Add missing format for built-in floating-point types
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
618f726f 5# Copyright (C) 1998-2016 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
be7811ad 341i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
94123b4f
YQ
343i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 345#
97030eea 346i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 347#
30737ed9 348i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
352v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
66b43ecb
AC
354# Number of bits in a char or unsigned char for the target machine.
355# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 356# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
357#
358# Number of bits in a short or unsigned short for the target machine.
97030eea 359v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in an int or unsigned int for the target machine.
97030eea 361v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 362# Number of bits in a long or unsigned long for the target machine.
97030eea 363v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
364# Number of bits in a long long or unsigned long long for the target
365# machine.
be7811ad 366v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
205c306f
DM
367# Alignment of a long long or unsigned long long for the target
368# machine.
369v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94 370
f9e9243a
UW
371# The ABI default bit-size and format for "half", "float", "double", and
372# "long double". These bit/format pairs should eventually be combined
373# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
374# Each format describes both the big and little endian layouts (if
375# useful).
456fcf94 376
f9e9243a
UW
377v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
97030eea 379v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 380v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 381v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 382v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 383v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 384v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 385
52204a0b
DT
386# For most targets, a pointer on the target and its representation as an
387# address in GDB have the same size and "look the same". For such a
17a912b6 388# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
389# / addr_bit will be set from it.
390#
17a912b6 391# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
392# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393# gdbarch_address_to_pointer as well.
52204a0b
DT
394#
395# ptr_bit is the size of a pointer on the target
be7811ad 396v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 397# addr_bit is the size of a target address as represented in gdb
be7811ad 398v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 399#
8da614df
CV
400# dwarf2_addr_size is the target address size as used in the Dwarf debug
401# info. For .debug_frame FDEs, this is supposed to be the target address
402# size from the associated CU header, and which is equivalent to the
403# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404# Unfortunately there is no good way to determine this value. Therefore
405# dwarf2_addr_size simply defaults to the target pointer size.
406#
407# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408# defined using the target's pointer size so far.
409#
410# Note that dwarf2_addr_size only needs to be redefined by a target if the
411# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412# and if Dwarf versions < 4 need to be supported.
413v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414#
4e409299 415# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 416v:int:char_signed:::1:-1:1
4e409299 417#
97030eea
UW
418F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
420# Function for getting target's idea of a frame pointer. FIXME: GDB's
421# whole scheme for dealing with "frames" and "frame pointers" needs a
422# serious shakedown.
a54fba4c 423m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 424#
05d1431c 425M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
3543a589
TT
426# Read a register into a new struct value. If the register is wholly
427# or partly unavailable, this should call mark_value_bytes_unavailable
428# as appropriate. If this is defined, then pseudo_register_read will
429# never be called.
430M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
97030eea 431M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 432#
97030eea 433v:int:num_regs:::0:-1
0aba1244
EZ
434# This macro gives the number of pseudo-registers that live in the
435# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
436# These pseudo-registers may be aliases for other registers,
437# combinations of other registers, or they may be computed by GDB.
97030eea 438v:int:num_pseudo_regs:::0:0::0
c2169756 439
175ff332
HZ
440# Assemble agent expression bytecode to collect pseudo-register REG.
441# Return -1 if something goes wrong, 0 otherwise.
442M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444# Assemble agent expression bytecode to push the value of pseudo-register
445# REG on the interpreter stack.
446# Return -1 if something goes wrong, 0 otherwise.
447M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
012b3a21
WT
449# Some targets/architectures can do extra processing/display of
450# segmentation faults. E.g., Intel MPX boundary faults.
451# Call the architecture dependent function to handle the fault.
452# UIOUT is the output stream where the handler will place information.
453M:void:handle_segmentation_fault:struct ui_out *uiout:uiout
454
c2169756
AC
455# GDB's standard (or well known) register numbers. These can map onto
456# a real register or a pseudo (computed) register or not be defined at
1200cd6e 457# all (-1).
3e8c568d 458# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
459v:int:sp_regnum:::-1:-1::0
460v:int:pc_regnum:::-1:-1::0
461v:int:ps_regnum:::-1:-1::0
462v:int:fp0_regnum:::0:-1::0
88c72b7d 463# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 464m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 465# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 466m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 467# Convert from an sdb register number to an internal gdb register number.
d3f73121 468m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 469# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
0fde2c53 470# Return -1 for bad REGNUM. Note: Several targets get this wrong.
d3f73121 471m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 472m:const char *:register_name:int regnr:regnr::0
9c04cab7 473
7b9ee6a8
DJ
474# Return the type of a register specified by the architecture. Only
475# the register cache should call this function directly; others should
476# use "register_type".
97030eea 477M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 478
669fac23
DJ
479M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
480# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 481# deprecated_fp_regnum.
97030eea 482v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 483
97030eea
UW
484M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
485v:int:call_dummy_location::::AT_ENTRY_POINT::0
486M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 487
7eb89530
YQ
488# Return true if the code of FRAME is writable.
489m:int:code_of_frame_writable:struct frame_info *frame:frame::default_code_of_frame_writable::0
490
97030eea 491m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
cc86d1cb 492m:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args::default_print_float_info::0
97030eea 493M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
494# MAP a GDB RAW register number onto a simulator register number. See
495# also include/...-sim.h.
e7faf938 496m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
497m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
498m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
eade6471
JB
499
500# Determine the address where a longjmp will land and save this address
501# in PC. Return nonzero on success.
502#
503# FRAME corresponds to the longjmp frame.
97030eea 504F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
eade6471 505
104c1213 506#
97030eea 507v:int:believe_pcc_promotion:::::::
104c1213 508#
0abe36f5 509m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
8dccd430 510f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
97030eea 511f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0 512# Construct a value representing the contents of register REGNUM in
2ed3c037 513# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
514# allocate and return a struct value with all value attributes
515# (but not the value contents) filled in.
2ed3c037 516m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
104c1213 517#
9898f801
UW
518m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
519m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 520M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 521
6a3a010b
MR
522# Return the return-value convention that will be used by FUNCTION
523# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
524# case the return convention is computed based only on VALTYPE.
525#
526# If READBUF is not NULL, extract the return value and save it in this buffer.
527#
528# If WRITEBUF is not NULL, it contains a return value which will be
529# stored into the appropriate register. This can be used when we want
530# to force the value returned by a function (see the "return" command
531# for instance).
6a3a010b 532M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
92ad9cd9 533
18648a37
YQ
534# Return true if the return value of function is stored in the first hidden
535# parameter. In theory, this feature should be language-dependent, specified
536# by language and its ABI, such as C++. Unfortunately, compiler may
537# implement it to a target-dependent feature. So that we need such hook here
538# to be aware of this in GDB.
539m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
540
6093d2eb 541m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 542M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
591a12a1
UW
543# On some platforms, a single function may provide multiple entry points,
544# e.g. one that is used for function-pointer calls and a different one
545# that is used for direct function calls.
546# In order to ensure that breakpoints set on the function will trigger
547# no matter via which entry point the function is entered, a platform
548# may provide the skip_entrypoint callback. It is called with IP set
549# to the main entry point of a function (as determined by the symbol table),
550# and should return the address of the innermost entry point, where the
551# actual breakpoint needs to be set. Note that skip_entrypoint is used
552# by GDB common code even when debugging optimized code, where skip_prologue
553# is not used.
554M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
555
97030eea 556f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 557m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
558# Return the adjusted address and kind to use for Z0/Z1 packets.
559# KIND is usually the memory length of the breakpoint, but may have a
560# different target-specific meaning.
0e05dfcb 561m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 562M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
563m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
564m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 565v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
566
567# A function can be addressed by either it's "pointer" (possibly a
568# descriptor address) or "entry point" (first executable instruction).
569# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 570# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
571# a simplified subset of that functionality - the function's address
572# corresponds to the "function pointer" and the function's start
573# corresponds to the "function entry point" - and hence is redundant.
574
97030eea 575v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 576
123dc839
DJ
577# Return the remote protocol register number associated with this
578# register. Normally the identity mapping.
97030eea 579m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 580
b2756930 581# Fetch the target specific address used to represent a load module.
97030eea 582F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 583#
97030eea
UW
584v:CORE_ADDR:frame_args_skip:::0:::0
585M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
586M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
587# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
588# frame-base. Enable frame-base before frame-unwind.
97030eea 589F:int:frame_num_args:struct frame_info *frame:frame
104c1213 590#
97030eea
UW
591M:CORE_ADDR:frame_align:CORE_ADDR address:address
592m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
593v:int:frame_red_zone_size
f0d4cc9e 594#
97030eea 595m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
596# On some machines there are bits in addresses which are not really
597# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 598# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
599# we get a "real" address such as one would find in a symbol table.
600# This is used only for addresses of instructions, and even then I'm
601# not sure it's used in all contexts. It exists to deal with there
602# being a few stray bits in the PC which would mislead us, not as some
603# sort of generic thing to handle alignment or segmentation (it's
604# possible it should be in TARGET_READ_PC instead).
24568a2c 605m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
606
607# FIXME/cagney/2001-01-18: This should be split in two. A target method that
608# indicates if the target needs software single step. An ISA method to
609# implement it.
610#
e6590a1b
UW
611# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
612# target can single step. If not, then implement single step using breakpoints.
64c4637f 613#
6f112b18 614# A return value of 1 means that the software_single_step breakpoints
21edc42f
YQ
615# were inserted; 0 means they were not. Multiple breakpoints may be
616# inserted for some instructions such as conditional branch. However,
617# each implementation must always evaluate the condition and only put
618# the breakpoint at the branch destination if the condition is true, so
619# that we ensure forward progress when stepping past a conditional
620# branch to self.
97030eea 621F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 622
3352ef37
AC
623# Return non-zero if the processor is executing a delay slot and a
624# further single-step is needed before the instruction finishes.
97030eea 625M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 626# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 627# disassembler. Perhaps objdump can handle it?
97030eea
UW
628f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
629f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
630
631
cfd8ab24 632# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
633# evaluates non-zero, this is the address where the debugger will place
634# a step-resume breakpoint to get us past the dynamic linker.
97030eea 635m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 636# Some systems also have trampoline code for returning from shared libs.
2c02bd72 637m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 638
c12260ac
CV
639# A target might have problems with watchpoints as soon as the stack
640# frame of the current function has been destroyed. This mostly happens
c9cf6e20 641# as the first action in a function's epilogue. stack_frame_destroyed_p()
c12260ac
CV
642# is defined to return a non-zero value if either the given addr is one
643# instruction after the stack destroying instruction up to the trailing
644# return instruction or if we can figure out that the stack frame has
645# already been invalidated regardless of the value of addr. Targets
646# which don't suffer from that problem could just let this functionality
647# untouched.
c9cf6e20 648m:int:stack_frame_destroyed_p:CORE_ADDR addr:addr:0:generic_stack_frame_destroyed_p::0
3e29f34a
MR
649# Process an ELF symbol in the minimal symbol table in a backend-specific
650# way. Normally this hook is supposed to do nothing, however if required,
651# then this hook can be used to apply tranformations to symbols that are
652# considered special in some way. For example the MIPS backend uses it
653# to interpret \`st_other' information to mark compressed code symbols so
654# that they can be treated in the appropriate manner in the processing of
655# the main symbol table and DWARF-2 records.
656F:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym
97030eea 657f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
3e29f34a
MR
658# Process a symbol in the main symbol table in a backend-specific way.
659# Normally this hook is supposed to do nothing, however if required,
660# then this hook can be used to apply tranformations to symbols that
661# are considered special in some way. This is currently used by the
662# MIPS backend to make sure compressed code symbols have the ISA bit
663# set. This in turn is needed for symbol values seen in GDB to match
664# the values used at the runtime by the program itself, for function
665# and label references.
666f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objfile::default_make_symbol_special::0
667# Adjust the address retrieved from a DWARF-2 record other than a line
668# entry in a backend-specific way. Normally this hook is supposed to
669# return the address passed unchanged, however if that is incorrect for
670# any reason, then this hook can be used to fix the address up in the
671# required manner. This is currently used by the MIPS backend to make
672# sure addresses in FDE, range records, etc. referring to compressed
673# code have the ISA bit set, matching line information and the symbol
674# table.
675f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0
676# Adjust the address updated by a line entry in a backend-specific way.
677# Normally this hook is supposed to return the address passed unchanged,
678# however in the case of inconsistencies in these records, this hook can
679# be used to fix them up in the required manner. This is currently used
680# by the MIPS backend to make sure all line addresses in compressed code
681# are presented with the ISA bit set, which is not always the case. This
682# in turn ensures breakpoint addresses are correctly matched against the
683# stop PC.
684f:CORE_ADDR:adjust_dwarf2_line:CORE_ADDR addr, int rel:addr, rel::default_adjust_dwarf2_line::0
97030eea
UW
685v:int:cannot_step_breakpoint:::0:0::0
686v:int:have_nonsteppable_watchpoint:::0:0::0
687F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
688M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
69f97648
SM
689
690# Return the appropriate type_flags for the supplied address class.
691# This function should return 1 if the address class was recognized and
692# type_flags was set, zero otherwise.
97030eea 693M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 694# Is a register in a group
97030eea 695m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 696# Fetch the pointer to the ith function argument.
97030eea 697F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f 698
5aa82d05
AA
699# Iterate over all supported register notes in a core file. For each
700# supported register note section, the iterator must call CB and pass
701# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
702# the supported register note sections based on the current register
703# values. Otherwise it should enumerate all supported register note
704# sections.
705M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
17ea7499 706
6432734d
UW
707# Create core file notes
708M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
709
b3ac9c77
SDJ
710# The elfcore writer hook to use to write Linux prpsinfo notes to core
711# files. Most Linux architectures use the same prpsinfo32 or
712# prpsinfo64 layouts, and so won't need to provide this hook, as we
713# call the Linux generic routines in bfd to write prpsinfo notes by
714# default.
715F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
716
35c2fab7
UW
717# Find core file memory regions
718M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
719
de584861 720# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
721# core file into buffer READBUF with length LEN. Return the number of bytes read
722# (zero indicates failure).
723# failed, otherwise, return the red length of READBUF.
724M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
de584861 725
356a5233
JB
726# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
727# libraries list from core file into buffer READBUF with length LEN.
c09f20e4
YQ
728# Return the number of bytes read (zero indicates failure).
729M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
356a5233 730
c0edd9ed 731# How the core target converts a PTID from a core file to a string.
28439f5e
PA
732M:char *:core_pid_to_str:ptid_t ptid:ptid
733
4dfc5dbc
JB
734# How the core target extracts the name of a thread from a core file.
735M:const char *:core_thread_name:struct thread_info *thr:thr
736
a78c2d62 737# BFD target to use when generating a core file.
86ba1042 738V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
a78c2d62 739
0d5de010
DJ
740# If the elements of C++ vtables are in-place function descriptors rather
741# than normal function pointers (which may point to code or a descriptor),
742# set this to one.
97030eea 743v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
744
745# Set if the least significant bit of the delta is used instead of the least
746# significant bit of the pfn for pointers to virtual member functions.
97030eea 747v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
748
749# Advance PC to next instruction in order to skip a permanent breakpoint.
ae9bb220 750f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0
1c772458 751
1668ae25 752# The maximum length of an instruction on this architecture in bytes.
237fc4c9
PA
753V:ULONGEST:max_insn_length:::0:0
754
755# Copy the instruction at FROM to TO, and make any adjustments
756# necessary to single-step it at that address.
757#
758# REGS holds the state the thread's registers will have before
759# executing the copied instruction; the PC in REGS will refer to FROM,
760# not the copy at TO. The caller should update it to point at TO later.
761#
762# Return a pointer to data of the architecture's choice to be passed
763# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
764# the instruction's effects have been completely simulated, with the
765# resulting state written back to REGS.
766#
767# For a general explanation of displaced stepping and how GDB uses it,
768# see the comments in infrun.c.
769#
770# The TO area is only guaranteed to have space for
771# gdbarch_max_insn_length (arch) bytes, so this function must not
772# write more bytes than that to that area.
773#
774# If you do not provide this function, GDB assumes that the
775# architecture does not support displaced stepping.
776#
777# If your architecture doesn't need to adjust instructions before
778# single-stepping them, consider using simple_displaced_step_copy_insn
779# here.
7f03bd92
PA
780#
781# If the instruction cannot execute out of line, return NULL. The
782# core falls back to stepping past the instruction in-line instead in
783# that case.
237fc4c9
PA
784M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
785
99e40580
UW
786# Return true if GDB should use hardware single-stepping to execute
787# the displaced instruction identified by CLOSURE. If false,
788# GDB will simply restart execution at the displaced instruction
789# location, and it is up to the target to ensure GDB will receive
790# control again (e.g. by placing a software breakpoint instruction
791# into the displaced instruction buffer).
792#
793# The default implementation returns false on all targets that
794# provide a gdbarch_software_single_step routine, and true otherwise.
795m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
796
237fc4c9
PA
797# Fix up the state resulting from successfully single-stepping a
798# displaced instruction, to give the result we would have gotten from
799# stepping the instruction in its original location.
800#
801# REGS is the register state resulting from single-stepping the
802# displaced instruction.
803#
804# CLOSURE is the result from the matching call to
805# gdbarch_displaced_step_copy_insn.
806#
807# If you provide gdbarch_displaced_step_copy_insn.but not this
808# function, then GDB assumes that no fixup is needed after
809# single-stepping the instruction.
810#
811# For a general explanation of displaced stepping and how GDB uses it,
812# see the comments in infrun.c.
813M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
814
815# Free a closure returned by gdbarch_displaced_step_copy_insn.
816#
817# If you provide gdbarch_displaced_step_copy_insn, you must provide
818# this function as well.
819#
820# If your architecture uses closures that don't need to be freed, then
821# you can use simple_displaced_step_free_closure here.
822#
823# For a general explanation of displaced stepping and how GDB uses it,
824# see the comments in infrun.c.
825m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
826
827# Return the address of an appropriate place to put displaced
828# instructions while we step over them. There need only be one such
829# place, since we're only stepping one thread over a breakpoint at a
830# time.
831#
832# For a general explanation of displaced stepping and how GDB uses it,
833# see the comments in infrun.c.
834m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
835
dde08ee1
PA
836# Relocate an instruction to execute at a different address. OLDLOC
837# is the address in the inferior memory where the instruction to
838# relocate is currently at. On input, TO points to the destination
839# where we want the instruction to be copied (and possibly adjusted)
840# to. On output, it points to one past the end of the resulting
841# instruction(s). The effect of executing the instruction at TO shall
842# be the same as if executing it at FROM. For example, call
843# instructions that implicitly push the return address on the stack
844# should be adjusted to return to the instruction after OLDLOC;
845# relative branches, and other PC-relative instructions need the
846# offset adjusted; etc.
847M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
848
1c772458 849# Refresh overlay mapped state for section OSECT.
97030eea 850F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 851
97030eea 852M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
853
854# Handle special encoding of static variables in stabs debug info.
0d5cff50 855F:const char *:static_transform_name:const char *name:name
203c3895 856# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 857v:int:sofun_address_maybe_missing:::0:0::0
1cded358 858
0508c3ec
HZ
859# Parse the instruction at ADDR storing in the record execution log
860# the registers REGCACHE and memory ranges that will be affected when
861# the instruction executes, along with their current values.
862# Return -1 if something goes wrong, 0 otherwise.
863M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
864
3846b520
HZ
865# Save process state after a signal.
866# Return -1 if something goes wrong, 0 otherwise.
2ea28649 867M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
3846b520 868
22203bbf 869# Signal translation: translate inferior's signal (target's) number
86b49880
PA
870# into GDB's representation. The implementation of this method must
871# be host independent. IOW, don't rely on symbols of the NAT_FILE
872# header (the nm-*.h files), the host <signal.h> header, or similar
873# headers. This is mainly used when cross-debugging core files ---
874# "Live" targets hide the translation behind the target interface
1f8cf220
PA
875# (target_wait, target_resume, etc.).
876M:enum gdb_signal:gdb_signal_from_target:int signo:signo
60c5725c 877
eb14d406
SDJ
878# Signal translation: translate the GDB's internal signal number into
879# the inferior's signal (target's) representation. The implementation
880# of this method must be host independent. IOW, don't rely on symbols
881# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
882# header, or similar headers.
883# Return the target signal number if found, or -1 if the GDB internal
884# signal number is invalid.
885M:int:gdb_signal_to_target:enum gdb_signal signal:signal
886
4aa995e1
PA
887# Extra signal info inspection.
888#
889# Return a type suitable to inspect extra signal information.
890M:struct type *:get_siginfo_type:void:
891
60c5725c
DJ
892# Record architecture-specific information from the symbol table.
893M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 894
a96d9b2e
SDJ
895# Function for the 'catch syscall' feature.
896
897# Get architecture-specific system calls information from registers.
898M:LONGEST:get_syscall_number:ptid_t ptid:ptid
899
458c8db8
SDJ
900# The filename of the XML syscall for this architecture.
901v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file)
902
903# Information about system calls from this architecture
904v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info)
905
55aa24fb
SDJ
906# SystemTap related fields and functions.
907
05c0465e
SDJ
908# A NULL-terminated array of prefixes used to mark an integer constant
909# on the architecture's assembly.
55aa24fb
SDJ
910# For example, on x86 integer constants are written as:
911#
912# \$10 ;; integer constant 10
913#
914# in this case, this prefix would be the character \`\$\'.
05c0465e 915v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 916
05c0465e
SDJ
917# A NULL-terminated array of suffixes used to mark an integer constant
918# on the architecture's assembly.
919v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 920
05c0465e
SDJ
921# A NULL-terminated array of prefixes used to mark a register name on
922# the architecture's assembly.
55aa24fb
SDJ
923# For example, on x86 the register name is written as:
924#
925# \%eax ;; register eax
926#
927# in this case, this prefix would be the character \`\%\'.
05c0465e 928v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 929
05c0465e
SDJ
930# A NULL-terminated array of suffixes used to mark a register name on
931# the architecture's assembly.
932v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 933
05c0465e
SDJ
934# A NULL-terminated array of prefixes used to mark a register
935# indirection on the architecture's assembly.
55aa24fb
SDJ
936# For example, on x86 the register indirection is written as:
937#
938# \(\%eax\) ;; indirecting eax
939#
940# in this case, this prefix would be the charater \`\(\'.
941#
942# Please note that we use the indirection prefix also for register
943# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 944v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 945
05c0465e
SDJ
946# A NULL-terminated array of suffixes used to mark a register
947# indirection on the architecture's assembly.
55aa24fb
SDJ
948# For example, on x86 the register indirection is written as:
949#
950# \(\%eax\) ;; indirecting eax
951#
952# in this case, this prefix would be the charater \`\)\'.
953#
954# Please note that we use the indirection suffix also for register
955# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 956v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 957
05c0465e 958# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
959#
960# For example, on PPC a register is represented by a number in the assembly
961# language (e.g., \`10\' is the 10th general-purpose register). However,
962# inside GDB this same register has an \`r\' appended to its name, so the 10th
963# register would be represented as \`r10\' internally.
08af7a40 964v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
965
966# Suffix used to name a register using GDB's nomenclature.
08af7a40 967v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
968
969# Check if S is a single operand.
970#
971# Single operands can be:
972# \- Literal integers, e.g. \`\$10\' on x86
973# \- Register access, e.g. \`\%eax\' on x86
974# \- Register indirection, e.g. \`\(\%eax\)\' on x86
975# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
976#
977# This function should check for these patterns on the string
978# and return 1 if some were found, or zero otherwise. Please try to match
979# as much info as you can from the string, i.e., if you have to match
980# something like \`\(\%\', do not match just the \`\(\'.
981M:int:stap_is_single_operand:const char *s:s
982
983# Function used to handle a "special case" in the parser.
984#
985# A "special case" is considered to be an unknown token, i.e., a token
986# that the parser does not know how to parse. A good example of special
987# case would be ARM's register displacement syntax:
988#
989# [R0, #4] ;; displacing R0 by 4
990#
991# Since the parser assumes that a register displacement is of the form:
992#
993# <number> <indirection_prefix> <register_name> <indirection_suffix>
994#
995# it means that it will not be able to recognize and parse this odd syntax.
996# Therefore, we should add a special case function that will handle this token.
997#
998# This function should generate the proper expression form of the expression
999# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1000# and so on). It should also return 1 if the parsing was successful, or zero
1001# if the token was not recognized as a special token (in this case, returning
1002# zero means that the special parser is deferring the parsing to the generic
1003# parser), and should advance the buffer pointer (p->arg).
1004M:int:stap_parse_special_token:struct stap_parse_info *p:p
1005
8b367e17
JM
1006# DTrace related functions.
1007
1008# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1009# NARG must be >= 0.
1010M:void:dtrace_parse_probe_argument:struct parser_state *pstate, int narg:pstate, narg
1011
1012# True if the given ADDR does not contain the instruction sequence
1013# corresponding to a disabled DTrace is-enabled probe.
1014M:int:dtrace_probe_is_enabled:CORE_ADDR addr:addr
1015
1016# Enable a DTrace is-enabled probe at ADDR.
1017M:void:dtrace_enable_probe:CORE_ADDR addr:addr
1018
1019# Disable a DTrace is-enabled probe at ADDR.
1020M:void:dtrace_disable_probe:CORE_ADDR addr:addr
55aa24fb 1021
50c71eaf
PA
1022# True if the list of shared libraries is one and only for all
1023# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
1024# This usually means that all processes, although may or may not share
1025# an address space, will see the same set of symbols at the same
1026# addresses.
50c71eaf 1027v:int:has_global_solist:::0:0::0
2567c7d9
PA
1028
1029# On some targets, even though each inferior has its own private
1030# address space, the debug interface takes care of making breakpoints
1031# visible to all address spaces automatically. For such cases,
1032# this property should be set to true.
1033v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
1034
1035# True if inferiors share an address space (e.g., uClinux).
1036m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
1037
1038# True if a fast tracepoint can be set at an address.
6b940e6a 1039m:int:fast_tracepoint_valid_at:CORE_ADDR addr, char **msg:addr, msg::default_fast_tracepoint_valid_at::0
75cebea9 1040
5f034a78
MK
1041# Guess register state based on tracepoint location. Used for tracepoints
1042# where no registers have been collected, but there's only one location,
1043# allowing us to guess the PC value, and perhaps some other registers.
1044# On entry, regcache has all registers marked as unavailable.
1045m:void:guess_tracepoint_registers:struct regcache *regcache, CORE_ADDR addr:regcache, addr::default_guess_tracepoint_registers::0
1046
f870a310
TT
1047# Return the "auto" target charset.
1048f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
1049# Return the "auto" target wide charset.
1050f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
1051
1052# If non-empty, this is a file extension that will be opened in place
1053# of the file extension reported by the shared library list.
1054#
1055# This is most useful for toolchains that use a post-linker tool,
1056# where the names of the files run on the target differ in extension
1057# compared to the names of the files GDB should load for debug info.
1058v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
1059
1060# If true, the target OS has DOS-based file system semantics. That
1061# is, absolute paths include a drive name, and the backslash is
1062# considered a directory separator.
1063v:int:has_dos_based_file_system:::0:0::0
6710bf39
SS
1064
1065# Generate bytecodes to collect the return address in a frame.
1066# Since the bytecodes run on the target, possibly with GDB not even
1067# connected, the full unwinding machinery is not available, and
1068# typically this function will issue bytecodes for one or more likely
1069# places that the return address may be found.
1070m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
1071
3030c96e 1072# Implement the "info proc" command.
7bc112c1 1073M:void:info_proc:const char *args, enum info_proc_what what:args, what
3030c96e 1074
451b7c33
TT
1075# Implement the "info proc" command for core files. Noe that there
1076# are two "info_proc"-like methods on gdbarch -- one for core files,
1077# one for live targets.
7bc112c1 1078M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
451b7c33 1079
19630284
JB
1080# Iterate over all objfiles in the order that makes the most sense
1081# for the architecture to make global symbol searches.
1082#
1083# CB is a callback function where OBJFILE is the objfile to be searched,
1084# and CB_DATA a pointer to user-defined data (the same data that is passed
1085# when calling this gdbarch method). The iteration stops if this function
1086# returns nonzero.
1087#
1088# CB_DATA is a pointer to some user-defined data to be passed to
1089# the callback.
1090#
1091# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1092# inspected when the symbol search was requested.
1093m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1094
7e35103a
JB
1095# Ravenscar arch-dependent ops.
1096v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1097
1098# Return non-zero if the instruction at ADDR is a call; zero otherwise.
1099m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1100
1101# Return non-zero if the instruction at ADDR is a return; zero otherwise.
1102m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1103
1104# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1105m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
27a48a92
MK
1106
1107# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1108# Return 0 if *READPTR is already at the end of the buffer.
1109# Return -1 if there is insufficient buffer for a whole entry.
1110# Return 1 if an entry was read into *TYPEP and *VALP.
1111M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
3437254d 1112
2faa3447
JB
1113# Print the description of a single auxv entry described by TYPE and VAL
1114# to FILE.
1115m:void:print_auxv_entry:struct ui_file *file, CORE_ADDR type, CORE_ADDR val:file, type, val::default_print_auxv_entry::0
1116
3437254d
PA
1117# Find the address range of the current inferior's vsyscall/vDSO, and
1118# write it to *RANGE. If the vsyscall's length can't be determined, a
1119# range with zero length is returned. Returns true if the vsyscall is
1120# found, false otherwise.
1121m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
f208eee0
JK
1122
1123# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1124# PROT has GDB_MMAP_PROT_* bitmask format.
1125# Throw an error if it is not possible. Returned address is always valid.
1126f:CORE_ADDR:infcall_mmap:CORE_ADDR size, unsigned prot:size, prot::default_infcall_mmap::0
1127
7f361056
JK
1128# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1129# Print a warning if it is not possible.
1130f:void:infcall_munmap:CORE_ADDR addr, CORE_ADDR size:addr, size::default_infcall_munmap::0
1131
f208eee0
JK
1132# Return string (caller has to use xfree for it) with options for GCC
1133# to produce code for this target, typically "-m64", "-m32" or "-m31".
1134# These options are put before CU's DW_AT_producer compilation options so that
1135# they can override it. Method may also return NULL.
1136m:char *:gcc_target_options:void:::default_gcc_target_options::0
ac04f72b
TT
1137
1138# Return a regular expression that matches names used by this
1139# architecture in GNU configury triplets. The result is statically
1140# allocated and must not be freed. The default implementation simply
1141# returns the BFD architecture name, which is correct in nearly every
1142# case.
1143m:const char *:gnu_triplet_regexp:void:::default_gnu_triplet_regexp::0
3374165f
SM
1144
1145# Return the size in 8-bit bytes of an addressable memory unit on this
1146# architecture. This corresponds to the number of 8-bit bytes associated to
1147# each address in memory.
1148m:int:addressable_memory_unit_size:void:::default_addressable_memory_unit_size::0
1149
104c1213 1150EOF
104c1213
JM
1151}
1152
0b8f9e4d
AC
1153#
1154# The .log file
1155#
1156exec > new-gdbarch.log
34620563 1157function_list | while do_read
0b8f9e4d
AC
1158do
1159 cat <<EOF
2f9b146e 1160${class} ${returntype} ${function} ($formal)
104c1213 1161EOF
3d9a5942
AC
1162 for r in ${read}
1163 do
1164 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1165 done
f0d4cc9e 1166 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1167 then
66d659b1 1168 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1169 kill $$
1170 exit 1
1171 fi
72e74a21 1172 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1173 then
1174 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1175 kill $$
1176 exit 1
1177 fi
a72293e2
AC
1178 if class_is_multiarch_p
1179 then
1180 if class_is_predicate_p ; then :
1181 elif test "x${predefault}" = "x"
1182 then
2f9b146e 1183 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1184 kill $$
1185 exit 1
1186 fi
1187 fi
3d9a5942 1188 echo ""
0b8f9e4d
AC
1189done
1190
1191exec 1>&2
1192compare_new gdbarch.log
1193
104c1213
JM
1194
1195copyright ()
1196{
1197cat <<EOF
c4bfde41
JK
1198/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1199/* vi:set ro: */
59233f88 1200
104c1213 1201/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1202
618f726f 1203 Copyright (C) 1998-2016 Free Software Foundation, Inc.
104c1213
JM
1204
1205 This file is part of GDB.
1206
1207 This program is free software; you can redistribute it and/or modify
1208 it under the terms of the GNU General Public License as published by
50efebf8 1209 the Free Software Foundation; either version 3 of the License, or
104c1213 1210 (at your option) any later version.
618f726f 1211
104c1213
JM
1212 This program is distributed in the hope that it will be useful,
1213 but WITHOUT ANY WARRANTY; without even the implied warranty of
1214 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1215 GNU General Public License for more details.
618f726f 1216
104c1213 1217 You should have received a copy of the GNU General Public License
50efebf8 1218 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1219
104c1213
JM
1220/* This file was created with the aid of \`\`gdbarch.sh''.
1221
52204a0b 1222 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1223 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1224 against the existing \`\`gdbarch.[hc]''. Any differences found
1225 being reported.
1226
1227 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1228 changes into that script. Conversely, when making sweeping changes
104c1213 1229 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1230 easier. */
104c1213
JM
1231
1232EOF
1233}
1234
1235#
1236# The .h file
1237#
1238
1239exec > new-gdbarch.h
1240copyright
1241cat <<EOF
1242#ifndef GDBARCH_H
1243#define GDBARCH_H
1244
eb7a547a
JB
1245#include "frame.h"
1246
da3331ec
AC
1247struct floatformat;
1248struct ui_file;
104c1213 1249struct value;
b6af0555 1250struct objfile;
1c772458 1251struct obj_section;
a2cf933a 1252struct minimal_symbol;
049ee0e4 1253struct regcache;
b59ff9d5 1254struct reggroup;
6ce6d90f 1255struct regset;
a89aa300 1256struct disassemble_info;
e2d0e7eb 1257struct target_ops;
030f20e1 1258struct obstack;
8181d85f 1259struct bp_target_info;
424163ea 1260struct target_desc;
3e29f34a
MR
1261struct objfile;
1262struct symbol;
237fc4c9 1263struct displaced_step_closure;
a96d9b2e 1264struct syscall;
175ff332 1265struct agent_expr;
6710bf39 1266struct axs_value;
55aa24fb 1267struct stap_parse_info;
8b367e17 1268struct parser_state;
7e35103a 1269struct ravenscar_arch_ops;
b3ac9c77 1270struct elf_internal_linux_prpsinfo;
3437254d 1271struct mem_range;
458c8db8 1272struct syscalls_info;
4dfc5dbc 1273struct thread_info;
012b3a21 1274struct ui_out;
104c1213 1275
8a526fa6
PA
1276#include "regcache.h"
1277
6ecd4729
PA
1278/* The architecture associated with the inferior through the
1279 connection to the target.
1280
1281 The architecture vector provides some information that is really a
1282 property of the inferior, accessed through a particular target:
1283 ptrace operations; the layout of certain RSP packets; the solib_ops
1284 vector; etc. To differentiate architecture accesses to
1285 per-inferior/target properties from
1286 per-thread/per-frame/per-objfile properties, accesses to
1287 per-inferior/target properties should be made through this
1288 gdbarch. */
1289
1290/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1291extern struct gdbarch *target_gdbarch (void);
6ecd4729 1292
19630284
JB
1293/* Callback type for the 'iterate_over_objfiles_in_search_order'
1294 gdbarch method. */
1295
1296typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1297 (struct objfile *objfile, void *cb_data);
5aa82d05 1298
1528345d
AA
1299/* Callback type for regset section iterators. The callback usually
1300 invokes the REGSET's supply or collect method, to which it must
1301 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1302 section name, and HUMAN_NAME is used for diagnostic messages.
1303 CB_DATA should have been passed unchanged through the iterator. */
1304
5aa82d05 1305typedef void (iterate_over_regset_sections_cb)
8f0435f7
AA
1306 (const char *sect_name, int size, const struct regset *regset,
1307 const char *human_name, void *cb_data);
104c1213
JM
1308EOF
1309
1310# function typedef's
3d9a5942
AC
1311printf "\n"
1312printf "\n"
0963b4bd 1313printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1314function_list | while do_read
104c1213 1315do
2ada493a
AC
1316 if class_is_info_p
1317 then
3d9a5942
AC
1318 printf "\n"
1319 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1320 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1321 fi
104c1213
JM
1322done
1323
1324# function typedef's
3d9a5942
AC
1325printf "\n"
1326printf "\n"
0963b4bd 1327printf "/* The following are initialized by the target dependent code. */\n"
34620563 1328function_list | while do_read
104c1213 1329do
72e74a21 1330 if [ -n "${comment}" ]
34620563
AC
1331 then
1332 echo "${comment}" | sed \
1333 -e '2 s,#,/*,' \
1334 -e '3,$ s,#, ,' \
1335 -e '$ s,$, */,'
1336 fi
412d5987
AC
1337
1338 if class_is_predicate_p
2ada493a 1339 then
412d5987
AC
1340 printf "\n"
1341 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1342 fi
2ada493a
AC
1343 if class_is_variable_p
1344 then
3d9a5942
AC
1345 printf "\n"
1346 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1347 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1348 fi
1349 if class_is_function_p
1350 then
3d9a5942 1351 printf "\n"
72e74a21 1352 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1353 then
1354 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1355 elif class_is_multiarch_p
1356 then
1357 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1358 else
1359 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1360 fi
72e74a21 1361 if [ "x${formal}" = "xvoid" ]
104c1213 1362 then
3d9a5942 1363 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1364 else
3d9a5942 1365 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1366 fi
3d9a5942 1367 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1368 fi
104c1213
JM
1369done
1370
1371# close it off
1372cat <<EOF
1373
a96d9b2e
SDJ
1374/* Definition for an unknown syscall, used basically in error-cases. */
1375#define UNKNOWN_SYSCALL (-1)
1376
104c1213
JM
1377extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1378
1379
1380/* Mechanism for co-ordinating the selection of a specific
1381 architecture.
1382
1383 GDB targets (*-tdep.c) can register an interest in a specific
1384 architecture. Other GDB components can register a need to maintain
1385 per-architecture data.
1386
1387 The mechanisms below ensures that there is only a loose connection
1388 between the set-architecture command and the various GDB
0fa6923a 1389 components. Each component can independently register their need
104c1213
JM
1390 to maintain architecture specific data with gdbarch.
1391
1392 Pragmatics:
1393
1394 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1395 didn't scale.
1396
1397 The more traditional mega-struct containing architecture specific
1398 data for all the various GDB components was also considered. Since
0fa6923a 1399 GDB is built from a variable number of (fairly independent)
104c1213 1400 components it was determined that the global aproach was not
0963b4bd 1401 applicable. */
104c1213
JM
1402
1403
1404/* Register a new architectural family with GDB.
1405
1406 Register support for the specified ARCHITECTURE with GDB. When
1407 gdbarch determines that the specified architecture has been
1408 selected, the corresponding INIT function is called.
1409
1410 --
1411
1412 The INIT function takes two parameters: INFO which contains the
1413 information available to gdbarch about the (possibly new)
1414 architecture; ARCHES which is a list of the previously created
1415 \`\`struct gdbarch'' for this architecture.
1416
0f79675b 1417 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1418 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1419
1420 The ARCHES parameter is a linked list (sorted most recently used)
1421 of all the previously created architures for this architecture
1422 family. The (possibly NULL) ARCHES->gdbarch can used to access
1423 values from the previously selected architecture for this
59837fe0 1424 architecture family.
104c1213
JM
1425
1426 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1427 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1428 gdbarch'' from the ARCHES list - indicating that the new
1429 architecture is just a synonym for an earlier architecture (see
1430 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1431 - that describes the selected architecture (see gdbarch_alloc()).
1432
1433 The DUMP_TDEP function shall print out all target specific values.
1434 Care should be taken to ensure that the function works in both the
0963b4bd 1435 multi-arch and non- multi-arch cases. */
104c1213
JM
1436
1437struct gdbarch_list
1438{
1439 struct gdbarch *gdbarch;
1440 struct gdbarch_list *next;
1441};
1442
1443struct gdbarch_info
1444{
0963b4bd 1445 /* Use default: NULL (ZERO). */
104c1213
JM
1446 const struct bfd_arch_info *bfd_arch_info;
1447
428721aa 1448 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1449 enum bfd_endian byte_order;
104c1213 1450
94123b4f 1451 enum bfd_endian byte_order_for_code;
9d4fde75 1452
0963b4bd 1453 /* Use default: NULL (ZERO). */
104c1213
JM
1454 bfd *abfd;
1455
0963b4bd 1456 /* Use default: NULL (ZERO). */
ede5f151 1457 void *tdep_info;
4be87837
DJ
1458
1459 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1460 enum gdb_osabi osabi;
424163ea
DJ
1461
1462 /* Use default: NULL (ZERO). */
1463 const struct target_desc *target_desc;
104c1213
JM
1464};
1465
1466typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1467typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1468
4b9b3959 1469/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1470extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1471
4b9b3959
AC
1472extern void gdbarch_register (enum bfd_architecture architecture,
1473 gdbarch_init_ftype *,
1474 gdbarch_dump_tdep_ftype *);
1475
104c1213 1476
b4a20239
AC
1477/* Return a freshly allocated, NULL terminated, array of the valid
1478 architecture names. Since architectures are registered during the
1479 _initialize phase this function only returns useful information
0963b4bd 1480 once initialization has been completed. */
b4a20239
AC
1481
1482extern const char **gdbarch_printable_names (void);
1483
1484
104c1213 1485/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1486 matches the information provided by INFO. */
104c1213 1487
424163ea 1488extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1489
1490
1491/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1492 basic initialization using values obtained from the INFO and TDEP
104c1213 1493 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1494 initialization of the object. */
104c1213
JM
1495
1496extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1497
1498
4b9b3959
AC
1499/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1500 It is assumed that the caller freeds the \`\`struct
0963b4bd 1501 gdbarch_tdep''. */
4b9b3959 1502
058f20d5
JB
1503extern void gdbarch_free (struct gdbarch *);
1504
1505
aebd7893
AC
1506/* Helper function. Allocate memory from the \`\`struct gdbarch''
1507 obstack. The memory is freed when the corresponding architecture
1508 is also freed. */
1509
1510extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1511#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1512#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1513
6c214e7c
PP
1514/* Duplicate STRING, returning an equivalent string that's allocated on the
1515 obstack associated with GDBARCH. The string is freed when the corresponding
1516 architecture is also freed. */
1517
1518extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
aebd7893 1519
0963b4bd 1520/* Helper function. Force an update of the current architecture.
104c1213 1521
b732d07d
AC
1522 The actual architecture selected is determined by INFO, \`\`(gdb) set
1523 architecture'' et.al., the existing architecture and BFD's default
1524 architecture. INFO should be initialized to zero and then selected
1525 fields should be updated.
104c1213 1526
0963b4bd 1527 Returns non-zero if the update succeeds. */
16f33e29
AC
1528
1529extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1530
1531
ebdba546
AC
1532/* Helper function. Find an architecture matching info.
1533
1534 INFO should be initialized using gdbarch_info_init, relevant fields
1535 set, and then finished using gdbarch_info_fill.
1536
1537 Returns the corresponding architecture, or NULL if no matching
59837fe0 1538 architecture was found. */
ebdba546
AC
1539
1540extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1541
1542
aff68abb 1543/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1544
aff68abb 1545extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1546
104c1213
JM
1547
1548/* Register per-architecture data-pointer.
1549
1550 Reserve space for a per-architecture data-pointer. An identifier
1551 for the reserved data-pointer is returned. That identifer should
95160752 1552 be saved in a local static variable.
104c1213 1553
fcc1c85c
AC
1554 Memory for the per-architecture data shall be allocated using
1555 gdbarch_obstack_zalloc. That memory will be deleted when the
1556 corresponding architecture object is deleted.
104c1213 1557
95160752
AC
1558 When a previously created architecture is re-selected, the
1559 per-architecture data-pointer for that previous architecture is
76860b5f 1560 restored. INIT() is not re-called.
104c1213
JM
1561
1562 Multiple registrarants for any architecture are allowed (and
1563 strongly encouraged). */
1564
95160752 1565struct gdbarch_data;
104c1213 1566
030f20e1
AC
1567typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1568extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1569typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1570extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1571extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1572 struct gdbarch_data *data,
1573 void *pointer);
104c1213 1574
451fbdda 1575extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1576
1577
0fa6923a 1578/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1579 byte-order, ...) using information found in the BFD. */
104c1213
JM
1580
1581extern void set_gdbarch_from_file (bfd *);
1582
1583
e514a9d6
JM
1584/* Initialize the current architecture to the "first" one we find on
1585 our list. */
1586
1587extern void initialize_current_architecture (void);
1588
104c1213 1589/* gdbarch trace variable */
ccce17b0 1590extern unsigned int gdbarch_debug;
104c1213 1591
4b9b3959 1592extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1593
1594#endif
1595EOF
1596exec 1>&2
1597#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1598compare_new gdbarch.h
104c1213
JM
1599
1600
1601#
1602# C file
1603#
1604
1605exec > new-gdbarch.c
1606copyright
1607cat <<EOF
1608
1609#include "defs.h"
7355ddba 1610#include "arch-utils.h"
104c1213 1611
104c1213 1612#include "gdbcmd.h"
faaf634c 1613#include "inferior.h"
104c1213
JM
1614#include "symcat.h"
1615
f0d4cc9e 1616#include "floatformat.h"
b59ff9d5 1617#include "reggroups.h"
4be87837 1618#include "osabi.h"
aebd7893 1619#include "gdb_obstack.h"
383f836e 1620#include "observer.h"
a3ecef73 1621#include "regcache.h"
19630284 1622#include "objfiles.h"
2faa3447 1623#include "auxv.h"
95160752 1624
104c1213
JM
1625/* Static function declarations */
1626
b3cc3077 1627static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1628
104c1213
JM
1629/* Non-zero if we want to trace architecture code. */
1630
1631#ifndef GDBARCH_DEBUG
1632#define GDBARCH_DEBUG 0
1633#endif
ccce17b0 1634unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1635static void
1636show_gdbarch_debug (struct ui_file *file, int from_tty,
1637 struct cmd_list_element *c, const char *value)
1638{
1639 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1640}
104c1213 1641
456fcf94 1642static const char *
8da61cc4 1643pformat (const struct floatformat **format)
456fcf94
AC
1644{
1645 if (format == NULL)
1646 return "(null)";
1647 else
8da61cc4
DJ
1648 /* Just print out one of them - this is only for diagnostics. */
1649 return format[0]->name;
456fcf94
AC
1650}
1651
08105857
PA
1652static const char *
1653pstring (const char *string)
1654{
1655 if (string == NULL)
1656 return "(null)";
1657 return string;
05c0465e
SDJ
1658}
1659
1660/* Helper function to print a list of strings, represented as "const
1661 char *const *". The list is printed comma-separated. */
1662
1663static char *
1664pstring_list (const char *const *list)
1665{
1666 static char ret[100];
1667 const char *const *p;
1668 size_t offset = 0;
1669
1670 if (list == NULL)
1671 return "(null)";
1672
1673 ret[0] = '\0';
1674 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1675 {
1676 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1677 offset += 2 + s;
1678 }
1679
1680 if (offset > 0)
1681 {
1682 gdb_assert (offset - 2 < sizeof (ret));
1683 ret[offset - 2] = '\0';
1684 }
1685
1686 return ret;
08105857
PA
1687}
1688
104c1213
JM
1689EOF
1690
1691# gdbarch open the gdbarch object
3d9a5942 1692printf "\n"
0963b4bd 1693printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1694printf "\n"
1695printf "struct gdbarch\n"
1696printf "{\n"
76860b5f
AC
1697printf " /* Has this architecture been fully initialized? */\n"
1698printf " int initialized_p;\n"
aebd7893
AC
1699printf "\n"
1700printf " /* An obstack bound to the lifetime of the architecture. */\n"
1701printf " struct obstack *obstack;\n"
1702printf "\n"
0963b4bd 1703printf " /* basic architectural information. */\n"
34620563 1704function_list | while do_read
104c1213 1705do
2ada493a
AC
1706 if class_is_info_p
1707 then
3d9a5942 1708 printf " ${returntype} ${function};\n"
2ada493a 1709 fi
104c1213 1710done
3d9a5942 1711printf "\n"
0963b4bd 1712printf " /* target specific vector. */\n"
3d9a5942
AC
1713printf " struct gdbarch_tdep *tdep;\n"
1714printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1715printf "\n"
0963b4bd 1716printf " /* per-architecture data-pointers. */\n"
95160752 1717printf " unsigned nr_data;\n"
3d9a5942
AC
1718printf " void **data;\n"
1719printf "\n"
104c1213
JM
1720cat <<EOF
1721 /* Multi-arch values.
1722
1723 When extending this structure you must:
1724
1725 Add the field below.
1726
1727 Declare set/get functions and define the corresponding
1728 macro in gdbarch.h.
1729
1730 gdbarch_alloc(): If zero/NULL is not a suitable default,
1731 initialize the new field.
1732
1733 verify_gdbarch(): Confirm that the target updated the field
1734 correctly.
1735
7e73cedf 1736 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1737 field is dumped out
1738
104c1213
JM
1739 get_gdbarch(): Implement the set/get functions (probably using
1740 the macro's as shortcuts).
1741
1742 */
1743
1744EOF
34620563 1745function_list | while do_read
104c1213 1746do
2ada493a
AC
1747 if class_is_variable_p
1748 then
3d9a5942 1749 printf " ${returntype} ${function};\n"
2ada493a
AC
1750 elif class_is_function_p
1751 then
2f9b146e 1752 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1753 fi
104c1213 1754done
3d9a5942 1755printf "};\n"
104c1213 1756
104c1213 1757# Create a new gdbarch struct
104c1213 1758cat <<EOF
7de2341d 1759
66b43ecb 1760/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1761 \`\`struct gdbarch_info''. */
104c1213 1762EOF
3d9a5942 1763printf "\n"
104c1213
JM
1764cat <<EOF
1765struct gdbarch *
1766gdbarch_alloc (const struct gdbarch_info *info,
1767 struct gdbarch_tdep *tdep)
1768{
be7811ad 1769 struct gdbarch *gdbarch;
aebd7893
AC
1770
1771 /* Create an obstack for allocating all the per-architecture memory,
1772 then use that to allocate the architecture vector. */
70ba0933 1773 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1774 obstack_init (obstack);
8d749320 1775 gdbarch = XOBNEW (obstack, struct gdbarch);
be7811ad
MD
1776 memset (gdbarch, 0, sizeof (*gdbarch));
1777 gdbarch->obstack = obstack;
85de9627 1778
be7811ad 1779 alloc_gdbarch_data (gdbarch);
85de9627 1780
be7811ad 1781 gdbarch->tdep = tdep;
104c1213 1782EOF
3d9a5942 1783printf "\n"
34620563 1784function_list | while do_read
104c1213 1785do
2ada493a
AC
1786 if class_is_info_p
1787 then
be7811ad 1788 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1789 fi
104c1213 1790done
3d9a5942 1791printf "\n"
0963b4bd 1792printf " /* Force the explicit initialization of these. */\n"
34620563 1793function_list | while do_read
104c1213 1794do
2ada493a
AC
1795 if class_is_function_p || class_is_variable_p
1796 then
72e74a21 1797 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1798 then
be7811ad 1799 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1800 fi
2ada493a 1801 fi
104c1213
JM
1802done
1803cat <<EOF
1804 /* gdbarch_alloc() */
1805
be7811ad 1806 return gdbarch;
104c1213
JM
1807}
1808EOF
1809
058f20d5 1810# Free a gdbarch struct.
3d9a5942
AC
1811printf "\n"
1812printf "\n"
058f20d5 1813cat <<EOF
aebd7893
AC
1814/* Allocate extra space using the per-architecture obstack. */
1815
1816void *
1817gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1818{
1819 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1820
aebd7893
AC
1821 memset (data, 0, size);
1822 return data;
1823}
1824
6c214e7c
PP
1825/* See gdbarch.h. */
1826
1827char *
1828gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1829{
1830 return obstack_strdup (arch->obstack, string);
1831}
1832
aebd7893 1833
058f20d5
JB
1834/* Free a gdbarch struct. This should never happen in normal
1835 operation --- once you've created a gdbarch, you keep it around.
1836 However, if an architecture's init function encounters an error
1837 building the structure, it may need to clean up a partially
1838 constructed gdbarch. */
4b9b3959 1839
058f20d5
JB
1840void
1841gdbarch_free (struct gdbarch *arch)
1842{
aebd7893 1843 struct obstack *obstack;
05c547f6 1844
95160752 1845 gdb_assert (arch != NULL);
aebd7893
AC
1846 gdb_assert (!arch->initialized_p);
1847 obstack = arch->obstack;
1848 obstack_free (obstack, 0); /* Includes the ARCH. */
1849 xfree (obstack);
058f20d5
JB
1850}
1851EOF
1852
104c1213 1853# verify a new architecture
104c1213 1854cat <<EOF
db446970
AC
1855
1856
1857/* Ensure that all values in a GDBARCH are reasonable. */
1858
104c1213 1859static void
be7811ad 1860verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1861{
f16a1923
AC
1862 struct ui_file *log;
1863 struct cleanup *cleanups;
759ef836 1864 long length;
f16a1923 1865 char *buf;
05c547f6 1866
f16a1923
AC
1867 log = mem_fileopen ();
1868 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1869 /* fundamental */
be7811ad 1870 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1871 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1872 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1873 fprintf_unfiltered (log, "\n\tbfd_arch_info");
0963b4bd 1874 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1875EOF
34620563 1876function_list | while do_read
104c1213 1877do
2ada493a
AC
1878 if class_is_function_p || class_is_variable_p
1879 then
72e74a21 1880 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1881 then
3d9a5942 1882 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1883 elif class_is_predicate_p
1884 then
0963b4bd 1885 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1886 # FIXME: See do_read for potential simplification
72e74a21 1887 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1888 then
3d9a5942 1889 printf " if (${invalid_p})\n"
be7811ad 1890 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1891 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1892 then
be7811ad
MD
1893 printf " if (gdbarch->${function} == ${predefault})\n"
1894 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1895 elif [ -n "${postdefault}" ]
f0d4cc9e 1896 then
be7811ad
MD
1897 printf " if (gdbarch->${function} == 0)\n"
1898 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1899 elif [ -n "${invalid_p}" ]
104c1213 1900 then
4d60522e 1901 printf " if (${invalid_p})\n"
f16a1923 1902 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1903 elif [ -n "${predefault}" ]
104c1213 1904 then
be7811ad 1905 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1906 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1907 fi
2ada493a 1908 fi
104c1213
JM
1909done
1910cat <<EOF
759ef836 1911 buf = ui_file_xstrdup (log, &length);
f16a1923 1912 make_cleanup (xfree, buf);
759ef836 1913 if (length > 0)
f16a1923 1914 internal_error (__FILE__, __LINE__,
85c07804 1915 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1916 buf);
1917 do_cleanups (cleanups);
104c1213
JM
1918}
1919EOF
1920
1921# dump the structure
3d9a5942
AC
1922printf "\n"
1923printf "\n"
104c1213 1924cat <<EOF
0963b4bd 1925/* Print out the details of the current architecture. */
4b9b3959 1926
104c1213 1927void
be7811ad 1928gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1929{
b78960be 1930 const char *gdb_nm_file = "<not-defined>";
05c547f6 1931
b78960be
AC
1932#if defined (GDB_NM_FILE)
1933 gdb_nm_file = GDB_NM_FILE;
1934#endif
1935 fprintf_unfiltered (file,
1936 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1937 gdb_nm_file);
104c1213 1938EOF
97030eea 1939function_list | sort -t: -k 3 | while do_read
104c1213 1940do
1e9f55d0
AC
1941 # First the predicate
1942 if class_is_predicate_p
1943 then
7996bcec 1944 printf " fprintf_unfiltered (file,\n"
48f7351b 1945 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1946 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1947 fi
48f7351b 1948 # Print the corresponding value.
283354d8 1949 if class_is_function_p
4b9b3959 1950 then
7996bcec 1951 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1952 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1953 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1954 else
48f7351b 1955 # It is a variable
2f9b146e
AC
1956 case "${print}:${returntype}" in
1957 :CORE_ADDR )
0b1553bc
UW
1958 fmt="%s"
1959 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1960 ;;
2f9b146e 1961 :* )
48f7351b 1962 fmt="%s"
623d3eb1 1963 print="plongest (gdbarch->${function})"
48f7351b
AC
1964 ;;
1965 * )
2f9b146e 1966 fmt="%s"
48f7351b
AC
1967 ;;
1968 esac
3d9a5942 1969 printf " fprintf_unfiltered (file,\n"
48f7351b 1970 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1971 printf " ${print});\n"
2ada493a 1972 fi
104c1213 1973done
381323f4 1974cat <<EOF
be7811ad
MD
1975 if (gdbarch->dump_tdep != NULL)
1976 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1977}
1978EOF
104c1213
JM
1979
1980
1981# GET/SET
3d9a5942 1982printf "\n"
104c1213
JM
1983cat <<EOF
1984struct gdbarch_tdep *
1985gdbarch_tdep (struct gdbarch *gdbarch)
1986{
1987 if (gdbarch_debug >= 2)
3d9a5942 1988 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1989 return gdbarch->tdep;
1990}
1991EOF
3d9a5942 1992printf "\n"
34620563 1993function_list | while do_read
104c1213 1994do
2ada493a
AC
1995 if class_is_predicate_p
1996 then
3d9a5942
AC
1997 printf "\n"
1998 printf "int\n"
1999 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
2000 printf "{\n"
8de9bdc4 2001 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 2002 printf " return ${predicate};\n"
3d9a5942 2003 printf "}\n"
2ada493a
AC
2004 fi
2005 if class_is_function_p
2006 then
3d9a5942
AC
2007 printf "\n"
2008 printf "${returntype}\n"
72e74a21 2009 if [ "x${formal}" = "xvoid" ]
104c1213 2010 then
3d9a5942 2011 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 2012 else
3d9a5942 2013 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 2014 fi
3d9a5942 2015 printf "{\n"
8de9bdc4 2016 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 2017 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 2018 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
2019 then
2020 # Allow a call to a function with a predicate.
956ac328 2021 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 2022 fi
3d9a5942
AC
2023 printf " if (gdbarch_debug >= 2)\n"
2024 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 2025 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
2026 then
2027 if class_is_multiarch_p
2028 then
2029 params="gdbarch"
2030 else
2031 params=""
2032 fi
2033 else
2034 if class_is_multiarch_p
2035 then
2036 params="gdbarch, ${actual}"
2037 else
2038 params="${actual}"
2039 fi
2040 fi
72e74a21 2041 if [ "x${returntype}" = "xvoid" ]
104c1213 2042 then
4a5c6a1d 2043 printf " gdbarch->${function} (${params});\n"
104c1213 2044 else
4a5c6a1d 2045 printf " return gdbarch->${function} (${params});\n"
104c1213 2046 fi
3d9a5942
AC
2047 printf "}\n"
2048 printf "\n"
2049 printf "void\n"
2050 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2051 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2052 printf "{\n"
2053 printf " gdbarch->${function} = ${function};\n"
2054 printf "}\n"
2ada493a
AC
2055 elif class_is_variable_p
2056 then
3d9a5942
AC
2057 printf "\n"
2058 printf "${returntype}\n"
2059 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2060 printf "{\n"
8de9bdc4 2061 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 2062 if [ "x${invalid_p}" = "x0" ]
c0e8c252 2063 then
3d9a5942 2064 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 2065 elif [ -n "${invalid_p}" ]
104c1213 2066 then
956ac328
AC
2067 printf " /* Check variable is valid. */\n"
2068 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 2069 elif [ -n "${predefault}" ]
104c1213 2070 then
956ac328
AC
2071 printf " /* Check variable changed from pre-default. */\n"
2072 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 2073 fi
3d9a5942
AC
2074 printf " if (gdbarch_debug >= 2)\n"
2075 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2076 printf " return gdbarch->${function};\n"
2077 printf "}\n"
2078 printf "\n"
2079 printf "void\n"
2080 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2081 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2082 printf "{\n"
2083 printf " gdbarch->${function} = ${function};\n"
2084 printf "}\n"
2ada493a
AC
2085 elif class_is_info_p
2086 then
3d9a5942
AC
2087 printf "\n"
2088 printf "${returntype}\n"
2089 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2090 printf "{\n"
8de9bdc4 2091 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
2092 printf " if (gdbarch_debug >= 2)\n"
2093 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2094 printf " return gdbarch->${function};\n"
2095 printf "}\n"
2ada493a 2096 fi
104c1213
JM
2097done
2098
2099# All the trailing guff
2100cat <<EOF
2101
2102
f44c642f 2103/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2104 modules. */
104c1213
JM
2105
2106struct gdbarch_data
2107{
95160752 2108 unsigned index;
76860b5f 2109 int init_p;
030f20e1
AC
2110 gdbarch_data_pre_init_ftype *pre_init;
2111 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2112};
2113
2114struct gdbarch_data_registration
2115{
104c1213
JM
2116 struct gdbarch_data *data;
2117 struct gdbarch_data_registration *next;
2118};
2119
f44c642f 2120struct gdbarch_data_registry
104c1213 2121{
95160752 2122 unsigned nr;
104c1213
JM
2123 struct gdbarch_data_registration *registrations;
2124};
2125
f44c642f 2126struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2127{
2128 0, NULL,
2129};
2130
030f20e1
AC
2131static struct gdbarch_data *
2132gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2133 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2134{
2135 struct gdbarch_data_registration **curr;
05c547f6
MS
2136
2137 /* Append the new registration. */
f44c642f 2138 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2139 (*curr) != NULL;
2140 curr = &(*curr)->next);
70ba0933 2141 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2142 (*curr)->next = NULL;
70ba0933 2143 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2144 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2145 (*curr)->data->pre_init = pre_init;
2146 (*curr)->data->post_init = post_init;
76860b5f 2147 (*curr)->data->init_p = 1;
104c1213
JM
2148 return (*curr)->data;
2149}
2150
030f20e1
AC
2151struct gdbarch_data *
2152gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2153{
2154 return gdbarch_data_register (pre_init, NULL);
2155}
2156
2157struct gdbarch_data *
2158gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2159{
2160 return gdbarch_data_register (NULL, post_init);
2161}
104c1213 2162
0963b4bd 2163/* Create/delete the gdbarch data vector. */
95160752
AC
2164
2165static void
b3cc3077 2166alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2167{
b3cc3077
JB
2168 gdb_assert (gdbarch->data == NULL);
2169 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2170 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2171}
3c875b6f 2172
76860b5f 2173/* Initialize the current value of the specified per-architecture
0963b4bd 2174 data-pointer. */
b3cc3077 2175
95160752 2176void
030f20e1
AC
2177deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2178 struct gdbarch_data *data,
2179 void *pointer)
95160752
AC
2180{
2181 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2182 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2183 gdb_assert (data->pre_init == NULL);
95160752
AC
2184 gdbarch->data[data->index] = pointer;
2185}
2186
104c1213 2187/* Return the current value of the specified per-architecture
0963b4bd 2188 data-pointer. */
104c1213
JM
2189
2190void *
451fbdda 2191gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2192{
451fbdda 2193 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2194 if (gdbarch->data[data->index] == NULL)
76860b5f 2195 {
030f20e1
AC
2196 /* The data-pointer isn't initialized, call init() to get a
2197 value. */
2198 if (data->pre_init != NULL)
2199 /* Mid architecture creation: pass just the obstack, and not
2200 the entire architecture, as that way it isn't possible for
2201 pre-init code to refer to undefined architecture
2202 fields. */
2203 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2204 else if (gdbarch->initialized_p
2205 && data->post_init != NULL)
2206 /* Post architecture creation: pass the entire architecture
2207 (as all fields are valid), but be careful to also detect
2208 recursive references. */
2209 {
2210 gdb_assert (data->init_p);
2211 data->init_p = 0;
2212 gdbarch->data[data->index] = data->post_init (gdbarch);
2213 data->init_p = 1;
2214 }
2215 else
2216 /* The architecture initialization hasn't completed - punt -
2217 hope that the caller knows what they are doing. Once
2218 deprecated_set_gdbarch_data has been initialized, this can be
2219 changed to an internal error. */
2220 return NULL;
76860b5f
AC
2221 gdb_assert (gdbarch->data[data->index] != NULL);
2222 }
451fbdda 2223 return gdbarch->data[data->index];
104c1213
JM
2224}
2225
2226
0963b4bd 2227/* Keep a registry of the architectures known by GDB. */
104c1213 2228
4b9b3959 2229struct gdbarch_registration
104c1213
JM
2230{
2231 enum bfd_architecture bfd_architecture;
2232 gdbarch_init_ftype *init;
4b9b3959 2233 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2234 struct gdbarch_list *arches;
4b9b3959 2235 struct gdbarch_registration *next;
104c1213
JM
2236};
2237
f44c642f 2238static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2239
b4a20239
AC
2240static void
2241append_name (const char ***buf, int *nr, const char *name)
2242{
1dc7a623 2243 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
b4a20239
AC
2244 (*buf)[*nr] = name;
2245 *nr += 1;
2246}
2247
2248const char **
2249gdbarch_printable_names (void)
2250{
7996bcec 2251 /* Accumulate a list of names based on the registed list of
0963b4bd 2252 architectures. */
7996bcec
AC
2253 int nr_arches = 0;
2254 const char **arches = NULL;
2255 struct gdbarch_registration *rego;
05c547f6 2256
7996bcec
AC
2257 for (rego = gdbarch_registry;
2258 rego != NULL;
2259 rego = rego->next)
b4a20239 2260 {
7996bcec
AC
2261 const struct bfd_arch_info *ap;
2262 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2263 if (ap == NULL)
2264 internal_error (__FILE__, __LINE__,
85c07804 2265 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2266 do
2267 {
2268 append_name (&arches, &nr_arches, ap->printable_name);
2269 ap = ap->next;
2270 }
2271 while (ap != NULL);
b4a20239 2272 }
7996bcec
AC
2273 append_name (&arches, &nr_arches, NULL);
2274 return arches;
b4a20239
AC
2275}
2276
2277
104c1213 2278void
4b9b3959
AC
2279gdbarch_register (enum bfd_architecture bfd_architecture,
2280 gdbarch_init_ftype *init,
2281 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2282{
4b9b3959 2283 struct gdbarch_registration **curr;
104c1213 2284 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2285
ec3d358c 2286 /* Check that BFD recognizes this architecture */
104c1213
JM
2287 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2288 if (bfd_arch_info == NULL)
2289 {
8e65ff28 2290 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2291 _("gdbarch: Attempt to register "
2292 "unknown architecture (%d)"),
8e65ff28 2293 bfd_architecture);
104c1213 2294 }
0963b4bd 2295 /* Check that we haven't seen this architecture before. */
f44c642f 2296 for (curr = &gdbarch_registry;
104c1213
JM
2297 (*curr) != NULL;
2298 curr = &(*curr)->next)
2299 {
2300 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2301 internal_error (__FILE__, __LINE__,
64b9b334 2302 _("gdbarch: Duplicate registration "
0963b4bd 2303 "of architecture (%s)"),
8e65ff28 2304 bfd_arch_info->printable_name);
104c1213
JM
2305 }
2306 /* log it */
2307 if (gdbarch_debug)
30737ed9 2308 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2309 bfd_arch_info->printable_name,
30737ed9 2310 host_address_to_string (init));
104c1213 2311 /* Append it */
70ba0933 2312 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2313 (*curr)->bfd_architecture = bfd_architecture;
2314 (*curr)->init = init;
4b9b3959 2315 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2316 (*curr)->arches = NULL;
2317 (*curr)->next = NULL;
4b9b3959
AC
2318}
2319
2320void
2321register_gdbarch_init (enum bfd_architecture bfd_architecture,
2322 gdbarch_init_ftype *init)
2323{
2324 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2325}
104c1213
JM
2326
2327
424163ea 2328/* Look for an architecture using gdbarch_info. */
104c1213
JM
2329
2330struct gdbarch_list *
2331gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2332 const struct gdbarch_info *info)
2333{
2334 for (; arches != NULL; arches = arches->next)
2335 {
2336 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2337 continue;
2338 if (info->byte_order != arches->gdbarch->byte_order)
2339 continue;
4be87837
DJ
2340 if (info->osabi != arches->gdbarch->osabi)
2341 continue;
424163ea
DJ
2342 if (info->target_desc != arches->gdbarch->target_desc)
2343 continue;
104c1213
JM
2344 return arches;
2345 }
2346 return NULL;
2347}
2348
2349
ebdba546 2350/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2351 architecture if needed. Return that new architecture. */
104c1213 2352
59837fe0
UW
2353struct gdbarch *
2354gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2355{
2356 struct gdbarch *new_gdbarch;
4b9b3959 2357 struct gdbarch_registration *rego;
104c1213 2358
b732d07d 2359 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2360 sources: "set ..."; INFOabfd supplied; and the global
2361 defaults. */
2362 gdbarch_info_fill (&info);
4be87837 2363
0963b4bd 2364 /* Must have found some sort of architecture. */
b732d07d 2365 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2366
2367 if (gdbarch_debug)
2368 {
2369 fprintf_unfiltered (gdb_stdlog,
59837fe0 2370 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2371 (info.bfd_arch_info != NULL
2372 ? info.bfd_arch_info->printable_name
2373 : "(null)"));
2374 fprintf_unfiltered (gdb_stdlog,
59837fe0 2375 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2376 info.byte_order,
d7449b42 2377 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2378 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2379 : "default"));
4be87837 2380 fprintf_unfiltered (gdb_stdlog,
59837fe0 2381 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2382 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2383 fprintf_unfiltered (gdb_stdlog,
59837fe0 2384 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2385 host_address_to_string (info.abfd));
104c1213 2386 fprintf_unfiltered (gdb_stdlog,
59837fe0 2387 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2388 host_address_to_string (info.tdep_info));
104c1213
JM
2389 }
2390
ebdba546 2391 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2392 for (rego = gdbarch_registry;
2393 rego != NULL;
2394 rego = rego->next)
2395 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2396 break;
2397 if (rego == NULL)
2398 {
2399 if (gdbarch_debug)
59837fe0 2400 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2401 "No matching architecture\n");
b732d07d
AC
2402 return 0;
2403 }
2404
ebdba546 2405 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2406 new_gdbarch = rego->init (info, rego->arches);
2407
ebdba546
AC
2408 /* Did the tdep code like it? No. Reject the change and revert to
2409 the old architecture. */
104c1213
JM
2410 if (new_gdbarch == NULL)
2411 {
2412 if (gdbarch_debug)
59837fe0 2413 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2414 "Target rejected architecture\n");
2415 return NULL;
104c1213
JM
2416 }
2417
ebdba546
AC
2418 /* Is this a pre-existing architecture (as determined by already
2419 being initialized)? Move it to the front of the architecture
2420 list (keeping the list sorted Most Recently Used). */
2421 if (new_gdbarch->initialized_p)
104c1213 2422 {
ebdba546 2423 struct gdbarch_list **list;
fe978cb0 2424 struct gdbarch_list *self;
104c1213 2425 if (gdbarch_debug)
59837fe0 2426 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2427 "Previous architecture %s (%s) selected\n",
2428 host_address_to_string (new_gdbarch),
104c1213 2429 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2430 /* Find the existing arch in the list. */
2431 for (list = &rego->arches;
2432 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2433 list = &(*list)->next);
2434 /* It had better be in the list of architectures. */
2435 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
fe978cb0
PA
2436 /* Unlink SELF. */
2437 self = (*list);
2438 (*list) = self->next;
2439 /* Insert SELF at the front. */
2440 self->next = rego->arches;
2441 rego->arches = self;
ebdba546
AC
2442 /* Return it. */
2443 return new_gdbarch;
104c1213
JM
2444 }
2445
ebdba546
AC
2446 /* It's a new architecture. */
2447 if (gdbarch_debug)
59837fe0 2448 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2449 "New architecture %s (%s) selected\n",
2450 host_address_to_string (new_gdbarch),
ebdba546
AC
2451 new_gdbarch->bfd_arch_info->printable_name);
2452
2453 /* Insert the new architecture into the front of the architecture
2454 list (keep the list sorted Most Recently Used). */
0f79675b 2455 {
fe978cb0
PA
2456 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2457 self->next = rego->arches;
2458 self->gdbarch = new_gdbarch;
2459 rego->arches = self;
0f79675b 2460 }
104c1213 2461
4b9b3959
AC
2462 /* Check that the newly installed architecture is valid. Plug in
2463 any post init values. */
2464 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2465 verify_gdbarch (new_gdbarch);
ebdba546 2466 new_gdbarch->initialized_p = 1;
104c1213 2467
4b9b3959 2468 if (gdbarch_debug)
ebdba546
AC
2469 gdbarch_dump (new_gdbarch, gdb_stdlog);
2470
2471 return new_gdbarch;
2472}
2473
e487cc15 2474/* Make the specified architecture current. */
ebdba546
AC
2475
2476void
aff68abb 2477set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2478{
2479 gdb_assert (new_gdbarch != NULL);
ebdba546 2480 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2481 current_inferior ()->gdbarch = new_gdbarch;
383f836e 2482 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2483 registers_changed ();
ebdba546 2484}
104c1213 2485
f5656ead 2486/* Return the current inferior's arch. */
6ecd4729
PA
2487
2488struct gdbarch *
f5656ead 2489target_gdbarch (void)
6ecd4729
PA
2490{
2491 return current_inferior ()->gdbarch;
2492}
2493
104c1213 2494extern void _initialize_gdbarch (void);
b4a20239 2495
104c1213 2496void
34620563 2497_initialize_gdbarch (void)
104c1213 2498{
ccce17b0 2499 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2500Set architecture debugging."), _("\\
2501Show architecture debugging."), _("\\
2502When non-zero, architecture debugging is enabled."),
2503 NULL,
920d2a44 2504 show_gdbarch_debug,
85c07804 2505 &setdebuglist, &showdebuglist);
104c1213
JM
2506}
2507EOF
2508
2509# close things off
2510exec 1>&2
2511#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2512compare_new gdbarch.c
This page took 1.969258 seconds and 4 git commands to generate.