This patch adds support to objdump for disassembly of NFP (Netronome Flow Processor...
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
e2882c85 5# Copyright (C) 1998-2018 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
ea480a30
SM
68 # treat ``;;' as three fields while some treat it as just two.
69 # Work around this by eliminating ``;;'' ....
70 line="`echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g'`"
3d9a5942 71
ea480a30 72 OFS="${IFS}" ; IFS="[;]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
ea480a30 341i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
ea480a30
SM
343i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
344i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
4be87837 345#
ea480a30 346i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
424163ea 347#
ea480a30 348i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
ea480a30 352v;int;bits_big_endian;;;1;(gdbarch->byte_order == BFD_ENDIAN_BIG);;0
32c9a795 353
66b43ecb 354# Number of bits in a short or unsigned short for the target machine.
ea480a30 355v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
66b43ecb 356# Number of bits in an int or unsigned int for the target machine.
ea480a30 357v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
66b43ecb 358# Number of bits in a long or unsigned long for the target machine.
ea480a30 359v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
66b43ecb
AC
360# Number of bits in a long long or unsigned long long for the target
361# machine.
ea480a30 362v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
205c306f
DM
363# Alignment of a long long or unsigned long long for the target
364# machine.
ea480a30 365v;int;long_long_align_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
456fcf94 366
f9e9243a
UW
367# The ABI default bit-size and format for "half", "float", "double", and
368# "long double". These bit/format pairs should eventually be combined
369# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
370# Each format describes both the big and little endian layouts (if
371# useful).
456fcf94 372
ea480a30
SM
373v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
374v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
375v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
376v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
377v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
378v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
379v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
380v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
456fcf94 381
53375380
PA
382# The ABI default bit-size for "wchar_t". wchar_t is a built-in type
383# starting with C++11.
ea480a30 384v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
53375380 385# One if \`wchar_t' is signed, zero if unsigned.
ea480a30 386v;int;wchar_signed;;;1;-1;1
53375380 387
9b790ce7
UW
388# Returns the floating-point format to be used for values of length LENGTH.
389# NAME, if non-NULL, is the type name, which may be used to distinguish
390# different target formats of the same length.
ea480a30 391m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
9b790ce7 392
52204a0b
DT
393# For most targets, a pointer on the target and its representation as an
394# address in GDB have the same size and "look the same". For such a
17a912b6 395# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
396# / addr_bit will be set from it.
397#
17a912b6 398# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
399# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
400# gdbarch_address_to_pointer as well.
52204a0b
DT
401#
402# ptr_bit is the size of a pointer on the target
ea480a30 403v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
52204a0b 404# addr_bit is the size of a target address as represented in gdb
ea480a30 405v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
104c1213 406#
8da614df
CV
407# dwarf2_addr_size is the target address size as used in the Dwarf debug
408# info. For .debug_frame FDEs, this is supposed to be the target address
409# size from the associated CU header, and which is equivalent to the
410# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
411# Unfortunately there is no good way to determine this value. Therefore
412# dwarf2_addr_size simply defaults to the target pointer size.
413#
414# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
415# defined using the target's pointer size so far.
416#
417# Note that dwarf2_addr_size only needs to be redefined by a target if the
418# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
419# and if Dwarf versions < 4 need to be supported.
ea480a30 420v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
8da614df 421#
4e409299 422# One if \`char' acts like \`signed char', zero if \`unsigned char'.
ea480a30 423v;int;char_signed;;;1;-1;1
4e409299 424#
c113ed0c 425F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
ea480a30 426F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
39d4ef09
AC
427# Function for getting target's idea of a frame pointer. FIXME: GDB's
428# whole scheme for dealing with "frames" and "frame pointers" needs a
429# serious shakedown.
ea480a30 430m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
66b43ecb 431#
849d0ba8 432M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
3543a589
TT
433# Read a register into a new struct value. If the register is wholly
434# or partly unavailable, this should call mark_value_bytes_unavailable
435# as appropriate. If this is defined, then pseudo_register_read will
436# never be called.
849d0ba8 437M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
ea480a30 438M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
61a0eb5b 439#
ea480a30 440v;int;num_regs;;;0;-1
0aba1244
EZ
441# This macro gives the number of pseudo-registers that live in the
442# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
443# These pseudo-registers may be aliases for other registers,
444# combinations of other registers, or they may be computed by GDB.
ea480a30 445v;int;num_pseudo_regs;;;0;0;;0
c2169756 446
175ff332
HZ
447# Assemble agent expression bytecode to collect pseudo-register REG.
448# Return -1 if something goes wrong, 0 otherwise.
ea480a30 449M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
175ff332
HZ
450
451# Assemble agent expression bytecode to push the value of pseudo-register
452# REG on the interpreter stack.
453# Return -1 if something goes wrong, 0 otherwise.
ea480a30 454M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
175ff332 455
012b3a21
WT
456# Some targets/architectures can do extra processing/display of
457# segmentation faults. E.g., Intel MPX boundary faults.
458# Call the architecture dependent function to handle the fault.
459# UIOUT is the output stream where the handler will place information.
ea480a30 460M;void;handle_segmentation_fault;struct ui_out *uiout;uiout
012b3a21 461
c2169756
AC
462# GDB's standard (or well known) register numbers. These can map onto
463# a real register or a pseudo (computed) register or not be defined at
1200cd6e 464# all (-1).
3e8c568d 465# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
ea480a30
SM
466v;int;sp_regnum;;;-1;-1;;0
467v;int;pc_regnum;;;-1;-1;;0
468v;int;ps_regnum;;;-1;-1;;0
469v;int;fp0_regnum;;;0;-1;;0
88c72b7d 470# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
ea480a30 471m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
88c72b7d 472# Provide a default mapping from a ecoff register number to a gdb REGNUM.
ea480a30 473m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
88c72b7d 474# Convert from an sdb register number to an internal gdb register number.
ea480a30 475m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
ba2b1c56 476# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
0fde2c53 477# Return -1 for bad REGNUM. Note: Several targets get this wrong.
ea480a30
SM
478m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
479m;const char *;register_name;int regnr;regnr;;0
9c04cab7 480
7b9ee6a8
DJ
481# Return the type of a register specified by the architecture. Only
482# the register cache should call this function directly; others should
483# use "register_type".
ea480a30 484M;struct type *;register_type;int reg_nr;reg_nr
9c04cab7 485
ea480a30 486M;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame
669fac23 487# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 488# deprecated_fp_regnum.
ea480a30 489v;int;deprecated_fp_regnum;;;-1;-1;;0
f3be58bc 490
ea480a30
SM
491M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
492v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
493M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 494
7eb89530 495# Return true if the code of FRAME is writable.
ea480a30 496m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
7eb89530 497
ea480a30
SM
498m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
499m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
500M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
7c7651b2
AC
501# MAP a GDB RAW register number onto a simulator register number. See
502# also include/...-sim.h.
ea480a30
SM
503m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
504m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
505m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
eade6471
JB
506
507# Determine the address where a longjmp will land and save this address
508# in PC. Return nonzero on success.
509#
510# FRAME corresponds to the longjmp frame.
ea480a30 511F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
eade6471 512
104c1213 513#
ea480a30 514v;int;believe_pcc_promotion;;;;;;;
104c1213 515#
ea480a30
SM
516m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
517f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
518f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
9acbedc0 519# Construct a value representing the contents of register REGNUM in
2ed3c037 520# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
521# allocate and return a struct value with all value attributes
522# (but not the value contents) filled in.
ea480a30 523m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
104c1213 524#
ea480a30
SM
525m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
526m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
527M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
92ad9cd9 528
6a3a010b
MR
529# Return the return-value convention that will be used by FUNCTION
530# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
531# case the return convention is computed based only on VALTYPE.
532#
533# If READBUF is not NULL, extract the return value and save it in this buffer.
534#
535# If WRITEBUF is not NULL, it contains a return value which will be
536# stored into the appropriate register. This can be used when we want
537# to force the value returned by a function (see the "return" command
538# for instance).
ea480a30 539M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
92ad9cd9 540
18648a37
YQ
541# Return true if the return value of function is stored in the first hidden
542# parameter. In theory, this feature should be language-dependent, specified
543# by language and its ABI, such as C++. Unfortunately, compiler may
544# implement it to a target-dependent feature. So that we need such hook here
545# to be aware of this in GDB.
ea480a30 546m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
18648a37 547
ea480a30
SM
548m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
549M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
591a12a1
UW
550# On some platforms, a single function may provide multiple entry points,
551# e.g. one that is used for function-pointer calls and a different one
552# that is used for direct function calls.
553# In order to ensure that breakpoints set on the function will trigger
554# no matter via which entry point the function is entered, a platform
555# may provide the skip_entrypoint callback. It is called with IP set
556# to the main entry point of a function (as determined by the symbol table),
557# and should return the address of the innermost entry point, where the
558# actual breakpoint needs to be set. Note that skip_entrypoint is used
559# by GDB common code even when debugging optimized code, where skip_prologue
560# is not used.
ea480a30 561M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
591a12a1 562
ea480a30
SM
563f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
564m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
cd6c3b4f
YQ
565
566# Return the breakpoint kind for this target based on *PCPTR.
ea480a30 567m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
cd6c3b4f
YQ
568
569# Return the software breakpoint from KIND. KIND can have target
570# specific meaning like the Z0 kind parameter.
571# SIZE is set to the software breakpoint's length in memory.
ea480a30 572m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
cd6c3b4f 573
833b7ab5
YQ
574# Return the breakpoint kind for this target based on the current
575# processor state (e.g. the current instruction mode on ARM) and the
576# *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
ea480a30 577m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
833b7ab5 578
ea480a30
SM
579M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
580m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
581m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
582v;CORE_ADDR;decr_pc_after_break;;;0;;;0
782263ab
AC
583
584# A function can be addressed by either it's "pointer" (possibly a
585# descriptor address) or "entry point" (first executable instruction).
586# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 587# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
588# a simplified subset of that functionality - the function's address
589# corresponds to the "function pointer" and the function's start
590# corresponds to the "function entry point" - and hence is redundant.
591
ea480a30 592v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
782263ab 593
123dc839
DJ
594# Return the remote protocol register number associated with this
595# register. Normally the identity mapping.
ea480a30 596m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
123dc839 597
b2756930 598# Fetch the target specific address used to represent a load module.
ea480a30 599F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
104c1213 600#
ea480a30
SM
601v;CORE_ADDR;frame_args_skip;;;0;;;0
602M;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame
603M;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame
42efa47a
AC
604# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
605# frame-base. Enable frame-base before frame-unwind.
ea480a30 606F;int;frame_num_args;struct frame_info *frame;frame
104c1213 607#
ea480a30
SM
608M;CORE_ADDR;frame_align;CORE_ADDR address;address
609m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
610v;int;frame_red_zone_size
f0d4cc9e 611#
ea480a30 612m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
875e1767
AC
613# On some machines there are bits in addresses which are not really
614# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 615# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
616# we get a "real" address such as one would find in a symbol table.
617# This is used only for addresses of instructions, and even then I'm
618# not sure it's used in all contexts. It exists to deal with there
619# being a few stray bits in the PC which would mislead us, not as some
620# sort of generic thing to handle alignment or segmentation (it's
621# possible it should be in TARGET_READ_PC instead).
ea480a30 622m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
e6590a1b 623
a738ea1d
YQ
624# On some machines, not all bits of an address word are significant.
625# For example, on AArch64, the top bits of an address known as the "tag"
626# are ignored by the kernel, the hardware, etc. and can be regarded as
627# additional data associated with the address.
628v;int;significant_addr_bit;;;;;gdbarch_addr_bit (gdbarch);
629
e6590a1b
UW
630# FIXME/cagney/2001-01-18: This should be split in two. A target method that
631# indicates if the target needs software single step. An ISA method to
632# implement it.
633#
e6590a1b
UW
634# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
635# target can single step. If not, then implement single step using breakpoints.
64c4637f 636#
93f9a11f
YQ
637# Return a vector of addresses on which the software single step
638# breakpoints should be inserted. NULL means software single step is
639# not used.
640# Multiple breakpoints may be inserted for some instructions such as
641# conditional branch. However, each implementation must always evaluate
642# the condition and only put the breakpoint at the branch destination if
643# the condition is true, so that we ensure forward progress when stepping
644# past a conditional branch to self.
a0ff9e1a 645F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
e6590a1b 646
3352ef37
AC
647# Return non-zero if the processor is executing a delay slot and a
648# further single-step is needed before the instruction finishes.
ea480a30 649M;int;single_step_through_delay;struct frame_info *frame;frame
f6c40618 650# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 651# disassembler. Perhaps objdump can handle it?
39503f82 652f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
ea480a30 653f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
d50355b6
MS
654
655
cfd8ab24 656# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
657# evaluates non-zero, this is the address where the debugger will place
658# a step-resume breakpoint to get us past the dynamic linker.
ea480a30 659m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
d50355b6 660# Some systems also have trampoline code for returning from shared libs.
ea480a30 661m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
d50355b6 662
1d509aa6
MM
663# Return true if PC lies inside an indirect branch thunk.
664m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
665
c12260ac
CV
666# A target might have problems with watchpoints as soon as the stack
667# frame of the current function has been destroyed. This mostly happens
c9cf6e20 668# as the first action in a function's epilogue. stack_frame_destroyed_p()
c12260ac
CV
669# is defined to return a non-zero value if either the given addr is one
670# instruction after the stack destroying instruction up to the trailing
671# return instruction or if we can figure out that the stack frame has
672# already been invalidated regardless of the value of addr. Targets
673# which don't suffer from that problem could just let this functionality
674# untouched.
ea480a30 675m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
3e29f34a
MR
676# Process an ELF symbol in the minimal symbol table in a backend-specific
677# way. Normally this hook is supposed to do nothing, however if required,
678# then this hook can be used to apply tranformations to symbols that are
679# considered special in some way. For example the MIPS backend uses it
680# to interpret \`st_other' information to mark compressed code symbols so
681# that they can be treated in the appropriate manner in the processing of
682# the main symbol table and DWARF-2 records.
ea480a30
SM
683F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
684f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
3e29f34a
MR
685# Process a symbol in the main symbol table in a backend-specific way.
686# Normally this hook is supposed to do nothing, however if required,
687# then this hook can be used to apply tranformations to symbols that
688# are considered special in some way. This is currently used by the
689# MIPS backend to make sure compressed code symbols have the ISA bit
690# set. This in turn is needed for symbol values seen in GDB to match
691# the values used at the runtime by the program itself, for function
692# and label references.
ea480a30 693f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
3e29f34a
MR
694# Adjust the address retrieved from a DWARF-2 record other than a line
695# entry in a backend-specific way. Normally this hook is supposed to
696# return the address passed unchanged, however if that is incorrect for
697# any reason, then this hook can be used to fix the address up in the
698# required manner. This is currently used by the MIPS backend to make
699# sure addresses in FDE, range records, etc. referring to compressed
700# code have the ISA bit set, matching line information and the symbol
701# table.
ea480a30 702f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
3e29f34a
MR
703# Adjust the address updated by a line entry in a backend-specific way.
704# Normally this hook is supposed to return the address passed unchanged,
705# however in the case of inconsistencies in these records, this hook can
706# be used to fix them up in the required manner. This is currently used
707# by the MIPS backend to make sure all line addresses in compressed code
708# are presented with the ISA bit set, which is not always the case. This
709# in turn ensures breakpoint addresses are correctly matched against the
710# stop PC.
ea480a30
SM
711f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
712v;int;cannot_step_breakpoint;;;0;0;;0
713v;int;have_nonsteppable_watchpoint;;;0;0;;0
714F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
715M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
b41c5a85
JW
716# Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
717# FS are passed from the generic execute_cfa_program function.
ea480a30 718m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
69f97648
SM
719
720# Return the appropriate type_flags for the supplied address class.
721# This function should return 1 if the address class was recognized and
722# type_flags was set, zero otherwise.
ea480a30 723M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
b59ff9d5 724# Is a register in a group
ea480a30 725m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
f6214256 726# Fetch the pointer to the ith function argument.
ea480a30 727F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
6ce6d90f 728
5aa82d05
AA
729# Iterate over all supported register notes in a core file. For each
730# supported register note section, the iterator must call CB and pass
731# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
732# the supported register note sections based on the current register
733# values. Otherwise it should enumerate all supported register note
734# sections.
ea480a30 735M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
17ea7499 736
6432734d 737# Create core file notes
ea480a30 738M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
6432734d 739
35c2fab7 740# Find core file memory regions
ea480a30 741M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
35c2fab7 742
de584861 743# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
744# core file into buffer READBUF with length LEN. Return the number of bytes read
745# (zero indicates failure).
746# failed, otherwise, return the red length of READBUF.
ea480a30 747M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
de584861 748
356a5233
JB
749# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
750# libraries list from core file into buffer READBUF with length LEN.
c09f20e4 751# Return the number of bytes read (zero indicates failure).
ea480a30 752M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
356a5233 753
c0edd9ed 754# How the core target converts a PTID from a core file to a string.
ea480a30 755M;const char *;core_pid_to_str;ptid_t ptid;ptid
28439f5e 756
4dfc5dbc 757# How the core target extracts the name of a thread from a core file.
ea480a30 758M;const char *;core_thread_name;struct thread_info *thr;thr
4dfc5dbc 759
382b69bb
JB
760# Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
761# from core file into buffer READBUF with length LEN. Return the number
762# of bytes read (zero indicates EOF, a negative value indicates failure).
763M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
764
a78c2d62 765# BFD target to use when generating a core file.
ea480a30 766V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
a78c2d62 767
0d5de010
DJ
768# If the elements of C++ vtables are in-place function descriptors rather
769# than normal function pointers (which may point to code or a descriptor),
770# set this to one.
ea480a30 771v;int;vtable_function_descriptors;;;0;0;;0
0d5de010
DJ
772
773# Set if the least significant bit of the delta is used instead of the least
774# significant bit of the pfn for pointers to virtual member functions.
ea480a30 775v;int;vbit_in_delta;;;0;0;;0
6d350bb5
UW
776
777# Advance PC to next instruction in order to skip a permanent breakpoint.
ea480a30 778f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
1c772458 779
1668ae25 780# The maximum length of an instruction on this architecture in bytes.
ea480a30 781V;ULONGEST;max_insn_length;;;0;0
237fc4c9
PA
782
783# Copy the instruction at FROM to TO, and make any adjustments
784# necessary to single-step it at that address.
785#
786# REGS holds the state the thread's registers will have before
787# executing the copied instruction; the PC in REGS will refer to FROM,
788# not the copy at TO. The caller should update it to point at TO later.
789#
790# Return a pointer to data of the architecture's choice to be passed
791# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
792# the instruction's effects have been completely simulated, with the
793# resulting state written back to REGS.
794#
795# For a general explanation of displaced stepping and how GDB uses it,
796# see the comments in infrun.c.
797#
798# The TO area is only guaranteed to have space for
799# gdbarch_max_insn_length (arch) bytes, so this function must not
800# write more bytes than that to that area.
801#
802# If you do not provide this function, GDB assumes that the
803# architecture does not support displaced stepping.
804#
7f03bd92
PA
805# If the instruction cannot execute out of line, return NULL. The
806# core falls back to stepping past the instruction in-line instead in
807# that case.
ea480a30 808M;struct displaced_step_closure *;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
237fc4c9 809
99e40580
UW
810# Return true if GDB should use hardware single-stepping to execute
811# the displaced instruction identified by CLOSURE. If false,
812# GDB will simply restart execution at the displaced instruction
813# location, and it is up to the target to ensure GDB will receive
814# control again (e.g. by placing a software breakpoint instruction
815# into the displaced instruction buffer).
816#
817# The default implementation returns false on all targets that
818# provide a gdbarch_software_single_step routine, and true otherwise.
ea480a30 819m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
99e40580 820
237fc4c9
PA
821# Fix up the state resulting from successfully single-stepping a
822# displaced instruction, to give the result we would have gotten from
823# stepping the instruction in its original location.
824#
825# REGS is the register state resulting from single-stepping the
826# displaced instruction.
827#
828# CLOSURE is the result from the matching call to
829# gdbarch_displaced_step_copy_insn.
830#
831# If you provide gdbarch_displaced_step_copy_insn.but not this
832# function, then GDB assumes that no fixup is needed after
833# single-stepping the instruction.
834#
835# For a general explanation of displaced stepping and how GDB uses it,
836# see the comments in infrun.c.
ea480a30 837M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
237fc4c9 838
237fc4c9
PA
839# Return the address of an appropriate place to put displaced
840# instructions while we step over them. There need only be one such
841# place, since we're only stepping one thread over a breakpoint at a
842# time.
843#
844# For a general explanation of displaced stepping and how GDB uses it,
845# see the comments in infrun.c.
ea480a30 846m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
237fc4c9 847
dde08ee1
PA
848# Relocate an instruction to execute at a different address. OLDLOC
849# is the address in the inferior memory where the instruction to
850# relocate is currently at. On input, TO points to the destination
851# where we want the instruction to be copied (and possibly adjusted)
852# to. On output, it points to one past the end of the resulting
853# instruction(s). The effect of executing the instruction at TO shall
854# be the same as if executing it at FROM. For example, call
855# instructions that implicitly push the return address on the stack
856# should be adjusted to return to the instruction after OLDLOC;
857# relative branches, and other PC-relative instructions need the
858# offset adjusted; etc.
ea480a30 859M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
dde08ee1 860
1c772458 861# Refresh overlay mapped state for section OSECT.
ea480a30 862F;void;overlay_update;struct obj_section *osect;osect
4eb0ad19 863
ea480a30 864M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
149ad273
UW
865
866# Handle special encoding of static variables in stabs debug info.
ea480a30 867F;const char *;static_transform_name;const char *name;name
203c3895 868# Set if the address in N_SO or N_FUN stabs may be zero.
ea480a30 869v;int;sofun_address_maybe_missing;;;0;0;;0
1cded358 870
0508c3ec
HZ
871# Parse the instruction at ADDR storing in the record execution log
872# the registers REGCACHE and memory ranges that will be affected when
873# the instruction executes, along with their current values.
874# Return -1 if something goes wrong, 0 otherwise.
ea480a30 875M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
0508c3ec 876
3846b520
HZ
877# Save process state after a signal.
878# Return -1 if something goes wrong, 0 otherwise.
ea480a30 879M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
3846b520 880
22203bbf 881# Signal translation: translate inferior's signal (target's) number
86b49880
PA
882# into GDB's representation. The implementation of this method must
883# be host independent. IOW, don't rely on symbols of the NAT_FILE
884# header (the nm-*.h files), the host <signal.h> header, or similar
885# headers. This is mainly used when cross-debugging core files ---
886# "Live" targets hide the translation behind the target interface
1f8cf220 887# (target_wait, target_resume, etc.).
ea480a30 888M;enum gdb_signal;gdb_signal_from_target;int signo;signo
60c5725c 889
eb14d406
SDJ
890# Signal translation: translate the GDB's internal signal number into
891# the inferior's signal (target's) representation. The implementation
892# of this method must be host independent. IOW, don't rely on symbols
893# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
894# header, or similar headers.
895# Return the target signal number if found, or -1 if the GDB internal
896# signal number is invalid.
ea480a30 897M;int;gdb_signal_to_target;enum gdb_signal signal;signal
eb14d406 898
4aa995e1
PA
899# Extra signal info inspection.
900#
901# Return a type suitable to inspect extra signal information.
ea480a30 902M;struct type *;get_siginfo_type;void;
4aa995e1 903
60c5725c 904# Record architecture-specific information from the symbol table.
ea480a30 905M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
50c71eaf 906
a96d9b2e
SDJ
907# Function for the 'catch syscall' feature.
908
909# Get architecture-specific system calls information from registers.
ea480a30 910M;LONGEST;get_syscall_number;ptid_t ptid;ptid
a96d9b2e 911
458c8db8 912# The filename of the XML syscall for this architecture.
ea480a30 913v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
458c8db8
SDJ
914
915# Information about system calls from this architecture
ea480a30 916v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
458c8db8 917
55aa24fb
SDJ
918# SystemTap related fields and functions.
919
05c0465e
SDJ
920# A NULL-terminated array of prefixes used to mark an integer constant
921# on the architecture's assembly.
55aa24fb
SDJ
922# For example, on x86 integer constants are written as:
923#
924# \$10 ;; integer constant 10
925#
926# in this case, this prefix would be the character \`\$\'.
ea480a30 927v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 928
05c0465e
SDJ
929# A NULL-terminated array of suffixes used to mark an integer constant
930# on the architecture's assembly.
ea480a30 931v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 932
05c0465e
SDJ
933# A NULL-terminated array of prefixes used to mark a register name on
934# the architecture's assembly.
55aa24fb
SDJ
935# For example, on x86 the register name is written as:
936#
937# \%eax ;; register eax
938#
939# in this case, this prefix would be the character \`\%\'.
ea480a30 940v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 941
05c0465e
SDJ
942# A NULL-terminated array of suffixes used to mark a register name on
943# the architecture's assembly.
ea480a30 944v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 945
05c0465e
SDJ
946# A NULL-terminated array of prefixes used to mark a register
947# indirection on the architecture's assembly.
55aa24fb
SDJ
948# For example, on x86 the register indirection is written as:
949#
950# \(\%eax\) ;; indirecting eax
951#
952# in this case, this prefix would be the charater \`\(\'.
953#
954# Please note that we use the indirection prefix also for register
955# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 956v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 957
05c0465e
SDJ
958# A NULL-terminated array of suffixes used to mark a register
959# indirection on the architecture's assembly.
55aa24fb
SDJ
960# For example, on x86 the register indirection is written as:
961#
962# \(\%eax\) ;; indirecting eax
963#
964# in this case, this prefix would be the charater \`\)\'.
965#
966# Please note that we use the indirection suffix also for register
967# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 968v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 969
05c0465e 970# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
971#
972# For example, on PPC a register is represented by a number in the assembly
973# language (e.g., \`10\' is the 10th general-purpose register). However,
974# inside GDB this same register has an \`r\' appended to its name, so the 10th
975# register would be represented as \`r10\' internally.
ea480a30 976v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
977
978# Suffix used to name a register using GDB's nomenclature.
ea480a30 979v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
980
981# Check if S is a single operand.
982#
983# Single operands can be:
984# \- Literal integers, e.g. \`\$10\' on x86
985# \- Register access, e.g. \`\%eax\' on x86
986# \- Register indirection, e.g. \`\(\%eax\)\' on x86
987# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
988#
989# This function should check for these patterns on the string
990# and return 1 if some were found, or zero otherwise. Please try to match
991# as much info as you can from the string, i.e., if you have to match
992# something like \`\(\%\', do not match just the \`\(\'.
ea480a30 993M;int;stap_is_single_operand;const char *s;s
55aa24fb
SDJ
994
995# Function used to handle a "special case" in the parser.
996#
997# A "special case" is considered to be an unknown token, i.e., a token
998# that the parser does not know how to parse. A good example of special
999# case would be ARM's register displacement syntax:
1000#
1001# [R0, #4] ;; displacing R0 by 4
1002#
1003# Since the parser assumes that a register displacement is of the form:
1004#
1005# <number> <indirection_prefix> <register_name> <indirection_suffix>
1006#
1007# it means that it will not be able to recognize and parse this odd syntax.
1008# Therefore, we should add a special case function that will handle this token.
1009#
1010# This function should generate the proper expression form of the expression
1011# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1012# and so on). It should also return 1 if the parsing was successful, or zero
1013# if the token was not recognized as a special token (in this case, returning
1014# zero means that the special parser is deferring the parsing to the generic
1015# parser), and should advance the buffer pointer (p->arg).
ea480a30 1016M;int;stap_parse_special_token;struct stap_parse_info *p;p
55aa24fb 1017
8b367e17
JM
1018# DTrace related functions.
1019
1020# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1021# NARG must be >= 0.
ea480a30 1022M;void;dtrace_parse_probe_argument;struct parser_state *pstate, int narg;pstate, narg
8b367e17
JM
1023
1024# True if the given ADDR does not contain the instruction sequence
1025# corresponding to a disabled DTrace is-enabled probe.
ea480a30 1026M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
8b367e17
JM
1027
1028# Enable a DTrace is-enabled probe at ADDR.
ea480a30 1029M;void;dtrace_enable_probe;CORE_ADDR addr;addr
8b367e17
JM
1030
1031# Disable a DTrace is-enabled probe at ADDR.
ea480a30 1032M;void;dtrace_disable_probe;CORE_ADDR addr;addr
55aa24fb 1033
50c71eaf
PA
1034# True if the list of shared libraries is one and only for all
1035# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
1036# This usually means that all processes, although may or may not share
1037# an address space, will see the same set of symbols at the same
1038# addresses.
ea480a30 1039v;int;has_global_solist;;;0;0;;0
2567c7d9
PA
1040
1041# On some targets, even though each inferior has its own private
1042# address space, the debug interface takes care of making breakpoints
1043# visible to all address spaces automatically. For such cases,
1044# this property should be set to true.
ea480a30 1045v;int;has_global_breakpoints;;;0;0;;0
6c95b8df
PA
1046
1047# True if inferiors share an address space (e.g., uClinux).
ea480a30 1048m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
7a697b8d
SS
1049
1050# True if a fast tracepoint can be set at an address.
281d762b 1051m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
75cebea9 1052
5f034a78
MK
1053# Guess register state based on tracepoint location. Used for tracepoints
1054# where no registers have been collected, but there's only one location,
1055# allowing us to guess the PC value, and perhaps some other registers.
1056# On entry, regcache has all registers marked as unavailable.
ea480a30 1057m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
5f034a78 1058
f870a310 1059# Return the "auto" target charset.
ea480a30 1060f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
f870a310 1061# Return the "auto" target wide charset.
ea480a30 1062f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
08105857
PA
1063
1064# If non-empty, this is a file extension that will be opened in place
1065# of the file extension reported by the shared library list.
1066#
1067# This is most useful for toolchains that use a post-linker tool,
1068# where the names of the files run on the target differ in extension
1069# compared to the names of the files GDB should load for debug info.
ea480a30 1070v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
1071
1072# If true, the target OS has DOS-based file system semantics. That
1073# is, absolute paths include a drive name, and the backslash is
1074# considered a directory separator.
ea480a30 1075v;int;has_dos_based_file_system;;;0;0;;0
6710bf39
SS
1076
1077# Generate bytecodes to collect the return address in a frame.
1078# Since the bytecodes run on the target, possibly with GDB not even
1079# connected, the full unwinding machinery is not available, and
1080# typically this function will issue bytecodes for one or more likely
1081# places that the return address may be found.
ea480a30 1082m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
6710bf39 1083
3030c96e 1084# Implement the "info proc" command.
ea480a30 1085M;void;info_proc;const char *args, enum info_proc_what what;args, what
3030c96e 1086
451b7c33
TT
1087# Implement the "info proc" command for core files. Noe that there
1088# are two "info_proc"-like methods on gdbarch -- one for core files,
1089# one for live targets.
ea480a30 1090M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
451b7c33 1091
19630284
JB
1092# Iterate over all objfiles in the order that makes the most sense
1093# for the architecture to make global symbol searches.
1094#
1095# CB is a callback function where OBJFILE is the objfile to be searched,
1096# and CB_DATA a pointer to user-defined data (the same data that is passed
1097# when calling this gdbarch method). The iteration stops if this function
1098# returns nonzero.
1099#
1100# CB_DATA is a pointer to some user-defined data to be passed to
1101# the callback.
1102#
1103# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1104# inspected when the symbol search was requested.
ea480a30 1105m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
19630284 1106
7e35103a 1107# Ravenscar arch-dependent ops.
ea480a30 1108v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1109
1110# Return non-zero if the instruction at ADDR is a call; zero otherwise.
ea480a30 1111m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
c2170eef
MM
1112
1113# Return non-zero if the instruction at ADDR is a return; zero otherwise.
ea480a30 1114m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
c2170eef
MM
1115
1116# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
ea480a30 1117m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
27a48a92
MK
1118
1119# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1120# Return 0 if *READPTR is already at the end of the buffer.
1121# Return -1 if there is insufficient buffer for a whole entry.
1122# Return 1 if an entry was read into *TYPEP and *VALP.
ea480a30 1123M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
3437254d 1124
2faa3447
JB
1125# Print the description of a single auxv entry described by TYPE and VAL
1126# to FILE.
ea480a30 1127m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
2faa3447 1128
3437254d
PA
1129# Find the address range of the current inferior's vsyscall/vDSO, and
1130# write it to *RANGE. If the vsyscall's length can't be determined, a
1131# range with zero length is returned. Returns true if the vsyscall is
1132# found, false otherwise.
ea480a30 1133m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
f208eee0
JK
1134
1135# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1136# PROT has GDB_MMAP_PROT_* bitmask format.
1137# Throw an error if it is not possible. Returned address is always valid.
ea480a30 1138f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
f208eee0 1139
7f361056
JK
1140# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1141# Print a warning if it is not possible.
ea480a30 1142f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
7f361056 1143
f208eee0
JK
1144# Return string (caller has to use xfree for it) with options for GCC
1145# to produce code for this target, typically "-m64", "-m32" or "-m31".
1146# These options are put before CU's DW_AT_producer compilation options so that
1147# they can override it. Method may also return NULL.
ea480a30 1148m;char *;gcc_target_options;void;;;default_gcc_target_options;;0
ac04f72b
TT
1149
1150# Return a regular expression that matches names used by this
1151# architecture in GNU configury triplets. The result is statically
1152# allocated and must not be freed. The default implementation simply
1153# returns the BFD architecture name, which is correct in nearly every
1154# case.
ea480a30 1155m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
3374165f
SM
1156
1157# Return the size in 8-bit bytes of an addressable memory unit on this
1158# architecture. This corresponds to the number of 8-bit bytes associated to
1159# each address in memory.
ea480a30 1160m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
3374165f 1161
65b48a81 1162# Functions for allowing a target to modify its disassembler options.
ea480a30
SM
1163v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
1164v;const disasm_options_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
65b48a81 1165
104c1213 1166EOF
104c1213
JM
1167}
1168
0b8f9e4d
AC
1169#
1170# The .log file
1171#
1172exec > new-gdbarch.log
34620563 1173function_list | while do_read
0b8f9e4d
AC
1174do
1175 cat <<EOF
2f9b146e 1176${class} ${returntype} ${function} ($formal)
104c1213 1177EOF
3d9a5942
AC
1178 for r in ${read}
1179 do
1180 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1181 done
f0d4cc9e 1182 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1183 then
66d659b1 1184 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1185 kill $$
1186 exit 1
1187 fi
72e74a21 1188 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1189 then
1190 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1191 kill $$
1192 exit 1
1193 fi
a72293e2
AC
1194 if class_is_multiarch_p
1195 then
1196 if class_is_predicate_p ; then :
1197 elif test "x${predefault}" = "x"
1198 then
2f9b146e 1199 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1200 kill $$
1201 exit 1
1202 fi
1203 fi
3d9a5942 1204 echo ""
0b8f9e4d
AC
1205done
1206
1207exec 1>&2
1208compare_new gdbarch.log
1209
104c1213
JM
1210
1211copyright ()
1212{
1213cat <<EOF
c4bfde41
JK
1214/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1215/* vi:set ro: */
59233f88 1216
104c1213 1217/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1218
e2882c85 1219 Copyright (C) 1998-2018 Free Software Foundation, Inc.
104c1213
JM
1220
1221 This file is part of GDB.
1222
1223 This program is free software; you can redistribute it and/or modify
1224 it under the terms of the GNU General Public License as published by
50efebf8 1225 the Free Software Foundation; either version 3 of the License, or
104c1213 1226 (at your option) any later version.
618f726f 1227
104c1213
JM
1228 This program is distributed in the hope that it will be useful,
1229 but WITHOUT ANY WARRANTY; without even the implied warranty of
1230 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1231 GNU General Public License for more details.
618f726f 1232
104c1213 1233 You should have received a copy of the GNU General Public License
50efebf8 1234 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1235
104c1213
JM
1236/* This file was created with the aid of \`\`gdbarch.sh''.
1237
52204a0b 1238 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1239 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1240 against the existing \`\`gdbarch.[hc]''. Any differences found
1241 being reported.
1242
1243 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1244 changes into that script. Conversely, when making sweeping changes
104c1213 1245 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1246 easier. */
104c1213
JM
1247
1248EOF
1249}
1250
1251#
1252# The .h file
1253#
1254
1255exec > new-gdbarch.h
1256copyright
1257cat <<EOF
1258#ifndef GDBARCH_H
1259#define GDBARCH_H
1260
a0ff9e1a 1261#include <vector>
eb7a547a 1262#include "frame.h"
65b48a81 1263#include "dis-asm.h"
eb7a547a 1264
da3331ec
AC
1265struct floatformat;
1266struct ui_file;
104c1213 1267struct value;
b6af0555 1268struct objfile;
1c772458 1269struct obj_section;
a2cf933a 1270struct minimal_symbol;
049ee0e4 1271struct regcache;
b59ff9d5 1272struct reggroup;
6ce6d90f 1273struct regset;
a89aa300 1274struct disassemble_info;
e2d0e7eb 1275struct target_ops;
030f20e1 1276struct obstack;
8181d85f 1277struct bp_target_info;
424163ea 1278struct target_desc;
3e29f34a 1279struct symbol;
237fc4c9 1280struct displaced_step_closure;
a96d9b2e 1281struct syscall;
175ff332 1282struct agent_expr;
6710bf39 1283struct axs_value;
55aa24fb 1284struct stap_parse_info;
8b367e17 1285struct parser_state;
7e35103a 1286struct ravenscar_arch_ops;
3437254d 1287struct mem_range;
458c8db8 1288struct syscalls_info;
4dfc5dbc 1289struct thread_info;
012b3a21 1290struct ui_out;
104c1213 1291
8a526fa6
PA
1292#include "regcache.h"
1293
6ecd4729
PA
1294/* The architecture associated with the inferior through the
1295 connection to the target.
1296
1297 The architecture vector provides some information that is really a
1298 property of the inferior, accessed through a particular target:
1299 ptrace operations; the layout of certain RSP packets; the solib_ops
1300 vector; etc. To differentiate architecture accesses to
1301 per-inferior/target properties from
1302 per-thread/per-frame/per-objfile properties, accesses to
1303 per-inferior/target properties should be made through this
1304 gdbarch. */
1305
1306/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1307extern struct gdbarch *target_gdbarch (void);
6ecd4729 1308
19630284
JB
1309/* Callback type for the 'iterate_over_objfiles_in_search_order'
1310 gdbarch method. */
1311
1312typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1313 (struct objfile *objfile, void *cb_data);
5aa82d05 1314
1528345d
AA
1315/* Callback type for regset section iterators. The callback usually
1316 invokes the REGSET's supply or collect method, to which it must
1317 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1318 section name, and HUMAN_NAME is used for diagnostic messages.
1319 CB_DATA should have been passed unchanged through the iterator. */
1320
5aa82d05 1321typedef void (iterate_over_regset_sections_cb)
8f0435f7
AA
1322 (const char *sect_name, int size, const struct regset *regset,
1323 const char *human_name, void *cb_data);
104c1213
JM
1324EOF
1325
1326# function typedef's
3d9a5942
AC
1327printf "\n"
1328printf "\n"
0963b4bd 1329printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1330function_list | while do_read
104c1213 1331do
2ada493a
AC
1332 if class_is_info_p
1333 then
3d9a5942
AC
1334 printf "\n"
1335 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1336 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1337 fi
104c1213
JM
1338done
1339
1340# function typedef's
3d9a5942
AC
1341printf "\n"
1342printf "\n"
0963b4bd 1343printf "/* The following are initialized by the target dependent code. */\n"
34620563 1344function_list | while do_read
104c1213 1345do
72e74a21 1346 if [ -n "${comment}" ]
34620563
AC
1347 then
1348 echo "${comment}" | sed \
1349 -e '2 s,#,/*,' \
1350 -e '3,$ s,#, ,' \
1351 -e '$ s,$, */,'
1352 fi
412d5987
AC
1353
1354 if class_is_predicate_p
2ada493a 1355 then
412d5987
AC
1356 printf "\n"
1357 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1358 fi
2ada493a
AC
1359 if class_is_variable_p
1360 then
3d9a5942
AC
1361 printf "\n"
1362 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1363 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1364 fi
1365 if class_is_function_p
1366 then
3d9a5942 1367 printf "\n"
72e74a21 1368 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1369 then
1370 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1371 elif class_is_multiarch_p
1372 then
1373 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1374 else
1375 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1376 fi
72e74a21 1377 if [ "x${formal}" = "xvoid" ]
104c1213 1378 then
3d9a5942 1379 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1380 else
3d9a5942 1381 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1382 fi
3d9a5942 1383 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1384 fi
104c1213
JM
1385done
1386
1387# close it off
1388cat <<EOF
1389
a96d9b2e
SDJ
1390/* Definition for an unknown syscall, used basically in error-cases. */
1391#define UNKNOWN_SYSCALL (-1)
1392
104c1213
JM
1393extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1394
1395
1396/* Mechanism for co-ordinating the selection of a specific
1397 architecture.
1398
1399 GDB targets (*-tdep.c) can register an interest in a specific
1400 architecture. Other GDB components can register a need to maintain
1401 per-architecture data.
1402
1403 The mechanisms below ensures that there is only a loose connection
1404 between the set-architecture command and the various GDB
0fa6923a 1405 components. Each component can independently register their need
104c1213
JM
1406 to maintain architecture specific data with gdbarch.
1407
1408 Pragmatics:
1409
1410 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1411 didn't scale.
1412
1413 The more traditional mega-struct containing architecture specific
1414 data for all the various GDB components was also considered. Since
0fa6923a 1415 GDB is built from a variable number of (fairly independent)
104c1213 1416 components it was determined that the global aproach was not
0963b4bd 1417 applicable. */
104c1213
JM
1418
1419
1420/* Register a new architectural family with GDB.
1421
1422 Register support for the specified ARCHITECTURE with GDB. When
1423 gdbarch determines that the specified architecture has been
1424 selected, the corresponding INIT function is called.
1425
1426 --
1427
1428 The INIT function takes two parameters: INFO which contains the
1429 information available to gdbarch about the (possibly new)
1430 architecture; ARCHES which is a list of the previously created
1431 \`\`struct gdbarch'' for this architecture.
1432
0f79675b 1433 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1434 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1435
1436 The ARCHES parameter is a linked list (sorted most recently used)
1437 of all the previously created architures for this architecture
1438 family. The (possibly NULL) ARCHES->gdbarch can used to access
1439 values from the previously selected architecture for this
59837fe0 1440 architecture family.
104c1213
JM
1441
1442 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1443 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1444 gdbarch'' from the ARCHES list - indicating that the new
1445 architecture is just a synonym for an earlier architecture (see
1446 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1447 - that describes the selected architecture (see gdbarch_alloc()).
1448
1449 The DUMP_TDEP function shall print out all target specific values.
1450 Care should be taken to ensure that the function works in both the
0963b4bd 1451 multi-arch and non- multi-arch cases. */
104c1213
JM
1452
1453struct gdbarch_list
1454{
1455 struct gdbarch *gdbarch;
1456 struct gdbarch_list *next;
1457};
1458
1459struct gdbarch_info
1460{
0963b4bd 1461 /* Use default: NULL (ZERO). */
104c1213
JM
1462 const struct bfd_arch_info *bfd_arch_info;
1463
428721aa 1464 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1465 enum bfd_endian byte_order;
104c1213 1466
94123b4f 1467 enum bfd_endian byte_order_for_code;
9d4fde75 1468
0963b4bd 1469 /* Use default: NULL (ZERO). */
104c1213
JM
1470 bfd *abfd;
1471
0963b4bd 1472 /* Use default: NULL (ZERO). */
0dba2a6c
MR
1473 union
1474 {
1475 /* Architecture-specific information. The generic form for targets
1476 that have extra requirements. */
1477 struct gdbarch_tdep_info *tdep_info;
1478
1479 /* Architecture-specific target description data. Numerous targets
1480 need only this, so give them an easy way to hold it. */
1481 struct tdesc_arch_data *tdesc_data;
1482
1483 /* SPU file system ID. This is a single integer, so using the
1484 generic form would only complicate code. Other targets may
1485 reuse this member if suitable. */
1486 int *id;
1487 };
4be87837
DJ
1488
1489 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1490 enum gdb_osabi osabi;
424163ea
DJ
1491
1492 /* Use default: NULL (ZERO). */
1493 const struct target_desc *target_desc;
104c1213
JM
1494};
1495
1496typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1497typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1498
4b9b3959 1499/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1500extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1501
4b9b3959
AC
1502extern void gdbarch_register (enum bfd_architecture architecture,
1503 gdbarch_init_ftype *,
1504 gdbarch_dump_tdep_ftype *);
1505
104c1213 1506
b4a20239
AC
1507/* Return a freshly allocated, NULL terminated, array of the valid
1508 architecture names. Since architectures are registered during the
1509 _initialize phase this function only returns useful information
0963b4bd 1510 once initialization has been completed. */
b4a20239
AC
1511
1512extern const char **gdbarch_printable_names (void);
1513
1514
104c1213 1515/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1516 matches the information provided by INFO. */
104c1213 1517
424163ea 1518extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1519
1520
1521/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1522 basic initialization using values obtained from the INFO and TDEP
104c1213 1523 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1524 initialization of the object. */
104c1213
JM
1525
1526extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1527
1528
4b9b3959
AC
1529/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1530 It is assumed that the caller freeds the \`\`struct
0963b4bd 1531 gdbarch_tdep''. */
4b9b3959 1532
058f20d5
JB
1533extern void gdbarch_free (struct gdbarch *);
1534
1535
aebd7893
AC
1536/* Helper function. Allocate memory from the \`\`struct gdbarch''
1537 obstack. The memory is freed when the corresponding architecture
1538 is also freed. */
1539
1540extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1541#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1542#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1543
6c214e7c
PP
1544/* Duplicate STRING, returning an equivalent string that's allocated on the
1545 obstack associated with GDBARCH. The string is freed when the corresponding
1546 architecture is also freed. */
1547
1548extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
aebd7893 1549
0963b4bd 1550/* Helper function. Force an update of the current architecture.
104c1213 1551
b732d07d
AC
1552 The actual architecture selected is determined by INFO, \`\`(gdb) set
1553 architecture'' et.al., the existing architecture and BFD's default
1554 architecture. INFO should be initialized to zero and then selected
1555 fields should be updated.
104c1213 1556
0963b4bd 1557 Returns non-zero if the update succeeds. */
16f33e29
AC
1558
1559extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1560
1561
ebdba546
AC
1562/* Helper function. Find an architecture matching info.
1563
1564 INFO should be initialized using gdbarch_info_init, relevant fields
1565 set, and then finished using gdbarch_info_fill.
1566
1567 Returns the corresponding architecture, or NULL if no matching
59837fe0 1568 architecture was found. */
ebdba546
AC
1569
1570extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1571
1572
aff68abb 1573/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1574
aff68abb 1575extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1576
104c1213
JM
1577
1578/* Register per-architecture data-pointer.
1579
1580 Reserve space for a per-architecture data-pointer. An identifier
1581 for the reserved data-pointer is returned. That identifer should
95160752 1582 be saved in a local static variable.
104c1213 1583
fcc1c85c
AC
1584 Memory for the per-architecture data shall be allocated using
1585 gdbarch_obstack_zalloc. That memory will be deleted when the
1586 corresponding architecture object is deleted.
104c1213 1587
95160752
AC
1588 When a previously created architecture is re-selected, the
1589 per-architecture data-pointer for that previous architecture is
76860b5f 1590 restored. INIT() is not re-called.
104c1213
JM
1591
1592 Multiple registrarants for any architecture are allowed (and
1593 strongly encouraged). */
1594
95160752 1595struct gdbarch_data;
104c1213 1596
030f20e1
AC
1597typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1598extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1599typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1600extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1601extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1602 struct gdbarch_data *data,
1603 void *pointer);
104c1213 1604
451fbdda 1605extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1606
1607
0fa6923a 1608/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1609 byte-order, ...) using information found in the BFD. */
104c1213
JM
1610
1611extern void set_gdbarch_from_file (bfd *);
1612
1613
e514a9d6
JM
1614/* Initialize the current architecture to the "first" one we find on
1615 our list. */
1616
1617extern void initialize_current_architecture (void);
1618
104c1213 1619/* gdbarch trace variable */
ccce17b0 1620extern unsigned int gdbarch_debug;
104c1213 1621
4b9b3959 1622extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1623
1624#endif
1625EOF
1626exec 1>&2
1627#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1628compare_new gdbarch.h
104c1213
JM
1629
1630
1631#
1632# C file
1633#
1634
1635exec > new-gdbarch.c
1636copyright
1637cat <<EOF
1638
1639#include "defs.h"
7355ddba 1640#include "arch-utils.h"
104c1213 1641
104c1213 1642#include "gdbcmd.h"
faaf634c 1643#include "inferior.h"
104c1213
JM
1644#include "symcat.h"
1645
f0d4cc9e 1646#include "floatformat.h"
b59ff9d5 1647#include "reggroups.h"
4be87837 1648#include "osabi.h"
aebd7893 1649#include "gdb_obstack.h"
0bee6dd4 1650#include "observable.h"
a3ecef73 1651#include "regcache.h"
19630284 1652#include "objfiles.h"
2faa3447 1653#include "auxv.h"
95160752 1654
104c1213
JM
1655/* Static function declarations */
1656
b3cc3077 1657static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1658
104c1213
JM
1659/* Non-zero if we want to trace architecture code. */
1660
1661#ifndef GDBARCH_DEBUG
1662#define GDBARCH_DEBUG 0
1663#endif
ccce17b0 1664unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1665static void
1666show_gdbarch_debug (struct ui_file *file, int from_tty,
1667 struct cmd_list_element *c, const char *value)
1668{
1669 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1670}
104c1213 1671
456fcf94 1672static const char *
8da61cc4 1673pformat (const struct floatformat **format)
456fcf94
AC
1674{
1675 if (format == NULL)
1676 return "(null)";
1677 else
8da61cc4
DJ
1678 /* Just print out one of them - this is only for diagnostics. */
1679 return format[0]->name;
456fcf94
AC
1680}
1681
08105857
PA
1682static const char *
1683pstring (const char *string)
1684{
1685 if (string == NULL)
1686 return "(null)";
1687 return string;
05c0465e
SDJ
1688}
1689
a121b7c1 1690static const char *
f7bb4e3a
PB
1691pstring_ptr (char **string)
1692{
1693 if (string == NULL || *string == NULL)
1694 return "(null)";
1695 return *string;
1696}
1697
05c0465e
SDJ
1698/* Helper function to print a list of strings, represented as "const
1699 char *const *". The list is printed comma-separated. */
1700
a121b7c1 1701static const char *
05c0465e
SDJ
1702pstring_list (const char *const *list)
1703{
1704 static char ret[100];
1705 const char *const *p;
1706 size_t offset = 0;
1707
1708 if (list == NULL)
1709 return "(null)";
1710
1711 ret[0] = '\0';
1712 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1713 {
1714 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1715 offset += 2 + s;
1716 }
1717
1718 if (offset > 0)
1719 {
1720 gdb_assert (offset - 2 < sizeof (ret));
1721 ret[offset - 2] = '\0';
1722 }
1723
1724 return ret;
08105857
PA
1725}
1726
104c1213
JM
1727EOF
1728
1729# gdbarch open the gdbarch object
3d9a5942 1730printf "\n"
0963b4bd 1731printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1732printf "\n"
1733printf "struct gdbarch\n"
1734printf "{\n"
76860b5f
AC
1735printf " /* Has this architecture been fully initialized? */\n"
1736printf " int initialized_p;\n"
aebd7893
AC
1737printf "\n"
1738printf " /* An obstack bound to the lifetime of the architecture. */\n"
1739printf " struct obstack *obstack;\n"
1740printf "\n"
0963b4bd 1741printf " /* basic architectural information. */\n"
34620563 1742function_list | while do_read
104c1213 1743do
2ada493a
AC
1744 if class_is_info_p
1745 then
3d9a5942 1746 printf " ${returntype} ${function};\n"
2ada493a 1747 fi
104c1213 1748done
3d9a5942 1749printf "\n"
0963b4bd 1750printf " /* target specific vector. */\n"
3d9a5942
AC
1751printf " struct gdbarch_tdep *tdep;\n"
1752printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1753printf "\n"
0963b4bd 1754printf " /* per-architecture data-pointers. */\n"
95160752 1755printf " unsigned nr_data;\n"
3d9a5942
AC
1756printf " void **data;\n"
1757printf "\n"
104c1213
JM
1758cat <<EOF
1759 /* Multi-arch values.
1760
1761 When extending this structure you must:
1762
1763 Add the field below.
1764
1765 Declare set/get functions and define the corresponding
1766 macro in gdbarch.h.
1767
1768 gdbarch_alloc(): If zero/NULL is not a suitable default,
1769 initialize the new field.
1770
1771 verify_gdbarch(): Confirm that the target updated the field
1772 correctly.
1773
7e73cedf 1774 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1775 field is dumped out
1776
104c1213
JM
1777 get_gdbarch(): Implement the set/get functions (probably using
1778 the macro's as shortcuts).
1779
1780 */
1781
1782EOF
34620563 1783function_list | while do_read
104c1213 1784do
2ada493a
AC
1785 if class_is_variable_p
1786 then
3d9a5942 1787 printf " ${returntype} ${function};\n"
2ada493a
AC
1788 elif class_is_function_p
1789 then
2f9b146e 1790 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1791 fi
104c1213 1792done
3d9a5942 1793printf "};\n"
104c1213 1794
104c1213 1795# Create a new gdbarch struct
104c1213 1796cat <<EOF
7de2341d 1797
66b43ecb 1798/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1799 \`\`struct gdbarch_info''. */
104c1213 1800EOF
3d9a5942 1801printf "\n"
104c1213
JM
1802cat <<EOF
1803struct gdbarch *
1804gdbarch_alloc (const struct gdbarch_info *info,
1805 struct gdbarch_tdep *tdep)
1806{
be7811ad 1807 struct gdbarch *gdbarch;
aebd7893
AC
1808
1809 /* Create an obstack for allocating all the per-architecture memory,
1810 then use that to allocate the architecture vector. */
70ba0933 1811 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1812 obstack_init (obstack);
8d749320 1813 gdbarch = XOBNEW (obstack, struct gdbarch);
be7811ad
MD
1814 memset (gdbarch, 0, sizeof (*gdbarch));
1815 gdbarch->obstack = obstack;
85de9627 1816
be7811ad 1817 alloc_gdbarch_data (gdbarch);
85de9627 1818
be7811ad 1819 gdbarch->tdep = tdep;
104c1213 1820EOF
3d9a5942 1821printf "\n"
34620563 1822function_list | while do_read
104c1213 1823do
2ada493a
AC
1824 if class_is_info_p
1825 then
be7811ad 1826 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1827 fi
104c1213 1828done
3d9a5942 1829printf "\n"
0963b4bd 1830printf " /* Force the explicit initialization of these. */\n"
34620563 1831function_list | while do_read
104c1213 1832do
2ada493a
AC
1833 if class_is_function_p || class_is_variable_p
1834 then
72e74a21 1835 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1836 then
be7811ad 1837 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1838 fi
2ada493a 1839 fi
104c1213
JM
1840done
1841cat <<EOF
1842 /* gdbarch_alloc() */
1843
be7811ad 1844 return gdbarch;
104c1213
JM
1845}
1846EOF
1847
058f20d5 1848# Free a gdbarch struct.
3d9a5942
AC
1849printf "\n"
1850printf "\n"
058f20d5 1851cat <<EOF
aebd7893
AC
1852/* Allocate extra space using the per-architecture obstack. */
1853
1854void *
1855gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1856{
1857 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1858
aebd7893
AC
1859 memset (data, 0, size);
1860 return data;
1861}
1862
6c214e7c
PP
1863/* See gdbarch.h. */
1864
1865char *
1866gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1867{
1868 return obstack_strdup (arch->obstack, string);
1869}
1870
aebd7893 1871
058f20d5
JB
1872/* Free a gdbarch struct. This should never happen in normal
1873 operation --- once you've created a gdbarch, you keep it around.
1874 However, if an architecture's init function encounters an error
1875 building the structure, it may need to clean up a partially
1876 constructed gdbarch. */
4b9b3959 1877
058f20d5
JB
1878void
1879gdbarch_free (struct gdbarch *arch)
1880{
aebd7893 1881 struct obstack *obstack;
05c547f6 1882
95160752 1883 gdb_assert (arch != NULL);
aebd7893
AC
1884 gdb_assert (!arch->initialized_p);
1885 obstack = arch->obstack;
1886 obstack_free (obstack, 0); /* Includes the ARCH. */
1887 xfree (obstack);
058f20d5
JB
1888}
1889EOF
1890
104c1213 1891# verify a new architecture
104c1213 1892cat <<EOF
db446970
AC
1893
1894
1895/* Ensure that all values in a GDBARCH are reasonable. */
1896
104c1213 1897static void
be7811ad 1898verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1899{
d7e74731 1900 string_file log;
05c547f6 1901
104c1213 1902 /* fundamental */
be7811ad 1903 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
d7e74731 1904 log.puts ("\n\tbyte-order");
be7811ad 1905 if (gdbarch->bfd_arch_info == NULL)
d7e74731 1906 log.puts ("\n\tbfd_arch_info");
0963b4bd 1907 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1908EOF
34620563 1909function_list | while do_read
104c1213 1910do
2ada493a
AC
1911 if class_is_function_p || class_is_variable_p
1912 then
72e74a21 1913 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1914 then
3d9a5942 1915 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1916 elif class_is_predicate_p
1917 then
0963b4bd 1918 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1919 # FIXME: See do_read for potential simplification
72e74a21 1920 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1921 then
3d9a5942 1922 printf " if (${invalid_p})\n"
be7811ad 1923 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1924 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1925 then
be7811ad
MD
1926 printf " if (gdbarch->${function} == ${predefault})\n"
1927 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1928 elif [ -n "${postdefault}" ]
f0d4cc9e 1929 then
be7811ad
MD
1930 printf " if (gdbarch->${function} == 0)\n"
1931 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1932 elif [ -n "${invalid_p}" ]
104c1213 1933 then
4d60522e 1934 printf " if (${invalid_p})\n"
d7e74731 1935 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
72e74a21 1936 elif [ -n "${predefault}" ]
104c1213 1937 then
be7811ad 1938 printf " if (gdbarch->${function} == ${predefault})\n"
d7e74731 1939 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
104c1213 1940 fi
2ada493a 1941 fi
104c1213
JM
1942done
1943cat <<EOF
d7e74731 1944 if (!log.empty ())
f16a1923 1945 internal_error (__FILE__, __LINE__,
85c07804 1946 _("verify_gdbarch: the following are invalid ...%s"),
d7e74731 1947 log.c_str ());
104c1213
JM
1948}
1949EOF
1950
1951# dump the structure
3d9a5942
AC
1952printf "\n"
1953printf "\n"
104c1213 1954cat <<EOF
0963b4bd 1955/* Print out the details of the current architecture. */
4b9b3959 1956
104c1213 1957void
be7811ad 1958gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1959{
b78960be 1960 const char *gdb_nm_file = "<not-defined>";
05c547f6 1961
b78960be
AC
1962#if defined (GDB_NM_FILE)
1963 gdb_nm_file = GDB_NM_FILE;
1964#endif
1965 fprintf_unfiltered (file,
1966 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1967 gdb_nm_file);
104c1213 1968EOF
ea480a30 1969function_list | sort '-t;' -k 3 | while do_read
104c1213 1970do
1e9f55d0
AC
1971 # First the predicate
1972 if class_is_predicate_p
1973 then
7996bcec 1974 printf " fprintf_unfiltered (file,\n"
48f7351b 1975 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1976 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1977 fi
48f7351b 1978 # Print the corresponding value.
283354d8 1979 if class_is_function_p
4b9b3959 1980 then
7996bcec 1981 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1982 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1983 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1984 else
48f7351b 1985 # It is a variable
2f9b146e
AC
1986 case "${print}:${returntype}" in
1987 :CORE_ADDR )
0b1553bc
UW
1988 fmt="%s"
1989 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1990 ;;
2f9b146e 1991 :* )
48f7351b 1992 fmt="%s"
623d3eb1 1993 print="plongest (gdbarch->${function})"
48f7351b
AC
1994 ;;
1995 * )
2f9b146e 1996 fmt="%s"
48f7351b
AC
1997 ;;
1998 esac
3d9a5942 1999 printf " fprintf_unfiltered (file,\n"
48f7351b 2000 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 2001 printf " ${print});\n"
2ada493a 2002 fi
104c1213 2003done
381323f4 2004cat <<EOF
be7811ad
MD
2005 if (gdbarch->dump_tdep != NULL)
2006 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
2007}
2008EOF
104c1213
JM
2009
2010
2011# GET/SET
3d9a5942 2012printf "\n"
104c1213
JM
2013cat <<EOF
2014struct gdbarch_tdep *
2015gdbarch_tdep (struct gdbarch *gdbarch)
2016{
2017 if (gdbarch_debug >= 2)
3d9a5942 2018 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
2019 return gdbarch->tdep;
2020}
2021EOF
3d9a5942 2022printf "\n"
34620563 2023function_list | while do_read
104c1213 2024do
2ada493a
AC
2025 if class_is_predicate_p
2026 then
3d9a5942
AC
2027 printf "\n"
2028 printf "int\n"
2029 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
2030 printf "{\n"
8de9bdc4 2031 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 2032 printf " return ${predicate};\n"
3d9a5942 2033 printf "}\n"
2ada493a
AC
2034 fi
2035 if class_is_function_p
2036 then
3d9a5942
AC
2037 printf "\n"
2038 printf "${returntype}\n"
72e74a21 2039 if [ "x${formal}" = "xvoid" ]
104c1213 2040 then
3d9a5942 2041 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 2042 else
3d9a5942 2043 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 2044 fi
3d9a5942 2045 printf "{\n"
8de9bdc4 2046 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 2047 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 2048 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
2049 then
2050 # Allow a call to a function with a predicate.
956ac328 2051 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 2052 fi
3d9a5942
AC
2053 printf " if (gdbarch_debug >= 2)\n"
2054 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 2055 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
2056 then
2057 if class_is_multiarch_p
2058 then
2059 params="gdbarch"
2060 else
2061 params=""
2062 fi
2063 else
2064 if class_is_multiarch_p
2065 then
2066 params="gdbarch, ${actual}"
2067 else
2068 params="${actual}"
2069 fi
2070 fi
72e74a21 2071 if [ "x${returntype}" = "xvoid" ]
104c1213 2072 then
4a5c6a1d 2073 printf " gdbarch->${function} (${params});\n"
104c1213 2074 else
4a5c6a1d 2075 printf " return gdbarch->${function} (${params});\n"
104c1213 2076 fi
3d9a5942
AC
2077 printf "}\n"
2078 printf "\n"
2079 printf "void\n"
2080 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2081 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2082 printf "{\n"
2083 printf " gdbarch->${function} = ${function};\n"
2084 printf "}\n"
2ada493a
AC
2085 elif class_is_variable_p
2086 then
3d9a5942
AC
2087 printf "\n"
2088 printf "${returntype}\n"
2089 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2090 printf "{\n"
8de9bdc4 2091 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 2092 if [ "x${invalid_p}" = "x0" ]
c0e8c252 2093 then
3d9a5942 2094 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 2095 elif [ -n "${invalid_p}" ]
104c1213 2096 then
956ac328
AC
2097 printf " /* Check variable is valid. */\n"
2098 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 2099 elif [ -n "${predefault}" ]
104c1213 2100 then
956ac328
AC
2101 printf " /* Check variable changed from pre-default. */\n"
2102 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 2103 fi
3d9a5942
AC
2104 printf " if (gdbarch_debug >= 2)\n"
2105 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2106 printf " return gdbarch->${function};\n"
2107 printf "}\n"
2108 printf "\n"
2109 printf "void\n"
2110 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2111 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2112 printf "{\n"
2113 printf " gdbarch->${function} = ${function};\n"
2114 printf "}\n"
2ada493a
AC
2115 elif class_is_info_p
2116 then
3d9a5942
AC
2117 printf "\n"
2118 printf "${returntype}\n"
2119 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2120 printf "{\n"
8de9bdc4 2121 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
2122 printf " if (gdbarch_debug >= 2)\n"
2123 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2124 printf " return gdbarch->${function};\n"
2125 printf "}\n"
2ada493a 2126 fi
104c1213
JM
2127done
2128
2129# All the trailing guff
2130cat <<EOF
2131
2132
f44c642f 2133/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2134 modules. */
104c1213
JM
2135
2136struct gdbarch_data
2137{
95160752 2138 unsigned index;
76860b5f 2139 int init_p;
030f20e1
AC
2140 gdbarch_data_pre_init_ftype *pre_init;
2141 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2142};
2143
2144struct gdbarch_data_registration
2145{
104c1213
JM
2146 struct gdbarch_data *data;
2147 struct gdbarch_data_registration *next;
2148};
2149
f44c642f 2150struct gdbarch_data_registry
104c1213 2151{
95160752 2152 unsigned nr;
104c1213
JM
2153 struct gdbarch_data_registration *registrations;
2154};
2155
f44c642f 2156struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2157{
2158 0, NULL,
2159};
2160
030f20e1
AC
2161static struct gdbarch_data *
2162gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2163 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2164{
2165 struct gdbarch_data_registration **curr;
05c547f6
MS
2166
2167 /* Append the new registration. */
f44c642f 2168 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2169 (*curr) != NULL;
2170 curr = &(*curr)->next);
70ba0933 2171 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2172 (*curr)->next = NULL;
70ba0933 2173 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2174 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2175 (*curr)->data->pre_init = pre_init;
2176 (*curr)->data->post_init = post_init;
76860b5f 2177 (*curr)->data->init_p = 1;
104c1213
JM
2178 return (*curr)->data;
2179}
2180
030f20e1
AC
2181struct gdbarch_data *
2182gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2183{
2184 return gdbarch_data_register (pre_init, NULL);
2185}
2186
2187struct gdbarch_data *
2188gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2189{
2190 return gdbarch_data_register (NULL, post_init);
2191}
104c1213 2192
0963b4bd 2193/* Create/delete the gdbarch data vector. */
95160752
AC
2194
2195static void
b3cc3077 2196alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2197{
b3cc3077
JB
2198 gdb_assert (gdbarch->data == NULL);
2199 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2200 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2201}
3c875b6f 2202
76860b5f 2203/* Initialize the current value of the specified per-architecture
0963b4bd 2204 data-pointer. */
b3cc3077 2205
95160752 2206void
030f20e1
AC
2207deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2208 struct gdbarch_data *data,
2209 void *pointer)
95160752
AC
2210{
2211 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2212 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2213 gdb_assert (data->pre_init == NULL);
95160752
AC
2214 gdbarch->data[data->index] = pointer;
2215}
2216
104c1213 2217/* Return the current value of the specified per-architecture
0963b4bd 2218 data-pointer. */
104c1213
JM
2219
2220void *
451fbdda 2221gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2222{
451fbdda 2223 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2224 if (gdbarch->data[data->index] == NULL)
76860b5f 2225 {
030f20e1
AC
2226 /* The data-pointer isn't initialized, call init() to get a
2227 value. */
2228 if (data->pre_init != NULL)
2229 /* Mid architecture creation: pass just the obstack, and not
2230 the entire architecture, as that way it isn't possible for
2231 pre-init code to refer to undefined architecture
2232 fields. */
2233 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2234 else if (gdbarch->initialized_p
2235 && data->post_init != NULL)
2236 /* Post architecture creation: pass the entire architecture
2237 (as all fields are valid), but be careful to also detect
2238 recursive references. */
2239 {
2240 gdb_assert (data->init_p);
2241 data->init_p = 0;
2242 gdbarch->data[data->index] = data->post_init (gdbarch);
2243 data->init_p = 1;
2244 }
2245 else
2246 /* The architecture initialization hasn't completed - punt -
2247 hope that the caller knows what they are doing. Once
2248 deprecated_set_gdbarch_data has been initialized, this can be
2249 changed to an internal error. */
2250 return NULL;
76860b5f
AC
2251 gdb_assert (gdbarch->data[data->index] != NULL);
2252 }
451fbdda 2253 return gdbarch->data[data->index];
104c1213
JM
2254}
2255
2256
0963b4bd 2257/* Keep a registry of the architectures known by GDB. */
104c1213 2258
4b9b3959 2259struct gdbarch_registration
104c1213
JM
2260{
2261 enum bfd_architecture bfd_architecture;
2262 gdbarch_init_ftype *init;
4b9b3959 2263 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2264 struct gdbarch_list *arches;
4b9b3959 2265 struct gdbarch_registration *next;
104c1213
JM
2266};
2267
f44c642f 2268static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2269
b4a20239
AC
2270static void
2271append_name (const char ***buf, int *nr, const char *name)
2272{
1dc7a623 2273 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
b4a20239
AC
2274 (*buf)[*nr] = name;
2275 *nr += 1;
2276}
2277
2278const char **
2279gdbarch_printable_names (void)
2280{
7996bcec 2281 /* Accumulate a list of names based on the registed list of
0963b4bd 2282 architectures. */
7996bcec
AC
2283 int nr_arches = 0;
2284 const char **arches = NULL;
2285 struct gdbarch_registration *rego;
05c547f6 2286
7996bcec
AC
2287 for (rego = gdbarch_registry;
2288 rego != NULL;
2289 rego = rego->next)
b4a20239 2290 {
7996bcec
AC
2291 const struct bfd_arch_info *ap;
2292 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2293 if (ap == NULL)
2294 internal_error (__FILE__, __LINE__,
85c07804 2295 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2296 do
2297 {
2298 append_name (&arches, &nr_arches, ap->printable_name);
2299 ap = ap->next;
2300 }
2301 while (ap != NULL);
b4a20239 2302 }
7996bcec
AC
2303 append_name (&arches, &nr_arches, NULL);
2304 return arches;
b4a20239
AC
2305}
2306
2307
104c1213 2308void
4b9b3959
AC
2309gdbarch_register (enum bfd_architecture bfd_architecture,
2310 gdbarch_init_ftype *init,
2311 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2312{
4b9b3959 2313 struct gdbarch_registration **curr;
104c1213 2314 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2315
ec3d358c 2316 /* Check that BFD recognizes this architecture */
104c1213
JM
2317 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2318 if (bfd_arch_info == NULL)
2319 {
8e65ff28 2320 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2321 _("gdbarch: Attempt to register "
2322 "unknown architecture (%d)"),
8e65ff28 2323 bfd_architecture);
104c1213 2324 }
0963b4bd 2325 /* Check that we haven't seen this architecture before. */
f44c642f 2326 for (curr = &gdbarch_registry;
104c1213
JM
2327 (*curr) != NULL;
2328 curr = &(*curr)->next)
2329 {
2330 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2331 internal_error (__FILE__, __LINE__,
64b9b334 2332 _("gdbarch: Duplicate registration "
0963b4bd 2333 "of architecture (%s)"),
8e65ff28 2334 bfd_arch_info->printable_name);
104c1213
JM
2335 }
2336 /* log it */
2337 if (gdbarch_debug)
30737ed9 2338 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2339 bfd_arch_info->printable_name,
30737ed9 2340 host_address_to_string (init));
104c1213 2341 /* Append it */
70ba0933 2342 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2343 (*curr)->bfd_architecture = bfd_architecture;
2344 (*curr)->init = init;
4b9b3959 2345 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2346 (*curr)->arches = NULL;
2347 (*curr)->next = NULL;
4b9b3959
AC
2348}
2349
2350void
2351register_gdbarch_init (enum bfd_architecture bfd_architecture,
2352 gdbarch_init_ftype *init)
2353{
2354 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2355}
104c1213
JM
2356
2357
424163ea 2358/* Look for an architecture using gdbarch_info. */
104c1213
JM
2359
2360struct gdbarch_list *
2361gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2362 const struct gdbarch_info *info)
2363{
2364 for (; arches != NULL; arches = arches->next)
2365 {
2366 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2367 continue;
2368 if (info->byte_order != arches->gdbarch->byte_order)
2369 continue;
4be87837
DJ
2370 if (info->osabi != arches->gdbarch->osabi)
2371 continue;
424163ea
DJ
2372 if (info->target_desc != arches->gdbarch->target_desc)
2373 continue;
104c1213
JM
2374 return arches;
2375 }
2376 return NULL;
2377}
2378
2379
ebdba546 2380/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2381 architecture if needed. Return that new architecture. */
104c1213 2382
59837fe0
UW
2383struct gdbarch *
2384gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2385{
2386 struct gdbarch *new_gdbarch;
4b9b3959 2387 struct gdbarch_registration *rego;
104c1213 2388
b732d07d 2389 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2390 sources: "set ..."; INFOabfd supplied; and the global
2391 defaults. */
2392 gdbarch_info_fill (&info);
4be87837 2393
0963b4bd 2394 /* Must have found some sort of architecture. */
b732d07d 2395 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2396
2397 if (gdbarch_debug)
2398 {
2399 fprintf_unfiltered (gdb_stdlog,
59837fe0 2400 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2401 (info.bfd_arch_info != NULL
2402 ? info.bfd_arch_info->printable_name
2403 : "(null)"));
2404 fprintf_unfiltered (gdb_stdlog,
59837fe0 2405 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2406 info.byte_order,
d7449b42 2407 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2408 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2409 : "default"));
4be87837 2410 fprintf_unfiltered (gdb_stdlog,
59837fe0 2411 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2412 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2413 fprintf_unfiltered (gdb_stdlog,
59837fe0 2414 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2415 host_address_to_string (info.abfd));
104c1213 2416 fprintf_unfiltered (gdb_stdlog,
59837fe0 2417 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2418 host_address_to_string (info.tdep_info));
104c1213
JM
2419 }
2420
ebdba546 2421 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2422 for (rego = gdbarch_registry;
2423 rego != NULL;
2424 rego = rego->next)
2425 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2426 break;
2427 if (rego == NULL)
2428 {
2429 if (gdbarch_debug)
59837fe0 2430 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2431 "No matching architecture\n");
b732d07d
AC
2432 return 0;
2433 }
2434
ebdba546 2435 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2436 new_gdbarch = rego->init (info, rego->arches);
2437
ebdba546
AC
2438 /* Did the tdep code like it? No. Reject the change and revert to
2439 the old architecture. */
104c1213
JM
2440 if (new_gdbarch == NULL)
2441 {
2442 if (gdbarch_debug)
59837fe0 2443 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2444 "Target rejected architecture\n");
2445 return NULL;
104c1213
JM
2446 }
2447
ebdba546
AC
2448 /* Is this a pre-existing architecture (as determined by already
2449 being initialized)? Move it to the front of the architecture
2450 list (keeping the list sorted Most Recently Used). */
2451 if (new_gdbarch->initialized_p)
104c1213 2452 {
ebdba546 2453 struct gdbarch_list **list;
fe978cb0 2454 struct gdbarch_list *self;
104c1213 2455 if (gdbarch_debug)
59837fe0 2456 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2457 "Previous architecture %s (%s) selected\n",
2458 host_address_to_string (new_gdbarch),
104c1213 2459 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2460 /* Find the existing arch in the list. */
2461 for (list = &rego->arches;
2462 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2463 list = &(*list)->next);
2464 /* It had better be in the list of architectures. */
2465 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
fe978cb0
PA
2466 /* Unlink SELF. */
2467 self = (*list);
2468 (*list) = self->next;
2469 /* Insert SELF at the front. */
2470 self->next = rego->arches;
2471 rego->arches = self;
ebdba546
AC
2472 /* Return it. */
2473 return new_gdbarch;
104c1213
JM
2474 }
2475
ebdba546
AC
2476 /* It's a new architecture. */
2477 if (gdbarch_debug)
59837fe0 2478 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2479 "New architecture %s (%s) selected\n",
2480 host_address_to_string (new_gdbarch),
ebdba546
AC
2481 new_gdbarch->bfd_arch_info->printable_name);
2482
2483 /* Insert the new architecture into the front of the architecture
2484 list (keep the list sorted Most Recently Used). */
0f79675b 2485 {
fe978cb0
PA
2486 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2487 self->next = rego->arches;
2488 self->gdbarch = new_gdbarch;
2489 rego->arches = self;
0f79675b 2490 }
104c1213 2491
4b9b3959
AC
2492 /* Check that the newly installed architecture is valid. Plug in
2493 any post init values. */
2494 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2495 verify_gdbarch (new_gdbarch);
ebdba546 2496 new_gdbarch->initialized_p = 1;
104c1213 2497
4b9b3959 2498 if (gdbarch_debug)
ebdba546
AC
2499 gdbarch_dump (new_gdbarch, gdb_stdlog);
2500
2501 return new_gdbarch;
2502}
2503
e487cc15 2504/* Make the specified architecture current. */
ebdba546
AC
2505
2506void
aff68abb 2507set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2508{
2509 gdb_assert (new_gdbarch != NULL);
ebdba546 2510 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2511 current_inferior ()->gdbarch = new_gdbarch;
0bee6dd4 2512 gdb::observers::architecture_changed.notify (new_gdbarch);
a3ecef73 2513 registers_changed ();
ebdba546 2514}
104c1213 2515
f5656ead 2516/* Return the current inferior's arch. */
6ecd4729
PA
2517
2518struct gdbarch *
f5656ead 2519target_gdbarch (void)
6ecd4729
PA
2520{
2521 return current_inferior ()->gdbarch;
2522}
2523
104c1213 2524void
34620563 2525_initialize_gdbarch (void)
104c1213 2526{
ccce17b0 2527 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2528Set architecture debugging."), _("\\
2529Show architecture debugging."), _("\\
2530When non-zero, architecture debugging is enabled."),
2531 NULL,
920d2a44 2532 show_gdbarch_debug,
85c07804 2533 &setdebuglist, &showdebuglist);
104c1213
JM
2534}
2535EOF
2536
2537# close things off
2538exec 1>&2
2539#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2540compare_new gdbarch.c
This page took 1.582199 seconds and 4 git commands to generate.