* c-exp.y (classify_name): Avoid assignment in condition.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
0b302171 5# Copyright (C) 1998-2012 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 56 then
34620563
AC
57 continue
58 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 59 then
34620563
AC
60 comment="${comment}
61${line}"
f0d4cc9e 62 else
3d9a5942
AC
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
34620563
AC
70 eval read ${read} <<EOF
71${line}
72EOF
73 IFS="${OFS}"
74
283354d8
AC
75 if test -n "${garbage_at_eol}"
76 then
77 echo "Garbage at end-of-line in ${line}" 1>&2
78 kill $$
79 exit 1
80 fi
81
3d9a5942
AC
82 # .... and then going back through each field and strip out those
83 # that ended up with just that space character.
84 for r in ${read}
85 do
86 if eval test \"\${${r}}\" = \"\ \"
87 then
88 eval ${r}=""
89 fi
90 done
91
a72293e2
AC
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
06b25f14 97
ae45cd16
AC
98 case "${class}" in
99 F | V | M )
100 case "${invalid_p}" in
34620563 101 "" )
f7968451 102 if test -n "${predefault}"
34620563
AC
103 then
104 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 105 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
106 elif class_is_variable_p
107 then
108 predicate="gdbarch->${function} != 0"
109 elif class_is_function_p
110 then
111 predicate="gdbarch->${function} != NULL"
34620563
AC
112 fi
113 ;;
ae45cd16 114 * )
1e9f55d0 115 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
116 kill $$
117 exit 1
118 ;;
119 esac
34620563
AC
120 esac
121
122 # PREDEFAULT is a valid fallback definition of MEMBER when
123 # multi-arch is not enabled. This ensures that the
124 # default value, when multi-arch is the same as the
125 # default value when not multi-arch. POSTDEFAULT is
126 # always a valid definition of MEMBER as this again
127 # ensures consistency.
128
72e74a21 129 if [ -n "${postdefault}" ]
34620563
AC
130 then
131 fallbackdefault="${postdefault}"
72e74a21 132 elif [ -n "${predefault}" ]
34620563
AC
133 then
134 fallbackdefault="${predefault}"
135 else
73d3c16e 136 fallbackdefault="0"
34620563
AC
137 fi
138
139 #NOT YET: See gdbarch.log for basic verification of
140 # database
141
142 break
f0d4cc9e 143 fi
34620563 144 done
72e74a21 145 if [ -n "${class}" ]
34620563
AC
146 then
147 true
c0e8c252
AC
148 else
149 false
150 fi
151}
152
104c1213 153
f0d4cc9e
AC
154fallback_default_p ()
155{
72e74a21
JB
156 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
157 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
158}
159
160class_is_variable_p ()
161{
4a5c6a1d
AC
162 case "${class}" in
163 *v* | *V* ) true ;;
164 * ) false ;;
165 esac
f0d4cc9e
AC
166}
167
168class_is_function_p ()
169{
4a5c6a1d
AC
170 case "${class}" in
171 *f* | *F* | *m* | *M* ) true ;;
172 * ) false ;;
173 esac
174}
175
176class_is_multiarch_p ()
177{
178 case "${class}" in
179 *m* | *M* ) true ;;
180 * ) false ;;
181 esac
f0d4cc9e
AC
182}
183
184class_is_predicate_p ()
185{
4a5c6a1d
AC
186 case "${class}" in
187 *F* | *V* | *M* ) true ;;
188 * ) false ;;
189 esac
f0d4cc9e
AC
190}
191
192class_is_info_p ()
193{
4a5c6a1d
AC
194 case "${class}" in
195 *i* ) true ;;
196 * ) false ;;
197 esac
f0d4cc9e
AC
198}
199
200
cff3e48b
JM
201# dump out/verify the doco
202for field in ${read}
203do
204 case ${field} in
205
206 class ) : ;;
c4093a6a 207
c0e8c252
AC
208 # # -> line disable
209 # f -> function
210 # hiding a function
2ada493a
AC
211 # F -> function + predicate
212 # hiding a function + predicate to test function validity
c0e8c252
AC
213 # v -> variable
214 # hiding a variable
2ada493a
AC
215 # V -> variable + predicate
216 # hiding a variable + predicate to test variables validity
c0e8c252
AC
217 # i -> set from info
218 # hiding something from the ``struct info'' object
4a5c6a1d
AC
219 # m -> multi-arch function
220 # hiding a multi-arch function (parameterised with the architecture)
221 # M -> multi-arch function + predicate
222 # hiding a multi-arch function + predicate to test function validity
cff3e48b 223
cff3e48b
JM
224 returntype ) : ;;
225
c0e8c252 226 # For functions, the return type; for variables, the data type
cff3e48b
JM
227
228 function ) : ;;
229
c0e8c252
AC
230 # For functions, the member function name; for variables, the
231 # variable name. Member function names are always prefixed with
232 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
233
234 formal ) : ;;
235
c0e8c252
AC
236 # The formal argument list. It is assumed that the formal
237 # argument list includes the actual name of each list element.
238 # A function with no arguments shall have ``void'' as the
239 # formal argument list.
cff3e48b
JM
240
241 actual ) : ;;
242
c0e8c252
AC
243 # The list of actual arguments. The arguments specified shall
244 # match the FORMAL list given above. Functions with out
245 # arguments leave this blank.
cff3e48b 246
0b8f9e4d 247 staticdefault ) : ;;
c0e8c252
AC
248
249 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
250 # created. STATICDEFAULT is the value to insert into that
251 # static gdbarch object. Since this a static object only
252 # simple expressions can be used.
cff3e48b 253
0b8f9e4d 254 # If STATICDEFAULT is empty, zero is used.
c0e8c252 255
0b8f9e4d 256 predefault ) : ;;
cff3e48b 257
10312cc4
AC
258 # An initial value to assign to MEMBER of the freshly
259 # malloc()ed gdbarch object. After initialization, the
260 # freshly malloc()ed object is passed to the target
261 # architecture code for further updates.
cff3e48b 262
0b8f9e4d
AC
263 # If PREDEFAULT is empty, zero is used.
264
10312cc4
AC
265 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
266 # INVALID_P are specified, PREDEFAULT will be used as the
267 # default for the non- multi-arch target.
268
269 # A zero PREDEFAULT function will force the fallback to call
270 # internal_error().
f0d4cc9e
AC
271
272 # Variable declarations can refer to ``gdbarch'' which will
273 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
274
275 postdefault ) : ;;
276
277 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
278 # the target architecture code fail to change the PREDEFAULT
279 # value.
0b8f9e4d
AC
280
281 # If POSTDEFAULT is empty, no post update is performed.
282
283 # If both INVALID_P and POSTDEFAULT are non-empty then
284 # INVALID_P will be used to determine if MEMBER should be
285 # changed to POSTDEFAULT.
286
10312cc4
AC
287 # If a non-empty POSTDEFAULT and a zero INVALID_P are
288 # specified, POSTDEFAULT will be used as the default for the
289 # non- multi-arch target (regardless of the value of
290 # PREDEFAULT).
291
f0d4cc9e
AC
292 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
293
be7811ad 294 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
295 # will contain the current architecture. Care should be
296 # taken.
cff3e48b 297
c4093a6a 298 invalid_p ) : ;;
cff3e48b 299
0b8f9e4d 300 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 301 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
302 # initialize MEMBER or the initialized the member is invalid.
303 # If POSTDEFAULT is non-empty then MEMBER will be updated to
304 # that value. If POSTDEFAULT is empty then internal_error()
305 # is called.
306
307 # If INVALID_P is empty, a check that MEMBER is no longer
308 # equal to PREDEFAULT is used.
309
f0d4cc9e
AC
310 # The expression ``0'' disables the INVALID_P check making
311 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
312
313 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 314
cff3e48b
JM
315 print ) : ;;
316
2f9b146e
AC
317 # An optional expression that convers MEMBER to a value
318 # suitable for formatting using %s.
c0e8c252 319
0b1553bc
UW
320 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
321 # or plongest (anything else) is used.
cff3e48b 322
283354d8 323 garbage_at_eol ) : ;;
0b8f9e4d 324
283354d8 325 # Catches stray fields.
cff3e48b 326
50248794
AC
327 *)
328 echo "Bad field ${field}"
329 exit 1;;
cff3e48b
JM
330 esac
331done
332
cff3e48b 333
104c1213
JM
334function_list ()
335{
cff3e48b 336 # See below (DOCO) for description of each field
34620563 337 cat <<EOF
be7811ad 338i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 339#
97030eea 340i:int:byte_order:::BFD_ENDIAN_BIG
9d4fde75 341i:int:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 342#
97030eea 343i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 344#
30737ed9 345i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
346
347# The bit byte-order has to do just with numbering of bits in debugging symbols
348# and such. Conceptually, it's quite separate from byte/word byte order.
349v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
350
66b43ecb
AC
351# Number of bits in a char or unsigned char for the target machine.
352# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 353# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
354#
355# Number of bits in a short or unsigned short for the target machine.
97030eea 356v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 357# Number of bits in an int or unsigned int for the target machine.
97030eea 358v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 359# Number of bits in a long or unsigned long for the target machine.
97030eea 360v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
361# Number of bits in a long long or unsigned long long for the target
362# machine.
be7811ad 363v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
205c306f
DM
364# Alignment of a long long or unsigned long long for the target
365# machine.
366v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94 367
f9e9243a
UW
368# The ABI default bit-size and format for "half", "float", "double", and
369# "long double". These bit/format pairs should eventually be combined
370# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
371# Each format describes both the big and little endian layouts (if
372# useful).
456fcf94 373
f9e9243a
UW
374v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
375v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
97030eea 376v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 377v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 378v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 379v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 380v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 381v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 382
52204a0b
DT
383# For most targets, a pointer on the target and its representation as an
384# address in GDB have the same size and "look the same". For such a
17a912b6 385# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
386# / addr_bit will be set from it.
387#
17a912b6 388# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
389# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
390# gdbarch_address_to_pointer as well.
52204a0b
DT
391#
392# ptr_bit is the size of a pointer on the target
be7811ad 393v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 394# addr_bit is the size of a target address as represented in gdb
be7811ad 395v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 396#
8da614df
CV
397# dwarf2_addr_size is the target address size as used in the Dwarf debug
398# info. For .debug_frame FDEs, this is supposed to be the target address
399# size from the associated CU header, and which is equivalent to the
400# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
401# Unfortunately there is no good way to determine this value. Therefore
402# dwarf2_addr_size simply defaults to the target pointer size.
403#
404# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
405# defined using the target's pointer size so far.
406#
407# Note that dwarf2_addr_size only needs to be redefined by a target if the
408# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
409# and if Dwarf versions < 4 need to be supported.
410v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
411#
4e409299 412# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 413v:int:char_signed:::1:-1:1
4e409299 414#
97030eea
UW
415F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
416F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
417# Function for getting target's idea of a frame pointer. FIXME: GDB's
418# whole scheme for dealing with "frames" and "frame pointers" needs a
419# serious shakedown.
a54fba4c 420m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 421#
05d1431c 422M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
3543a589
TT
423# Read a register into a new struct value. If the register is wholly
424# or partly unavailable, this should call mark_value_bytes_unavailable
425# as appropriate. If this is defined, then pseudo_register_read will
426# never be called.
427M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
97030eea 428M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 429#
97030eea 430v:int:num_regs:::0:-1
0aba1244
EZ
431# This macro gives the number of pseudo-registers that live in the
432# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
433# These pseudo-registers may be aliases for other registers,
434# combinations of other registers, or they may be computed by GDB.
97030eea 435v:int:num_pseudo_regs:::0:0::0
c2169756 436
175ff332
HZ
437# Assemble agent expression bytecode to collect pseudo-register REG.
438# Return -1 if something goes wrong, 0 otherwise.
439M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
440
441# Assemble agent expression bytecode to push the value of pseudo-register
442# REG on the interpreter stack.
443# Return -1 if something goes wrong, 0 otherwise.
444M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
445
c2169756
AC
446# GDB's standard (or well known) register numbers. These can map onto
447# a real register or a pseudo (computed) register or not be defined at
1200cd6e 448# all (-1).
3e8c568d 449# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
450v:int:sp_regnum:::-1:-1::0
451v:int:pc_regnum:::-1:-1::0
452v:int:ps_regnum:::-1:-1::0
453v:int:fp0_regnum:::0:-1::0
88c72b7d 454# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 455m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 456# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 457m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 458# Convert from an sdb register number to an internal gdb register number.
d3f73121 459m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 460# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 461m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 462m:const char *:register_name:int regnr:regnr::0
9c04cab7 463
7b9ee6a8
DJ
464# Return the type of a register specified by the architecture. Only
465# the register cache should call this function directly; others should
466# use "register_type".
97030eea 467M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 468
f3be58bc 469# See gdbint.texinfo, and PUSH_DUMMY_CALL.
669fac23
DJ
470M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
471# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 472# deprecated_fp_regnum.
97030eea 473v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 474
a86c5fc9 475# See gdbint.texinfo. See infcall.c.
97030eea
UW
476M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
477v:int:call_dummy_location::::AT_ENTRY_POINT::0
478M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 479
97030eea
UW
480m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
481M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
482M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
483# MAP a GDB RAW register number onto a simulator register number. See
484# also include/...-sim.h.
e7faf938 485m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
486m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
487m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
9df628e0 488# setjmp/longjmp support.
97030eea 489F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
104c1213 490#
97030eea 491v:int:believe_pcc_promotion:::::::
104c1213 492#
0abe36f5 493m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
8dccd430 494f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
97030eea 495f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0
UW
496# Construct a value representing the contents of register REGNUM in
497# frame FRAME, interpreted as type TYPE. The routine needs to
498# allocate and return a struct value with all value attributes
499# (but not the value contents) filled in.
97030eea 500f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
104c1213 501#
9898f801
UW
502m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
503m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 504M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 505
6a3a010b
MR
506# Return the return-value convention that will be used by FUNCTION
507# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
508# case the return convention is computed based only on VALTYPE.
509#
510# If READBUF is not NULL, extract the return value and save it in this buffer.
511#
512# If WRITEBUF is not NULL, it contains a return value which will be
513# stored into the appropriate register. This can be used when we want
514# to force the value returned by a function (see the "return" command
515# for instance).
6a3a010b 516M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
92ad9cd9 517
18648a37
YQ
518# Return true if the return value of function is stored in the first hidden
519# parameter. In theory, this feature should be language-dependent, specified
520# by language and its ABI, such as C++. Unfortunately, compiler may
521# implement it to a target-dependent feature. So that we need such hook here
522# to be aware of this in GDB.
523m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
524
6093d2eb 525m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 526M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
97030eea 527f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 528m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
529# Return the adjusted address and kind to use for Z0/Z1 packets.
530# KIND is usually the memory length of the breakpoint, but may have a
531# different target-specific meaning.
0e05dfcb 532m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 533M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
534m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
535m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 536v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
537
538# A function can be addressed by either it's "pointer" (possibly a
539# descriptor address) or "entry point" (first executable instruction).
540# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 541# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
542# a simplified subset of that functionality - the function's address
543# corresponds to the "function pointer" and the function's start
544# corresponds to the "function entry point" - and hence is redundant.
545
97030eea 546v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 547
123dc839
DJ
548# Return the remote protocol register number associated with this
549# register. Normally the identity mapping.
97030eea 550m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 551
b2756930 552# Fetch the target specific address used to represent a load module.
97030eea 553F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 554#
97030eea
UW
555v:CORE_ADDR:frame_args_skip:::0:::0
556M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
557M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
558# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
559# frame-base. Enable frame-base before frame-unwind.
97030eea 560F:int:frame_num_args:struct frame_info *frame:frame
104c1213 561#
97030eea
UW
562M:CORE_ADDR:frame_align:CORE_ADDR address:address
563m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
564v:int:frame_red_zone_size
f0d4cc9e 565#
97030eea 566m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
567# On some machines there are bits in addresses which are not really
568# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 569# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
570# we get a "real" address such as one would find in a symbol table.
571# This is used only for addresses of instructions, and even then I'm
572# not sure it's used in all contexts. It exists to deal with there
573# being a few stray bits in the PC which would mislead us, not as some
574# sort of generic thing to handle alignment or segmentation (it's
575# possible it should be in TARGET_READ_PC instead).
24568a2c 576m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
260edbc2 577# It is not at all clear why gdbarch_smash_text_address is not folded into
bf6ae464 578# gdbarch_addr_bits_remove.
24568a2c 579m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
580
581# FIXME/cagney/2001-01-18: This should be split in two. A target method that
582# indicates if the target needs software single step. An ISA method to
583# implement it.
584#
585# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
586# breakpoints using the breakpoint system instead of blatting memory directly
587# (as with rs6000).
64c4637f 588#
e6590a1b
UW
589# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
590# target can single step. If not, then implement single step using breakpoints.
64c4637f 591#
e6590a1b
UW
592# A return value of 1 means that the software_single_step breakpoints
593# were inserted; 0 means they were not.
97030eea 594F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 595
3352ef37
AC
596# Return non-zero if the processor is executing a delay slot and a
597# further single-step is needed before the instruction finishes.
97030eea 598M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 599# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 600# disassembler. Perhaps objdump can handle it?
97030eea
UW
601f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
602f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
603
604
cfd8ab24 605# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
606# evaluates non-zero, this is the address where the debugger will place
607# a step-resume breakpoint to get us past the dynamic linker.
97030eea 608m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 609# Some systems also have trampoline code for returning from shared libs.
2c02bd72 610m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 611
c12260ac
CV
612# A target might have problems with watchpoints as soon as the stack
613# frame of the current function has been destroyed. This mostly happens
614# as the first action in a funtion's epilogue. in_function_epilogue_p()
615# is defined to return a non-zero value if either the given addr is one
616# instruction after the stack destroying instruction up to the trailing
617# return instruction or if we can figure out that the stack frame has
618# already been invalidated regardless of the value of addr. Targets
619# which don't suffer from that problem could just let this functionality
620# untouched.
97030eea 621m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
97030eea
UW
622f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
623f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
97030eea
UW
624v:int:cannot_step_breakpoint:::0:0::0
625v:int:have_nonsteppable_watchpoint:::0:0::0
626F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
627M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
628M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 629# Is a register in a group
97030eea 630m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 631# Fetch the pointer to the ith function argument.
97030eea 632F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
633
634# Return the appropriate register set for a core file section with
635# name SECT_NAME and size SECT_SIZE.
97030eea 636M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
0d5de010 637
17ea7499
CES
638# Supported register notes in a core file.
639v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
640
6432734d
UW
641# Create core file notes
642M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
643
35c2fab7
UW
644# Find core file memory regions
645M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
646
de584861
PA
647# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
648# core file into buffer READBUF with length LEN.
97030eea 649M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
de584861 650
c0edd9ed 651# How the core target converts a PTID from a core file to a string.
28439f5e
PA
652M:char *:core_pid_to_str:ptid_t ptid:ptid
653
a78c2d62 654# BFD target to use when generating a core file.
86ba1042 655V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
a78c2d62 656
0d5de010
DJ
657# If the elements of C++ vtables are in-place function descriptors rather
658# than normal function pointers (which may point to code or a descriptor),
659# set this to one.
97030eea 660v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
661
662# Set if the least significant bit of the delta is used instead of the least
663# significant bit of the pfn for pointers to virtual member functions.
97030eea 664v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
665
666# Advance PC to next instruction in order to skip a permanent breakpoint.
97030eea 667F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
1c772458 668
1668ae25 669# The maximum length of an instruction on this architecture in bytes.
237fc4c9
PA
670V:ULONGEST:max_insn_length:::0:0
671
672# Copy the instruction at FROM to TO, and make any adjustments
673# necessary to single-step it at that address.
674#
675# REGS holds the state the thread's registers will have before
676# executing the copied instruction; the PC in REGS will refer to FROM,
677# not the copy at TO. The caller should update it to point at TO later.
678#
679# Return a pointer to data of the architecture's choice to be passed
680# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
681# the instruction's effects have been completely simulated, with the
682# resulting state written back to REGS.
683#
684# For a general explanation of displaced stepping and how GDB uses it,
685# see the comments in infrun.c.
686#
687# The TO area is only guaranteed to have space for
688# gdbarch_max_insn_length (arch) bytes, so this function must not
689# write more bytes than that to that area.
690#
691# If you do not provide this function, GDB assumes that the
692# architecture does not support displaced stepping.
693#
694# If your architecture doesn't need to adjust instructions before
695# single-stepping them, consider using simple_displaced_step_copy_insn
696# here.
697M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
698
99e40580
UW
699# Return true if GDB should use hardware single-stepping to execute
700# the displaced instruction identified by CLOSURE. If false,
701# GDB will simply restart execution at the displaced instruction
702# location, and it is up to the target to ensure GDB will receive
703# control again (e.g. by placing a software breakpoint instruction
704# into the displaced instruction buffer).
705#
706# The default implementation returns false on all targets that
707# provide a gdbarch_software_single_step routine, and true otherwise.
708m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
709
237fc4c9
PA
710# Fix up the state resulting from successfully single-stepping a
711# displaced instruction, to give the result we would have gotten from
712# stepping the instruction in its original location.
713#
714# REGS is the register state resulting from single-stepping the
715# displaced instruction.
716#
717# CLOSURE is the result from the matching call to
718# gdbarch_displaced_step_copy_insn.
719#
720# If you provide gdbarch_displaced_step_copy_insn.but not this
721# function, then GDB assumes that no fixup is needed after
722# single-stepping the instruction.
723#
724# For a general explanation of displaced stepping and how GDB uses it,
725# see the comments in infrun.c.
726M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
727
728# Free a closure returned by gdbarch_displaced_step_copy_insn.
729#
730# If you provide gdbarch_displaced_step_copy_insn, you must provide
731# this function as well.
732#
733# If your architecture uses closures that don't need to be freed, then
734# you can use simple_displaced_step_free_closure here.
735#
736# For a general explanation of displaced stepping and how GDB uses it,
737# see the comments in infrun.c.
738m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
739
740# Return the address of an appropriate place to put displaced
741# instructions while we step over them. There need only be one such
742# place, since we're only stepping one thread over a breakpoint at a
743# time.
744#
745# For a general explanation of displaced stepping and how GDB uses it,
746# see the comments in infrun.c.
747m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
748
dde08ee1
PA
749# Relocate an instruction to execute at a different address. OLDLOC
750# is the address in the inferior memory where the instruction to
751# relocate is currently at. On input, TO points to the destination
752# where we want the instruction to be copied (and possibly adjusted)
753# to. On output, it points to one past the end of the resulting
754# instruction(s). The effect of executing the instruction at TO shall
755# be the same as if executing it at FROM. For example, call
756# instructions that implicitly push the return address on the stack
757# should be adjusted to return to the instruction after OLDLOC;
758# relative branches, and other PC-relative instructions need the
759# offset adjusted; etc.
760M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
761
1c772458 762# Refresh overlay mapped state for section OSECT.
97030eea 763F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 764
97030eea 765M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
766
767# Handle special encoding of static variables in stabs debug info.
0d5cff50 768F:const char *:static_transform_name:const char *name:name
203c3895 769# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 770v:int:sofun_address_maybe_missing:::0:0::0
1cded358 771
0508c3ec
HZ
772# Parse the instruction at ADDR storing in the record execution log
773# the registers REGCACHE and memory ranges that will be affected when
774# the instruction executes, along with their current values.
775# Return -1 if something goes wrong, 0 otherwise.
776M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
777
3846b520
HZ
778# Save process state after a signal.
779# Return -1 if something goes wrong, 0 otherwise.
2ea28649 780M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
3846b520 781
22203bbf 782# Signal translation: translate inferior's signal (target's) number
86b49880
PA
783# into GDB's representation. The implementation of this method must
784# be host independent. IOW, don't rely on symbols of the NAT_FILE
785# header (the nm-*.h files), the host <signal.h> header, or similar
786# headers. This is mainly used when cross-debugging core files ---
787# "Live" targets hide the translation behind the target interface
1f8cf220
PA
788# (target_wait, target_resume, etc.).
789M:enum gdb_signal:gdb_signal_from_target:int signo:signo
60c5725c 790
4aa995e1
PA
791# Extra signal info inspection.
792#
793# Return a type suitable to inspect extra signal information.
794M:struct type *:get_siginfo_type:void:
795
60c5725c
DJ
796# Record architecture-specific information from the symbol table.
797M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 798
a96d9b2e
SDJ
799# Function for the 'catch syscall' feature.
800
801# Get architecture-specific system calls information from registers.
802M:LONGEST:get_syscall_number:ptid_t ptid:ptid
803
55aa24fb
SDJ
804# SystemTap related fields and functions.
805
806# Prefix used to mark an integer constant on the architecture's assembly
807# For example, on x86 integer constants are written as:
808#
809# \$10 ;; integer constant 10
810#
811# in this case, this prefix would be the character \`\$\'.
812v:const char *:stap_integer_prefix:::0:0::0:gdbarch->stap_integer_prefix
813
814# Suffix used to mark an integer constant on the architecture's assembly.
815v:const char *:stap_integer_suffix:::0:0::0:gdbarch->stap_integer_suffix
816
817# Prefix used to mark a register name on the architecture's assembly.
818# For example, on x86 the register name is written as:
819#
820# \%eax ;; register eax
821#
822# in this case, this prefix would be the character \`\%\'.
823v:const char *:stap_register_prefix:::0:0::0:gdbarch->stap_register_prefix
824
825# Suffix used to mark a register name on the architecture's assembly
826v:const char *:stap_register_suffix:::0:0::0:gdbarch->stap_register_suffix
827
828# Prefix used to mark a register indirection on the architecture's assembly.
829# For example, on x86 the register indirection is written as:
830#
831# \(\%eax\) ;; indirecting eax
832#
833# in this case, this prefix would be the charater \`\(\'.
834#
835# Please note that we use the indirection prefix also for register
836# displacement, e.g., \`4\(\%eax\)\' on x86.
837v:const char *:stap_register_indirection_prefix:::0:0::0:gdbarch->stap_register_indirection_prefix
838
839# Suffix used to mark a register indirection on the architecture's assembly.
840# For example, on x86 the register indirection is written as:
841#
842# \(\%eax\) ;; indirecting eax
843#
844# in this case, this prefix would be the charater \`\)\'.
845#
846# Please note that we use the indirection suffix also for register
847# displacement, e.g., \`4\(\%eax\)\' on x86.
848v:const char *:stap_register_indirection_suffix:::0:0::0:gdbarch->stap_register_indirection_suffix
849
850# Prefix used to name a register using GDB's nomenclature.
851#
852# For example, on PPC a register is represented by a number in the assembly
853# language (e.g., \`10\' is the 10th general-purpose register). However,
854# inside GDB this same register has an \`r\' appended to its name, so the 10th
855# register would be represented as \`r10\' internally.
856v:const char *:stap_gdb_register_prefix:::0:0::0:gdbarch->stap_gdb_register_prefix
857
858# Suffix used to name a register using GDB's nomenclature.
859v:const char *:stap_gdb_register_suffix:::0:0::0:gdbarch->stap_gdb_register_suffix
860
861# Check if S is a single operand.
862#
863# Single operands can be:
864# \- Literal integers, e.g. \`\$10\' on x86
865# \- Register access, e.g. \`\%eax\' on x86
866# \- Register indirection, e.g. \`\(\%eax\)\' on x86
867# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
868#
869# This function should check for these patterns on the string
870# and return 1 if some were found, or zero otherwise. Please try to match
871# as much info as you can from the string, i.e., if you have to match
872# something like \`\(\%\', do not match just the \`\(\'.
873M:int:stap_is_single_operand:const char *s:s
874
875# Function used to handle a "special case" in the parser.
876#
877# A "special case" is considered to be an unknown token, i.e., a token
878# that the parser does not know how to parse. A good example of special
879# case would be ARM's register displacement syntax:
880#
881# [R0, #4] ;; displacing R0 by 4
882#
883# Since the parser assumes that a register displacement is of the form:
884#
885# <number> <indirection_prefix> <register_name> <indirection_suffix>
886#
887# it means that it will not be able to recognize and parse this odd syntax.
888# Therefore, we should add a special case function that will handle this token.
889#
890# This function should generate the proper expression form of the expression
891# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
892# and so on). It should also return 1 if the parsing was successful, or zero
893# if the token was not recognized as a special token (in this case, returning
894# zero means that the special parser is deferring the parsing to the generic
895# parser), and should advance the buffer pointer (p->arg).
896M:int:stap_parse_special_token:struct stap_parse_info *p:p
897
898
50c71eaf
PA
899# True if the list of shared libraries is one and only for all
900# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
901# This usually means that all processes, although may or may not share
902# an address space, will see the same set of symbols at the same
903# addresses.
50c71eaf 904v:int:has_global_solist:::0:0::0
2567c7d9
PA
905
906# On some targets, even though each inferior has its own private
907# address space, the debug interface takes care of making breakpoints
908# visible to all address spaces automatically. For such cases,
909# this property should be set to true.
910v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
911
912# True if inferiors share an address space (e.g., uClinux).
913m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
914
915# True if a fast tracepoint can be set at an address.
916m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
75cebea9 917
f870a310
TT
918# Return the "auto" target charset.
919f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
920# Return the "auto" target wide charset.
921f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
922
923# If non-empty, this is a file extension that will be opened in place
924# of the file extension reported by the shared library list.
925#
926# This is most useful for toolchains that use a post-linker tool,
927# where the names of the files run on the target differ in extension
928# compared to the names of the files GDB should load for debug info.
929v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
930
931# If true, the target OS has DOS-based file system semantics. That
932# is, absolute paths include a drive name, and the backslash is
933# considered a directory separator.
934v:int:has_dos_based_file_system:::0:0::0
6710bf39
SS
935
936# Generate bytecodes to collect the return address in a frame.
937# Since the bytecodes run on the target, possibly with GDB not even
938# connected, the full unwinding machinery is not available, and
939# typically this function will issue bytecodes for one or more likely
940# places that the return address may be found.
941m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
942
3030c96e
UW
943# Implement the "info proc" command.
944M:void:info_proc:char *args, enum info_proc_what what:args, what
945
19630284
JB
946# Iterate over all objfiles in the order that makes the most sense
947# for the architecture to make global symbol searches.
948#
949# CB is a callback function where OBJFILE is the objfile to be searched,
950# and CB_DATA a pointer to user-defined data (the same data that is passed
951# when calling this gdbarch method). The iteration stops if this function
952# returns nonzero.
953#
954# CB_DATA is a pointer to some user-defined data to be passed to
955# the callback.
956#
957# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
958# inspected when the symbol search was requested.
959m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
960
104c1213 961EOF
104c1213
JM
962}
963
0b8f9e4d
AC
964#
965# The .log file
966#
967exec > new-gdbarch.log
34620563 968function_list | while do_read
0b8f9e4d
AC
969do
970 cat <<EOF
2f9b146e 971${class} ${returntype} ${function} ($formal)
104c1213 972EOF
3d9a5942
AC
973 for r in ${read}
974 do
975 eval echo \"\ \ \ \ ${r}=\${${r}}\"
976 done
f0d4cc9e 977 if class_is_predicate_p && fallback_default_p
0b8f9e4d 978 then
66d659b1 979 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
980 kill $$
981 exit 1
982 fi
72e74a21 983 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
984 then
985 echo "Error: postdefault is useless when invalid_p=0" 1>&2
986 kill $$
987 exit 1
988 fi
a72293e2
AC
989 if class_is_multiarch_p
990 then
991 if class_is_predicate_p ; then :
992 elif test "x${predefault}" = "x"
993 then
2f9b146e 994 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
995 kill $$
996 exit 1
997 fi
998 fi
3d9a5942 999 echo ""
0b8f9e4d
AC
1000done
1001
1002exec 1>&2
1003compare_new gdbarch.log
1004
104c1213
JM
1005
1006copyright ()
1007{
1008cat <<EOF
59233f88
AC
1009/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
1010
104c1213 1011/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1012
f801e1e0
MS
1013 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
1014 2007, 2008, 2009 Free Software Foundation, Inc.
104c1213
JM
1015
1016 This file is part of GDB.
1017
1018 This program is free software; you can redistribute it and/or modify
1019 it under the terms of the GNU General Public License as published by
50efebf8 1020 the Free Software Foundation; either version 3 of the License, or
104c1213 1021 (at your option) any later version.
50efebf8 1022
104c1213
JM
1023 This program is distributed in the hope that it will be useful,
1024 but WITHOUT ANY WARRANTY; without even the implied warranty of
1025 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1026 GNU General Public License for more details.
50efebf8 1027
104c1213 1028 You should have received a copy of the GNU General Public License
50efebf8 1029 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1030
104c1213
JM
1031/* This file was created with the aid of \`\`gdbarch.sh''.
1032
52204a0b 1033 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1034 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1035 against the existing \`\`gdbarch.[hc]''. Any differences found
1036 being reported.
1037
1038 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1039 changes into that script. Conversely, when making sweeping changes
104c1213 1040 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1041 easier. */
104c1213
JM
1042
1043EOF
1044}
1045
1046#
1047# The .h file
1048#
1049
1050exec > new-gdbarch.h
1051copyright
1052cat <<EOF
1053#ifndef GDBARCH_H
1054#define GDBARCH_H
1055
da3331ec
AC
1056struct floatformat;
1057struct ui_file;
104c1213
JM
1058struct frame_info;
1059struct value;
b6af0555 1060struct objfile;
1c772458 1061struct obj_section;
a2cf933a 1062struct minimal_symbol;
049ee0e4 1063struct regcache;
b59ff9d5 1064struct reggroup;
6ce6d90f 1065struct regset;
a89aa300 1066struct disassemble_info;
e2d0e7eb 1067struct target_ops;
030f20e1 1068struct obstack;
8181d85f 1069struct bp_target_info;
424163ea 1070struct target_desc;
237fc4c9 1071struct displaced_step_closure;
17ea7499 1072struct core_regset_section;
a96d9b2e 1073struct syscall;
175ff332 1074struct agent_expr;
6710bf39 1075struct axs_value;
55aa24fb 1076struct stap_parse_info;
104c1213 1077
9e2ace22
JB
1078/* The architecture associated with the connection to the target.
1079
1080 The architecture vector provides some information that is really
1081 a property of the target: The layout of certain packets, for instance;
1082 or the solib_ops vector. Etc. To differentiate architecture accesses
1083 to per-target properties from per-thread/per-frame/per-objfile properties,
1084 accesses to per-target properties should be made through target_gdbarch.
1085
1086 Eventually, when support for multiple targets is implemented in
1087 GDB, this global should be made target-specific. */
1cf3db46 1088extern struct gdbarch *target_gdbarch;
19630284
JB
1089
1090/* Callback type for the 'iterate_over_objfiles_in_search_order'
1091 gdbarch method. */
1092
1093typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1094 (struct objfile *objfile, void *cb_data);
104c1213
JM
1095EOF
1096
1097# function typedef's
3d9a5942
AC
1098printf "\n"
1099printf "\n"
0963b4bd 1100printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1101function_list | while do_read
104c1213 1102do
2ada493a
AC
1103 if class_is_info_p
1104 then
3d9a5942
AC
1105 printf "\n"
1106 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1107 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1108 fi
104c1213
JM
1109done
1110
1111# function typedef's
3d9a5942
AC
1112printf "\n"
1113printf "\n"
0963b4bd 1114printf "/* The following are initialized by the target dependent code. */\n"
34620563 1115function_list | while do_read
104c1213 1116do
72e74a21 1117 if [ -n "${comment}" ]
34620563
AC
1118 then
1119 echo "${comment}" | sed \
1120 -e '2 s,#,/*,' \
1121 -e '3,$ s,#, ,' \
1122 -e '$ s,$, */,'
1123 fi
412d5987
AC
1124
1125 if class_is_predicate_p
2ada493a 1126 then
412d5987
AC
1127 printf "\n"
1128 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1129 fi
2ada493a
AC
1130 if class_is_variable_p
1131 then
3d9a5942
AC
1132 printf "\n"
1133 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1134 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1135 fi
1136 if class_is_function_p
1137 then
3d9a5942 1138 printf "\n"
72e74a21 1139 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1140 then
1141 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1142 elif class_is_multiarch_p
1143 then
1144 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1145 else
1146 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1147 fi
72e74a21 1148 if [ "x${formal}" = "xvoid" ]
104c1213 1149 then
3d9a5942 1150 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1151 else
3d9a5942 1152 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1153 fi
3d9a5942 1154 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1155 fi
104c1213
JM
1156done
1157
1158# close it off
1159cat <<EOF
1160
a96d9b2e
SDJ
1161/* Definition for an unknown syscall, used basically in error-cases. */
1162#define UNKNOWN_SYSCALL (-1)
1163
104c1213
JM
1164extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1165
1166
1167/* Mechanism for co-ordinating the selection of a specific
1168 architecture.
1169
1170 GDB targets (*-tdep.c) can register an interest in a specific
1171 architecture. Other GDB components can register a need to maintain
1172 per-architecture data.
1173
1174 The mechanisms below ensures that there is only a loose connection
1175 between the set-architecture command and the various GDB
0fa6923a 1176 components. Each component can independently register their need
104c1213
JM
1177 to maintain architecture specific data with gdbarch.
1178
1179 Pragmatics:
1180
1181 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1182 didn't scale.
1183
1184 The more traditional mega-struct containing architecture specific
1185 data for all the various GDB components was also considered. Since
0fa6923a 1186 GDB is built from a variable number of (fairly independent)
104c1213 1187 components it was determined that the global aproach was not
0963b4bd 1188 applicable. */
104c1213
JM
1189
1190
1191/* Register a new architectural family with GDB.
1192
1193 Register support for the specified ARCHITECTURE with GDB. When
1194 gdbarch determines that the specified architecture has been
1195 selected, the corresponding INIT function is called.
1196
1197 --
1198
1199 The INIT function takes two parameters: INFO which contains the
1200 information available to gdbarch about the (possibly new)
1201 architecture; ARCHES which is a list of the previously created
1202 \`\`struct gdbarch'' for this architecture.
1203
0f79675b 1204 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1205 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1206
1207 The ARCHES parameter is a linked list (sorted most recently used)
1208 of all the previously created architures for this architecture
1209 family. The (possibly NULL) ARCHES->gdbarch can used to access
1210 values from the previously selected architecture for this
59837fe0 1211 architecture family.
104c1213
JM
1212
1213 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1214 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1215 gdbarch'' from the ARCHES list - indicating that the new
1216 architecture is just a synonym for an earlier architecture (see
1217 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1218 - that describes the selected architecture (see gdbarch_alloc()).
1219
1220 The DUMP_TDEP function shall print out all target specific values.
1221 Care should be taken to ensure that the function works in both the
0963b4bd 1222 multi-arch and non- multi-arch cases. */
104c1213
JM
1223
1224struct gdbarch_list
1225{
1226 struct gdbarch *gdbarch;
1227 struct gdbarch_list *next;
1228};
1229
1230struct gdbarch_info
1231{
0963b4bd 1232 /* Use default: NULL (ZERO). */
104c1213
JM
1233 const struct bfd_arch_info *bfd_arch_info;
1234
428721aa 1235 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
1236 int byte_order;
1237
9d4fde75
SS
1238 int byte_order_for_code;
1239
0963b4bd 1240 /* Use default: NULL (ZERO). */
104c1213
JM
1241 bfd *abfd;
1242
0963b4bd 1243 /* Use default: NULL (ZERO). */
104c1213 1244 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1245
1246 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1247 enum gdb_osabi osabi;
424163ea
DJ
1248
1249 /* Use default: NULL (ZERO). */
1250 const struct target_desc *target_desc;
104c1213
JM
1251};
1252
1253typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1254typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1255
4b9b3959 1256/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1257extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1258
4b9b3959
AC
1259extern void gdbarch_register (enum bfd_architecture architecture,
1260 gdbarch_init_ftype *,
1261 gdbarch_dump_tdep_ftype *);
1262
104c1213 1263
b4a20239
AC
1264/* Return a freshly allocated, NULL terminated, array of the valid
1265 architecture names. Since architectures are registered during the
1266 _initialize phase this function only returns useful information
0963b4bd 1267 once initialization has been completed. */
b4a20239
AC
1268
1269extern const char **gdbarch_printable_names (void);
1270
1271
104c1213 1272/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1273 matches the information provided by INFO. */
104c1213 1274
424163ea 1275extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1276
1277
1278/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1279 basic initialization using values obtained from the INFO and TDEP
104c1213 1280 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1281 initialization of the object. */
104c1213
JM
1282
1283extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1284
1285
4b9b3959
AC
1286/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1287 It is assumed that the caller freeds the \`\`struct
0963b4bd 1288 gdbarch_tdep''. */
4b9b3959 1289
058f20d5
JB
1290extern void gdbarch_free (struct gdbarch *);
1291
1292
aebd7893
AC
1293/* Helper function. Allocate memory from the \`\`struct gdbarch''
1294 obstack. The memory is freed when the corresponding architecture
1295 is also freed. */
1296
1297extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1298#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1299#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1300
1301
0963b4bd 1302/* Helper function. Force an update of the current architecture.
104c1213 1303
b732d07d
AC
1304 The actual architecture selected is determined by INFO, \`\`(gdb) set
1305 architecture'' et.al., the existing architecture and BFD's default
1306 architecture. INFO should be initialized to zero and then selected
1307 fields should be updated.
104c1213 1308
0963b4bd 1309 Returns non-zero if the update succeeds. */
16f33e29
AC
1310
1311extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1312
1313
ebdba546
AC
1314/* Helper function. Find an architecture matching info.
1315
1316 INFO should be initialized using gdbarch_info_init, relevant fields
1317 set, and then finished using gdbarch_info_fill.
1318
1319 Returns the corresponding architecture, or NULL if no matching
59837fe0 1320 architecture was found. */
ebdba546
AC
1321
1322extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1323
1324
59837fe0 1325/* Helper function. Set the global "target_gdbarch" to "gdbarch".
ebdba546
AC
1326
1327 FIXME: kettenis/20031124: Of the functions that follow, only
1328 gdbarch_from_bfd is supposed to survive. The others will
1329 dissappear since in the future GDB will (hopefully) be truly
1330 multi-arch. However, for now we're still stuck with the concept of
1331 a single active architecture. */
1332
59837fe0 1333extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
ebdba546 1334
104c1213
JM
1335
1336/* Register per-architecture data-pointer.
1337
1338 Reserve space for a per-architecture data-pointer. An identifier
1339 for the reserved data-pointer is returned. That identifer should
95160752 1340 be saved in a local static variable.
104c1213 1341
fcc1c85c
AC
1342 Memory for the per-architecture data shall be allocated using
1343 gdbarch_obstack_zalloc. That memory will be deleted when the
1344 corresponding architecture object is deleted.
104c1213 1345
95160752
AC
1346 When a previously created architecture is re-selected, the
1347 per-architecture data-pointer for that previous architecture is
76860b5f 1348 restored. INIT() is not re-called.
104c1213
JM
1349
1350 Multiple registrarants for any architecture are allowed (and
1351 strongly encouraged). */
1352
95160752 1353struct gdbarch_data;
104c1213 1354
030f20e1
AC
1355typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1356extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1357typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1358extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1359extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1360 struct gdbarch_data *data,
1361 void *pointer);
104c1213 1362
451fbdda 1363extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1364
1365
0fa6923a 1366/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1367 byte-order, ...) using information found in the BFD. */
104c1213
JM
1368
1369extern void set_gdbarch_from_file (bfd *);
1370
1371
e514a9d6
JM
1372/* Initialize the current architecture to the "first" one we find on
1373 our list. */
1374
1375extern void initialize_current_architecture (void);
1376
104c1213
JM
1377/* gdbarch trace variable */
1378extern int gdbarch_debug;
1379
4b9b3959 1380extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1381
1382#endif
1383EOF
1384exec 1>&2
1385#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1386compare_new gdbarch.h
104c1213
JM
1387
1388
1389#
1390# C file
1391#
1392
1393exec > new-gdbarch.c
1394copyright
1395cat <<EOF
1396
1397#include "defs.h"
7355ddba 1398#include "arch-utils.h"
104c1213 1399
104c1213 1400#include "gdbcmd.h"
faaf634c 1401#include "inferior.h"
104c1213
JM
1402#include "symcat.h"
1403
f0d4cc9e 1404#include "floatformat.h"
104c1213 1405
95160752 1406#include "gdb_assert.h"
b66d6d2e 1407#include "gdb_string.h"
b59ff9d5 1408#include "reggroups.h"
4be87837 1409#include "osabi.h"
aebd7893 1410#include "gdb_obstack.h"
383f836e 1411#include "observer.h"
a3ecef73 1412#include "regcache.h"
19630284 1413#include "objfiles.h"
95160752 1414
104c1213
JM
1415/* Static function declarations */
1416
b3cc3077 1417static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1418
104c1213
JM
1419/* Non-zero if we want to trace architecture code. */
1420
1421#ifndef GDBARCH_DEBUG
1422#define GDBARCH_DEBUG 0
1423#endif
1424int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1425static void
1426show_gdbarch_debug (struct ui_file *file, int from_tty,
1427 struct cmd_list_element *c, const char *value)
1428{
1429 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1430}
104c1213 1431
456fcf94 1432static const char *
8da61cc4 1433pformat (const struct floatformat **format)
456fcf94
AC
1434{
1435 if (format == NULL)
1436 return "(null)";
1437 else
8da61cc4
DJ
1438 /* Just print out one of them - this is only for diagnostics. */
1439 return format[0]->name;
456fcf94
AC
1440}
1441
08105857
PA
1442static const char *
1443pstring (const char *string)
1444{
1445 if (string == NULL)
1446 return "(null)";
1447 return string;
1448}
1449
104c1213
JM
1450EOF
1451
1452# gdbarch open the gdbarch object
3d9a5942 1453printf "\n"
0963b4bd 1454printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1455printf "\n"
1456printf "struct gdbarch\n"
1457printf "{\n"
76860b5f
AC
1458printf " /* Has this architecture been fully initialized? */\n"
1459printf " int initialized_p;\n"
aebd7893
AC
1460printf "\n"
1461printf " /* An obstack bound to the lifetime of the architecture. */\n"
1462printf " struct obstack *obstack;\n"
1463printf "\n"
0963b4bd 1464printf " /* basic architectural information. */\n"
34620563 1465function_list | while do_read
104c1213 1466do
2ada493a
AC
1467 if class_is_info_p
1468 then
3d9a5942 1469 printf " ${returntype} ${function};\n"
2ada493a 1470 fi
104c1213 1471done
3d9a5942 1472printf "\n"
0963b4bd 1473printf " /* target specific vector. */\n"
3d9a5942
AC
1474printf " struct gdbarch_tdep *tdep;\n"
1475printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1476printf "\n"
0963b4bd 1477printf " /* per-architecture data-pointers. */\n"
95160752 1478printf " unsigned nr_data;\n"
3d9a5942
AC
1479printf " void **data;\n"
1480printf "\n"
0963b4bd 1481printf " /* per-architecture swap-regions. */\n"
3d9a5942
AC
1482printf " struct gdbarch_swap *swap;\n"
1483printf "\n"
104c1213
JM
1484cat <<EOF
1485 /* Multi-arch values.
1486
1487 When extending this structure you must:
1488
1489 Add the field below.
1490
1491 Declare set/get functions and define the corresponding
1492 macro in gdbarch.h.
1493
1494 gdbarch_alloc(): If zero/NULL is not a suitable default,
1495 initialize the new field.
1496
1497 verify_gdbarch(): Confirm that the target updated the field
1498 correctly.
1499
7e73cedf 1500 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1501 field is dumped out
1502
c0e8c252 1503 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1504 variable (base values on the host's c-type system).
1505
1506 get_gdbarch(): Implement the set/get functions (probably using
1507 the macro's as shortcuts).
1508
1509 */
1510
1511EOF
34620563 1512function_list | while do_read
104c1213 1513do
2ada493a
AC
1514 if class_is_variable_p
1515 then
3d9a5942 1516 printf " ${returntype} ${function};\n"
2ada493a
AC
1517 elif class_is_function_p
1518 then
2f9b146e 1519 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1520 fi
104c1213 1521done
3d9a5942 1522printf "};\n"
104c1213
JM
1523
1524# A pre-initialized vector
3d9a5942
AC
1525printf "\n"
1526printf "\n"
104c1213
JM
1527cat <<EOF
1528/* The default architecture uses host values (for want of a better
0963b4bd 1529 choice). */
104c1213 1530EOF
3d9a5942
AC
1531printf "\n"
1532printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1533printf "\n"
1534printf "struct gdbarch startup_gdbarch =\n"
1535printf "{\n"
76860b5f 1536printf " 1, /* Always initialized. */\n"
aebd7893 1537printf " NULL, /* The obstack. */\n"
0963b4bd 1538printf " /* basic architecture information. */\n"
4b9b3959 1539function_list | while do_read
104c1213 1540do
2ada493a
AC
1541 if class_is_info_p
1542 then
ec5cbaec 1543 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1544 fi
104c1213
JM
1545done
1546cat <<EOF
0963b4bd 1547 /* target specific vector and its dump routine. */
4b9b3959 1548 NULL, NULL,
0963b4bd 1549 /*per-architecture data-pointers and swap regions. */
104c1213
JM
1550 0, NULL, NULL,
1551 /* Multi-arch values */
1552EOF
34620563 1553function_list | while do_read
104c1213 1554do
2ada493a
AC
1555 if class_is_function_p || class_is_variable_p
1556 then
ec5cbaec 1557 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1558 fi
104c1213
JM
1559done
1560cat <<EOF
c0e8c252 1561 /* startup_gdbarch() */
104c1213 1562};
4b9b3959 1563
1cf3db46 1564struct gdbarch *target_gdbarch = &startup_gdbarch;
104c1213
JM
1565EOF
1566
1567# Create a new gdbarch struct
104c1213 1568cat <<EOF
7de2341d 1569
66b43ecb 1570/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1571 \`\`struct gdbarch_info''. */
104c1213 1572EOF
3d9a5942 1573printf "\n"
104c1213
JM
1574cat <<EOF
1575struct gdbarch *
1576gdbarch_alloc (const struct gdbarch_info *info,
1577 struct gdbarch_tdep *tdep)
1578{
be7811ad 1579 struct gdbarch *gdbarch;
aebd7893
AC
1580
1581 /* Create an obstack for allocating all the per-architecture memory,
1582 then use that to allocate the architecture vector. */
1583 struct obstack *obstack = XMALLOC (struct obstack);
1584 obstack_init (obstack);
be7811ad
MD
1585 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1586 memset (gdbarch, 0, sizeof (*gdbarch));
1587 gdbarch->obstack = obstack;
85de9627 1588
be7811ad 1589 alloc_gdbarch_data (gdbarch);
85de9627 1590
be7811ad 1591 gdbarch->tdep = tdep;
104c1213 1592EOF
3d9a5942 1593printf "\n"
34620563 1594function_list | while do_read
104c1213 1595do
2ada493a
AC
1596 if class_is_info_p
1597 then
be7811ad 1598 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1599 fi
104c1213 1600done
3d9a5942 1601printf "\n"
0963b4bd 1602printf " /* Force the explicit initialization of these. */\n"
34620563 1603function_list | while do_read
104c1213 1604do
2ada493a
AC
1605 if class_is_function_p || class_is_variable_p
1606 then
72e74a21 1607 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1608 then
be7811ad 1609 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1610 fi
2ada493a 1611 fi
104c1213
JM
1612done
1613cat <<EOF
1614 /* gdbarch_alloc() */
1615
be7811ad 1616 return gdbarch;
104c1213
JM
1617}
1618EOF
1619
058f20d5 1620# Free a gdbarch struct.
3d9a5942
AC
1621printf "\n"
1622printf "\n"
058f20d5 1623cat <<EOF
aebd7893
AC
1624/* Allocate extra space using the per-architecture obstack. */
1625
1626void *
1627gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1628{
1629 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1630
aebd7893
AC
1631 memset (data, 0, size);
1632 return data;
1633}
1634
1635
058f20d5
JB
1636/* Free a gdbarch struct. This should never happen in normal
1637 operation --- once you've created a gdbarch, you keep it around.
1638 However, if an architecture's init function encounters an error
1639 building the structure, it may need to clean up a partially
1640 constructed gdbarch. */
4b9b3959 1641
058f20d5
JB
1642void
1643gdbarch_free (struct gdbarch *arch)
1644{
aebd7893 1645 struct obstack *obstack;
05c547f6 1646
95160752 1647 gdb_assert (arch != NULL);
aebd7893
AC
1648 gdb_assert (!arch->initialized_p);
1649 obstack = arch->obstack;
1650 obstack_free (obstack, 0); /* Includes the ARCH. */
1651 xfree (obstack);
058f20d5
JB
1652}
1653EOF
1654
104c1213 1655# verify a new architecture
104c1213 1656cat <<EOF
db446970
AC
1657
1658
1659/* Ensure that all values in a GDBARCH are reasonable. */
1660
104c1213 1661static void
be7811ad 1662verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1663{
f16a1923
AC
1664 struct ui_file *log;
1665 struct cleanup *cleanups;
759ef836 1666 long length;
f16a1923 1667 char *buf;
05c547f6 1668
f16a1923
AC
1669 log = mem_fileopen ();
1670 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1671 /* fundamental */
be7811ad 1672 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1673 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1674 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1675 fprintf_unfiltered (log, "\n\tbfd_arch_info");
0963b4bd 1676 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1677EOF
34620563 1678function_list | while do_read
104c1213 1679do
2ada493a
AC
1680 if class_is_function_p || class_is_variable_p
1681 then
72e74a21 1682 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1683 then
3d9a5942 1684 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1685 elif class_is_predicate_p
1686 then
0963b4bd 1687 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1688 # FIXME: See do_read for potential simplification
72e74a21 1689 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1690 then
3d9a5942 1691 printf " if (${invalid_p})\n"
be7811ad 1692 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1693 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1694 then
be7811ad
MD
1695 printf " if (gdbarch->${function} == ${predefault})\n"
1696 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1697 elif [ -n "${postdefault}" ]
f0d4cc9e 1698 then
be7811ad
MD
1699 printf " if (gdbarch->${function} == 0)\n"
1700 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1701 elif [ -n "${invalid_p}" ]
104c1213 1702 then
4d60522e 1703 printf " if (${invalid_p})\n"
f16a1923 1704 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1705 elif [ -n "${predefault}" ]
104c1213 1706 then
be7811ad 1707 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1708 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1709 fi
2ada493a 1710 fi
104c1213
JM
1711done
1712cat <<EOF
759ef836 1713 buf = ui_file_xstrdup (log, &length);
f16a1923 1714 make_cleanup (xfree, buf);
759ef836 1715 if (length > 0)
f16a1923 1716 internal_error (__FILE__, __LINE__,
85c07804 1717 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1718 buf);
1719 do_cleanups (cleanups);
104c1213
JM
1720}
1721EOF
1722
1723# dump the structure
3d9a5942
AC
1724printf "\n"
1725printf "\n"
104c1213 1726cat <<EOF
0963b4bd 1727/* Print out the details of the current architecture. */
4b9b3959 1728
104c1213 1729void
be7811ad 1730gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1731{
b78960be 1732 const char *gdb_nm_file = "<not-defined>";
05c547f6 1733
b78960be
AC
1734#if defined (GDB_NM_FILE)
1735 gdb_nm_file = GDB_NM_FILE;
1736#endif
1737 fprintf_unfiltered (file,
1738 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1739 gdb_nm_file);
104c1213 1740EOF
97030eea 1741function_list | sort -t: -k 3 | while do_read
104c1213 1742do
1e9f55d0
AC
1743 # First the predicate
1744 if class_is_predicate_p
1745 then
7996bcec 1746 printf " fprintf_unfiltered (file,\n"
48f7351b 1747 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1748 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1749 fi
48f7351b 1750 # Print the corresponding value.
283354d8 1751 if class_is_function_p
4b9b3959 1752 then
7996bcec 1753 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1754 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1755 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1756 else
48f7351b 1757 # It is a variable
2f9b146e
AC
1758 case "${print}:${returntype}" in
1759 :CORE_ADDR )
0b1553bc
UW
1760 fmt="%s"
1761 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1762 ;;
2f9b146e 1763 :* )
48f7351b 1764 fmt="%s"
623d3eb1 1765 print="plongest (gdbarch->${function})"
48f7351b
AC
1766 ;;
1767 * )
2f9b146e 1768 fmt="%s"
48f7351b
AC
1769 ;;
1770 esac
3d9a5942 1771 printf " fprintf_unfiltered (file,\n"
48f7351b 1772 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1773 printf " ${print});\n"
2ada493a 1774 fi
104c1213 1775done
381323f4 1776cat <<EOF
be7811ad
MD
1777 if (gdbarch->dump_tdep != NULL)
1778 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1779}
1780EOF
104c1213
JM
1781
1782
1783# GET/SET
3d9a5942 1784printf "\n"
104c1213
JM
1785cat <<EOF
1786struct gdbarch_tdep *
1787gdbarch_tdep (struct gdbarch *gdbarch)
1788{
1789 if (gdbarch_debug >= 2)
3d9a5942 1790 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1791 return gdbarch->tdep;
1792}
1793EOF
3d9a5942 1794printf "\n"
34620563 1795function_list | while do_read
104c1213 1796do
2ada493a
AC
1797 if class_is_predicate_p
1798 then
3d9a5942
AC
1799 printf "\n"
1800 printf "int\n"
1801 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1802 printf "{\n"
8de9bdc4 1803 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1804 printf " return ${predicate};\n"
3d9a5942 1805 printf "}\n"
2ada493a
AC
1806 fi
1807 if class_is_function_p
1808 then
3d9a5942
AC
1809 printf "\n"
1810 printf "${returntype}\n"
72e74a21 1811 if [ "x${formal}" = "xvoid" ]
104c1213 1812 then
3d9a5942 1813 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1814 else
3d9a5942 1815 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1816 fi
3d9a5942 1817 printf "{\n"
8de9bdc4 1818 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1819 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1820 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1821 then
1822 # Allow a call to a function with a predicate.
956ac328 1823 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1824 fi
3d9a5942
AC
1825 printf " if (gdbarch_debug >= 2)\n"
1826 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1827 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1828 then
1829 if class_is_multiarch_p
1830 then
1831 params="gdbarch"
1832 else
1833 params=""
1834 fi
1835 else
1836 if class_is_multiarch_p
1837 then
1838 params="gdbarch, ${actual}"
1839 else
1840 params="${actual}"
1841 fi
1842 fi
72e74a21 1843 if [ "x${returntype}" = "xvoid" ]
104c1213 1844 then
4a5c6a1d 1845 printf " gdbarch->${function} (${params});\n"
104c1213 1846 else
4a5c6a1d 1847 printf " return gdbarch->${function} (${params});\n"
104c1213 1848 fi
3d9a5942
AC
1849 printf "}\n"
1850 printf "\n"
1851 printf "void\n"
1852 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1853 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1854 printf "{\n"
1855 printf " gdbarch->${function} = ${function};\n"
1856 printf "}\n"
2ada493a
AC
1857 elif class_is_variable_p
1858 then
3d9a5942
AC
1859 printf "\n"
1860 printf "${returntype}\n"
1861 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1862 printf "{\n"
8de9bdc4 1863 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1864 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1865 then
3d9a5942 1866 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1867 elif [ -n "${invalid_p}" ]
104c1213 1868 then
956ac328
AC
1869 printf " /* Check variable is valid. */\n"
1870 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1871 elif [ -n "${predefault}" ]
104c1213 1872 then
956ac328
AC
1873 printf " /* Check variable changed from pre-default. */\n"
1874 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1875 fi
3d9a5942
AC
1876 printf " if (gdbarch_debug >= 2)\n"
1877 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1878 printf " return gdbarch->${function};\n"
1879 printf "}\n"
1880 printf "\n"
1881 printf "void\n"
1882 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1883 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1884 printf "{\n"
1885 printf " gdbarch->${function} = ${function};\n"
1886 printf "}\n"
2ada493a
AC
1887 elif class_is_info_p
1888 then
3d9a5942
AC
1889 printf "\n"
1890 printf "${returntype}\n"
1891 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1892 printf "{\n"
8de9bdc4 1893 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1894 printf " if (gdbarch_debug >= 2)\n"
1895 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1896 printf " return gdbarch->${function};\n"
1897 printf "}\n"
2ada493a 1898 fi
104c1213
JM
1899done
1900
1901# All the trailing guff
1902cat <<EOF
1903
1904
f44c642f 1905/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 1906 modules. */
104c1213
JM
1907
1908struct gdbarch_data
1909{
95160752 1910 unsigned index;
76860b5f 1911 int init_p;
030f20e1
AC
1912 gdbarch_data_pre_init_ftype *pre_init;
1913 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1914};
1915
1916struct gdbarch_data_registration
1917{
104c1213
JM
1918 struct gdbarch_data *data;
1919 struct gdbarch_data_registration *next;
1920};
1921
f44c642f 1922struct gdbarch_data_registry
104c1213 1923{
95160752 1924 unsigned nr;
104c1213
JM
1925 struct gdbarch_data_registration *registrations;
1926};
1927
f44c642f 1928struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1929{
1930 0, NULL,
1931};
1932
030f20e1
AC
1933static struct gdbarch_data *
1934gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1935 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
1936{
1937 struct gdbarch_data_registration **curr;
05c547f6
MS
1938
1939 /* Append the new registration. */
f44c642f 1940 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1941 (*curr) != NULL;
1942 curr = &(*curr)->next);
1943 (*curr) = XMALLOC (struct gdbarch_data_registration);
1944 (*curr)->next = NULL;
104c1213 1945 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1946 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
1947 (*curr)->data->pre_init = pre_init;
1948 (*curr)->data->post_init = post_init;
76860b5f 1949 (*curr)->data->init_p = 1;
104c1213
JM
1950 return (*curr)->data;
1951}
1952
030f20e1
AC
1953struct gdbarch_data *
1954gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1955{
1956 return gdbarch_data_register (pre_init, NULL);
1957}
1958
1959struct gdbarch_data *
1960gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1961{
1962 return gdbarch_data_register (NULL, post_init);
1963}
104c1213 1964
0963b4bd 1965/* Create/delete the gdbarch data vector. */
95160752
AC
1966
1967static void
b3cc3077 1968alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1969{
b3cc3077
JB
1970 gdb_assert (gdbarch->data == NULL);
1971 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 1972 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 1973}
3c875b6f 1974
76860b5f 1975/* Initialize the current value of the specified per-architecture
0963b4bd 1976 data-pointer. */
b3cc3077 1977
95160752 1978void
030f20e1
AC
1979deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1980 struct gdbarch_data *data,
1981 void *pointer)
95160752
AC
1982{
1983 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 1984 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 1985 gdb_assert (data->pre_init == NULL);
95160752
AC
1986 gdbarch->data[data->index] = pointer;
1987}
1988
104c1213 1989/* Return the current value of the specified per-architecture
0963b4bd 1990 data-pointer. */
104c1213
JM
1991
1992void *
451fbdda 1993gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 1994{
451fbdda 1995 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 1996 if (gdbarch->data[data->index] == NULL)
76860b5f 1997 {
030f20e1
AC
1998 /* The data-pointer isn't initialized, call init() to get a
1999 value. */
2000 if (data->pre_init != NULL)
2001 /* Mid architecture creation: pass just the obstack, and not
2002 the entire architecture, as that way it isn't possible for
2003 pre-init code to refer to undefined architecture
2004 fields. */
2005 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2006 else if (gdbarch->initialized_p
2007 && data->post_init != NULL)
2008 /* Post architecture creation: pass the entire architecture
2009 (as all fields are valid), but be careful to also detect
2010 recursive references. */
2011 {
2012 gdb_assert (data->init_p);
2013 data->init_p = 0;
2014 gdbarch->data[data->index] = data->post_init (gdbarch);
2015 data->init_p = 1;
2016 }
2017 else
2018 /* The architecture initialization hasn't completed - punt -
2019 hope that the caller knows what they are doing. Once
2020 deprecated_set_gdbarch_data has been initialized, this can be
2021 changed to an internal error. */
2022 return NULL;
76860b5f
AC
2023 gdb_assert (gdbarch->data[data->index] != NULL);
2024 }
451fbdda 2025 return gdbarch->data[data->index];
104c1213
JM
2026}
2027
2028
0963b4bd 2029/* Keep a registry of the architectures known by GDB. */
104c1213 2030
4b9b3959 2031struct gdbarch_registration
104c1213
JM
2032{
2033 enum bfd_architecture bfd_architecture;
2034 gdbarch_init_ftype *init;
4b9b3959 2035 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2036 struct gdbarch_list *arches;
4b9b3959 2037 struct gdbarch_registration *next;
104c1213
JM
2038};
2039
f44c642f 2040static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2041
b4a20239
AC
2042static void
2043append_name (const char ***buf, int *nr, const char *name)
2044{
2045 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2046 (*buf)[*nr] = name;
2047 *nr += 1;
2048}
2049
2050const char **
2051gdbarch_printable_names (void)
2052{
7996bcec 2053 /* Accumulate a list of names based on the registed list of
0963b4bd 2054 architectures. */
7996bcec
AC
2055 int nr_arches = 0;
2056 const char **arches = NULL;
2057 struct gdbarch_registration *rego;
05c547f6 2058
7996bcec
AC
2059 for (rego = gdbarch_registry;
2060 rego != NULL;
2061 rego = rego->next)
b4a20239 2062 {
7996bcec
AC
2063 const struct bfd_arch_info *ap;
2064 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2065 if (ap == NULL)
2066 internal_error (__FILE__, __LINE__,
85c07804 2067 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2068 do
2069 {
2070 append_name (&arches, &nr_arches, ap->printable_name);
2071 ap = ap->next;
2072 }
2073 while (ap != NULL);
b4a20239 2074 }
7996bcec
AC
2075 append_name (&arches, &nr_arches, NULL);
2076 return arches;
b4a20239
AC
2077}
2078
2079
104c1213 2080void
4b9b3959
AC
2081gdbarch_register (enum bfd_architecture bfd_architecture,
2082 gdbarch_init_ftype *init,
2083 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2084{
4b9b3959 2085 struct gdbarch_registration **curr;
104c1213 2086 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2087
ec3d358c 2088 /* Check that BFD recognizes this architecture */
104c1213
JM
2089 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2090 if (bfd_arch_info == NULL)
2091 {
8e65ff28 2092 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2093 _("gdbarch: Attempt to register "
2094 "unknown architecture (%d)"),
8e65ff28 2095 bfd_architecture);
104c1213 2096 }
0963b4bd 2097 /* Check that we haven't seen this architecture before. */
f44c642f 2098 for (curr = &gdbarch_registry;
104c1213
JM
2099 (*curr) != NULL;
2100 curr = &(*curr)->next)
2101 {
2102 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2103 internal_error (__FILE__, __LINE__,
64b9b334 2104 _("gdbarch: Duplicate registration "
0963b4bd 2105 "of architecture (%s)"),
8e65ff28 2106 bfd_arch_info->printable_name);
104c1213
JM
2107 }
2108 /* log it */
2109 if (gdbarch_debug)
30737ed9 2110 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2111 bfd_arch_info->printable_name,
30737ed9 2112 host_address_to_string (init));
104c1213 2113 /* Append it */
4b9b3959 2114 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
2115 (*curr)->bfd_architecture = bfd_architecture;
2116 (*curr)->init = init;
4b9b3959 2117 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2118 (*curr)->arches = NULL;
2119 (*curr)->next = NULL;
4b9b3959
AC
2120}
2121
2122void
2123register_gdbarch_init (enum bfd_architecture bfd_architecture,
2124 gdbarch_init_ftype *init)
2125{
2126 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2127}
104c1213
JM
2128
2129
424163ea 2130/* Look for an architecture using gdbarch_info. */
104c1213
JM
2131
2132struct gdbarch_list *
2133gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2134 const struct gdbarch_info *info)
2135{
2136 for (; arches != NULL; arches = arches->next)
2137 {
2138 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2139 continue;
2140 if (info->byte_order != arches->gdbarch->byte_order)
2141 continue;
4be87837
DJ
2142 if (info->osabi != arches->gdbarch->osabi)
2143 continue;
424163ea
DJ
2144 if (info->target_desc != arches->gdbarch->target_desc)
2145 continue;
104c1213
JM
2146 return arches;
2147 }
2148 return NULL;
2149}
2150
2151
ebdba546 2152/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2153 architecture if needed. Return that new architecture. */
104c1213 2154
59837fe0
UW
2155struct gdbarch *
2156gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2157{
2158 struct gdbarch *new_gdbarch;
4b9b3959 2159 struct gdbarch_registration *rego;
104c1213 2160
b732d07d 2161 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2162 sources: "set ..."; INFOabfd supplied; and the global
2163 defaults. */
2164 gdbarch_info_fill (&info);
4be87837 2165
0963b4bd 2166 /* Must have found some sort of architecture. */
b732d07d 2167 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2168
2169 if (gdbarch_debug)
2170 {
2171 fprintf_unfiltered (gdb_stdlog,
59837fe0 2172 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2173 (info.bfd_arch_info != NULL
2174 ? info.bfd_arch_info->printable_name
2175 : "(null)"));
2176 fprintf_unfiltered (gdb_stdlog,
59837fe0 2177 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2178 info.byte_order,
d7449b42 2179 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2180 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2181 : "default"));
4be87837 2182 fprintf_unfiltered (gdb_stdlog,
59837fe0 2183 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2184 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2185 fprintf_unfiltered (gdb_stdlog,
59837fe0 2186 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2187 host_address_to_string (info.abfd));
104c1213 2188 fprintf_unfiltered (gdb_stdlog,
59837fe0 2189 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2190 host_address_to_string (info.tdep_info));
104c1213
JM
2191 }
2192
ebdba546 2193 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2194 for (rego = gdbarch_registry;
2195 rego != NULL;
2196 rego = rego->next)
2197 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2198 break;
2199 if (rego == NULL)
2200 {
2201 if (gdbarch_debug)
59837fe0 2202 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2203 "No matching architecture\n");
b732d07d
AC
2204 return 0;
2205 }
2206
ebdba546 2207 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2208 new_gdbarch = rego->init (info, rego->arches);
2209
ebdba546
AC
2210 /* Did the tdep code like it? No. Reject the change and revert to
2211 the old architecture. */
104c1213
JM
2212 if (new_gdbarch == NULL)
2213 {
2214 if (gdbarch_debug)
59837fe0 2215 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2216 "Target rejected architecture\n");
2217 return NULL;
104c1213
JM
2218 }
2219
ebdba546
AC
2220 /* Is this a pre-existing architecture (as determined by already
2221 being initialized)? Move it to the front of the architecture
2222 list (keeping the list sorted Most Recently Used). */
2223 if (new_gdbarch->initialized_p)
104c1213 2224 {
ebdba546
AC
2225 struct gdbarch_list **list;
2226 struct gdbarch_list *this;
104c1213 2227 if (gdbarch_debug)
59837fe0 2228 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2229 "Previous architecture %s (%s) selected\n",
2230 host_address_to_string (new_gdbarch),
104c1213 2231 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2232 /* Find the existing arch in the list. */
2233 for (list = &rego->arches;
2234 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2235 list = &(*list)->next);
2236 /* It had better be in the list of architectures. */
2237 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2238 /* Unlink THIS. */
2239 this = (*list);
2240 (*list) = this->next;
2241 /* Insert THIS at the front. */
2242 this->next = rego->arches;
2243 rego->arches = this;
2244 /* Return it. */
2245 return new_gdbarch;
104c1213
JM
2246 }
2247
ebdba546
AC
2248 /* It's a new architecture. */
2249 if (gdbarch_debug)
59837fe0 2250 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2251 "New architecture %s (%s) selected\n",
2252 host_address_to_string (new_gdbarch),
ebdba546
AC
2253 new_gdbarch->bfd_arch_info->printable_name);
2254
2255 /* Insert the new architecture into the front of the architecture
2256 list (keep the list sorted Most Recently Used). */
0f79675b
AC
2257 {
2258 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2259 this->next = rego->arches;
2260 this->gdbarch = new_gdbarch;
2261 rego->arches = this;
2262 }
104c1213 2263
4b9b3959
AC
2264 /* Check that the newly installed architecture is valid. Plug in
2265 any post init values. */
2266 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2267 verify_gdbarch (new_gdbarch);
ebdba546 2268 new_gdbarch->initialized_p = 1;
104c1213 2269
4b9b3959 2270 if (gdbarch_debug)
ebdba546
AC
2271 gdbarch_dump (new_gdbarch, gdb_stdlog);
2272
2273 return new_gdbarch;
2274}
2275
e487cc15 2276/* Make the specified architecture current. */
ebdba546
AC
2277
2278void
59837fe0 2279deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
ebdba546
AC
2280{
2281 gdb_assert (new_gdbarch != NULL);
ebdba546 2282 gdb_assert (new_gdbarch->initialized_p);
1cf3db46 2283 target_gdbarch = new_gdbarch;
383f836e 2284 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2285 registers_changed ();
ebdba546 2286}
104c1213 2287
104c1213 2288extern void _initialize_gdbarch (void);
b4a20239 2289
104c1213 2290void
34620563 2291_initialize_gdbarch (void)
104c1213 2292{
85c07804
AC
2293 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2294Set architecture debugging."), _("\\
2295Show architecture debugging."), _("\\
2296When non-zero, architecture debugging is enabled."),
2297 NULL,
920d2a44 2298 show_gdbarch_debug,
85c07804 2299 &setdebuglist, &showdebuglist);
104c1213
JM
2300}
2301EOF
2302
2303# close things off
2304exec 1>&2
2305#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2306compare_new gdbarch.c
This page took 1.499986 seconds and 4 git commands to generate.