Split breakpoint_from_pc to breakpoint_kind_from_pc and sw_breakpoint_from_kind
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
618f726f 5# Copyright (C) 1998-2016 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
be7811ad 341i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
94123b4f
YQ
343i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 345#
97030eea 346i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 347#
30737ed9 348i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
352v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
66b43ecb
AC
354# Number of bits in a char or unsigned char for the target machine.
355# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 356# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
357#
358# Number of bits in a short or unsigned short for the target machine.
97030eea 359v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in an int or unsigned int for the target machine.
97030eea 361v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 362# Number of bits in a long or unsigned long for the target machine.
97030eea 363v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
364# Number of bits in a long long or unsigned long long for the target
365# machine.
be7811ad 366v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
205c306f
DM
367# Alignment of a long long or unsigned long long for the target
368# machine.
369v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94 370
f9e9243a
UW
371# The ABI default bit-size and format for "half", "float", "double", and
372# "long double". These bit/format pairs should eventually be combined
373# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
374# Each format describes both the big and little endian layouts (if
375# useful).
456fcf94 376
f9e9243a
UW
377v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
97030eea 379v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 380v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 381v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 382v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 383v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 384v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 385
9b790ce7
UW
386# Returns the floating-point format to be used for values of length LENGTH.
387# NAME, if non-NULL, is the type name, which may be used to distinguish
388# different target formats of the same length.
389m:const struct floatformat **:floatformat_for_type:const char *name, int length:name, length:0:default_floatformat_for_type::0
390
52204a0b
DT
391# For most targets, a pointer on the target and its representation as an
392# address in GDB have the same size and "look the same". For such a
17a912b6 393# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
394# / addr_bit will be set from it.
395#
17a912b6 396# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
397# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
398# gdbarch_address_to_pointer as well.
52204a0b
DT
399#
400# ptr_bit is the size of a pointer on the target
be7811ad 401v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 402# addr_bit is the size of a target address as represented in gdb
be7811ad 403v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 404#
8da614df
CV
405# dwarf2_addr_size is the target address size as used in the Dwarf debug
406# info. For .debug_frame FDEs, this is supposed to be the target address
407# size from the associated CU header, and which is equivalent to the
408# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
409# Unfortunately there is no good way to determine this value. Therefore
410# dwarf2_addr_size simply defaults to the target pointer size.
411#
412# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
413# defined using the target's pointer size so far.
414#
415# Note that dwarf2_addr_size only needs to be redefined by a target if the
416# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
417# and if Dwarf versions < 4 need to be supported.
418v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
419#
4e409299 420# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 421v:int:char_signed:::1:-1:1
4e409299 422#
97030eea
UW
423F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
424F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
425# Function for getting target's idea of a frame pointer. FIXME: GDB's
426# whole scheme for dealing with "frames" and "frame pointers" needs a
427# serious shakedown.
a54fba4c 428m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 429#
05d1431c 430M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
3543a589
TT
431# Read a register into a new struct value. If the register is wholly
432# or partly unavailable, this should call mark_value_bytes_unavailable
433# as appropriate. If this is defined, then pseudo_register_read will
434# never be called.
435M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
97030eea 436M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 437#
97030eea 438v:int:num_regs:::0:-1
0aba1244
EZ
439# This macro gives the number of pseudo-registers that live in the
440# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
441# These pseudo-registers may be aliases for other registers,
442# combinations of other registers, or they may be computed by GDB.
97030eea 443v:int:num_pseudo_regs:::0:0::0
c2169756 444
175ff332
HZ
445# Assemble agent expression bytecode to collect pseudo-register REG.
446# Return -1 if something goes wrong, 0 otherwise.
447M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
448
449# Assemble agent expression bytecode to push the value of pseudo-register
450# REG on the interpreter stack.
451# Return -1 if something goes wrong, 0 otherwise.
452M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
453
012b3a21
WT
454# Some targets/architectures can do extra processing/display of
455# segmentation faults. E.g., Intel MPX boundary faults.
456# Call the architecture dependent function to handle the fault.
457# UIOUT is the output stream where the handler will place information.
458M:void:handle_segmentation_fault:struct ui_out *uiout:uiout
459
c2169756
AC
460# GDB's standard (or well known) register numbers. These can map onto
461# a real register or a pseudo (computed) register or not be defined at
1200cd6e 462# all (-1).
3e8c568d 463# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
464v:int:sp_regnum:::-1:-1::0
465v:int:pc_regnum:::-1:-1::0
466v:int:ps_regnum:::-1:-1::0
467v:int:fp0_regnum:::0:-1::0
88c72b7d 468# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 469m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 470# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 471m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 472# Convert from an sdb register number to an internal gdb register number.
d3f73121 473m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 474# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
0fde2c53 475# Return -1 for bad REGNUM. Note: Several targets get this wrong.
d3f73121 476m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 477m:const char *:register_name:int regnr:regnr::0
9c04cab7 478
7b9ee6a8
DJ
479# Return the type of a register specified by the architecture. Only
480# the register cache should call this function directly; others should
481# use "register_type".
97030eea 482M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 483
669fac23
DJ
484M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
485# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 486# deprecated_fp_regnum.
97030eea 487v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 488
97030eea
UW
489M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
490v:int:call_dummy_location::::AT_ENTRY_POINT::0
491M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 492
7eb89530
YQ
493# Return true if the code of FRAME is writable.
494m:int:code_of_frame_writable:struct frame_info *frame:frame::default_code_of_frame_writable::0
495
97030eea 496m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
cc86d1cb 497m:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args::default_print_float_info::0
97030eea 498M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
499# MAP a GDB RAW register number onto a simulator register number. See
500# also include/...-sim.h.
e7faf938 501m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
502m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
503m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
eade6471
JB
504
505# Determine the address where a longjmp will land and save this address
506# in PC. Return nonzero on success.
507#
508# FRAME corresponds to the longjmp frame.
97030eea 509F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
eade6471 510
104c1213 511#
97030eea 512v:int:believe_pcc_promotion:::::::
104c1213 513#
0abe36f5 514m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
8dccd430 515f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
97030eea 516f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0 517# Construct a value representing the contents of register REGNUM in
2ed3c037 518# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
519# allocate and return a struct value with all value attributes
520# (but not the value contents) filled in.
2ed3c037 521m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
104c1213 522#
9898f801
UW
523m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
524m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 525M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 526
6a3a010b
MR
527# Return the return-value convention that will be used by FUNCTION
528# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
529# case the return convention is computed based only on VALTYPE.
530#
531# If READBUF is not NULL, extract the return value and save it in this buffer.
532#
533# If WRITEBUF is not NULL, it contains a return value which will be
534# stored into the appropriate register. This can be used when we want
535# to force the value returned by a function (see the "return" command
536# for instance).
6a3a010b 537M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
92ad9cd9 538
18648a37
YQ
539# Return true if the return value of function is stored in the first hidden
540# parameter. In theory, this feature should be language-dependent, specified
541# by language and its ABI, such as C++. Unfortunately, compiler may
542# implement it to a target-dependent feature. So that we need such hook here
543# to be aware of this in GDB.
544m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
545
6093d2eb 546m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 547M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
591a12a1
UW
548# On some platforms, a single function may provide multiple entry points,
549# e.g. one that is used for function-pointer calls and a different one
550# that is used for direct function calls.
551# In order to ensure that breakpoints set on the function will trigger
552# no matter via which entry point the function is entered, a platform
553# may provide the skip_entrypoint callback. It is called with IP set
554# to the main entry point of a function (as determined by the symbol table),
555# and should return the address of the innermost entry point, where the
556# actual breakpoint needs to be set. Note that skip_entrypoint is used
557# by GDB common code even when debugging optimized code, where skip_prologue
558# is not used.
559M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
560
97030eea 561f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 562m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
563# Return the adjusted address and kind to use for Z0/Z1 packets.
564# KIND is usually the memory length of the breakpoint, but may have a
565# different target-specific meaning.
0e05dfcb 566m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 567M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
568m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
569m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 570v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
571
572# A function can be addressed by either it's "pointer" (possibly a
573# descriptor address) or "entry point" (first executable instruction).
574# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 575# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
576# a simplified subset of that functionality - the function's address
577# corresponds to the "function pointer" and the function's start
578# corresponds to the "function entry point" - and hence is redundant.
579
97030eea 580v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 581
123dc839
DJ
582# Return the remote protocol register number associated with this
583# register. Normally the identity mapping.
97030eea 584m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 585
b2756930 586# Fetch the target specific address used to represent a load module.
97030eea 587F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 588#
97030eea
UW
589v:CORE_ADDR:frame_args_skip:::0:::0
590M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
591M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
592# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
593# frame-base. Enable frame-base before frame-unwind.
97030eea 594F:int:frame_num_args:struct frame_info *frame:frame
104c1213 595#
97030eea
UW
596M:CORE_ADDR:frame_align:CORE_ADDR address:address
597m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
598v:int:frame_red_zone_size
f0d4cc9e 599#
97030eea 600m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
601# On some machines there are bits in addresses which are not really
602# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 603# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
604# we get a "real" address such as one would find in a symbol table.
605# This is used only for addresses of instructions, and even then I'm
606# not sure it's used in all contexts. It exists to deal with there
607# being a few stray bits in the PC which would mislead us, not as some
608# sort of generic thing to handle alignment or segmentation (it's
609# possible it should be in TARGET_READ_PC instead).
24568a2c 610m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
611
612# FIXME/cagney/2001-01-18: This should be split in two. A target method that
613# indicates if the target needs software single step. An ISA method to
614# implement it.
615#
e6590a1b
UW
616# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
617# target can single step. If not, then implement single step using breakpoints.
64c4637f 618#
6f112b18 619# A return value of 1 means that the software_single_step breakpoints
21edc42f
YQ
620# were inserted; 0 means they were not. Multiple breakpoints may be
621# inserted for some instructions such as conditional branch. However,
622# each implementation must always evaluate the condition and only put
623# the breakpoint at the branch destination if the condition is true, so
624# that we ensure forward progress when stepping past a conditional
625# branch to self.
97030eea 626F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 627
3352ef37
AC
628# Return non-zero if the processor is executing a delay slot and a
629# further single-step is needed before the instruction finishes.
97030eea 630M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 631# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 632# disassembler. Perhaps objdump can handle it?
97030eea
UW
633f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
634f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
635
636
cfd8ab24 637# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
638# evaluates non-zero, this is the address where the debugger will place
639# a step-resume breakpoint to get us past the dynamic linker.
97030eea 640m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 641# Some systems also have trampoline code for returning from shared libs.
2c02bd72 642m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 643
c12260ac
CV
644# A target might have problems with watchpoints as soon as the stack
645# frame of the current function has been destroyed. This mostly happens
c9cf6e20 646# as the first action in a function's epilogue. stack_frame_destroyed_p()
c12260ac
CV
647# is defined to return a non-zero value if either the given addr is one
648# instruction after the stack destroying instruction up to the trailing
649# return instruction or if we can figure out that the stack frame has
650# already been invalidated regardless of the value of addr. Targets
651# which don't suffer from that problem could just let this functionality
652# untouched.
c9cf6e20 653m:int:stack_frame_destroyed_p:CORE_ADDR addr:addr:0:generic_stack_frame_destroyed_p::0
3e29f34a
MR
654# Process an ELF symbol in the minimal symbol table in a backend-specific
655# way. Normally this hook is supposed to do nothing, however if required,
656# then this hook can be used to apply tranformations to symbols that are
657# considered special in some way. For example the MIPS backend uses it
658# to interpret \`st_other' information to mark compressed code symbols so
659# that they can be treated in the appropriate manner in the processing of
660# the main symbol table and DWARF-2 records.
661F:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym
97030eea 662f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
3e29f34a
MR
663# Process a symbol in the main symbol table in a backend-specific way.
664# Normally this hook is supposed to do nothing, however if required,
665# then this hook can be used to apply tranformations to symbols that
666# are considered special in some way. This is currently used by the
667# MIPS backend to make sure compressed code symbols have the ISA bit
668# set. This in turn is needed for symbol values seen in GDB to match
669# the values used at the runtime by the program itself, for function
670# and label references.
671f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objfile::default_make_symbol_special::0
672# Adjust the address retrieved from a DWARF-2 record other than a line
673# entry in a backend-specific way. Normally this hook is supposed to
674# return the address passed unchanged, however if that is incorrect for
675# any reason, then this hook can be used to fix the address up in the
676# required manner. This is currently used by the MIPS backend to make
677# sure addresses in FDE, range records, etc. referring to compressed
678# code have the ISA bit set, matching line information and the symbol
679# table.
680f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0
681# Adjust the address updated by a line entry in a backend-specific way.
682# Normally this hook is supposed to return the address passed unchanged,
683# however in the case of inconsistencies in these records, this hook can
684# be used to fix them up in the required manner. This is currently used
685# by the MIPS backend to make sure all line addresses in compressed code
686# are presented with the ISA bit set, which is not always the case. This
687# in turn ensures breakpoint addresses are correctly matched against the
688# stop PC.
689f:CORE_ADDR:adjust_dwarf2_line:CORE_ADDR addr, int rel:addr, rel::default_adjust_dwarf2_line::0
97030eea
UW
690v:int:cannot_step_breakpoint:::0:0::0
691v:int:have_nonsteppable_watchpoint:::0:0::0
692F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
693M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
69f97648
SM
694
695# Return the appropriate type_flags for the supplied address class.
696# This function should return 1 if the address class was recognized and
697# type_flags was set, zero otherwise.
97030eea 698M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 699# Is a register in a group
97030eea 700m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 701# Fetch the pointer to the ith function argument.
97030eea 702F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f 703
5aa82d05
AA
704# Iterate over all supported register notes in a core file. For each
705# supported register note section, the iterator must call CB and pass
706# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
707# the supported register note sections based on the current register
708# values. Otherwise it should enumerate all supported register note
709# sections.
710M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
17ea7499 711
6432734d
UW
712# Create core file notes
713M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
714
b3ac9c77
SDJ
715# The elfcore writer hook to use to write Linux prpsinfo notes to core
716# files. Most Linux architectures use the same prpsinfo32 or
717# prpsinfo64 layouts, and so won't need to provide this hook, as we
718# call the Linux generic routines in bfd to write prpsinfo notes by
719# default.
720F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
721
35c2fab7
UW
722# Find core file memory regions
723M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
724
de584861 725# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
726# core file into buffer READBUF with length LEN. Return the number of bytes read
727# (zero indicates failure).
728# failed, otherwise, return the red length of READBUF.
729M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
de584861 730
356a5233
JB
731# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
732# libraries list from core file into buffer READBUF with length LEN.
c09f20e4
YQ
733# Return the number of bytes read (zero indicates failure).
734M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
356a5233 735
c0edd9ed 736# How the core target converts a PTID from a core file to a string.
28439f5e
PA
737M:char *:core_pid_to_str:ptid_t ptid:ptid
738
4dfc5dbc
JB
739# How the core target extracts the name of a thread from a core file.
740M:const char *:core_thread_name:struct thread_info *thr:thr
741
a78c2d62 742# BFD target to use when generating a core file.
86ba1042 743V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
a78c2d62 744
0d5de010
DJ
745# If the elements of C++ vtables are in-place function descriptors rather
746# than normal function pointers (which may point to code or a descriptor),
747# set this to one.
97030eea 748v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
749
750# Set if the least significant bit of the delta is used instead of the least
751# significant bit of the pfn for pointers to virtual member functions.
97030eea 752v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
753
754# Advance PC to next instruction in order to skip a permanent breakpoint.
ae9bb220 755f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0
1c772458 756
1668ae25 757# The maximum length of an instruction on this architecture in bytes.
237fc4c9
PA
758V:ULONGEST:max_insn_length:::0:0
759
760# Copy the instruction at FROM to TO, and make any adjustments
761# necessary to single-step it at that address.
762#
763# REGS holds the state the thread's registers will have before
764# executing the copied instruction; the PC in REGS will refer to FROM,
765# not the copy at TO. The caller should update it to point at TO later.
766#
767# Return a pointer to data of the architecture's choice to be passed
768# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
769# the instruction's effects have been completely simulated, with the
770# resulting state written back to REGS.
771#
772# For a general explanation of displaced stepping and how GDB uses it,
773# see the comments in infrun.c.
774#
775# The TO area is only guaranteed to have space for
776# gdbarch_max_insn_length (arch) bytes, so this function must not
777# write more bytes than that to that area.
778#
779# If you do not provide this function, GDB assumes that the
780# architecture does not support displaced stepping.
781#
782# If your architecture doesn't need to adjust instructions before
783# single-stepping them, consider using simple_displaced_step_copy_insn
784# here.
7f03bd92
PA
785#
786# If the instruction cannot execute out of line, return NULL. The
787# core falls back to stepping past the instruction in-line instead in
788# that case.
237fc4c9
PA
789M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
790
99e40580
UW
791# Return true if GDB should use hardware single-stepping to execute
792# the displaced instruction identified by CLOSURE. If false,
793# GDB will simply restart execution at the displaced instruction
794# location, and it is up to the target to ensure GDB will receive
795# control again (e.g. by placing a software breakpoint instruction
796# into the displaced instruction buffer).
797#
798# The default implementation returns false on all targets that
799# provide a gdbarch_software_single_step routine, and true otherwise.
800m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
801
237fc4c9
PA
802# Fix up the state resulting from successfully single-stepping a
803# displaced instruction, to give the result we would have gotten from
804# stepping the instruction in its original location.
805#
806# REGS is the register state resulting from single-stepping the
807# displaced instruction.
808#
809# CLOSURE is the result from the matching call to
810# gdbarch_displaced_step_copy_insn.
811#
812# If you provide gdbarch_displaced_step_copy_insn.but not this
813# function, then GDB assumes that no fixup is needed after
814# single-stepping the instruction.
815#
816# For a general explanation of displaced stepping and how GDB uses it,
817# see the comments in infrun.c.
818M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
819
820# Free a closure returned by gdbarch_displaced_step_copy_insn.
821#
822# If you provide gdbarch_displaced_step_copy_insn, you must provide
823# this function as well.
824#
825# If your architecture uses closures that don't need to be freed, then
826# you can use simple_displaced_step_free_closure here.
827#
828# For a general explanation of displaced stepping and how GDB uses it,
829# see the comments in infrun.c.
830m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
831
832# Return the address of an appropriate place to put displaced
833# instructions while we step over them. There need only be one such
834# place, since we're only stepping one thread over a breakpoint at a
835# time.
836#
837# For a general explanation of displaced stepping and how GDB uses it,
838# see the comments in infrun.c.
839m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
840
dde08ee1
PA
841# Relocate an instruction to execute at a different address. OLDLOC
842# is the address in the inferior memory where the instruction to
843# relocate is currently at. On input, TO points to the destination
844# where we want the instruction to be copied (and possibly adjusted)
845# to. On output, it points to one past the end of the resulting
846# instruction(s). The effect of executing the instruction at TO shall
847# be the same as if executing it at FROM. For example, call
848# instructions that implicitly push the return address on the stack
849# should be adjusted to return to the instruction after OLDLOC;
850# relative branches, and other PC-relative instructions need the
851# offset adjusted; etc.
852M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
853
1c772458 854# Refresh overlay mapped state for section OSECT.
97030eea 855F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 856
97030eea 857M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
858
859# Handle special encoding of static variables in stabs debug info.
0d5cff50 860F:const char *:static_transform_name:const char *name:name
203c3895 861# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 862v:int:sofun_address_maybe_missing:::0:0::0
1cded358 863
0508c3ec
HZ
864# Parse the instruction at ADDR storing in the record execution log
865# the registers REGCACHE and memory ranges that will be affected when
866# the instruction executes, along with their current values.
867# Return -1 if something goes wrong, 0 otherwise.
868M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
869
3846b520
HZ
870# Save process state after a signal.
871# Return -1 if something goes wrong, 0 otherwise.
2ea28649 872M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
3846b520 873
22203bbf 874# Signal translation: translate inferior's signal (target's) number
86b49880
PA
875# into GDB's representation. The implementation of this method must
876# be host independent. IOW, don't rely on symbols of the NAT_FILE
877# header (the nm-*.h files), the host <signal.h> header, or similar
878# headers. This is mainly used when cross-debugging core files ---
879# "Live" targets hide the translation behind the target interface
1f8cf220
PA
880# (target_wait, target_resume, etc.).
881M:enum gdb_signal:gdb_signal_from_target:int signo:signo
60c5725c 882
eb14d406
SDJ
883# Signal translation: translate the GDB's internal signal number into
884# the inferior's signal (target's) representation. The implementation
885# of this method must be host independent. IOW, don't rely on symbols
886# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
887# header, or similar headers.
888# Return the target signal number if found, or -1 if the GDB internal
889# signal number is invalid.
890M:int:gdb_signal_to_target:enum gdb_signal signal:signal
891
4aa995e1
PA
892# Extra signal info inspection.
893#
894# Return a type suitable to inspect extra signal information.
895M:struct type *:get_siginfo_type:void:
896
60c5725c
DJ
897# Record architecture-specific information from the symbol table.
898M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 899
a96d9b2e
SDJ
900# Function for the 'catch syscall' feature.
901
902# Get architecture-specific system calls information from registers.
903M:LONGEST:get_syscall_number:ptid_t ptid:ptid
904
458c8db8
SDJ
905# The filename of the XML syscall for this architecture.
906v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file)
907
908# Information about system calls from this architecture
909v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info)
910
55aa24fb
SDJ
911# SystemTap related fields and functions.
912
05c0465e
SDJ
913# A NULL-terminated array of prefixes used to mark an integer constant
914# on the architecture's assembly.
55aa24fb
SDJ
915# For example, on x86 integer constants are written as:
916#
917# \$10 ;; integer constant 10
918#
919# in this case, this prefix would be the character \`\$\'.
05c0465e 920v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 921
05c0465e
SDJ
922# A NULL-terminated array of suffixes used to mark an integer constant
923# on the architecture's assembly.
924v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 925
05c0465e
SDJ
926# A NULL-terminated array of prefixes used to mark a register name on
927# the architecture's assembly.
55aa24fb
SDJ
928# For example, on x86 the register name is written as:
929#
930# \%eax ;; register eax
931#
932# in this case, this prefix would be the character \`\%\'.
05c0465e 933v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 934
05c0465e
SDJ
935# A NULL-terminated array of suffixes used to mark a register name on
936# the architecture's assembly.
937v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 938
05c0465e
SDJ
939# A NULL-terminated array of prefixes used to mark a register
940# indirection on the architecture's assembly.
55aa24fb
SDJ
941# For example, on x86 the register indirection is written as:
942#
943# \(\%eax\) ;; indirecting eax
944#
945# in this case, this prefix would be the charater \`\(\'.
946#
947# Please note that we use the indirection prefix also for register
948# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 949v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 950
05c0465e
SDJ
951# A NULL-terminated array of suffixes used to mark a register
952# indirection on the architecture's assembly.
55aa24fb
SDJ
953# For example, on x86 the register indirection is written as:
954#
955# \(\%eax\) ;; indirecting eax
956#
957# in this case, this prefix would be the charater \`\)\'.
958#
959# Please note that we use the indirection suffix also for register
960# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 961v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 962
05c0465e 963# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
964#
965# For example, on PPC a register is represented by a number in the assembly
966# language (e.g., \`10\' is the 10th general-purpose register). However,
967# inside GDB this same register has an \`r\' appended to its name, so the 10th
968# register would be represented as \`r10\' internally.
08af7a40 969v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
970
971# Suffix used to name a register using GDB's nomenclature.
08af7a40 972v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
973
974# Check if S is a single operand.
975#
976# Single operands can be:
977# \- Literal integers, e.g. \`\$10\' on x86
978# \- Register access, e.g. \`\%eax\' on x86
979# \- Register indirection, e.g. \`\(\%eax\)\' on x86
980# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
981#
982# This function should check for these patterns on the string
983# and return 1 if some were found, or zero otherwise. Please try to match
984# as much info as you can from the string, i.e., if you have to match
985# something like \`\(\%\', do not match just the \`\(\'.
986M:int:stap_is_single_operand:const char *s:s
987
988# Function used to handle a "special case" in the parser.
989#
990# A "special case" is considered to be an unknown token, i.e., a token
991# that the parser does not know how to parse. A good example of special
992# case would be ARM's register displacement syntax:
993#
994# [R0, #4] ;; displacing R0 by 4
995#
996# Since the parser assumes that a register displacement is of the form:
997#
998# <number> <indirection_prefix> <register_name> <indirection_suffix>
999#
1000# it means that it will not be able to recognize and parse this odd syntax.
1001# Therefore, we should add a special case function that will handle this token.
1002#
1003# This function should generate the proper expression form of the expression
1004# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1005# and so on). It should also return 1 if the parsing was successful, or zero
1006# if the token was not recognized as a special token (in this case, returning
1007# zero means that the special parser is deferring the parsing to the generic
1008# parser), and should advance the buffer pointer (p->arg).
1009M:int:stap_parse_special_token:struct stap_parse_info *p:p
1010
8b367e17
JM
1011# DTrace related functions.
1012
1013# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1014# NARG must be >= 0.
1015M:void:dtrace_parse_probe_argument:struct parser_state *pstate, int narg:pstate, narg
1016
1017# True if the given ADDR does not contain the instruction sequence
1018# corresponding to a disabled DTrace is-enabled probe.
1019M:int:dtrace_probe_is_enabled:CORE_ADDR addr:addr
1020
1021# Enable a DTrace is-enabled probe at ADDR.
1022M:void:dtrace_enable_probe:CORE_ADDR addr:addr
1023
1024# Disable a DTrace is-enabled probe at ADDR.
1025M:void:dtrace_disable_probe:CORE_ADDR addr:addr
55aa24fb 1026
50c71eaf
PA
1027# True if the list of shared libraries is one and only for all
1028# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
1029# This usually means that all processes, although may or may not share
1030# an address space, will see the same set of symbols at the same
1031# addresses.
50c71eaf 1032v:int:has_global_solist:::0:0::0
2567c7d9
PA
1033
1034# On some targets, even though each inferior has its own private
1035# address space, the debug interface takes care of making breakpoints
1036# visible to all address spaces automatically. For such cases,
1037# this property should be set to true.
1038v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
1039
1040# True if inferiors share an address space (e.g., uClinux).
1041m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
1042
1043# True if a fast tracepoint can be set at an address.
6b940e6a 1044m:int:fast_tracepoint_valid_at:CORE_ADDR addr, char **msg:addr, msg::default_fast_tracepoint_valid_at::0
75cebea9 1045
5f034a78
MK
1046# Guess register state based on tracepoint location. Used for tracepoints
1047# where no registers have been collected, but there's only one location,
1048# allowing us to guess the PC value, and perhaps some other registers.
1049# On entry, regcache has all registers marked as unavailable.
1050m:void:guess_tracepoint_registers:struct regcache *regcache, CORE_ADDR addr:regcache, addr::default_guess_tracepoint_registers::0
1051
f870a310
TT
1052# Return the "auto" target charset.
1053f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
1054# Return the "auto" target wide charset.
1055f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
1056
1057# If non-empty, this is a file extension that will be opened in place
1058# of the file extension reported by the shared library list.
1059#
1060# This is most useful for toolchains that use a post-linker tool,
1061# where the names of the files run on the target differ in extension
1062# compared to the names of the files GDB should load for debug info.
1063v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
1064
1065# If true, the target OS has DOS-based file system semantics. That
1066# is, absolute paths include a drive name, and the backslash is
1067# considered a directory separator.
1068v:int:has_dos_based_file_system:::0:0::0
6710bf39
SS
1069
1070# Generate bytecodes to collect the return address in a frame.
1071# Since the bytecodes run on the target, possibly with GDB not even
1072# connected, the full unwinding machinery is not available, and
1073# typically this function will issue bytecodes for one or more likely
1074# places that the return address may be found.
1075m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
1076
3030c96e 1077# Implement the "info proc" command.
7bc112c1 1078M:void:info_proc:const char *args, enum info_proc_what what:args, what
3030c96e 1079
451b7c33
TT
1080# Implement the "info proc" command for core files. Noe that there
1081# are two "info_proc"-like methods on gdbarch -- one for core files,
1082# one for live targets.
7bc112c1 1083M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
451b7c33 1084
19630284
JB
1085# Iterate over all objfiles in the order that makes the most sense
1086# for the architecture to make global symbol searches.
1087#
1088# CB is a callback function where OBJFILE is the objfile to be searched,
1089# and CB_DATA a pointer to user-defined data (the same data that is passed
1090# when calling this gdbarch method). The iteration stops if this function
1091# returns nonzero.
1092#
1093# CB_DATA is a pointer to some user-defined data to be passed to
1094# the callback.
1095#
1096# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1097# inspected when the symbol search was requested.
1098m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1099
7e35103a
JB
1100# Ravenscar arch-dependent ops.
1101v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1102
1103# Return non-zero if the instruction at ADDR is a call; zero otherwise.
1104m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1105
1106# Return non-zero if the instruction at ADDR is a return; zero otherwise.
1107m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1108
1109# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1110m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
27a48a92
MK
1111
1112# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1113# Return 0 if *READPTR is already at the end of the buffer.
1114# Return -1 if there is insufficient buffer for a whole entry.
1115# Return 1 if an entry was read into *TYPEP and *VALP.
1116M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
3437254d 1117
2faa3447
JB
1118# Print the description of a single auxv entry described by TYPE and VAL
1119# to FILE.
1120m:void:print_auxv_entry:struct ui_file *file, CORE_ADDR type, CORE_ADDR val:file, type, val::default_print_auxv_entry::0
1121
3437254d
PA
1122# Find the address range of the current inferior's vsyscall/vDSO, and
1123# write it to *RANGE. If the vsyscall's length can't be determined, a
1124# range with zero length is returned. Returns true if the vsyscall is
1125# found, false otherwise.
1126m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
f208eee0
JK
1127
1128# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1129# PROT has GDB_MMAP_PROT_* bitmask format.
1130# Throw an error if it is not possible. Returned address is always valid.
1131f:CORE_ADDR:infcall_mmap:CORE_ADDR size, unsigned prot:size, prot::default_infcall_mmap::0
1132
7f361056
JK
1133# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1134# Print a warning if it is not possible.
1135f:void:infcall_munmap:CORE_ADDR addr, CORE_ADDR size:addr, size::default_infcall_munmap::0
1136
f208eee0
JK
1137# Return string (caller has to use xfree for it) with options for GCC
1138# to produce code for this target, typically "-m64", "-m32" or "-m31".
1139# These options are put before CU's DW_AT_producer compilation options so that
1140# they can override it. Method may also return NULL.
1141m:char *:gcc_target_options:void:::default_gcc_target_options::0
ac04f72b
TT
1142
1143# Return a regular expression that matches names used by this
1144# architecture in GNU configury triplets. The result is statically
1145# allocated and must not be freed. The default implementation simply
1146# returns the BFD architecture name, which is correct in nearly every
1147# case.
1148m:const char *:gnu_triplet_regexp:void:::default_gnu_triplet_regexp::0
3374165f
SM
1149
1150# Return the size in 8-bit bytes of an addressable memory unit on this
1151# architecture. This corresponds to the number of 8-bit bytes associated to
1152# each address in memory.
1153m:int:addressable_memory_unit_size:void:::default_addressable_memory_unit_size::0
1154
104c1213 1155EOF
104c1213
JM
1156}
1157
0b8f9e4d
AC
1158#
1159# The .log file
1160#
1161exec > new-gdbarch.log
34620563 1162function_list | while do_read
0b8f9e4d
AC
1163do
1164 cat <<EOF
2f9b146e 1165${class} ${returntype} ${function} ($formal)
104c1213 1166EOF
3d9a5942
AC
1167 for r in ${read}
1168 do
1169 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1170 done
f0d4cc9e 1171 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1172 then
66d659b1 1173 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1174 kill $$
1175 exit 1
1176 fi
72e74a21 1177 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1178 then
1179 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1180 kill $$
1181 exit 1
1182 fi
a72293e2
AC
1183 if class_is_multiarch_p
1184 then
1185 if class_is_predicate_p ; then :
1186 elif test "x${predefault}" = "x"
1187 then
2f9b146e 1188 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1189 kill $$
1190 exit 1
1191 fi
1192 fi
3d9a5942 1193 echo ""
0b8f9e4d
AC
1194done
1195
1196exec 1>&2
1197compare_new gdbarch.log
1198
104c1213
JM
1199
1200copyright ()
1201{
1202cat <<EOF
c4bfde41
JK
1203/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1204/* vi:set ro: */
59233f88 1205
104c1213 1206/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1207
618f726f 1208 Copyright (C) 1998-2016 Free Software Foundation, Inc.
104c1213
JM
1209
1210 This file is part of GDB.
1211
1212 This program is free software; you can redistribute it and/or modify
1213 it under the terms of the GNU General Public License as published by
50efebf8 1214 the Free Software Foundation; either version 3 of the License, or
104c1213 1215 (at your option) any later version.
618f726f 1216
104c1213
JM
1217 This program is distributed in the hope that it will be useful,
1218 but WITHOUT ANY WARRANTY; without even the implied warranty of
1219 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1220 GNU General Public License for more details.
618f726f 1221
104c1213 1222 You should have received a copy of the GNU General Public License
50efebf8 1223 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1224
104c1213
JM
1225/* This file was created with the aid of \`\`gdbarch.sh''.
1226
52204a0b 1227 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1228 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1229 against the existing \`\`gdbarch.[hc]''. Any differences found
1230 being reported.
1231
1232 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1233 changes into that script. Conversely, when making sweeping changes
104c1213 1234 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1235 easier. */
104c1213
JM
1236
1237EOF
1238}
1239
1240#
1241# The .h file
1242#
1243
1244exec > new-gdbarch.h
1245copyright
1246cat <<EOF
1247#ifndef GDBARCH_H
1248#define GDBARCH_H
1249
eb7a547a
JB
1250#include "frame.h"
1251
da3331ec
AC
1252struct floatformat;
1253struct ui_file;
104c1213 1254struct value;
b6af0555 1255struct objfile;
1c772458 1256struct obj_section;
a2cf933a 1257struct minimal_symbol;
049ee0e4 1258struct regcache;
b59ff9d5 1259struct reggroup;
6ce6d90f 1260struct regset;
a89aa300 1261struct disassemble_info;
e2d0e7eb 1262struct target_ops;
030f20e1 1263struct obstack;
8181d85f 1264struct bp_target_info;
424163ea 1265struct target_desc;
3e29f34a
MR
1266struct objfile;
1267struct symbol;
237fc4c9 1268struct displaced_step_closure;
a96d9b2e 1269struct syscall;
175ff332 1270struct agent_expr;
6710bf39 1271struct axs_value;
55aa24fb 1272struct stap_parse_info;
8b367e17 1273struct parser_state;
7e35103a 1274struct ravenscar_arch_ops;
b3ac9c77 1275struct elf_internal_linux_prpsinfo;
3437254d 1276struct mem_range;
458c8db8 1277struct syscalls_info;
4dfc5dbc 1278struct thread_info;
012b3a21 1279struct ui_out;
104c1213 1280
8a526fa6
PA
1281#include "regcache.h"
1282
6ecd4729
PA
1283/* The architecture associated with the inferior through the
1284 connection to the target.
1285
1286 The architecture vector provides some information that is really a
1287 property of the inferior, accessed through a particular target:
1288 ptrace operations; the layout of certain RSP packets; the solib_ops
1289 vector; etc. To differentiate architecture accesses to
1290 per-inferior/target properties from
1291 per-thread/per-frame/per-objfile properties, accesses to
1292 per-inferior/target properties should be made through this
1293 gdbarch. */
1294
1295/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1296extern struct gdbarch *target_gdbarch (void);
6ecd4729 1297
19630284
JB
1298/* Callback type for the 'iterate_over_objfiles_in_search_order'
1299 gdbarch method. */
1300
1301typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1302 (struct objfile *objfile, void *cb_data);
5aa82d05 1303
1528345d
AA
1304/* Callback type for regset section iterators. The callback usually
1305 invokes the REGSET's supply or collect method, to which it must
1306 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1307 section name, and HUMAN_NAME is used for diagnostic messages.
1308 CB_DATA should have been passed unchanged through the iterator. */
1309
5aa82d05 1310typedef void (iterate_over_regset_sections_cb)
8f0435f7
AA
1311 (const char *sect_name, int size, const struct regset *regset,
1312 const char *human_name, void *cb_data);
104c1213
JM
1313EOF
1314
1315# function typedef's
3d9a5942
AC
1316printf "\n"
1317printf "\n"
0963b4bd 1318printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1319function_list | while do_read
104c1213 1320do
2ada493a
AC
1321 if class_is_info_p
1322 then
3d9a5942
AC
1323 printf "\n"
1324 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1325 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1326 fi
104c1213
JM
1327done
1328
1329# function typedef's
3d9a5942
AC
1330printf "\n"
1331printf "\n"
0963b4bd 1332printf "/* The following are initialized by the target dependent code. */\n"
34620563 1333function_list | while do_read
104c1213 1334do
72e74a21 1335 if [ -n "${comment}" ]
34620563
AC
1336 then
1337 echo "${comment}" | sed \
1338 -e '2 s,#,/*,' \
1339 -e '3,$ s,#, ,' \
1340 -e '$ s,$, */,'
1341 fi
412d5987
AC
1342
1343 if class_is_predicate_p
2ada493a 1344 then
412d5987
AC
1345 printf "\n"
1346 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1347 fi
2ada493a
AC
1348 if class_is_variable_p
1349 then
3d9a5942
AC
1350 printf "\n"
1351 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1352 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1353 fi
1354 if class_is_function_p
1355 then
3d9a5942 1356 printf "\n"
72e74a21 1357 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1358 then
1359 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1360 elif class_is_multiarch_p
1361 then
1362 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1363 else
1364 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1365 fi
72e74a21 1366 if [ "x${formal}" = "xvoid" ]
104c1213 1367 then
3d9a5942 1368 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1369 else
3d9a5942 1370 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1371 fi
3d9a5942 1372 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1373 fi
104c1213
JM
1374done
1375
1376# close it off
1377cat <<EOF
1378
a96d9b2e
SDJ
1379/* Definition for an unknown syscall, used basically in error-cases. */
1380#define UNKNOWN_SYSCALL (-1)
1381
104c1213
JM
1382extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1383
1384
1385/* Mechanism for co-ordinating the selection of a specific
1386 architecture.
1387
1388 GDB targets (*-tdep.c) can register an interest in a specific
1389 architecture. Other GDB components can register a need to maintain
1390 per-architecture data.
1391
1392 The mechanisms below ensures that there is only a loose connection
1393 between the set-architecture command and the various GDB
0fa6923a 1394 components. Each component can independently register their need
104c1213
JM
1395 to maintain architecture specific data with gdbarch.
1396
1397 Pragmatics:
1398
1399 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1400 didn't scale.
1401
1402 The more traditional mega-struct containing architecture specific
1403 data for all the various GDB components was also considered. Since
0fa6923a 1404 GDB is built from a variable number of (fairly independent)
104c1213 1405 components it was determined that the global aproach was not
0963b4bd 1406 applicable. */
104c1213
JM
1407
1408
1409/* Register a new architectural family with GDB.
1410
1411 Register support for the specified ARCHITECTURE with GDB. When
1412 gdbarch determines that the specified architecture has been
1413 selected, the corresponding INIT function is called.
1414
1415 --
1416
1417 The INIT function takes two parameters: INFO which contains the
1418 information available to gdbarch about the (possibly new)
1419 architecture; ARCHES which is a list of the previously created
1420 \`\`struct gdbarch'' for this architecture.
1421
0f79675b 1422 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1423 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1424
1425 The ARCHES parameter is a linked list (sorted most recently used)
1426 of all the previously created architures for this architecture
1427 family. The (possibly NULL) ARCHES->gdbarch can used to access
1428 values from the previously selected architecture for this
59837fe0 1429 architecture family.
104c1213
JM
1430
1431 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1432 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1433 gdbarch'' from the ARCHES list - indicating that the new
1434 architecture is just a synonym for an earlier architecture (see
1435 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1436 - that describes the selected architecture (see gdbarch_alloc()).
1437
1438 The DUMP_TDEP function shall print out all target specific values.
1439 Care should be taken to ensure that the function works in both the
0963b4bd 1440 multi-arch and non- multi-arch cases. */
104c1213
JM
1441
1442struct gdbarch_list
1443{
1444 struct gdbarch *gdbarch;
1445 struct gdbarch_list *next;
1446};
1447
1448struct gdbarch_info
1449{
0963b4bd 1450 /* Use default: NULL (ZERO). */
104c1213
JM
1451 const struct bfd_arch_info *bfd_arch_info;
1452
428721aa 1453 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1454 enum bfd_endian byte_order;
104c1213 1455
94123b4f 1456 enum bfd_endian byte_order_for_code;
9d4fde75 1457
0963b4bd 1458 /* Use default: NULL (ZERO). */
104c1213
JM
1459 bfd *abfd;
1460
0963b4bd 1461 /* Use default: NULL (ZERO). */
ede5f151 1462 void *tdep_info;
4be87837
DJ
1463
1464 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1465 enum gdb_osabi osabi;
424163ea
DJ
1466
1467 /* Use default: NULL (ZERO). */
1468 const struct target_desc *target_desc;
104c1213
JM
1469};
1470
1471typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1472typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1473
4b9b3959 1474/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1475extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1476
4b9b3959
AC
1477extern void gdbarch_register (enum bfd_architecture architecture,
1478 gdbarch_init_ftype *,
1479 gdbarch_dump_tdep_ftype *);
1480
104c1213 1481
b4a20239
AC
1482/* Return a freshly allocated, NULL terminated, array of the valid
1483 architecture names. Since architectures are registered during the
1484 _initialize phase this function only returns useful information
0963b4bd 1485 once initialization has been completed. */
b4a20239
AC
1486
1487extern const char **gdbarch_printable_names (void);
1488
1489
104c1213 1490/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1491 matches the information provided by INFO. */
104c1213 1492
424163ea 1493extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1494
1495
1496/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1497 basic initialization using values obtained from the INFO and TDEP
104c1213 1498 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1499 initialization of the object. */
104c1213
JM
1500
1501extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1502
1503
4b9b3959
AC
1504/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1505 It is assumed that the caller freeds the \`\`struct
0963b4bd 1506 gdbarch_tdep''. */
4b9b3959 1507
058f20d5
JB
1508extern void gdbarch_free (struct gdbarch *);
1509
1510
aebd7893
AC
1511/* Helper function. Allocate memory from the \`\`struct gdbarch''
1512 obstack. The memory is freed when the corresponding architecture
1513 is also freed. */
1514
1515extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1516#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1517#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1518
6c214e7c
PP
1519/* Duplicate STRING, returning an equivalent string that's allocated on the
1520 obstack associated with GDBARCH. The string is freed when the corresponding
1521 architecture is also freed. */
1522
1523extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
aebd7893 1524
0963b4bd 1525/* Helper function. Force an update of the current architecture.
104c1213 1526
b732d07d
AC
1527 The actual architecture selected is determined by INFO, \`\`(gdb) set
1528 architecture'' et.al., the existing architecture and BFD's default
1529 architecture. INFO should be initialized to zero and then selected
1530 fields should be updated.
104c1213 1531
0963b4bd 1532 Returns non-zero if the update succeeds. */
16f33e29
AC
1533
1534extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1535
1536
ebdba546
AC
1537/* Helper function. Find an architecture matching info.
1538
1539 INFO should be initialized using gdbarch_info_init, relevant fields
1540 set, and then finished using gdbarch_info_fill.
1541
1542 Returns the corresponding architecture, or NULL if no matching
59837fe0 1543 architecture was found. */
ebdba546
AC
1544
1545extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1546
1547
aff68abb 1548/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1549
aff68abb 1550extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1551
104c1213
JM
1552
1553/* Register per-architecture data-pointer.
1554
1555 Reserve space for a per-architecture data-pointer. An identifier
1556 for the reserved data-pointer is returned. That identifer should
95160752 1557 be saved in a local static variable.
104c1213 1558
fcc1c85c
AC
1559 Memory for the per-architecture data shall be allocated using
1560 gdbarch_obstack_zalloc. That memory will be deleted when the
1561 corresponding architecture object is deleted.
104c1213 1562
95160752
AC
1563 When a previously created architecture is re-selected, the
1564 per-architecture data-pointer for that previous architecture is
76860b5f 1565 restored. INIT() is not re-called.
104c1213
JM
1566
1567 Multiple registrarants for any architecture are allowed (and
1568 strongly encouraged). */
1569
95160752 1570struct gdbarch_data;
104c1213 1571
030f20e1
AC
1572typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1573extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1574typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1575extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1576extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1577 struct gdbarch_data *data,
1578 void *pointer);
104c1213 1579
451fbdda 1580extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1581
1582
0fa6923a 1583/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1584 byte-order, ...) using information found in the BFD. */
104c1213
JM
1585
1586extern void set_gdbarch_from_file (bfd *);
1587
1588
e514a9d6
JM
1589/* Initialize the current architecture to the "first" one we find on
1590 our list. */
1591
1592extern void initialize_current_architecture (void);
1593
104c1213 1594/* gdbarch trace variable */
ccce17b0 1595extern unsigned int gdbarch_debug;
104c1213 1596
4b9b3959 1597extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1598
1599#endif
1600EOF
1601exec 1>&2
1602#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1603compare_new gdbarch.h
104c1213
JM
1604
1605
1606#
1607# C file
1608#
1609
1610exec > new-gdbarch.c
1611copyright
1612cat <<EOF
1613
1614#include "defs.h"
7355ddba 1615#include "arch-utils.h"
104c1213 1616
104c1213 1617#include "gdbcmd.h"
faaf634c 1618#include "inferior.h"
104c1213
JM
1619#include "symcat.h"
1620
f0d4cc9e 1621#include "floatformat.h"
b59ff9d5 1622#include "reggroups.h"
4be87837 1623#include "osabi.h"
aebd7893 1624#include "gdb_obstack.h"
383f836e 1625#include "observer.h"
a3ecef73 1626#include "regcache.h"
19630284 1627#include "objfiles.h"
2faa3447 1628#include "auxv.h"
95160752 1629
104c1213
JM
1630/* Static function declarations */
1631
b3cc3077 1632static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1633
104c1213
JM
1634/* Non-zero if we want to trace architecture code. */
1635
1636#ifndef GDBARCH_DEBUG
1637#define GDBARCH_DEBUG 0
1638#endif
ccce17b0 1639unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1640static void
1641show_gdbarch_debug (struct ui_file *file, int from_tty,
1642 struct cmd_list_element *c, const char *value)
1643{
1644 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1645}
104c1213 1646
456fcf94 1647static const char *
8da61cc4 1648pformat (const struct floatformat **format)
456fcf94
AC
1649{
1650 if (format == NULL)
1651 return "(null)";
1652 else
8da61cc4
DJ
1653 /* Just print out one of them - this is only for diagnostics. */
1654 return format[0]->name;
456fcf94
AC
1655}
1656
08105857
PA
1657static const char *
1658pstring (const char *string)
1659{
1660 if (string == NULL)
1661 return "(null)";
1662 return string;
05c0465e
SDJ
1663}
1664
1665/* Helper function to print a list of strings, represented as "const
1666 char *const *". The list is printed comma-separated. */
1667
1668static char *
1669pstring_list (const char *const *list)
1670{
1671 static char ret[100];
1672 const char *const *p;
1673 size_t offset = 0;
1674
1675 if (list == NULL)
1676 return "(null)";
1677
1678 ret[0] = '\0';
1679 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1680 {
1681 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1682 offset += 2 + s;
1683 }
1684
1685 if (offset > 0)
1686 {
1687 gdb_assert (offset - 2 < sizeof (ret));
1688 ret[offset - 2] = '\0';
1689 }
1690
1691 return ret;
08105857
PA
1692}
1693
104c1213
JM
1694EOF
1695
1696# gdbarch open the gdbarch object
3d9a5942 1697printf "\n"
0963b4bd 1698printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1699printf "\n"
1700printf "struct gdbarch\n"
1701printf "{\n"
76860b5f
AC
1702printf " /* Has this architecture been fully initialized? */\n"
1703printf " int initialized_p;\n"
aebd7893
AC
1704printf "\n"
1705printf " /* An obstack bound to the lifetime of the architecture. */\n"
1706printf " struct obstack *obstack;\n"
1707printf "\n"
0963b4bd 1708printf " /* basic architectural information. */\n"
34620563 1709function_list | while do_read
104c1213 1710do
2ada493a
AC
1711 if class_is_info_p
1712 then
3d9a5942 1713 printf " ${returntype} ${function};\n"
2ada493a 1714 fi
104c1213 1715done
3d9a5942 1716printf "\n"
0963b4bd 1717printf " /* target specific vector. */\n"
3d9a5942
AC
1718printf " struct gdbarch_tdep *tdep;\n"
1719printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1720printf "\n"
0963b4bd 1721printf " /* per-architecture data-pointers. */\n"
95160752 1722printf " unsigned nr_data;\n"
3d9a5942
AC
1723printf " void **data;\n"
1724printf "\n"
104c1213
JM
1725cat <<EOF
1726 /* Multi-arch values.
1727
1728 When extending this structure you must:
1729
1730 Add the field below.
1731
1732 Declare set/get functions and define the corresponding
1733 macro in gdbarch.h.
1734
1735 gdbarch_alloc(): If zero/NULL is not a suitable default,
1736 initialize the new field.
1737
1738 verify_gdbarch(): Confirm that the target updated the field
1739 correctly.
1740
7e73cedf 1741 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1742 field is dumped out
1743
104c1213
JM
1744 get_gdbarch(): Implement the set/get functions (probably using
1745 the macro's as shortcuts).
1746
1747 */
1748
1749EOF
34620563 1750function_list | while do_read
104c1213 1751do
2ada493a
AC
1752 if class_is_variable_p
1753 then
3d9a5942 1754 printf " ${returntype} ${function};\n"
2ada493a
AC
1755 elif class_is_function_p
1756 then
2f9b146e 1757 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1758 fi
104c1213 1759done
3d9a5942 1760printf "};\n"
104c1213 1761
104c1213 1762# Create a new gdbarch struct
104c1213 1763cat <<EOF
7de2341d 1764
66b43ecb 1765/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1766 \`\`struct gdbarch_info''. */
104c1213 1767EOF
3d9a5942 1768printf "\n"
104c1213
JM
1769cat <<EOF
1770struct gdbarch *
1771gdbarch_alloc (const struct gdbarch_info *info,
1772 struct gdbarch_tdep *tdep)
1773{
be7811ad 1774 struct gdbarch *gdbarch;
aebd7893
AC
1775
1776 /* Create an obstack for allocating all the per-architecture memory,
1777 then use that to allocate the architecture vector. */
70ba0933 1778 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1779 obstack_init (obstack);
8d749320 1780 gdbarch = XOBNEW (obstack, struct gdbarch);
be7811ad
MD
1781 memset (gdbarch, 0, sizeof (*gdbarch));
1782 gdbarch->obstack = obstack;
85de9627 1783
be7811ad 1784 alloc_gdbarch_data (gdbarch);
85de9627 1785
be7811ad 1786 gdbarch->tdep = tdep;
104c1213 1787EOF
3d9a5942 1788printf "\n"
34620563 1789function_list | while do_read
104c1213 1790do
2ada493a
AC
1791 if class_is_info_p
1792 then
be7811ad 1793 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1794 fi
104c1213 1795done
3d9a5942 1796printf "\n"
0963b4bd 1797printf " /* Force the explicit initialization of these. */\n"
34620563 1798function_list | while do_read
104c1213 1799do
2ada493a
AC
1800 if class_is_function_p || class_is_variable_p
1801 then
72e74a21 1802 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1803 then
be7811ad 1804 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1805 fi
2ada493a 1806 fi
104c1213
JM
1807done
1808cat <<EOF
1809 /* gdbarch_alloc() */
1810
be7811ad 1811 return gdbarch;
104c1213
JM
1812}
1813EOF
1814
058f20d5 1815# Free a gdbarch struct.
3d9a5942
AC
1816printf "\n"
1817printf "\n"
058f20d5 1818cat <<EOF
aebd7893
AC
1819/* Allocate extra space using the per-architecture obstack. */
1820
1821void *
1822gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1823{
1824 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1825
aebd7893
AC
1826 memset (data, 0, size);
1827 return data;
1828}
1829
6c214e7c
PP
1830/* See gdbarch.h. */
1831
1832char *
1833gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1834{
1835 return obstack_strdup (arch->obstack, string);
1836}
1837
aebd7893 1838
058f20d5
JB
1839/* Free a gdbarch struct. This should never happen in normal
1840 operation --- once you've created a gdbarch, you keep it around.
1841 However, if an architecture's init function encounters an error
1842 building the structure, it may need to clean up a partially
1843 constructed gdbarch. */
4b9b3959 1844
058f20d5
JB
1845void
1846gdbarch_free (struct gdbarch *arch)
1847{
aebd7893 1848 struct obstack *obstack;
05c547f6 1849
95160752 1850 gdb_assert (arch != NULL);
aebd7893
AC
1851 gdb_assert (!arch->initialized_p);
1852 obstack = arch->obstack;
1853 obstack_free (obstack, 0); /* Includes the ARCH. */
1854 xfree (obstack);
058f20d5
JB
1855}
1856EOF
1857
104c1213 1858# verify a new architecture
104c1213 1859cat <<EOF
db446970
AC
1860
1861
1862/* Ensure that all values in a GDBARCH are reasonable. */
1863
104c1213 1864static void
be7811ad 1865verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1866{
f16a1923
AC
1867 struct ui_file *log;
1868 struct cleanup *cleanups;
759ef836 1869 long length;
f16a1923 1870 char *buf;
05c547f6 1871
f16a1923
AC
1872 log = mem_fileopen ();
1873 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1874 /* fundamental */
be7811ad 1875 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1876 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1877 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1878 fprintf_unfiltered (log, "\n\tbfd_arch_info");
0963b4bd 1879 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1880EOF
34620563 1881function_list | while do_read
104c1213 1882do
2ada493a
AC
1883 if class_is_function_p || class_is_variable_p
1884 then
72e74a21 1885 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1886 then
3d9a5942 1887 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1888 elif class_is_predicate_p
1889 then
0963b4bd 1890 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1891 # FIXME: See do_read for potential simplification
72e74a21 1892 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1893 then
3d9a5942 1894 printf " if (${invalid_p})\n"
be7811ad 1895 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1896 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1897 then
be7811ad
MD
1898 printf " if (gdbarch->${function} == ${predefault})\n"
1899 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1900 elif [ -n "${postdefault}" ]
f0d4cc9e 1901 then
be7811ad
MD
1902 printf " if (gdbarch->${function} == 0)\n"
1903 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1904 elif [ -n "${invalid_p}" ]
104c1213 1905 then
4d60522e 1906 printf " if (${invalid_p})\n"
f16a1923 1907 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1908 elif [ -n "${predefault}" ]
104c1213 1909 then
be7811ad 1910 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1911 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1912 fi
2ada493a 1913 fi
104c1213
JM
1914done
1915cat <<EOF
759ef836 1916 buf = ui_file_xstrdup (log, &length);
f16a1923 1917 make_cleanup (xfree, buf);
759ef836 1918 if (length > 0)
f16a1923 1919 internal_error (__FILE__, __LINE__,
85c07804 1920 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1921 buf);
1922 do_cleanups (cleanups);
104c1213
JM
1923}
1924EOF
1925
1926# dump the structure
3d9a5942
AC
1927printf "\n"
1928printf "\n"
104c1213 1929cat <<EOF
0963b4bd 1930/* Print out the details of the current architecture. */
4b9b3959 1931
104c1213 1932void
be7811ad 1933gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1934{
b78960be 1935 const char *gdb_nm_file = "<not-defined>";
05c547f6 1936
b78960be
AC
1937#if defined (GDB_NM_FILE)
1938 gdb_nm_file = GDB_NM_FILE;
1939#endif
1940 fprintf_unfiltered (file,
1941 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1942 gdb_nm_file);
104c1213 1943EOF
97030eea 1944function_list | sort -t: -k 3 | while do_read
104c1213 1945do
1e9f55d0
AC
1946 # First the predicate
1947 if class_is_predicate_p
1948 then
7996bcec 1949 printf " fprintf_unfiltered (file,\n"
48f7351b 1950 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1951 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1952 fi
48f7351b 1953 # Print the corresponding value.
283354d8 1954 if class_is_function_p
4b9b3959 1955 then
7996bcec 1956 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1957 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1958 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1959 else
48f7351b 1960 # It is a variable
2f9b146e
AC
1961 case "${print}:${returntype}" in
1962 :CORE_ADDR )
0b1553bc
UW
1963 fmt="%s"
1964 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1965 ;;
2f9b146e 1966 :* )
48f7351b 1967 fmt="%s"
623d3eb1 1968 print="plongest (gdbarch->${function})"
48f7351b
AC
1969 ;;
1970 * )
2f9b146e 1971 fmt="%s"
48f7351b
AC
1972 ;;
1973 esac
3d9a5942 1974 printf " fprintf_unfiltered (file,\n"
48f7351b 1975 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1976 printf " ${print});\n"
2ada493a 1977 fi
104c1213 1978done
381323f4 1979cat <<EOF
be7811ad
MD
1980 if (gdbarch->dump_tdep != NULL)
1981 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1982}
1983EOF
104c1213
JM
1984
1985
1986# GET/SET
3d9a5942 1987printf "\n"
104c1213
JM
1988cat <<EOF
1989struct gdbarch_tdep *
1990gdbarch_tdep (struct gdbarch *gdbarch)
1991{
1992 if (gdbarch_debug >= 2)
3d9a5942 1993 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1994 return gdbarch->tdep;
1995}
1996EOF
3d9a5942 1997printf "\n"
34620563 1998function_list | while do_read
104c1213 1999do
2ada493a
AC
2000 if class_is_predicate_p
2001 then
3d9a5942
AC
2002 printf "\n"
2003 printf "int\n"
2004 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
2005 printf "{\n"
8de9bdc4 2006 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 2007 printf " return ${predicate};\n"
3d9a5942 2008 printf "}\n"
2ada493a
AC
2009 fi
2010 if class_is_function_p
2011 then
3d9a5942
AC
2012 printf "\n"
2013 printf "${returntype}\n"
72e74a21 2014 if [ "x${formal}" = "xvoid" ]
104c1213 2015 then
3d9a5942 2016 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 2017 else
3d9a5942 2018 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 2019 fi
3d9a5942 2020 printf "{\n"
8de9bdc4 2021 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 2022 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 2023 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
2024 then
2025 # Allow a call to a function with a predicate.
956ac328 2026 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 2027 fi
3d9a5942
AC
2028 printf " if (gdbarch_debug >= 2)\n"
2029 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 2030 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
2031 then
2032 if class_is_multiarch_p
2033 then
2034 params="gdbarch"
2035 else
2036 params=""
2037 fi
2038 else
2039 if class_is_multiarch_p
2040 then
2041 params="gdbarch, ${actual}"
2042 else
2043 params="${actual}"
2044 fi
2045 fi
72e74a21 2046 if [ "x${returntype}" = "xvoid" ]
104c1213 2047 then
4a5c6a1d 2048 printf " gdbarch->${function} (${params});\n"
104c1213 2049 else
4a5c6a1d 2050 printf " return gdbarch->${function} (${params});\n"
104c1213 2051 fi
3d9a5942
AC
2052 printf "}\n"
2053 printf "\n"
2054 printf "void\n"
2055 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2056 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2057 printf "{\n"
2058 printf " gdbarch->${function} = ${function};\n"
2059 printf "}\n"
2ada493a
AC
2060 elif class_is_variable_p
2061 then
3d9a5942
AC
2062 printf "\n"
2063 printf "${returntype}\n"
2064 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2065 printf "{\n"
8de9bdc4 2066 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 2067 if [ "x${invalid_p}" = "x0" ]
c0e8c252 2068 then
3d9a5942 2069 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 2070 elif [ -n "${invalid_p}" ]
104c1213 2071 then
956ac328
AC
2072 printf " /* Check variable is valid. */\n"
2073 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 2074 elif [ -n "${predefault}" ]
104c1213 2075 then
956ac328
AC
2076 printf " /* Check variable changed from pre-default. */\n"
2077 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 2078 fi
3d9a5942
AC
2079 printf " if (gdbarch_debug >= 2)\n"
2080 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2081 printf " return gdbarch->${function};\n"
2082 printf "}\n"
2083 printf "\n"
2084 printf "void\n"
2085 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2086 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2087 printf "{\n"
2088 printf " gdbarch->${function} = ${function};\n"
2089 printf "}\n"
2ada493a
AC
2090 elif class_is_info_p
2091 then
3d9a5942
AC
2092 printf "\n"
2093 printf "${returntype}\n"
2094 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2095 printf "{\n"
8de9bdc4 2096 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
2097 printf " if (gdbarch_debug >= 2)\n"
2098 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2099 printf " return gdbarch->${function};\n"
2100 printf "}\n"
2ada493a 2101 fi
104c1213
JM
2102done
2103
2104# All the trailing guff
2105cat <<EOF
2106
2107
f44c642f 2108/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2109 modules. */
104c1213
JM
2110
2111struct gdbarch_data
2112{
95160752 2113 unsigned index;
76860b5f 2114 int init_p;
030f20e1
AC
2115 gdbarch_data_pre_init_ftype *pre_init;
2116 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2117};
2118
2119struct gdbarch_data_registration
2120{
104c1213
JM
2121 struct gdbarch_data *data;
2122 struct gdbarch_data_registration *next;
2123};
2124
f44c642f 2125struct gdbarch_data_registry
104c1213 2126{
95160752 2127 unsigned nr;
104c1213
JM
2128 struct gdbarch_data_registration *registrations;
2129};
2130
f44c642f 2131struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2132{
2133 0, NULL,
2134};
2135
030f20e1
AC
2136static struct gdbarch_data *
2137gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2138 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2139{
2140 struct gdbarch_data_registration **curr;
05c547f6
MS
2141
2142 /* Append the new registration. */
f44c642f 2143 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2144 (*curr) != NULL;
2145 curr = &(*curr)->next);
70ba0933 2146 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2147 (*curr)->next = NULL;
70ba0933 2148 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2149 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2150 (*curr)->data->pre_init = pre_init;
2151 (*curr)->data->post_init = post_init;
76860b5f 2152 (*curr)->data->init_p = 1;
104c1213
JM
2153 return (*curr)->data;
2154}
2155
030f20e1
AC
2156struct gdbarch_data *
2157gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2158{
2159 return gdbarch_data_register (pre_init, NULL);
2160}
2161
2162struct gdbarch_data *
2163gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2164{
2165 return gdbarch_data_register (NULL, post_init);
2166}
104c1213 2167
0963b4bd 2168/* Create/delete the gdbarch data vector. */
95160752
AC
2169
2170static void
b3cc3077 2171alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2172{
b3cc3077
JB
2173 gdb_assert (gdbarch->data == NULL);
2174 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2175 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2176}
3c875b6f 2177
76860b5f 2178/* Initialize the current value of the specified per-architecture
0963b4bd 2179 data-pointer. */
b3cc3077 2180
95160752 2181void
030f20e1
AC
2182deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2183 struct gdbarch_data *data,
2184 void *pointer)
95160752
AC
2185{
2186 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2187 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2188 gdb_assert (data->pre_init == NULL);
95160752
AC
2189 gdbarch->data[data->index] = pointer;
2190}
2191
104c1213 2192/* Return the current value of the specified per-architecture
0963b4bd 2193 data-pointer. */
104c1213
JM
2194
2195void *
451fbdda 2196gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2197{
451fbdda 2198 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2199 if (gdbarch->data[data->index] == NULL)
76860b5f 2200 {
030f20e1
AC
2201 /* The data-pointer isn't initialized, call init() to get a
2202 value. */
2203 if (data->pre_init != NULL)
2204 /* Mid architecture creation: pass just the obstack, and not
2205 the entire architecture, as that way it isn't possible for
2206 pre-init code to refer to undefined architecture
2207 fields. */
2208 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2209 else if (gdbarch->initialized_p
2210 && data->post_init != NULL)
2211 /* Post architecture creation: pass the entire architecture
2212 (as all fields are valid), but be careful to also detect
2213 recursive references. */
2214 {
2215 gdb_assert (data->init_p);
2216 data->init_p = 0;
2217 gdbarch->data[data->index] = data->post_init (gdbarch);
2218 data->init_p = 1;
2219 }
2220 else
2221 /* The architecture initialization hasn't completed - punt -
2222 hope that the caller knows what they are doing. Once
2223 deprecated_set_gdbarch_data has been initialized, this can be
2224 changed to an internal error. */
2225 return NULL;
76860b5f
AC
2226 gdb_assert (gdbarch->data[data->index] != NULL);
2227 }
451fbdda 2228 return gdbarch->data[data->index];
104c1213
JM
2229}
2230
2231
0963b4bd 2232/* Keep a registry of the architectures known by GDB. */
104c1213 2233
4b9b3959 2234struct gdbarch_registration
104c1213
JM
2235{
2236 enum bfd_architecture bfd_architecture;
2237 gdbarch_init_ftype *init;
4b9b3959 2238 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2239 struct gdbarch_list *arches;
4b9b3959 2240 struct gdbarch_registration *next;
104c1213
JM
2241};
2242
f44c642f 2243static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2244
b4a20239
AC
2245static void
2246append_name (const char ***buf, int *nr, const char *name)
2247{
1dc7a623 2248 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
b4a20239
AC
2249 (*buf)[*nr] = name;
2250 *nr += 1;
2251}
2252
2253const char **
2254gdbarch_printable_names (void)
2255{
7996bcec 2256 /* Accumulate a list of names based on the registed list of
0963b4bd 2257 architectures. */
7996bcec
AC
2258 int nr_arches = 0;
2259 const char **arches = NULL;
2260 struct gdbarch_registration *rego;
05c547f6 2261
7996bcec
AC
2262 for (rego = gdbarch_registry;
2263 rego != NULL;
2264 rego = rego->next)
b4a20239 2265 {
7996bcec
AC
2266 const struct bfd_arch_info *ap;
2267 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2268 if (ap == NULL)
2269 internal_error (__FILE__, __LINE__,
85c07804 2270 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2271 do
2272 {
2273 append_name (&arches, &nr_arches, ap->printable_name);
2274 ap = ap->next;
2275 }
2276 while (ap != NULL);
b4a20239 2277 }
7996bcec
AC
2278 append_name (&arches, &nr_arches, NULL);
2279 return arches;
b4a20239
AC
2280}
2281
2282
104c1213 2283void
4b9b3959
AC
2284gdbarch_register (enum bfd_architecture bfd_architecture,
2285 gdbarch_init_ftype *init,
2286 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2287{
4b9b3959 2288 struct gdbarch_registration **curr;
104c1213 2289 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2290
ec3d358c 2291 /* Check that BFD recognizes this architecture */
104c1213
JM
2292 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2293 if (bfd_arch_info == NULL)
2294 {
8e65ff28 2295 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2296 _("gdbarch: Attempt to register "
2297 "unknown architecture (%d)"),
8e65ff28 2298 bfd_architecture);
104c1213 2299 }
0963b4bd 2300 /* Check that we haven't seen this architecture before. */
f44c642f 2301 for (curr = &gdbarch_registry;
104c1213
JM
2302 (*curr) != NULL;
2303 curr = &(*curr)->next)
2304 {
2305 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2306 internal_error (__FILE__, __LINE__,
64b9b334 2307 _("gdbarch: Duplicate registration "
0963b4bd 2308 "of architecture (%s)"),
8e65ff28 2309 bfd_arch_info->printable_name);
104c1213
JM
2310 }
2311 /* log it */
2312 if (gdbarch_debug)
30737ed9 2313 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2314 bfd_arch_info->printable_name,
30737ed9 2315 host_address_to_string (init));
104c1213 2316 /* Append it */
70ba0933 2317 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2318 (*curr)->bfd_architecture = bfd_architecture;
2319 (*curr)->init = init;
4b9b3959 2320 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2321 (*curr)->arches = NULL;
2322 (*curr)->next = NULL;
4b9b3959
AC
2323}
2324
2325void
2326register_gdbarch_init (enum bfd_architecture bfd_architecture,
2327 gdbarch_init_ftype *init)
2328{
2329 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2330}
104c1213
JM
2331
2332
424163ea 2333/* Look for an architecture using gdbarch_info. */
104c1213
JM
2334
2335struct gdbarch_list *
2336gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2337 const struct gdbarch_info *info)
2338{
2339 for (; arches != NULL; arches = arches->next)
2340 {
2341 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2342 continue;
2343 if (info->byte_order != arches->gdbarch->byte_order)
2344 continue;
4be87837
DJ
2345 if (info->osabi != arches->gdbarch->osabi)
2346 continue;
424163ea
DJ
2347 if (info->target_desc != arches->gdbarch->target_desc)
2348 continue;
104c1213
JM
2349 return arches;
2350 }
2351 return NULL;
2352}
2353
2354
ebdba546 2355/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2356 architecture if needed. Return that new architecture. */
104c1213 2357
59837fe0
UW
2358struct gdbarch *
2359gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2360{
2361 struct gdbarch *new_gdbarch;
4b9b3959 2362 struct gdbarch_registration *rego;
104c1213 2363
b732d07d 2364 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2365 sources: "set ..."; INFOabfd supplied; and the global
2366 defaults. */
2367 gdbarch_info_fill (&info);
4be87837 2368
0963b4bd 2369 /* Must have found some sort of architecture. */
b732d07d 2370 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2371
2372 if (gdbarch_debug)
2373 {
2374 fprintf_unfiltered (gdb_stdlog,
59837fe0 2375 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2376 (info.bfd_arch_info != NULL
2377 ? info.bfd_arch_info->printable_name
2378 : "(null)"));
2379 fprintf_unfiltered (gdb_stdlog,
59837fe0 2380 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2381 info.byte_order,
d7449b42 2382 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2383 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2384 : "default"));
4be87837 2385 fprintf_unfiltered (gdb_stdlog,
59837fe0 2386 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2387 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2388 fprintf_unfiltered (gdb_stdlog,
59837fe0 2389 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2390 host_address_to_string (info.abfd));
104c1213 2391 fprintf_unfiltered (gdb_stdlog,
59837fe0 2392 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2393 host_address_to_string (info.tdep_info));
104c1213
JM
2394 }
2395
ebdba546 2396 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2397 for (rego = gdbarch_registry;
2398 rego != NULL;
2399 rego = rego->next)
2400 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2401 break;
2402 if (rego == NULL)
2403 {
2404 if (gdbarch_debug)
59837fe0 2405 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2406 "No matching architecture\n");
b732d07d
AC
2407 return 0;
2408 }
2409
ebdba546 2410 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2411 new_gdbarch = rego->init (info, rego->arches);
2412
ebdba546
AC
2413 /* Did the tdep code like it? No. Reject the change and revert to
2414 the old architecture. */
104c1213
JM
2415 if (new_gdbarch == NULL)
2416 {
2417 if (gdbarch_debug)
59837fe0 2418 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2419 "Target rejected architecture\n");
2420 return NULL;
104c1213
JM
2421 }
2422
ebdba546
AC
2423 /* Is this a pre-existing architecture (as determined by already
2424 being initialized)? Move it to the front of the architecture
2425 list (keeping the list sorted Most Recently Used). */
2426 if (new_gdbarch->initialized_p)
104c1213 2427 {
ebdba546 2428 struct gdbarch_list **list;
fe978cb0 2429 struct gdbarch_list *self;
104c1213 2430 if (gdbarch_debug)
59837fe0 2431 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2432 "Previous architecture %s (%s) selected\n",
2433 host_address_to_string (new_gdbarch),
104c1213 2434 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2435 /* Find the existing arch in the list. */
2436 for (list = &rego->arches;
2437 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2438 list = &(*list)->next);
2439 /* It had better be in the list of architectures. */
2440 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
fe978cb0
PA
2441 /* Unlink SELF. */
2442 self = (*list);
2443 (*list) = self->next;
2444 /* Insert SELF at the front. */
2445 self->next = rego->arches;
2446 rego->arches = self;
ebdba546
AC
2447 /* Return it. */
2448 return new_gdbarch;
104c1213
JM
2449 }
2450
ebdba546
AC
2451 /* It's a new architecture. */
2452 if (gdbarch_debug)
59837fe0 2453 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2454 "New architecture %s (%s) selected\n",
2455 host_address_to_string (new_gdbarch),
ebdba546
AC
2456 new_gdbarch->bfd_arch_info->printable_name);
2457
2458 /* Insert the new architecture into the front of the architecture
2459 list (keep the list sorted Most Recently Used). */
0f79675b 2460 {
fe978cb0
PA
2461 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2462 self->next = rego->arches;
2463 self->gdbarch = new_gdbarch;
2464 rego->arches = self;
0f79675b 2465 }
104c1213 2466
4b9b3959
AC
2467 /* Check that the newly installed architecture is valid. Plug in
2468 any post init values. */
2469 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2470 verify_gdbarch (new_gdbarch);
ebdba546 2471 new_gdbarch->initialized_p = 1;
104c1213 2472
4b9b3959 2473 if (gdbarch_debug)
ebdba546
AC
2474 gdbarch_dump (new_gdbarch, gdb_stdlog);
2475
2476 return new_gdbarch;
2477}
2478
e487cc15 2479/* Make the specified architecture current. */
ebdba546
AC
2480
2481void
aff68abb 2482set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2483{
2484 gdb_assert (new_gdbarch != NULL);
ebdba546 2485 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2486 current_inferior ()->gdbarch = new_gdbarch;
383f836e 2487 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2488 registers_changed ();
ebdba546 2489}
104c1213 2490
f5656ead 2491/* Return the current inferior's arch. */
6ecd4729
PA
2492
2493struct gdbarch *
f5656ead 2494target_gdbarch (void)
6ecd4729
PA
2495{
2496 return current_inferior ()->gdbarch;
2497}
2498
104c1213 2499extern void _initialize_gdbarch (void);
b4a20239 2500
104c1213 2501void
34620563 2502_initialize_gdbarch (void)
104c1213 2503{
ccce17b0 2504 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2505Set architecture debugging."), _("\\
2506Show architecture debugging."), _("\\
2507When non-zero, architecture debugging is enabled."),
2508 NULL,
920d2a44 2509 show_gdbarch_debug,
85c07804 2510 &setdebuglist, &showdebuglist);
104c1213
JM
2511}
2512EOF
2513
2514# close things off
2515exec 1>&2
2516#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2517compare_new gdbarch.c
This page took 1.500003 seconds and 4 git commands to generate.