Don't remove C++ aliases from completions if symbol doesn't match
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
b811d2c2 5# Copyright (C) 1998-2020 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
a6fc5ffc 31 if test ! -r "${file}"
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
a6fc5ffc 34 elif diff -u "${file}" "new-${file}"
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
ffc2844e 53 # shellcheck disable=SC2162
c9023fb3 54 while IFS='' read line
34620563
AC
55 do
56 if test "${line}" = ""
57 then
58 continue
59 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 60 then
34620563
AC
61 continue
62 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 63 then
34620563
AC
64 comment="${comment}
65${line}"
f0d4cc9e 66 else
3d9a5942
AC
67
68 # The semantics of IFS varies between different SH's. Some
ea480a30
SM
69 # treat ``;;' as three fields while some treat it as just two.
70 # Work around this by eliminating ``;;'' ....
cb02ab24 71 line="$(echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g')"
3d9a5942 72
ea480a30 73 OFS="${IFS}" ; IFS="[;]"
a6fc5ffc 74 eval read "${read}" <<EOF
34620563
AC
75${line}
76EOF
77 IFS="${OFS}"
78
1207375d 79 if test -n "${garbage_at_eol:-}"
283354d8
AC
80 then
81 echo "Garbage at end-of-line in ${line}" 1>&2
82 kill $$
83 exit 1
84 fi
85
3d9a5942
AC
86 # .... and then going back through each field and strip out those
87 # that ended up with just that space character.
88 for r in ${read}
89 do
a6fc5ffc 90 if eval test "\"\${${r}}\" = ' '"
3d9a5942 91 then
a6fc5ffc 92 eval "${r}="
3d9a5942
AC
93 fi
94 done
95
a72293e2 96 case "${class}" in
1207375d 97 m ) staticdefault="${predefault:-}" ;;
a72293e2
AC
98 M ) staticdefault="0" ;;
99 * ) test "${staticdefault}" || staticdefault=0 ;;
100 esac
06b25f14 101
ae45cd16
AC
102 case "${class}" in
103 F | V | M )
1207375d 104 case "${invalid_p:-}" in
34620563 105 "" )
f7968451 106 if test -n "${predefault}"
34620563
AC
107 then
108 #invalid_p="gdbarch->${function} == ${predefault}"
1207375d 109 predicate="gdbarch->${function:-} != ${predefault}"
f7968451
AC
110 elif class_is_variable_p
111 then
112 predicate="gdbarch->${function} != 0"
113 elif class_is_function_p
114 then
115 predicate="gdbarch->${function} != NULL"
34620563
AC
116 fi
117 ;;
ae45cd16 118 * )
1e9f55d0 119 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
120 kill $$
121 exit 1
122 ;;
123 esac
34620563
AC
124 esac
125
34620563
AC
126 #NOT YET: See gdbarch.log for basic verification of
127 # database
128
129 break
f0d4cc9e 130 fi
34620563 131 done
72e74a21 132 if [ -n "${class}" ]
34620563
AC
133 then
134 true
c0e8c252
AC
135 else
136 false
137 fi
138}
139
104c1213 140
f0d4cc9e
AC
141fallback_default_p ()
142{
1207375d 143 { [ -n "${postdefault:-}" ] && [ "x${invalid_p}" != "x0" ]; } \
9fdb2916 144 || { [ -n "${predefault}" ] && [ "x${invalid_p}" = "x0" ]; }
f0d4cc9e
AC
145}
146
147class_is_variable_p ()
148{
4a5c6a1d
AC
149 case "${class}" in
150 *v* | *V* ) true ;;
151 * ) false ;;
152 esac
f0d4cc9e
AC
153}
154
155class_is_function_p ()
156{
4a5c6a1d
AC
157 case "${class}" in
158 *f* | *F* | *m* | *M* ) true ;;
159 * ) false ;;
160 esac
161}
162
163class_is_multiarch_p ()
164{
165 case "${class}" in
166 *m* | *M* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_predicate_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *F* | *V* | *M* ) true ;;
175 * ) false ;;
176 esac
f0d4cc9e
AC
177}
178
179class_is_info_p ()
180{
4a5c6a1d
AC
181 case "${class}" in
182 *i* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187
cff3e48b
JM
188# dump out/verify the doco
189for field in ${read}
190do
191 case ${field} in
192
193 class ) : ;;
c4093a6a 194
c0e8c252
AC
195 # # -> line disable
196 # f -> function
197 # hiding a function
2ada493a
AC
198 # F -> function + predicate
199 # hiding a function + predicate to test function validity
c0e8c252
AC
200 # v -> variable
201 # hiding a variable
2ada493a
AC
202 # V -> variable + predicate
203 # hiding a variable + predicate to test variables validity
c0e8c252
AC
204 # i -> set from info
205 # hiding something from the ``struct info'' object
4a5c6a1d
AC
206 # m -> multi-arch function
207 # hiding a multi-arch function (parameterised with the architecture)
208 # M -> multi-arch function + predicate
209 # hiding a multi-arch function + predicate to test function validity
cff3e48b 210
cff3e48b
JM
211 returntype ) : ;;
212
c0e8c252 213 # For functions, the return type; for variables, the data type
cff3e48b
JM
214
215 function ) : ;;
216
c0e8c252
AC
217 # For functions, the member function name; for variables, the
218 # variable name. Member function names are always prefixed with
219 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
220
221 formal ) : ;;
222
c0e8c252
AC
223 # The formal argument list. It is assumed that the formal
224 # argument list includes the actual name of each list element.
225 # A function with no arguments shall have ``void'' as the
226 # formal argument list.
cff3e48b
JM
227
228 actual ) : ;;
229
c0e8c252
AC
230 # The list of actual arguments. The arguments specified shall
231 # match the FORMAL list given above. Functions with out
232 # arguments leave this blank.
cff3e48b 233
0b8f9e4d 234 staticdefault ) : ;;
c0e8c252
AC
235
236 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
237 # created. STATICDEFAULT is the value to insert into that
238 # static gdbarch object. Since this a static object only
239 # simple expressions can be used.
cff3e48b 240
0b8f9e4d 241 # If STATICDEFAULT is empty, zero is used.
c0e8c252 242
0b8f9e4d 243 predefault ) : ;;
cff3e48b 244
10312cc4
AC
245 # An initial value to assign to MEMBER of the freshly
246 # malloc()ed gdbarch object. After initialization, the
247 # freshly malloc()ed object is passed to the target
248 # architecture code for further updates.
cff3e48b 249
0b8f9e4d
AC
250 # If PREDEFAULT is empty, zero is used.
251
10312cc4
AC
252 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
253 # INVALID_P are specified, PREDEFAULT will be used as the
254 # default for the non- multi-arch target.
255
256 # A zero PREDEFAULT function will force the fallback to call
257 # internal_error().
f0d4cc9e
AC
258
259 # Variable declarations can refer to ``gdbarch'' which will
260 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
261
262 postdefault ) : ;;
263
264 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
265 # the target architecture code fail to change the PREDEFAULT
266 # value.
0b8f9e4d
AC
267
268 # If POSTDEFAULT is empty, no post update is performed.
269
270 # If both INVALID_P and POSTDEFAULT are non-empty then
271 # INVALID_P will be used to determine if MEMBER should be
272 # changed to POSTDEFAULT.
273
10312cc4
AC
274 # If a non-empty POSTDEFAULT and a zero INVALID_P are
275 # specified, POSTDEFAULT will be used as the default for the
276 # non- multi-arch target (regardless of the value of
277 # PREDEFAULT).
278
f0d4cc9e
AC
279 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
280
be7811ad 281 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
282 # will contain the current architecture. Care should be
283 # taken.
cff3e48b 284
c4093a6a 285 invalid_p ) : ;;
cff3e48b 286
0b8f9e4d 287 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 288 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
289 # initialize MEMBER or the initialized the member is invalid.
290 # If POSTDEFAULT is non-empty then MEMBER will be updated to
291 # that value. If POSTDEFAULT is empty then internal_error()
292 # is called.
293
294 # If INVALID_P is empty, a check that MEMBER is no longer
295 # equal to PREDEFAULT is used.
296
f0d4cc9e
AC
297 # The expression ``0'' disables the INVALID_P check making
298 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
299
300 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 301
cff3e48b
JM
302 print ) : ;;
303
2f9b146e
AC
304 # An optional expression that convers MEMBER to a value
305 # suitable for formatting using %s.
c0e8c252 306
0b1553bc
UW
307 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
308 # or plongest (anything else) is used.
cff3e48b 309
283354d8 310 garbage_at_eol ) : ;;
0b8f9e4d 311
283354d8 312 # Catches stray fields.
cff3e48b 313
50248794
AC
314 *)
315 echo "Bad field ${field}"
316 exit 1;;
cff3e48b
JM
317 esac
318done
319
cff3e48b 320
104c1213
JM
321function_list ()
322{
cff3e48b 323 # See below (DOCO) for description of each field
34620563 324 cat <<EOF
ea480a30 325i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 326#
ea480a30
SM
327i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
328i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
4be87837 329#
ea480a30 330i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
424163ea 331#
ea480a30 332i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
32c9a795 333
66b43ecb 334# Number of bits in a short or unsigned short for the target machine.
ea480a30 335v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
66b43ecb 336# Number of bits in an int or unsigned int for the target machine.
ea480a30 337v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
66b43ecb 338# Number of bits in a long or unsigned long for the target machine.
ea480a30 339v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
66b43ecb
AC
340# Number of bits in a long long or unsigned long long for the target
341# machine.
ea480a30 342v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
456fcf94 343
f9e9243a
UW
344# The ABI default bit-size and format for "half", "float", "double", and
345# "long double". These bit/format pairs should eventually be combined
346# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
347# Each format describes both the big and little endian layouts (if
348# useful).
456fcf94 349
ea480a30
SM
350v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
351v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
352v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
353v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
354v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
355v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
356v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
357v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
456fcf94 358
53375380
PA
359# The ABI default bit-size for "wchar_t". wchar_t is a built-in type
360# starting with C++11.
ea480a30 361v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
53375380 362# One if \`wchar_t' is signed, zero if unsigned.
ea480a30 363v;int;wchar_signed;;;1;-1;1
53375380 364
9b790ce7
UW
365# Returns the floating-point format to be used for values of length LENGTH.
366# NAME, if non-NULL, is the type name, which may be used to distinguish
367# different target formats of the same length.
ea480a30 368m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
9b790ce7 369
52204a0b
DT
370# For most targets, a pointer on the target and its representation as an
371# address in GDB have the same size and "look the same". For such a
17a912b6 372# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
373# / addr_bit will be set from it.
374#
17a912b6 375# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
376# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
377# gdbarch_address_to_pointer as well.
52204a0b
DT
378#
379# ptr_bit is the size of a pointer on the target
ea480a30 380v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
52204a0b 381# addr_bit is the size of a target address as represented in gdb
ea480a30 382v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
104c1213 383#
8da614df
CV
384# dwarf2_addr_size is the target address size as used in the Dwarf debug
385# info. For .debug_frame FDEs, this is supposed to be the target address
386# size from the associated CU header, and which is equivalent to the
387# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
388# Unfortunately there is no good way to determine this value. Therefore
389# dwarf2_addr_size simply defaults to the target pointer size.
390#
391# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
392# defined using the target's pointer size so far.
393#
394# Note that dwarf2_addr_size only needs to be redefined by a target if the
395# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
396# and if Dwarf versions < 4 need to be supported.
ea480a30 397v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
8da614df 398#
4e409299 399# One if \`char' acts like \`signed char', zero if \`unsigned char'.
ea480a30 400v;int;char_signed;;;1;-1;1
4e409299 401#
c113ed0c 402F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
ea480a30 403F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
39d4ef09
AC
404# Function for getting target's idea of a frame pointer. FIXME: GDB's
405# whole scheme for dealing with "frames" and "frame pointers" needs a
406# serious shakedown.
ea480a30 407m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
66b43ecb 408#
849d0ba8 409M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
3543a589
TT
410# Read a register into a new struct value. If the register is wholly
411# or partly unavailable, this should call mark_value_bytes_unavailable
412# as appropriate. If this is defined, then pseudo_register_read will
413# never be called.
849d0ba8 414M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
ea480a30 415M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
61a0eb5b 416#
ea480a30 417v;int;num_regs;;;0;-1
0aba1244
EZ
418# This macro gives the number of pseudo-registers that live in the
419# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
420# These pseudo-registers may be aliases for other registers,
421# combinations of other registers, or they may be computed by GDB.
ea480a30 422v;int;num_pseudo_regs;;;0;0;;0
c2169756 423
175ff332
HZ
424# Assemble agent expression bytecode to collect pseudo-register REG.
425# Return -1 if something goes wrong, 0 otherwise.
ea480a30 426M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
175ff332
HZ
427
428# Assemble agent expression bytecode to push the value of pseudo-register
429# REG on the interpreter stack.
430# Return -1 if something goes wrong, 0 otherwise.
ea480a30 431M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
175ff332 432
012b3a21
WT
433# Some targets/architectures can do extra processing/display of
434# segmentation faults. E.g., Intel MPX boundary faults.
435# Call the architecture dependent function to handle the fault.
436# UIOUT is the output stream where the handler will place information.
ea480a30 437M;void;handle_segmentation_fault;struct ui_out *uiout;uiout
012b3a21 438
c2169756
AC
439# GDB's standard (or well known) register numbers. These can map onto
440# a real register or a pseudo (computed) register or not be defined at
1200cd6e 441# all (-1).
3e8c568d 442# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
ea480a30
SM
443v;int;sp_regnum;;;-1;-1;;0
444v;int;pc_regnum;;;-1;-1;;0
445v;int;ps_regnum;;;-1;-1;;0
446v;int;fp0_regnum;;;0;-1;;0
88c72b7d 447# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
ea480a30 448m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
88c72b7d 449# Provide a default mapping from a ecoff register number to a gdb REGNUM.
ea480a30 450m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
88c72b7d 451# Convert from an sdb register number to an internal gdb register number.
ea480a30 452m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
ba2b1c56 453# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
0fde2c53 454# Return -1 for bad REGNUM. Note: Several targets get this wrong.
ea480a30
SM
455m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
456m;const char *;register_name;int regnr;regnr;;0
9c04cab7 457
7b9ee6a8
DJ
458# Return the type of a register specified by the architecture. Only
459# the register cache should call this function directly; others should
460# use "register_type".
ea480a30 461M;struct type *;register_type;int reg_nr;reg_nr
9c04cab7 462
8bcb5208
AB
463# Generate a dummy frame_id for THIS_FRAME assuming that the frame is
464# a dummy frame. A dummy frame is created before an inferior call,
465# the frame_id returned here must match the frame_id that was built
466# for the inferior call. Usually this means the returned frame_id's
467# stack address should match the address returned by
468# gdbarch_push_dummy_call, and the returned frame_id's code address
469# should match the address at which the breakpoint was set in the dummy
470# frame.
471m;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame;;default_dummy_id;;0
669fac23 472# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 473# deprecated_fp_regnum.
ea480a30 474v;int;deprecated_fp_regnum;;;-1;-1;;0
f3be58bc 475
cf84fa6b 476M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, function_call_return_method return_method, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, return_method, struct_addr
ea480a30
SM
477v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
478M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 479
7eb89530 480# Return true if the code of FRAME is writable.
ea480a30 481m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
7eb89530 482
ea480a30
SM
483m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
484m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
485M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
7c7651b2
AC
486# MAP a GDB RAW register number onto a simulator register number. See
487# also include/...-sim.h.
ea480a30
SM
488m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
489m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
490m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
eade6471
JB
491
492# Determine the address where a longjmp will land and save this address
493# in PC. Return nonzero on success.
494#
495# FRAME corresponds to the longjmp frame.
ea480a30 496F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
eade6471 497
104c1213 498#
ea480a30 499v;int;believe_pcc_promotion;;;;;;;
104c1213 500#
ea480a30
SM
501m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
502f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
503f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
9acbedc0 504# Construct a value representing the contents of register REGNUM in
2ed3c037 505# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
506# allocate and return a struct value with all value attributes
507# (but not the value contents) filled in.
ea480a30 508m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
104c1213 509#
ea480a30
SM
510m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
511m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
512M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
92ad9cd9 513
6a3a010b
MR
514# Return the return-value convention that will be used by FUNCTION
515# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
516# case the return convention is computed based only on VALTYPE.
517#
518# If READBUF is not NULL, extract the return value and save it in this buffer.
519#
520# If WRITEBUF is not NULL, it contains a return value which will be
521# stored into the appropriate register. This can be used when we want
522# to force the value returned by a function (see the "return" command
523# for instance).
ea480a30 524M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
92ad9cd9 525
18648a37
YQ
526# Return true if the return value of function is stored in the first hidden
527# parameter. In theory, this feature should be language-dependent, specified
528# by language and its ABI, such as C++. Unfortunately, compiler may
529# implement it to a target-dependent feature. So that we need such hook here
530# to be aware of this in GDB.
ea480a30 531m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
18648a37 532
ea480a30
SM
533m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
534M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
591a12a1
UW
535# On some platforms, a single function may provide multiple entry points,
536# e.g. one that is used for function-pointer calls and a different one
537# that is used for direct function calls.
538# In order to ensure that breakpoints set on the function will trigger
539# no matter via which entry point the function is entered, a platform
540# may provide the skip_entrypoint callback. It is called with IP set
541# to the main entry point of a function (as determined by the symbol table),
542# and should return the address of the innermost entry point, where the
543# actual breakpoint needs to be set. Note that skip_entrypoint is used
544# by GDB common code even when debugging optimized code, where skip_prologue
545# is not used.
ea480a30 546M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
591a12a1 547
ea480a30
SM
548f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
549m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
cd6c3b4f
YQ
550
551# Return the breakpoint kind for this target based on *PCPTR.
ea480a30 552m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
cd6c3b4f
YQ
553
554# Return the software breakpoint from KIND. KIND can have target
555# specific meaning like the Z0 kind parameter.
556# SIZE is set to the software breakpoint's length in memory.
ea480a30 557m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
cd6c3b4f 558
833b7ab5
YQ
559# Return the breakpoint kind for this target based on the current
560# processor state (e.g. the current instruction mode on ARM) and the
561# *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
ea480a30 562m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
833b7ab5 563
ea480a30
SM
564M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
565m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
566m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
567v;CORE_ADDR;decr_pc_after_break;;;0;;;0
782263ab
AC
568
569# A function can be addressed by either it's "pointer" (possibly a
570# descriptor address) or "entry point" (first executable instruction).
571# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 572# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
573# a simplified subset of that functionality - the function's address
574# corresponds to the "function pointer" and the function's start
575# corresponds to the "function entry point" - and hence is redundant.
576
ea480a30 577v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
782263ab 578
123dc839
DJ
579# Return the remote protocol register number associated with this
580# register. Normally the identity mapping.
ea480a30 581m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
123dc839 582
b2756930 583# Fetch the target specific address used to represent a load module.
ea480a30 584F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
6e056c81
JB
585
586# Return the thread-local address at OFFSET in the thread-local
587# storage for the thread PTID and the shared library or executable
588# file given by LM_ADDR. If that block of thread-local storage hasn't
589# been allocated yet, this function may throw an error. LM_ADDR may
590# be zero for statically linked multithreaded inferiors.
591
592M;CORE_ADDR;get_thread_local_address;ptid_t ptid, CORE_ADDR lm_addr, CORE_ADDR offset;ptid, lm_addr, offset
104c1213 593#
ea480a30 594v;CORE_ADDR;frame_args_skip;;;0;;;0
8bcb5208
AB
595m;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame;;default_unwind_pc;;0
596m;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame;;default_unwind_sp;;0
42efa47a
AC
597# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
598# frame-base. Enable frame-base before frame-unwind.
ea480a30 599F;int;frame_num_args;struct frame_info *frame;frame
104c1213 600#
ea480a30
SM
601M;CORE_ADDR;frame_align;CORE_ADDR address;address
602m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
603v;int;frame_red_zone_size
f0d4cc9e 604#
ea480a30 605m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
875e1767
AC
606# On some machines there are bits in addresses which are not really
607# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 608# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
609# we get a "real" address such as one would find in a symbol table.
610# This is used only for addresses of instructions, and even then I'm
611# not sure it's used in all contexts. It exists to deal with there
612# being a few stray bits in the PC which would mislead us, not as some
613# sort of generic thing to handle alignment or segmentation (it's
614# possible it should be in TARGET_READ_PC instead).
ea480a30 615m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
e6590a1b 616
a738ea1d
YQ
617# On some machines, not all bits of an address word are significant.
618# For example, on AArch64, the top bits of an address known as the "tag"
619# are ignored by the kernel, the hardware, etc. and can be regarded as
620# additional data associated with the address.
5969f0db 621v;int;significant_addr_bit;;;;;;0
a738ea1d 622
e6590a1b
UW
623# FIXME/cagney/2001-01-18: This should be split in two. A target method that
624# indicates if the target needs software single step. An ISA method to
625# implement it.
626#
e6590a1b
UW
627# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
628# target can single step. If not, then implement single step using breakpoints.
64c4637f 629#
93f9a11f
YQ
630# Return a vector of addresses on which the software single step
631# breakpoints should be inserted. NULL means software single step is
632# not used.
633# Multiple breakpoints may be inserted for some instructions such as
634# conditional branch. However, each implementation must always evaluate
635# the condition and only put the breakpoint at the branch destination if
636# the condition is true, so that we ensure forward progress when stepping
637# past a conditional branch to self.
a0ff9e1a 638F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
e6590a1b 639
3352ef37
AC
640# Return non-zero if the processor is executing a delay slot and a
641# further single-step is needed before the instruction finishes.
ea480a30 642M;int;single_step_through_delay;struct frame_info *frame;frame
f6c40618 643# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 644# disassembler. Perhaps objdump can handle it?
39503f82 645f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
ea480a30 646f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
d50355b6
MS
647
648
cfd8ab24 649# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
650# evaluates non-zero, this is the address where the debugger will place
651# a step-resume breakpoint to get us past the dynamic linker.
ea480a30 652m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
d50355b6 653# Some systems also have trampoline code for returning from shared libs.
ea480a30 654m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
d50355b6 655
1d509aa6
MM
656# Return true if PC lies inside an indirect branch thunk.
657m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
658
c12260ac
CV
659# A target might have problems with watchpoints as soon as the stack
660# frame of the current function has been destroyed. This mostly happens
c9cf6e20 661# as the first action in a function's epilogue. stack_frame_destroyed_p()
c12260ac
CV
662# is defined to return a non-zero value if either the given addr is one
663# instruction after the stack destroying instruction up to the trailing
664# return instruction or if we can figure out that the stack frame has
665# already been invalidated regardless of the value of addr. Targets
666# which don't suffer from that problem could just let this functionality
667# untouched.
ea480a30 668m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
3e29f34a
MR
669# Process an ELF symbol in the minimal symbol table in a backend-specific
670# way. Normally this hook is supposed to do nothing, however if required,
671# then this hook can be used to apply tranformations to symbols that are
672# considered special in some way. For example the MIPS backend uses it
673# to interpret \`st_other' information to mark compressed code symbols so
674# that they can be treated in the appropriate manner in the processing of
675# the main symbol table and DWARF-2 records.
ea480a30
SM
676F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
677f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
3e29f34a
MR
678# Process a symbol in the main symbol table in a backend-specific way.
679# Normally this hook is supposed to do nothing, however if required,
680# then this hook can be used to apply tranformations to symbols that
681# are considered special in some way. This is currently used by the
682# MIPS backend to make sure compressed code symbols have the ISA bit
683# set. This in turn is needed for symbol values seen in GDB to match
684# the values used at the runtime by the program itself, for function
685# and label references.
ea480a30 686f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
3e29f34a
MR
687# Adjust the address retrieved from a DWARF-2 record other than a line
688# entry in a backend-specific way. Normally this hook is supposed to
689# return the address passed unchanged, however if that is incorrect for
690# any reason, then this hook can be used to fix the address up in the
691# required manner. This is currently used by the MIPS backend to make
692# sure addresses in FDE, range records, etc. referring to compressed
693# code have the ISA bit set, matching line information and the symbol
694# table.
ea480a30 695f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
3e29f34a
MR
696# Adjust the address updated by a line entry in a backend-specific way.
697# Normally this hook is supposed to return the address passed unchanged,
698# however in the case of inconsistencies in these records, this hook can
699# be used to fix them up in the required manner. This is currently used
700# by the MIPS backend to make sure all line addresses in compressed code
701# are presented with the ISA bit set, which is not always the case. This
702# in turn ensures breakpoint addresses are correctly matched against the
703# stop PC.
ea480a30
SM
704f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
705v;int;cannot_step_breakpoint;;;0;0;;0
7ea65f08
PA
706# See comment in target.h about continuable, steppable and
707# non-steppable watchpoints.
ea480a30
SM
708v;int;have_nonsteppable_watchpoint;;;0;0;;0
709F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
710M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
b41c5a85
JW
711# Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
712# FS are passed from the generic execute_cfa_program function.
ea480a30 713m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
69f97648
SM
714
715# Return the appropriate type_flags for the supplied address class.
716# This function should return 1 if the address class was recognized and
717# type_flags was set, zero otherwise.
ea480a30 718M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
b59ff9d5 719# Is a register in a group
ea480a30 720m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
f6214256 721# Fetch the pointer to the ith function argument.
ea480a30 722F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
6ce6d90f 723
5aa82d05
AA
724# Iterate over all supported register notes in a core file. For each
725# supported register note section, the iterator must call CB and pass
726# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
727# the supported register note sections based on the current register
728# values. Otherwise it should enumerate all supported register note
729# sections.
ea480a30 730M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
17ea7499 731
6432734d 732# Create core file notes
ea480a30 733M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
6432734d 734
35c2fab7 735# Find core file memory regions
ea480a30 736M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
35c2fab7 737
de584861 738# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
739# core file into buffer READBUF with length LEN. Return the number of bytes read
740# (zero indicates failure).
741# failed, otherwise, return the red length of READBUF.
ea480a30 742M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
de584861 743
356a5233
JB
744# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
745# libraries list from core file into buffer READBUF with length LEN.
c09f20e4 746# Return the number of bytes read (zero indicates failure).
ea480a30 747M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
356a5233 748
c0edd9ed 749# How the core target converts a PTID from a core file to a string.
a068643d 750M;std::string;core_pid_to_str;ptid_t ptid;ptid
28439f5e 751
4dfc5dbc 752# How the core target extracts the name of a thread from a core file.
ea480a30 753M;const char *;core_thread_name;struct thread_info *thr;thr
4dfc5dbc 754
382b69bb
JB
755# Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
756# from core file into buffer READBUF with length LEN. Return the number
757# of bytes read (zero indicates EOF, a negative value indicates failure).
758M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
759
a78c2d62 760# BFD target to use when generating a core file.
ea480a30 761V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
a78c2d62 762
0d5de010
DJ
763# If the elements of C++ vtables are in-place function descriptors rather
764# than normal function pointers (which may point to code or a descriptor),
765# set this to one.
ea480a30 766v;int;vtable_function_descriptors;;;0;0;;0
0d5de010
DJ
767
768# Set if the least significant bit of the delta is used instead of the least
769# significant bit of the pfn for pointers to virtual member functions.
ea480a30 770v;int;vbit_in_delta;;;0;0;;0
6d350bb5
UW
771
772# Advance PC to next instruction in order to skip a permanent breakpoint.
ea480a30 773f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
1c772458 774
1668ae25 775# The maximum length of an instruction on this architecture in bytes.
ea480a30 776V;ULONGEST;max_insn_length;;;0;0
237fc4c9
PA
777
778# Copy the instruction at FROM to TO, and make any adjustments
779# necessary to single-step it at that address.
780#
781# REGS holds the state the thread's registers will have before
782# executing the copied instruction; the PC in REGS will refer to FROM,
783# not the copy at TO. The caller should update it to point at TO later.
784#
785# Return a pointer to data of the architecture's choice to be passed
786# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
787# the instruction's effects have been completely simulated, with the
788# resulting state written back to REGS.
789#
790# For a general explanation of displaced stepping and how GDB uses it,
791# see the comments in infrun.c.
792#
793# The TO area is only guaranteed to have space for
794# gdbarch_max_insn_length (arch) bytes, so this function must not
795# write more bytes than that to that area.
796#
797# If you do not provide this function, GDB assumes that the
798# architecture does not support displaced stepping.
799#
7f03bd92
PA
800# If the instruction cannot execute out of line, return NULL. The
801# core falls back to stepping past the instruction in-line instead in
802# that case.
fdb61c6c 803M;displaced_step_closure_up;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
237fc4c9 804
99e40580
UW
805# Return true if GDB should use hardware single-stepping to execute
806# the displaced instruction identified by CLOSURE. If false,
807# GDB will simply restart execution at the displaced instruction
808# location, and it is up to the target to ensure GDB will receive
809# control again (e.g. by placing a software breakpoint instruction
810# into the displaced instruction buffer).
811#
812# The default implementation returns false on all targets that
813# provide a gdbarch_software_single_step routine, and true otherwise.
ea480a30 814m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
99e40580 815
237fc4c9
PA
816# Fix up the state resulting from successfully single-stepping a
817# displaced instruction, to give the result we would have gotten from
818# stepping the instruction in its original location.
819#
820# REGS is the register state resulting from single-stepping the
821# displaced instruction.
822#
823# CLOSURE is the result from the matching call to
824# gdbarch_displaced_step_copy_insn.
825#
826# If you provide gdbarch_displaced_step_copy_insn.but not this
827# function, then GDB assumes that no fixup is needed after
828# single-stepping the instruction.
829#
830# For a general explanation of displaced stepping and how GDB uses it,
831# see the comments in infrun.c.
ea480a30 832M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
237fc4c9 833
237fc4c9
PA
834# Return the address of an appropriate place to put displaced
835# instructions while we step over them. There need only be one such
836# place, since we're only stepping one thread over a breakpoint at a
837# time.
838#
839# For a general explanation of displaced stepping and how GDB uses it,
840# see the comments in infrun.c.
ea480a30 841m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
237fc4c9 842
dde08ee1
PA
843# Relocate an instruction to execute at a different address. OLDLOC
844# is the address in the inferior memory where the instruction to
845# relocate is currently at. On input, TO points to the destination
846# where we want the instruction to be copied (and possibly adjusted)
847# to. On output, it points to one past the end of the resulting
848# instruction(s). The effect of executing the instruction at TO shall
849# be the same as if executing it at FROM. For example, call
850# instructions that implicitly push the return address on the stack
851# should be adjusted to return to the instruction after OLDLOC;
852# relative branches, and other PC-relative instructions need the
853# offset adjusted; etc.
ea480a30 854M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
dde08ee1 855
1c772458 856# Refresh overlay mapped state for section OSECT.
ea480a30 857F;void;overlay_update;struct obj_section *osect;osect
4eb0ad19 858
ea480a30 859M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
149ad273
UW
860
861# Handle special encoding of static variables in stabs debug info.
ea480a30 862F;const char *;static_transform_name;const char *name;name
203c3895 863# Set if the address in N_SO or N_FUN stabs may be zero.
ea480a30 864v;int;sofun_address_maybe_missing;;;0;0;;0
1cded358 865
0508c3ec
HZ
866# Parse the instruction at ADDR storing in the record execution log
867# the registers REGCACHE and memory ranges that will be affected when
868# the instruction executes, along with their current values.
869# Return -1 if something goes wrong, 0 otherwise.
ea480a30 870M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
0508c3ec 871
3846b520
HZ
872# Save process state after a signal.
873# Return -1 if something goes wrong, 0 otherwise.
ea480a30 874M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
3846b520 875
22203bbf 876# Signal translation: translate inferior's signal (target's) number
86b49880
PA
877# into GDB's representation. The implementation of this method must
878# be host independent. IOW, don't rely on symbols of the NAT_FILE
879# header (the nm-*.h files), the host <signal.h> header, or similar
880# headers. This is mainly used when cross-debugging core files ---
881# "Live" targets hide the translation behind the target interface
1f8cf220 882# (target_wait, target_resume, etc.).
ea480a30 883M;enum gdb_signal;gdb_signal_from_target;int signo;signo
60c5725c 884
eb14d406
SDJ
885# Signal translation: translate the GDB's internal signal number into
886# the inferior's signal (target's) representation. The implementation
887# of this method must be host independent. IOW, don't rely on symbols
888# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
889# header, or similar headers.
890# Return the target signal number if found, or -1 if the GDB internal
891# signal number is invalid.
ea480a30 892M;int;gdb_signal_to_target;enum gdb_signal signal;signal
eb14d406 893
4aa995e1
PA
894# Extra signal info inspection.
895#
896# Return a type suitable to inspect extra signal information.
ea480a30 897M;struct type *;get_siginfo_type;void;
4aa995e1 898
60c5725c 899# Record architecture-specific information from the symbol table.
ea480a30 900M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
50c71eaf 901
a96d9b2e
SDJ
902# Function for the 'catch syscall' feature.
903
904# Get architecture-specific system calls information from registers.
00431a78 905M;LONGEST;get_syscall_number;thread_info *thread;thread
a96d9b2e 906
458c8db8 907# The filename of the XML syscall for this architecture.
ea480a30 908v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
458c8db8
SDJ
909
910# Information about system calls from this architecture
ea480a30 911v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
458c8db8 912
55aa24fb
SDJ
913# SystemTap related fields and functions.
914
05c0465e
SDJ
915# A NULL-terminated array of prefixes used to mark an integer constant
916# on the architecture's assembly.
55aa24fb
SDJ
917# For example, on x86 integer constants are written as:
918#
919# \$10 ;; integer constant 10
920#
921# in this case, this prefix would be the character \`\$\'.
ea480a30 922v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 923
05c0465e
SDJ
924# A NULL-terminated array of suffixes used to mark an integer constant
925# on the architecture's assembly.
ea480a30 926v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 927
05c0465e
SDJ
928# A NULL-terminated array of prefixes used to mark a register name on
929# the architecture's assembly.
55aa24fb
SDJ
930# For example, on x86 the register name is written as:
931#
932# \%eax ;; register eax
933#
934# in this case, this prefix would be the character \`\%\'.
ea480a30 935v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 936
05c0465e
SDJ
937# A NULL-terminated array of suffixes used to mark a register name on
938# the architecture's assembly.
ea480a30 939v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 940
05c0465e
SDJ
941# A NULL-terminated array of prefixes used to mark a register
942# indirection on the architecture's assembly.
55aa24fb
SDJ
943# For example, on x86 the register indirection is written as:
944#
945# \(\%eax\) ;; indirecting eax
946#
947# in this case, this prefix would be the charater \`\(\'.
948#
949# Please note that we use the indirection prefix also for register
950# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 951v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 952
05c0465e
SDJ
953# A NULL-terminated array of suffixes used to mark a register
954# indirection on the architecture's assembly.
55aa24fb
SDJ
955# For example, on x86 the register indirection is written as:
956#
957# \(\%eax\) ;; indirecting eax
958#
959# in this case, this prefix would be the charater \`\)\'.
960#
961# Please note that we use the indirection suffix also for register
962# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 963v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 964
05c0465e 965# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
966#
967# For example, on PPC a register is represented by a number in the assembly
968# language (e.g., \`10\' is the 10th general-purpose register). However,
969# inside GDB this same register has an \`r\' appended to its name, so the 10th
970# register would be represented as \`r10\' internally.
ea480a30 971v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
972
973# Suffix used to name a register using GDB's nomenclature.
ea480a30 974v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
975
976# Check if S is a single operand.
977#
978# Single operands can be:
979# \- Literal integers, e.g. \`\$10\' on x86
980# \- Register access, e.g. \`\%eax\' on x86
981# \- Register indirection, e.g. \`\(\%eax\)\' on x86
982# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
983#
984# This function should check for these patterns on the string
985# and return 1 if some were found, or zero otherwise. Please try to match
986# as much info as you can from the string, i.e., if you have to match
987# something like \`\(\%\', do not match just the \`\(\'.
ea480a30 988M;int;stap_is_single_operand;const char *s;s
55aa24fb
SDJ
989
990# Function used to handle a "special case" in the parser.
991#
992# A "special case" is considered to be an unknown token, i.e., a token
993# that the parser does not know how to parse. A good example of special
994# case would be ARM's register displacement syntax:
995#
996# [R0, #4] ;; displacing R0 by 4
997#
998# Since the parser assumes that a register displacement is of the form:
999#
1000# <number> <indirection_prefix> <register_name> <indirection_suffix>
1001#
1002# it means that it will not be able to recognize and parse this odd syntax.
1003# Therefore, we should add a special case function that will handle this token.
1004#
1005# This function should generate the proper expression form of the expression
1006# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1007# and so on). It should also return 1 if the parsing was successful, or zero
1008# if the token was not recognized as a special token (in this case, returning
1009# zero means that the special parser is deferring the parsing to the generic
1010# parser), and should advance the buffer pointer (p->arg).
ea480a30 1011M;int;stap_parse_special_token;struct stap_parse_info *p;p
55aa24fb 1012
7d7571f0
SDJ
1013# Perform arch-dependent adjustments to a register name.
1014#
1015# In very specific situations, it may be necessary for the register
1016# name present in a SystemTap probe's argument to be handled in a
1017# special way. For example, on i386, GCC may over-optimize the
1018# register allocation and use smaller registers than necessary. In
1019# such cases, the client that is reading and evaluating the SystemTap
1020# probe (ourselves) will need to actually fetch values from the wider
1021# version of the register in question.
1022#
1023# To illustrate the example, consider the following probe argument
1024# (i386):
1025#
1026# 4@%ax
1027#
1028# This argument says that its value can be found at the %ax register,
1029# which is a 16-bit register. However, the argument's prefix says
1030# that its type is "uint32_t", which is 32-bit in size. Therefore, in
1031# this case, GDB should actually fetch the probe's value from register
1032# %eax, not %ax. In this scenario, this function would actually
1033# replace the register name from %ax to %eax.
1034#
1035# The rationale for this can be found at PR breakpoints/24541.
6b78c3f8 1036M;std::string;stap_adjust_register;struct stap_parse_info *p, const std::string \&regname, int regnum;p, regname, regnum
7d7571f0 1037
8b367e17
JM
1038# DTrace related functions.
1039
1040# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1041# NARG must be >= 0.
37eedb39 1042M;void;dtrace_parse_probe_argument;struct expr_builder *builder, int narg;builder, narg
8b367e17
JM
1043
1044# True if the given ADDR does not contain the instruction sequence
1045# corresponding to a disabled DTrace is-enabled probe.
ea480a30 1046M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
8b367e17
JM
1047
1048# Enable a DTrace is-enabled probe at ADDR.
ea480a30 1049M;void;dtrace_enable_probe;CORE_ADDR addr;addr
8b367e17
JM
1050
1051# Disable a DTrace is-enabled probe at ADDR.
ea480a30 1052M;void;dtrace_disable_probe;CORE_ADDR addr;addr
55aa24fb 1053
50c71eaf
PA
1054# True if the list of shared libraries is one and only for all
1055# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
1056# This usually means that all processes, although may or may not share
1057# an address space, will see the same set of symbols at the same
1058# addresses.
ea480a30 1059v;int;has_global_solist;;;0;0;;0
2567c7d9
PA
1060
1061# On some targets, even though each inferior has its own private
1062# address space, the debug interface takes care of making breakpoints
1063# visible to all address spaces automatically. For such cases,
1064# this property should be set to true.
ea480a30 1065v;int;has_global_breakpoints;;;0;0;;0
6c95b8df
PA
1066
1067# True if inferiors share an address space (e.g., uClinux).
ea480a30 1068m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
7a697b8d
SS
1069
1070# True if a fast tracepoint can be set at an address.
281d762b 1071m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
75cebea9 1072
5f034a78
MK
1073# Guess register state based on tracepoint location. Used for tracepoints
1074# where no registers have been collected, but there's only one location,
1075# allowing us to guess the PC value, and perhaps some other registers.
1076# On entry, regcache has all registers marked as unavailable.
ea480a30 1077m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
5f034a78 1078
f870a310 1079# Return the "auto" target charset.
ea480a30 1080f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
f870a310 1081# Return the "auto" target wide charset.
ea480a30 1082f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
08105857
PA
1083
1084# If non-empty, this is a file extension that will be opened in place
1085# of the file extension reported by the shared library list.
1086#
1087# This is most useful for toolchains that use a post-linker tool,
1088# where the names of the files run on the target differ in extension
1089# compared to the names of the files GDB should load for debug info.
ea480a30 1090v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
1091
1092# If true, the target OS has DOS-based file system semantics. That
1093# is, absolute paths include a drive name, and the backslash is
1094# considered a directory separator.
ea480a30 1095v;int;has_dos_based_file_system;;;0;0;;0
6710bf39
SS
1096
1097# Generate bytecodes to collect the return address in a frame.
1098# Since the bytecodes run on the target, possibly with GDB not even
1099# connected, the full unwinding machinery is not available, and
1100# typically this function will issue bytecodes for one or more likely
1101# places that the return address may be found.
ea480a30 1102m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
6710bf39 1103
3030c96e 1104# Implement the "info proc" command.
ea480a30 1105M;void;info_proc;const char *args, enum info_proc_what what;args, what
3030c96e 1106
451b7c33
TT
1107# Implement the "info proc" command for core files. Noe that there
1108# are two "info_proc"-like methods on gdbarch -- one for core files,
1109# one for live targets.
ea480a30 1110M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
451b7c33 1111
19630284
JB
1112# Iterate over all objfiles in the order that makes the most sense
1113# for the architecture to make global symbol searches.
1114#
1115# CB is a callback function where OBJFILE is the objfile to be searched,
1116# and CB_DATA a pointer to user-defined data (the same data that is passed
1117# when calling this gdbarch method). The iteration stops if this function
1118# returns nonzero.
1119#
1120# CB_DATA is a pointer to some user-defined data to be passed to
1121# the callback.
1122#
1123# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1124# inspected when the symbol search was requested.
ea480a30 1125m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
19630284 1126
7e35103a 1127# Ravenscar arch-dependent ops.
ea480a30 1128v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1129
1130# Return non-zero if the instruction at ADDR is a call; zero otherwise.
ea480a30 1131m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
c2170eef
MM
1132
1133# Return non-zero if the instruction at ADDR is a return; zero otherwise.
ea480a30 1134m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
c2170eef
MM
1135
1136# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
ea480a30 1137m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
27a48a92 1138
5133a315
LM
1139# Return true if there's a program/permanent breakpoint planted in
1140# memory at ADDRESS, return false otherwise.
1141m;bool;program_breakpoint_here_p;CORE_ADDR address;address;;default_program_breakpoint_here_p;;0
1142
27a48a92
MK
1143# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1144# Return 0 if *READPTR is already at the end of the buffer.
1145# Return -1 if there is insufficient buffer for a whole entry.
1146# Return 1 if an entry was read into *TYPEP and *VALP.
ea480a30 1147M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
3437254d 1148
2faa3447
JB
1149# Print the description of a single auxv entry described by TYPE and VAL
1150# to FILE.
ea480a30 1151m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
2faa3447 1152
3437254d
PA
1153# Find the address range of the current inferior's vsyscall/vDSO, and
1154# write it to *RANGE. If the vsyscall's length can't be determined, a
1155# range with zero length is returned. Returns true if the vsyscall is
1156# found, false otherwise.
ea480a30 1157m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
f208eee0
JK
1158
1159# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1160# PROT has GDB_MMAP_PROT_* bitmask format.
1161# Throw an error if it is not possible. Returned address is always valid.
ea480a30 1162f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
f208eee0 1163
7f361056
JK
1164# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1165# Print a warning if it is not possible.
ea480a30 1166f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
7f361056 1167
f208eee0
JK
1168# Return string (caller has to use xfree for it) with options for GCC
1169# to produce code for this target, typically "-m64", "-m32" or "-m31".
1170# These options are put before CU's DW_AT_producer compilation options so that
953cff56
TT
1171# they can override it.
1172m;std::string;gcc_target_options;void;;;default_gcc_target_options;;0
ac04f72b
TT
1173
1174# Return a regular expression that matches names used by this
1175# architecture in GNU configury triplets. The result is statically
1176# allocated and must not be freed. The default implementation simply
1177# returns the BFD architecture name, which is correct in nearly every
1178# case.
ea480a30 1179m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
3374165f
SM
1180
1181# Return the size in 8-bit bytes of an addressable memory unit on this
1182# architecture. This corresponds to the number of 8-bit bytes associated to
1183# each address in memory.
ea480a30 1184m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
3374165f 1185
65b48a81 1186# Functions for allowing a target to modify its disassembler options.
471b9d15 1187v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
ea480a30 1188v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
471b9d15 1189v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
65b48a81 1190
5561fc30
AB
1191# Type alignment override method. Return the architecture specific
1192# alignment required for TYPE. If there is no special handling
1193# required for TYPE then return the value 0, GDB will then apply the
1194# default rules as laid out in gdbtypes.c:type_align.
2b4424c3
TT
1195m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1196
aa7ca1bb
AH
1197# Return a string containing any flags for the given PC in the given FRAME.
1198f;std::string;get_pc_address_flags;frame_info *frame, CORE_ADDR pc;frame, pc;;default_get_pc_address_flags;;0
1199
104c1213 1200EOF
104c1213
JM
1201}
1202
0b8f9e4d
AC
1203#
1204# The .log file
1205#
1206exec > new-gdbarch.log
34620563 1207function_list | while do_read
0b8f9e4d
AC
1208do
1209 cat <<EOF
1207375d 1210${class} ${returntype:-} ${function} (${formal:-})
104c1213 1211EOF
3d9a5942
AC
1212 for r in ${read}
1213 do
a6fc5ffc 1214 eval echo "\" ${r}=\${${r}}\""
3d9a5942 1215 done
f0d4cc9e 1216 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1217 then
66d659b1 1218 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1219 kill $$
1220 exit 1
1221 fi
759cea5e 1222 if [ "x${invalid_p}" = "x0" ] && [ -n "${postdefault}" ]
f0d4cc9e
AC
1223 then
1224 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1225 kill $$
1226 exit 1
1227 fi
a72293e2
AC
1228 if class_is_multiarch_p
1229 then
1230 if class_is_predicate_p ; then :
1231 elif test "x${predefault}" = "x"
1232 then
2f9b146e 1233 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1234 kill $$
1235 exit 1
1236 fi
1237 fi
3d9a5942 1238 echo ""
0b8f9e4d
AC
1239done
1240
1241exec 1>&2
1242compare_new gdbarch.log
1243
104c1213
JM
1244
1245copyright ()
1246{
1247cat <<EOF
c4bfde41
JK
1248/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1249/* vi:set ro: */
59233f88 1250
104c1213 1251/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1252
e5d78223 1253 Copyright (C) 1998-2020 Free Software Foundation, Inc.
104c1213
JM
1254
1255 This file is part of GDB.
1256
1257 This program is free software; you can redistribute it and/or modify
1258 it under the terms of the GNU General Public License as published by
50efebf8 1259 the Free Software Foundation; either version 3 of the License, or
104c1213 1260 (at your option) any later version.
618f726f 1261
104c1213
JM
1262 This program is distributed in the hope that it will be useful,
1263 but WITHOUT ANY WARRANTY; without even the implied warranty of
1264 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1265 GNU General Public License for more details.
618f726f 1266
104c1213 1267 You should have received a copy of the GNU General Public License
50efebf8 1268 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1269
104c1213
JM
1270/* This file was created with the aid of \`\`gdbarch.sh''.
1271
52204a0b 1272 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1273 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1274 against the existing \`\`gdbarch.[hc]''. Any differences found
1275 being reported.
1276
1277 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1278 changes into that script. Conversely, when making sweeping changes
104c1213 1279 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1280 easier. */
104c1213
JM
1281
1282EOF
1283}
1284
1285#
1286# The .h file
1287#
1288
1289exec > new-gdbarch.h
1290copyright
1291cat <<EOF
1292#ifndef GDBARCH_H
1293#define GDBARCH_H
1294
a0ff9e1a 1295#include <vector>
eb7a547a 1296#include "frame.h"
65b48a81 1297#include "dis-asm.h"
284a0e3c 1298#include "gdb_obstack.h"
fdb61c6c 1299#include "infrun.h"
fe4b2ee6 1300#include "osabi.h"
eb7a547a 1301
da3331ec
AC
1302struct floatformat;
1303struct ui_file;
104c1213 1304struct value;
b6af0555 1305struct objfile;
1c772458 1306struct obj_section;
a2cf933a 1307struct minimal_symbol;
049ee0e4 1308struct regcache;
b59ff9d5 1309struct reggroup;
6ce6d90f 1310struct regset;
a89aa300 1311struct disassemble_info;
e2d0e7eb 1312struct target_ops;
030f20e1 1313struct obstack;
8181d85f 1314struct bp_target_info;
424163ea 1315struct target_desc;
3e29f34a 1316struct symbol;
a96d9b2e 1317struct syscall;
175ff332 1318struct agent_expr;
6710bf39 1319struct axs_value;
55aa24fb 1320struct stap_parse_info;
37eedb39 1321struct expr_builder;
7e35103a 1322struct ravenscar_arch_ops;
3437254d 1323struct mem_range;
458c8db8 1324struct syscalls_info;
4dfc5dbc 1325struct thread_info;
012b3a21 1326struct ui_out;
104c1213 1327
8a526fa6
PA
1328#include "regcache.h"
1329
6ecd4729
PA
1330/* The architecture associated with the inferior through the
1331 connection to the target.
1332
1333 The architecture vector provides some information that is really a
1334 property of the inferior, accessed through a particular target:
1335 ptrace operations; the layout of certain RSP packets; the solib_ops
1336 vector; etc. To differentiate architecture accesses to
1337 per-inferior/target properties from
1338 per-thread/per-frame/per-objfile properties, accesses to
1339 per-inferior/target properties should be made through this
1340 gdbarch. */
1341
1342/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1343extern struct gdbarch *target_gdbarch (void);
6ecd4729 1344
19630284
JB
1345/* Callback type for the 'iterate_over_objfiles_in_search_order'
1346 gdbarch method. */
1347
1348typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1349 (struct objfile *objfile, void *cb_data);
5aa82d05 1350
1528345d
AA
1351/* Callback type for regset section iterators. The callback usually
1352 invokes the REGSET's supply or collect method, to which it must
a616bb94
AH
1353 pass a buffer - for collects this buffer will need to be created using
1354 COLLECT_SIZE, for supply the existing buffer being read from should
1355 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1356 is used for diagnostic messages. CB_DATA should have been passed
1357 unchanged through the iterator. */
1528345d 1358
5aa82d05 1359typedef void (iterate_over_regset_sections_cb)
a616bb94
AH
1360 (const char *sect_name, int supply_size, int collect_size,
1361 const struct regset *regset, const char *human_name, void *cb_data);
c5ac5cbb
AH
1362
1363/* For a function call, does the function return a value using a
1364 normal value return or a structure return - passing a hidden
1365 argument pointing to storage. For the latter, there are two
1366 cases: language-mandated structure return and target ABI
1367 structure return. */
1368
1369enum function_call_return_method
1370{
1371 /* Standard value return. */
1372 return_method_normal = 0,
1373
1374 /* Language ABI structure return. This is handled
1375 by passing the return location as the first parameter to
1376 the function, even preceding "this". */
1377 return_method_hidden_param,
1378
1379 /* Target ABI struct return. This is target-specific; for instance,
1380 on ia64 the first argument is passed in out0 but the hidden
1381 structure return pointer would normally be passed in r8. */
1382 return_method_struct,
1383};
1384
104c1213
JM
1385EOF
1386
1387# function typedef's
3d9a5942
AC
1388printf "\n"
1389printf "\n"
0963b4bd 1390printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1391function_list | while do_read
104c1213 1392do
2ada493a
AC
1393 if class_is_info_p
1394 then
3d9a5942 1395 printf "\n"
8d113d13
SM
1396 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1397 printf "/* set_gdbarch_%s() - not applicable - pre-initialized. */\n" "$function"
2ada493a 1398 fi
104c1213
JM
1399done
1400
1401# function typedef's
3d9a5942
AC
1402printf "\n"
1403printf "\n"
0963b4bd 1404printf "/* The following are initialized by the target dependent code. */\n"
34620563 1405function_list | while do_read
104c1213 1406do
72e74a21 1407 if [ -n "${comment}" ]
34620563
AC
1408 then
1409 echo "${comment}" | sed \
1410 -e '2 s,#,/*,' \
1411 -e '3,$ s,#, ,' \
1412 -e '$ s,$, */,'
1413 fi
412d5987
AC
1414
1415 if class_is_predicate_p
2ada493a 1416 then
412d5987 1417 printf "\n"
8d113d13 1418 printf "extern int gdbarch_%s_p (struct gdbarch *gdbarch);\n" "$function"
4a5c6a1d 1419 fi
2ada493a
AC
1420 if class_is_variable_p
1421 then
3d9a5942 1422 printf "\n"
8d113d13
SM
1423 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1424 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, %s %s);\n" "$function" "$returntype" "$function"
2ada493a
AC
1425 fi
1426 if class_is_function_p
1427 then
3d9a5942 1428 printf "\n"
72e74a21 1429 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d 1430 then
8d113d13 1431 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch);\n" "$returntype" "$function"
4a5c6a1d
AC
1432 elif class_is_multiarch_p
1433 then
8d113d13 1434 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
4a5c6a1d 1435 else
8d113d13 1436 printf "typedef %s (gdbarch_%s_ftype) (%s);\n" "$returntype" "$function" "$formal"
4a5c6a1d 1437 fi
72e74a21 1438 if [ "x${formal}" = "xvoid" ]
104c1213 1439 then
8d113d13 1440 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
104c1213 1441 else
8d113d13 1442 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
104c1213 1443 fi
8d113d13 1444 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, gdbarch_%s_ftype *%s);\n" "$function" "$function" "$function"
2ada493a 1445 fi
104c1213
JM
1446done
1447
1448# close it off
1449cat <<EOF
1450
1451extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1452
1453
1454/* Mechanism for co-ordinating the selection of a specific
1455 architecture.
1456
1457 GDB targets (*-tdep.c) can register an interest in a specific
1458 architecture. Other GDB components can register a need to maintain
1459 per-architecture data.
1460
1461 The mechanisms below ensures that there is only a loose connection
1462 between the set-architecture command and the various GDB
0fa6923a 1463 components. Each component can independently register their need
104c1213
JM
1464 to maintain architecture specific data with gdbarch.
1465
1466 Pragmatics:
1467
1468 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1469 didn't scale.
1470
1471 The more traditional mega-struct containing architecture specific
1472 data for all the various GDB components was also considered. Since
0fa6923a 1473 GDB is built from a variable number of (fairly independent)
104c1213 1474 components it was determined that the global aproach was not
0963b4bd 1475 applicable. */
104c1213
JM
1476
1477
1478/* Register a new architectural family with GDB.
1479
1480 Register support for the specified ARCHITECTURE with GDB. When
1481 gdbarch determines that the specified architecture has been
1482 selected, the corresponding INIT function is called.
1483
1484 --
1485
1486 The INIT function takes two parameters: INFO which contains the
1487 information available to gdbarch about the (possibly new)
1488 architecture; ARCHES which is a list of the previously created
1489 \`\`struct gdbarch'' for this architecture.
1490
0f79675b 1491 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1492 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1493
1494 The ARCHES parameter is a linked list (sorted most recently used)
1495 of all the previously created architures for this architecture
1496 family. The (possibly NULL) ARCHES->gdbarch can used to access
1497 values from the previously selected architecture for this
59837fe0 1498 architecture family.
104c1213
JM
1499
1500 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1501 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1502 gdbarch'' from the ARCHES list - indicating that the new
1503 architecture is just a synonym for an earlier architecture (see
1504 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1505 - that describes the selected architecture (see gdbarch_alloc()).
1506
1507 The DUMP_TDEP function shall print out all target specific values.
1508 Care should be taken to ensure that the function works in both the
0963b4bd 1509 multi-arch and non- multi-arch cases. */
104c1213
JM
1510
1511struct gdbarch_list
1512{
1513 struct gdbarch *gdbarch;
1514 struct gdbarch_list *next;
1515};
1516
1517struct gdbarch_info
1518{
0963b4bd 1519 /* Use default: NULL (ZERO). */
104c1213
JM
1520 const struct bfd_arch_info *bfd_arch_info;
1521
428721aa 1522 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1523 enum bfd_endian byte_order;
104c1213 1524
94123b4f 1525 enum bfd_endian byte_order_for_code;
9d4fde75 1526
0963b4bd 1527 /* Use default: NULL (ZERO). */
104c1213
JM
1528 bfd *abfd;
1529
0963b4bd 1530 /* Use default: NULL (ZERO). */
0dba2a6c
MR
1531 union
1532 {
1533 /* Architecture-specific information. The generic form for targets
1534 that have extra requirements. */
1535 struct gdbarch_tdep_info *tdep_info;
1536
1537 /* Architecture-specific target description data. Numerous targets
1538 need only this, so give them an easy way to hold it. */
1539 struct tdesc_arch_data *tdesc_data;
1540
1541 /* SPU file system ID. This is a single integer, so using the
1542 generic form would only complicate code. Other targets may
1543 reuse this member if suitable. */
1544 int *id;
1545 };
4be87837
DJ
1546
1547 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1548 enum gdb_osabi osabi;
424163ea
DJ
1549
1550 /* Use default: NULL (ZERO). */
1551 const struct target_desc *target_desc;
104c1213
JM
1552};
1553
1554typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1555typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1556
4b9b3959 1557/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1558extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1559
4b9b3959
AC
1560extern void gdbarch_register (enum bfd_architecture architecture,
1561 gdbarch_init_ftype *,
1562 gdbarch_dump_tdep_ftype *);
1563
104c1213 1564
b4a20239
AC
1565/* Return a freshly allocated, NULL terminated, array of the valid
1566 architecture names. Since architectures are registered during the
1567 _initialize phase this function only returns useful information
0963b4bd 1568 once initialization has been completed. */
b4a20239
AC
1569
1570extern const char **gdbarch_printable_names (void);
1571
1572
104c1213 1573/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1574 matches the information provided by INFO. */
104c1213 1575
424163ea 1576extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1577
1578
1579/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1580 basic initialization using values obtained from the INFO and TDEP
104c1213 1581 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1582 initialization of the object. */
104c1213
JM
1583
1584extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1585
1586
4b9b3959
AC
1587/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1588 It is assumed that the caller freeds the \`\`struct
0963b4bd 1589 gdbarch_tdep''. */
4b9b3959 1590
058f20d5
JB
1591extern void gdbarch_free (struct gdbarch *);
1592
284a0e3c
SM
1593/* Get the obstack owned by ARCH. */
1594
1595extern obstack *gdbarch_obstack (gdbarch *arch);
058f20d5 1596
aebd7893
AC
1597/* Helper function. Allocate memory from the \`\`struct gdbarch''
1598 obstack. The memory is freed when the corresponding architecture
1599 is also freed. */
1600
284a0e3c
SM
1601#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1602 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1603
1604#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1605 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
aebd7893 1606
6c214e7c
PP
1607/* Duplicate STRING, returning an equivalent string that's allocated on the
1608 obstack associated with GDBARCH. The string is freed when the corresponding
1609 architecture is also freed. */
1610
1611extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
aebd7893 1612
0963b4bd 1613/* Helper function. Force an update of the current architecture.
104c1213 1614
b732d07d
AC
1615 The actual architecture selected is determined by INFO, \`\`(gdb) set
1616 architecture'' et.al., the existing architecture and BFD's default
1617 architecture. INFO should be initialized to zero and then selected
1618 fields should be updated.
104c1213 1619
0963b4bd 1620 Returns non-zero if the update succeeds. */
16f33e29
AC
1621
1622extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1623
1624
ebdba546
AC
1625/* Helper function. Find an architecture matching info.
1626
1627 INFO should be initialized using gdbarch_info_init, relevant fields
1628 set, and then finished using gdbarch_info_fill.
1629
1630 Returns the corresponding architecture, or NULL if no matching
59837fe0 1631 architecture was found. */
ebdba546
AC
1632
1633extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1634
1635
aff68abb 1636/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1637
aff68abb 1638extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1639
104c1213
JM
1640
1641/* Register per-architecture data-pointer.
1642
1643 Reserve space for a per-architecture data-pointer. An identifier
1644 for the reserved data-pointer is returned. That identifer should
95160752 1645 be saved in a local static variable.
104c1213 1646
fcc1c85c
AC
1647 Memory for the per-architecture data shall be allocated using
1648 gdbarch_obstack_zalloc. That memory will be deleted when the
1649 corresponding architecture object is deleted.
104c1213 1650
95160752
AC
1651 When a previously created architecture is re-selected, the
1652 per-architecture data-pointer for that previous architecture is
76860b5f 1653 restored. INIT() is not re-called.
104c1213
JM
1654
1655 Multiple registrarants for any architecture are allowed (and
1656 strongly encouraged). */
1657
95160752 1658struct gdbarch_data;
104c1213 1659
030f20e1
AC
1660typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1661extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1662typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1663extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1664extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1665 struct gdbarch_data *data,
1666 void *pointer);
104c1213 1667
451fbdda 1668extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1669
1670
0fa6923a 1671/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1672 byte-order, ...) using information found in the BFD. */
104c1213
JM
1673
1674extern void set_gdbarch_from_file (bfd *);
1675
1676
e514a9d6
JM
1677/* Initialize the current architecture to the "first" one we find on
1678 our list. */
1679
1680extern void initialize_current_architecture (void);
1681
104c1213 1682/* gdbarch trace variable */
ccce17b0 1683extern unsigned int gdbarch_debug;
104c1213 1684
4b9b3959 1685extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1686
f6efe3f8
SM
1687/* Return the number of cooked registers (raw + pseudo) for ARCH. */
1688
1689static inline int
1690gdbarch_num_cooked_regs (gdbarch *arch)
1691{
1692 return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
1693}
1694
104c1213
JM
1695#endif
1696EOF
1697exec 1>&2
1698#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1699compare_new gdbarch.h
104c1213
JM
1700
1701
1702#
1703# C file
1704#
1705
1706exec > new-gdbarch.c
1707copyright
1708cat <<EOF
1709
1710#include "defs.h"
7355ddba 1711#include "arch-utils.h"
104c1213 1712
104c1213 1713#include "gdbcmd.h"
faaf634c 1714#include "inferior.h"
104c1213
JM
1715#include "symcat.h"
1716
f0d4cc9e 1717#include "floatformat.h"
b59ff9d5 1718#include "reggroups.h"
4be87837 1719#include "osabi.h"
aebd7893 1720#include "gdb_obstack.h"
0bee6dd4 1721#include "observable.h"
a3ecef73 1722#include "regcache.h"
19630284 1723#include "objfiles.h"
2faa3447 1724#include "auxv.h"
8bcb5208
AB
1725#include "frame-unwind.h"
1726#include "dummy-frame.h"
95160752 1727
104c1213
JM
1728/* Static function declarations */
1729
b3cc3077 1730static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1731
104c1213
JM
1732/* Non-zero if we want to trace architecture code. */
1733
1734#ifndef GDBARCH_DEBUG
1735#define GDBARCH_DEBUG 0
1736#endif
ccce17b0 1737unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1738static void
1739show_gdbarch_debug (struct ui_file *file, int from_tty,
1740 struct cmd_list_element *c, const char *value)
1741{
1742 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1743}
104c1213 1744
456fcf94 1745static const char *
8da61cc4 1746pformat (const struct floatformat **format)
456fcf94
AC
1747{
1748 if (format == NULL)
1749 return "(null)";
1750 else
8da61cc4
DJ
1751 /* Just print out one of them - this is only for diagnostics. */
1752 return format[0]->name;
456fcf94
AC
1753}
1754
08105857
PA
1755static const char *
1756pstring (const char *string)
1757{
1758 if (string == NULL)
1759 return "(null)";
1760 return string;
05c0465e
SDJ
1761}
1762
a121b7c1 1763static const char *
f7bb4e3a
PB
1764pstring_ptr (char **string)
1765{
1766 if (string == NULL || *string == NULL)
1767 return "(null)";
1768 return *string;
1769}
1770
05c0465e
SDJ
1771/* Helper function to print a list of strings, represented as "const
1772 char *const *". The list is printed comma-separated. */
1773
a121b7c1 1774static const char *
05c0465e
SDJ
1775pstring_list (const char *const *list)
1776{
1777 static char ret[100];
1778 const char *const *p;
1779 size_t offset = 0;
1780
1781 if (list == NULL)
1782 return "(null)";
1783
1784 ret[0] = '\0';
1785 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1786 {
1787 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1788 offset += 2 + s;
1789 }
1790
1791 if (offset > 0)
1792 {
1793 gdb_assert (offset - 2 < sizeof (ret));
1794 ret[offset - 2] = '\0';
1795 }
1796
1797 return ret;
08105857
PA
1798}
1799
104c1213
JM
1800EOF
1801
1802# gdbarch open the gdbarch object
3d9a5942 1803printf "\n"
0963b4bd 1804printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1805printf "\n"
1806printf "struct gdbarch\n"
1807printf "{\n"
76860b5f
AC
1808printf " /* Has this architecture been fully initialized? */\n"
1809printf " int initialized_p;\n"
aebd7893
AC
1810printf "\n"
1811printf " /* An obstack bound to the lifetime of the architecture. */\n"
1812printf " struct obstack *obstack;\n"
1813printf "\n"
0963b4bd 1814printf " /* basic architectural information. */\n"
34620563 1815function_list | while do_read
104c1213 1816do
2ada493a
AC
1817 if class_is_info_p
1818 then
8d113d13 1819 printf " %s %s;\n" "$returntype" "$function"
2ada493a 1820 fi
104c1213 1821done
3d9a5942 1822printf "\n"
0963b4bd 1823printf " /* target specific vector. */\n"
3d9a5942
AC
1824printf " struct gdbarch_tdep *tdep;\n"
1825printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1826printf "\n"
0963b4bd 1827printf " /* per-architecture data-pointers. */\n"
95160752 1828printf " unsigned nr_data;\n"
3d9a5942
AC
1829printf " void **data;\n"
1830printf "\n"
104c1213
JM
1831cat <<EOF
1832 /* Multi-arch values.
1833
1834 When extending this structure you must:
1835
1836 Add the field below.
1837
1838 Declare set/get functions and define the corresponding
1839 macro in gdbarch.h.
1840
1841 gdbarch_alloc(): If zero/NULL is not a suitable default,
1842 initialize the new field.
1843
1844 verify_gdbarch(): Confirm that the target updated the field
1845 correctly.
1846
7e73cedf 1847 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1848 field is dumped out
1849
104c1213
JM
1850 get_gdbarch(): Implement the set/get functions (probably using
1851 the macro's as shortcuts).
1852
1853 */
1854
1855EOF
34620563 1856function_list | while do_read
104c1213 1857do
2ada493a
AC
1858 if class_is_variable_p
1859 then
8d113d13 1860 printf " %s %s;\n" "$returntype" "$function"
2ada493a
AC
1861 elif class_is_function_p
1862 then
8d113d13 1863 printf " gdbarch_%s_ftype *%s;\n" "$function" "$function"
2ada493a 1864 fi
104c1213 1865done
3d9a5942 1866printf "};\n"
104c1213 1867
104c1213 1868# Create a new gdbarch struct
104c1213 1869cat <<EOF
7de2341d 1870
66b43ecb 1871/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1872 \`\`struct gdbarch_info''. */
104c1213 1873EOF
3d9a5942 1874printf "\n"
104c1213
JM
1875cat <<EOF
1876struct gdbarch *
1877gdbarch_alloc (const struct gdbarch_info *info,
1878 struct gdbarch_tdep *tdep)
1879{
be7811ad 1880 struct gdbarch *gdbarch;
aebd7893
AC
1881
1882 /* Create an obstack for allocating all the per-architecture memory,
1883 then use that to allocate the architecture vector. */
70ba0933 1884 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1885 obstack_init (obstack);
8d749320 1886 gdbarch = XOBNEW (obstack, struct gdbarch);
be7811ad
MD
1887 memset (gdbarch, 0, sizeof (*gdbarch));
1888 gdbarch->obstack = obstack;
85de9627 1889
be7811ad 1890 alloc_gdbarch_data (gdbarch);
85de9627 1891
be7811ad 1892 gdbarch->tdep = tdep;
104c1213 1893EOF
3d9a5942 1894printf "\n"
34620563 1895function_list | while do_read
104c1213 1896do
2ada493a
AC
1897 if class_is_info_p
1898 then
8d113d13 1899 printf " gdbarch->%s = info->%s;\n" "$function" "$function"
2ada493a 1900 fi
104c1213 1901done
3d9a5942 1902printf "\n"
0963b4bd 1903printf " /* Force the explicit initialization of these. */\n"
34620563 1904function_list | while do_read
104c1213 1905do
2ada493a
AC
1906 if class_is_function_p || class_is_variable_p
1907 then
759cea5e 1908 if [ -n "${predefault}" ] && [ "x${predefault}" != "x0" ]
104c1213 1909 then
8d113d13 1910 printf " gdbarch->%s = %s;\n" "$function" "$predefault"
104c1213 1911 fi
2ada493a 1912 fi
104c1213
JM
1913done
1914cat <<EOF
1915 /* gdbarch_alloc() */
1916
be7811ad 1917 return gdbarch;
104c1213
JM
1918}
1919EOF
1920
058f20d5 1921# Free a gdbarch struct.
3d9a5942
AC
1922printf "\n"
1923printf "\n"
058f20d5 1924cat <<EOF
aebd7893 1925
284a0e3c 1926obstack *gdbarch_obstack (gdbarch *arch)
aebd7893 1927{
284a0e3c 1928 return arch->obstack;
aebd7893
AC
1929}
1930
6c214e7c
PP
1931/* See gdbarch.h. */
1932
1933char *
1934gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1935{
1936 return obstack_strdup (arch->obstack, string);
1937}
1938
aebd7893 1939
058f20d5
JB
1940/* Free a gdbarch struct. This should never happen in normal
1941 operation --- once you've created a gdbarch, you keep it around.
1942 However, if an architecture's init function encounters an error
1943 building the structure, it may need to clean up a partially
1944 constructed gdbarch. */
4b9b3959 1945
058f20d5
JB
1946void
1947gdbarch_free (struct gdbarch *arch)
1948{
aebd7893 1949 struct obstack *obstack;
05c547f6 1950
95160752 1951 gdb_assert (arch != NULL);
aebd7893
AC
1952 gdb_assert (!arch->initialized_p);
1953 obstack = arch->obstack;
1954 obstack_free (obstack, 0); /* Includes the ARCH. */
1955 xfree (obstack);
058f20d5
JB
1956}
1957EOF
1958
104c1213 1959# verify a new architecture
104c1213 1960cat <<EOF
db446970
AC
1961
1962
1963/* Ensure that all values in a GDBARCH are reasonable. */
1964
104c1213 1965static void
be7811ad 1966verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1967{
d7e74731 1968 string_file log;
05c547f6 1969
104c1213 1970 /* fundamental */
be7811ad 1971 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
d7e74731 1972 log.puts ("\n\tbyte-order");
be7811ad 1973 if (gdbarch->bfd_arch_info == NULL)
d7e74731 1974 log.puts ("\n\tbfd_arch_info");
0963b4bd 1975 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1976EOF
34620563 1977function_list | while do_read
104c1213 1978do
2ada493a
AC
1979 if class_is_function_p || class_is_variable_p
1980 then
72e74a21 1981 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1982 then
8d113d13 1983 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
2ada493a
AC
1984 elif class_is_predicate_p
1985 then
8d113d13 1986 printf " /* Skip verify of %s, has predicate. */\n" "$function"
f0d4cc9e 1987 # FIXME: See do_read for potential simplification
759cea5e 1988 elif [ -n "${invalid_p}" ] && [ -n "${postdefault}" ]
f0d4cc9e 1989 then
8d113d13
SM
1990 printf " if (%s)\n" "$invalid_p"
1991 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
759cea5e 1992 elif [ -n "${predefault}" ] && [ -n "${postdefault}" ]
f0d4cc9e 1993 then
8d113d13
SM
1994 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
1995 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
72e74a21 1996 elif [ -n "${postdefault}" ]
f0d4cc9e 1997 then
8d113d13
SM
1998 printf " if (gdbarch->%s == 0)\n" "$function"
1999 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
72e74a21 2000 elif [ -n "${invalid_p}" ]
104c1213 2001 then
8d113d13
SM
2002 printf " if (%s)\n" "$invalid_p"
2003 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
72e74a21 2004 elif [ -n "${predefault}" ]
104c1213 2005 then
8d113d13
SM
2006 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
2007 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
104c1213 2008 fi
2ada493a 2009 fi
104c1213
JM
2010done
2011cat <<EOF
d7e74731 2012 if (!log.empty ())
f16a1923 2013 internal_error (__FILE__, __LINE__,
85c07804 2014 _("verify_gdbarch: the following are invalid ...%s"),
d7e74731 2015 log.c_str ());
104c1213
JM
2016}
2017EOF
2018
2019# dump the structure
3d9a5942
AC
2020printf "\n"
2021printf "\n"
104c1213 2022cat <<EOF
0963b4bd 2023/* Print out the details of the current architecture. */
4b9b3959 2024
104c1213 2025void
be7811ad 2026gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 2027{
b78960be 2028 const char *gdb_nm_file = "<not-defined>";
05c547f6 2029
b78960be
AC
2030#if defined (GDB_NM_FILE)
2031 gdb_nm_file = GDB_NM_FILE;
2032#endif
2033 fprintf_unfiltered (file,
2034 "gdbarch_dump: GDB_NM_FILE = %s\\n",
2035 gdb_nm_file);
104c1213 2036EOF
ea480a30 2037function_list | sort '-t;' -k 3 | while do_read
104c1213 2038do
1e9f55d0
AC
2039 # First the predicate
2040 if class_is_predicate_p
2041 then
7996bcec 2042 printf " fprintf_unfiltered (file,\n"
8d113d13
SM
2043 printf " \"gdbarch_dump: gdbarch_%s_p() = %%d\\\\n\",\n" "$function"
2044 printf " gdbarch_%s_p (gdbarch));\n" "$function"
08e45a40 2045 fi
48f7351b 2046 # Print the corresponding value.
283354d8 2047 if class_is_function_p
4b9b3959 2048 then
7996bcec 2049 printf " fprintf_unfiltered (file,\n"
8d113d13
SM
2050 printf " \"gdbarch_dump: %s = <%%s>\\\\n\",\n" "$function"
2051 printf " host_address_to_string (gdbarch->%s));\n" "$function"
4b9b3959 2052 else
48f7351b 2053 # It is a variable
2f9b146e
AC
2054 case "${print}:${returntype}" in
2055 :CORE_ADDR )
0b1553bc
UW
2056 fmt="%s"
2057 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 2058 ;;
2f9b146e 2059 :* )
48f7351b 2060 fmt="%s"
623d3eb1 2061 print="plongest (gdbarch->${function})"
48f7351b
AC
2062 ;;
2063 * )
2f9b146e 2064 fmt="%s"
48f7351b
AC
2065 ;;
2066 esac
3d9a5942 2067 printf " fprintf_unfiltered (file,\n"
8d113d13
SM
2068 printf " \"gdbarch_dump: %s = %s\\\\n\",\n" "$function" "$fmt"
2069 printf " %s);\n" "$print"
2ada493a 2070 fi
104c1213 2071done
381323f4 2072cat <<EOF
be7811ad
MD
2073 if (gdbarch->dump_tdep != NULL)
2074 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
2075}
2076EOF
104c1213
JM
2077
2078
2079# GET/SET
3d9a5942 2080printf "\n"
104c1213
JM
2081cat <<EOF
2082struct gdbarch_tdep *
2083gdbarch_tdep (struct gdbarch *gdbarch)
2084{
2085 if (gdbarch_debug >= 2)
3d9a5942 2086 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
2087 return gdbarch->tdep;
2088}
2089EOF
3d9a5942 2090printf "\n"
34620563 2091function_list | while do_read
104c1213 2092do
2ada493a
AC
2093 if class_is_predicate_p
2094 then
3d9a5942
AC
2095 printf "\n"
2096 printf "int\n"
8d113d13 2097 printf "gdbarch_%s_p (struct gdbarch *gdbarch)\n" "$function"
3d9a5942 2098 printf "{\n"
8de9bdc4 2099 printf " gdb_assert (gdbarch != NULL);\n"
8d113d13 2100 printf " return %s;\n" "$predicate"
3d9a5942 2101 printf "}\n"
2ada493a
AC
2102 fi
2103 if class_is_function_p
2104 then
3d9a5942 2105 printf "\n"
8d113d13 2106 printf "%s\n" "$returntype"
72e74a21 2107 if [ "x${formal}" = "xvoid" ]
104c1213 2108 then
8d113d13 2109 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
104c1213 2110 else
8d113d13 2111 printf "gdbarch_%s (struct gdbarch *gdbarch, %s)\n" "$function" "$formal"
104c1213 2112 fi
3d9a5942 2113 printf "{\n"
8de9bdc4 2114 printf " gdb_assert (gdbarch != NULL);\n"
8d113d13 2115 printf " gdb_assert (gdbarch->%s != NULL);\n" "$function"
f7968451 2116 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
2117 then
2118 # Allow a call to a function with a predicate.
8d113d13 2119 printf " /* Do not check predicate: %s, allow call. */\n" "$predicate"
ae45cd16 2120 fi
3d9a5942 2121 printf " if (gdbarch_debug >= 2)\n"
8d113d13 2122 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
1207375d 2123 if [ "x${actual:-}" = "x-" ] || [ "x${actual:-}" = "x" ]
4a5c6a1d
AC
2124 then
2125 if class_is_multiarch_p
2126 then
2127 params="gdbarch"
2128 else
2129 params=""
2130 fi
2131 else
2132 if class_is_multiarch_p
2133 then
2134 params="gdbarch, ${actual}"
2135 else
2136 params="${actual}"
2137 fi
2138 fi
72e74a21 2139 if [ "x${returntype}" = "xvoid" ]
104c1213 2140 then
8d113d13 2141 printf " gdbarch->%s (%s);\n" "$function" "$params"
104c1213 2142 else
8d113d13 2143 printf " return gdbarch->%s (%s);\n" "$function" "$params"
104c1213 2144 fi
3d9a5942
AC
2145 printf "}\n"
2146 printf "\n"
2147 printf "void\n"
8d113d13 2148 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
cb02ab24 2149 printf " %s gdbarch_%s_ftype %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$function" "$function"
3d9a5942 2150 printf "{\n"
8d113d13 2151 printf " gdbarch->%s = %s;\n" "$function" "$function"
3d9a5942 2152 printf "}\n"
2ada493a
AC
2153 elif class_is_variable_p
2154 then
3d9a5942 2155 printf "\n"
8d113d13
SM
2156 printf "%s\n" "$returntype"
2157 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
3d9a5942 2158 printf "{\n"
8de9bdc4 2159 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 2160 if [ "x${invalid_p}" = "x0" ]
c0e8c252 2161 then
8d113d13 2162 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
72e74a21 2163 elif [ -n "${invalid_p}" ]
104c1213 2164 then
956ac328 2165 printf " /* Check variable is valid. */\n"
8d113d13 2166 printf " gdb_assert (!(%s));\n" "$invalid_p"
72e74a21 2167 elif [ -n "${predefault}" ]
104c1213 2168 then
956ac328 2169 printf " /* Check variable changed from pre-default. */\n"
8d113d13 2170 printf " gdb_assert (gdbarch->%s != %s);\n" "$function" "$predefault"
104c1213 2171 fi
3d9a5942 2172 printf " if (gdbarch_debug >= 2)\n"
8d113d13
SM
2173 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2174 printf " return gdbarch->%s;\n" "$function"
3d9a5942
AC
2175 printf "}\n"
2176 printf "\n"
2177 printf "void\n"
8d113d13 2178 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
cb02ab24 2179 printf " %s %s %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$returntype" "$function"
3d9a5942 2180 printf "{\n"
8d113d13 2181 printf " gdbarch->%s = %s;\n" "$function" "$function"
3d9a5942 2182 printf "}\n"
2ada493a
AC
2183 elif class_is_info_p
2184 then
3d9a5942 2185 printf "\n"
8d113d13
SM
2186 printf "%s\n" "$returntype"
2187 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
3d9a5942 2188 printf "{\n"
8de9bdc4 2189 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942 2190 printf " if (gdbarch_debug >= 2)\n"
8d113d13
SM
2191 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2192 printf " return gdbarch->%s;\n" "$function"
3d9a5942 2193 printf "}\n"
2ada493a 2194 fi
104c1213
JM
2195done
2196
2197# All the trailing guff
2198cat <<EOF
2199
2200
f44c642f 2201/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2202 modules. */
104c1213
JM
2203
2204struct gdbarch_data
2205{
95160752 2206 unsigned index;
76860b5f 2207 int init_p;
030f20e1
AC
2208 gdbarch_data_pre_init_ftype *pre_init;
2209 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2210};
2211
2212struct gdbarch_data_registration
2213{
104c1213
JM
2214 struct gdbarch_data *data;
2215 struct gdbarch_data_registration *next;
2216};
2217
f44c642f 2218struct gdbarch_data_registry
104c1213 2219{
95160752 2220 unsigned nr;
104c1213
JM
2221 struct gdbarch_data_registration *registrations;
2222};
2223
f44c642f 2224struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2225{
2226 0, NULL,
2227};
2228
030f20e1
AC
2229static struct gdbarch_data *
2230gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2231 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2232{
2233 struct gdbarch_data_registration **curr;
05c547f6
MS
2234
2235 /* Append the new registration. */
f44c642f 2236 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2237 (*curr) != NULL;
2238 curr = &(*curr)->next);
70ba0933 2239 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2240 (*curr)->next = NULL;
70ba0933 2241 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2242 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2243 (*curr)->data->pre_init = pre_init;
2244 (*curr)->data->post_init = post_init;
76860b5f 2245 (*curr)->data->init_p = 1;
104c1213
JM
2246 return (*curr)->data;
2247}
2248
030f20e1
AC
2249struct gdbarch_data *
2250gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2251{
2252 return gdbarch_data_register (pre_init, NULL);
2253}
2254
2255struct gdbarch_data *
2256gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2257{
2258 return gdbarch_data_register (NULL, post_init);
2259}
104c1213 2260
0963b4bd 2261/* Create/delete the gdbarch data vector. */
95160752
AC
2262
2263static void
b3cc3077 2264alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2265{
b3cc3077
JB
2266 gdb_assert (gdbarch->data == NULL);
2267 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2268 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2269}
3c875b6f 2270
76860b5f 2271/* Initialize the current value of the specified per-architecture
0963b4bd 2272 data-pointer. */
b3cc3077 2273
95160752 2274void
030f20e1
AC
2275deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2276 struct gdbarch_data *data,
2277 void *pointer)
95160752
AC
2278{
2279 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2280 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2281 gdb_assert (data->pre_init == NULL);
95160752
AC
2282 gdbarch->data[data->index] = pointer;
2283}
2284
104c1213 2285/* Return the current value of the specified per-architecture
0963b4bd 2286 data-pointer. */
104c1213
JM
2287
2288void *
451fbdda 2289gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2290{
451fbdda 2291 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2292 if (gdbarch->data[data->index] == NULL)
76860b5f 2293 {
030f20e1
AC
2294 /* The data-pointer isn't initialized, call init() to get a
2295 value. */
2296 if (data->pre_init != NULL)
2297 /* Mid architecture creation: pass just the obstack, and not
2298 the entire architecture, as that way it isn't possible for
2299 pre-init code to refer to undefined architecture
2300 fields. */
2301 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2302 else if (gdbarch->initialized_p
2303 && data->post_init != NULL)
2304 /* Post architecture creation: pass the entire architecture
2305 (as all fields are valid), but be careful to also detect
2306 recursive references. */
2307 {
2308 gdb_assert (data->init_p);
2309 data->init_p = 0;
2310 gdbarch->data[data->index] = data->post_init (gdbarch);
2311 data->init_p = 1;
2312 }
2313 else
2314 /* The architecture initialization hasn't completed - punt -
2315 hope that the caller knows what they are doing. Once
2316 deprecated_set_gdbarch_data has been initialized, this can be
2317 changed to an internal error. */
2318 return NULL;
76860b5f
AC
2319 gdb_assert (gdbarch->data[data->index] != NULL);
2320 }
451fbdda 2321 return gdbarch->data[data->index];
104c1213
JM
2322}
2323
2324
0963b4bd 2325/* Keep a registry of the architectures known by GDB. */
104c1213 2326
4b9b3959 2327struct gdbarch_registration
104c1213
JM
2328{
2329 enum bfd_architecture bfd_architecture;
2330 gdbarch_init_ftype *init;
4b9b3959 2331 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2332 struct gdbarch_list *arches;
4b9b3959 2333 struct gdbarch_registration *next;
104c1213
JM
2334};
2335
f44c642f 2336static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2337
b4a20239
AC
2338static void
2339append_name (const char ***buf, int *nr, const char *name)
2340{
1dc7a623 2341 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
b4a20239
AC
2342 (*buf)[*nr] = name;
2343 *nr += 1;
2344}
2345
2346const char **
2347gdbarch_printable_names (void)
2348{
7996bcec 2349 /* Accumulate a list of names based on the registed list of
0963b4bd 2350 architectures. */
7996bcec
AC
2351 int nr_arches = 0;
2352 const char **arches = NULL;
2353 struct gdbarch_registration *rego;
05c547f6 2354
7996bcec
AC
2355 for (rego = gdbarch_registry;
2356 rego != NULL;
2357 rego = rego->next)
b4a20239 2358 {
7996bcec
AC
2359 const struct bfd_arch_info *ap;
2360 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2361 if (ap == NULL)
2362 internal_error (__FILE__, __LINE__,
85c07804 2363 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2364 do
2365 {
2366 append_name (&arches, &nr_arches, ap->printable_name);
2367 ap = ap->next;
2368 }
2369 while (ap != NULL);
b4a20239 2370 }
7996bcec
AC
2371 append_name (&arches, &nr_arches, NULL);
2372 return arches;
b4a20239
AC
2373}
2374
2375
104c1213 2376void
4b9b3959
AC
2377gdbarch_register (enum bfd_architecture bfd_architecture,
2378 gdbarch_init_ftype *init,
2379 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2380{
4b9b3959 2381 struct gdbarch_registration **curr;
104c1213 2382 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2383
ec3d358c 2384 /* Check that BFD recognizes this architecture */
104c1213
JM
2385 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2386 if (bfd_arch_info == NULL)
2387 {
8e65ff28 2388 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2389 _("gdbarch: Attempt to register "
2390 "unknown architecture (%d)"),
8e65ff28 2391 bfd_architecture);
104c1213 2392 }
0963b4bd 2393 /* Check that we haven't seen this architecture before. */
f44c642f 2394 for (curr = &gdbarch_registry;
104c1213
JM
2395 (*curr) != NULL;
2396 curr = &(*curr)->next)
2397 {
2398 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2399 internal_error (__FILE__, __LINE__,
64b9b334 2400 _("gdbarch: Duplicate registration "
0963b4bd 2401 "of architecture (%s)"),
8e65ff28 2402 bfd_arch_info->printable_name);
104c1213
JM
2403 }
2404 /* log it */
2405 if (gdbarch_debug)
30737ed9 2406 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2407 bfd_arch_info->printable_name,
30737ed9 2408 host_address_to_string (init));
104c1213 2409 /* Append it */
70ba0933 2410 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2411 (*curr)->bfd_architecture = bfd_architecture;
2412 (*curr)->init = init;
4b9b3959 2413 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2414 (*curr)->arches = NULL;
2415 (*curr)->next = NULL;
4b9b3959
AC
2416}
2417
2418void
2419register_gdbarch_init (enum bfd_architecture bfd_architecture,
2420 gdbarch_init_ftype *init)
2421{
2422 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2423}
104c1213
JM
2424
2425
424163ea 2426/* Look for an architecture using gdbarch_info. */
104c1213
JM
2427
2428struct gdbarch_list *
2429gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2430 const struct gdbarch_info *info)
2431{
2432 for (; arches != NULL; arches = arches->next)
2433 {
2434 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2435 continue;
2436 if (info->byte_order != arches->gdbarch->byte_order)
2437 continue;
4be87837
DJ
2438 if (info->osabi != arches->gdbarch->osabi)
2439 continue;
424163ea
DJ
2440 if (info->target_desc != arches->gdbarch->target_desc)
2441 continue;
104c1213
JM
2442 return arches;
2443 }
2444 return NULL;
2445}
2446
2447
ebdba546 2448/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2449 architecture if needed. Return that new architecture. */
104c1213 2450
59837fe0
UW
2451struct gdbarch *
2452gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2453{
2454 struct gdbarch *new_gdbarch;
4b9b3959 2455 struct gdbarch_registration *rego;
104c1213 2456
b732d07d 2457 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2458 sources: "set ..."; INFOabfd supplied; and the global
2459 defaults. */
2460 gdbarch_info_fill (&info);
4be87837 2461
0963b4bd 2462 /* Must have found some sort of architecture. */
b732d07d 2463 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2464
2465 if (gdbarch_debug)
2466 {
2467 fprintf_unfiltered (gdb_stdlog,
59837fe0 2468 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2469 (info.bfd_arch_info != NULL
2470 ? info.bfd_arch_info->printable_name
2471 : "(null)"));
2472 fprintf_unfiltered (gdb_stdlog,
59837fe0 2473 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2474 info.byte_order,
d7449b42 2475 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2476 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2477 : "default"));
4be87837 2478 fprintf_unfiltered (gdb_stdlog,
59837fe0 2479 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2480 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2481 fprintf_unfiltered (gdb_stdlog,
59837fe0 2482 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2483 host_address_to_string (info.abfd));
104c1213 2484 fprintf_unfiltered (gdb_stdlog,
59837fe0 2485 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2486 host_address_to_string (info.tdep_info));
104c1213
JM
2487 }
2488
ebdba546 2489 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2490 for (rego = gdbarch_registry;
2491 rego != NULL;
2492 rego = rego->next)
2493 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2494 break;
2495 if (rego == NULL)
2496 {
2497 if (gdbarch_debug)
59837fe0 2498 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2499 "No matching architecture\n");
b732d07d
AC
2500 return 0;
2501 }
2502
ebdba546 2503 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2504 new_gdbarch = rego->init (info, rego->arches);
2505
ebdba546
AC
2506 /* Did the tdep code like it? No. Reject the change and revert to
2507 the old architecture. */
104c1213
JM
2508 if (new_gdbarch == NULL)
2509 {
2510 if (gdbarch_debug)
59837fe0 2511 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2512 "Target rejected architecture\n");
2513 return NULL;
104c1213
JM
2514 }
2515
ebdba546
AC
2516 /* Is this a pre-existing architecture (as determined by already
2517 being initialized)? Move it to the front of the architecture
2518 list (keeping the list sorted Most Recently Used). */
2519 if (new_gdbarch->initialized_p)
104c1213 2520 {
ebdba546 2521 struct gdbarch_list **list;
fe978cb0 2522 struct gdbarch_list *self;
104c1213 2523 if (gdbarch_debug)
59837fe0 2524 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2525 "Previous architecture %s (%s) selected\n",
2526 host_address_to_string (new_gdbarch),
104c1213 2527 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2528 /* Find the existing arch in the list. */
2529 for (list = &rego->arches;
2530 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2531 list = &(*list)->next);
2532 /* It had better be in the list of architectures. */
2533 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
fe978cb0
PA
2534 /* Unlink SELF. */
2535 self = (*list);
2536 (*list) = self->next;
2537 /* Insert SELF at the front. */
2538 self->next = rego->arches;
2539 rego->arches = self;
ebdba546
AC
2540 /* Return it. */
2541 return new_gdbarch;
104c1213
JM
2542 }
2543
ebdba546
AC
2544 /* It's a new architecture. */
2545 if (gdbarch_debug)
59837fe0 2546 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2547 "New architecture %s (%s) selected\n",
2548 host_address_to_string (new_gdbarch),
ebdba546
AC
2549 new_gdbarch->bfd_arch_info->printable_name);
2550
2551 /* Insert the new architecture into the front of the architecture
2552 list (keep the list sorted Most Recently Used). */
0f79675b 2553 {
fe978cb0
PA
2554 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2555 self->next = rego->arches;
2556 self->gdbarch = new_gdbarch;
2557 rego->arches = self;
0f79675b 2558 }
104c1213 2559
4b9b3959
AC
2560 /* Check that the newly installed architecture is valid. Plug in
2561 any post init values. */
2562 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2563 verify_gdbarch (new_gdbarch);
ebdba546 2564 new_gdbarch->initialized_p = 1;
104c1213 2565
4b9b3959 2566 if (gdbarch_debug)
ebdba546
AC
2567 gdbarch_dump (new_gdbarch, gdb_stdlog);
2568
2569 return new_gdbarch;
2570}
2571
e487cc15 2572/* Make the specified architecture current. */
ebdba546
AC
2573
2574void
aff68abb 2575set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2576{
2577 gdb_assert (new_gdbarch != NULL);
ebdba546 2578 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2579 current_inferior ()->gdbarch = new_gdbarch;
0bee6dd4 2580 gdb::observers::architecture_changed.notify (new_gdbarch);
a3ecef73 2581 registers_changed ();
ebdba546 2582}
104c1213 2583
f5656ead 2584/* Return the current inferior's arch. */
6ecd4729
PA
2585
2586struct gdbarch *
f5656ead 2587target_gdbarch (void)
6ecd4729
PA
2588{
2589 return current_inferior ()->gdbarch;
2590}
2591
a1237872 2592void _initialize_gdbarch ();
104c1213 2593void
a1237872 2594_initialize_gdbarch ()
104c1213 2595{
ccce17b0 2596 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2597Set architecture debugging."), _("\\
2598Show architecture debugging."), _("\\
2599When non-zero, architecture debugging is enabled."),
2600 NULL,
920d2a44 2601 show_gdbarch_debug,
85c07804 2602 &setdebuglist, &showdebuglist);
104c1213
JM
2603}
2604EOF
2605
2606# close things off
2607exec 1>&2
2608#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2609compare_new gdbarch.c
This page took 2.311069 seconds and 4 git commands to generate.