* gas/ppc/e500mc.d: Remove blank line at the end of file.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
9b254dd1 5# Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
0fb0cc75 6# 2008, 2009 Free Software Foundation, Inc.
104c1213
JM
7#
8# This file is part of GDB.
9#
10# This program is free software; you can redistribute it and/or modify
11# it under the terms of the GNU General Public License as published by
50efebf8 12# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
13# (at your option) any later version.
14#
15# This program is distributed in the hope that it will be useful,
16# but WITHOUT ANY WARRANTY; without even the implied warranty of
17# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18# GNU General Public License for more details.
19#
20# You should have received a copy of the GNU General Public License
50efebf8 21# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 22
6e2c7fa1 23# Make certain that the script is not running in an internationalized
d8864532
AC
24# environment.
25LANG=c ; export LANG
1bd316f0 26LC_ALL=c ; export LC_ALL
d8864532
AC
27
28
59233f88
AC
29compare_new ()
30{
31 file=$1
66b43ecb 32 if test ! -r ${file}
59233f88
AC
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 35 elif diff -u ${file} new-${file}
59233f88
AC
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41}
42
43
44# Format of the input table
97030eea 45read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
46
47do_read ()
48{
34620563
AC
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 57 then
34620563
AC
58 continue
59 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 60 then
34620563
AC
61 comment="${comment}
62${line}"
f0d4cc9e 63 else
3d9a5942
AC
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
34620563
AC
71 eval read ${read} <<EOF
72${line}
73EOF
74 IFS="${OFS}"
75
283354d8
AC
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
3d9a5942
AC
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
a72293e2
AC
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
06b25f14 98
ae45cd16
AC
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
34620563 102 "" )
f7968451 103 if test -n "${predefault}"
34620563
AC
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 106 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
34620563
AC
113 fi
114 ;;
ae45cd16 115 * )
1e9f55d0 116 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
117 kill $$
118 exit 1
119 ;;
120 esac
34620563
AC
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
72e74a21 130 if [ -n "${postdefault}" ]
34620563
AC
131 then
132 fallbackdefault="${postdefault}"
72e74a21 133 elif [ -n "${predefault}" ]
34620563
AC
134 then
135 fallbackdefault="${predefault}"
136 else
73d3c16e 137 fallbackdefault="0"
34620563
AC
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
f0d4cc9e 144 fi
34620563 145 done
72e74a21 146 if [ -n "${class}" ]
34620563
AC
147 then
148 true
c0e8c252
AC
149 else
150 false
151 fi
152}
153
104c1213 154
f0d4cc9e
AC
155fallback_default_p ()
156{
72e74a21
JB
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
159}
160
161class_is_variable_p ()
162{
4a5c6a1d
AC
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
f0d4cc9e
AC
167}
168
169class_is_function_p ()
170{
4a5c6a1d
AC
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175}
176
177class_is_multiarch_p ()
178{
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
f0d4cc9e
AC
183}
184
185class_is_predicate_p ()
186{
4a5c6a1d
AC
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
f0d4cc9e
AC
191}
192
193class_is_info_p ()
194{
4a5c6a1d
AC
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
f0d4cc9e
AC
199}
200
201
cff3e48b
JM
202# dump out/verify the doco
203for field in ${read}
204do
205 case ${field} in
206
207 class ) : ;;
c4093a6a 208
c0e8c252
AC
209 # # -> line disable
210 # f -> function
211 # hiding a function
2ada493a
AC
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
c0e8c252
AC
214 # v -> variable
215 # hiding a variable
2ada493a
AC
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
c0e8c252
AC
218 # i -> set from info
219 # hiding something from the ``struct info'' object
4a5c6a1d
AC
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
cff3e48b 224
cff3e48b
JM
225 returntype ) : ;;
226
c0e8c252 227 # For functions, the return type; for variables, the data type
cff3e48b
JM
228
229 function ) : ;;
230
c0e8c252
AC
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
234
235 formal ) : ;;
236
c0e8c252
AC
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
cff3e48b
JM
241
242 actual ) : ;;
243
c0e8c252
AC
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
cff3e48b 247
0b8f9e4d 248 staticdefault ) : ;;
c0e8c252
AC
249
250 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
cff3e48b 254
0b8f9e4d 255 # If STATICDEFAULT is empty, zero is used.
c0e8c252 256
0b8f9e4d 257 predefault ) : ;;
cff3e48b 258
10312cc4
AC
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
cff3e48b 263
0b8f9e4d
AC
264 # If PREDEFAULT is empty, zero is used.
265
10312cc4
AC
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
f0d4cc9e
AC
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
0b8f9e4d
AC
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
10312cc4
AC
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
f0d4cc9e
AC
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
be7811ad 295 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
296 # will contain the current architecture. Care should be
297 # taken.
cff3e48b 298
c4093a6a 299 invalid_p ) : ;;
cff3e48b 300
0b8f9e4d 301 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 302 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
f0d4cc9e
AC
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
313
314 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 315
cff3e48b
JM
316 print ) : ;;
317
2f9b146e
AC
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
c0e8c252 320
0b1553bc
UW
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
cff3e48b 323
283354d8 324 garbage_at_eol ) : ;;
0b8f9e4d 325
283354d8 326 # Catches stray fields.
cff3e48b 327
50248794
AC
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
cff3e48b
JM
331 esac
332done
333
cff3e48b 334
104c1213
JM
335function_list ()
336{
cff3e48b 337 # See below (DOCO) for description of each field
34620563 338 cat <<EOF
be7811ad 339i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 340#
97030eea 341i:int:byte_order:::BFD_ENDIAN_BIG
9d4fde75 342i:int:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 343#
97030eea 344i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 345#
30737ed9 346i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
347
348# The bit byte-order has to do just with numbering of bits in debugging symbols
349# and such. Conceptually, it's quite separate from byte/word byte order.
350v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
66b43ecb
AC
352# Number of bits in a char or unsigned char for the target machine.
353# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 354# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
355#
356# Number of bits in a short or unsigned short for the target machine.
97030eea 357v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 358# Number of bits in an int or unsigned int for the target machine.
97030eea 359v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in a long or unsigned long for the target machine.
97030eea 361v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
362# Number of bits in a long long or unsigned long long for the target
363# machine.
be7811ad 364v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94
AC
365
366# The ABI default bit-size and format for "float", "double", and "long
367# double". These bit/format pairs should eventually be combined into
368# a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
369# Each format describes both the big and little endian layouts (if
370# useful).
456fcf94 371
97030eea 372v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 373v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 374v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 375v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 376v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 377v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 378
52204a0b
DT
379# For most targets, a pointer on the target and its representation as an
380# address in GDB have the same size and "look the same". For such a
17a912b6 381# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
382# / addr_bit will be set from it.
383#
17a912b6 384# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
76e71323
UW
385# also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386# as well.
52204a0b
DT
387#
388# ptr_bit is the size of a pointer on the target
be7811ad 389v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 390# addr_bit is the size of a target address as represented in gdb
be7811ad 391v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 392#
4e409299 393# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 394v:int:char_signed:::1:-1:1
4e409299 395#
97030eea
UW
396F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
398# Function for getting target's idea of a frame pointer. FIXME: GDB's
399# whole scheme for dealing with "frames" and "frame pointers" needs a
400# serious shakedown.
a54fba4c 401m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 402#
97030eea
UW
403M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 405#
97030eea 406v:int:num_regs:::0:-1
0aba1244
EZ
407# This macro gives the number of pseudo-registers that live in the
408# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
409# These pseudo-registers may be aliases for other registers,
410# combinations of other registers, or they may be computed by GDB.
97030eea 411v:int:num_pseudo_regs:::0:0::0
c2169756
AC
412
413# GDB's standard (or well known) register numbers. These can map onto
414# a real register or a pseudo (computed) register or not be defined at
1200cd6e 415# all (-1).
3e8c568d 416# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
417v:int:sp_regnum:::-1:-1::0
418v:int:pc_regnum:::-1:-1::0
419v:int:ps_regnum:::-1:-1::0
420v:int:fp0_regnum:::0:-1::0
88c72b7d 421# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 422m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 423# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 424m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 425# Convert from an sdb register number to an internal gdb register number.
d3f73121 426m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 427# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 428m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 429m:const char *:register_name:int regnr:regnr::0
9c04cab7 430
7b9ee6a8
DJ
431# Return the type of a register specified by the architecture. Only
432# the register cache should call this function directly; others should
433# use "register_type".
97030eea 434M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 435
f3be58bc 436# See gdbint.texinfo, and PUSH_DUMMY_CALL.
669fac23
DJ
437M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 439# deprecated_fp_regnum.
97030eea 440v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 441
a86c5fc9 442# See gdbint.texinfo. See infcall.c.
97030eea
UW
443M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444v:int:call_dummy_location::::AT_ENTRY_POINT::0
445M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 446
97030eea
UW
447m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
450# MAP a GDB RAW register number onto a simulator register number. See
451# also include/...-sim.h.
e7faf938 452m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
453m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
9df628e0 455# setjmp/longjmp support.
97030eea 456F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
104c1213 457#
97030eea 458v:int:believe_pcc_promotion:::::::
104c1213 459#
0abe36f5 460m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
97030eea
UW
461f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0
UW
463# Construct a value representing the contents of register REGNUM in
464# frame FRAME, interpreted as type TYPE. The routine needs to
465# allocate and return a struct value with all value attributes
466# (but not the value contents) filled in.
97030eea 467f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
104c1213 468#
9898f801
UW
469m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 471M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 472
ea42b34a
JB
473# Return the return-value convention that will be used by FUNCTYPE
474# to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475# case the return convention is computed based only on VALTYPE.
476#
477# If READBUF is not NULL, extract the return value and save it in this buffer.
478#
479# If WRITEBUF is not NULL, it contains a return value which will be
480# stored into the appropriate register. This can be used when we want
481# to force the value returned by a function (see the "return" command
482# for instance).
c055b101 483M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
92ad9cd9 484
6093d2eb 485m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 486M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
97030eea 487f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 488m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
97030eea 489M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
490m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
491m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 492v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
493
494# A function can be addressed by either it's "pointer" (possibly a
495# descriptor address) or "entry point" (first executable instruction).
496# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 497# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
498# a simplified subset of that functionality - the function's address
499# corresponds to the "function pointer" and the function's start
500# corresponds to the "function entry point" - and hence is redundant.
501
97030eea 502v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 503
123dc839
DJ
504# Return the remote protocol register number associated with this
505# register. Normally the identity mapping.
97030eea 506m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 507
b2756930 508# Fetch the target specific address used to represent a load module.
97030eea 509F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 510#
97030eea
UW
511v:CORE_ADDR:frame_args_skip:::0:::0
512M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
513M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
514# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
515# frame-base. Enable frame-base before frame-unwind.
97030eea 516F:int:frame_num_args:struct frame_info *frame:frame
104c1213 517#
97030eea
UW
518M:CORE_ADDR:frame_align:CORE_ADDR address:address
519m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
520v:int:frame_red_zone_size
f0d4cc9e 521#
97030eea 522m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
523# On some machines there are bits in addresses which are not really
524# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 525# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
526# we get a "real" address such as one would find in a symbol table.
527# This is used only for addresses of instructions, and even then I'm
528# not sure it's used in all contexts. It exists to deal with there
529# being a few stray bits in the PC which would mislead us, not as some
530# sort of generic thing to handle alignment or segmentation (it's
531# possible it should be in TARGET_READ_PC instead).
24568a2c 532m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
260edbc2 533# It is not at all clear why gdbarch_smash_text_address is not folded into
bf6ae464 534# gdbarch_addr_bits_remove.
24568a2c 535m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
536
537# FIXME/cagney/2001-01-18: This should be split in two. A target method that
538# indicates if the target needs software single step. An ISA method to
539# implement it.
540#
541# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
542# breakpoints using the breakpoint system instead of blatting memory directly
543# (as with rs6000).
64c4637f 544#
e6590a1b
UW
545# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
546# target can single step. If not, then implement single step using breakpoints.
64c4637f 547#
e6590a1b
UW
548# A return value of 1 means that the software_single_step breakpoints
549# were inserted; 0 means they were not.
97030eea 550F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 551
3352ef37
AC
552# Return non-zero if the processor is executing a delay slot and a
553# further single-step is needed before the instruction finishes.
97030eea 554M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 555# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 556# disassembler. Perhaps objdump can handle it?
97030eea
UW
557f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
558f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
559
560
cfd8ab24 561# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
562# evaluates non-zero, this is the address where the debugger will place
563# a step-resume breakpoint to get us past the dynamic linker.
97030eea 564m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 565# Some systems also have trampoline code for returning from shared libs.
e17a4113 566m:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 567
c12260ac
CV
568# A target might have problems with watchpoints as soon as the stack
569# frame of the current function has been destroyed. This mostly happens
570# as the first action in a funtion's epilogue. in_function_epilogue_p()
571# is defined to return a non-zero value if either the given addr is one
572# instruction after the stack destroying instruction up to the trailing
573# return instruction or if we can figure out that the stack frame has
574# already been invalidated regardless of the value of addr. Targets
575# which don't suffer from that problem could just let this functionality
576# untouched.
97030eea 577m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
97030eea
UW
578f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
579f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
97030eea
UW
580v:int:cannot_step_breakpoint:::0:0::0
581v:int:have_nonsteppable_watchpoint:::0:0::0
582F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
583M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
584M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 585# Is a register in a group
97030eea 586m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 587# Fetch the pointer to the ith function argument.
97030eea 588F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
589
590# Return the appropriate register set for a core file section with
591# name SECT_NAME and size SECT_SIZE.
97030eea 592M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
0d5de010 593
959b8724
PA
594# When creating core dumps, some systems encode the PID in addition
595# to the LWP id in core file register section names. In those cases, the
596# "XXX" in ".reg/XXX" is encoded as [LWPID << 16 | PID]. This setting
597# is set to true for such architectures; false if "XXX" represents an LWP
598# or thread id with no special encoding.
599v:int:core_reg_section_encodes_pid:::0:0::0
600
17ea7499
CES
601# Supported register notes in a core file.
602v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
603
de584861
PA
604# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
605# core file into buffer READBUF with length LEN.
97030eea 606M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
de584861 607
28439f5e
PA
608# How the core_stratum layer converts a PTID from a core file to a
609# string.
610M:char *:core_pid_to_str:ptid_t ptid:ptid
611
a78c2d62
UW
612# BFD target to use when generating a core file.
613V:const char *:gcore_bfd_target:::0:0:::gdbarch->gcore_bfd_target
614
0d5de010
DJ
615# If the elements of C++ vtables are in-place function descriptors rather
616# than normal function pointers (which may point to code or a descriptor),
617# set this to one.
97030eea 618v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
619
620# Set if the least significant bit of the delta is used instead of the least
621# significant bit of the pfn for pointers to virtual member functions.
97030eea 622v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
623
624# Advance PC to next instruction in order to skip a permanent breakpoint.
97030eea 625F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
1c772458 626
237fc4c9
PA
627# The maximum length of an instruction on this architecture.
628V:ULONGEST:max_insn_length:::0:0
629
630# Copy the instruction at FROM to TO, and make any adjustments
631# necessary to single-step it at that address.
632#
633# REGS holds the state the thread's registers will have before
634# executing the copied instruction; the PC in REGS will refer to FROM,
635# not the copy at TO. The caller should update it to point at TO later.
636#
637# Return a pointer to data of the architecture's choice to be passed
638# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
639# the instruction's effects have been completely simulated, with the
640# resulting state written back to REGS.
641#
642# For a general explanation of displaced stepping and how GDB uses it,
643# see the comments in infrun.c.
644#
645# The TO area is only guaranteed to have space for
646# gdbarch_max_insn_length (arch) bytes, so this function must not
647# write more bytes than that to that area.
648#
649# If you do not provide this function, GDB assumes that the
650# architecture does not support displaced stepping.
651#
652# If your architecture doesn't need to adjust instructions before
653# single-stepping them, consider using simple_displaced_step_copy_insn
654# here.
655M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
656
657# Fix up the state resulting from successfully single-stepping a
658# displaced instruction, to give the result we would have gotten from
659# stepping the instruction in its original location.
660#
661# REGS is the register state resulting from single-stepping the
662# displaced instruction.
663#
664# CLOSURE is the result from the matching call to
665# gdbarch_displaced_step_copy_insn.
666#
667# If you provide gdbarch_displaced_step_copy_insn.but not this
668# function, then GDB assumes that no fixup is needed after
669# single-stepping the instruction.
670#
671# For a general explanation of displaced stepping and how GDB uses it,
672# see the comments in infrun.c.
673M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
674
675# Free a closure returned by gdbarch_displaced_step_copy_insn.
676#
677# If you provide gdbarch_displaced_step_copy_insn, you must provide
678# this function as well.
679#
680# If your architecture uses closures that don't need to be freed, then
681# you can use simple_displaced_step_free_closure here.
682#
683# For a general explanation of displaced stepping and how GDB uses it,
684# see the comments in infrun.c.
685m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
686
687# Return the address of an appropriate place to put displaced
688# instructions while we step over them. There need only be one such
689# place, since we're only stepping one thread over a breakpoint at a
690# time.
691#
692# For a general explanation of displaced stepping and how GDB uses it,
693# see the comments in infrun.c.
694m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
695
1c772458 696# Refresh overlay mapped state for section OSECT.
97030eea 697F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 698
97030eea 699M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
700
701# Handle special encoding of static variables in stabs debug info.
97030eea 702F:char *:static_transform_name:char *name:name
203c3895 703# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 704v:int:sofun_address_maybe_missing:::0:0::0
1cded358 705
0508c3ec
HZ
706# Parse the instruction at ADDR storing in the record execution log
707# the registers REGCACHE and memory ranges that will be affected when
708# the instruction executes, along with their current values.
709# Return -1 if something goes wrong, 0 otherwise.
710M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
711
1cded358
AR
712# Signal translation: translate inferior's signal (host's) number into
713# GDB's representation.
714m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
715# Signal translation: translate GDB's signal number into inferior's host
716# signal number.
717m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
60c5725c 718
4aa995e1
PA
719# Extra signal info inspection.
720#
721# Return a type suitable to inspect extra signal information.
722M:struct type *:get_siginfo_type:void:
723
60c5725c
DJ
724# Record architecture-specific information from the symbol table.
725M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 726
a96d9b2e
SDJ
727# Function for the 'catch syscall' feature.
728
729# Get architecture-specific system calls information from registers.
730M:LONGEST:get_syscall_number:ptid_t ptid:ptid
731
50c71eaf
PA
732# True if the list of shared libraries is one and only for all
733# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
734# This usually means that all processes, although may or may not share
735# an address space, will see the same set of symbols at the same
736# addresses.
50c71eaf 737v:int:has_global_solist:::0:0::0
2567c7d9
PA
738
739# On some targets, even though each inferior has its own private
740# address space, the debug interface takes care of making breakpoints
741# visible to all address spaces automatically. For such cases,
742# this property should be set to true.
743v:int:has_global_breakpoints:::0:0::0
104c1213 744EOF
104c1213
JM
745}
746
0b8f9e4d
AC
747#
748# The .log file
749#
750exec > new-gdbarch.log
34620563 751function_list | while do_read
0b8f9e4d
AC
752do
753 cat <<EOF
2f9b146e 754${class} ${returntype} ${function} ($formal)
104c1213 755EOF
3d9a5942
AC
756 for r in ${read}
757 do
758 eval echo \"\ \ \ \ ${r}=\${${r}}\"
759 done
f0d4cc9e 760 if class_is_predicate_p && fallback_default_p
0b8f9e4d 761 then
66d659b1 762 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
763 kill $$
764 exit 1
765 fi
72e74a21 766 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
767 then
768 echo "Error: postdefault is useless when invalid_p=0" 1>&2
769 kill $$
770 exit 1
771 fi
a72293e2
AC
772 if class_is_multiarch_p
773 then
774 if class_is_predicate_p ; then :
775 elif test "x${predefault}" = "x"
776 then
2f9b146e 777 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
778 kill $$
779 exit 1
780 fi
781 fi
3d9a5942 782 echo ""
0b8f9e4d
AC
783done
784
785exec 1>&2
786compare_new gdbarch.log
787
104c1213
JM
788
789copyright ()
790{
791cat <<EOF
59233f88
AC
792/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
793
104c1213 794/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 795
50efebf8 796 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
424163ea 797 Free Software Foundation, Inc.
104c1213
JM
798
799 This file is part of GDB.
800
801 This program is free software; you can redistribute it and/or modify
802 it under the terms of the GNU General Public License as published by
50efebf8 803 the Free Software Foundation; either version 3 of the License, or
104c1213 804 (at your option) any later version.
50efebf8 805
104c1213
JM
806 This program is distributed in the hope that it will be useful,
807 but WITHOUT ANY WARRANTY; without even the implied warranty of
808 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
809 GNU General Public License for more details.
50efebf8 810
104c1213 811 You should have received a copy of the GNU General Public License
50efebf8 812 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 813
104c1213
JM
814/* This file was created with the aid of \`\`gdbarch.sh''.
815
52204a0b 816 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
817 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
818 against the existing \`\`gdbarch.[hc]''. Any differences found
819 being reported.
820
821 If editing this file, please also run gdbarch.sh and merge any
52204a0b 822 changes into that script. Conversely, when making sweeping changes
104c1213
JM
823 to this file, modifying gdbarch.sh and using its output may prove
824 easier. */
825
826EOF
827}
828
829#
830# The .h file
831#
832
833exec > new-gdbarch.h
834copyright
835cat <<EOF
836#ifndef GDBARCH_H
837#define GDBARCH_H
838
da3331ec
AC
839struct floatformat;
840struct ui_file;
104c1213
JM
841struct frame_info;
842struct value;
b6af0555 843struct objfile;
1c772458 844struct obj_section;
a2cf933a 845struct minimal_symbol;
049ee0e4 846struct regcache;
b59ff9d5 847struct reggroup;
6ce6d90f 848struct regset;
a89aa300 849struct disassemble_info;
e2d0e7eb 850struct target_ops;
030f20e1 851struct obstack;
8181d85f 852struct bp_target_info;
424163ea 853struct target_desc;
237fc4c9 854struct displaced_step_closure;
17ea7499 855struct core_regset_section;
a96d9b2e 856struct syscall;
104c1213 857
9e2ace22
JB
858/* The architecture associated with the connection to the target.
859
860 The architecture vector provides some information that is really
861 a property of the target: The layout of certain packets, for instance;
862 or the solib_ops vector. Etc. To differentiate architecture accesses
863 to per-target properties from per-thread/per-frame/per-objfile properties,
864 accesses to per-target properties should be made through target_gdbarch.
865
866 Eventually, when support for multiple targets is implemented in
867 GDB, this global should be made target-specific. */
1cf3db46 868extern struct gdbarch *target_gdbarch;
104c1213
JM
869EOF
870
871# function typedef's
3d9a5942
AC
872printf "\n"
873printf "\n"
874printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 875function_list | while do_read
104c1213 876do
2ada493a
AC
877 if class_is_info_p
878 then
3d9a5942
AC
879 printf "\n"
880 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
881 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 882 fi
104c1213
JM
883done
884
885# function typedef's
3d9a5942
AC
886printf "\n"
887printf "\n"
888printf "/* The following are initialized by the target dependent code. */\n"
34620563 889function_list | while do_read
104c1213 890do
72e74a21 891 if [ -n "${comment}" ]
34620563
AC
892 then
893 echo "${comment}" | sed \
894 -e '2 s,#,/*,' \
895 -e '3,$ s,#, ,' \
896 -e '$ s,$, */,'
897 fi
412d5987
AC
898
899 if class_is_predicate_p
2ada493a 900 then
412d5987
AC
901 printf "\n"
902 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 903 fi
2ada493a
AC
904 if class_is_variable_p
905 then
3d9a5942
AC
906 printf "\n"
907 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
908 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
909 fi
910 if class_is_function_p
911 then
3d9a5942 912 printf "\n"
72e74a21 913 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
914 then
915 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
916 elif class_is_multiarch_p
917 then
918 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
919 else
920 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
921 fi
72e74a21 922 if [ "x${formal}" = "xvoid" ]
104c1213 923 then
3d9a5942 924 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 925 else
3d9a5942 926 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 927 fi
3d9a5942 928 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 929 fi
104c1213
JM
930done
931
932# close it off
933cat <<EOF
934
a96d9b2e
SDJ
935/* Definition for an unknown syscall, used basically in error-cases. */
936#define UNKNOWN_SYSCALL (-1)
937
104c1213
JM
938extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
939
940
941/* Mechanism for co-ordinating the selection of a specific
942 architecture.
943
944 GDB targets (*-tdep.c) can register an interest in a specific
945 architecture. Other GDB components can register a need to maintain
946 per-architecture data.
947
948 The mechanisms below ensures that there is only a loose connection
949 between the set-architecture command and the various GDB
0fa6923a 950 components. Each component can independently register their need
104c1213
JM
951 to maintain architecture specific data with gdbarch.
952
953 Pragmatics:
954
955 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
956 didn't scale.
957
958 The more traditional mega-struct containing architecture specific
959 data for all the various GDB components was also considered. Since
0fa6923a 960 GDB is built from a variable number of (fairly independent)
104c1213
JM
961 components it was determined that the global aproach was not
962 applicable. */
963
964
965/* Register a new architectural family with GDB.
966
967 Register support for the specified ARCHITECTURE with GDB. When
968 gdbarch determines that the specified architecture has been
969 selected, the corresponding INIT function is called.
970
971 --
972
973 The INIT function takes two parameters: INFO which contains the
974 information available to gdbarch about the (possibly new)
975 architecture; ARCHES which is a list of the previously created
976 \`\`struct gdbarch'' for this architecture.
977
0f79675b 978 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 979 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
980
981 The ARCHES parameter is a linked list (sorted most recently used)
982 of all the previously created architures for this architecture
983 family. The (possibly NULL) ARCHES->gdbarch can used to access
984 values from the previously selected architecture for this
59837fe0 985 architecture family.
104c1213
JM
986
987 The INIT function shall return any of: NULL - indicating that it
ec3d358c 988 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
989 gdbarch'' from the ARCHES list - indicating that the new
990 architecture is just a synonym for an earlier architecture (see
991 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
992 - that describes the selected architecture (see gdbarch_alloc()).
993
994 The DUMP_TDEP function shall print out all target specific values.
995 Care should be taken to ensure that the function works in both the
996 multi-arch and non- multi-arch cases. */
104c1213
JM
997
998struct gdbarch_list
999{
1000 struct gdbarch *gdbarch;
1001 struct gdbarch_list *next;
1002};
1003
1004struct gdbarch_info
1005{
104c1213
JM
1006 /* Use default: NULL (ZERO). */
1007 const struct bfd_arch_info *bfd_arch_info;
1008
428721aa 1009 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
1010 int byte_order;
1011
9d4fde75
SS
1012 int byte_order_for_code;
1013
104c1213
JM
1014 /* Use default: NULL (ZERO). */
1015 bfd *abfd;
1016
1017 /* Use default: NULL (ZERO). */
1018 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1019
1020 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1021 enum gdb_osabi osabi;
424163ea
DJ
1022
1023 /* Use default: NULL (ZERO). */
1024 const struct target_desc *target_desc;
104c1213
JM
1025};
1026
1027typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1028typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1029
4b9b3959 1030/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1031extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1032
4b9b3959
AC
1033extern void gdbarch_register (enum bfd_architecture architecture,
1034 gdbarch_init_ftype *,
1035 gdbarch_dump_tdep_ftype *);
1036
104c1213 1037
b4a20239
AC
1038/* Return a freshly allocated, NULL terminated, array of the valid
1039 architecture names. Since architectures are registered during the
1040 _initialize phase this function only returns useful information
1041 once initialization has been completed. */
1042
1043extern const char **gdbarch_printable_names (void);
1044
1045
104c1213
JM
1046/* Helper function. Search the list of ARCHES for a GDBARCH that
1047 matches the information provided by INFO. */
1048
424163ea 1049extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1050
1051
1052/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1053 basic initialization using values obtained from the INFO and TDEP
104c1213
JM
1054 parameters. set_gdbarch_*() functions are called to complete the
1055 initialization of the object. */
1056
1057extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1058
1059
4b9b3959
AC
1060/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1061 It is assumed that the caller freeds the \`\`struct
1062 gdbarch_tdep''. */
1063
058f20d5
JB
1064extern void gdbarch_free (struct gdbarch *);
1065
1066
aebd7893
AC
1067/* Helper function. Allocate memory from the \`\`struct gdbarch''
1068 obstack. The memory is freed when the corresponding architecture
1069 is also freed. */
1070
1071extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1072#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1073#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1074
1075
b732d07d 1076/* Helper function. Force an update of the current architecture.
104c1213 1077
b732d07d
AC
1078 The actual architecture selected is determined by INFO, \`\`(gdb) set
1079 architecture'' et.al., the existing architecture and BFD's default
1080 architecture. INFO should be initialized to zero and then selected
1081 fields should be updated.
104c1213 1082
16f33e29
AC
1083 Returns non-zero if the update succeeds */
1084
1085extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1086
1087
ebdba546
AC
1088/* Helper function. Find an architecture matching info.
1089
1090 INFO should be initialized using gdbarch_info_init, relevant fields
1091 set, and then finished using gdbarch_info_fill.
1092
1093 Returns the corresponding architecture, or NULL if no matching
59837fe0 1094 architecture was found. */
ebdba546
AC
1095
1096extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1097
1098
59837fe0 1099/* Helper function. Set the global "target_gdbarch" to "gdbarch".
ebdba546
AC
1100
1101 FIXME: kettenis/20031124: Of the functions that follow, only
1102 gdbarch_from_bfd is supposed to survive. The others will
1103 dissappear since in the future GDB will (hopefully) be truly
1104 multi-arch. However, for now we're still stuck with the concept of
1105 a single active architecture. */
1106
59837fe0 1107extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
ebdba546 1108
104c1213
JM
1109
1110/* Register per-architecture data-pointer.
1111
1112 Reserve space for a per-architecture data-pointer. An identifier
1113 for the reserved data-pointer is returned. That identifer should
95160752 1114 be saved in a local static variable.
104c1213 1115
fcc1c85c
AC
1116 Memory for the per-architecture data shall be allocated using
1117 gdbarch_obstack_zalloc. That memory will be deleted when the
1118 corresponding architecture object is deleted.
104c1213 1119
95160752
AC
1120 When a previously created architecture is re-selected, the
1121 per-architecture data-pointer for that previous architecture is
76860b5f 1122 restored. INIT() is not re-called.
104c1213
JM
1123
1124 Multiple registrarants for any architecture are allowed (and
1125 strongly encouraged). */
1126
95160752 1127struct gdbarch_data;
104c1213 1128
030f20e1
AC
1129typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1130extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1131typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1132extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1133extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1134 struct gdbarch_data *data,
1135 void *pointer);
104c1213 1136
451fbdda 1137extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1138
1139
0fa6923a 1140/* Set the dynamic target-system-dependent parameters (architecture,
104c1213
JM
1141 byte-order, ...) using information found in the BFD */
1142
1143extern void set_gdbarch_from_file (bfd *);
1144
1145
e514a9d6
JM
1146/* Initialize the current architecture to the "first" one we find on
1147 our list. */
1148
1149extern void initialize_current_architecture (void);
1150
104c1213
JM
1151/* gdbarch trace variable */
1152extern int gdbarch_debug;
1153
4b9b3959 1154extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1155
1156#endif
1157EOF
1158exec 1>&2
1159#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1160compare_new gdbarch.h
104c1213
JM
1161
1162
1163#
1164# C file
1165#
1166
1167exec > new-gdbarch.c
1168copyright
1169cat <<EOF
1170
1171#include "defs.h"
7355ddba 1172#include "arch-utils.h"
104c1213 1173
104c1213 1174#include "gdbcmd.h"
faaf634c 1175#include "inferior.h"
104c1213
JM
1176#include "symcat.h"
1177
f0d4cc9e 1178#include "floatformat.h"
104c1213 1179
95160752 1180#include "gdb_assert.h"
b66d6d2e 1181#include "gdb_string.h"
b59ff9d5 1182#include "reggroups.h"
4be87837 1183#include "osabi.h"
aebd7893 1184#include "gdb_obstack.h"
383f836e 1185#include "observer.h"
a3ecef73 1186#include "regcache.h"
95160752 1187
104c1213
JM
1188/* Static function declarations */
1189
b3cc3077 1190static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1191
104c1213
JM
1192/* Non-zero if we want to trace architecture code. */
1193
1194#ifndef GDBARCH_DEBUG
1195#define GDBARCH_DEBUG 0
1196#endif
1197int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1198static void
1199show_gdbarch_debug (struct ui_file *file, int from_tty,
1200 struct cmd_list_element *c, const char *value)
1201{
1202 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1203}
104c1213 1204
456fcf94 1205static const char *
8da61cc4 1206pformat (const struct floatformat **format)
456fcf94
AC
1207{
1208 if (format == NULL)
1209 return "(null)";
1210 else
8da61cc4
DJ
1211 /* Just print out one of them - this is only for diagnostics. */
1212 return format[0]->name;
456fcf94
AC
1213}
1214
104c1213
JM
1215EOF
1216
1217# gdbarch open the gdbarch object
3d9a5942
AC
1218printf "\n"
1219printf "/* Maintain the struct gdbarch object */\n"
1220printf "\n"
1221printf "struct gdbarch\n"
1222printf "{\n"
76860b5f
AC
1223printf " /* Has this architecture been fully initialized? */\n"
1224printf " int initialized_p;\n"
aebd7893
AC
1225printf "\n"
1226printf " /* An obstack bound to the lifetime of the architecture. */\n"
1227printf " struct obstack *obstack;\n"
1228printf "\n"
3d9a5942 1229printf " /* basic architectural information */\n"
34620563 1230function_list | while do_read
104c1213 1231do
2ada493a
AC
1232 if class_is_info_p
1233 then
3d9a5942 1234 printf " ${returntype} ${function};\n"
2ada493a 1235 fi
104c1213 1236done
3d9a5942
AC
1237printf "\n"
1238printf " /* target specific vector. */\n"
1239printf " struct gdbarch_tdep *tdep;\n"
1240printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1241printf "\n"
1242printf " /* per-architecture data-pointers */\n"
95160752 1243printf " unsigned nr_data;\n"
3d9a5942
AC
1244printf " void **data;\n"
1245printf "\n"
1246printf " /* per-architecture swap-regions */\n"
1247printf " struct gdbarch_swap *swap;\n"
1248printf "\n"
104c1213
JM
1249cat <<EOF
1250 /* Multi-arch values.
1251
1252 When extending this structure you must:
1253
1254 Add the field below.
1255
1256 Declare set/get functions and define the corresponding
1257 macro in gdbarch.h.
1258
1259 gdbarch_alloc(): If zero/NULL is not a suitable default,
1260 initialize the new field.
1261
1262 verify_gdbarch(): Confirm that the target updated the field
1263 correctly.
1264
7e73cedf 1265 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1266 field is dumped out
1267
c0e8c252 1268 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1269 variable (base values on the host's c-type system).
1270
1271 get_gdbarch(): Implement the set/get functions (probably using
1272 the macro's as shortcuts).
1273
1274 */
1275
1276EOF
34620563 1277function_list | while do_read
104c1213 1278do
2ada493a
AC
1279 if class_is_variable_p
1280 then
3d9a5942 1281 printf " ${returntype} ${function};\n"
2ada493a
AC
1282 elif class_is_function_p
1283 then
2f9b146e 1284 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1285 fi
104c1213 1286done
3d9a5942 1287printf "};\n"
104c1213
JM
1288
1289# A pre-initialized vector
3d9a5942
AC
1290printf "\n"
1291printf "\n"
104c1213
JM
1292cat <<EOF
1293/* The default architecture uses host values (for want of a better
1294 choice). */
1295EOF
3d9a5942
AC
1296printf "\n"
1297printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1298printf "\n"
1299printf "struct gdbarch startup_gdbarch =\n"
1300printf "{\n"
76860b5f 1301printf " 1, /* Always initialized. */\n"
aebd7893 1302printf " NULL, /* The obstack. */\n"
3d9a5942 1303printf " /* basic architecture information */\n"
4b9b3959 1304function_list | while do_read
104c1213 1305do
2ada493a
AC
1306 if class_is_info_p
1307 then
ec5cbaec 1308 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1309 fi
104c1213
JM
1310done
1311cat <<EOF
4b9b3959
AC
1312 /* target specific vector and its dump routine */
1313 NULL, NULL,
104c1213
JM
1314 /*per-architecture data-pointers and swap regions */
1315 0, NULL, NULL,
1316 /* Multi-arch values */
1317EOF
34620563 1318function_list | while do_read
104c1213 1319do
2ada493a
AC
1320 if class_is_function_p || class_is_variable_p
1321 then
ec5cbaec 1322 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1323 fi
104c1213
JM
1324done
1325cat <<EOF
c0e8c252 1326 /* startup_gdbarch() */
104c1213 1327};
4b9b3959 1328
1cf3db46 1329struct gdbarch *target_gdbarch = &startup_gdbarch;
104c1213
JM
1330EOF
1331
1332# Create a new gdbarch struct
104c1213 1333cat <<EOF
7de2341d 1334
66b43ecb 1335/* Create a new \`\`struct gdbarch'' based on information provided by
104c1213
JM
1336 \`\`struct gdbarch_info''. */
1337EOF
3d9a5942 1338printf "\n"
104c1213
JM
1339cat <<EOF
1340struct gdbarch *
1341gdbarch_alloc (const struct gdbarch_info *info,
1342 struct gdbarch_tdep *tdep)
1343{
be7811ad 1344 struct gdbarch *gdbarch;
aebd7893
AC
1345
1346 /* Create an obstack for allocating all the per-architecture memory,
1347 then use that to allocate the architecture vector. */
1348 struct obstack *obstack = XMALLOC (struct obstack);
1349 obstack_init (obstack);
be7811ad
MD
1350 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1351 memset (gdbarch, 0, sizeof (*gdbarch));
1352 gdbarch->obstack = obstack;
85de9627 1353
be7811ad 1354 alloc_gdbarch_data (gdbarch);
85de9627 1355
be7811ad 1356 gdbarch->tdep = tdep;
104c1213 1357EOF
3d9a5942 1358printf "\n"
34620563 1359function_list | while do_read
104c1213 1360do
2ada493a
AC
1361 if class_is_info_p
1362 then
be7811ad 1363 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1364 fi
104c1213 1365done
3d9a5942
AC
1366printf "\n"
1367printf " /* Force the explicit initialization of these. */\n"
34620563 1368function_list | while do_read
104c1213 1369do
2ada493a
AC
1370 if class_is_function_p || class_is_variable_p
1371 then
72e74a21 1372 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1373 then
be7811ad 1374 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1375 fi
2ada493a 1376 fi
104c1213
JM
1377done
1378cat <<EOF
1379 /* gdbarch_alloc() */
1380
be7811ad 1381 return gdbarch;
104c1213
JM
1382}
1383EOF
1384
058f20d5 1385# Free a gdbarch struct.
3d9a5942
AC
1386printf "\n"
1387printf "\n"
058f20d5 1388cat <<EOF
aebd7893
AC
1389/* Allocate extra space using the per-architecture obstack. */
1390
1391void *
1392gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1393{
1394 void *data = obstack_alloc (arch->obstack, size);
1395 memset (data, 0, size);
1396 return data;
1397}
1398
1399
058f20d5
JB
1400/* Free a gdbarch struct. This should never happen in normal
1401 operation --- once you've created a gdbarch, you keep it around.
1402 However, if an architecture's init function encounters an error
1403 building the structure, it may need to clean up a partially
1404 constructed gdbarch. */
4b9b3959 1405
058f20d5
JB
1406void
1407gdbarch_free (struct gdbarch *arch)
1408{
aebd7893 1409 struct obstack *obstack;
95160752 1410 gdb_assert (arch != NULL);
aebd7893
AC
1411 gdb_assert (!arch->initialized_p);
1412 obstack = arch->obstack;
1413 obstack_free (obstack, 0); /* Includes the ARCH. */
1414 xfree (obstack);
058f20d5
JB
1415}
1416EOF
1417
104c1213 1418# verify a new architecture
104c1213 1419cat <<EOF
db446970
AC
1420
1421
1422/* Ensure that all values in a GDBARCH are reasonable. */
1423
104c1213 1424static void
be7811ad 1425verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1426{
f16a1923
AC
1427 struct ui_file *log;
1428 struct cleanup *cleanups;
759ef836 1429 long length;
f16a1923 1430 char *buf;
f16a1923
AC
1431 log = mem_fileopen ();
1432 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1433 /* fundamental */
be7811ad 1434 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1435 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1436 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1437 fprintf_unfiltered (log, "\n\tbfd_arch_info");
104c1213
JM
1438 /* Check those that need to be defined for the given multi-arch level. */
1439EOF
34620563 1440function_list | while do_read
104c1213 1441do
2ada493a
AC
1442 if class_is_function_p || class_is_variable_p
1443 then
72e74a21 1444 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1445 then
3d9a5942 1446 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1447 elif class_is_predicate_p
1448 then
3d9a5942 1449 printf " /* Skip verify of ${function}, has predicate */\n"
f0d4cc9e 1450 # FIXME: See do_read for potential simplification
72e74a21 1451 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1452 then
3d9a5942 1453 printf " if (${invalid_p})\n"
be7811ad 1454 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1455 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1456 then
be7811ad
MD
1457 printf " if (gdbarch->${function} == ${predefault})\n"
1458 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1459 elif [ -n "${postdefault}" ]
f0d4cc9e 1460 then
be7811ad
MD
1461 printf " if (gdbarch->${function} == 0)\n"
1462 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1463 elif [ -n "${invalid_p}" ]
104c1213 1464 then
4d60522e 1465 printf " if (${invalid_p})\n"
f16a1923 1466 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1467 elif [ -n "${predefault}" ]
104c1213 1468 then
be7811ad 1469 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1470 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1471 fi
2ada493a 1472 fi
104c1213
JM
1473done
1474cat <<EOF
759ef836 1475 buf = ui_file_xstrdup (log, &length);
f16a1923 1476 make_cleanup (xfree, buf);
759ef836 1477 if (length > 0)
f16a1923 1478 internal_error (__FILE__, __LINE__,
85c07804 1479 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1480 buf);
1481 do_cleanups (cleanups);
104c1213
JM
1482}
1483EOF
1484
1485# dump the structure
3d9a5942
AC
1486printf "\n"
1487printf "\n"
104c1213 1488cat <<EOF
4b9b3959
AC
1489/* Print out the details of the current architecture. */
1490
104c1213 1491void
be7811ad 1492gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1493{
b78960be 1494 const char *gdb_nm_file = "<not-defined>";
b78960be
AC
1495#if defined (GDB_NM_FILE)
1496 gdb_nm_file = GDB_NM_FILE;
1497#endif
1498 fprintf_unfiltered (file,
1499 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1500 gdb_nm_file);
104c1213 1501EOF
97030eea 1502function_list | sort -t: -k 3 | while do_read
104c1213 1503do
1e9f55d0
AC
1504 # First the predicate
1505 if class_is_predicate_p
1506 then
7996bcec 1507 printf " fprintf_unfiltered (file,\n"
48f7351b 1508 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1509 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1510 fi
48f7351b 1511 # Print the corresponding value.
283354d8 1512 if class_is_function_p
4b9b3959 1513 then
7996bcec 1514 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1515 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1516 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1517 else
48f7351b 1518 # It is a variable
2f9b146e
AC
1519 case "${print}:${returntype}" in
1520 :CORE_ADDR )
0b1553bc
UW
1521 fmt="%s"
1522 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1523 ;;
2f9b146e 1524 :* )
48f7351b 1525 fmt="%s"
623d3eb1 1526 print="plongest (gdbarch->${function})"
48f7351b
AC
1527 ;;
1528 * )
2f9b146e 1529 fmt="%s"
48f7351b
AC
1530 ;;
1531 esac
3d9a5942 1532 printf " fprintf_unfiltered (file,\n"
48f7351b 1533 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1534 printf " ${print});\n"
2ada493a 1535 fi
104c1213 1536done
381323f4 1537cat <<EOF
be7811ad
MD
1538 if (gdbarch->dump_tdep != NULL)
1539 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1540}
1541EOF
104c1213
JM
1542
1543
1544# GET/SET
3d9a5942 1545printf "\n"
104c1213
JM
1546cat <<EOF
1547struct gdbarch_tdep *
1548gdbarch_tdep (struct gdbarch *gdbarch)
1549{
1550 if (gdbarch_debug >= 2)
3d9a5942 1551 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1552 return gdbarch->tdep;
1553}
1554EOF
3d9a5942 1555printf "\n"
34620563 1556function_list | while do_read
104c1213 1557do
2ada493a
AC
1558 if class_is_predicate_p
1559 then
3d9a5942
AC
1560 printf "\n"
1561 printf "int\n"
1562 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1563 printf "{\n"
8de9bdc4 1564 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1565 printf " return ${predicate};\n"
3d9a5942 1566 printf "}\n"
2ada493a
AC
1567 fi
1568 if class_is_function_p
1569 then
3d9a5942
AC
1570 printf "\n"
1571 printf "${returntype}\n"
72e74a21 1572 if [ "x${formal}" = "xvoid" ]
104c1213 1573 then
3d9a5942 1574 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1575 else
3d9a5942 1576 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1577 fi
3d9a5942 1578 printf "{\n"
8de9bdc4 1579 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1580 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1581 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1582 then
1583 # Allow a call to a function with a predicate.
956ac328 1584 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1585 fi
3d9a5942
AC
1586 printf " if (gdbarch_debug >= 2)\n"
1587 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1588 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1589 then
1590 if class_is_multiarch_p
1591 then
1592 params="gdbarch"
1593 else
1594 params=""
1595 fi
1596 else
1597 if class_is_multiarch_p
1598 then
1599 params="gdbarch, ${actual}"
1600 else
1601 params="${actual}"
1602 fi
1603 fi
72e74a21 1604 if [ "x${returntype}" = "xvoid" ]
104c1213 1605 then
4a5c6a1d 1606 printf " gdbarch->${function} (${params});\n"
104c1213 1607 else
4a5c6a1d 1608 printf " return gdbarch->${function} (${params});\n"
104c1213 1609 fi
3d9a5942
AC
1610 printf "}\n"
1611 printf "\n"
1612 printf "void\n"
1613 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1614 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1615 printf "{\n"
1616 printf " gdbarch->${function} = ${function};\n"
1617 printf "}\n"
2ada493a
AC
1618 elif class_is_variable_p
1619 then
3d9a5942
AC
1620 printf "\n"
1621 printf "${returntype}\n"
1622 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1623 printf "{\n"
8de9bdc4 1624 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1625 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1626 then
3d9a5942 1627 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1628 elif [ -n "${invalid_p}" ]
104c1213 1629 then
956ac328
AC
1630 printf " /* Check variable is valid. */\n"
1631 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1632 elif [ -n "${predefault}" ]
104c1213 1633 then
956ac328
AC
1634 printf " /* Check variable changed from pre-default. */\n"
1635 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1636 fi
3d9a5942
AC
1637 printf " if (gdbarch_debug >= 2)\n"
1638 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1639 printf " return gdbarch->${function};\n"
1640 printf "}\n"
1641 printf "\n"
1642 printf "void\n"
1643 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1644 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1645 printf "{\n"
1646 printf " gdbarch->${function} = ${function};\n"
1647 printf "}\n"
2ada493a
AC
1648 elif class_is_info_p
1649 then
3d9a5942
AC
1650 printf "\n"
1651 printf "${returntype}\n"
1652 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1653 printf "{\n"
8de9bdc4 1654 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1655 printf " if (gdbarch_debug >= 2)\n"
1656 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1657 printf " return gdbarch->${function};\n"
1658 printf "}\n"
2ada493a 1659 fi
104c1213
JM
1660done
1661
1662# All the trailing guff
1663cat <<EOF
1664
1665
f44c642f 1666/* Keep a registry of per-architecture data-pointers required by GDB
104c1213
JM
1667 modules. */
1668
1669struct gdbarch_data
1670{
95160752 1671 unsigned index;
76860b5f 1672 int init_p;
030f20e1
AC
1673 gdbarch_data_pre_init_ftype *pre_init;
1674 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1675};
1676
1677struct gdbarch_data_registration
1678{
104c1213
JM
1679 struct gdbarch_data *data;
1680 struct gdbarch_data_registration *next;
1681};
1682
f44c642f 1683struct gdbarch_data_registry
104c1213 1684{
95160752 1685 unsigned nr;
104c1213
JM
1686 struct gdbarch_data_registration *registrations;
1687};
1688
f44c642f 1689struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1690{
1691 0, NULL,
1692};
1693
030f20e1
AC
1694static struct gdbarch_data *
1695gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1696 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
1697{
1698 struct gdbarch_data_registration **curr;
76860b5f 1699 /* Append the new registraration. */
f44c642f 1700 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1701 (*curr) != NULL;
1702 curr = &(*curr)->next);
1703 (*curr) = XMALLOC (struct gdbarch_data_registration);
1704 (*curr)->next = NULL;
104c1213 1705 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1706 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
1707 (*curr)->data->pre_init = pre_init;
1708 (*curr)->data->post_init = post_init;
76860b5f 1709 (*curr)->data->init_p = 1;
104c1213
JM
1710 return (*curr)->data;
1711}
1712
030f20e1
AC
1713struct gdbarch_data *
1714gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1715{
1716 return gdbarch_data_register (pre_init, NULL);
1717}
1718
1719struct gdbarch_data *
1720gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1721{
1722 return gdbarch_data_register (NULL, post_init);
1723}
104c1213 1724
b3cc3077 1725/* Create/delete the gdbarch data vector. */
95160752
AC
1726
1727static void
b3cc3077 1728alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1729{
b3cc3077
JB
1730 gdb_assert (gdbarch->data == NULL);
1731 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 1732 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 1733}
3c875b6f 1734
76860b5f 1735/* Initialize the current value of the specified per-architecture
b3cc3077
JB
1736 data-pointer. */
1737
95160752 1738void
030f20e1
AC
1739deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1740 struct gdbarch_data *data,
1741 void *pointer)
95160752
AC
1742{
1743 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 1744 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 1745 gdb_assert (data->pre_init == NULL);
95160752
AC
1746 gdbarch->data[data->index] = pointer;
1747}
1748
104c1213
JM
1749/* Return the current value of the specified per-architecture
1750 data-pointer. */
1751
1752void *
451fbdda 1753gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 1754{
451fbdda 1755 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 1756 if (gdbarch->data[data->index] == NULL)
76860b5f 1757 {
030f20e1
AC
1758 /* The data-pointer isn't initialized, call init() to get a
1759 value. */
1760 if (data->pre_init != NULL)
1761 /* Mid architecture creation: pass just the obstack, and not
1762 the entire architecture, as that way it isn't possible for
1763 pre-init code to refer to undefined architecture
1764 fields. */
1765 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1766 else if (gdbarch->initialized_p
1767 && data->post_init != NULL)
1768 /* Post architecture creation: pass the entire architecture
1769 (as all fields are valid), but be careful to also detect
1770 recursive references. */
1771 {
1772 gdb_assert (data->init_p);
1773 data->init_p = 0;
1774 gdbarch->data[data->index] = data->post_init (gdbarch);
1775 data->init_p = 1;
1776 }
1777 else
1778 /* The architecture initialization hasn't completed - punt -
1779 hope that the caller knows what they are doing. Once
1780 deprecated_set_gdbarch_data has been initialized, this can be
1781 changed to an internal error. */
1782 return NULL;
76860b5f
AC
1783 gdb_assert (gdbarch->data[data->index] != NULL);
1784 }
451fbdda 1785 return gdbarch->data[data->index];
104c1213
JM
1786}
1787
1788
f44c642f 1789/* Keep a registry of the architectures known by GDB. */
104c1213 1790
4b9b3959 1791struct gdbarch_registration
104c1213
JM
1792{
1793 enum bfd_architecture bfd_architecture;
1794 gdbarch_init_ftype *init;
4b9b3959 1795 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 1796 struct gdbarch_list *arches;
4b9b3959 1797 struct gdbarch_registration *next;
104c1213
JM
1798};
1799
f44c642f 1800static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 1801
b4a20239
AC
1802static void
1803append_name (const char ***buf, int *nr, const char *name)
1804{
1805 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1806 (*buf)[*nr] = name;
1807 *nr += 1;
1808}
1809
1810const char **
1811gdbarch_printable_names (void)
1812{
7996bcec
AC
1813 /* Accumulate a list of names based on the registed list of
1814 architectures. */
1815 enum bfd_architecture a;
1816 int nr_arches = 0;
1817 const char **arches = NULL;
1818 struct gdbarch_registration *rego;
1819 for (rego = gdbarch_registry;
1820 rego != NULL;
1821 rego = rego->next)
b4a20239 1822 {
7996bcec
AC
1823 const struct bfd_arch_info *ap;
1824 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1825 if (ap == NULL)
1826 internal_error (__FILE__, __LINE__,
85c07804 1827 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
1828 do
1829 {
1830 append_name (&arches, &nr_arches, ap->printable_name);
1831 ap = ap->next;
1832 }
1833 while (ap != NULL);
b4a20239 1834 }
7996bcec
AC
1835 append_name (&arches, &nr_arches, NULL);
1836 return arches;
b4a20239
AC
1837}
1838
1839
104c1213 1840void
4b9b3959
AC
1841gdbarch_register (enum bfd_architecture bfd_architecture,
1842 gdbarch_init_ftype *init,
1843 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 1844{
4b9b3959 1845 struct gdbarch_registration **curr;
104c1213 1846 const struct bfd_arch_info *bfd_arch_info;
ec3d358c 1847 /* Check that BFD recognizes this architecture */
104c1213
JM
1848 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1849 if (bfd_arch_info == NULL)
1850 {
8e65ff28 1851 internal_error (__FILE__, __LINE__,
85c07804 1852 _("gdbarch: Attempt to register unknown architecture (%d)"),
8e65ff28 1853 bfd_architecture);
104c1213
JM
1854 }
1855 /* Check that we haven't seen this architecture before */
f44c642f 1856 for (curr = &gdbarch_registry;
104c1213
JM
1857 (*curr) != NULL;
1858 curr = &(*curr)->next)
1859 {
1860 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 1861 internal_error (__FILE__, __LINE__,
85c07804 1862 _("gdbarch: Duplicate registraration of architecture (%s)"),
8e65ff28 1863 bfd_arch_info->printable_name);
104c1213
JM
1864 }
1865 /* log it */
1866 if (gdbarch_debug)
30737ed9 1867 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 1868 bfd_arch_info->printable_name,
30737ed9 1869 host_address_to_string (init));
104c1213 1870 /* Append it */
4b9b3959 1871 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
1872 (*curr)->bfd_architecture = bfd_architecture;
1873 (*curr)->init = init;
4b9b3959 1874 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
1875 (*curr)->arches = NULL;
1876 (*curr)->next = NULL;
4b9b3959
AC
1877}
1878
1879void
1880register_gdbarch_init (enum bfd_architecture bfd_architecture,
1881 gdbarch_init_ftype *init)
1882{
1883 gdbarch_register (bfd_architecture, init, NULL);
104c1213 1884}
104c1213
JM
1885
1886
424163ea 1887/* Look for an architecture using gdbarch_info. */
104c1213
JM
1888
1889struct gdbarch_list *
1890gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1891 const struct gdbarch_info *info)
1892{
1893 for (; arches != NULL; arches = arches->next)
1894 {
1895 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1896 continue;
1897 if (info->byte_order != arches->gdbarch->byte_order)
1898 continue;
4be87837
DJ
1899 if (info->osabi != arches->gdbarch->osabi)
1900 continue;
424163ea
DJ
1901 if (info->target_desc != arches->gdbarch->target_desc)
1902 continue;
104c1213
JM
1903 return arches;
1904 }
1905 return NULL;
1906}
1907
1908
ebdba546 1909/* Find an architecture that matches the specified INFO. Create a new
59837fe0 1910 architecture if needed. Return that new architecture. */
104c1213 1911
59837fe0
UW
1912struct gdbarch *
1913gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
1914{
1915 struct gdbarch *new_gdbarch;
4b9b3959 1916 struct gdbarch_registration *rego;
104c1213 1917
b732d07d 1918 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
1919 sources: "set ..."; INFOabfd supplied; and the global
1920 defaults. */
1921 gdbarch_info_fill (&info);
4be87837 1922
b732d07d
AC
1923 /* Must have found some sort of architecture. */
1924 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
1925
1926 if (gdbarch_debug)
1927 {
1928 fprintf_unfiltered (gdb_stdlog,
59837fe0 1929 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
1930 (info.bfd_arch_info != NULL
1931 ? info.bfd_arch_info->printable_name
1932 : "(null)"));
1933 fprintf_unfiltered (gdb_stdlog,
59837fe0 1934 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 1935 info.byte_order,
d7449b42 1936 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 1937 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 1938 : "default"));
4be87837 1939 fprintf_unfiltered (gdb_stdlog,
59837fe0 1940 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 1941 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 1942 fprintf_unfiltered (gdb_stdlog,
59837fe0 1943 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 1944 host_address_to_string (info.abfd));
104c1213 1945 fprintf_unfiltered (gdb_stdlog,
59837fe0 1946 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 1947 host_address_to_string (info.tdep_info));
104c1213
JM
1948 }
1949
ebdba546 1950 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
1951 for (rego = gdbarch_registry;
1952 rego != NULL;
1953 rego = rego->next)
1954 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1955 break;
1956 if (rego == NULL)
1957 {
1958 if (gdbarch_debug)
59837fe0 1959 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 1960 "No matching architecture\n");
b732d07d
AC
1961 return 0;
1962 }
1963
ebdba546 1964 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
1965 new_gdbarch = rego->init (info, rego->arches);
1966
ebdba546
AC
1967 /* Did the tdep code like it? No. Reject the change and revert to
1968 the old architecture. */
104c1213
JM
1969 if (new_gdbarch == NULL)
1970 {
1971 if (gdbarch_debug)
59837fe0 1972 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
1973 "Target rejected architecture\n");
1974 return NULL;
104c1213
JM
1975 }
1976
ebdba546
AC
1977 /* Is this a pre-existing architecture (as determined by already
1978 being initialized)? Move it to the front of the architecture
1979 list (keeping the list sorted Most Recently Used). */
1980 if (new_gdbarch->initialized_p)
104c1213 1981 {
ebdba546
AC
1982 struct gdbarch_list **list;
1983 struct gdbarch_list *this;
104c1213 1984 if (gdbarch_debug)
59837fe0 1985 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
1986 "Previous architecture %s (%s) selected\n",
1987 host_address_to_string (new_gdbarch),
104c1213 1988 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
1989 /* Find the existing arch in the list. */
1990 for (list = &rego->arches;
1991 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
1992 list = &(*list)->next);
1993 /* It had better be in the list of architectures. */
1994 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
1995 /* Unlink THIS. */
1996 this = (*list);
1997 (*list) = this->next;
1998 /* Insert THIS at the front. */
1999 this->next = rego->arches;
2000 rego->arches = this;
2001 /* Return it. */
2002 return new_gdbarch;
104c1213
JM
2003 }
2004
ebdba546
AC
2005 /* It's a new architecture. */
2006 if (gdbarch_debug)
59837fe0 2007 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2008 "New architecture %s (%s) selected\n",
2009 host_address_to_string (new_gdbarch),
ebdba546
AC
2010 new_gdbarch->bfd_arch_info->printable_name);
2011
2012 /* Insert the new architecture into the front of the architecture
2013 list (keep the list sorted Most Recently Used). */
0f79675b
AC
2014 {
2015 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2016 this->next = rego->arches;
2017 this->gdbarch = new_gdbarch;
2018 rego->arches = this;
2019 }
104c1213 2020
4b9b3959
AC
2021 /* Check that the newly installed architecture is valid. Plug in
2022 any post init values. */
2023 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2024 verify_gdbarch (new_gdbarch);
ebdba546 2025 new_gdbarch->initialized_p = 1;
104c1213 2026
4b9b3959 2027 if (gdbarch_debug)
ebdba546
AC
2028 gdbarch_dump (new_gdbarch, gdb_stdlog);
2029
2030 return new_gdbarch;
2031}
2032
e487cc15 2033/* Make the specified architecture current. */
ebdba546
AC
2034
2035void
59837fe0 2036deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
ebdba546
AC
2037{
2038 gdb_assert (new_gdbarch != NULL);
ebdba546 2039 gdb_assert (new_gdbarch->initialized_p);
1cf3db46 2040 target_gdbarch = new_gdbarch;
383f836e 2041 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2042 registers_changed ();
ebdba546 2043}
104c1213 2044
104c1213 2045extern void _initialize_gdbarch (void);
b4a20239 2046
104c1213 2047void
34620563 2048_initialize_gdbarch (void)
104c1213 2049{
59233f88
AC
2050 struct cmd_list_element *c;
2051
85c07804
AC
2052 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2053Set architecture debugging."), _("\\
2054Show architecture debugging."), _("\\
2055When non-zero, architecture debugging is enabled."),
2056 NULL,
920d2a44 2057 show_gdbarch_debug,
85c07804 2058 &setdebuglist, &showdebuglist);
104c1213
JM
2059}
2060EOF
2061
2062# close things off
2063exec 1>&2
2064#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2065compare_new gdbarch.c
This page took 0.848222 seconds and 4 git commands to generate.