2004-06-21 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4
AC
4#
5# Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
6# Foundation, Inc.
7#
104c1213
JM
8#
9# This file is part of GDB.
10#
11# This program is free software; you can redistribute it and/or modify
12# it under the terms of the GNU General Public License as published by
13# the Free Software Foundation; either version 2 of the License, or
14# (at your option) any later version.
15#
16# This program is distributed in the hope that it will be useful,
17# but WITHOUT ANY WARRANTY; without even the implied warranty of
18# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19# GNU General Public License for more details.
20#
21# You should have received a copy of the GNU General Public License
22# along with this program; if not, write to the Free Software
23# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24
d8864532
AC
25# Make certain that the script is running in an internationalized
26# environment.
27LANG=c ; export LANG
1bd316f0 28LC_ALL=c ; export LC_ALL
d8864532
AC
29
30
59233f88
AC
31compare_new ()
32{
33 file=$1
66b43ecb 34 if test ! -r ${file}
59233f88
AC
35 then
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 37 elif diff -u ${file} new-${file}
59233f88
AC
38 then
39 echo "${file} unchanged" 1>&2
40 else
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
42 fi
43}
44
45
46# Format of the input table
283354d8 47read="class macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print garbage_at_eol"
c0e8c252
AC
48
49do_read ()
50{
34620563
AC
51 comment=""
52 class=""
53 while read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
68908a3e
AC
95 # Check that macro definition wasn't supplied for multi-arch
96 case "${class}" in
97 [mM] )
98 if test "${macro}" != ""
99 then
100 echo "${macro}: Multi-arch yet macro" 1>&2
101 kill $$
102 exit 1
103 fi
104 esac
105
a72293e2
AC
106 case "${class}" in
107 m ) staticdefault="${predefault}" ;;
108 M ) staticdefault="0" ;;
109 * ) test "${staticdefault}" || staticdefault=0 ;;
110 esac
06b25f14 111
ae45cd16
AC
112 case "${class}" in
113 F | V | M )
114 case "${invalid_p}" in
34620563 115 "" )
f7968451 116 if test -n "${predefault}"
34620563
AC
117 then
118 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 119 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
120 elif class_is_variable_p
121 then
122 predicate="gdbarch->${function} != 0"
123 elif class_is_function_p
124 then
125 predicate="gdbarch->${function} != NULL"
34620563
AC
126 fi
127 ;;
ae45cd16 128 * )
1e9f55d0 129 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
130 kill $$
131 exit 1
132 ;;
133 esac
34620563
AC
134 esac
135
136 # PREDEFAULT is a valid fallback definition of MEMBER when
137 # multi-arch is not enabled. This ensures that the
138 # default value, when multi-arch is the same as the
139 # default value when not multi-arch. POSTDEFAULT is
140 # always a valid definition of MEMBER as this again
141 # ensures consistency.
142
72e74a21 143 if [ -n "${postdefault}" ]
34620563
AC
144 then
145 fallbackdefault="${postdefault}"
72e74a21 146 elif [ -n "${predefault}" ]
34620563
AC
147 then
148 fallbackdefault="${predefault}"
149 else
73d3c16e 150 fallbackdefault="0"
34620563
AC
151 fi
152
153 #NOT YET: See gdbarch.log for basic verification of
154 # database
155
156 break
f0d4cc9e 157 fi
34620563 158 done
72e74a21 159 if [ -n "${class}" ]
34620563
AC
160 then
161 true
c0e8c252
AC
162 else
163 false
164 fi
165}
166
104c1213 167
f0d4cc9e
AC
168fallback_default_p ()
169{
72e74a21
JB
170 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
171 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
172}
173
174class_is_variable_p ()
175{
4a5c6a1d
AC
176 case "${class}" in
177 *v* | *V* ) true ;;
178 * ) false ;;
179 esac
f0d4cc9e
AC
180}
181
182class_is_function_p ()
183{
4a5c6a1d
AC
184 case "${class}" in
185 *f* | *F* | *m* | *M* ) true ;;
186 * ) false ;;
187 esac
188}
189
190class_is_multiarch_p ()
191{
192 case "${class}" in
193 *m* | *M* ) true ;;
194 * ) false ;;
195 esac
f0d4cc9e
AC
196}
197
198class_is_predicate_p ()
199{
4a5c6a1d
AC
200 case "${class}" in
201 *F* | *V* | *M* ) true ;;
202 * ) false ;;
203 esac
f0d4cc9e
AC
204}
205
206class_is_info_p ()
207{
4a5c6a1d
AC
208 case "${class}" in
209 *i* ) true ;;
210 * ) false ;;
211 esac
f0d4cc9e
AC
212}
213
214
cff3e48b
JM
215# dump out/verify the doco
216for field in ${read}
217do
218 case ${field} in
219
220 class ) : ;;
c4093a6a 221
c0e8c252
AC
222 # # -> line disable
223 # f -> function
224 # hiding a function
2ada493a
AC
225 # F -> function + predicate
226 # hiding a function + predicate to test function validity
c0e8c252
AC
227 # v -> variable
228 # hiding a variable
2ada493a
AC
229 # V -> variable + predicate
230 # hiding a variable + predicate to test variables validity
c0e8c252
AC
231 # i -> set from info
232 # hiding something from the ``struct info'' object
4a5c6a1d
AC
233 # m -> multi-arch function
234 # hiding a multi-arch function (parameterised with the architecture)
235 # M -> multi-arch function + predicate
236 # hiding a multi-arch function + predicate to test function validity
cff3e48b 237
cff3e48b
JM
238 macro ) : ;;
239
c0e8c252 240 # The name of the MACRO that this method is to be accessed by.
cff3e48b
JM
241
242 returntype ) : ;;
243
c0e8c252 244 # For functions, the return type; for variables, the data type
cff3e48b
JM
245
246 function ) : ;;
247
c0e8c252
AC
248 # For functions, the member function name; for variables, the
249 # variable name. Member function names are always prefixed with
250 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
251
252 formal ) : ;;
253
c0e8c252
AC
254 # The formal argument list. It is assumed that the formal
255 # argument list includes the actual name of each list element.
256 # A function with no arguments shall have ``void'' as the
257 # formal argument list.
cff3e48b
JM
258
259 actual ) : ;;
260
c0e8c252
AC
261 # The list of actual arguments. The arguments specified shall
262 # match the FORMAL list given above. Functions with out
263 # arguments leave this blank.
cff3e48b
JM
264
265 attrib ) : ;;
266
c0e8c252
AC
267 # Any GCC attributes that should be attached to the function
268 # declaration. At present this field is unused.
cff3e48b 269
0b8f9e4d 270 staticdefault ) : ;;
c0e8c252
AC
271
272 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
273 # created. STATICDEFAULT is the value to insert into that
274 # static gdbarch object. Since this a static object only
275 # simple expressions can be used.
cff3e48b 276
0b8f9e4d 277 # If STATICDEFAULT is empty, zero is used.
c0e8c252 278
0b8f9e4d 279 predefault ) : ;;
cff3e48b 280
10312cc4
AC
281 # An initial value to assign to MEMBER of the freshly
282 # malloc()ed gdbarch object. After initialization, the
283 # freshly malloc()ed object is passed to the target
284 # architecture code for further updates.
cff3e48b 285
0b8f9e4d
AC
286 # If PREDEFAULT is empty, zero is used.
287
10312cc4
AC
288 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
289 # INVALID_P are specified, PREDEFAULT will be used as the
290 # default for the non- multi-arch target.
291
292 # A zero PREDEFAULT function will force the fallback to call
293 # internal_error().
f0d4cc9e
AC
294
295 # Variable declarations can refer to ``gdbarch'' which will
296 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
297
298 postdefault ) : ;;
299
300 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
301 # the target architecture code fail to change the PREDEFAULT
302 # value.
0b8f9e4d
AC
303
304 # If POSTDEFAULT is empty, no post update is performed.
305
306 # If both INVALID_P and POSTDEFAULT are non-empty then
307 # INVALID_P will be used to determine if MEMBER should be
308 # changed to POSTDEFAULT.
309
10312cc4
AC
310 # If a non-empty POSTDEFAULT and a zero INVALID_P are
311 # specified, POSTDEFAULT will be used as the default for the
312 # non- multi-arch target (regardless of the value of
313 # PREDEFAULT).
314
f0d4cc9e
AC
315 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
316
db446970
AC
317 # Variable declarations can refer to ``current_gdbarch'' which
318 # will contain the current architecture. Care should be
319 # taken.
cff3e48b 320
c4093a6a 321 invalid_p ) : ;;
cff3e48b 322
0b8f9e4d 323 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 324 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
325 # initialize MEMBER or the initialized the member is invalid.
326 # If POSTDEFAULT is non-empty then MEMBER will be updated to
327 # that value. If POSTDEFAULT is empty then internal_error()
328 # is called.
329
330 # If INVALID_P is empty, a check that MEMBER is no longer
331 # equal to PREDEFAULT is used.
332
f0d4cc9e
AC
333 # The expression ``0'' disables the INVALID_P check making
334 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
335
336 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b
JM
337
338 fmt ) : ;;
339
c0e8c252
AC
340 # printf style format string that can be used to print out the
341 # MEMBER. Sometimes "%s" is useful. For functions, this is
342 # ignored and the function address is printed.
343
0b8f9e4d 344 # If FMT is empty, ``%ld'' is used.
cff3e48b
JM
345
346 print ) : ;;
347
c0e8c252
AC
348 # An optional equation that casts MEMBER to a value suitable
349 # for formatting by FMT.
350
0b8f9e4d 351 # If PRINT is empty, ``(long)'' is used.
cff3e48b 352
283354d8 353 garbage_at_eol ) : ;;
0b8f9e4d 354
283354d8 355 # Catches stray fields.
cff3e48b 356
50248794
AC
357 *)
358 echo "Bad field ${field}"
359 exit 1;;
cff3e48b
JM
360 esac
361done
362
cff3e48b 363
104c1213
JM
364function_list ()
365{
cff3e48b 366 # See below (DOCO) for description of each field
34620563 367 cat <<EOF
283354d8 368i:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name
104c1213 369#
57010b1c 370i:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
4be87837 371#
57010b1c 372i:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
66b43ecb
AC
373# Number of bits in a char or unsigned char for the target machine.
374# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 375# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
376#
377# Number of bits in a short or unsigned short for the target machine.
57010b1c 378v:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 379# Number of bits in an int or unsigned int for the target machine.
57010b1c 380v:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 381# Number of bits in a long or unsigned long for the target machine.
57010b1c 382v:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
383# Number of bits in a long long or unsigned long long for the target
384# machine.
57010b1c 385v:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
66b43ecb 386# Number of bits in a float for the target machine.
57010b1c 387v:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
66b43ecb 388# Number of bits in a double for the target machine.
57010b1c 389v:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
66b43ecb 390# Number of bits in a long double for the target machine.
57010b1c 391v:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
52204a0b
DT
392# For most targets, a pointer on the target and its representation as an
393# address in GDB have the same size and "look the same". For such a
394# target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
395# / addr_bit will be set from it.
396#
397# If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
398# also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
399#
400# ptr_bit is the size of a pointer on the target
57010b1c 401v:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
52204a0b 402# addr_bit is the size of a target address as represented in gdb
57010b1c 403v:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
66b43ecb 404# Number of bits in a BFD_VMA for the target object file format.
57010b1c 405v:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
104c1213 406#
4e409299 407# One if \`char' acts like \`signed char', zero if \`unsigned char'.
57010b1c 408v:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
4e409299 409#
57010b1c
AC
410F:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
411f:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
a9e5fdc2 412# UNWIND_SP is a direct replacement for TARGET_READ_SP.
57010b1c 413F:TARGET_READ_SP:CORE_ADDR:read_sp:void
39d4ef09
AC
414# Function for getting target's idea of a frame pointer. FIXME: GDB's
415# whole scheme for dealing with "frames" and "frame pointers" needs a
416# serious shakedown.
57010b1c 417f:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
66b43ecb 418#
57010b1c
AC
419M::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
420M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
61a0eb5b 421#
57010b1c 422v:NUM_REGS:int:num_regs::::0:-1
0aba1244
EZ
423# This macro gives the number of pseudo-registers that live in the
424# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
425# These pseudo-registers may be aliases for other registers,
426# combinations of other registers, or they may be computed by GDB.
57010b1c 427v:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
c2169756
AC
428
429# GDB's standard (or well known) register numbers. These can map onto
430# a real register or a pseudo (computed) register or not be defined at
1200cd6e 431# all (-1).
a9e5fdc2 432# SP_REGNUM will hopefully be replaced by UNWIND_SP.
57010b1c
AC
433v:SP_REGNUM:int:sp_regnum::::-1:-1::0
434v:PC_REGNUM:int:pc_regnum::::-1:-1::0
435v:PS_REGNUM:int:ps_regnum::::-1:-1::0
436v:FP0_REGNUM:int:fp0_regnum::::0:-1::0
88c72b7d 437# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
57010b1c 438f:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
88c72b7d 439# Provide a default mapping from a ecoff register number to a gdb REGNUM.
57010b1c 440f:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
88c72b7d 441# Provide a default mapping from a DWARF register number to a gdb REGNUM.
57010b1c 442f:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
88c72b7d 443# Convert from an sdb register number to an internal gdb register number.
57010b1c
AC
444f:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
445f:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
446f:REGISTER_NAME:const char *:register_name:int regnr:regnr
9c04cab7 447
2e092625 448# REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
68908a3e 449M::struct type *:register_type:int reg_nr:reg_nr
2e092625 450# REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
57010b1c 451F:DEPRECATED_REGISTER_VIRTUAL_TYPE:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr
9c04cab7
AC
452# DEPRECATED_REGISTER_BYTES can be deleted. The value is computed
453# from REGISTER_TYPE.
57010b1c 454v:DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
f3be58bc
AC
455# If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
456# register offsets computed using just REGISTER_TYPE, this can be
457# deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
458# function with predicate has a valid (callable) initial value. As a
459# consequence, even when the predicate is false, the corresponding
460# function works. This simplifies the migration process - old code,
461# calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
57010b1c 462F:DEPRECATED_REGISTER_BYTE:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
f3be58bc
AC
463# If all registers have identical raw and virtual sizes and those
464# sizes agree with the value computed from REGISTER_TYPE,
465# DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print
466# registers.
57010b1c 467F:DEPRECATED_REGISTER_RAW_SIZE:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
f3be58bc
AC
468# If all registers have identical raw and virtual sizes and those
469# sizes agree with the value computed from REGISTER_TYPE,
470# DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print
471# registers.
57010b1c 472F:DEPRECATED_REGISTER_VIRTUAL_SIZE:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
9c04cab7 473
f3be58bc 474# See gdbint.texinfo, and PUSH_DUMMY_CALL.
68908a3e 475M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
f3be58bc
AC
476# Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
477# SAVE_DUMMY_FRAME_TOS.
57010b1c 478F:DEPRECATED_SAVE_DUMMY_FRAME_TOS:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp
f3be58bc
AC
479# Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
480# DEPRECATED_FP_REGNUM.
57010b1c 481v:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
f3be58bc
AC
482# Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
483# DEPRECATED_TARGET_READ_FP.
57010b1c 484F:DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
f3be58bc 485
b8de8283
AC
486# See gdbint.texinfo. See infcall.c. New, all singing all dancing,
487# replacement for DEPRECATED_PUSH_ARGUMENTS.
68908a3e 488M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
b8de8283 489# PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
57010b1c 490F:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
b8de8283
AC
491# Implement PUSH_RETURN_ADDRESS, and then merge in
492# DEPRECATED_PUSH_RETURN_ADDRESS.
57010b1c 493F:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp
b8de8283 494# Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
57010b1c 495F:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
b8de8283 496# DEPRECATED_REGISTER_SIZE can be deleted.
57010b1c
AC
497v:DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
498v:CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
68908a3e 499M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
57010b1c
AC
500
501F:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
68908a3e
AC
502m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
503M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
504M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
505# MAP a GDB RAW register number onto a simulator register number. See
506# also include/...-sim.h.
57010b1c
AC
507f:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
508F:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes
509f:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
510f:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
9df628e0 511# setjmp/longjmp support.
57010b1c
AC
512F:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc
513F:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
104c1213 514#
57010b1c
AC
515v:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
516F:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
104c1213 517#
57010b1c
AC
518f:CONVERT_REGISTER_P:int:convert_register_p:int regnum, struct type *type:regnum, type::0:generic_convert_register_p::0
519f:REGISTER_TO_VALUE:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0
520f:VALUE_TO_REGISTER:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0
104c1213 521#
57010b1c
AC
522f:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
523f:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
524F:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
4478b372 525#
57010b1c 526F:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-
4183d812 527# NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
57010b1c 528F:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
92ad9cd9
AC
529
530# It has been suggested that this, well actually its predecessor,
531# should take the type/value of the function to be called and not the
532# return type. This is left as an exercise for the reader.
533
750eb019
AC
534# NOTE: cagney/2004-06-13: The function stack.c:return_command uses
535# the predicate with default hack to avoid calling STORE_RETURN_VALUE
536# (via legacy_return_value), when a small struct is involved.
537
66d659b1 538M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, void *readbuf, const void *writebuf:valtype, regcache, readbuf, writebuf:::legacy_return_value
92ad9cd9 539
b5622e8d
AC
540# The deprecated methods EXTRACT_RETURN_VALUE, STORE_RETURN_VALUE,
541# DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS and
542# DEPRECATED_USE_STRUCT_CONVENTION have all been folded into
543# RETURN_VALUE.
92ad9cd9 544
57010b1c
AC
545f:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
546f:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
547f:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
548f:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
b5622e8d 549f:DEPRECATED_USE_STRUCT_CONVENTION:int:deprecated_use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
92ad9cd9 550
74055713
AC
551# As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
552# ABI suitable for the implementation of a robust extract
553# struct-convention return-value address method (the sparc saves the
554# address in the callers frame). All the other cases so far examined,
555# the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
556# erreneous - the code was incorrectly assuming that the return-value
557# address, stored in a register, was preserved across the entire
558# function call.
559
560# For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
561# the ABIs that are still to be analyzed - perhaps this should simply
562# be deleted. The commented out extract_returned_value_address method
563# is provided as a starting point for the 32-bit SPARC. It, or
564# something like it, along with changes to both infcmd.c and stack.c
565# will be needed for that case to work. NB: It is passed the callers
566# frame since it is only after the callee has returned that this
567# function is used.
568
57010b1c
AC
569#M::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
570F:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
74055713 571
57010b1c
AC
572F:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame
573F:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame
104c1213 574#
57010b1c
AC
575f:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
576f:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
577f:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
68908a3e 578M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
57010b1c
AC
579f:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
580f:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
581v:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:::0
782263ab
AC
582
583# A function can be addressed by either it's "pointer" (possibly a
584# descriptor address) or "entry point" (first executable instruction).
585# The method "convert_from_func_ptr_addr" converting the former to the
586# latter. DEPRECATED_FUNCTION_START_OFFSET is being used to implement
587# a simplified subset of that functionality - the function's address
588# corresponds to the "function pointer" and the function's start
589# corresponds to the "function entry point" - and hence is redundant.
590
591v:DEPRECATED_FUNCTION_START_OFFSET:CORE_ADDR:deprecated_function_start_offset::::0:::0
592
68908a3e 593m::void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
104c1213 594#
57010b1c 595v:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:::0
19772a2c
AC
596# DEPRECATED_FRAMELESS_FUNCTION_INVOCATION is not needed. The new
597# frame code works regardless of the type of frame - frameless,
598# stackless, or normal.
57010b1c
AC
599F:DEPRECATED_FRAMELESS_FUNCTION_INVOCATION:int:deprecated_frameless_function_invocation:struct frame_info *fi:fi
600F:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame
601F:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe
8bedc050
AC
602# DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
603# note, per UNWIND_PC's doco, that while the two have similar
604# interfaces they have very different underlying implementations.
57010b1c 605F:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi
68908a3e
AC
606M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
607M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
608# DEPRECATED_FRAME_ARGS_ADDRESS as been replaced by the per-frame
609# frame-base. Enable frame-base before frame-unwind.
57010b1c 610F:DEPRECATED_FRAME_ARGS_ADDRESS:CORE_ADDR:deprecated_frame_args_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
42efa47a
AC
611# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
612# frame-base. Enable frame-base before frame-unwind.
57010b1c
AC
613F:DEPRECATED_FRAME_LOCALS_ADDRESS:CORE_ADDR:deprecated_frame_locals_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
614F:DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
615F:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
104c1213 616#
f27dd7fd
AC
617# DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
618# to frame_align and the requirement that methods such as
619# push_dummy_call and frame_red_zone_size maintain correct stack/frame
620# alignment.
57010b1c
AC
621F:DEPRECATED_STACK_ALIGN:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
622M::CORE_ADDR:frame_align:CORE_ADDR address:address
192cb3d4
MK
623# DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
624# stabs_argument_has_addr.
57010b1c
AC
625F:DEPRECATED_REG_STRUCT_HAS_ADDR:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
626m::int:stabs_argument_has_addr:struct type *type:type:::default_stabs_argument_has_addr::0
627v:FRAME_RED_ZONE_SIZE:int:frame_red_zone_size
f0d4cc9e 628#
57010b1c
AC
629v:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (current_gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
630v:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
631v:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
632m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ:::convert_from_func_ptr_addr_identity::0
875e1767
AC
633# On some machines there are bits in addresses which are not really
634# part of the address, but are used by the kernel, the hardware, etc.
635# for special purposes. ADDR_BITS_REMOVE takes out any such bits so
636# we get a "real" address such as one would find in a symbol table.
637# This is used only for addresses of instructions, and even then I'm
638# not sure it's used in all contexts. It exists to deal with there
639# being a few stray bits in the PC which would mislead us, not as some
640# sort of generic thing to handle alignment or segmentation (it's
641# possible it should be in TARGET_READ_PC instead).
57010b1c 642f:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
f6214256 643# It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
181c1381 644# ADDR_BITS_REMOVE.
57010b1c 645f:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
64c4637f
AC
646# FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
647# the target needs software single step. An ISA method to implement it.
648#
649# FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
650# using the breakpoint system instead of blatting memory directly (as with rs6000).
651#
652# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
653# single step. If not, then implement single step using breakpoints.
57010b1c 654F:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
f6c40618
AC
655# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
656# disassembler. Perhaphs objdump can handle it?
57010b1c
AC
657f:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info:::0:
658f:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
d50355b6
MS
659
660
dea0c52f
MK
661# If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
662# evaluates non-zero, this is the address where the debugger will place
663# a step-resume breakpoint to get us past the dynamic linker.
68908a3e 664m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc:::generic_skip_solib_resolver::0
68e9cc94
CV
665# For SVR4 shared libraries, each call goes through a small piece of
666# trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
d50355b6 667# to nonzero if we are currently stopped in one of these.
57010b1c 668f:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
d50355b6
MS
669
670# Some systems also have trampoline code for returning from shared libs.
57010b1c 671f:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
d50355b6 672
c12260ac
CV
673# A target might have problems with watchpoints as soon as the stack
674# frame of the current function has been destroyed. This mostly happens
675# as the first action in a funtion's epilogue. in_function_epilogue_p()
676# is defined to return a non-zero value if either the given addr is one
677# instruction after the stack destroying instruction up to the trailing
678# return instruction or if we can figure out that the stack frame has
679# already been invalidated regardless of the value of addr. Targets
680# which don't suffer from that problem could just let this functionality
681# untouched.
57010b1c 682m::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
552c04a7
TT
683# Given a vector of command-line arguments, return a newly allocated
684# string which, when passed to the create_inferior function, will be
685# parsed (on Unix systems, by the shell) to yield the same vector.
686# This function should call error() if the argument vector is not
687# representable for this target or if this target does not support
688# command-line arguments.
689# ARGC is the number of elements in the vector.
690# ARGV is an array of strings, one per argument.
68908a3e 691m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
57010b1c
AC
692f:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
693f:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
694v:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
695v:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
696v:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
697F:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
68908a3e
AC
698M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
699M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 700# Is a register in a group
57010b1c 701m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
f6214256 702# Fetch the pointer to the ith function argument.
57010b1c 703F:FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
704
705# Return the appropriate register set for a core file section with
706# name SECT_NAME and size SECT_SIZE.
57010b1c 707M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
104c1213 708EOF
104c1213
JM
709}
710
0b8f9e4d
AC
711#
712# The .log file
713#
714exec > new-gdbarch.log
34620563 715function_list | while do_read
0b8f9e4d
AC
716do
717 cat <<EOF
66d659b1 718${class} ${returntype} ${function} ($formal)${attrib}
104c1213 719EOF
3d9a5942
AC
720 for r in ${read}
721 do
722 eval echo \"\ \ \ \ ${r}=\${${r}}\"
723 done
f0d4cc9e 724 if class_is_predicate_p && fallback_default_p
0b8f9e4d 725 then
66d659b1 726 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
727 kill $$
728 exit 1
729 fi
72e74a21 730 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
731 then
732 echo "Error: postdefault is useless when invalid_p=0" 1>&2
733 kill $$
734 exit 1
735 fi
a72293e2
AC
736 if class_is_multiarch_p
737 then
738 if class_is_predicate_p ; then :
739 elif test "x${predefault}" = "x"
740 then
741 echo "Error: pure multi-arch function must have a predefault" 1>&2
742 kill $$
743 exit 1
744 fi
745 fi
3d9a5942 746 echo ""
0b8f9e4d
AC
747done
748
749exec 1>&2
750compare_new gdbarch.log
751
104c1213
JM
752
753copyright ()
754{
755cat <<EOF
59233f88
AC
756/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
757
104c1213 758/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4
AC
759
760 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
761 Software Foundation, Inc.
104c1213
JM
762
763 This file is part of GDB.
764
765 This program is free software; you can redistribute it and/or modify
766 it under the terms of the GNU General Public License as published by
767 the Free Software Foundation; either version 2 of the License, or
768 (at your option) any later version.
769
770 This program is distributed in the hope that it will be useful,
771 but WITHOUT ANY WARRANTY; without even the implied warranty of
772 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
773 GNU General Public License for more details.
774
775 You should have received a copy of the GNU General Public License
776 along with this program; if not, write to the Free Software
777 Foundation, Inc., 59 Temple Place - Suite 330,
778 Boston, MA 02111-1307, USA. */
779
104c1213
JM
780/* This file was created with the aid of \`\`gdbarch.sh''.
781
52204a0b 782 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
783 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
784 against the existing \`\`gdbarch.[hc]''. Any differences found
785 being reported.
786
787 If editing this file, please also run gdbarch.sh and merge any
52204a0b 788 changes into that script. Conversely, when making sweeping changes
104c1213
JM
789 to this file, modifying gdbarch.sh and using its output may prove
790 easier. */
791
792EOF
793}
794
795#
796# The .h file
797#
798
799exec > new-gdbarch.h
800copyright
801cat <<EOF
802#ifndef GDBARCH_H
803#define GDBARCH_H
804
da3331ec
AC
805struct floatformat;
806struct ui_file;
104c1213
JM
807struct frame_info;
808struct value;
b6af0555 809struct objfile;
a2cf933a 810struct minimal_symbol;
049ee0e4 811struct regcache;
b59ff9d5 812struct reggroup;
6ce6d90f 813struct regset;
a89aa300 814struct disassemble_info;
e2d0e7eb 815struct target_ops;
030f20e1 816struct obstack;
104c1213 817
104c1213
JM
818extern struct gdbarch *current_gdbarch;
819
104c1213
JM
820/* If any of the following are defined, the target wasn't correctly
821 converted. */
822
83905903
AC
823#if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
824#error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
825#endif
104c1213
JM
826EOF
827
828# function typedef's
3d9a5942
AC
829printf "\n"
830printf "\n"
831printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 832function_list | while do_read
104c1213 833do
2ada493a
AC
834 if class_is_info_p
835 then
3d9a5942
AC
836 printf "\n"
837 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
838 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
57010b1c 839 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
83905903
AC
840 printf "#error \"Non multi-arch definition of ${macro}\"\n"
841 printf "#endif\n"
c25083af 842 printf "#if !defined (${macro})\n"
3d9a5942
AC
843 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
844 printf "#endif\n"
2ada493a 845 fi
104c1213
JM
846done
847
848# function typedef's
3d9a5942
AC
849printf "\n"
850printf "\n"
851printf "/* The following are initialized by the target dependent code. */\n"
34620563 852function_list | while do_read
104c1213 853do
72e74a21 854 if [ -n "${comment}" ]
34620563
AC
855 then
856 echo "${comment}" | sed \
857 -e '2 s,#,/*,' \
858 -e '3,$ s,#, ,' \
859 -e '$ s,$, */,'
860 fi
b77be6cf 861 if class_is_multiarch_p
2ada493a 862 then
b77be6cf
AC
863 if class_is_predicate_p
864 then
865 printf "\n"
866 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
867 fi
868 else
869 if class_is_predicate_p
870 then
871 printf "\n"
872 printf "#if defined (${macro})\n"
873 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
874 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
eee30e78 875 printf "#if !defined (${macro}_P)\n"
b77be6cf
AC
876 printf "#define ${macro}_P() (1)\n"
877 printf "#endif\n"
eee30e78 878 printf "#endif\n"
b77be6cf 879 printf "\n"
b77be6cf 880 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
57010b1c 881 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro}_P)\n"
83905903
AC
882 printf "#error \"Non multi-arch definition of ${macro}\"\n"
883 printf "#endif\n"
bceabdd8 884 printf "#if !defined (${macro}_P)\n"
b77be6cf
AC
885 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
886 printf "#endif\n"
887 fi
4a5c6a1d 888 fi
2ada493a
AC
889 if class_is_variable_p
890 then
3d9a5942
AC
891 printf "\n"
892 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
893 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
57010b1c 894 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
83905903
AC
895 printf "#error \"Non multi-arch definition of ${macro}\"\n"
896 printf "#endif\n"
c25083af
AC
897 printf "#if !defined (${macro})\n"
898 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
899 printf "#endif\n"
2ada493a
AC
900 fi
901 if class_is_function_p
902 then
3d9a5942 903 printf "\n"
72e74a21 904 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
905 then
906 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
907 elif class_is_multiarch_p
908 then
909 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
910 else
911 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
912 fi
72e74a21 913 if [ "x${formal}" = "xvoid" ]
104c1213 914 then
3d9a5942 915 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 916 else
3d9a5942 917 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 918 fi
3d9a5942 919 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
b77be6cf
AC
920 if class_is_multiarch_p ; then :
921 else
57010b1c 922 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
83905903
AC
923 printf "#error \"Non multi-arch definition of ${macro}\"\n"
924 printf "#endif\n"
c25083af
AC
925 if [ "x${actual}" = "x" ]
926 then
927 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
928 elif [ "x${actual}" = "x-" ]
929 then
930 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
931 else
932 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
933 fi
934 printf "#if !defined (${macro})\n"
72e74a21 935 if [ "x${actual}" = "x" ]
4a5c6a1d
AC
936 then
937 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
72e74a21 938 elif [ "x${actual}" = "x-" ]
4a5c6a1d
AC
939 then
940 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
941 else
942 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
943 fi
944 printf "#endif\n"
104c1213 945 fi
2ada493a 946 fi
104c1213
JM
947done
948
949# close it off
950cat <<EOF
951
952extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
953
954
955/* Mechanism for co-ordinating the selection of a specific
956 architecture.
957
958 GDB targets (*-tdep.c) can register an interest in a specific
959 architecture. Other GDB components can register a need to maintain
960 per-architecture data.
961
962 The mechanisms below ensures that there is only a loose connection
963 between the set-architecture command and the various GDB
0fa6923a 964 components. Each component can independently register their need
104c1213
JM
965 to maintain architecture specific data with gdbarch.
966
967 Pragmatics:
968
969 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
970 didn't scale.
971
972 The more traditional mega-struct containing architecture specific
973 data for all the various GDB components was also considered. Since
0fa6923a 974 GDB is built from a variable number of (fairly independent)
104c1213
JM
975 components it was determined that the global aproach was not
976 applicable. */
977
978
979/* Register a new architectural family with GDB.
980
981 Register support for the specified ARCHITECTURE with GDB. When
982 gdbarch determines that the specified architecture has been
983 selected, the corresponding INIT function is called.
984
985 --
986
987 The INIT function takes two parameters: INFO which contains the
988 information available to gdbarch about the (possibly new)
989 architecture; ARCHES which is a list of the previously created
990 \`\`struct gdbarch'' for this architecture.
991
0f79675b
AC
992 The INFO parameter is, as far as possible, be pre-initialized with
993 information obtained from INFO.ABFD or the previously selected
994 architecture.
995
996 The ARCHES parameter is a linked list (sorted most recently used)
997 of all the previously created architures for this architecture
998 family. The (possibly NULL) ARCHES->gdbarch can used to access
999 values from the previously selected architecture for this
1000 architecture family. The global \`\`current_gdbarch'' shall not be
1001 used.
104c1213
JM
1002
1003 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1004 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1005 gdbarch'' from the ARCHES list - indicating that the new
1006 architecture is just a synonym for an earlier architecture (see
1007 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1008 - that describes the selected architecture (see gdbarch_alloc()).
1009
1010 The DUMP_TDEP function shall print out all target specific values.
1011 Care should be taken to ensure that the function works in both the
1012 multi-arch and non- multi-arch cases. */
104c1213
JM
1013
1014struct gdbarch_list
1015{
1016 struct gdbarch *gdbarch;
1017 struct gdbarch_list *next;
1018};
1019
1020struct gdbarch_info
1021{
104c1213
JM
1022 /* Use default: NULL (ZERO). */
1023 const struct bfd_arch_info *bfd_arch_info;
1024
428721aa 1025 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
1026 int byte_order;
1027
1028 /* Use default: NULL (ZERO). */
1029 bfd *abfd;
1030
1031 /* Use default: NULL (ZERO). */
1032 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1033
1034 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1035 enum gdb_osabi osabi;
104c1213
JM
1036};
1037
1038typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1039typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1040
4b9b3959 1041/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1042extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1043
4b9b3959
AC
1044extern void gdbarch_register (enum bfd_architecture architecture,
1045 gdbarch_init_ftype *,
1046 gdbarch_dump_tdep_ftype *);
1047
104c1213 1048
b4a20239
AC
1049/* Return a freshly allocated, NULL terminated, array of the valid
1050 architecture names. Since architectures are registered during the
1051 _initialize phase this function only returns useful information
1052 once initialization has been completed. */
1053
1054extern const char **gdbarch_printable_names (void);
1055
1056
104c1213
JM
1057/* Helper function. Search the list of ARCHES for a GDBARCH that
1058 matches the information provided by INFO. */
1059
1060extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1061
1062
1063/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1064 basic initialization using values obtained from the INFO andTDEP
1065 parameters. set_gdbarch_*() functions are called to complete the
1066 initialization of the object. */
1067
1068extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1069
1070
4b9b3959
AC
1071/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1072 It is assumed that the caller freeds the \`\`struct
1073 gdbarch_tdep''. */
1074
058f20d5
JB
1075extern void gdbarch_free (struct gdbarch *);
1076
1077
aebd7893
AC
1078/* Helper function. Allocate memory from the \`\`struct gdbarch''
1079 obstack. The memory is freed when the corresponding architecture
1080 is also freed. */
1081
1082extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1083#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1084#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1085
1086
b732d07d 1087/* Helper function. Force an update of the current architecture.
104c1213 1088
b732d07d
AC
1089 The actual architecture selected is determined by INFO, \`\`(gdb) set
1090 architecture'' et.al., the existing architecture and BFD's default
1091 architecture. INFO should be initialized to zero and then selected
1092 fields should be updated.
104c1213 1093
16f33e29
AC
1094 Returns non-zero if the update succeeds */
1095
1096extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1097
1098
ebdba546
AC
1099/* Helper function. Find an architecture matching info.
1100
1101 INFO should be initialized using gdbarch_info_init, relevant fields
1102 set, and then finished using gdbarch_info_fill.
1103
1104 Returns the corresponding architecture, or NULL if no matching
1105 architecture was found. "current_gdbarch" is not updated. */
1106
1107extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1108
1109
1110/* Helper function. Set the global "current_gdbarch" to "gdbarch".
1111
1112 FIXME: kettenis/20031124: Of the functions that follow, only
1113 gdbarch_from_bfd is supposed to survive. The others will
1114 dissappear since in the future GDB will (hopefully) be truly
1115 multi-arch. However, for now we're still stuck with the concept of
1116 a single active architecture. */
1117
1118extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1119
104c1213
JM
1120
1121/* Register per-architecture data-pointer.
1122
1123 Reserve space for a per-architecture data-pointer. An identifier
1124 for the reserved data-pointer is returned. That identifer should
95160752 1125 be saved in a local static variable.
104c1213 1126
fcc1c85c
AC
1127 Memory for the per-architecture data shall be allocated using
1128 gdbarch_obstack_zalloc. That memory will be deleted when the
1129 corresponding architecture object is deleted.
104c1213 1130
95160752
AC
1131 When a previously created architecture is re-selected, the
1132 per-architecture data-pointer for that previous architecture is
76860b5f 1133 restored. INIT() is not re-called.
104c1213
JM
1134
1135 Multiple registrarants for any architecture are allowed (and
1136 strongly encouraged). */
1137
95160752 1138struct gdbarch_data;
104c1213 1139
030f20e1
AC
1140typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1141extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1142typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1143extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1144extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1145 struct gdbarch_data *data,
1146 void *pointer);
104c1213 1147
451fbdda 1148extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1149
1150
a8cf2722 1151
104c1213
JM
1152/* Register per-architecture memory region.
1153
1154 Provide a memory-region swap mechanism. Per-architecture memory
1155 region are created. These memory regions are swapped whenever the
1156 architecture is changed. For a new architecture, the memory region
1157 is initialized with zero (0) and the INIT function is called.
1158
1159 Memory regions are swapped / initialized in the order that they are
1160 registered. NULL DATA and/or INIT values can be specified.
1161
030f20e1 1162 New code should use gdbarch_data_register_*(). */
104c1213
JM
1163
1164typedef void (gdbarch_swap_ftype) (void);
046a4708
AC
1165extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1166#define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
104c1213
JM
1167
1168
1169
0fa6923a 1170/* Set the dynamic target-system-dependent parameters (architecture,
104c1213
JM
1171 byte-order, ...) using information found in the BFD */
1172
1173extern void set_gdbarch_from_file (bfd *);
1174
1175
e514a9d6
JM
1176/* Initialize the current architecture to the "first" one we find on
1177 our list. */
1178
1179extern void initialize_current_architecture (void);
1180
104c1213
JM
1181/* gdbarch trace variable */
1182extern int gdbarch_debug;
1183
4b9b3959 1184extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1185
1186#endif
1187EOF
1188exec 1>&2
1189#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1190compare_new gdbarch.h
104c1213
JM
1191
1192
1193#
1194# C file
1195#
1196
1197exec > new-gdbarch.c
1198copyright
1199cat <<EOF
1200
1201#include "defs.h"
7355ddba 1202#include "arch-utils.h"
104c1213 1203
104c1213
JM
1204#include "gdbcmd.h"
1205#include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
104c1213
JM
1206#include "symcat.h"
1207
f0d4cc9e 1208#include "floatformat.h"
104c1213 1209
95160752 1210#include "gdb_assert.h"
b66d6d2e 1211#include "gdb_string.h"
67c2c32c 1212#include "gdb-events.h"
b59ff9d5 1213#include "reggroups.h"
4be87837 1214#include "osabi.h"
aebd7893 1215#include "gdb_obstack.h"
95160752 1216
104c1213
JM
1217/* Static function declarations */
1218
b3cc3077 1219static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1220
104c1213
JM
1221/* Non-zero if we want to trace architecture code. */
1222
1223#ifndef GDBARCH_DEBUG
1224#define GDBARCH_DEBUG 0
1225#endif
1226int gdbarch_debug = GDBARCH_DEBUG;
1227
1228EOF
1229
1230# gdbarch open the gdbarch object
3d9a5942
AC
1231printf "\n"
1232printf "/* Maintain the struct gdbarch object */\n"
1233printf "\n"
1234printf "struct gdbarch\n"
1235printf "{\n"
76860b5f
AC
1236printf " /* Has this architecture been fully initialized? */\n"
1237printf " int initialized_p;\n"
aebd7893
AC
1238printf "\n"
1239printf " /* An obstack bound to the lifetime of the architecture. */\n"
1240printf " struct obstack *obstack;\n"
1241printf "\n"
3d9a5942 1242printf " /* basic architectural information */\n"
34620563 1243function_list | while do_read
104c1213 1244do
2ada493a
AC
1245 if class_is_info_p
1246 then
3d9a5942 1247 printf " ${returntype} ${function};\n"
2ada493a 1248 fi
104c1213 1249done
3d9a5942
AC
1250printf "\n"
1251printf " /* target specific vector. */\n"
1252printf " struct gdbarch_tdep *tdep;\n"
1253printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1254printf "\n"
1255printf " /* per-architecture data-pointers */\n"
95160752 1256printf " unsigned nr_data;\n"
3d9a5942
AC
1257printf " void **data;\n"
1258printf "\n"
1259printf " /* per-architecture swap-regions */\n"
1260printf " struct gdbarch_swap *swap;\n"
1261printf "\n"
104c1213
JM
1262cat <<EOF
1263 /* Multi-arch values.
1264
1265 When extending this structure you must:
1266
1267 Add the field below.
1268
1269 Declare set/get functions and define the corresponding
1270 macro in gdbarch.h.
1271
1272 gdbarch_alloc(): If zero/NULL is not a suitable default,
1273 initialize the new field.
1274
1275 verify_gdbarch(): Confirm that the target updated the field
1276 correctly.
1277
7e73cedf 1278 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1279 field is dumped out
1280
c0e8c252 1281 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1282 variable (base values on the host's c-type system).
1283
1284 get_gdbarch(): Implement the set/get functions (probably using
1285 the macro's as shortcuts).
1286
1287 */
1288
1289EOF
34620563 1290function_list | while do_read
104c1213 1291do
2ada493a
AC
1292 if class_is_variable_p
1293 then
3d9a5942 1294 printf " ${returntype} ${function};\n"
2ada493a
AC
1295 elif class_is_function_p
1296 then
3d9a5942 1297 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
2ada493a 1298 fi
104c1213 1299done
3d9a5942 1300printf "};\n"
104c1213
JM
1301
1302# A pre-initialized vector
3d9a5942
AC
1303printf "\n"
1304printf "\n"
104c1213
JM
1305cat <<EOF
1306/* The default architecture uses host values (for want of a better
1307 choice). */
1308EOF
3d9a5942
AC
1309printf "\n"
1310printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1311printf "\n"
1312printf "struct gdbarch startup_gdbarch =\n"
1313printf "{\n"
76860b5f 1314printf " 1, /* Always initialized. */\n"
aebd7893 1315printf " NULL, /* The obstack. */\n"
3d9a5942 1316printf " /* basic architecture information */\n"
4b9b3959 1317function_list | while do_read
104c1213 1318do
2ada493a
AC
1319 if class_is_info_p
1320 then
ec5cbaec 1321 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1322 fi
104c1213
JM
1323done
1324cat <<EOF
4b9b3959
AC
1325 /* target specific vector and its dump routine */
1326 NULL, NULL,
104c1213
JM
1327 /*per-architecture data-pointers and swap regions */
1328 0, NULL, NULL,
1329 /* Multi-arch values */
1330EOF
34620563 1331function_list | while do_read
104c1213 1332do
2ada493a
AC
1333 if class_is_function_p || class_is_variable_p
1334 then
ec5cbaec 1335 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1336 fi
104c1213
JM
1337done
1338cat <<EOF
c0e8c252 1339 /* startup_gdbarch() */
104c1213 1340};
4b9b3959 1341
c0e8c252 1342struct gdbarch *current_gdbarch = &startup_gdbarch;
104c1213
JM
1343EOF
1344
1345# Create a new gdbarch struct
104c1213 1346cat <<EOF
7de2341d 1347
66b43ecb 1348/* Create a new \`\`struct gdbarch'' based on information provided by
104c1213
JM
1349 \`\`struct gdbarch_info''. */
1350EOF
3d9a5942 1351printf "\n"
104c1213
JM
1352cat <<EOF
1353struct gdbarch *
1354gdbarch_alloc (const struct gdbarch_info *info,
1355 struct gdbarch_tdep *tdep)
1356{
85de9627
AC
1357 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1358 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1359 the current local architecture and not the previous global
1360 architecture. This ensures that the new architectures initial
1361 values are not influenced by the previous architecture. Once
1362 everything is parameterised with gdbarch, this will go away. */
aebd7893
AC
1363 struct gdbarch *current_gdbarch;
1364
1365 /* Create an obstack for allocating all the per-architecture memory,
1366 then use that to allocate the architecture vector. */
1367 struct obstack *obstack = XMALLOC (struct obstack);
1368 obstack_init (obstack);
1369 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
85de9627 1370 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
aebd7893 1371 current_gdbarch->obstack = obstack;
85de9627
AC
1372
1373 alloc_gdbarch_data (current_gdbarch);
1374
1375 current_gdbarch->tdep = tdep;
104c1213 1376EOF
3d9a5942 1377printf "\n"
34620563 1378function_list | while do_read
104c1213 1379do
2ada493a
AC
1380 if class_is_info_p
1381 then
85de9627 1382 printf " current_gdbarch->${function} = info->${function};\n"
2ada493a 1383 fi
104c1213 1384done
3d9a5942
AC
1385printf "\n"
1386printf " /* Force the explicit initialization of these. */\n"
34620563 1387function_list | while do_read
104c1213 1388do
2ada493a
AC
1389 if class_is_function_p || class_is_variable_p
1390 then
72e74a21 1391 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1392 then
85de9627 1393 printf " current_gdbarch->${function} = ${predefault};\n"
104c1213 1394 fi
2ada493a 1395 fi
104c1213
JM
1396done
1397cat <<EOF
1398 /* gdbarch_alloc() */
1399
85de9627 1400 return current_gdbarch;
104c1213
JM
1401}
1402EOF
1403
058f20d5 1404# Free a gdbarch struct.
3d9a5942
AC
1405printf "\n"
1406printf "\n"
058f20d5 1407cat <<EOF
aebd7893
AC
1408/* Allocate extra space using the per-architecture obstack. */
1409
1410void *
1411gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1412{
1413 void *data = obstack_alloc (arch->obstack, size);
1414 memset (data, 0, size);
1415 return data;
1416}
1417
1418
058f20d5
JB
1419/* Free a gdbarch struct. This should never happen in normal
1420 operation --- once you've created a gdbarch, you keep it around.
1421 However, if an architecture's init function encounters an error
1422 building the structure, it may need to clean up a partially
1423 constructed gdbarch. */
4b9b3959 1424
058f20d5
JB
1425void
1426gdbarch_free (struct gdbarch *arch)
1427{
aebd7893 1428 struct obstack *obstack;
95160752 1429 gdb_assert (arch != NULL);
aebd7893
AC
1430 gdb_assert (!arch->initialized_p);
1431 obstack = arch->obstack;
1432 obstack_free (obstack, 0); /* Includes the ARCH. */
1433 xfree (obstack);
058f20d5
JB
1434}
1435EOF
1436
104c1213 1437# verify a new architecture
104c1213 1438cat <<EOF
db446970
AC
1439
1440
1441/* Ensure that all values in a GDBARCH are reasonable. */
1442
1443/* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1444 just happens to match the global variable \`\`current_gdbarch''. That
1445 way macros refering to that variable get the local and not the global
1446 version - ulgh. Once everything is parameterised with gdbarch, this
1447 will go away. */
1448
104c1213 1449static void
db446970 1450verify_gdbarch (struct gdbarch *current_gdbarch)
104c1213 1451{
f16a1923
AC
1452 struct ui_file *log;
1453 struct cleanup *cleanups;
1454 long dummy;
1455 char *buf;
f16a1923
AC
1456 log = mem_fileopen ();
1457 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1458 /* fundamental */
db446970 1459 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1460 fprintf_unfiltered (log, "\n\tbyte-order");
db446970 1461 if (current_gdbarch->bfd_arch_info == NULL)
f16a1923 1462 fprintf_unfiltered (log, "\n\tbfd_arch_info");
104c1213
JM
1463 /* Check those that need to be defined for the given multi-arch level. */
1464EOF
34620563 1465function_list | while do_read
104c1213 1466do
2ada493a
AC
1467 if class_is_function_p || class_is_variable_p
1468 then
72e74a21 1469 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1470 then
3d9a5942 1471 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1472 elif class_is_predicate_p
1473 then
3d9a5942 1474 printf " /* Skip verify of ${function}, has predicate */\n"
f0d4cc9e 1475 # FIXME: See do_read for potential simplification
72e74a21 1476 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1477 then
3d9a5942 1478 printf " if (${invalid_p})\n"
db446970 1479 printf " current_gdbarch->${function} = ${postdefault};\n"
72e74a21 1480 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1481 then
db446970
AC
1482 printf " if (current_gdbarch->${function} == ${predefault})\n"
1483 printf " current_gdbarch->${function} = ${postdefault};\n"
72e74a21 1484 elif [ -n "${postdefault}" ]
f0d4cc9e 1485 then
db446970
AC
1486 printf " if (current_gdbarch->${function} == 0)\n"
1487 printf " current_gdbarch->${function} = ${postdefault};\n"
72e74a21 1488 elif [ -n "${invalid_p}" ]
104c1213 1489 then
57010b1c 1490 printf " if ((GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL)\n"
3d9a5942 1491 printf " && (${invalid_p}))\n"
f16a1923 1492 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1493 elif [ -n "${predefault}" ]
104c1213 1494 then
57010b1c 1495 printf " if ((GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL)\n"
db446970 1496 printf " && (current_gdbarch->${function} == ${predefault}))\n"
f16a1923 1497 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1498 fi
2ada493a 1499 fi
104c1213
JM
1500done
1501cat <<EOF
f16a1923
AC
1502 buf = ui_file_xstrdup (log, &dummy);
1503 make_cleanup (xfree, buf);
1504 if (strlen (buf) > 0)
1505 internal_error (__FILE__, __LINE__,
1506 "verify_gdbarch: the following are invalid ...%s",
1507 buf);
1508 do_cleanups (cleanups);
104c1213
JM
1509}
1510EOF
1511
1512# dump the structure
3d9a5942
AC
1513printf "\n"
1514printf "\n"
104c1213 1515cat <<EOF
4b9b3959
AC
1516/* Print out the details of the current architecture. */
1517
1518/* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1519 just happens to match the global variable \`\`current_gdbarch''. That
1520 way macros refering to that variable get the local and not the global
1521 version - ulgh. Once everything is parameterised with gdbarch, this
1522 will go away. */
1523
104c1213 1524void
db446970 1525gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
104c1213 1526{
4b9b3959
AC
1527 fprintf_unfiltered (file,
1528 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1529 GDB_MULTI_ARCH);
104c1213 1530EOF
a2428dbe 1531function_list | sort -t: -k 4 | while do_read
104c1213 1532do
1e9f55d0
AC
1533 # First the predicate
1534 if class_is_predicate_p
1535 then
48f7351b 1536 if test -n "${macro}"
1e9f55d0 1537 then
1e9f55d0
AC
1538 printf "#ifdef ${macro}_P\n"
1539 printf " fprintf_unfiltered (file,\n"
1540 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1541 printf " \"${macro}_P()\",\n"
1542 printf " XSTRING (${macro}_P ()));\n"
1e9f55d0
AC
1543 printf "#endif\n"
1544 fi
7996bcec 1545 printf " fprintf_unfiltered (file,\n"
48f7351b
AC
1546 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1547 printf " gdbarch_${function}_p (current_gdbarch));\n"
08e45a40 1548 fi
06b25f14 1549 # Print the macro definition.
48f7351b 1550 if test -n "${macro}"
2ada493a 1551 then
48f7351b
AC
1552 printf "#ifdef ${macro}\n"
1553 if class_is_function_p
1554 then
1555 printf " fprintf_unfiltered (file,\n"
1556 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1557 printf " \"${macro}(${actual})\",\n"
1558 printf " XSTRING (${macro} (${actual})));\n"
1559 else
1560 printf " fprintf_unfiltered (file,\n"
1561 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1562 printf " XSTRING (${macro}));\n"
1563 fi
1564 printf "#endif\n"
4b9b3959 1565 fi
48f7351b 1566 # Print the corresponding value.
283354d8 1567 if class_is_function_p
4b9b3959 1568 then
7996bcec 1569 printf " fprintf_unfiltered (file,\n"
48f7351b
AC
1570 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1571 printf " (long) current_gdbarch->${function});\n"
4b9b3959 1572 else
48f7351b
AC
1573 # It is a variable
1574 case "${fmt}:${print}:${returntype}" in
1575 ::CORE_ADDR )
1576 fmt="0x%s"
1577 print="paddr_nz (current_gdbarch->${function})"
1578 ;;
1579 ::* )
1580 fmt="%s"
1581 print="paddr_d (current_gdbarch->${function})"
1582 ;;
1583 * )
1584 test "${fmt}" || fmt="%ld"
1585 test "${print}" || print="(long) (current_gdbarch->${function})"
1586 ;;
1587 esac
3d9a5942 1588 printf " fprintf_unfiltered (file,\n"
48f7351b 1589 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1590 printf " ${print});\n"
2ada493a 1591 fi
104c1213 1592done
381323f4 1593cat <<EOF
4b9b3959
AC
1594 if (current_gdbarch->dump_tdep != NULL)
1595 current_gdbarch->dump_tdep (current_gdbarch, file);
381323f4
AC
1596}
1597EOF
104c1213
JM
1598
1599
1600# GET/SET
3d9a5942 1601printf "\n"
104c1213
JM
1602cat <<EOF
1603struct gdbarch_tdep *
1604gdbarch_tdep (struct gdbarch *gdbarch)
1605{
1606 if (gdbarch_debug >= 2)
3d9a5942 1607 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1608 return gdbarch->tdep;
1609}
1610EOF
3d9a5942 1611printf "\n"
34620563 1612function_list | while do_read
104c1213 1613do
2ada493a
AC
1614 if class_is_predicate_p
1615 then
3d9a5942
AC
1616 printf "\n"
1617 printf "int\n"
1618 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1619 printf "{\n"
8de9bdc4 1620 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1621 printf " return ${predicate};\n"
3d9a5942 1622 printf "}\n"
2ada493a
AC
1623 fi
1624 if class_is_function_p
1625 then
3d9a5942
AC
1626 printf "\n"
1627 printf "${returntype}\n"
72e74a21 1628 if [ "x${formal}" = "xvoid" ]
104c1213 1629 then
3d9a5942 1630 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1631 else
3d9a5942 1632 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1633 fi
3d9a5942 1634 printf "{\n"
8de9bdc4 1635 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1636 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1637 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1638 then
1639 # Allow a call to a function with a predicate.
956ac328 1640 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1641 fi
3d9a5942
AC
1642 printf " if (gdbarch_debug >= 2)\n"
1643 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1644 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1645 then
1646 if class_is_multiarch_p
1647 then
1648 params="gdbarch"
1649 else
1650 params=""
1651 fi
1652 else
1653 if class_is_multiarch_p
1654 then
1655 params="gdbarch, ${actual}"
1656 else
1657 params="${actual}"
1658 fi
1659 fi
72e74a21 1660 if [ "x${returntype}" = "xvoid" ]
104c1213 1661 then
4a5c6a1d 1662 printf " gdbarch->${function} (${params});\n"
104c1213 1663 else
4a5c6a1d 1664 printf " return gdbarch->${function} (${params});\n"
104c1213 1665 fi
3d9a5942
AC
1666 printf "}\n"
1667 printf "\n"
1668 printf "void\n"
1669 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1670 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1671 printf "{\n"
1672 printf " gdbarch->${function} = ${function};\n"
1673 printf "}\n"
2ada493a
AC
1674 elif class_is_variable_p
1675 then
3d9a5942
AC
1676 printf "\n"
1677 printf "${returntype}\n"
1678 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1679 printf "{\n"
8de9bdc4 1680 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1681 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1682 then
3d9a5942 1683 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1684 elif [ -n "${invalid_p}" ]
104c1213 1685 then
956ac328
AC
1686 printf " /* Check variable is valid. */\n"
1687 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1688 elif [ -n "${predefault}" ]
104c1213 1689 then
956ac328
AC
1690 printf " /* Check variable changed from pre-default. */\n"
1691 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1692 fi
3d9a5942
AC
1693 printf " if (gdbarch_debug >= 2)\n"
1694 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1695 printf " return gdbarch->${function};\n"
1696 printf "}\n"
1697 printf "\n"
1698 printf "void\n"
1699 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1700 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1701 printf "{\n"
1702 printf " gdbarch->${function} = ${function};\n"
1703 printf "}\n"
2ada493a
AC
1704 elif class_is_info_p
1705 then
3d9a5942
AC
1706 printf "\n"
1707 printf "${returntype}\n"
1708 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1709 printf "{\n"
8de9bdc4 1710 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1711 printf " if (gdbarch_debug >= 2)\n"
1712 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1713 printf " return gdbarch->${function};\n"
1714 printf "}\n"
2ada493a 1715 fi
104c1213
JM
1716done
1717
1718# All the trailing guff
1719cat <<EOF
1720
1721
f44c642f 1722/* Keep a registry of per-architecture data-pointers required by GDB
104c1213
JM
1723 modules. */
1724
1725struct gdbarch_data
1726{
95160752 1727 unsigned index;
76860b5f 1728 int init_p;
030f20e1
AC
1729 gdbarch_data_pre_init_ftype *pre_init;
1730 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1731};
1732
1733struct gdbarch_data_registration
1734{
104c1213
JM
1735 struct gdbarch_data *data;
1736 struct gdbarch_data_registration *next;
1737};
1738
f44c642f 1739struct gdbarch_data_registry
104c1213 1740{
95160752 1741 unsigned nr;
104c1213
JM
1742 struct gdbarch_data_registration *registrations;
1743};
1744
f44c642f 1745struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1746{
1747 0, NULL,
1748};
1749
030f20e1
AC
1750static struct gdbarch_data *
1751gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1752 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
1753{
1754 struct gdbarch_data_registration **curr;
76860b5f 1755 /* Append the new registraration. */
f44c642f 1756 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1757 (*curr) != NULL;
1758 curr = &(*curr)->next);
1759 (*curr) = XMALLOC (struct gdbarch_data_registration);
1760 (*curr)->next = NULL;
104c1213 1761 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1762 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
1763 (*curr)->data->pre_init = pre_init;
1764 (*curr)->data->post_init = post_init;
76860b5f 1765 (*curr)->data->init_p = 1;
104c1213
JM
1766 return (*curr)->data;
1767}
1768
030f20e1
AC
1769struct gdbarch_data *
1770gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1771{
1772 return gdbarch_data_register (pre_init, NULL);
1773}
1774
1775struct gdbarch_data *
1776gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1777{
1778 return gdbarch_data_register (NULL, post_init);
1779}
104c1213 1780
b3cc3077 1781/* Create/delete the gdbarch data vector. */
95160752
AC
1782
1783static void
b3cc3077 1784alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1785{
b3cc3077
JB
1786 gdb_assert (gdbarch->data == NULL);
1787 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 1788 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 1789}
3c875b6f 1790
76860b5f 1791/* Initialize the current value of the specified per-architecture
b3cc3077
JB
1792 data-pointer. */
1793
95160752 1794void
030f20e1
AC
1795deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1796 struct gdbarch_data *data,
1797 void *pointer)
95160752
AC
1798{
1799 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 1800 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 1801 gdb_assert (data->pre_init == NULL);
95160752
AC
1802 gdbarch->data[data->index] = pointer;
1803}
1804
104c1213
JM
1805/* Return the current value of the specified per-architecture
1806 data-pointer. */
1807
1808void *
451fbdda 1809gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 1810{
451fbdda 1811 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 1812 if (gdbarch->data[data->index] == NULL)
76860b5f 1813 {
030f20e1
AC
1814 /* The data-pointer isn't initialized, call init() to get a
1815 value. */
1816 if (data->pre_init != NULL)
1817 /* Mid architecture creation: pass just the obstack, and not
1818 the entire architecture, as that way it isn't possible for
1819 pre-init code to refer to undefined architecture
1820 fields. */
1821 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1822 else if (gdbarch->initialized_p
1823 && data->post_init != NULL)
1824 /* Post architecture creation: pass the entire architecture
1825 (as all fields are valid), but be careful to also detect
1826 recursive references. */
1827 {
1828 gdb_assert (data->init_p);
1829 data->init_p = 0;
1830 gdbarch->data[data->index] = data->post_init (gdbarch);
1831 data->init_p = 1;
1832 }
1833 else
1834 /* The architecture initialization hasn't completed - punt -
1835 hope that the caller knows what they are doing. Once
1836 deprecated_set_gdbarch_data has been initialized, this can be
1837 changed to an internal error. */
1838 return NULL;
76860b5f
AC
1839 gdb_assert (gdbarch->data[data->index] != NULL);
1840 }
451fbdda 1841 return gdbarch->data[data->index];
104c1213
JM
1842}
1843
1844
1845
f44c642f 1846/* Keep a registry of swapped data required by GDB modules. */
104c1213
JM
1847
1848struct gdbarch_swap
1849{
1850 void *swap;
1851 struct gdbarch_swap_registration *source;
1852 struct gdbarch_swap *next;
1853};
1854
1855struct gdbarch_swap_registration
1856{
1857 void *data;
1858 unsigned long sizeof_data;
1859 gdbarch_swap_ftype *init;
1860 struct gdbarch_swap_registration *next;
1861};
1862
f44c642f 1863struct gdbarch_swap_registry
104c1213
JM
1864{
1865 int nr;
1866 struct gdbarch_swap_registration *registrations;
1867};
1868
f44c642f 1869struct gdbarch_swap_registry gdbarch_swap_registry =
104c1213
JM
1870{
1871 0, NULL,
1872};
1873
1874void
046a4708
AC
1875deprecated_register_gdbarch_swap (void *data,
1876 unsigned long sizeof_data,
1877 gdbarch_swap_ftype *init)
104c1213
JM
1878{
1879 struct gdbarch_swap_registration **rego;
f44c642f 1880 for (rego = &gdbarch_swap_registry.registrations;
104c1213
JM
1881 (*rego) != NULL;
1882 rego = &(*rego)->next);
1883 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1884 (*rego)->next = NULL;
1885 (*rego)->init = init;
1886 (*rego)->data = data;
1887 (*rego)->sizeof_data = sizeof_data;
1888}
1889
40af4b0c 1890static void
7de2341d 1891current_gdbarch_swap_init_hack (void)
104c1213
JM
1892{
1893 struct gdbarch_swap_registration *rego;
7de2341d 1894 struct gdbarch_swap **curr = &current_gdbarch->swap;
f44c642f 1895 for (rego = gdbarch_swap_registry.registrations;
104c1213
JM
1896 rego != NULL;
1897 rego = rego->next)
1898 {
1899 if (rego->data != NULL)
1900 {
7de2341d
AC
1901 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1902 struct gdbarch_swap);
104c1213 1903 (*curr)->source = rego;
7de2341d
AC
1904 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1905 rego->sizeof_data);
104c1213 1906 (*curr)->next = NULL;
104c1213
JM
1907 curr = &(*curr)->next;
1908 }
1909 if (rego->init != NULL)
1910 rego->init ();
1911 }
1912}
1913
7de2341d
AC
1914static struct gdbarch *
1915current_gdbarch_swap_out_hack (void)
104c1213 1916{
7de2341d 1917 struct gdbarch *old_gdbarch = current_gdbarch;
104c1213 1918 struct gdbarch_swap *curr;
7de2341d
AC
1919
1920 gdb_assert (old_gdbarch != NULL);
1921 for (curr = old_gdbarch->swap;
104c1213
JM
1922 curr != NULL;
1923 curr = curr->next)
7de2341d
AC
1924 {
1925 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1926 memset (curr->source->data, 0, curr->source->sizeof_data);
1927 }
1928 current_gdbarch = NULL;
1929 return old_gdbarch;
104c1213
JM
1930}
1931
1932static void
7de2341d 1933current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
104c1213
JM
1934{
1935 struct gdbarch_swap *curr;
7de2341d
AC
1936
1937 gdb_assert (current_gdbarch == NULL);
1938 for (curr = new_gdbarch->swap;
104c1213
JM
1939 curr != NULL;
1940 curr = curr->next)
1941 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
7de2341d 1942 current_gdbarch = new_gdbarch;
104c1213
JM
1943}
1944
1945
f44c642f 1946/* Keep a registry of the architectures known by GDB. */
104c1213 1947
4b9b3959 1948struct gdbarch_registration
104c1213
JM
1949{
1950 enum bfd_architecture bfd_architecture;
1951 gdbarch_init_ftype *init;
4b9b3959 1952 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 1953 struct gdbarch_list *arches;
4b9b3959 1954 struct gdbarch_registration *next;
104c1213
JM
1955};
1956
f44c642f 1957static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 1958
b4a20239
AC
1959static void
1960append_name (const char ***buf, int *nr, const char *name)
1961{
1962 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1963 (*buf)[*nr] = name;
1964 *nr += 1;
1965}
1966
1967const char **
1968gdbarch_printable_names (void)
1969{
7996bcec
AC
1970 /* Accumulate a list of names based on the registed list of
1971 architectures. */
1972 enum bfd_architecture a;
1973 int nr_arches = 0;
1974 const char **arches = NULL;
1975 struct gdbarch_registration *rego;
1976 for (rego = gdbarch_registry;
1977 rego != NULL;
1978 rego = rego->next)
b4a20239 1979 {
7996bcec
AC
1980 const struct bfd_arch_info *ap;
1981 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1982 if (ap == NULL)
1983 internal_error (__FILE__, __LINE__,
1984 "gdbarch_architecture_names: multi-arch unknown");
1985 do
1986 {
1987 append_name (&arches, &nr_arches, ap->printable_name);
1988 ap = ap->next;
1989 }
1990 while (ap != NULL);
b4a20239 1991 }
7996bcec
AC
1992 append_name (&arches, &nr_arches, NULL);
1993 return arches;
b4a20239
AC
1994}
1995
1996
104c1213 1997void
4b9b3959
AC
1998gdbarch_register (enum bfd_architecture bfd_architecture,
1999 gdbarch_init_ftype *init,
2000 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2001{
4b9b3959 2002 struct gdbarch_registration **curr;
104c1213 2003 const struct bfd_arch_info *bfd_arch_info;
ec3d358c 2004 /* Check that BFD recognizes this architecture */
104c1213
JM
2005 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2006 if (bfd_arch_info == NULL)
2007 {
8e65ff28
AC
2008 internal_error (__FILE__, __LINE__,
2009 "gdbarch: Attempt to register unknown architecture (%d)",
2010 bfd_architecture);
104c1213
JM
2011 }
2012 /* Check that we haven't seen this architecture before */
f44c642f 2013 for (curr = &gdbarch_registry;
104c1213
JM
2014 (*curr) != NULL;
2015 curr = &(*curr)->next)
2016 {
2017 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28
AC
2018 internal_error (__FILE__, __LINE__,
2019 "gdbarch: Duplicate registraration of architecture (%s)",
2020 bfd_arch_info->printable_name);
104c1213
JM
2021 }
2022 /* log it */
2023 if (gdbarch_debug)
2024 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2025 bfd_arch_info->printable_name,
2026 (long) init);
2027 /* Append it */
4b9b3959 2028 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
2029 (*curr)->bfd_architecture = bfd_architecture;
2030 (*curr)->init = init;
4b9b3959 2031 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2032 (*curr)->arches = NULL;
2033 (*curr)->next = NULL;
4b9b3959
AC
2034}
2035
2036void
2037register_gdbarch_init (enum bfd_architecture bfd_architecture,
2038 gdbarch_init_ftype *init)
2039{
2040 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2041}
104c1213
JM
2042
2043
2044/* Look for an architecture using gdbarch_info. Base search on only
2045 BFD_ARCH_INFO and BYTE_ORDER. */
2046
2047struct gdbarch_list *
2048gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2049 const struct gdbarch_info *info)
2050{
2051 for (; arches != NULL; arches = arches->next)
2052 {
2053 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2054 continue;
2055 if (info->byte_order != arches->gdbarch->byte_order)
2056 continue;
4be87837
DJ
2057 if (info->osabi != arches->gdbarch->osabi)
2058 continue;
104c1213
JM
2059 return arches;
2060 }
2061 return NULL;
2062}
2063
2064
ebdba546
AC
2065/* Find an architecture that matches the specified INFO. Create a new
2066 architecture if needed. Return that new architecture. Assumes
2067 that there is no current architecture. */
104c1213 2068
ebdba546
AC
2069static struct gdbarch *
2070find_arch_by_info (struct gdbarch *old_gdbarch, struct gdbarch_info info)
104c1213
JM
2071{
2072 struct gdbarch *new_gdbarch;
4b9b3959 2073 struct gdbarch_registration *rego;
104c1213 2074
ebdba546
AC
2075 /* The existing architecture has been swapped out - all this code
2076 works from a clean slate. */
2077 gdb_assert (current_gdbarch == NULL);
2078
b732d07d 2079 /* Fill in missing parts of the INFO struct using a number of
ebdba546
AC
2080 sources: "set ..."; INFOabfd supplied; and the existing
2081 architecture. */
2082 gdbarch_info_fill (old_gdbarch, &info);
4be87837 2083
b732d07d
AC
2084 /* Must have found some sort of architecture. */
2085 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2086
2087 if (gdbarch_debug)
2088 {
2089 fprintf_unfiltered (gdb_stdlog,
ebdba546 2090 "find_arch_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2091 (info.bfd_arch_info != NULL
2092 ? info.bfd_arch_info->printable_name
2093 : "(null)"));
2094 fprintf_unfiltered (gdb_stdlog,
ebdba546 2095 "find_arch_by_info: info.byte_order %d (%s)\n",
104c1213 2096 info.byte_order,
d7449b42 2097 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2098 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2099 : "default"));
4be87837 2100 fprintf_unfiltered (gdb_stdlog,
ebdba546 2101 "find_arch_by_info: info.osabi %d (%s)\n",
4be87837 2102 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2103 fprintf_unfiltered (gdb_stdlog,
ebdba546 2104 "find_arch_by_info: info.abfd 0x%lx\n",
104c1213
JM
2105 (long) info.abfd);
2106 fprintf_unfiltered (gdb_stdlog,
ebdba546 2107 "find_arch_by_info: info.tdep_info 0x%lx\n",
104c1213
JM
2108 (long) info.tdep_info);
2109 }
2110
ebdba546 2111 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2112 for (rego = gdbarch_registry;
2113 rego != NULL;
2114 rego = rego->next)
2115 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2116 break;
2117 if (rego == NULL)
2118 {
2119 if (gdbarch_debug)
ebdba546
AC
2120 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2121 "No matching architecture\n");
b732d07d
AC
2122 return 0;
2123 }
2124
ebdba546 2125 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2126 new_gdbarch = rego->init (info, rego->arches);
2127
ebdba546
AC
2128 /* Did the tdep code like it? No. Reject the change and revert to
2129 the old architecture. */
104c1213
JM
2130 if (new_gdbarch == NULL)
2131 {
2132 if (gdbarch_debug)
ebdba546
AC
2133 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2134 "Target rejected architecture\n");
2135 return NULL;
104c1213
JM
2136 }
2137
ebdba546
AC
2138 /* Is this a pre-existing architecture (as determined by already
2139 being initialized)? Move it to the front of the architecture
2140 list (keeping the list sorted Most Recently Used). */
2141 if (new_gdbarch->initialized_p)
104c1213 2142 {
ebdba546
AC
2143 struct gdbarch_list **list;
2144 struct gdbarch_list *this;
104c1213 2145 if (gdbarch_debug)
ebdba546
AC
2146 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2147 "Previous architecture 0x%08lx (%s) selected\n",
104c1213
JM
2148 (long) new_gdbarch,
2149 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2150 /* Find the existing arch in the list. */
2151 for (list = &rego->arches;
2152 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2153 list = &(*list)->next);
2154 /* It had better be in the list of architectures. */
2155 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2156 /* Unlink THIS. */
2157 this = (*list);
2158 (*list) = this->next;
2159 /* Insert THIS at the front. */
2160 this->next = rego->arches;
2161 rego->arches = this;
2162 /* Return it. */
2163 return new_gdbarch;
104c1213
JM
2164 }
2165
ebdba546
AC
2166 /* It's a new architecture. */
2167 if (gdbarch_debug)
2168 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2169 "New architecture 0x%08lx (%s) selected\n",
2170 (long) new_gdbarch,
2171 new_gdbarch->bfd_arch_info->printable_name);
2172
2173 /* Insert the new architecture into the front of the architecture
2174 list (keep the list sorted Most Recently Used). */
0f79675b
AC
2175 {
2176 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2177 this->next = rego->arches;
2178 this->gdbarch = new_gdbarch;
2179 rego->arches = this;
2180 }
104c1213 2181
4b9b3959
AC
2182 /* Check that the newly installed architecture is valid. Plug in
2183 any post init values. */
2184 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2185 verify_gdbarch (new_gdbarch);
ebdba546 2186 new_gdbarch->initialized_p = 1;
104c1213 2187
ebdba546
AC
2188 /* Initialize any per-architecture swap areas. This phase requires
2189 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2190 swap the entire architecture out. */
2191 current_gdbarch = new_gdbarch;
7de2341d 2192 current_gdbarch_swap_init_hack ();
ebdba546 2193 current_gdbarch_swap_out_hack ();
67c2c32c 2194
4b9b3959 2195 if (gdbarch_debug)
ebdba546
AC
2196 gdbarch_dump (new_gdbarch, gdb_stdlog);
2197
2198 return new_gdbarch;
2199}
2200
2201struct gdbarch *
2202gdbarch_find_by_info (struct gdbarch_info info)
2203{
2204 /* Save the previously selected architecture, setting the global to
2205 NULL. This stops things like gdbarch->init() trying to use the
2206 previous architecture's configuration. The previous architecture
2207 may not even be of the same architecture family. The most recent
2208 architecture of the same family is found at the head of the
2209 rego->arches list. */
2210 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2211
2212 /* Find the specified architecture. */
2213 struct gdbarch *new_gdbarch = find_arch_by_info (old_gdbarch, info);
2214
2215 /* Restore the existing architecture. */
2216 gdb_assert (current_gdbarch == NULL);
2217 current_gdbarch_swap_in_hack (old_gdbarch);
4b9b3959 2218
ebdba546 2219 return new_gdbarch;
104c1213
JM
2220}
2221
ebdba546
AC
2222/* Make the specified architecture current, swapping the existing one
2223 out. */
2224
2225void
2226deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2227{
2228 gdb_assert (new_gdbarch != NULL);
2229 gdb_assert (current_gdbarch != NULL);
2230 gdb_assert (new_gdbarch->initialized_p);
2231 current_gdbarch_swap_out_hack ();
2232 current_gdbarch_swap_in_hack (new_gdbarch);
2233 architecture_changed_event ();
2234}
104c1213 2235
104c1213 2236extern void _initialize_gdbarch (void);
b4a20239 2237
104c1213 2238void
34620563 2239_initialize_gdbarch (void)
104c1213 2240{
59233f88
AC
2241 struct cmd_list_element *c;
2242
59233f88 2243 add_show_from_set (add_set_cmd ("arch",
104c1213
JM
2244 class_maintenance,
2245 var_zinteger,
2246 (char *)&gdbarch_debug,
3d9a5942 2247 "Set architecture debugging.\\n\\
59233f88
AC
2248When non-zero, architecture debugging is enabled.", &setdebuglist),
2249 &showdebuglist);
2250 c = add_set_cmd ("archdebug",
2251 class_maintenance,
2252 var_zinteger,
2253 (char *)&gdbarch_debug,
3d9a5942 2254 "Set architecture debugging.\\n\\
59233f88
AC
2255When non-zero, architecture debugging is enabled.", &setlist);
2256
2257 deprecate_cmd (c, "set debug arch");
2258 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
104c1213
JM
2259}
2260EOF
2261
2262# close things off
2263exec 1>&2
2264#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2265compare_new gdbarch.c
This page took 0.605037 seconds and 4 git commands to generate.