942
AC
1640 printf "\n"
1641 printf "${returntype}\n"
72e74a21 1642 if [ "x${formal}" = "xvoid" ]
104c1213 1643 then
3d9a5942 1644 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1645 else
3d9a5942 1646 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1647 fi
3d9a5942 1648 printf "{\n"
8de9bdc4 1649 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1650 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1651 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1652 then
1653 # Allow a call to a function with a predicate.
956ac328 1654 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1655 fi
3d9a5942
AC
1656 printf " if (gdbarch_debug >= 2)\n"
1657 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1658 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1659 then
1660 if class_is_multiarch_p
1661 then
1662 params="gdbarch"
1663 else
1664 params=""
1665 fi
1666 else
1667 if class_is_multiarch_p
1668 then
1669 params="gdbarch, ${actual}"
1670 else
1671 params="${actual}"
1672 fi
1673 fi
72e74a21 1674 if [ "x${returntype}" = "xvoid" ]
104c1213 1675 then
4a5c6a1d 1676 printf " gdbarch->${function} (${params});\n"
104c1213 1677 else
4a5c6a1d 1678 printf " return gdbarch->${function} (${params});\n"
104c1213 1679 fi
3d9a5942
AC
1680 printf "}\n"
1681 printf "\n"
1682 printf "void\n"
1683 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1684 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1685 printf "{\n"
1686 printf " gdbarch->${function} = ${function};\n"
1687 printf "}\n"
2ada493a
AC
1688 elif class_is_variable_p
1689 then
3d9a5942
AC
1690 printf "\n"
1691 printf "${returntype}\n"
1692 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1693 printf "{\n"
8de9bdc4 1694 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1695 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1696 then
3d9a5942 1697 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1698 elif [ -n "${invalid_p}" ]
104c1213 1699 then
956ac328
AC
1700 printf " /* Check variable is valid. */\n"
1701 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1702 elif [ -n "${predefault}" ]
104c1213 1703 then
956ac328
AC
1704 printf " /* Check variable changed from pre-default. */\n"
1705 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1706 fi
3d9a5942
AC
1707 printf " if (gdbarch_debug >= 2)\n"
1708 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1709 printf " return gdbarch->${function};\n"
1710 printf "}\n"
1711 printf "\n"
1712 printf "void\n"
1713 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1714 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1715 printf "{\n"
1716 printf " gdbarch->${function} = ${function};\n"
1717 printf "}\n"
2ada493a
AC
1718 elif class_is_info_p
1719 then
3d9a5942
AC
1720 printf "\n"
1721 printf "${returntype}\n"
1722 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1723 printf "{\n"
8de9bdc4 1724 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1725 printf " if (gdbarch_debug >= 2)\n"
1726 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1727 printf " return gdbarch->${function};\n"
1728 printf "}\n"
2ada493a 1729 fi
104c1213
JM
1730done
1731
1732# All the trailing guff
1733cat <<EOF
1734
1735
f44c642f 1736/* Keep a registry of per-architecture data-pointers required by GDB
104c1213
JM
1737 modules. */
1738
1739struct gdbarch_data
1740{
95160752 1741 unsigned index;
76860b5f 1742 int init_p;
030f20e1
AC
1743 gdbarch_data_pre_init_ftype *pre_init;
1744 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1745};
1746
1747struct gdbarch_data_registration
1748{
104c1213
JM
1749 struct gdbarch_data *data;
1750 struct gdbarch_data_registration *next;
1751};
1752
f44c642f 1753struct gdbarch_data_registry
104c1213 1754{
95160752 1755 unsigned nr;
104c1213
JM
1756 struct gdbarch_data_registration *registrations;
1757};
1758
f44c642f 1759struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1760{
1761 0, NULL,
1762};
1763
030f20e1
AC
1764static struct gdbarch_data *
1765gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1766 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
1767{
1768 struct gdbarch_data_registration **curr;
05c547f6
MS
1769
1770 /* Append the new registration. */
f44c642f 1771 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1772 (*curr) != NULL;
1773 curr = &(*curr)->next);
1774 (*curr) = XMALLOC (struct gdbarch_data_registration);
1775 (*curr)->next = NULL;
104c1213 1776 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1777 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
1778 (*curr)->data->pre_init = pre_init;
1779 (*curr)->data->post_init = post_init;
76860b5f 1780 (*curr)->data->init_p = 1;
104c1213
JM
1781 return (*curr)->data;
1782}
1783
030f20e1
AC
1784struct gdbarch_data *
1785gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1786{
1787 return gdbarch_data_register (pre_init, NULL);
1788}
1789
1790struct gdbarch_data *
1791gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1792{
1793 return gdbarch_data_register (NULL, post_init);
1794}
104c1213 1795
b3cc3077 1796/* Create/delete the gdbarch data vector. */
95160752
AC
1797
1798static void
b3cc3077 1799alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1800{
b3cc3077
JB
1801 gdb_assert (gdbarch->data == NULL);
1802 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 1803 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 1804}
3c875b6f 1805
76860b5f 1806/* Initialize the current value of the specified per-architecture
b3cc3077
JB
1807 data-pointer. */
1808
95160752 1809void
030f20e1
AC
1810deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1811 struct gdbarch_data *data,
1812 void *pointer)
95160752
AC
1813{
1814 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 1815 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 1816 gdb_assert (data->pre_init == NULL);
95160752
AC
1817 gdbarch->data[data->index] = pointer;
1818}
1819
104c1213
JM
1820/* Return the current value of the specified per-architecture
1821 data-pointer. */
1822
1823void *
451fbdda 1824gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 1825{
451fbdda 1826 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 1827 if (gdbarch->data[data->index] == NULL)
76860b5f 1828 {
030f20e1
AC
1829 /* The data-pointer isn't initialized, call init() to get a
1830 value. */
1831 if (data->pre_init != NULL)
1832 /* Mid architecture creation: pass just the obstack, and not
1833 the entire architecture, as that way it isn't possible for
1834 pre-init code to refer to undefined architecture
1835 fields. */
1836 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1837 else if (gdbarch->initialized_p
1838 && data->post_init != NULL)
1839 /* Post architecture creation: pass the entire architecture
1840 (as all fields are valid), but be careful to also detect
1841 recursive references. */
1842 {
1843 gdb_assert (data->init_p);
1844 data->init_p = 0;
1845 gdbarch->data[data->index] = data->post_init (gdbarch);
1846 data->init_p = 1;
1847 }
1848 else
1849 /* The architecture initialization hasn't completed - punt -
1850 hope that the caller knows what they are doing. Once
1851 deprecated_set_gdbarch_data has been initialized, this can be
1852 changed to an internal error. */
1853 return NULL;
76860b5f
AC
1854 gdb_assert (gdbarch->data[data->index] != NULL);
1855 }
451fbdda 1856 return gdbarch->data[data->index];
104c1213
JM
1857}
1858
1859
f44c642f 1860/* Keep a registry of the architectures known by GDB. */
104c1213 1861
4b9b3959 1862struct gdbarch_registration
104c1213
JM
1863{
1864 enum bfd_architecture bfd_architecture;
1865 gdbarch_init_ftype *init;
4b9b3959 1866 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 1867 struct gdbarch_list *arches;
4b9b3959 1868 struct gdbarch_registration *next;
104c1213
JM
1869};
1870
f44c642f 1871static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 1872
b4a20239
AC
1873static void
1874append_name (const char ***buf, int *nr, const char *name)
1875{
1876 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1877 (*buf)[*nr] = name;
1878 *nr += 1;
1879}
1880
1881const char **
1882gdbarch_printable_names (void)
1883{
7996bcec
AC
1884 /* Accumulate a list of names based on the registed list of
1885 architectures. */
7996bcec
AC
1886 int nr_arches = 0;
1887 const char **arches = NULL;
1888 struct gdbarch_registration *rego;
05c547f6 1889
7996bcec
AC
1890 for (rego = gdbarch_registry;
1891 rego != NULL;
1892 rego = rego->next)
b4a20239 1893 {
7996bcec
AC
1894 const struct bfd_arch_info *ap;
1895 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1896 if (ap == NULL)
1897 internal_error (__FILE__, __LINE__,
85c07804 1898 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
1899 do
1900 {
1901 append_name (&arches, &nr_arches, ap->printable_name);
1902 ap = ap->next;
1903 }
1904 while (ap != NULL);
b4a20239 1905 }
7996bcec
AC
1906 append_name (&arches, &nr_arches, NULL);
1907 return arches;
b4a20239
AC
1908}
1909
1910
104c1213 1911void
4b9b3959
AC
1912gdbarch_register (enum bfd_architecture bfd_architecture,
1913 gdbarch_init_ftype *init,
1914 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 1915{
4b9b3959 1916 struct gdbarch_registration **curr;
104c1213 1917 const struct bfd_arch_info *bfd_arch_info;
05c547f6 1918
ec3d358c 1919 /* Check that BFD recognizes this architecture */
104c1213
JM
1920 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1921 if (bfd_arch_info == NULL)
1922 {
8e65ff28 1923 internal_error (__FILE__, __LINE__,
85c07804 1924 _("gdbarch: Attempt to register unknown architecture (%d)"),
8e65ff28 1925 bfd_architecture);
104c1213
JM
1926 }
1927 /* Check that we haven't seen this architecture before */
f44c642f 1928 for (curr = &gdbarch_registry;
104c1213
JM
1929 (*curr) != NULL;
1930 curr = &(*curr)->next)
1931 {
1932 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 1933 internal_error (__FILE__, __LINE__,
85c07804 1934 _("gdbarch: Duplicate registraration of architecture (%s)"),
8e65ff28 1935 bfd_arch_info->printable_name);
104c1213
JM
1936 }
1937 /* log it */
1938 if (gdbarch_debug)
30737ed9 1939 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 1940 bfd_arch_info->printable_name,
30737ed9 1941 host_address_to_string (init));
104c1213 1942 /* Append it */
4b9b3959 1943 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
1944 (*curr)->bfd_architecture = bfd_architecture;
1945 (*curr)->init = init;
4b9b3959 1946 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
1947 (*curr)->arches = NULL;
1948 (*curr)->next = NULL;
4b9b3959
AC
1949}
1950
1951void
1952register_gdbarch_init (enum bfd_architecture bfd_architecture,
1953 gdbarch_init_ftype *init)
1954{
1955 gdbarch_register (bfd_architecture, init, NULL);
104c1213 1956}
104c1213
JM
1957
1958
424163ea 1959/* Look for an architecture using gdbarch_info. */
104c1213
JM
1960
1961struct gdbarch_list *
1962gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1963 const struct gdbarch_info *info)
1964{
1965 for (; arches != NULL; arches = arches->next)
1966 {
1967 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1968 continue;
1969 if (info->byte_order != arches->gdbarch->byte_order)
1970 continue;
4be87837
DJ
1971 if (info->osabi != arches->gdbarch->osabi)
1972 continue;
424163ea
DJ
1973 if (info->target_desc != arches->gdbarch->target_desc)
1974 continue;
104c1213
JM
1975 return arches;
1976 }
1977 return NULL;
1978}
1979
1980
ebdba546 1981/* Find an architecture that matches the specified INFO. Create a new
59837fe0 1982 architecture if needed. Return that new architecture. */
104c1213 1983
59837fe0
UW
1984struct gdbarch *
1985gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
1986{
1987 struct gdbarch *new_gdbarch;
4b9b3959 1988 struct gdbarch_registration *rego;
104c1213 1989
b732d07d 1990 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
1991 sources: "set ..."; INFOabfd supplied; and the global
1992 defaults. */
1993 gdbarch_info_fill (&info);
4be87837 1994
b732d07d
AC
1995 /* Must have found some sort of architecture. */
1996 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
1997
1998 if (gdbarch_debug)
1999 {
2000 fprintf_unfiltered (gdb_stdlog,
59837fe0 2001 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2002 (info.bfd_arch_info != NULL
2003 ? info.bfd_arch_info->printable_name
2004 : "(null)"));
2005 fprintf_unfiltered (gdb_stdlog,
59837fe0 2006 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2007 info.byte_order,
d7449b42 2008 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2009 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2010 : "default"));
4be87837 2011 fprintf_unfiltered (gdb_stdlog,
59837fe0 2012 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2013 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2014 fprintf_unfiltered (gdb_stdlog,
59837fe0 2015 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2016 host_address_to_string (info.abfd));
104c1213 2017 fprintf_unfiltered (gdb_stdlog,
59837fe0 2018 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2019 host_address_to_string (info.tdep_info));
104c1213
JM
2020 }
2021
ebdba546 2022 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2023 for (rego = gdbarch_registry;
2024 rego != NULL;
2025 rego = rego->next)
2026 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2027 break;
2028 if (rego == NULL)
2029 {
2030 if (gdbarch_debug)
59837fe0 2031 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2032 "No matching architecture\n");
b732d07d
AC
2033 return 0;
2034 }
2035
ebdba546 2036 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2037 new_gdbarch = rego->init (info, rego->arches);
2038
ebdba546
AC
2039 /* Did the tdep code like it? No. Reject the change and revert to
2040 the old architecture. */
104c1213
JM
2041 if (new_gdbarch == NULL)
2042 {
2043 if (gdbarch_debug)
59837fe0 2044 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2045 "Target rejected architecture\n");
2046 return NULL;
104c1213
JM
2047 }
2048
ebdba546
AC
2049 /* Is this a pre-existing architecture (as determined by already
2050 being initialized)? Move it to the front of the architecture
2051 list (keeping the list sorted Most Recently Used). */
2052 if (new_gdbarch->initialized_p)
104c1213 2053 {
ebdba546
AC
2054 struct gdbarch_list **list;
2055 struct gdbarch_list *this;
104c1213 2056 if (gdbarch_debug)
59837fe0 2057 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2058 "Previous architecture %s (%s) selected\n",
2059 host_address_to_string (new_gdbarch),
104c1213 2060 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2061 /* Find the existing arch in the list. */
2062 for (list = &rego->arches;
2063 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2064 list = &(*list)->next);
2065 /* It had better be in the list of architectures. */
2066 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2067 /* Unlink THIS. */
2068 this = (*list);
2069 (*list) = this->next;
2070 /* Insert THIS at the front. */
2071 this->next = rego->arches;
2072 rego->arches = this;
2073 /* Return it. */
2074 return new_gdbarch;
104c1213
JM
2075 }
2076
ebdba546
AC
2077 /* It's a new architecture. */
2078 if (gdbarch_debug)
59837fe0 2079 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2080 "New architecture %s (%s) selected\n",
2081 host_address_to_string (new_gdbarch),
ebdba546
AC
2082 new_gdbarch->bfd_arch_info->printable_name);
2083
2084 /* Insert the new architecture into the front of the architecture
2085 list (keep the list sorted Most Recently Used). */
0f79675b
AC
2086 {
2087 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2088 this->next = rego->arches;
2089 this->gdbarch = new_gdbarch;
2090 rego->arches = this;
2091 }
104c1213 2092
4b9b3959
AC
2093 /* Check that the newly installed architecture is valid. Plug in
2094 any post init values. */
2095 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2096 verify_gdbarch (new_gdbarch);
ebdba546 2097 new_gdbarch->initialized_p = 1;
104c1213 2098
4b9b3959 2099 if (gdbarch_debug)
ebdba546
AC
2100 gdbarch_dump (new_gdbarch, gdb_stdlog);
2101
2102 return new_gdbarch;
2103}
2104
e487cc15 2105/* Make the specified architecture current. */
ebdba546
AC
2106
2107void
59837fe0 2108deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
ebdba546
AC
2109{
2110 gdb_assert (new_gdbarch != NULL);
ebdba546 2111 gdb_assert (new_gdbarch->initialized_p);
1cf3db46 2112 target_gdbarch = new_gdbarch;
383f836e 2113 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2114 registers_changed ();
ebdba546 2115}
104c1213 2116
104c1213 2117extern void _initialize_gdbarch (void);
b4a20239 2118
104c1213 2119void
34620563 2120_initialize_gdbarch (void)
104c1213 2121{
85c07804
AC
2122 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2123Set architecture debugging."), _("\\
2124Show architecture debugging."), _("\\
2125When non-zero, architecture debugging is enabled."),
2126 NULL,
920d2a44 2127 show_gdbarch_debug,
85c07804 2128 &setdebuglist, &showdebuglist);
104c1213
JM
2129}
2130EOF
2131
2132# close things off
2133exec 1>&2
2134#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2135compare_new gdbarch.c
This page took 1.18377 seconds and 4 git commands to generate.