gdb/riscv: Take CSR names from target description
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
b811d2c2 3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c
SS
23#include "bfd.h"
24#include "symtab.h"
25#include "symfile.h"
26#include "objfiles.h"
27#include "gdbtypes.h"
28#include "expression.h"
29#include "language.h"
30#include "target.h"
31#include "value.h"
32#include "demangle.h"
33#include "complaints.h"
34#include "gdbcmd.h"
015a42b4 35#include "cp-abi.h"
ae5a43e0 36#include "hashtab.h"
8de20a37 37#include "cp-support.h"
ca092b61 38#include "bcache.h"
82ca8957 39#include "dwarf2/loc.h"
80180f79 40#include "gdbcore.h"
1841ee5d 41#include "floatformat.h"
ef83a141 42#include <algorithm>
ac3aafc7 43
6403aeea
SW
44/* Initialize BADNESS constants. */
45
a9d5ef47 46const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 47
a9d5ef47
SW
48const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
49const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 50
a9d5ef47 51const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 52
a9d5ef47
SW
53const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
54const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
55const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
e15c3eb4 56const struct rank CV_CONVERSION_BADNESS = {1, 0};
a9d5ef47
SW
57const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
58const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
59const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
60const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 61const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
62const struct rank BASE_CONVERSION_BADNESS = {2,0};
63const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
06acc08f 64const struct rank REFERENCE_SEE_THROUGH_BADNESS = {0,1};
da096638 65const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 66const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 67const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 68
8da61cc4 69/* Floatformat pairs. */
f9e9243a
UW
70const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_half_big,
72 &floatformat_ieee_half_little
73};
8da61cc4
DJ
74const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_single_big,
76 &floatformat_ieee_single_little
77};
78const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_little
81};
82const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_ieee_double_big,
84 &floatformat_ieee_double_littlebyte_bigword
85};
86const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_i387_ext,
88 &floatformat_i387_ext
89};
90const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_m68881_ext,
92 &floatformat_m68881_ext
93};
94const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_arm_ext_big,
96 &floatformat_arm_ext_littlebyte_bigword
97};
98const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_spill_big,
100 &floatformat_ia64_spill_little
101};
102const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_ia64_quad_big,
104 &floatformat_ia64_quad_little
105};
106const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_f,
108 &floatformat_vax_f
109};
110const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_vax_d,
112 &floatformat_vax_d
113};
b14d30e1 114const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
f5aee5ee
AM
115 &floatformat_ibm_long_double_big,
116 &floatformat_ibm_long_double_little
b14d30e1 117};
8da61cc4 118
2873700e
KS
119/* Should opaque types be resolved? */
120
491144b5 121static bool opaque_type_resolution = true;
2873700e 122
79bb1944 123/* See gdbtypes.h. */
2873700e
KS
124
125unsigned int overload_debug = 0;
126
a451cb65
KS
127/* A flag to enable strict type checking. */
128
491144b5 129static bool strict_type_checking = true;
a451cb65 130
2873700e 131/* A function to show whether opaque types are resolved. */
5212577a 132
920d2a44
AC
133static void
134show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
135 struct cmd_list_element *c,
136 const char *value)
920d2a44 137{
3e43a32a
MS
138 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
139 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
140 value);
141}
142
2873700e 143/* A function to show whether C++ overload debugging is enabled. */
5212577a 144
920d2a44
AC
145static void
146show_overload_debug (struct ui_file *file, int from_tty,
147 struct cmd_list_element *c, const char *value)
148{
7ba81444
MS
149 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
150 value);
920d2a44 151}
c906108c 152
a451cb65
KS
153/* A function to show the status of strict type checking. */
154
155static void
156show_strict_type_checking (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158{
159 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
160}
161
5212577a 162\f
e9bb382b
UW
163/* Allocate a new OBJFILE-associated type structure and fill it
164 with some defaults. Space for the type structure is allocated
165 on the objfile's objfile_obstack. */
c906108c
SS
166
167struct type *
fba45db2 168alloc_type (struct objfile *objfile)
c906108c 169{
52f0bd74 170 struct type *type;
c906108c 171
e9bb382b
UW
172 gdb_assert (objfile != NULL);
173
7ba81444 174 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
175 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
176 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
177 struct main_type);
178 OBJSTAT (objfile, n_types++);
c906108c 179
e9bb382b
UW
180 TYPE_OBJFILE_OWNED (type) = 1;
181 TYPE_OWNER (type).objfile = objfile;
c906108c 182
7ba81444 183 /* Initialize the fields that might not be zero. */
c906108c 184
67607e24 185 type->set_code (TYPE_CODE_UNDEF);
2fdde8f8 186 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 187
c16abbde 188 return type;
c906108c
SS
189}
190
e9bb382b
UW
191/* Allocate a new GDBARCH-associated type structure and fill it
192 with some defaults. Space for the type structure is allocated
8f57eec2 193 on the obstack associated with GDBARCH. */
e9bb382b
UW
194
195struct type *
196alloc_type_arch (struct gdbarch *gdbarch)
197{
198 struct type *type;
199
200 gdb_assert (gdbarch != NULL);
201
202 /* Alloc the structure and start off with all fields zeroed. */
203
8f57eec2
PP
204 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
205 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
e9bb382b
UW
206
207 TYPE_OBJFILE_OWNED (type) = 0;
208 TYPE_OWNER (type).gdbarch = gdbarch;
209
210 /* Initialize the fields that might not be zero. */
211
67607e24 212 type->set_code (TYPE_CODE_UNDEF);
e9bb382b
UW
213 TYPE_CHAIN (type) = type; /* Chain back to itself. */
214
215 return type;
216}
217
218/* If TYPE is objfile-associated, allocate a new type structure
219 associated with the same objfile. If TYPE is gdbarch-associated,
220 allocate a new type structure associated with the same gdbarch. */
221
222struct type *
223alloc_type_copy (const struct type *type)
224{
225 if (TYPE_OBJFILE_OWNED (type))
226 return alloc_type (TYPE_OWNER (type).objfile);
227 else
228 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
229}
230
231/* If TYPE is gdbarch-associated, return that architecture.
232 If TYPE is objfile-associated, return that objfile's architecture. */
233
234struct gdbarch *
235get_type_arch (const struct type *type)
236{
2fabdf33
AB
237 struct gdbarch *arch;
238
e9bb382b 239 if (TYPE_OBJFILE_OWNED (type))
08feed99 240 arch = TYPE_OWNER (type).objfile->arch ();
e9bb382b 241 else
2fabdf33
AB
242 arch = TYPE_OWNER (type).gdbarch;
243
244 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
245 a gdbarch, however, this is very rare, and even then, in most cases
246 that get_type_arch is called, we assume that a non-NULL value is
247 returned. */
248 gdb_assert (arch != NULL);
249 return arch;
e9bb382b
UW
250}
251
99ad9427
YQ
252/* See gdbtypes.h. */
253
254struct type *
255get_target_type (struct type *type)
256{
257 if (type != NULL)
258 {
259 type = TYPE_TARGET_TYPE (type);
260 if (type != NULL)
261 type = check_typedef (type);
262 }
263
264 return type;
265}
266
2e056931
SM
267/* See gdbtypes.h. */
268
269unsigned int
270type_length_units (struct type *type)
271{
272 struct gdbarch *arch = get_type_arch (type);
273 int unit_size = gdbarch_addressable_memory_unit_size (arch);
274
275 return TYPE_LENGTH (type) / unit_size;
276}
277
2fdde8f8
DJ
278/* Alloc a new type instance structure, fill it with some defaults,
279 and point it at OLDTYPE. Allocate the new type instance from the
280 same place as OLDTYPE. */
281
282static struct type *
283alloc_type_instance (struct type *oldtype)
284{
285 struct type *type;
286
287 /* Allocate the structure. */
288
e9bb382b 289 if (! TYPE_OBJFILE_OWNED (oldtype))
2fabdf33 290 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
2fdde8f8 291 else
1deafd4e
PA
292 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
293 struct type);
294
2fdde8f8
DJ
295 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
296
297 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
298
c16abbde 299 return type;
2fdde8f8
DJ
300}
301
302/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 303 replacing it with something else. Preserve owner information. */
5212577a 304
2fdde8f8
DJ
305static void
306smash_type (struct type *type)
307{
e9bb382b
UW
308 int objfile_owned = TYPE_OBJFILE_OWNED (type);
309 union type_owner owner = TYPE_OWNER (type);
310
2fdde8f8
DJ
311 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
312
e9bb382b
UW
313 /* Restore owner information. */
314 TYPE_OBJFILE_OWNED (type) = objfile_owned;
315 TYPE_OWNER (type) = owner;
316
2fdde8f8
DJ
317 /* For now, delete the rings. */
318 TYPE_CHAIN (type) = type;
319
320 /* For now, leave the pointer/reference types alone. */
321}
322
c906108c
SS
323/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
324 to a pointer to memory where the pointer type should be stored.
325 If *TYPEPTR is zero, update it to point to the pointer type we return.
326 We allocate new memory if needed. */
327
328struct type *
fba45db2 329make_pointer_type (struct type *type, struct type **typeptr)
c906108c 330{
52f0bd74 331 struct type *ntype; /* New type */
053cb41b 332 struct type *chain;
c906108c
SS
333
334 ntype = TYPE_POINTER_TYPE (type);
335
c5aa993b 336 if (ntype)
c906108c 337 {
c5aa993b 338 if (typeptr == 0)
7ba81444
MS
339 return ntype; /* Don't care about alloc,
340 and have new type. */
c906108c 341 else if (*typeptr == 0)
c5aa993b 342 {
7ba81444 343 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 344 return ntype;
c5aa993b 345 }
c906108c
SS
346 }
347
348 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
349 {
e9bb382b 350 ntype = alloc_type_copy (type);
c906108c
SS
351 if (typeptr)
352 *typeptr = ntype;
353 }
7ba81444 354 else /* We have storage, but need to reset it. */
c906108c
SS
355 {
356 ntype = *typeptr;
053cb41b 357 chain = TYPE_CHAIN (ntype);
2fdde8f8 358 smash_type (ntype);
053cb41b 359 TYPE_CHAIN (ntype) = chain;
c906108c
SS
360 }
361
362 TYPE_TARGET_TYPE (ntype) = type;
363 TYPE_POINTER_TYPE (type) = ntype;
364
5212577a 365 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 366
50810684
UW
367 TYPE_LENGTH (ntype)
368 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
67607e24 369 ntype->set_code (TYPE_CODE_PTR);
c906108c 370
67b2adb2 371 /* Mark pointers as unsigned. The target converts between pointers
76e71323 372 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 373 gdbarch_address_to_pointer. */
876cecd0 374 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 375
053cb41b
JB
376 /* Update the length of all the other variants of this type. */
377 chain = TYPE_CHAIN (ntype);
378 while (chain != ntype)
379 {
380 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
381 chain = TYPE_CHAIN (chain);
382 }
383
c906108c
SS
384 return ntype;
385}
386
387/* Given a type TYPE, return a type of pointers to that type.
388 May need to construct such a type if this is the first use. */
389
390struct type *
fba45db2 391lookup_pointer_type (struct type *type)
c906108c 392{
c5aa993b 393 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
394}
395
7ba81444
MS
396/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
397 points to a pointer to memory where the reference type should be
398 stored. If *TYPEPTR is zero, update it to point to the reference
3b224330
AV
399 type we return. We allocate new memory if needed. REFCODE denotes
400 the kind of reference type to lookup (lvalue or rvalue reference). */
c906108c
SS
401
402struct type *
3b224330
AV
403make_reference_type (struct type *type, struct type **typeptr,
404 enum type_code refcode)
c906108c 405{
52f0bd74 406 struct type *ntype; /* New type */
3b224330 407 struct type **reftype;
1e98b326 408 struct type *chain;
c906108c 409
3b224330
AV
410 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
411
412 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
413 : TYPE_RVALUE_REFERENCE_TYPE (type));
c906108c 414
c5aa993b 415 if (ntype)
c906108c 416 {
c5aa993b 417 if (typeptr == 0)
7ba81444
MS
418 return ntype; /* Don't care about alloc,
419 and have new type. */
c906108c 420 else if (*typeptr == 0)
c5aa993b 421 {
7ba81444 422 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 423 return ntype;
c5aa993b 424 }
c906108c
SS
425 }
426
427 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
428 {
e9bb382b 429 ntype = alloc_type_copy (type);
c906108c
SS
430 if (typeptr)
431 *typeptr = ntype;
432 }
7ba81444 433 else /* We have storage, but need to reset it. */
c906108c
SS
434 {
435 ntype = *typeptr;
1e98b326 436 chain = TYPE_CHAIN (ntype);
2fdde8f8 437 smash_type (ntype);
1e98b326 438 TYPE_CHAIN (ntype) = chain;
c906108c
SS
439 }
440
441 TYPE_TARGET_TYPE (ntype) = type;
3b224330
AV
442 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
443 : &TYPE_RVALUE_REFERENCE_TYPE (type));
444
445 *reftype = ntype;
c906108c 446
7ba81444
MS
447 /* FIXME! Assume the machine has only one representation for
448 references, and that it matches the (only) representation for
449 pointers! */
c906108c 450
50810684
UW
451 TYPE_LENGTH (ntype) =
452 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
67607e24 453 ntype->set_code (refcode);
c5aa993b 454
3b224330 455 *reftype = ntype;
c906108c 456
1e98b326
JB
457 /* Update the length of all the other variants of this type. */
458 chain = TYPE_CHAIN (ntype);
459 while (chain != ntype)
460 {
461 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
462 chain = TYPE_CHAIN (chain);
463 }
464
c906108c
SS
465 return ntype;
466}
467
7ba81444
MS
468/* Same as above, but caller doesn't care about memory allocation
469 details. */
c906108c
SS
470
471struct type *
3b224330
AV
472lookup_reference_type (struct type *type, enum type_code refcode)
473{
474 return make_reference_type (type, (struct type **) 0, refcode);
475}
476
477/* Lookup the lvalue reference type for the type TYPE. */
478
479struct type *
480lookup_lvalue_reference_type (struct type *type)
481{
482 return lookup_reference_type (type, TYPE_CODE_REF);
483}
484
485/* Lookup the rvalue reference type for the type TYPE. */
486
487struct type *
488lookup_rvalue_reference_type (struct type *type)
c906108c 489{
3b224330 490 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
c906108c
SS
491}
492
7ba81444
MS
493/* Lookup a function type that returns type TYPE. TYPEPTR, if
494 nonzero, points to a pointer to memory where the function type
495 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 496 function type we return. We allocate new memory if needed. */
c906108c
SS
497
498struct type *
0c8b41f1 499make_function_type (struct type *type, struct type **typeptr)
c906108c 500{
52f0bd74 501 struct type *ntype; /* New type */
c906108c
SS
502
503 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
504 {
e9bb382b 505 ntype = alloc_type_copy (type);
c906108c
SS
506 if (typeptr)
507 *typeptr = ntype;
508 }
7ba81444 509 else /* We have storage, but need to reset it. */
c906108c
SS
510 {
511 ntype = *typeptr;
2fdde8f8 512 smash_type (ntype);
c906108c
SS
513 }
514
515 TYPE_TARGET_TYPE (ntype) = type;
516
517 TYPE_LENGTH (ntype) = 1;
67607e24 518 ntype->set_code (TYPE_CODE_FUNC);
c5aa993b 519
b6cdc2c1
JK
520 INIT_FUNC_SPECIFIC (ntype);
521
c906108c
SS
522 return ntype;
523}
524
c906108c
SS
525/* Given a type TYPE, return a type of functions that return that type.
526 May need to construct such a type if this is the first use. */
527
528struct type *
fba45db2 529lookup_function_type (struct type *type)
c906108c 530{
0c8b41f1 531 return make_function_type (type, (struct type **) 0);
c906108c
SS
532}
533
71918a86 534/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
535 function type. If the final type in PARAM_TYPES is NULL, make a
536 varargs function. */
71918a86
TT
537
538struct type *
539lookup_function_type_with_arguments (struct type *type,
540 int nparams,
541 struct type **param_types)
542{
543 struct type *fn = make_function_type (type, (struct type **) 0);
544 int i;
545
e314d629 546 if (nparams > 0)
a6fb9c08 547 {
e314d629
TT
548 if (param_types[nparams - 1] == NULL)
549 {
550 --nparams;
551 TYPE_VARARGS (fn) = 1;
552 }
78134374 553 else if (check_typedef (param_types[nparams - 1])->code ()
e314d629
TT
554 == TYPE_CODE_VOID)
555 {
556 --nparams;
557 /* Caller should have ensured this. */
558 gdb_assert (nparams == 0);
559 TYPE_PROTOTYPED (fn) = 1;
560 }
54990598
PA
561 else
562 TYPE_PROTOTYPED (fn) = 1;
a6fb9c08
TT
563 }
564
5e33d5f4 565 fn->set_num_fields (nparams);
3cabb6b0
SM
566 fn->set_fields
567 ((struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field)));
71918a86 568 for (i = 0; i < nparams; ++i)
5d14b6e5 569 fn->field (i).set_type (param_types[i]);
71918a86
TT
570
571 return fn;
572}
573
47663de5
MS
574/* Identify address space identifier by name --
575 return the integer flag defined in gdbtypes.h. */
5212577a
DE
576
577int
61f4b350
TT
578address_space_name_to_int (struct gdbarch *gdbarch,
579 const char *space_identifier)
47663de5 580{
8b2dbe47 581 int type_flags;
d8734c88 582
7ba81444 583 /* Check for known address space delimiters. */
47663de5 584 if (!strcmp (space_identifier, "code"))
876cecd0 585 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 586 else if (!strcmp (space_identifier, "data"))
876cecd0 587 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
588 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
589 && gdbarch_address_class_name_to_type_flags (gdbarch,
590 space_identifier,
591 &type_flags))
8b2dbe47 592 return type_flags;
47663de5 593 else
8a3fe4f8 594 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
595}
596
597/* Identify address space identifier by integer flag as defined in
7ba81444 598 gdbtypes.h -- return the string version of the adress space name. */
47663de5 599
321432c0 600const char *
50810684 601address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 602{
876cecd0 603 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 604 return "code";
876cecd0 605 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 606 return "data";
876cecd0 607 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
608 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
609 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
610 else
611 return NULL;
612}
613
2fdde8f8 614/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
615
616 If STORAGE is non-NULL, create the new type instance there.
617 STORAGE must be in the same obstack as TYPE. */
47663de5 618
b9362cc7 619static struct type *
2fdde8f8
DJ
620make_qualified_type (struct type *type, int new_flags,
621 struct type *storage)
47663de5
MS
622{
623 struct type *ntype;
624
625 ntype = type;
5f61c20e
JK
626 do
627 {
628 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
629 return ntype;
630 ntype = TYPE_CHAIN (ntype);
631 }
632 while (ntype != type);
47663de5 633
2fdde8f8
DJ
634 /* Create a new type instance. */
635 if (storage == NULL)
636 ntype = alloc_type_instance (type);
637 else
638 {
7ba81444
MS
639 /* If STORAGE was provided, it had better be in the same objfile
640 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
641 if one objfile is freed and the other kept, we'd have
642 dangling pointers. */
ad766c0a
JB
643 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
644
2fdde8f8
DJ
645 ntype = storage;
646 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
647 TYPE_CHAIN (ntype) = ntype;
648 }
47663de5
MS
649
650 /* Pointers or references to the original type are not relevant to
2fdde8f8 651 the new type. */
47663de5
MS
652 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
653 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 654
2fdde8f8
DJ
655 /* Chain the new qualified type to the old type. */
656 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
657 TYPE_CHAIN (type) = ntype;
658
659 /* Now set the instance flags and return the new type. */
660 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 661
ab5d3da6
KB
662 /* Set length of new type to that of the original type. */
663 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
664
47663de5
MS
665 return ntype;
666}
667
2fdde8f8
DJ
668/* Make an address-space-delimited variant of a type -- a type that
669 is identical to the one supplied except that it has an address
670 space attribute attached to it (such as "code" or "data").
671
7ba81444
MS
672 The space attributes "code" and "data" are for Harvard
673 architectures. The address space attributes are for architectures
674 which have alternately sized pointers or pointers with alternate
675 representations. */
2fdde8f8
DJ
676
677struct type *
678make_type_with_address_space (struct type *type, int space_flag)
679{
2fdde8f8 680 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
681 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
682 | TYPE_INSTANCE_FLAG_DATA_SPACE
683 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
684 | space_flag);
685
686 return make_qualified_type (type, new_flags, NULL);
687}
c906108c
SS
688
689/* Make a "c-v" variant of a type -- a type that is identical to the
690 one supplied except that it may have const or volatile attributes
691 CNST is a flag for setting the const attribute
692 VOLTL is a flag for setting the volatile attribute
693 TYPE is the base type whose variant we are creating.
c906108c 694
ad766c0a
JB
695 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
696 storage to hold the new qualified type; *TYPEPTR and TYPE must be
697 in the same objfile. Otherwise, allocate fresh memory for the new
698 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
699 new type we construct. */
5212577a 700
c906108c 701struct type *
7ba81444
MS
702make_cv_type (int cnst, int voltl,
703 struct type *type,
704 struct type **typeptr)
c906108c 705{
52f0bd74 706 struct type *ntype; /* New type */
c906108c 707
2fdde8f8 708 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
709 & ~(TYPE_INSTANCE_FLAG_CONST
710 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 711
c906108c 712 if (cnst)
876cecd0 713 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
714
715 if (voltl)
876cecd0 716 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 717
2fdde8f8 718 if (typeptr && *typeptr != NULL)
a02fd225 719 {
ad766c0a
JB
720 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
721 a C-V variant chain that threads across objfiles: if one
722 objfile gets freed, then the other has a broken C-V chain.
723
724 This code used to try to copy over the main type from TYPE to
725 *TYPEPTR if they were in different objfiles, but that's
726 wrong, too: TYPE may have a field list or member function
727 lists, which refer to types of their own, etc. etc. The
728 whole shebang would need to be copied over recursively; you
729 can't have inter-objfile pointers. The only thing to do is
730 to leave stub types as stub types, and look them up afresh by
731 name each time you encounter them. */
732 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
733 }
734
7ba81444
MS
735 ntype = make_qualified_type (type, new_flags,
736 typeptr ? *typeptr : NULL);
c906108c 737
2fdde8f8
DJ
738 if (typeptr != NULL)
739 *typeptr = ntype;
a02fd225 740
2fdde8f8 741 return ntype;
a02fd225 742}
c906108c 743
06d66ee9
TT
744/* Make a 'restrict'-qualified version of TYPE. */
745
746struct type *
747make_restrict_type (struct type *type)
748{
749 return make_qualified_type (type,
750 (TYPE_INSTANCE_FLAGS (type)
751 | TYPE_INSTANCE_FLAG_RESTRICT),
752 NULL);
753}
754
f1660027
TT
755/* Make a type without const, volatile, or restrict. */
756
757struct type *
758make_unqualified_type (struct type *type)
759{
760 return make_qualified_type (type,
761 (TYPE_INSTANCE_FLAGS (type)
762 & ~(TYPE_INSTANCE_FLAG_CONST
763 | TYPE_INSTANCE_FLAG_VOLATILE
764 | TYPE_INSTANCE_FLAG_RESTRICT)),
765 NULL);
766}
767
a2c2acaf
MW
768/* Make a '_Atomic'-qualified version of TYPE. */
769
770struct type *
771make_atomic_type (struct type *type)
772{
773 return make_qualified_type (type,
774 (TYPE_INSTANCE_FLAGS (type)
775 | TYPE_INSTANCE_FLAG_ATOMIC),
776 NULL);
777}
778
2fdde8f8
DJ
779/* Replace the contents of ntype with the type *type. This changes the
780 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
781 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 782
cda6c68a
JB
783 In order to build recursive types, it's inevitable that we'll need
784 to update types in place --- but this sort of indiscriminate
785 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
786 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
787 clear if more steps are needed. */
5212577a 788
dd6bda65
DJ
789void
790replace_type (struct type *ntype, struct type *type)
791{
ab5d3da6 792 struct type *chain;
dd6bda65 793
ad766c0a
JB
794 /* These two types had better be in the same objfile. Otherwise,
795 the assignment of one type's main type structure to the other
796 will produce a type with references to objects (names; field
797 lists; etc.) allocated on an objfile other than its own. */
e46dd0f4 798 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
ad766c0a 799
2fdde8f8 800 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 801
7ba81444
MS
802 /* The type length is not a part of the main type. Update it for
803 each type on the variant chain. */
ab5d3da6 804 chain = ntype;
5f61c20e
JK
805 do
806 {
807 /* Assert that this element of the chain has no address-class bits
808 set in its flags. Such type variants might have type lengths
809 which are supposed to be different from the non-address-class
810 variants. This assertion shouldn't ever be triggered because
811 symbol readers which do construct address-class variants don't
812 call replace_type(). */
813 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
814
815 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
816 chain = TYPE_CHAIN (chain);
817 }
818 while (ntype != chain);
ab5d3da6 819
2fdde8f8
DJ
820 /* Assert that the two types have equivalent instance qualifiers.
821 This should be true for at least all of our debug readers. */
822 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
823}
824
c906108c
SS
825/* Implement direct support for MEMBER_TYPE in GNU C++.
826 May need to construct such a type if this is the first use.
827 The TYPE is the type of the member. The DOMAIN is the type
828 of the aggregate that the member belongs to. */
829
830struct type *
0d5de010 831lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 832{
52f0bd74 833 struct type *mtype;
c906108c 834
e9bb382b 835 mtype = alloc_type_copy (type);
0d5de010 836 smash_to_memberptr_type (mtype, domain, type);
c16abbde 837 return mtype;
c906108c
SS
838}
839
0d5de010
DJ
840/* Return a pointer-to-method type, for a method of type TO_TYPE. */
841
842struct type *
843lookup_methodptr_type (struct type *to_type)
844{
845 struct type *mtype;
846
e9bb382b 847 mtype = alloc_type_copy (to_type);
0b92b5bb 848 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
849 return mtype;
850}
851
7ba81444
MS
852/* Allocate a stub method whose return type is TYPE. This apparently
853 happens for speed of symbol reading, since parsing out the
854 arguments to the method is cpu-intensive, the way we are doing it.
855 So, we will fill in arguments later. This always returns a fresh
856 type. */
c906108c
SS
857
858struct type *
fba45db2 859allocate_stub_method (struct type *type)
c906108c
SS
860{
861 struct type *mtype;
862
e9bb382b 863 mtype = alloc_type_copy (type);
67607e24 864 mtype->set_code (TYPE_CODE_METHOD);
e9bb382b
UW
865 TYPE_LENGTH (mtype) = 1;
866 TYPE_STUB (mtype) = 1;
c906108c 867 TYPE_TARGET_TYPE (mtype) = type;
4bfb94b8 868 /* TYPE_SELF_TYPE (mtype) = unknown yet */
c16abbde 869 return mtype;
c906108c
SS
870}
871
0f59d5fc
PA
872/* See gdbtypes.h. */
873
874bool
875operator== (const dynamic_prop &l, const dynamic_prop &r)
876{
877 if (l.kind != r.kind)
878 return false;
879
880 switch (l.kind)
881 {
882 case PROP_UNDEFINED:
883 return true;
884 case PROP_CONST:
885 return l.data.const_val == r.data.const_val;
886 case PROP_ADDR_OFFSET:
887 case PROP_LOCEXPR:
888 case PROP_LOCLIST:
889 return l.data.baton == r.data.baton;
ef83a141
TT
890 case PROP_VARIANT_PARTS:
891 return l.data.variant_parts == r.data.variant_parts;
892 case PROP_TYPE:
893 return l.data.original_type == r.data.original_type;
0f59d5fc
PA
894 }
895
896 gdb_assert_not_reached ("unhandled dynamic_prop kind");
897}
898
899/* See gdbtypes.h. */
900
901bool
902operator== (const range_bounds &l, const range_bounds &r)
903{
904#define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
905
906 return (FIELD_EQ (low)
907 && FIELD_EQ (high)
908 && FIELD_EQ (flag_upper_bound_is_count)
4e962e74
TT
909 && FIELD_EQ (flag_bound_evaluated)
910 && FIELD_EQ (bias));
0f59d5fc
PA
911
912#undef FIELD_EQ
913}
914
729efb13
SA
915/* Create a range type with a dynamic range from LOW_BOUND to
916 HIGH_BOUND, inclusive. See create_range_type for further details. */
c906108c
SS
917
918struct type *
729efb13
SA
919create_range_type (struct type *result_type, struct type *index_type,
920 const struct dynamic_prop *low_bound,
4e962e74
TT
921 const struct dynamic_prop *high_bound,
922 LONGEST bias)
c906108c 923{
b86352cf
AB
924 /* The INDEX_TYPE should be a type capable of holding the upper and lower
925 bounds, as such a zero sized, or void type makes no sense. */
78134374 926 gdb_assert (index_type->code () != TYPE_CODE_VOID);
b86352cf
AB
927 gdb_assert (TYPE_LENGTH (index_type) > 0);
928
c906108c 929 if (result_type == NULL)
e9bb382b 930 result_type = alloc_type_copy (index_type);
67607e24 931 result_type->set_code (TYPE_CODE_RANGE);
c906108c 932 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 933 if (TYPE_STUB (index_type))
876cecd0 934 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
935 else
936 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
729efb13 937
43bbcdc2
PH
938 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
939 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
729efb13
SA
940 TYPE_RANGE_DATA (result_type)->low = *low_bound;
941 TYPE_RANGE_DATA (result_type)->high = *high_bound;
4e962e74 942 TYPE_RANGE_DATA (result_type)->bias = bias;
c906108c 943
5bbd8269
AB
944 /* Initialize the stride to be a constant, the value will already be zero
945 thanks to the use of TYPE_ZALLOC above. */
946 TYPE_RANGE_DATA (result_type)->stride.kind = PROP_CONST;
947
729efb13 948 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
876cecd0 949 TYPE_UNSIGNED (result_type) = 1;
c906108c 950
45e44d27
JB
951 /* Ada allows the declaration of range types whose upper bound is
952 less than the lower bound, so checking the lower bound is not
953 enough. Make sure we do not mark a range type whose upper bound
954 is negative as unsigned. */
955 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
956 TYPE_UNSIGNED (result_type) = 0;
957
a05cf17a
TT
958 TYPE_ENDIANITY_NOT_DEFAULT (result_type)
959 = TYPE_ENDIANITY_NOT_DEFAULT (index_type);
960
262452ec 961 return result_type;
c906108c
SS
962}
963
5bbd8269
AB
964/* See gdbtypes.h. */
965
966struct type *
967create_range_type_with_stride (struct type *result_type,
968 struct type *index_type,
969 const struct dynamic_prop *low_bound,
970 const struct dynamic_prop *high_bound,
971 LONGEST bias,
972 const struct dynamic_prop *stride,
973 bool byte_stride_p)
974{
975 result_type = create_range_type (result_type, index_type, low_bound,
976 high_bound, bias);
977
978 gdb_assert (stride != nullptr);
979 TYPE_RANGE_DATA (result_type)->stride = *stride;
980 TYPE_RANGE_DATA (result_type)->flag_is_byte_stride = byte_stride_p;
981
982 return result_type;
983}
984
985
986
729efb13
SA
987/* Create a range type using either a blank type supplied in
988 RESULT_TYPE, or creating a new type, inheriting the objfile from
989 INDEX_TYPE.
990
991 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
992 to HIGH_BOUND, inclusive.
993
994 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
995 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
996
997struct type *
998create_static_range_type (struct type *result_type, struct type *index_type,
999 LONGEST low_bound, LONGEST high_bound)
1000{
1001 struct dynamic_prop low, high;
1002
1003 low.kind = PROP_CONST;
1004 low.data.const_val = low_bound;
1005
1006 high.kind = PROP_CONST;
1007 high.data.const_val = high_bound;
1008
4e962e74 1009 result_type = create_range_type (result_type, index_type, &low, &high, 0);
729efb13
SA
1010
1011 return result_type;
1012}
1013
80180f79
SA
1014/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
1015 are static, otherwise returns 0. */
1016
5bbd8269 1017static bool
80180f79
SA
1018has_static_range (const struct range_bounds *bounds)
1019{
5bbd8269
AB
1020 /* If the range doesn't have a defined stride then its stride field will
1021 be initialized to the constant 0. */
80180f79 1022 return (bounds->low.kind == PROP_CONST
5bbd8269
AB
1023 && bounds->high.kind == PROP_CONST
1024 && bounds->stride.kind == PROP_CONST);
80180f79
SA
1025}
1026
1027
7ba81444
MS
1028/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
1029 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
1030 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
1031
1032int
fba45db2 1033get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c 1034{
f168693b 1035 type = check_typedef (type);
78134374 1036 switch (type->code ())
c906108c
SS
1037 {
1038 case TYPE_CODE_RANGE:
1039 *lowp = TYPE_LOW_BOUND (type);
1040 *highp = TYPE_HIGH_BOUND (type);
53a47a3e
TT
1041 if (TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_ENUM)
1042 {
1043 if (!discrete_position (TYPE_TARGET_TYPE (type), *lowp, lowp)
1044 || ! discrete_position (TYPE_TARGET_TYPE (type), *highp, highp))
1045 return 0;
1046 }
c906108c
SS
1047 return 1;
1048 case TYPE_CODE_ENUM:
1f704f76 1049 if (type->num_fields () > 0)
c906108c
SS
1050 {
1051 /* The enums may not be sorted by value, so search all
0963b4bd 1052 entries. */
c906108c
SS
1053 int i;
1054
14e75d8e 1055 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
1f704f76 1056 for (i = 0; i < type->num_fields (); i++)
c906108c 1057 {
14e75d8e
JK
1058 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1059 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1060 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1061 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
1062 }
1063
7ba81444 1064 /* Set unsigned indicator if warranted. */
c5aa993b 1065 if (*lowp >= 0)
c906108c 1066 {
876cecd0 1067 TYPE_UNSIGNED (type) = 1;
c906108c
SS
1068 }
1069 }
1070 else
1071 {
1072 *lowp = 0;
1073 *highp = -1;
1074 }
1075 return 0;
1076 case TYPE_CODE_BOOL:
1077 *lowp = 0;
1078 *highp = 1;
1079 return 0;
1080 case TYPE_CODE_INT:
c5aa993b 1081 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
1082 return -1;
1083 if (!TYPE_UNSIGNED (type))
1084 {
c5aa993b 1085 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
1086 *highp = -*lowp - 1;
1087 return 0;
1088 }
86a73007 1089 /* fall through */
c906108c
SS
1090 case TYPE_CODE_CHAR:
1091 *lowp = 0;
1092 /* This round-about calculation is to avoid shifting by
7b83ea04 1093 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 1094 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
1095 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1096 *highp = (*highp - 1) | *highp;
1097 return 0;
1098 default:
1099 return -1;
1100 }
1101}
1102
dbc98a8b
KW
1103/* Assuming TYPE is a simple, non-empty array type, compute its upper
1104 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1105 Save the high bound into HIGH_BOUND if not NULL.
1106
0963b4bd 1107 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
1108 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1109
1110 We now simply use get_discrete_bounds call to get the values
1111 of the low and high bounds.
1112 get_discrete_bounds can return three values:
1113 1, meaning that index is a range,
1114 0, meaning that index is a discrete type,
1115 or -1 for failure. */
1116
1117int
1118get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1119{
3d967001 1120 struct type *index = type->index_type ();
dbc98a8b
KW
1121 LONGEST low = 0;
1122 LONGEST high = 0;
1123 int res;
1124
1125 if (index == NULL)
1126 return 0;
1127
1128 res = get_discrete_bounds (index, &low, &high);
1129 if (res == -1)
1130 return 0;
1131
1132 /* Check if the array bounds are undefined. */
1133 if (res == 1
1134 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1135 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1136 return 0;
1137
1138 if (low_bound)
1139 *low_bound = low;
1140
1141 if (high_bound)
1142 *high_bound = high;
1143
1144 return 1;
1145}
1146
aa715135
JG
1147/* Assuming that TYPE is a discrete type and VAL is a valid integer
1148 representation of a value of this type, save the corresponding
1149 position number in POS.
1150
1151 Its differs from VAL only in the case of enumeration types. In
1152 this case, the position number of the value of the first listed
1153 enumeration literal is zero; the position number of the value of
1154 each subsequent enumeration literal is one more than that of its
1155 predecessor in the list.
1156
1157 Return 1 if the operation was successful. Return zero otherwise,
1158 in which case the value of POS is unmodified.
1159*/
1160
1161int
1162discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1163{
0bc2354b
TT
1164 if (type->code () == TYPE_CODE_RANGE)
1165 type = TYPE_TARGET_TYPE (type);
1166
78134374 1167 if (type->code () == TYPE_CODE_ENUM)
aa715135
JG
1168 {
1169 int i;
1170
1f704f76 1171 for (i = 0; i < type->num_fields (); i += 1)
aa715135
JG
1172 {
1173 if (val == TYPE_FIELD_ENUMVAL (type, i))
1174 {
1175 *pos = i;
1176 return 1;
1177 }
1178 }
1179 /* Invalid enumeration value. */
1180 return 0;
1181 }
1182 else
1183 {
1184 *pos = val;
1185 return 1;
1186 }
1187}
1188
8dbb1375
HD
1189/* If the array TYPE has static bounds calculate and update its
1190 size, then return true. Otherwise return false and leave TYPE
1191 unchanged. */
1192
1193static bool
1194update_static_array_size (struct type *type)
1195{
78134374 1196 gdb_assert (type->code () == TYPE_CODE_ARRAY);
8dbb1375 1197
3d967001 1198 struct type *range_type = type->index_type ();
8dbb1375 1199
24e99c6c 1200 if (type->dyn_prop (DYN_PROP_BYTE_STRIDE) == nullptr
8dbb1375
HD
1201 && has_static_range (TYPE_RANGE_DATA (range_type))
1202 && (!type_not_associated (type)
1203 && !type_not_allocated (type)))
1204 {
1205 LONGEST low_bound, high_bound;
1206 int stride;
1207 struct type *element_type;
1208
1209 /* If the array itself doesn't provide a stride value then take
1210 whatever stride the range provides. Don't update BIT_STRIDE as
1211 we don't want to place the stride value from the range into this
1212 arrays bit size field. */
1213 stride = TYPE_FIELD_BITSIZE (type, 0);
1214 if (stride == 0)
1215 stride = TYPE_BIT_STRIDE (range_type);
1216
1217 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1218 low_bound = high_bound = 0;
1219 element_type = check_typedef (TYPE_TARGET_TYPE (type));
1220 /* Be careful when setting the array length. Ada arrays can be
1221 empty arrays with the high_bound being smaller than the low_bound.
1222 In such cases, the array length should be zero. */
1223 if (high_bound < low_bound)
1224 TYPE_LENGTH (type) = 0;
1225 else if (stride != 0)
1226 {
1227 /* Ensure that the type length is always positive, even in the
1228 case where (for example in Fortran) we have a negative
1229 stride. It is possible to have a single element array with a
1230 negative stride in Fortran (this doesn't mean anything
1231 special, it's still just a single element array) so do
1232 consider that case when touching this code. */
1233 LONGEST element_count = std::abs (high_bound - low_bound + 1);
1234 TYPE_LENGTH (type)
1235 = ((std::abs (stride) * element_count) + 7) / 8;
1236 }
1237 else
1238 TYPE_LENGTH (type) =
1239 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1240
1241 return true;
1242 }
1243
1244 return false;
1245}
1246
7ba81444
MS
1247/* Create an array type using either a blank type supplied in
1248 RESULT_TYPE, or creating a new type, inheriting the objfile from
1249 RANGE_TYPE.
c906108c
SS
1250
1251 Elements will be of type ELEMENT_TYPE, the indices will be of type
1252 RANGE_TYPE.
1253
a405673c
JB
1254 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1255 This byte stride property is added to the resulting array type
1256 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1257 argument can only be used to create types that are objfile-owned
1258 (see add_dyn_prop), meaning that either this function must be called
1259 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1260
1261 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
dc53a7ad
JB
1262 If BIT_STRIDE is not zero, build a packed array type whose element
1263 size is BIT_STRIDE. Otherwise, ignore this parameter.
1264
7ba81444
MS
1265 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1266 sure it is TYPE_CODE_UNDEF before we bash it into an array
1267 type? */
c906108c
SS
1268
1269struct type *
dc53a7ad
JB
1270create_array_type_with_stride (struct type *result_type,
1271 struct type *element_type,
1272 struct type *range_type,
a405673c 1273 struct dynamic_prop *byte_stride_prop,
dc53a7ad 1274 unsigned int bit_stride)
c906108c 1275{
a405673c
JB
1276 if (byte_stride_prop != NULL
1277 && byte_stride_prop->kind == PROP_CONST)
1278 {
1279 /* The byte stride is actually not dynamic. Pretend we were
1280 called with bit_stride set instead of byte_stride_prop.
1281 This will give us the same result type, while avoiding
1282 the need to handle this as a special case. */
1283 bit_stride = byte_stride_prop->data.const_val * 8;
1284 byte_stride_prop = NULL;
1285 }
1286
c906108c 1287 if (result_type == NULL)
e9bb382b
UW
1288 result_type = alloc_type_copy (range_type);
1289
67607e24 1290 result_type->set_code (TYPE_CODE_ARRAY);
c906108c 1291 TYPE_TARGET_TYPE (result_type) = element_type;
5bbd8269 1292
5e33d5f4 1293 result_type->set_num_fields (1);
3cabb6b0
SM
1294 result_type->set_fields
1295 ((struct field *) TYPE_ZALLOC (result_type, sizeof (struct field)));
262abc0d 1296 result_type->set_index_type (range_type);
8dbb1375 1297 if (byte_stride_prop != NULL)
5c54719c 1298 result_type->add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop);
8dbb1375
HD
1299 else if (bit_stride > 0)
1300 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
80180f79 1301
8dbb1375 1302 if (!update_static_array_size (result_type))
80180f79
SA
1303 {
1304 /* This type is dynamic and its length needs to be computed
1305 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1306 undefined by setting it to zero. Although we are not expected
1307 to trust TYPE_LENGTH in this case, setting the size to zero
1308 allows us to avoid allocating objects of random sizes in case
1309 we accidently do. */
1310 TYPE_LENGTH (result_type) = 0;
1311 }
1312
a9ff5f12 1313 /* TYPE_TARGET_STUB will take care of zero length arrays. */
c906108c 1314 if (TYPE_LENGTH (result_type) == 0)
876cecd0 1315 TYPE_TARGET_STUB (result_type) = 1;
c906108c 1316
c16abbde 1317 return result_type;
c906108c
SS
1318}
1319
dc53a7ad
JB
1320/* Same as create_array_type_with_stride but with no bit_stride
1321 (BIT_STRIDE = 0), thus building an unpacked array. */
1322
1323struct type *
1324create_array_type (struct type *result_type,
1325 struct type *element_type,
1326 struct type *range_type)
1327{
1328 return create_array_type_with_stride (result_type, element_type,
a405673c 1329 range_type, NULL, 0);
dc53a7ad
JB
1330}
1331
e3506a9f
UW
1332struct type *
1333lookup_array_range_type (struct type *element_type,
63375b74 1334 LONGEST low_bound, LONGEST high_bound)
e3506a9f 1335{
929b5ad4
JB
1336 struct type *index_type;
1337 struct type *range_type;
1338
1339 if (TYPE_OBJFILE_OWNED (element_type))
1340 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1341 else
1342 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1343 range_type = create_static_range_type (NULL, index_type,
1344 low_bound, high_bound);
d8734c88 1345
e3506a9f
UW
1346 return create_array_type (NULL, element_type, range_type);
1347}
1348
7ba81444
MS
1349/* Create a string type using either a blank type supplied in
1350 RESULT_TYPE, or creating a new type. String types are similar
1351 enough to array of char types that we can use create_array_type to
1352 build the basic type and then bash it into a string type.
c906108c
SS
1353
1354 For fixed length strings, the range type contains 0 as the lower
1355 bound and the length of the string minus one as the upper bound.
1356
7ba81444
MS
1357 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1358 sure it is TYPE_CODE_UNDEF before we bash it into a string
1359 type? */
c906108c
SS
1360
1361struct type *
3b7538c0
UW
1362create_string_type (struct type *result_type,
1363 struct type *string_char_type,
7ba81444 1364 struct type *range_type)
c906108c
SS
1365{
1366 result_type = create_array_type (result_type,
f290d38e 1367 string_char_type,
c906108c 1368 range_type);
67607e24 1369 result_type->set_code (TYPE_CODE_STRING);
c16abbde 1370 return result_type;
c906108c
SS
1371}
1372
e3506a9f
UW
1373struct type *
1374lookup_string_range_type (struct type *string_char_type,
63375b74 1375 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1376{
1377 struct type *result_type;
d8734c88 1378
e3506a9f
UW
1379 result_type = lookup_array_range_type (string_char_type,
1380 low_bound, high_bound);
67607e24 1381 result_type->set_code (TYPE_CODE_STRING);
e3506a9f
UW
1382 return result_type;
1383}
1384
c906108c 1385struct type *
fba45db2 1386create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1387{
c906108c 1388 if (result_type == NULL)
e9bb382b
UW
1389 result_type = alloc_type_copy (domain_type);
1390
67607e24 1391 result_type->set_code (TYPE_CODE_SET);
5e33d5f4 1392 result_type->set_num_fields (1);
3cabb6b0
SM
1393 result_type->set_fields
1394 ((struct field *) TYPE_ZALLOC (result_type, sizeof (struct field)));
c906108c 1395
74a9bb82 1396 if (!TYPE_STUB (domain_type))
c906108c 1397 {
f9780d5b 1398 LONGEST low_bound, high_bound, bit_length;
d8734c88 1399
c906108c
SS
1400 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1401 low_bound = high_bound = 0;
1402 bit_length = high_bound - low_bound + 1;
1403 TYPE_LENGTH (result_type)
1404 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1405 if (low_bound >= 0)
876cecd0 1406 TYPE_UNSIGNED (result_type) = 1;
c906108c 1407 }
5d14b6e5 1408 result_type->field (0).set_type (domain_type);
c906108c 1409
c16abbde 1410 return result_type;
c906108c
SS
1411}
1412
ea37ba09
DJ
1413/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1414 and any array types nested inside it. */
1415
1416void
1417make_vector_type (struct type *array_type)
1418{
1419 struct type *inner_array, *elt_type;
1420 int flags;
1421
1422 /* Find the innermost array type, in case the array is
1423 multi-dimensional. */
1424 inner_array = array_type;
78134374 1425 while (TYPE_TARGET_TYPE (inner_array)->code () == TYPE_CODE_ARRAY)
ea37ba09
DJ
1426 inner_array = TYPE_TARGET_TYPE (inner_array);
1427
1428 elt_type = TYPE_TARGET_TYPE (inner_array);
78134374 1429 if (elt_type->code () == TYPE_CODE_INT)
ea37ba09 1430 {
2844d6b5 1431 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1432 elt_type = make_qualified_type (elt_type, flags, NULL);
1433 TYPE_TARGET_TYPE (inner_array) = elt_type;
1434 }
1435
876cecd0 1436 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1437}
1438
794ac428 1439struct type *
ac3aafc7
EZ
1440init_vector_type (struct type *elt_type, int n)
1441{
1442 struct type *array_type;
d8734c88 1443
e3506a9f 1444 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1445 make_vector_type (array_type);
ac3aafc7
EZ
1446 return array_type;
1447}
1448
09e2d7c7
DE
1449/* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1450 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1451 confusing. "self" is a common enough replacement for "this".
1452 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1453 TYPE_CODE_METHOD. */
1454
1455struct type *
1456internal_type_self_type (struct type *type)
1457{
78134374 1458 switch (type->code ())
09e2d7c7
DE
1459 {
1460 case TYPE_CODE_METHODPTR:
1461 case TYPE_CODE_MEMBERPTR:
eaaf76ab
DE
1462 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1463 return NULL;
09e2d7c7
DE
1464 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1465 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1466 case TYPE_CODE_METHOD:
eaaf76ab
DE
1467 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1468 return NULL;
09e2d7c7
DE
1469 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1470 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1471 default:
1472 gdb_assert_not_reached ("bad type");
1473 }
1474}
1475
1476/* Set the type of the class that TYPE belongs to.
1477 In c++ this is the class of "this".
1478 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1479 TYPE_CODE_METHOD. */
1480
1481void
1482set_type_self_type (struct type *type, struct type *self_type)
1483{
78134374 1484 switch (type->code ())
09e2d7c7
DE
1485 {
1486 case TYPE_CODE_METHODPTR:
1487 case TYPE_CODE_MEMBERPTR:
1488 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1489 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1490 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1491 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1492 break;
1493 case TYPE_CODE_METHOD:
1494 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1495 INIT_FUNC_SPECIFIC (type);
1496 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1497 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1498 break;
1499 default:
1500 gdb_assert_not_reached ("bad type");
1501 }
1502}
1503
1504/* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
0d5de010
DJ
1505 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1506 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1507 TYPE doesn't include the offset (that's the value of the MEMBER
1508 itself), but does include the structure type into which it points
1509 (for some reason).
c906108c 1510
7ba81444
MS
1511 When "smashing" the type, we preserve the objfile that the old type
1512 pointed to, since we aren't changing where the type is actually
c906108c
SS
1513 allocated. */
1514
1515void
09e2d7c7 1516smash_to_memberptr_type (struct type *type, struct type *self_type,
0d5de010 1517 struct type *to_type)
c906108c 1518{
2fdde8f8 1519 smash_type (type);
67607e24 1520 type->set_code (TYPE_CODE_MEMBERPTR);
c906108c 1521 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1522 set_type_self_type (type, self_type);
0d5de010
DJ
1523 /* Assume that a data member pointer is the same size as a normal
1524 pointer. */
50810684
UW
1525 TYPE_LENGTH (type)
1526 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
c906108c
SS
1527}
1528
0b92b5bb
TT
1529/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1530
1531 When "smashing" the type, we preserve the objfile that the old type
1532 pointed to, since we aren't changing where the type is actually
1533 allocated. */
1534
1535void
1536smash_to_methodptr_type (struct type *type, struct type *to_type)
1537{
1538 smash_type (type);
67607e24 1539 type->set_code (TYPE_CODE_METHODPTR);
0b92b5bb 1540 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1541 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
0b92b5bb 1542 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
0b92b5bb
TT
1543}
1544
09e2d7c7 1545/* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
c906108c
SS
1546 METHOD just means `function that gets an extra "this" argument'.
1547
7ba81444
MS
1548 When "smashing" the type, we preserve the objfile that the old type
1549 pointed to, since we aren't changing where the type is actually
c906108c
SS
1550 allocated. */
1551
1552void
09e2d7c7 1553smash_to_method_type (struct type *type, struct type *self_type,
ad2f7632
DJ
1554 struct type *to_type, struct field *args,
1555 int nargs, int varargs)
c906108c 1556{
2fdde8f8 1557 smash_type (type);
67607e24 1558 type->set_code (TYPE_CODE_METHOD);
c906108c 1559 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1560 set_type_self_type (type, self_type);
3cabb6b0 1561 type->set_fields (args);
5e33d5f4 1562 type->set_num_fields (nargs);
ad2f7632 1563 if (varargs)
876cecd0 1564 TYPE_VARARGS (type) = 1;
c906108c 1565 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
c906108c
SS
1566}
1567
a737d952 1568/* A wrapper of TYPE_NAME which calls error if the type is anonymous.
d8228535
JK
1569 Since GCC PR debug/47510 DWARF provides associated information to detect the
1570 anonymous class linkage name from its typedef.
1571
1572 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1573 apply it itself. */
1574
1575const char *
a737d952 1576type_name_or_error (struct type *type)
d8228535
JK
1577{
1578 struct type *saved_type = type;
1579 const char *name;
1580 struct objfile *objfile;
1581
f168693b 1582 type = check_typedef (type);
d8228535 1583
7d93a1e0 1584 name = type->name ();
d8228535
JK
1585 if (name != NULL)
1586 return name;
1587
7d93a1e0 1588 name = saved_type->name ();
d8228535
JK
1589 objfile = TYPE_OBJFILE (saved_type);
1590 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
4262abfb
JK
1591 name ? name : "<anonymous>",
1592 objfile ? objfile_name (objfile) : "<arch>");
d8228535
JK
1593}
1594
7ba81444
MS
1595/* Lookup a typedef or primitive type named NAME, visible in lexical
1596 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1597 suitably defined. */
c906108c
SS
1598
1599struct type *
e6c014f2 1600lookup_typename (const struct language_defn *language,
b858499d 1601 const char *name,
34eaf542 1602 const struct block *block, int noerr)
c906108c 1603{
52f0bd74 1604 struct symbol *sym;
c906108c 1605
1994afbf 1606 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
d12307c1 1607 language->la_language, NULL).symbol;
c51fe631
DE
1608 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1609 return SYMBOL_TYPE (sym);
1610
c51fe631
DE
1611 if (noerr)
1612 return NULL;
1613 error (_("No type named %s."), name);
c906108c
SS
1614}
1615
1616struct type *
e6c014f2 1617lookup_unsigned_typename (const struct language_defn *language,
b858499d 1618 const char *name)
c906108c 1619{
224c3ddb 1620 char *uns = (char *) alloca (strlen (name) + 10);
c906108c
SS
1621
1622 strcpy (uns, "unsigned ");
1623 strcpy (uns + 9, name);
b858499d 1624 return lookup_typename (language, uns, NULL, 0);
c906108c
SS
1625}
1626
1627struct type *
b858499d 1628lookup_signed_typename (const struct language_defn *language, const char *name)
c906108c
SS
1629{
1630 struct type *t;
224c3ddb 1631 char *uns = (char *) alloca (strlen (name) + 8);
c906108c
SS
1632
1633 strcpy (uns, "signed ");
1634 strcpy (uns + 7, name);
b858499d 1635 t = lookup_typename (language, uns, NULL, 1);
7ba81444 1636 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1637 if (t != NULL)
1638 return t;
b858499d 1639 return lookup_typename (language, name, NULL, 0);
c906108c
SS
1640}
1641
1642/* Lookup a structure type named "struct NAME",
1643 visible in lexical block BLOCK. */
1644
1645struct type *
270140bd 1646lookup_struct (const char *name, const struct block *block)
c906108c 1647{
52f0bd74 1648 struct symbol *sym;
c906108c 1649
d12307c1 1650 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1651
1652 if (sym == NULL)
1653 {
8a3fe4f8 1654 error (_("No struct type named %s."), name);
c906108c 1655 }
78134374 1656 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT)
c906108c 1657 {
7ba81444
MS
1658 error (_("This context has class, union or enum %s, not a struct."),
1659 name);
c906108c
SS
1660 }
1661 return (SYMBOL_TYPE (sym));
1662}
1663
1664/* Lookup a union type named "union NAME",
1665 visible in lexical block BLOCK. */
1666
1667struct type *
270140bd 1668lookup_union (const char *name, const struct block *block)
c906108c 1669{
52f0bd74 1670 struct symbol *sym;
c5aa993b 1671 struct type *t;
c906108c 1672
d12307c1 1673 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1674
1675 if (sym == NULL)
8a3fe4f8 1676 error (_("No union type named %s."), name);
c906108c 1677
c5aa993b 1678 t = SYMBOL_TYPE (sym);
c906108c 1679
78134374 1680 if (t->code () == TYPE_CODE_UNION)
c16abbde 1681 return t;
c906108c 1682
7ba81444
MS
1683 /* If we get here, it's not a union. */
1684 error (_("This context has class, struct or enum %s, not a union."),
1685 name);
c906108c
SS
1686}
1687
c906108c
SS
1688/* Lookup an enum type named "enum NAME",
1689 visible in lexical block BLOCK. */
1690
1691struct type *
270140bd 1692lookup_enum (const char *name, const struct block *block)
c906108c 1693{
52f0bd74 1694 struct symbol *sym;
c906108c 1695
d12307c1 1696 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1697 if (sym == NULL)
1698 {
8a3fe4f8 1699 error (_("No enum type named %s."), name);
c906108c 1700 }
78134374 1701 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_ENUM)
c906108c 1702 {
7ba81444
MS
1703 error (_("This context has class, struct or union %s, not an enum."),
1704 name);
c906108c
SS
1705 }
1706 return (SYMBOL_TYPE (sym));
1707}
1708
1709/* Lookup a template type named "template NAME<TYPE>",
1710 visible in lexical block BLOCK. */
1711
1712struct type *
61f4b350 1713lookup_template_type (const char *name, struct type *type,
270140bd 1714 const struct block *block)
c906108c
SS
1715{
1716 struct symbol *sym;
7ba81444 1717 char *nam = (char *)
7d93a1e0 1718 alloca (strlen (name) + strlen (type->name ()) + 4);
d8734c88 1719
c906108c
SS
1720 strcpy (nam, name);
1721 strcat (nam, "<");
7d93a1e0 1722 strcat (nam, type->name ());
0963b4bd 1723 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1724
d12307c1 1725 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
c906108c
SS
1726
1727 if (sym == NULL)
1728 {
8a3fe4f8 1729 error (_("No template type named %s."), name);
c906108c 1730 }
78134374 1731 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT)
c906108c 1732 {
7ba81444
MS
1733 error (_("This context has class, union or enum %s, not a struct."),
1734 name);
c906108c
SS
1735 }
1736 return (SYMBOL_TYPE (sym));
1737}
1738
ef0bd204 1739/* See gdbtypes.h. */
c906108c 1740
ef0bd204
JB
1741struct_elt
1742lookup_struct_elt (struct type *type, const char *name, int noerr)
c906108c
SS
1743{
1744 int i;
1745
1746 for (;;)
1747 {
f168693b 1748 type = check_typedef (type);
78134374
SM
1749 if (type->code () != TYPE_CODE_PTR
1750 && type->code () != TYPE_CODE_REF)
c906108c
SS
1751 break;
1752 type = TYPE_TARGET_TYPE (type);
1753 }
1754
78134374
SM
1755 if (type->code () != TYPE_CODE_STRUCT
1756 && type->code () != TYPE_CODE_UNION)
c906108c 1757 {
2f408ecb
PA
1758 std::string type_name = type_to_string (type);
1759 error (_("Type %s is not a structure or union type."),
1760 type_name.c_str ());
c906108c
SS
1761 }
1762
1f704f76 1763 for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--)
c906108c 1764 {
0d5cff50 1765 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1766
db577aea 1767 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c 1768 {
ceacbf6e 1769 return {&type->field (i), TYPE_FIELD_BITPOS (type, i)};
c906108c 1770 }
f5a010c0
PM
1771 else if (!t_field_name || *t_field_name == '\0')
1772 {
ef0bd204 1773 struct_elt elt
940da03e 1774 = lookup_struct_elt (type->field (i).type (), name, 1);
ef0bd204
JB
1775 if (elt.field != NULL)
1776 {
1777 elt.offset += TYPE_FIELD_BITPOS (type, i);
1778 return elt;
1779 }
f5a010c0 1780 }
c906108c
SS
1781 }
1782
1783 /* OK, it's not in this class. Recursively check the baseclasses. */
1784 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1785 {
ef0bd204
JB
1786 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1787 if (elt.field != NULL)
1788 return elt;
c906108c
SS
1789 }
1790
1791 if (noerr)
ef0bd204 1792 return {nullptr, 0};
c5aa993b 1793
2f408ecb
PA
1794 std::string type_name = type_to_string (type);
1795 error (_("Type %s has no component named %s."), type_name.c_str (), name);
c906108c
SS
1796}
1797
ef0bd204
JB
1798/* See gdbtypes.h. */
1799
1800struct type *
1801lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1802{
1803 struct_elt elt = lookup_struct_elt (type, name, noerr);
1804 if (elt.field != NULL)
b6cdac4b 1805 return elt.field->type ();
ef0bd204
JB
1806 else
1807 return NULL;
1808}
1809
ed3ef339
DE
1810/* Store in *MAX the largest number representable by unsigned integer type
1811 TYPE. */
1812
1813void
1814get_unsigned_type_max (struct type *type, ULONGEST *max)
1815{
1816 unsigned int n;
1817
f168693b 1818 type = check_typedef (type);
78134374 1819 gdb_assert (type->code () == TYPE_CODE_INT && TYPE_UNSIGNED (type));
ed3ef339
DE
1820 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1821
1822 /* Written this way to avoid overflow. */
1823 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1824 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1825}
1826
1827/* Store in *MIN, *MAX the smallest and largest numbers representable by
1828 signed integer type TYPE. */
1829
1830void
1831get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1832{
1833 unsigned int n;
1834
f168693b 1835 type = check_typedef (type);
78134374 1836 gdb_assert (type->code () == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
ed3ef339
DE
1837 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1838
1839 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1840 *min = -((ULONGEST) 1 << (n - 1));
1841 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1842}
1843
ae6ae975
DE
1844/* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1845 cplus_stuff.vptr_fieldno.
1846
1847 cplus_stuff is initialized to cplus_struct_default which does not
1848 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1849 designated initializers). We cope with that here. */
1850
1851int
1852internal_type_vptr_fieldno (struct type *type)
1853{
f168693b 1854 type = check_typedef (type);
78134374
SM
1855 gdb_assert (type->code () == TYPE_CODE_STRUCT
1856 || type->code () == TYPE_CODE_UNION);
ae6ae975
DE
1857 if (!HAVE_CPLUS_STRUCT (type))
1858 return -1;
1859 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1860}
1861
1862/* Set the value of cplus_stuff.vptr_fieldno. */
1863
1864void
1865set_type_vptr_fieldno (struct type *type, int fieldno)
1866{
f168693b 1867 type = check_typedef (type);
78134374
SM
1868 gdb_assert (type->code () == TYPE_CODE_STRUCT
1869 || type->code () == TYPE_CODE_UNION);
ae6ae975
DE
1870 if (!HAVE_CPLUS_STRUCT (type))
1871 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1872 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1873}
1874
1875/* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1876 cplus_stuff.vptr_basetype. */
1877
1878struct type *
1879internal_type_vptr_basetype (struct type *type)
1880{
f168693b 1881 type = check_typedef (type);
78134374
SM
1882 gdb_assert (type->code () == TYPE_CODE_STRUCT
1883 || type->code () == TYPE_CODE_UNION);
ae6ae975
DE
1884 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1885 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1886}
1887
1888/* Set the value of cplus_stuff.vptr_basetype. */
1889
1890void
1891set_type_vptr_basetype (struct type *type, struct type *basetype)
1892{
f168693b 1893 type = check_typedef (type);
78134374
SM
1894 gdb_assert (type->code () == TYPE_CODE_STRUCT
1895 || type->code () == TYPE_CODE_UNION);
ae6ae975
DE
1896 if (!HAVE_CPLUS_STRUCT (type))
1897 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1898 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1899}
1900
81fe8080
DE
1901/* Lookup the vptr basetype/fieldno values for TYPE.
1902 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1903 vptr_fieldno. Also, if found and basetype is from the same objfile,
1904 cache the results.
1905 If not found, return -1 and ignore BASETYPEP.
1906 Callers should be aware that in some cases (for example,
c906108c 1907 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1908 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1909 this function will not be able to find the
7ba81444 1910 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1911 vptr_basetype will remain NULL or incomplete. */
c906108c 1912
81fe8080
DE
1913int
1914get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c 1915{
f168693b 1916 type = check_typedef (type);
c906108c
SS
1917
1918 if (TYPE_VPTR_FIELDNO (type) < 0)
1919 {
1920 int i;
1921
7ba81444
MS
1922 /* We must start at zero in case the first (and only) baseclass
1923 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1924 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1925 {
81fe8080
DE
1926 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1927 int fieldno;
1928 struct type *basetype;
1929
1930 fieldno = get_vptr_fieldno (baseclass, &basetype);
1931 if (fieldno >= 0)
c906108c 1932 {
81fe8080 1933 /* If the type comes from a different objfile we can't cache
0963b4bd 1934 it, it may have a different lifetime. PR 2384 */
5ef73790 1935 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080 1936 {
ae6ae975
DE
1937 set_type_vptr_fieldno (type, fieldno);
1938 set_type_vptr_basetype (type, basetype);
81fe8080
DE
1939 }
1940 if (basetypep)
1941 *basetypep = basetype;
1942 return fieldno;
c906108c
SS
1943 }
1944 }
81fe8080
DE
1945
1946 /* Not found. */
1947 return -1;
1948 }
1949 else
1950 {
1951 if (basetypep)
1952 *basetypep = TYPE_VPTR_BASETYPE (type);
1953 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1954 }
1955}
1956
44e1a9eb
DJ
1957static void
1958stub_noname_complaint (void)
1959{
b98664d3 1960 complaint (_("stub type has NULL name"));
44e1a9eb
DJ
1961}
1962
a405673c
JB
1963/* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1964 attached to it, and that property has a non-constant value. */
1965
1966static int
1967array_type_has_dynamic_stride (struct type *type)
1968{
24e99c6c 1969 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
a405673c
JB
1970
1971 return (prop != NULL && prop->kind != PROP_CONST);
1972}
1973
d98b7a16 1974/* Worker for is_dynamic_type. */
80180f79 1975
d98b7a16 1976static int
ee715b5a 1977is_dynamic_type_internal (struct type *type, int top_level)
80180f79
SA
1978{
1979 type = check_typedef (type);
1980
e771e4be 1981 /* We only want to recognize references at the outermost level. */
78134374 1982 if (top_level && type->code () == TYPE_CODE_REF)
e771e4be
PMR
1983 type = check_typedef (TYPE_TARGET_TYPE (type));
1984
3cdcd0ce
JB
1985 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1986 dynamic, even if the type itself is statically defined.
1987 From a user's point of view, this may appear counter-intuitive;
1988 but it makes sense in this context, because the point is to determine
1989 whether any part of the type needs to be resolved before it can
1990 be exploited. */
1991 if (TYPE_DATA_LOCATION (type) != NULL
1992 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1993 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1994 return 1;
1995
3f2f83dd
KB
1996 if (TYPE_ASSOCIATED_PROP (type))
1997 return 1;
1998
1999 if (TYPE_ALLOCATED_PROP (type))
2000 return 1;
2001
24e99c6c 2002 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_VARIANT_PARTS);
ef83a141
TT
2003 if (prop != nullptr && prop->kind != PROP_TYPE)
2004 return 1;
2005
f8e89861
TT
2006 if (TYPE_HAS_DYNAMIC_LENGTH (type))
2007 return 1;
2008
78134374 2009 switch (type->code ())
80180f79 2010 {
6f8a3220 2011 case TYPE_CODE_RANGE:
ddb87a81
JB
2012 {
2013 /* A range type is obviously dynamic if it has at least one
2014 dynamic bound. But also consider the range type to be
2015 dynamic when its subtype is dynamic, even if the bounds
2016 of the range type are static. It allows us to assume that
2017 the subtype of a static range type is also static. */
2018 return (!has_static_range (TYPE_RANGE_DATA (type))
ee715b5a 2019 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
ddb87a81 2020 }
6f8a3220 2021
216a7e6b
AB
2022 case TYPE_CODE_STRING:
2023 /* Strings are very much like an array of characters, and can be
2024 treated as one here. */
80180f79
SA
2025 case TYPE_CODE_ARRAY:
2026 {
1f704f76 2027 gdb_assert (type->num_fields () == 1);
6f8a3220 2028
a405673c 2029 /* The array is dynamic if either the bounds are dynamic... */
3d967001 2030 if (is_dynamic_type_internal (type->index_type (), 0))
80180f79 2031 return 1;
a405673c
JB
2032 /* ... or the elements it contains have a dynamic contents... */
2033 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
2034 return 1;
2035 /* ... or if it has a dynamic stride... */
2036 if (array_type_has_dynamic_stride (type))
2037 return 1;
2038 return 0;
80180f79 2039 }
012370f6
TT
2040
2041 case TYPE_CODE_STRUCT:
2042 case TYPE_CODE_UNION:
2043 {
2044 int i;
2045
7d79de9a
TT
2046 bool is_cplus = HAVE_CPLUS_STRUCT (type);
2047
1f704f76 2048 for (i = 0; i < type->num_fields (); ++i)
7d79de9a
TT
2049 {
2050 /* Static fields can be ignored here. */
ceacbf6e 2051 if (field_is_static (&type->field (i)))
7d79de9a
TT
2052 continue;
2053 /* If the field has dynamic type, then so does TYPE. */
940da03e 2054 if (is_dynamic_type_internal (type->field (i).type (), 0))
7d79de9a
TT
2055 return 1;
2056 /* If the field is at a fixed offset, then it is not
2057 dynamic. */
2058 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_DWARF_BLOCK)
2059 continue;
2060 /* Do not consider C++ virtual base types to be dynamic
2061 due to the field's offset being dynamic; these are
2062 handled via other means. */
2063 if (is_cplus && BASETYPE_VIA_VIRTUAL (type, i))
2064 continue;
012370f6 2065 return 1;
7d79de9a 2066 }
012370f6
TT
2067 }
2068 break;
80180f79 2069 }
92e2a17f
TT
2070
2071 return 0;
80180f79
SA
2072}
2073
d98b7a16
TT
2074/* See gdbtypes.h. */
2075
2076int
2077is_dynamic_type (struct type *type)
2078{
ee715b5a 2079 return is_dynamic_type_internal (type, 1);
d98b7a16
TT
2080}
2081
df25ebbd 2082static struct type *resolve_dynamic_type_internal
ee715b5a 2083 (struct type *type, struct property_addr_info *addr_stack, int top_level);
d98b7a16 2084
df25ebbd
JB
2085/* Given a dynamic range type (dyn_range_type) and a stack of
2086 struct property_addr_info elements, return a static version
2087 of that type. */
d190df30 2088
80180f79 2089static struct type *
df25ebbd
JB
2090resolve_dynamic_range (struct type *dyn_range_type,
2091 struct property_addr_info *addr_stack)
80180f79
SA
2092{
2093 CORE_ADDR value;
ddb87a81 2094 struct type *static_range_type, *static_target_type;
80180f79 2095 const struct dynamic_prop *prop;
5bbd8269 2096 struct dynamic_prop low_bound, high_bound, stride;
80180f79 2097
78134374 2098 gdb_assert (dyn_range_type->code () == TYPE_CODE_RANGE);
80180f79 2099
6f8a3220 2100 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
63e43d3a 2101 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
2102 {
2103 low_bound.kind = PROP_CONST;
2104 low_bound.data.const_val = value;
2105 }
2106 else
2107 {
2108 low_bound.kind = PROP_UNDEFINED;
2109 low_bound.data.const_val = 0;
2110 }
2111
6f8a3220 2112 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
63e43d3a 2113 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
2114 {
2115 high_bound.kind = PROP_CONST;
2116 high_bound.data.const_val = value;
c451ebe5 2117
6f8a3220 2118 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
c451ebe5
SA
2119 high_bound.data.const_val
2120 = low_bound.data.const_val + high_bound.data.const_val - 1;
80180f79
SA
2121 }
2122 else
2123 {
2124 high_bound.kind = PROP_UNDEFINED;
2125 high_bound.data.const_val = 0;
2126 }
2127
5bbd8269
AB
2128 bool byte_stride_p = TYPE_RANGE_DATA (dyn_range_type)->flag_is_byte_stride;
2129 prop = &TYPE_RANGE_DATA (dyn_range_type)->stride;
2130 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2131 {
2132 stride.kind = PROP_CONST;
2133 stride.data.const_val = value;
2134
2135 /* If we have a bit stride that is not an exact number of bytes then
2136 I really don't think this is going to work with current GDB, the
2137 array indexing code in GDB seems to be pretty heavily tied to byte
2138 offsets right now. Assuming 8 bits in a byte. */
2139 struct gdbarch *gdbarch = get_type_arch (dyn_range_type);
2140 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
2141 if (!byte_stride_p && (value % (unit_size * 8)) != 0)
2142 error (_("bit strides that are not a multiple of the byte size "
2143 "are currently not supported"));
2144 }
2145 else
2146 {
2147 stride.kind = PROP_UNDEFINED;
2148 stride.data.const_val = 0;
2149 byte_stride_p = true;
2150 }
2151
ddb87a81
JB
2152 static_target_type
2153 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
ee715b5a 2154 addr_stack, 0);
4e962e74 2155 LONGEST bias = TYPE_RANGE_DATA (dyn_range_type)->bias;
5bbd8269
AB
2156 static_range_type = create_range_type_with_stride
2157 (copy_type (dyn_range_type), static_target_type,
2158 &low_bound, &high_bound, bias, &stride, byte_stride_p);
6f8a3220
JB
2159 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2160 return static_range_type;
2161}
2162
216a7e6b
AB
2163/* Resolves dynamic bound values of an array or string type TYPE to static
2164 ones. ADDR_STACK is a stack of struct property_addr_info to be used if
2165 needed during the dynamic resolution. */
6f8a3220
JB
2166
2167static struct type *
216a7e6b
AB
2168resolve_dynamic_array_or_string (struct type *type,
2169 struct property_addr_info *addr_stack)
6f8a3220
JB
2170{
2171 CORE_ADDR value;
2172 struct type *elt_type;
2173 struct type *range_type;
2174 struct type *ary_dim;
3f2f83dd 2175 struct dynamic_prop *prop;
a405673c 2176 unsigned int bit_stride = 0;
6f8a3220 2177
216a7e6b
AB
2178 /* For dynamic type resolution strings can be treated like arrays of
2179 characters. */
78134374
SM
2180 gdb_assert (type->code () == TYPE_CODE_ARRAY
2181 || type->code () == TYPE_CODE_STRING);
6f8a3220 2182
3f2f83dd
KB
2183 type = copy_type (type);
2184
6f8a3220 2185 elt_type = type;
3d967001 2186 range_type = check_typedef (elt_type->index_type ());
df25ebbd 2187 range_type = resolve_dynamic_range (range_type, addr_stack);
6f8a3220 2188
3f2f83dd
KB
2189 /* Resolve allocated/associated here before creating a new array type, which
2190 will update the length of the array accordingly. */
2191 prop = TYPE_ALLOCATED_PROP (type);
2192 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2193 {
2194 TYPE_DYN_PROP_ADDR (prop) = value;
2195 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2196 }
2197 prop = TYPE_ASSOCIATED_PROP (type);
2198 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2199 {
2200 TYPE_DYN_PROP_ADDR (prop) = value;
2201 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2202 }
2203
80180f79
SA
2204 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2205
78134374 2206 if (ary_dim != NULL && ary_dim->code () == TYPE_CODE_ARRAY)
216a7e6b 2207 elt_type = resolve_dynamic_array_or_string (ary_dim, addr_stack);
80180f79
SA
2208 else
2209 elt_type = TYPE_TARGET_TYPE (type);
2210
24e99c6c 2211 prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
a405673c
JB
2212 if (prop != NULL)
2213 {
603490bf 2214 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
a405673c 2215 {
7aa91313 2216 type->remove_dyn_prop (DYN_PROP_BYTE_STRIDE);
a405673c
JB
2217 bit_stride = (unsigned int) (value * 8);
2218 }
2219 else
2220 {
2221 /* Could be a bug in our code, but it could also happen
2222 if the DWARF info is not correct. Issue a warning,
2223 and assume no byte/bit stride (leave bit_stride = 0). */
2224 warning (_("cannot determine array stride for type %s"),
7d93a1e0 2225 type->name () ? type->name () : "<no name>");
a405673c
JB
2226 }
2227 }
2228 else
2229 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2230
2231 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2232 bit_stride);
80180f79
SA
2233}
2234
012370f6 2235/* Resolve dynamic bounds of members of the union TYPE to static
df25ebbd
JB
2236 bounds. ADDR_STACK is a stack of struct property_addr_info
2237 to be used if needed during the dynamic resolution. */
012370f6
TT
2238
2239static struct type *
df25ebbd
JB
2240resolve_dynamic_union (struct type *type,
2241 struct property_addr_info *addr_stack)
012370f6
TT
2242{
2243 struct type *resolved_type;
2244 int i;
2245 unsigned int max_len = 0;
2246
78134374 2247 gdb_assert (type->code () == TYPE_CODE_UNION);
012370f6
TT
2248
2249 resolved_type = copy_type (type);
3cabb6b0
SM
2250 resolved_type->set_fields
2251 ((struct field *)
2252 TYPE_ALLOC (resolved_type,
2253 resolved_type->num_fields () * sizeof (struct field)));
80fc5e77
SM
2254 memcpy (resolved_type->fields (),
2255 type->fields (),
1f704f76
SM
2256 resolved_type->num_fields () * sizeof (struct field));
2257 for (i = 0; i < resolved_type->num_fields (); ++i)
012370f6
TT
2258 {
2259 struct type *t;
2260
ceacbf6e 2261 if (field_is_static (&type->field (i)))
012370f6
TT
2262 continue;
2263
940da03e 2264 t = resolve_dynamic_type_internal (resolved_type->field (i).type (),
ee715b5a 2265 addr_stack, 0);
5d14b6e5 2266 resolved_type->field (i).set_type (t);
2f33032a
KS
2267
2268 struct type *real_type = check_typedef (t);
2269 if (TYPE_LENGTH (real_type) > max_len)
2270 max_len = TYPE_LENGTH (real_type);
012370f6
TT
2271 }
2272
2273 TYPE_LENGTH (resolved_type) = max_len;
2274 return resolved_type;
2275}
2276
ef83a141
TT
2277/* See gdbtypes.h. */
2278
2279bool
2280variant::matches (ULONGEST value, bool is_unsigned) const
2281{
2282 for (const discriminant_range &range : discriminants)
2283 if (range.contains (value, is_unsigned))
2284 return true;
2285 return false;
2286}
2287
2288static void
2289compute_variant_fields_inner (struct type *type,
2290 struct property_addr_info *addr_stack,
2291 const variant_part &part,
2292 std::vector<bool> &flags);
2293
2294/* A helper function to determine which variant fields will be active.
2295 This handles both the variant's direct fields, and any variant
2296 parts embedded in this variant. TYPE is the type we're examining.
2297 ADDR_STACK holds information about the concrete object. VARIANT is
2298 the current variant to be handled. FLAGS is where the results are
2299 stored -- this function sets the Nth element in FLAGS if the
2300 corresponding field is enabled. ENABLED is whether this variant is
2301 enabled or not. */
2302
2303static void
2304compute_variant_fields_recurse (struct type *type,
2305 struct property_addr_info *addr_stack,
2306 const variant &variant,
2307 std::vector<bool> &flags,
2308 bool enabled)
2309{
2310 for (int field = variant.first_field; field < variant.last_field; ++field)
2311 flags[field] = enabled;
2312
2313 for (const variant_part &new_part : variant.parts)
2314 {
2315 if (enabled)
2316 compute_variant_fields_inner (type, addr_stack, new_part, flags);
2317 else
2318 {
2319 for (const auto &sub_variant : new_part.variants)
2320 compute_variant_fields_recurse (type, addr_stack, sub_variant,
2321 flags, enabled);
2322 }
2323 }
2324}
2325
2326/* A helper function to determine which variant fields will be active.
2327 This evaluates the discriminant, decides which variant (if any) is
2328 active, and then updates FLAGS to reflect which fields should be
2329 available. TYPE is the type we're examining. ADDR_STACK holds
2330 information about the concrete object. VARIANT is the current
2331 variant to be handled. FLAGS is where the results are stored --
2332 this function sets the Nth element in FLAGS if the corresponding
2333 field is enabled. */
2334
2335static void
2336compute_variant_fields_inner (struct type *type,
2337 struct property_addr_info *addr_stack,
2338 const variant_part &part,
2339 std::vector<bool> &flags)
2340{
2341 /* Evaluate the discriminant. */
2342 gdb::optional<ULONGEST> discr_value;
2343 if (part.discriminant_index != -1)
2344 {
2345 int idx = part.discriminant_index;
2346
2347 if (TYPE_FIELD_LOC_KIND (type, idx) != FIELD_LOC_KIND_BITPOS)
2348 error (_("Cannot determine struct field location"
2349 " (invalid location kind)"));
2350
b249d2c2
TT
2351 if (addr_stack->valaddr.data () != NULL)
2352 discr_value = unpack_field_as_long (type, addr_stack->valaddr.data (),
2353 idx);
ef83a141
TT
2354 else
2355 {
2356 CORE_ADDR addr = (addr_stack->addr
2357 + (TYPE_FIELD_BITPOS (type, idx)
2358 / TARGET_CHAR_BIT));
2359
2360 LONGEST bitsize = TYPE_FIELD_BITSIZE (type, idx);
2361 LONGEST size = bitsize / 8;
2362 if (size == 0)
940da03e 2363 size = TYPE_LENGTH (type->field (idx).type ());
ef83a141
TT
2364
2365 gdb_byte bits[sizeof (ULONGEST)];
2366 read_memory (addr, bits, size);
2367
2368 LONGEST bitpos = (TYPE_FIELD_BITPOS (type, idx)
2369 % TARGET_CHAR_BIT);
2370
940da03e 2371 discr_value = unpack_bits_as_long (type->field (idx).type (),
ef83a141
TT
2372 bits, bitpos, bitsize);
2373 }
2374 }
2375
2376 /* Go through each variant and see which applies. */
2377 const variant *default_variant = nullptr;
2378 const variant *applied_variant = nullptr;
2379 for (const auto &variant : part.variants)
2380 {
2381 if (variant.is_default ())
2382 default_variant = &variant;
2383 else if (discr_value.has_value ()
2384 && variant.matches (*discr_value, part.is_unsigned))
2385 {
2386 applied_variant = &variant;
2387 break;
2388 }
2389 }
2390 if (applied_variant == nullptr)
2391 applied_variant = default_variant;
2392
2393 for (const auto &variant : part.variants)
2394 compute_variant_fields_recurse (type, addr_stack, variant,
2395 flags, applied_variant == &variant);
2396}
2397
2398/* Determine which variant fields are available in TYPE. The enabled
2399 fields are stored in RESOLVED_TYPE. ADDR_STACK holds information
2400 about the concrete object. PARTS describes the top-level variant
2401 parts for this type. */
2402
2403static void
2404compute_variant_fields (struct type *type,
2405 struct type *resolved_type,
2406 struct property_addr_info *addr_stack,
2407 const gdb::array_view<variant_part> &parts)
2408{
2409 /* Assume all fields are included by default. */
1f704f76 2410 std::vector<bool> flags (resolved_type->num_fields (), true);
ef83a141
TT
2411
2412 /* Now disable fields based on the variants that control them. */
2413 for (const auto &part : parts)
2414 compute_variant_fields_inner (type, addr_stack, part, flags);
2415
5e33d5f4
SM
2416 resolved_type->set_num_fields
2417 (std::count (flags.begin (), flags.end (), true));
3cabb6b0
SM
2418 resolved_type->set_fields
2419 ((struct field *)
2420 TYPE_ALLOC (resolved_type,
2421 resolved_type->num_fields () * sizeof (struct field)));
2422
ef83a141 2423 int out = 0;
1f704f76 2424 for (int i = 0; i < type->num_fields (); ++i)
ef83a141
TT
2425 {
2426 if (!flags[i])
2427 continue;
2428
ceacbf6e 2429 resolved_type->field (out) = type->field (i);
ef83a141
TT
2430 ++out;
2431 }
2432}
2433
012370f6 2434/* Resolve dynamic bounds of members of the struct TYPE to static
df25ebbd
JB
2435 bounds. ADDR_STACK is a stack of struct property_addr_info to
2436 be used if needed during the dynamic resolution. */
012370f6
TT
2437
2438static struct type *
df25ebbd
JB
2439resolve_dynamic_struct (struct type *type,
2440 struct property_addr_info *addr_stack)
012370f6
TT
2441{
2442 struct type *resolved_type;
2443 int i;
6908c509 2444 unsigned resolved_type_bit_length = 0;
012370f6 2445
78134374 2446 gdb_assert (type->code () == TYPE_CODE_STRUCT);
1f704f76 2447 gdb_assert (type->num_fields () > 0);
012370f6
TT
2448
2449 resolved_type = copy_type (type);
ef83a141 2450
24e99c6c 2451 dynamic_prop *variant_prop = resolved_type->dyn_prop (DYN_PROP_VARIANT_PARTS);
ef83a141
TT
2452 if (variant_prop != nullptr && variant_prop->kind == PROP_VARIANT_PARTS)
2453 {
2454 compute_variant_fields (type, resolved_type, addr_stack,
2455 *variant_prop->data.variant_parts);
2456 /* We want to leave the property attached, so that the Rust code
2457 can tell whether the type was originally an enum. */
2458 variant_prop->kind = PROP_TYPE;
2459 variant_prop->data.original_type = type;
2460 }
2461 else
2462 {
3cabb6b0
SM
2463 resolved_type->set_fields
2464 ((struct field *)
2465 TYPE_ALLOC (resolved_type,
2466 resolved_type->num_fields () * sizeof (struct field)));
80fc5e77
SM
2467 memcpy (resolved_type->fields (),
2468 type->fields (),
1f704f76 2469 resolved_type->num_fields () * sizeof (struct field));
ef83a141
TT
2470 }
2471
1f704f76 2472 for (i = 0; i < resolved_type->num_fields (); ++i)
012370f6 2473 {
6908c509 2474 unsigned new_bit_length;
df25ebbd 2475 struct property_addr_info pinfo;
012370f6 2476
ceacbf6e 2477 if (field_is_static (&resolved_type->field (i)))
012370f6
TT
2478 continue;
2479
7d79de9a
TT
2480 if (TYPE_FIELD_LOC_KIND (resolved_type, i) == FIELD_LOC_KIND_DWARF_BLOCK)
2481 {
2482 struct dwarf2_property_baton baton;
2483 baton.property_type
940da03e 2484 = lookup_pointer_type (resolved_type->field (i).type ());
7d79de9a
TT
2485 baton.locexpr = *TYPE_FIELD_DWARF_BLOCK (resolved_type, i);
2486
2487 struct dynamic_prop prop;
2488 prop.kind = PROP_LOCEXPR;
2489 prop.data.baton = &baton;
2490
2491 CORE_ADDR addr;
2492 if (dwarf2_evaluate_property (&prop, nullptr, addr_stack, &addr,
2493 true))
ceacbf6e 2494 SET_FIELD_BITPOS (resolved_type->field (i),
7d79de9a
TT
2495 TARGET_CHAR_BIT * (addr - addr_stack->addr));
2496 }
2497
6908c509
JB
2498 /* As we know this field is not a static field, the field's
2499 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2500 this is the case, but only trigger a simple error rather
2501 than an internal error if that fails. While failing
2502 that verification indicates a bug in our code, the error
2503 is not severe enough to suggest to the user he stops
2504 his debugging session because of it. */
ef83a141 2505 if (TYPE_FIELD_LOC_KIND (resolved_type, i) != FIELD_LOC_KIND_BITPOS)
6908c509
JB
2506 error (_("Cannot determine struct field location"
2507 " (invalid location kind)"));
df25ebbd 2508
940da03e 2509 pinfo.type = check_typedef (resolved_type->field (i).type ());
c3345124 2510 pinfo.valaddr = addr_stack->valaddr;
9920b434
BH
2511 pinfo.addr
2512 = (addr_stack->addr
2513 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
df25ebbd
JB
2514 pinfo.next = addr_stack;
2515
5d14b6e5 2516 resolved_type->field (i).set_type
940da03e 2517 (resolve_dynamic_type_internal (resolved_type->field (i).type (),
5d14b6e5 2518 &pinfo, 0));
df25ebbd
JB
2519 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2520 == FIELD_LOC_KIND_BITPOS);
2521
6908c509
JB
2522 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2523 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2524 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2525 else
2f33032a
KS
2526 {
2527 struct type *real_type
2528 = check_typedef (resolved_type->field (i).type ());
2529
2530 new_bit_length += (TYPE_LENGTH (real_type) * TARGET_CHAR_BIT);
2531 }
6908c509
JB
2532
2533 /* Normally, we would use the position and size of the last field
2534 to determine the size of the enclosing structure. But GCC seems
2535 to be encoding the position of some fields incorrectly when
2536 the struct contains a dynamic field that is not placed last.
2537 So we compute the struct size based on the field that has
2538 the highest position + size - probably the best we can do. */
2539 if (new_bit_length > resolved_type_bit_length)
2540 resolved_type_bit_length = new_bit_length;
012370f6
TT
2541 }
2542
9920b434
BH
2543 /* The length of a type won't change for fortran, but it does for C and Ada.
2544 For fortran the size of dynamic fields might change over time but not the
2545 type length of the structure. If we adapt it, we run into problems
2546 when calculating the element offset for arrays of structs. */
2547 if (current_language->la_language != language_fortran)
2548 TYPE_LENGTH (resolved_type)
2549 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
6908c509 2550
9e195661
PMR
2551 /* The Ada language uses this field as a cache for static fixed types: reset
2552 it as RESOLVED_TYPE must have its own static fixed type. */
2553 TYPE_TARGET_TYPE (resolved_type) = NULL;
2554
012370f6
TT
2555 return resolved_type;
2556}
2557
d98b7a16 2558/* Worker for resolved_dynamic_type. */
80180f79 2559
d98b7a16 2560static struct type *
df25ebbd 2561resolve_dynamic_type_internal (struct type *type,
ee715b5a
PMR
2562 struct property_addr_info *addr_stack,
2563 int top_level)
80180f79
SA
2564{
2565 struct type *real_type = check_typedef (type);
f8e89861 2566 struct type *resolved_type = nullptr;
d9823cbb 2567 struct dynamic_prop *prop;
3cdcd0ce 2568 CORE_ADDR value;
80180f79 2569
ee715b5a 2570 if (!is_dynamic_type_internal (real_type, top_level))
80180f79
SA
2571 return type;
2572
f8e89861
TT
2573 gdb::optional<CORE_ADDR> type_length;
2574 prop = TYPE_DYNAMIC_LENGTH (type);
2575 if (prop != NULL
2576 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2577 type_length = value;
2578
78134374 2579 if (type->code () == TYPE_CODE_TYPEDEF)
6f8a3220 2580 {
cac9b138
JK
2581 resolved_type = copy_type (type);
2582 TYPE_TARGET_TYPE (resolved_type)
ee715b5a
PMR
2583 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2584 top_level);
5537b577
JK
2585 }
2586 else
2587 {
2588 /* Before trying to resolve TYPE, make sure it is not a stub. */
2589 type = real_type;
012370f6 2590
78134374 2591 switch (type->code ())
5537b577 2592 {
e771e4be
PMR
2593 case TYPE_CODE_REF:
2594 {
2595 struct property_addr_info pinfo;
2596
2597 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
b249d2c2
TT
2598 pinfo.valaddr = {};
2599 if (addr_stack->valaddr.data () != NULL)
2600 pinfo.addr = extract_typed_address (addr_stack->valaddr.data (),
2601 type);
c3345124
JB
2602 else
2603 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
e771e4be
PMR
2604 pinfo.next = addr_stack;
2605
2606 resolved_type = copy_type (type);
2607 TYPE_TARGET_TYPE (resolved_type)
2608 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2609 &pinfo, top_level);
2610 break;
2611 }
2612
216a7e6b
AB
2613 case TYPE_CODE_STRING:
2614 /* Strings are very much like an array of characters, and can be
2615 treated as one here. */
5537b577 2616 case TYPE_CODE_ARRAY:
216a7e6b 2617 resolved_type = resolve_dynamic_array_or_string (type, addr_stack);
5537b577
JK
2618 break;
2619
2620 case TYPE_CODE_RANGE:
df25ebbd 2621 resolved_type = resolve_dynamic_range (type, addr_stack);
5537b577
JK
2622 break;
2623
2624 case TYPE_CODE_UNION:
df25ebbd 2625 resolved_type = resolve_dynamic_union (type, addr_stack);
5537b577
JK
2626 break;
2627
2628 case TYPE_CODE_STRUCT:
df25ebbd 2629 resolved_type = resolve_dynamic_struct (type, addr_stack);
5537b577
JK
2630 break;
2631 }
6f8a3220 2632 }
80180f79 2633
f8e89861
TT
2634 if (resolved_type == nullptr)
2635 return type;
2636
2637 if (type_length.has_value ())
2638 {
2639 TYPE_LENGTH (resolved_type) = *type_length;
7aa91313 2640 resolved_type->remove_dyn_prop (DYN_PROP_BYTE_SIZE);
f8e89861
TT
2641 }
2642
3cdcd0ce
JB
2643 /* Resolve data_location attribute. */
2644 prop = TYPE_DATA_LOCATION (resolved_type);
63e43d3a
PMR
2645 if (prop != NULL
2646 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
3cdcd0ce 2647 {
d9823cbb
KB
2648 TYPE_DYN_PROP_ADDR (prop) = value;
2649 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
3cdcd0ce 2650 }
3cdcd0ce 2651
80180f79
SA
2652 return resolved_type;
2653}
2654
d98b7a16
TT
2655/* See gdbtypes.h */
2656
2657struct type *
b249d2c2
TT
2658resolve_dynamic_type (struct type *type,
2659 gdb::array_view<const gdb_byte> valaddr,
c3345124 2660 CORE_ADDR addr)
d98b7a16 2661{
c3345124
JB
2662 struct property_addr_info pinfo
2663 = {check_typedef (type), valaddr, addr, NULL};
df25ebbd 2664
ee715b5a 2665 return resolve_dynamic_type_internal (type, &pinfo, 1);
d98b7a16
TT
2666}
2667
d9823cbb
KB
2668/* See gdbtypes.h */
2669
24e99c6c
SM
2670dynamic_prop *
2671type::dyn_prop (dynamic_prop_node_kind prop_kind) const
d9823cbb 2672{
98d48915 2673 dynamic_prop_list *node = this->main_type->dyn_prop_list;
d9823cbb
KB
2674
2675 while (node != NULL)
2676 {
2677 if (node->prop_kind == prop_kind)
283a9958 2678 return &node->prop;
d9823cbb
KB
2679 node = node->next;
2680 }
2681 return NULL;
2682}
2683
2684/* See gdbtypes.h */
2685
2686void
5c54719c 2687type::add_dyn_prop (dynamic_prop_node_kind prop_kind, dynamic_prop prop)
d9823cbb
KB
2688{
2689 struct dynamic_prop_list *temp;
2690
5c54719c 2691 gdb_assert (TYPE_OBJFILE_OWNED (this));
d9823cbb 2692
5c54719c 2693 temp = XOBNEW (&TYPE_OBJFILE (this)->objfile_obstack,
50a82047 2694 struct dynamic_prop_list);
d9823cbb 2695 temp->prop_kind = prop_kind;
283a9958 2696 temp->prop = prop;
98d48915 2697 temp->next = this->main_type->dyn_prop_list;
d9823cbb 2698
98d48915 2699 this->main_type->dyn_prop_list = temp;
d9823cbb
KB
2700}
2701
7aa91313 2702/* See gdbtypes.h. */
9920b434
BH
2703
2704void
7aa91313 2705type::remove_dyn_prop (dynamic_prop_node_kind kind)
9920b434
BH
2706{
2707 struct dynamic_prop_list *prev_node, *curr_node;
2708
98d48915 2709 curr_node = this->main_type->dyn_prop_list;
9920b434
BH
2710 prev_node = NULL;
2711
2712 while (NULL != curr_node)
2713 {
7aa91313 2714 if (curr_node->prop_kind == kind)
9920b434
BH
2715 {
2716 /* Update the linked list but don't free anything.
2717 The property was allocated on objstack and it is not known
2718 if we are on top of it. Nevertheless, everything is released
2719 when the complete objstack is freed. */
2720 if (NULL == prev_node)
98d48915 2721 this->main_type->dyn_prop_list = curr_node->next;
9920b434
BH
2722 else
2723 prev_node->next = curr_node->next;
2724
2725 return;
2726 }
2727
2728 prev_node = curr_node;
2729 curr_node = curr_node->next;
2730 }
2731}
d9823cbb 2732
92163a10
JK
2733/* Find the real type of TYPE. This function returns the real type,
2734 after removing all layers of typedefs, and completing opaque or stub
2735 types. Completion changes the TYPE argument, but stripping of
2736 typedefs does not.
2737
2738 Instance flags (e.g. const/volatile) are preserved as typedefs are
2739 stripped. If necessary a new qualified form of the underlying type
2740 is created.
2741
2742 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2743 not been computed and we're either in the middle of reading symbols, or
2744 there was no name for the typedef in the debug info.
2745
9bc118a5
DE
2746 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2747 QUITs in the symbol reading code can also throw.
2748 Thus this function can throw an exception.
2749
92163a10
JK
2750 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2751 the target type.
c906108c
SS
2752
2753 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 2754 we can find a full definition in some other file. If so, copy this
7ba81444
MS
2755 definition, so we can use it in future. There used to be a comment
2756 (but not any code) that if we don't find a full definition, we'd
2757 set a flag so we don't spend time in the future checking the same
2758 type. That would be a mistake, though--we might load in more
92163a10 2759 symbols which contain a full definition for the type. */
c906108c
SS
2760
2761struct type *
a02fd225 2762check_typedef (struct type *type)
c906108c
SS
2763{
2764 struct type *orig_type = type;
92163a10
JK
2765 /* While we're removing typedefs, we don't want to lose qualifiers.
2766 E.g., const/volatile. */
2767 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 2768
423c0af8
MS
2769 gdb_assert (type);
2770
78134374 2771 while (type->code () == TYPE_CODE_TYPEDEF)
c906108c
SS
2772 {
2773 if (!TYPE_TARGET_TYPE (type))
2774 {
0d5cff50 2775 const char *name;
c906108c
SS
2776 struct symbol *sym;
2777
2778 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 2779 reading a symtab. Infinite recursion is one danger. */
c906108c 2780 if (currently_reading_symtab)
92163a10 2781 return make_qualified_type (type, instance_flags, NULL);
c906108c 2782
7d93a1e0 2783 name = type->name ();
e86ca25f
TT
2784 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2785 VAR_DOMAIN as appropriate? */
c906108c
SS
2786 if (name == NULL)
2787 {
23136709 2788 stub_noname_complaint ();
92163a10 2789 return make_qualified_type (type, instance_flags, NULL);
c906108c 2790 }
d12307c1 2791 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
2792 if (sym)
2793 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 2794 else /* TYPE_CODE_UNDEF */
e9bb382b 2795 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
2796 }
2797 type = TYPE_TARGET_TYPE (type);
c906108c 2798
92163a10
JK
2799 /* Preserve the instance flags as we traverse down the typedef chain.
2800
2801 Handling address spaces/classes is nasty, what do we do if there's a
2802 conflict?
2803 E.g., what if an outer typedef marks the type as class_1 and an inner
2804 typedef marks the type as class_2?
2805 This is the wrong place to do such error checking. We leave it to
2806 the code that created the typedef in the first place to flag the
2807 error. We just pick the outer address space (akin to letting the
2808 outer cast in a chain of casting win), instead of assuming
2809 "it can't happen". */
2810 {
2811 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2812 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2813 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2814 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2815
2816 /* Treat code vs data spaces and address classes separately. */
2817 if ((instance_flags & ALL_SPACES) != 0)
2818 new_instance_flags &= ~ALL_SPACES;
2819 if ((instance_flags & ALL_CLASSES) != 0)
2820 new_instance_flags &= ~ALL_CLASSES;
2821
2822 instance_flags |= new_instance_flags;
2823 }
2824 }
a02fd225 2825
7ba81444
MS
2826 /* If this is a struct/class/union with no fields, then check
2827 whether a full definition exists somewhere else. This is for
2828 systems where a type definition with no fields is issued for such
2829 types, instead of identifying them as stub types in the first
2830 place. */
c5aa993b 2831
7ba81444
MS
2832 if (TYPE_IS_OPAQUE (type)
2833 && opaque_type_resolution
2834 && !currently_reading_symtab)
c906108c 2835 {
7d93a1e0 2836 const char *name = type->name ();
c5aa993b 2837 struct type *newtype;
d8734c88 2838
c906108c
SS
2839 if (name == NULL)
2840 {
23136709 2841 stub_noname_complaint ();
92163a10 2842 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2843 }
2844 newtype = lookup_transparent_type (name);
ad766c0a 2845
c906108c 2846 if (newtype)
ad766c0a 2847 {
7ba81444
MS
2848 /* If the resolved type and the stub are in the same
2849 objfile, then replace the stub type with the real deal.
2850 But if they're in separate objfiles, leave the stub
2851 alone; we'll just look up the transparent type every time
2852 we call check_typedef. We can't create pointers between
2853 types allocated to different objfiles, since they may
2854 have different lifetimes. Trying to copy NEWTYPE over to
2855 TYPE's objfile is pointless, too, since you'll have to
2856 move over any other types NEWTYPE refers to, which could
2857 be an unbounded amount of stuff. */
ad766c0a 2858 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
2859 type = make_qualified_type (newtype,
2860 TYPE_INSTANCE_FLAGS (type),
2861 type);
ad766c0a
JB
2862 else
2863 type = newtype;
2864 }
c906108c 2865 }
7ba81444
MS
2866 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2867 types. */
74a9bb82 2868 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 2869 {
7d93a1e0 2870 const char *name = type->name ();
e86ca25f
TT
2871 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2872 as appropriate? */
c906108c 2873 struct symbol *sym;
d8734c88 2874
c906108c
SS
2875 if (name == NULL)
2876 {
23136709 2877 stub_noname_complaint ();
92163a10 2878 return make_qualified_type (type, instance_flags, NULL);
c906108c 2879 }
d12307c1 2880 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c 2881 if (sym)
c26f2453
JB
2882 {
2883 /* Same as above for opaque types, we can replace the stub
92163a10 2884 with the complete type only if they are in the same
c26f2453 2885 objfile. */
78134374 2886 if (TYPE_OBJFILE (SYMBOL_TYPE (sym)) == TYPE_OBJFILE (type))
92163a10
JK
2887 type = make_qualified_type (SYMBOL_TYPE (sym),
2888 TYPE_INSTANCE_FLAGS (type),
2889 type);
c26f2453
JB
2890 else
2891 type = SYMBOL_TYPE (sym);
2892 }
c906108c
SS
2893 }
2894
74a9bb82 2895 if (TYPE_TARGET_STUB (type))
c906108c 2896 {
c906108c
SS
2897 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2898
74a9bb82 2899 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 2900 {
73e2eb35 2901 /* Nothing we can do. */
c5aa993b 2902 }
78134374 2903 else if (type->code () == TYPE_CODE_RANGE)
c906108c
SS
2904 {
2905 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 2906 TYPE_TARGET_STUB (type) = 0;
c906108c 2907 }
78134374 2908 else if (type->code () == TYPE_CODE_ARRAY
8dbb1375
HD
2909 && update_static_array_size (type))
2910 TYPE_TARGET_STUB (type) = 0;
c906108c 2911 }
92163a10
JK
2912
2913 type = make_qualified_type (type, instance_flags, NULL);
2914
7ba81444 2915 /* Cache TYPE_LENGTH for future use. */
c906108c 2916 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 2917
c906108c
SS
2918 return type;
2919}
2920
7ba81444 2921/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 2922 occurs, silently return a void type. */
c91ecb25 2923
b9362cc7 2924static struct type *
48319d1f 2925safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
2926{
2927 struct ui_file *saved_gdb_stderr;
34365054 2928 struct type *type = NULL; /* Initialize to keep gcc happy. */
c91ecb25 2929
7ba81444 2930 /* Suppress error messages. */
c91ecb25 2931 saved_gdb_stderr = gdb_stderr;
d7e74731 2932 gdb_stderr = &null_stream;
c91ecb25 2933
7ba81444 2934 /* Call parse_and_eval_type() without fear of longjmp()s. */
a70b8144 2935 try
8e7b59a5
KS
2936 {
2937 type = parse_and_eval_type (p, length);
2938 }
230d2906 2939 catch (const gdb_exception_error &except)
492d29ea
PA
2940 {
2941 type = builtin_type (gdbarch)->builtin_void;
2942 }
c91ecb25 2943
7ba81444 2944 /* Stop suppressing error messages. */
c91ecb25
ND
2945 gdb_stderr = saved_gdb_stderr;
2946
2947 return type;
2948}
2949
c906108c
SS
2950/* Ugly hack to convert method stubs into method types.
2951
7ba81444
MS
2952 He ain't kiddin'. This demangles the name of the method into a
2953 string including argument types, parses out each argument type,
2954 generates a string casting a zero to that type, evaluates the
2955 string, and stuffs the resulting type into an argtype vector!!!
2956 Then it knows the type of the whole function (including argument
2957 types for overloading), which info used to be in the stab's but was
2958 removed to hack back the space required for them. */
c906108c 2959
de17c821 2960static void
fba45db2 2961check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 2962{
50810684 2963 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
2964 struct fn_field *f;
2965 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
8de20a37
TT
2966 char *demangled_name = gdb_demangle (mangled_name,
2967 DMGL_PARAMS | DMGL_ANSI);
c906108c
SS
2968 char *argtypetext, *p;
2969 int depth = 0, argcount = 1;
ad2f7632 2970 struct field *argtypes;
c906108c
SS
2971 struct type *mtype;
2972
2973 /* Make sure we got back a function string that we can use. */
2974 if (demangled_name)
2975 p = strchr (demangled_name, '(');
502dcf4e
AC
2976 else
2977 p = NULL;
c906108c
SS
2978
2979 if (demangled_name == NULL || p == NULL)
7ba81444
MS
2980 error (_("Internal: Cannot demangle mangled name `%s'."),
2981 mangled_name);
c906108c
SS
2982
2983 /* Now, read in the parameters that define this type. */
2984 p += 1;
2985 argtypetext = p;
2986 while (*p)
2987 {
070ad9f0 2988 if (*p == '(' || *p == '<')
c906108c
SS
2989 {
2990 depth += 1;
2991 }
070ad9f0 2992 else if (*p == ')' || *p == '>')
c906108c
SS
2993 {
2994 depth -= 1;
2995 }
2996 else if (*p == ',' && depth == 0)
2997 {
2998 argcount += 1;
2999 }
3000
3001 p += 1;
3002 }
3003
ad2f7632 3004 /* If we read one argument and it was ``void'', don't count it. */
61012eef 3005 if (startswith (argtypetext, "(void)"))
ad2f7632 3006 argcount -= 1;
c906108c 3007
ad2f7632
DJ
3008 /* We need one extra slot, for the THIS pointer. */
3009
3010 argtypes = (struct field *)
3011 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 3012 p = argtypetext;
4a1970e4
DJ
3013
3014 /* Add THIS pointer for non-static methods. */
3015 f = TYPE_FN_FIELDLIST1 (type, method_id);
3016 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
3017 argcount = 0;
3018 else
3019 {
5d14b6e5 3020 argtypes[0].set_type (lookup_pointer_type (type));
4a1970e4
DJ
3021 argcount = 1;
3022 }
c906108c 3023
0963b4bd 3024 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
3025 {
3026 depth = 0;
3027 while (*p)
3028 {
3029 if (depth <= 0 && (*p == ',' || *p == ')'))
3030 {
ad2f7632
DJ
3031 /* Avoid parsing of ellipsis, they will be handled below.
3032 Also avoid ``void'' as above. */
3033 if (strncmp (argtypetext, "...", p - argtypetext) != 0
3034 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 3035 {
5d14b6e5
SM
3036 argtypes[argcount].set_type
3037 (safe_parse_type (gdbarch, argtypetext, p - argtypetext));
c906108c
SS
3038 argcount += 1;
3039 }
3040 argtypetext = p + 1;
3041 }
3042
070ad9f0 3043 if (*p == '(' || *p == '<')
c906108c
SS
3044 {
3045 depth += 1;
3046 }
070ad9f0 3047 else if (*p == ')' || *p == '>')
c906108c
SS
3048 {
3049 depth -= 1;
3050 }
3051
3052 p += 1;
3053 }
3054 }
3055
c906108c
SS
3056 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
3057
3058 /* Now update the old "stub" type into a real type. */
3059 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
09e2d7c7
DE
3060 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
3061 We want a method (TYPE_CODE_METHOD). */
3062 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
3063 argtypes, argcount, p[-2] == '.');
876cecd0 3064 TYPE_STUB (mtype) = 0;
c906108c 3065 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632
DJ
3066
3067 xfree (demangled_name);
c906108c
SS
3068}
3069
7ba81444
MS
3070/* This is the external interface to check_stub_method, above. This
3071 function unstubs all of the signatures for TYPE's METHOD_ID method
3072 name. After calling this function TYPE_FN_FIELD_STUB will be
3073 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
3074 correct.
de17c821
DJ
3075
3076 This function unfortunately can not die until stabs do. */
3077
3078void
3079check_stub_method_group (struct type *type, int method_id)
3080{
3081 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
3082 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
de17c821 3083
041be526
SM
3084 for (int j = 0; j < len; j++)
3085 {
3086 if (TYPE_FN_FIELD_STUB (f, j))
de17c821 3087 check_stub_method (type, method_id, j);
de17c821
DJ
3088 }
3089}
3090
405feb71 3091/* Ensure it is in .rodata (if available) by working around GCC PR 44690. */
9655fd1a 3092const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
3093
3094void
fba45db2 3095allocate_cplus_struct_type (struct type *type)
c906108c 3096{
b4ba55a1
JB
3097 if (HAVE_CPLUS_STRUCT (type))
3098 /* Structure was already allocated. Nothing more to do. */
3099 return;
3100
3101 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
3102 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
3103 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
3104 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
ae6ae975 3105 set_type_vptr_fieldno (type, -1);
c906108c
SS
3106}
3107
b4ba55a1
JB
3108const struct gnat_aux_type gnat_aux_default =
3109 { NULL };
3110
3111/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
3112 and allocate the associated gnat-specific data. The gnat-specific
3113 data is also initialized to gnat_aux_default. */
5212577a 3114
b4ba55a1
JB
3115void
3116allocate_gnat_aux_type (struct type *type)
3117{
3118 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
3119 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
3120 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
3121 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
3122}
3123
ae438bc5
UW
3124/* Helper function to initialize a newly allocated type. Set type code
3125 to CODE and initialize the type-specific fields accordingly. */
3126
3127static void
3128set_type_code (struct type *type, enum type_code code)
3129{
67607e24 3130 type->set_code (code);
ae438bc5
UW
3131
3132 switch (code)
3133 {
3134 case TYPE_CODE_STRUCT:
3135 case TYPE_CODE_UNION:
3136 case TYPE_CODE_NAMESPACE:
3137 INIT_CPLUS_SPECIFIC (type);
3138 break;
3139 case TYPE_CODE_FLT:
3140 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
3141 break;
3142 case TYPE_CODE_FUNC:
3143 INIT_FUNC_SPECIFIC (type);
3144 break;
3145 }
3146}
3147
19f392bc
UW
3148/* Helper function to verify floating-point format and size.
3149 BIT is the type size in bits; if BIT equals -1, the size is
3150 determined by the floatformat. Returns size to be used. */
3151
3152static int
0db7851f 3153verify_floatformat (int bit, const struct floatformat *floatformat)
19f392bc 3154{
0db7851f 3155 gdb_assert (floatformat != NULL);
9b790ce7 3156
19f392bc 3157 if (bit == -1)
0db7851f 3158 bit = floatformat->totalsize;
19f392bc 3159
0db7851f
UW
3160 gdb_assert (bit >= 0);
3161 gdb_assert (bit >= floatformat->totalsize);
19f392bc
UW
3162
3163 return bit;
3164}
3165
0db7851f
UW
3166/* Return the floating-point format for a floating-point variable of
3167 type TYPE. */
3168
3169const struct floatformat *
3170floatformat_from_type (const struct type *type)
3171{
78134374 3172 gdb_assert (type->code () == TYPE_CODE_FLT);
0db7851f
UW
3173 gdb_assert (TYPE_FLOATFORMAT (type));
3174 return TYPE_FLOATFORMAT (type);
3175}
3176
c906108c
SS
3177/* Helper function to initialize the standard scalar types.
3178
86f62fd7
TT
3179 If NAME is non-NULL, then it is used to initialize the type name.
3180 Note that NAME is not copied; it is required to have a lifetime at
3181 least as long as OBJFILE. */
c906108c
SS
3182
3183struct type *
77b7c781 3184init_type (struct objfile *objfile, enum type_code code, int bit,
19f392bc 3185 const char *name)
c906108c 3186{
52f0bd74 3187 struct type *type;
c906108c
SS
3188
3189 type = alloc_type (objfile);
ae438bc5 3190 set_type_code (type, code);
77b7c781
UW
3191 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
3192 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
d0e39ea2 3193 type->set_name (name);
c906108c 3194
c16abbde 3195 return type;
c906108c 3196}
19f392bc 3197
46a4882b
PA
3198/* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
3199 to use with variables that have no debug info. NAME is the type
3200 name. */
3201
3202static struct type *
3203init_nodebug_var_type (struct objfile *objfile, const char *name)
3204{
3205 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
3206}
3207
19f392bc
UW
3208/* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
3209 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3210 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3211
3212struct type *
3213init_integer_type (struct objfile *objfile,
3214 int bit, int unsigned_p, const char *name)
3215{
3216 struct type *t;
3217
77b7c781 3218 t = init_type (objfile, TYPE_CODE_INT, bit, name);
19f392bc
UW
3219 if (unsigned_p)
3220 TYPE_UNSIGNED (t) = 1;
3221
3222 return t;
3223}
3224
3225/* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
3226 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3227 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3228
3229struct type *
3230init_character_type (struct objfile *objfile,
3231 int bit, int unsigned_p, const char *name)
3232{
3233 struct type *t;
3234
77b7c781 3235 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
19f392bc
UW
3236 if (unsigned_p)
3237 TYPE_UNSIGNED (t) = 1;
3238
3239 return t;
3240}
3241
3242/* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
3243 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3244 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3245
3246struct type *
3247init_boolean_type (struct objfile *objfile,
3248 int bit, int unsigned_p, const char *name)
3249{
3250 struct type *t;
3251
77b7c781 3252 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
19f392bc
UW
3253 if (unsigned_p)
3254 TYPE_UNSIGNED (t) = 1;
3255
3256 return t;
3257}
3258
3259/* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
3260 BIT is the type size in bits; if BIT equals -1, the size is
3261 determined by the floatformat. NAME is the type name. Set the
103a685e
TT
3262 TYPE_FLOATFORMAT from FLOATFORMATS. BYTE_ORDER is the byte order
3263 to use. If it is BFD_ENDIAN_UNKNOWN (the default), then the byte
3264 order of the objfile's architecture is used. */
19f392bc
UW
3265
3266struct type *
3267init_float_type (struct objfile *objfile,
3268 int bit, const char *name,
103a685e
TT
3269 const struct floatformat **floatformats,
3270 enum bfd_endian byte_order)
19f392bc 3271{
103a685e
TT
3272 if (byte_order == BFD_ENDIAN_UNKNOWN)
3273 {
08feed99 3274 struct gdbarch *gdbarch = objfile->arch ();
103a685e
TT
3275 byte_order = gdbarch_byte_order (gdbarch);
3276 }
3277 const struct floatformat *fmt = floatformats[byte_order];
19f392bc
UW
3278 struct type *t;
3279
0db7851f 3280 bit = verify_floatformat (bit, fmt);
77b7c781 3281 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
0db7851f 3282 TYPE_FLOATFORMAT (t) = fmt;
19f392bc
UW
3283
3284 return t;
3285}
3286
3287/* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
3288 BIT is the type size in bits. NAME is the type name. */
3289
3290struct type *
3291init_decfloat_type (struct objfile *objfile, int bit, const char *name)
3292{
3293 struct type *t;
3294
77b7c781 3295 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
19f392bc
UW
3296 return t;
3297}
3298
5b930b45
TT
3299/* Allocate a TYPE_CODE_COMPLEX type structure. NAME is the type
3300 name. TARGET_TYPE is the component type. */
19f392bc
UW
3301
3302struct type *
5b930b45 3303init_complex_type (const char *name, struct type *target_type)
19f392bc
UW
3304{
3305 struct type *t;
3306
78134374
SM
3307 gdb_assert (target_type->code () == TYPE_CODE_INT
3308 || target_type->code () == TYPE_CODE_FLT);
5b930b45
TT
3309
3310 if (TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type == nullptr)
3311 {
3312 if (name == nullptr)
3313 {
3314 char *new_name
3315 = (char *) TYPE_ALLOC (target_type,
7d93a1e0 3316 strlen (target_type->name ())
5b930b45
TT
3317 + strlen ("_Complex ") + 1);
3318 strcpy (new_name, "_Complex ");
7d93a1e0 3319 strcat (new_name, target_type->name ());
5b930b45
TT
3320 name = new_name;
3321 }
3322
3323 t = alloc_type_copy (target_type);
3324 set_type_code (t, TYPE_CODE_COMPLEX);
3325 TYPE_LENGTH (t) = 2 * TYPE_LENGTH (target_type);
d0e39ea2 3326 t->set_name (name);
5b930b45
TT
3327
3328 TYPE_TARGET_TYPE (t) = target_type;
3329 TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type = t;
3330 }
3331
3332 return TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type;
19f392bc
UW
3333}
3334
3335/* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
3336 BIT is the pointer type size in bits. NAME is the type name.
3337 TARGET_TYPE is the pointer target type. Always sets the pointer type's
3338 TYPE_UNSIGNED flag. */
3339
3340struct type *
3341init_pointer_type (struct objfile *objfile,
3342 int bit, const char *name, struct type *target_type)
3343{
3344 struct type *t;
3345
77b7c781 3346 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
19f392bc
UW
3347 TYPE_TARGET_TYPE (t) = target_type;
3348 TYPE_UNSIGNED (t) = 1;
3349 return t;
3350}
3351
2b4424c3
TT
3352/* See gdbtypes.h. */
3353
3354unsigned
3355type_raw_align (struct type *type)
3356{
3357 if (type->align_log2 != 0)
3358 return 1 << (type->align_log2 - 1);
3359 return 0;
3360}
3361
3362/* See gdbtypes.h. */
3363
3364unsigned
3365type_align (struct type *type)
3366{
5561fc30 3367 /* Check alignment provided in the debug information. */
2b4424c3
TT
3368 unsigned raw_align = type_raw_align (type);
3369 if (raw_align != 0)
3370 return raw_align;
3371
5561fc30
AB
3372 /* Allow the architecture to provide an alignment. */
3373 struct gdbarch *arch = get_type_arch (type);
3374 ULONGEST align = gdbarch_type_align (arch, type);
3375 if (align != 0)
3376 return align;
3377
78134374 3378 switch (type->code ())
2b4424c3
TT
3379 {
3380 case TYPE_CODE_PTR:
3381 case TYPE_CODE_FUNC:
3382 case TYPE_CODE_FLAGS:
3383 case TYPE_CODE_INT:
75ba10dc 3384 case TYPE_CODE_RANGE:
2b4424c3
TT
3385 case TYPE_CODE_FLT:
3386 case TYPE_CODE_ENUM:
3387 case TYPE_CODE_REF:
3388 case TYPE_CODE_RVALUE_REF:
3389 case TYPE_CODE_CHAR:
3390 case TYPE_CODE_BOOL:
3391 case TYPE_CODE_DECFLOAT:
70cd633e
AB
3392 case TYPE_CODE_METHODPTR:
3393 case TYPE_CODE_MEMBERPTR:
5561fc30 3394 align = type_length_units (check_typedef (type));
2b4424c3
TT
3395 break;
3396
3397 case TYPE_CODE_ARRAY:
3398 case TYPE_CODE_COMPLEX:
3399 case TYPE_CODE_TYPEDEF:
3400 align = type_align (TYPE_TARGET_TYPE (type));
3401 break;
3402
3403 case TYPE_CODE_STRUCT:
3404 case TYPE_CODE_UNION:
3405 {
41077b66 3406 int number_of_non_static_fields = 0;
1f704f76 3407 for (unsigned i = 0; i < type->num_fields (); ++i)
2b4424c3 3408 {
ceacbf6e 3409 if (!field_is_static (&type->field (i)))
2b4424c3 3410 {
41077b66 3411 number_of_non_static_fields++;
940da03e 3412 ULONGEST f_align = type_align (type->field (i).type ());
bf9a735e
AB
3413 if (f_align == 0)
3414 {
3415 /* Don't pretend we know something we don't. */
3416 align = 0;
3417 break;
3418 }
3419 if (f_align > align)
3420 align = f_align;
2b4424c3 3421 }
2b4424c3 3422 }
41077b66
AB
3423 /* A struct with no fields, or with only static fields has an
3424 alignment of 1. */
3425 if (number_of_non_static_fields == 0)
3426 align = 1;
2b4424c3
TT
3427 }
3428 break;
3429
3430 case TYPE_CODE_SET:
2b4424c3
TT
3431 case TYPE_CODE_STRING:
3432 /* Not sure what to do here, and these can't appear in C or C++
3433 anyway. */
3434 break;
3435
2b4424c3
TT
3436 case TYPE_CODE_VOID:
3437 align = 1;
3438 break;
3439
3440 case TYPE_CODE_ERROR:
3441 case TYPE_CODE_METHOD:
3442 default:
3443 break;
3444 }
3445
3446 if ((align & (align - 1)) != 0)
3447 {
3448 /* Not a power of 2, so pass. */
3449 align = 0;
3450 }
3451
3452 return align;
3453}
3454
3455/* See gdbtypes.h. */
3456
3457bool
3458set_type_align (struct type *type, ULONGEST align)
3459{
3460 /* Must be a power of 2. Zero is ok. */
3461 gdb_assert ((align & (align - 1)) == 0);
3462
3463 unsigned result = 0;
3464 while (align != 0)
3465 {
3466 ++result;
3467 align >>= 1;
3468 }
3469
3470 if (result >= (1 << TYPE_ALIGN_BITS))
3471 return false;
3472
3473 type->align_log2 = result;
3474 return true;
3475}
3476
5212577a
DE
3477\f
3478/* Queries on types. */
c906108c 3479
c906108c 3480int
fba45db2 3481can_dereference (struct type *t)
c906108c 3482{
7ba81444
MS
3483 /* FIXME: Should we return true for references as well as
3484 pointers? */
f168693b 3485 t = check_typedef (t);
c906108c
SS
3486 return
3487 (t != NULL
78134374
SM
3488 && t->code () == TYPE_CODE_PTR
3489 && TYPE_TARGET_TYPE (t)->code () != TYPE_CODE_VOID);
c906108c
SS
3490}
3491
adf40b2e 3492int
fba45db2 3493is_integral_type (struct type *t)
adf40b2e 3494{
f168693b 3495 t = check_typedef (t);
adf40b2e
JM
3496 return
3497 ((t != NULL)
78134374
SM
3498 && ((t->code () == TYPE_CODE_INT)
3499 || (t->code () == TYPE_CODE_ENUM)
3500 || (t->code () == TYPE_CODE_FLAGS)
3501 || (t->code () == TYPE_CODE_CHAR)
3502 || (t->code () == TYPE_CODE_RANGE)
3503 || (t->code () == TYPE_CODE_BOOL)));
adf40b2e
JM
3504}
3505
70100014
UW
3506int
3507is_floating_type (struct type *t)
3508{
3509 t = check_typedef (t);
3510 return
3511 ((t != NULL)
78134374
SM
3512 && ((t->code () == TYPE_CODE_FLT)
3513 || (t->code () == TYPE_CODE_DECFLOAT)));
70100014
UW
3514}
3515
e09342b5
TJB
3516/* Return true if TYPE is scalar. */
3517
220475ed 3518int
e09342b5
TJB
3519is_scalar_type (struct type *type)
3520{
f168693b 3521 type = check_typedef (type);
e09342b5 3522
78134374 3523 switch (type->code ())
e09342b5
TJB
3524 {
3525 case TYPE_CODE_ARRAY:
3526 case TYPE_CODE_STRUCT:
3527 case TYPE_CODE_UNION:
3528 case TYPE_CODE_SET:
3529 case TYPE_CODE_STRING:
e09342b5
TJB
3530 return 0;
3531 default:
3532 return 1;
3533 }
3534}
3535
3536/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
3537 the memory layout of a scalar type. E.g., an array or struct with only
3538 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
3539
3540int
3541is_scalar_type_recursive (struct type *t)
3542{
f168693b 3543 t = check_typedef (t);
e09342b5
TJB
3544
3545 if (is_scalar_type (t))
3546 return 1;
3547 /* Are we dealing with an array or string of known dimensions? */
78134374 3548 else if ((t->code () == TYPE_CODE_ARRAY
1f704f76 3549 || t->code () == TYPE_CODE_STRING) && t->num_fields () == 1
3d967001 3550 && t->index_type ()->code () == TYPE_CODE_RANGE)
e09342b5
TJB
3551 {
3552 LONGEST low_bound, high_bound;
3553 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3554
3d967001 3555 get_discrete_bounds (t->index_type (), &low_bound, &high_bound);
e09342b5
TJB
3556
3557 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3558 }
3559 /* Are we dealing with a struct with one element? */
1f704f76 3560 else if (t->code () == TYPE_CODE_STRUCT && t->num_fields () == 1)
940da03e 3561 return is_scalar_type_recursive (t->field (0).type ());
78134374 3562 else if (t->code () == TYPE_CODE_UNION)
e09342b5 3563 {
1f704f76 3564 int i, n = t->num_fields ();
e09342b5
TJB
3565
3566 /* If all elements of the union are scalar, then the union is scalar. */
3567 for (i = 0; i < n; i++)
940da03e 3568 if (!is_scalar_type_recursive (t->field (i).type ()))
e09342b5
TJB
3569 return 0;
3570
3571 return 1;
3572 }
3573
3574 return 0;
3575}
3576
6c659fc2
SC
3577/* Return true is T is a class or a union. False otherwise. */
3578
3579int
3580class_or_union_p (const struct type *t)
3581{
78134374
SM
3582 return (t->code () == TYPE_CODE_STRUCT
3583 || t->code () == TYPE_CODE_UNION);
6c659fc2
SC
3584}
3585
4e8f195d
TT
3586/* A helper function which returns true if types A and B represent the
3587 "same" class type. This is true if the types have the same main
3588 type, or the same name. */
3589
3590int
3591class_types_same_p (const struct type *a, const struct type *b)
3592{
3593 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
7d93a1e0
SM
3594 || (a->name () && b->name ()
3595 && !strcmp (a->name (), b->name ())));
4e8f195d
TT
3596}
3597
a9d5ef47
SW
3598/* If BASE is an ancestor of DCLASS return the distance between them.
3599 otherwise return -1;
3600 eg:
3601
3602 class A {};
3603 class B: public A {};
3604 class C: public B {};
3605 class D: C {};
3606
3607 distance_to_ancestor (A, A, 0) = 0
3608 distance_to_ancestor (A, B, 0) = 1
3609 distance_to_ancestor (A, C, 0) = 2
3610 distance_to_ancestor (A, D, 0) = 3
3611
3612 If PUBLIC is 1 then only public ancestors are considered,
3613 and the function returns the distance only if BASE is a public ancestor
3614 of DCLASS.
3615 Eg:
3616
0963b4bd 3617 distance_to_ancestor (A, D, 1) = -1. */
c906108c 3618
0526b37a 3619static int
fe978cb0 3620distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
c906108c
SS
3621{
3622 int i;
a9d5ef47 3623 int d;
c5aa993b 3624
f168693b
SM
3625 base = check_typedef (base);
3626 dclass = check_typedef (dclass);
c906108c 3627
4e8f195d 3628 if (class_types_same_p (base, dclass))
a9d5ef47 3629 return 0;
c906108c
SS
3630
3631 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 3632 {
fe978cb0 3633 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
0526b37a
SW
3634 continue;
3635
fe978cb0 3636 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
a9d5ef47
SW
3637 if (d >= 0)
3638 return 1 + d;
4e8f195d 3639 }
c906108c 3640
a9d5ef47 3641 return -1;
c906108c 3642}
4e8f195d 3643
0526b37a
SW
3644/* Check whether BASE is an ancestor or base class or DCLASS
3645 Return 1 if so, and 0 if not.
3646 Note: If BASE and DCLASS are of the same type, this function
3647 will return 1. So for some class A, is_ancestor (A, A) will
3648 return 1. */
3649
3650int
3651is_ancestor (struct type *base, struct type *dclass)
3652{
a9d5ef47 3653 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
3654}
3655
4e8f195d
TT
3656/* Like is_ancestor, but only returns true when BASE is a public
3657 ancestor of DCLASS. */
3658
3659int
3660is_public_ancestor (struct type *base, struct type *dclass)
3661{
a9d5ef47 3662 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
3663}
3664
3665/* A helper function for is_unique_ancestor. */
3666
3667static int
3668is_unique_ancestor_worker (struct type *base, struct type *dclass,
3669 int *offset,
8af8e3bc
PA
3670 const gdb_byte *valaddr, int embedded_offset,
3671 CORE_ADDR address, struct value *val)
4e8f195d
TT
3672{
3673 int i, count = 0;
3674
f168693b
SM
3675 base = check_typedef (base);
3676 dclass = check_typedef (dclass);
4e8f195d
TT
3677
3678 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3679 {
8af8e3bc
PA
3680 struct type *iter;
3681 int this_offset;
4e8f195d 3682
8af8e3bc
PA
3683 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3684
3685 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3686 address, val);
4e8f195d
TT
3687
3688 if (class_types_same_p (base, iter))
3689 {
3690 /* If this is the first subclass, set *OFFSET and set count
3691 to 1. Otherwise, if this is at the same offset as
3692 previous instances, do nothing. Otherwise, increment
3693 count. */
3694 if (*offset == -1)
3695 {
3696 *offset = this_offset;
3697 count = 1;
3698 }
3699 else if (this_offset == *offset)
3700 {
3701 /* Nothing. */
3702 }
3703 else
3704 ++count;
3705 }
3706 else
3707 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
3708 valaddr,
3709 embedded_offset + this_offset,
3710 address, val);
4e8f195d
TT
3711 }
3712
3713 return count;
3714}
3715
3716/* Like is_ancestor, but only returns true if BASE is a unique base
3717 class of the type of VAL. */
3718
3719int
3720is_unique_ancestor (struct type *base, struct value *val)
3721{
3722 int offset = -1;
3723
3724 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
3725 value_contents_for_printing (val),
3726 value_embedded_offset (val),
3727 value_address (val), val) == 1;
4e8f195d
TT
3728}
3729
7ab4a236
TT
3730/* See gdbtypes.h. */
3731
3732enum bfd_endian
3733type_byte_order (const struct type *type)
3734{
3735 bfd_endian byteorder = gdbarch_byte_order (get_type_arch (type));
3736 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
3737 {
3738 if (byteorder == BFD_ENDIAN_BIG)
3739 return BFD_ENDIAN_LITTLE;
3740 else
3741 {
3742 gdb_assert (byteorder == BFD_ENDIAN_LITTLE);
3743 return BFD_ENDIAN_BIG;
3744 }
3745 }
3746
3747 return byteorder;
3748}
3749
c906108c 3750\f
5212577a 3751/* Overload resolution. */
c906108c 3752
6403aeea
SW
3753/* Return the sum of the rank of A with the rank of B. */
3754
3755struct rank
3756sum_ranks (struct rank a, struct rank b)
3757{
3758 struct rank c;
3759 c.rank = a.rank + b.rank;
a9d5ef47 3760 c.subrank = a.subrank + b.subrank;
6403aeea
SW
3761 return c;
3762}
3763
3764/* Compare rank A and B and return:
3765 0 if a = b
3766 1 if a is better than b
3767 -1 if b is better than a. */
3768
3769int
3770compare_ranks (struct rank a, struct rank b)
3771{
3772 if (a.rank == b.rank)
a9d5ef47
SW
3773 {
3774 if (a.subrank == b.subrank)
3775 return 0;
3776 if (a.subrank < b.subrank)
3777 return 1;
3778 if (a.subrank > b.subrank)
3779 return -1;
3780 }
6403aeea
SW
3781
3782 if (a.rank < b.rank)
3783 return 1;
3784
0963b4bd 3785 /* a.rank > b.rank */
6403aeea
SW
3786 return -1;
3787}
c5aa993b 3788
0963b4bd 3789/* Functions for overload resolution begin here. */
c906108c
SS
3790
3791/* Compare two badness vectors A and B and return the result.
7ba81444
MS
3792 0 => A and B are identical
3793 1 => A and B are incomparable
3794 2 => A is better than B
3795 3 => A is worse than B */
c906108c
SS
3796
3797int
82ceee50 3798compare_badness (const badness_vector &a, const badness_vector &b)
c906108c
SS
3799{
3800 int i;
3801 int tmp;
c5aa993b
JM
3802 short found_pos = 0; /* any positives in c? */
3803 short found_neg = 0; /* any negatives in c? */
3804
82ceee50
PA
3805 /* differing sizes => incomparable */
3806 if (a.size () != b.size ())
c906108c
SS
3807 return 1;
3808
c5aa993b 3809 /* Subtract b from a */
82ceee50 3810 for (i = 0; i < a.size (); i++)
c906108c 3811 {
82ceee50 3812 tmp = compare_ranks (b[i], a[i]);
c906108c 3813 if (tmp > 0)
c5aa993b 3814 found_pos = 1;
c906108c 3815 else if (tmp < 0)
c5aa993b 3816 found_neg = 1;
c906108c
SS
3817 }
3818
3819 if (found_pos)
3820 {
3821 if (found_neg)
c5aa993b 3822 return 1; /* incomparable */
c906108c 3823 else
c5aa993b 3824 return 3; /* A > B */
c906108c 3825 }
c5aa993b
JM
3826 else
3827 /* no positives */
c906108c
SS
3828 {
3829 if (found_neg)
c5aa993b 3830 return 2; /* A < B */
c906108c 3831 else
c5aa993b 3832 return 0; /* A == B */
c906108c
SS
3833 }
3834}
3835
6b1747cd 3836/* Rank a function by comparing its parameter types (PARMS), to the
82ceee50
PA
3837 types of an argument list (ARGS). Return the badness vector. This
3838 has ARGS.size() + 1 entries. */
c906108c 3839
82ceee50 3840badness_vector
6b1747cd
PA
3841rank_function (gdb::array_view<type *> parms,
3842 gdb::array_view<value *> args)
c906108c 3843{
82ceee50
PA
3844 /* add 1 for the length-match rank. */
3845 badness_vector bv;
3846 bv.reserve (1 + args.size ());
c906108c
SS
3847
3848 /* First compare the lengths of the supplied lists.
7ba81444 3849 If there is a mismatch, set it to a high value. */
c5aa993b 3850
c906108c 3851 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
3852 arguments and ellipsis parameter lists, we should consider those
3853 and rank the length-match more finely. */
c906108c 3854
82ceee50
PA
3855 bv.push_back ((args.size () != parms.size ())
3856 ? LENGTH_MISMATCH_BADNESS
3857 : EXACT_MATCH_BADNESS);
c906108c 3858
0963b4bd 3859 /* Now rank all the parameters of the candidate function. */
82ceee50
PA
3860 size_t min_len = std::min (parms.size (), args.size ());
3861
3862 for (size_t i = 0; i < min_len; i++)
3863 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3864 args[i]));
c906108c 3865
0963b4bd 3866 /* If more arguments than parameters, add dummy entries. */
82ceee50
PA
3867 for (size_t i = min_len; i < args.size (); i++)
3868 bv.push_back (TOO_FEW_PARAMS_BADNESS);
c906108c
SS
3869
3870 return bv;
3871}
3872
973ccf8b
DJ
3873/* Compare the names of two integer types, assuming that any sign
3874 qualifiers have been checked already. We do it this way because
3875 there may be an "int" in the name of one of the types. */
3876
3877static int
3878integer_types_same_name_p (const char *first, const char *second)
3879{
3880 int first_p, second_p;
3881
7ba81444
MS
3882 /* If both are shorts, return 1; if neither is a short, keep
3883 checking. */
973ccf8b
DJ
3884 first_p = (strstr (first, "short") != NULL);
3885 second_p = (strstr (second, "short") != NULL);
3886 if (first_p && second_p)
3887 return 1;
3888 if (first_p || second_p)
3889 return 0;
3890
3891 /* Likewise for long. */
3892 first_p = (strstr (first, "long") != NULL);
3893 second_p = (strstr (second, "long") != NULL);
3894 if (first_p && second_p)
3895 return 1;
3896 if (first_p || second_p)
3897 return 0;
3898
3899 /* Likewise for char. */
3900 first_p = (strstr (first, "char") != NULL);
3901 second_p = (strstr (second, "char") != NULL);
3902 if (first_p && second_p)
3903 return 1;
3904 if (first_p || second_p)
3905 return 0;
3906
3907 /* They must both be ints. */
3908 return 1;
3909}
3910
894882e3
TT
3911/* Compares type A to type B. Returns true if they represent the same
3912 type, false otherwise. */
7062b0a0 3913
894882e3 3914bool
7062b0a0
SW
3915types_equal (struct type *a, struct type *b)
3916{
3917 /* Identical type pointers. */
3918 /* However, this still doesn't catch all cases of same type for b
3919 and a. The reason is that builtin types are different from
3920 the same ones constructed from the object. */
3921 if (a == b)
894882e3 3922 return true;
7062b0a0
SW
3923
3924 /* Resolve typedefs */
78134374 3925 if (a->code () == TYPE_CODE_TYPEDEF)
7062b0a0 3926 a = check_typedef (a);
78134374 3927 if (b->code () == TYPE_CODE_TYPEDEF)
7062b0a0
SW
3928 b = check_typedef (b);
3929
3930 /* If after resolving typedefs a and b are not of the same type
3931 code then they are not equal. */
78134374 3932 if (a->code () != b->code ())
894882e3 3933 return false;
7062b0a0
SW
3934
3935 /* If a and b are both pointers types or both reference types then
3936 they are equal of the same type iff the objects they refer to are
3937 of the same type. */
78134374
SM
3938 if (a->code () == TYPE_CODE_PTR
3939 || a->code () == TYPE_CODE_REF)
7062b0a0
SW
3940 return types_equal (TYPE_TARGET_TYPE (a),
3941 TYPE_TARGET_TYPE (b));
3942
0963b4bd 3943 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
3944 are exactly the same. This happens when we generate method
3945 stubs. The types won't point to the same address, but they
0963b4bd 3946 really are the same. */
7062b0a0 3947
7d93a1e0
SM
3948 if (a->name () && b->name ()
3949 && strcmp (a->name (), b->name ()) == 0)
894882e3 3950 return true;
7062b0a0
SW
3951
3952 /* Check if identical after resolving typedefs. */
3953 if (a == b)
894882e3 3954 return true;
7062b0a0 3955
9ce98649
TT
3956 /* Two function types are equal if their argument and return types
3957 are equal. */
78134374 3958 if (a->code () == TYPE_CODE_FUNC)
9ce98649
TT
3959 {
3960 int i;
3961
1f704f76 3962 if (a->num_fields () != b->num_fields ())
894882e3 3963 return false;
9ce98649
TT
3964
3965 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
894882e3 3966 return false;
9ce98649 3967
1f704f76 3968 for (i = 0; i < a->num_fields (); ++i)
940da03e 3969 if (!types_equal (a->field (i).type (), b->field (i).type ()))
894882e3 3970 return false;
9ce98649 3971
894882e3 3972 return true;
9ce98649
TT
3973 }
3974
894882e3 3975 return false;
7062b0a0 3976}
ca092b61
DE
3977\f
3978/* Deep comparison of types. */
3979
3980/* An entry in the type-equality bcache. */
3981
894882e3 3982struct type_equality_entry
ca092b61 3983{
894882e3
TT
3984 type_equality_entry (struct type *t1, struct type *t2)
3985 : type1 (t1),
3986 type2 (t2)
3987 {
3988 }
ca092b61 3989
894882e3
TT
3990 struct type *type1, *type2;
3991};
ca092b61 3992
894882e3
TT
3993/* A helper function to compare two strings. Returns true if they are
3994 the same, false otherwise. Handles NULLs properly. */
ca092b61 3995
894882e3 3996static bool
ca092b61
DE
3997compare_maybe_null_strings (const char *s, const char *t)
3998{
894882e3
TT
3999 if (s == NULL || t == NULL)
4000 return s == t;
ca092b61
DE
4001 return strcmp (s, t) == 0;
4002}
4003
4004/* A helper function for check_types_worklist that checks two types for
894882e3
TT
4005 "deep" equality. Returns true if the types are considered the
4006 same, false otherwise. */
ca092b61 4007
894882e3 4008static bool
ca092b61 4009check_types_equal (struct type *type1, struct type *type2,
894882e3 4010 std::vector<type_equality_entry> *worklist)
ca092b61 4011{
f168693b
SM
4012 type1 = check_typedef (type1);
4013 type2 = check_typedef (type2);
ca092b61
DE
4014
4015 if (type1 == type2)
894882e3 4016 return true;
ca092b61 4017
78134374 4018 if (type1->code () != type2->code ()
ca092b61
DE
4019 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
4020 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
4021 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
34877895 4022 || TYPE_ENDIANITY_NOT_DEFAULT (type1) != TYPE_ENDIANITY_NOT_DEFAULT (type2)
ca092b61
DE
4023 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
4024 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
4025 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
4026 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
1f704f76 4027 || type1->num_fields () != type2->num_fields ())
894882e3 4028 return false;
ca092b61 4029
7d93a1e0 4030 if (!compare_maybe_null_strings (type1->name (), type2->name ()))
894882e3 4031 return false;
7d93a1e0 4032 if (!compare_maybe_null_strings (type1->name (), type2->name ()))
894882e3 4033 return false;
ca092b61 4034
78134374 4035 if (type1->code () == TYPE_CODE_RANGE)
ca092b61 4036 {
0f59d5fc 4037 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
894882e3 4038 return false;
ca092b61
DE
4039 }
4040 else
4041 {
4042 int i;
4043
1f704f76 4044 for (i = 0; i < type1->num_fields (); ++i)
ca092b61 4045 {
ceacbf6e
SM
4046 const struct field *field1 = &type1->field (i);
4047 const struct field *field2 = &type2->field (i);
ca092b61
DE
4048
4049 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
4050 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
4051 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
894882e3 4052 return false;
ca092b61
DE
4053 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
4054 FIELD_NAME (*field2)))
894882e3 4055 return false;
ca092b61
DE
4056 switch (FIELD_LOC_KIND (*field1))
4057 {
4058 case FIELD_LOC_KIND_BITPOS:
4059 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
894882e3 4060 return false;
ca092b61
DE
4061 break;
4062 case FIELD_LOC_KIND_ENUMVAL:
4063 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
894882e3 4064 return false;
ca092b61
DE
4065 break;
4066 case FIELD_LOC_KIND_PHYSADDR:
4067 if (FIELD_STATIC_PHYSADDR (*field1)
4068 != FIELD_STATIC_PHYSADDR (*field2))
894882e3 4069 return false;
ca092b61
DE
4070 break;
4071 case FIELD_LOC_KIND_PHYSNAME:
4072 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
4073 FIELD_STATIC_PHYSNAME (*field2)))
894882e3 4074 return false;
ca092b61
DE
4075 break;
4076 case FIELD_LOC_KIND_DWARF_BLOCK:
4077 {
4078 struct dwarf2_locexpr_baton *block1, *block2;
4079
4080 block1 = FIELD_DWARF_BLOCK (*field1);
4081 block2 = FIELD_DWARF_BLOCK (*field2);
4082 if (block1->per_cu != block2->per_cu
4083 || block1->size != block2->size
4084 || memcmp (block1->data, block2->data, block1->size) != 0)
894882e3 4085 return false;
ca092b61
DE
4086 }
4087 break;
4088 default:
4089 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
4090 "%d by check_types_equal"),
4091 FIELD_LOC_KIND (*field1));
4092 }
4093
b6cdac4b 4094 worklist->emplace_back (field1->type (), field2->type ());
ca092b61
DE
4095 }
4096 }
4097
4098 if (TYPE_TARGET_TYPE (type1) != NULL)
4099 {
ca092b61 4100 if (TYPE_TARGET_TYPE (type2) == NULL)
894882e3 4101 return false;
ca092b61 4102
894882e3
TT
4103 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
4104 TYPE_TARGET_TYPE (type2));
ca092b61
DE
4105 }
4106 else if (TYPE_TARGET_TYPE (type2) != NULL)
894882e3 4107 return false;
ca092b61 4108
894882e3 4109 return true;
ca092b61
DE
4110}
4111
894882e3
TT
4112/* Check types on a worklist for equality. Returns false if any pair
4113 is not equal, true if they are all considered equal. */
ca092b61 4114
894882e3
TT
4115static bool
4116check_types_worklist (std::vector<type_equality_entry> *worklist,
dfb65191 4117 gdb::bcache *cache)
ca092b61 4118{
894882e3 4119 while (!worklist->empty ())
ca092b61 4120 {
ca092b61
DE
4121 int added;
4122
894882e3
TT
4123 struct type_equality_entry entry = std::move (worklist->back ());
4124 worklist->pop_back ();
ca092b61
DE
4125
4126 /* If the type pair has already been visited, we know it is
4127 ok. */
25629dfd 4128 cache->insert (&entry, sizeof (entry), &added);
ca092b61
DE
4129 if (!added)
4130 continue;
4131
894882e3
TT
4132 if (!check_types_equal (entry.type1, entry.type2, worklist))
4133 return false;
ca092b61 4134 }
7062b0a0 4135
894882e3 4136 return true;
ca092b61
DE
4137}
4138
894882e3
TT
4139/* Return true if types TYPE1 and TYPE2 are equal, as determined by a
4140 "deep comparison". Otherwise return false. */
ca092b61 4141
894882e3 4142bool
ca092b61
DE
4143types_deeply_equal (struct type *type1, struct type *type2)
4144{
894882e3 4145 std::vector<type_equality_entry> worklist;
ca092b61
DE
4146
4147 gdb_assert (type1 != NULL && type2 != NULL);
4148
4149 /* Early exit for the simple case. */
4150 if (type1 == type2)
894882e3 4151 return true;
ca092b61 4152
dfb65191 4153 gdb::bcache cache (nullptr, nullptr);
894882e3 4154 worklist.emplace_back (type1, type2);
25629dfd 4155 return check_types_worklist (&worklist, &cache);
ca092b61 4156}
3f2f83dd
KB
4157
4158/* Allocated status of type TYPE. Return zero if type TYPE is allocated.
4159 Otherwise return one. */
4160
4161int
4162type_not_allocated (const struct type *type)
4163{
4164 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
4165
4166 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
4167 && !TYPE_DYN_PROP_ADDR (prop));
4168}
4169
4170/* Associated status of type TYPE. Return zero if type TYPE is associated.
4171 Otherwise return one. */
4172
4173int
4174type_not_associated (const struct type *type)
4175{
4176 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
4177
4178 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
4179 && !TYPE_DYN_PROP_ADDR (prop));
4180}
9293fc63
SM
4181
4182/* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
4183
4184static struct rank
4185rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
4186{
4187 struct rank rank = {0,0};
4188
78134374 4189 switch (arg->code ())
9293fc63
SM
4190 {
4191 case TYPE_CODE_PTR:
4192
4193 /* Allowed pointer conversions are:
4194 (a) pointer to void-pointer conversion. */
78134374 4195 if (TYPE_TARGET_TYPE (parm)->code () == TYPE_CODE_VOID)
9293fc63
SM
4196 return VOID_PTR_CONVERSION_BADNESS;
4197
4198 /* (b) pointer to ancestor-pointer conversion. */
4199 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
4200 TYPE_TARGET_TYPE (arg),
4201 0);
4202 if (rank.subrank >= 0)
4203 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
4204
4205 return INCOMPATIBLE_TYPE_BADNESS;
4206 case TYPE_CODE_ARRAY:
4207 {
4208 struct type *t1 = TYPE_TARGET_TYPE (parm);
4209 struct type *t2 = TYPE_TARGET_TYPE (arg);
4210
4211 if (types_equal (t1, t2))
4212 {
4213 /* Make sure they are CV equal. */
4214 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4215 rank.subrank |= CV_CONVERSION_CONST;
4216 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4217 rank.subrank |= CV_CONVERSION_VOLATILE;
4218 if (rank.subrank != 0)
4219 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4220 return EXACT_MATCH_BADNESS;
4221 }
4222 return INCOMPATIBLE_TYPE_BADNESS;
4223 }
4224 case TYPE_CODE_FUNC:
4225 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
4226 case TYPE_CODE_INT:
78134374 4227 if (value != NULL && value_type (value)->code () == TYPE_CODE_INT)
9293fc63
SM
4228 {
4229 if (value_as_long (value) == 0)
4230 {
4231 /* Null pointer conversion: allow it to be cast to a pointer.
4232 [4.10.1 of C++ standard draft n3290] */
4233 return NULL_POINTER_CONVERSION_BADNESS;
4234 }
4235 else
4236 {
4237 /* If type checking is disabled, allow the conversion. */
4238 if (!strict_type_checking)
4239 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
4240 }
4241 }
4242 /* fall through */
4243 case TYPE_CODE_ENUM:
4244 case TYPE_CODE_FLAGS:
4245 case TYPE_CODE_CHAR:
4246 case TYPE_CODE_RANGE:
4247 case TYPE_CODE_BOOL:
4248 default:
4249 return INCOMPATIBLE_TYPE_BADNESS;
4250 }
4251}
4252
b9f4512f
SM
4253/* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
4254
4255static struct rank
4256rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
4257{
78134374 4258 switch (arg->code ())
b9f4512f
SM
4259 {
4260 case TYPE_CODE_PTR:
4261 case TYPE_CODE_ARRAY:
4262 return rank_one_type (TYPE_TARGET_TYPE (parm),
4263 TYPE_TARGET_TYPE (arg), NULL);
4264 default:
4265 return INCOMPATIBLE_TYPE_BADNESS;
4266 }
4267}
4268
f1f832d6
SM
4269/* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
4270
4271static struct rank
4272rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
4273{
78134374 4274 switch (arg->code ())
f1f832d6
SM
4275 {
4276 case TYPE_CODE_PTR: /* funcptr -> func */
4277 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
4278 default:
4279 return INCOMPATIBLE_TYPE_BADNESS;
4280 }
4281}
4282
34910087
SM
4283/* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
4284
4285static struct rank
4286rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
4287{
78134374 4288 switch (arg->code ())
34910087
SM
4289 {
4290 case TYPE_CODE_INT:
4291 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4292 {
4293 /* Deal with signed, unsigned, and plain chars and
4294 signed and unsigned ints. */
4295 if (TYPE_NOSIGN (parm))
4296 {
4297 /* This case only for character types. */
4298 if (TYPE_NOSIGN (arg))
4299 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
4300 else /* signed/unsigned char -> plain char */
4301 return INTEGER_CONVERSION_BADNESS;
4302 }
4303 else if (TYPE_UNSIGNED (parm))
4304 {
4305 if (TYPE_UNSIGNED (arg))
4306 {
4307 /* unsigned int -> unsigned int, or
4308 unsigned long -> unsigned long */
7d93a1e0
SM
4309 if (integer_types_same_name_p (parm->name (),
4310 arg->name ()))
34910087 4311 return EXACT_MATCH_BADNESS;
7d93a1e0 4312 else if (integer_types_same_name_p (arg->name (),
34910087 4313 "int")
7d93a1e0 4314 && integer_types_same_name_p (parm->name (),
34910087
SM
4315 "long"))
4316 /* unsigned int -> unsigned long */
4317 return INTEGER_PROMOTION_BADNESS;
4318 else
4319 /* unsigned long -> unsigned int */
4320 return INTEGER_CONVERSION_BADNESS;
4321 }
4322 else
4323 {
7d93a1e0 4324 if (integer_types_same_name_p (arg->name (),
34910087 4325 "long")
7d93a1e0 4326 && integer_types_same_name_p (parm->name (),
34910087
SM
4327 "int"))
4328 /* signed long -> unsigned int */
4329 return INTEGER_CONVERSION_BADNESS;
4330 else
4331 /* signed int/long -> unsigned int/long */
4332 return INTEGER_CONVERSION_BADNESS;
4333 }
4334 }
4335 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4336 {
7d93a1e0
SM
4337 if (integer_types_same_name_p (parm->name (),
4338 arg->name ()))
34910087 4339 return EXACT_MATCH_BADNESS;
7d93a1e0 4340 else if (integer_types_same_name_p (arg->name (),
34910087 4341 "int")
7d93a1e0 4342 && integer_types_same_name_p (parm->name (),
34910087
SM
4343 "long"))
4344 return INTEGER_PROMOTION_BADNESS;
4345 else
4346 return INTEGER_CONVERSION_BADNESS;
4347 }
4348 else
4349 return INTEGER_CONVERSION_BADNESS;
4350 }
4351 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4352 return INTEGER_PROMOTION_BADNESS;
4353 else
4354 return INTEGER_CONVERSION_BADNESS;
4355 case TYPE_CODE_ENUM:
4356 case TYPE_CODE_FLAGS:
4357 case TYPE_CODE_CHAR:
4358 case TYPE_CODE_RANGE:
4359 case TYPE_CODE_BOOL:
4360 if (TYPE_DECLARED_CLASS (arg))
4361 return INCOMPATIBLE_TYPE_BADNESS;
4362 return INTEGER_PROMOTION_BADNESS;
4363 case TYPE_CODE_FLT:
4364 return INT_FLOAT_CONVERSION_BADNESS;
4365 case TYPE_CODE_PTR:
4366 return NS_POINTER_CONVERSION_BADNESS;
4367 default:
4368 return INCOMPATIBLE_TYPE_BADNESS;
4369 }
4370}
4371
793cd1d2
SM
4372/* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
4373
4374static struct rank
4375rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
4376{
78134374 4377 switch (arg->code ())
793cd1d2
SM
4378 {
4379 case TYPE_CODE_INT:
4380 case TYPE_CODE_CHAR:
4381 case TYPE_CODE_RANGE:
4382 case TYPE_CODE_BOOL:
4383 case TYPE_CODE_ENUM:
4384 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4385 return INCOMPATIBLE_TYPE_BADNESS;
4386 return INTEGER_CONVERSION_BADNESS;
4387 case TYPE_CODE_FLT:
4388 return INT_FLOAT_CONVERSION_BADNESS;
4389 default:
4390 return INCOMPATIBLE_TYPE_BADNESS;
4391 }
4392}
4393
41ea4728
SM
4394/* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
4395
4396static struct rank
4397rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
4398{
78134374 4399 switch (arg->code ())
41ea4728
SM
4400 {
4401 case TYPE_CODE_RANGE:
4402 case TYPE_CODE_BOOL:
4403 case TYPE_CODE_ENUM:
4404 if (TYPE_DECLARED_CLASS (arg))
4405 return INCOMPATIBLE_TYPE_BADNESS;
4406 return INTEGER_CONVERSION_BADNESS;
4407 case TYPE_CODE_FLT:
4408 return INT_FLOAT_CONVERSION_BADNESS;
4409 case TYPE_CODE_INT:
4410 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4411 return INTEGER_CONVERSION_BADNESS;
4412 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4413 return INTEGER_PROMOTION_BADNESS;
4414 /* fall through */
4415 case TYPE_CODE_CHAR:
4416 /* Deal with signed, unsigned, and plain chars for C++ and
4417 with int cases falling through from previous case. */
4418 if (TYPE_NOSIGN (parm))
4419 {
4420 if (TYPE_NOSIGN (arg))
4421 return EXACT_MATCH_BADNESS;
4422 else
4423 return INTEGER_CONVERSION_BADNESS;
4424 }
4425 else if (TYPE_UNSIGNED (parm))
4426 {
4427 if (TYPE_UNSIGNED (arg))
4428 return EXACT_MATCH_BADNESS;
4429 else
4430 return INTEGER_PROMOTION_BADNESS;
4431 }
4432 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4433 return EXACT_MATCH_BADNESS;
4434 else
4435 return INTEGER_CONVERSION_BADNESS;
4436 default:
4437 return INCOMPATIBLE_TYPE_BADNESS;
4438 }
4439}
4440
0dd322dc
SM
4441/* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4442
4443static struct rank
4444rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4445{
78134374 4446 switch (arg->code ())
0dd322dc
SM
4447 {
4448 case TYPE_CODE_INT:
4449 case TYPE_CODE_CHAR:
4450 case TYPE_CODE_RANGE:
4451 case TYPE_CODE_BOOL:
4452 case TYPE_CODE_ENUM:
4453 return INTEGER_CONVERSION_BADNESS;
4454 case TYPE_CODE_FLT:
4455 return INT_FLOAT_CONVERSION_BADNESS;
4456 default:
4457 return INCOMPATIBLE_TYPE_BADNESS;
4458 }
4459}
4460
2c509035
SM
4461/* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4462
4463static struct rank
4464rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4465{
78134374 4466 switch (arg->code ())
2c509035
SM
4467 {
4468 /* n3290 draft, section 4.12.1 (conv.bool):
4469
4470 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4471 pointer to member type can be converted to a prvalue of type
4472 bool. A zero value, null pointer value, or null member pointer
4473 value is converted to false; any other value is converted to
4474 true. A prvalue of type std::nullptr_t can be converted to a
4475 prvalue of type bool; the resulting value is false." */
4476 case TYPE_CODE_INT:
4477 case TYPE_CODE_CHAR:
4478 case TYPE_CODE_ENUM:
4479 case TYPE_CODE_FLT:
4480 case TYPE_CODE_MEMBERPTR:
4481 case TYPE_CODE_PTR:
4482 return BOOL_CONVERSION_BADNESS;
4483 case TYPE_CODE_RANGE:
4484 return INCOMPATIBLE_TYPE_BADNESS;
4485 case TYPE_CODE_BOOL:
4486 return EXACT_MATCH_BADNESS;
4487 default:
4488 return INCOMPATIBLE_TYPE_BADNESS;
4489 }
4490}
4491
7f17b20d
SM
4492/* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4493
4494static struct rank
4495rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4496{
78134374 4497 switch (arg->code ())
7f17b20d
SM
4498 {
4499 case TYPE_CODE_FLT:
4500 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4501 return FLOAT_PROMOTION_BADNESS;
4502 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4503 return EXACT_MATCH_BADNESS;
4504 else
4505 return FLOAT_CONVERSION_BADNESS;
4506 case TYPE_CODE_INT:
4507 case TYPE_CODE_BOOL:
4508 case TYPE_CODE_ENUM:
4509 case TYPE_CODE_RANGE:
4510 case TYPE_CODE_CHAR:
4511 return INT_FLOAT_CONVERSION_BADNESS;
4512 default:
4513 return INCOMPATIBLE_TYPE_BADNESS;
4514 }
4515}
4516
2598a94b
SM
4517/* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4518
4519static struct rank
4520rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4521{
78134374 4522 switch (arg->code ())
2598a94b
SM
4523 { /* Strictly not needed for C++, but... */
4524 case TYPE_CODE_FLT:
4525 return FLOAT_PROMOTION_BADNESS;
4526 case TYPE_CODE_COMPLEX:
4527 return EXACT_MATCH_BADNESS;
4528 default:
4529 return INCOMPATIBLE_TYPE_BADNESS;
4530 }
4531}
4532
595f96a9
SM
4533/* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4534
4535static struct rank
4536rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4537{
4538 struct rank rank = {0, 0};
4539
78134374 4540 switch (arg->code ())
595f96a9
SM
4541 {
4542 case TYPE_CODE_STRUCT:
4543 /* Check for derivation */
4544 rank.subrank = distance_to_ancestor (parm, arg, 0);
4545 if (rank.subrank >= 0)
4546 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4547 /* fall through */
4548 default:
4549 return INCOMPATIBLE_TYPE_BADNESS;
4550 }
4551}
4552
f09ce22d
SM
4553/* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4554
4555static struct rank
4556rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4557{
78134374 4558 switch (arg->code ())
f09ce22d
SM
4559 {
4560 /* Not in C++ */
4561 case TYPE_CODE_SET:
940da03e
SM
4562 return rank_one_type (parm->field (0).type (),
4563 arg->field (0).type (), NULL);
f09ce22d
SM
4564 default:
4565 return INCOMPATIBLE_TYPE_BADNESS;
4566 }
4567}
4568
c906108c
SS
4569/* Compare one type (PARM) for compatibility with another (ARG).
4570 * PARM is intended to be the parameter type of a function; and
4571 * ARG is the supplied argument's type. This function tests if
4572 * the latter can be converted to the former.
da096638 4573 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
4574 *
4575 * Return 0 if they are identical types;
4576 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
4577 * PARM is to ARG. The higher the return value, the worse the match.
4578 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 4579
6403aeea 4580struct rank
da096638 4581rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 4582{
a9d5ef47 4583 struct rank rank = {0,0};
7062b0a0 4584
c906108c 4585 /* Resolve typedefs */
78134374 4586 if (parm->code () == TYPE_CODE_TYPEDEF)
c906108c 4587 parm = check_typedef (parm);
78134374 4588 if (arg->code () == TYPE_CODE_TYPEDEF)
c906108c
SS
4589 arg = check_typedef (arg);
4590
e15c3eb4 4591 if (TYPE_IS_REFERENCE (parm) && value != NULL)
15c0a2a9 4592 {
e15c3eb4
KS
4593 if (VALUE_LVAL (value) == not_lval)
4594 {
4595 /* Rvalues should preferably bind to rvalue references or const
4596 lvalue references. */
78134374 4597 if (parm->code () == TYPE_CODE_RVALUE_REF)
e15c3eb4
KS
4598 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4599 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4600 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4601 else
4602 return INCOMPATIBLE_TYPE_BADNESS;
4603 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4604 }
4605 else
4606 {
330f1d38 4607 /* It's illegal to pass an lvalue as an rvalue. */
78134374 4608 if (parm->code () == TYPE_CODE_RVALUE_REF)
330f1d38 4609 return INCOMPATIBLE_TYPE_BADNESS;
e15c3eb4 4610 }
15c0a2a9
AV
4611 }
4612
4613 if (types_equal (parm, arg))
15c0a2a9 4614 {
e15c3eb4
KS
4615 struct type *t1 = parm;
4616 struct type *t2 = arg;
15c0a2a9 4617
e15c3eb4 4618 /* For pointers and references, compare target type. */
78134374 4619 if (parm->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
e15c3eb4
KS
4620 {
4621 t1 = TYPE_TARGET_TYPE (parm);
4622 t2 = TYPE_TARGET_TYPE (arg);
4623 }
15c0a2a9 4624
e15c3eb4
KS
4625 /* Make sure they are CV equal, too. */
4626 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4627 rank.subrank |= CV_CONVERSION_CONST;
4628 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4629 rank.subrank |= CV_CONVERSION_VOLATILE;
4630 if (rank.subrank != 0)
4631 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4632 return EXACT_MATCH_BADNESS;
15c0a2a9
AV
4633 }
4634
db577aea 4635 /* See through references, since we can almost make non-references
7ba81444 4636 references. */
aa006118
AV
4637
4638 if (TYPE_IS_REFERENCE (arg))
da096638 4639 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
06acc08f 4640 REFERENCE_SEE_THROUGH_BADNESS));
aa006118 4641 if (TYPE_IS_REFERENCE (parm))
da096638 4642 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
06acc08f 4643 REFERENCE_SEE_THROUGH_BADNESS));
5d161b24 4644 if (overload_debug)
7ba81444 4645 /* Debugging only. */
78134374 4646 fprintf_filtered (gdb_stderr,
7ba81444 4647 "------ Arg is %s [%d], parm is %s [%d]\n",
7d93a1e0
SM
4648 arg->name (), arg->code (),
4649 parm->name (), parm->code ());
c906108c 4650
0963b4bd 4651 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c 4652
78134374 4653 switch (parm->code ())
c906108c 4654 {
c5aa993b 4655 case TYPE_CODE_PTR:
9293fc63 4656 return rank_one_type_parm_ptr (parm, arg, value);
c5aa993b 4657 case TYPE_CODE_ARRAY:
b9f4512f 4658 return rank_one_type_parm_array (parm, arg, value);
c5aa993b 4659 case TYPE_CODE_FUNC:
f1f832d6 4660 return rank_one_type_parm_func (parm, arg, value);
c5aa993b 4661 case TYPE_CODE_INT:
34910087 4662 return rank_one_type_parm_int (parm, arg, value);
c5aa993b 4663 case TYPE_CODE_ENUM:
793cd1d2 4664 return rank_one_type_parm_enum (parm, arg, value);
c5aa993b 4665 case TYPE_CODE_CHAR:
41ea4728 4666 return rank_one_type_parm_char (parm, arg, value);
c5aa993b 4667 case TYPE_CODE_RANGE:
0dd322dc 4668 return rank_one_type_parm_range (parm, arg, value);
c5aa993b 4669 case TYPE_CODE_BOOL:
2c509035 4670 return rank_one_type_parm_bool (parm, arg, value);
c5aa993b 4671 case TYPE_CODE_FLT:
7f17b20d 4672 return rank_one_type_parm_float (parm, arg, value);
c5aa993b 4673 case TYPE_CODE_COMPLEX:
2598a94b 4674 return rank_one_type_parm_complex (parm, arg, value);
c5aa993b 4675 case TYPE_CODE_STRUCT:
595f96a9 4676 return rank_one_type_parm_struct (parm, arg, value);
c5aa993b 4677 case TYPE_CODE_SET:
f09ce22d 4678 return rank_one_type_parm_set (parm, arg, value);
c5aa993b
JM
4679 default:
4680 return INCOMPATIBLE_TYPE_BADNESS;
78134374 4681 } /* switch (arg->code ()) */
c906108c
SS
4682}
4683
0963b4bd 4684/* End of functions for overload resolution. */
5212577a
DE
4685\f
4686/* Routines to pretty-print types. */
c906108c 4687
c906108c 4688static void
fba45db2 4689print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
4690{
4691 int bitno;
4692
4693 for (bitno = 0; bitno < nbits; bitno++)
4694 {
4695 if ((bitno % 8) == 0)
4696 {
4697 puts_filtered (" ");
4698 }
4699 if (B_TST (bits, bitno))
a3f17187 4700 printf_filtered (("1"));
c906108c 4701 else
a3f17187 4702 printf_filtered (("0"));
c906108c
SS
4703 }
4704}
4705
ad2f7632 4706/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
4707 include it since we may get into a infinitely recursive
4708 situation. */
c906108c
SS
4709
4710static void
4c9e8482 4711print_args (struct field *args, int nargs, int spaces)
c906108c
SS
4712{
4713 if (args != NULL)
4714 {
ad2f7632
DJ
4715 int i;
4716
4717 for (i = 0; i < nargs; i++)
4c9e8482
DE
4718 {
4719 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4720 args[i].name != NULL ? args[i].name : "<NULL>");
5d14b6e5 4721 recursive_dump_type (args[i].type (), spaces + 2);
4c9e8482 4722 }
c906108c
SS
4723 }
4724}
4725
d6a843b5
JK
4726int
4727field_is_static (struct field *f)
4728{
4729 /* "static" fields are the fields whose location is not relative
4730 to the address of the enclosing struct. It would be nice to
4731 have a dedicated flag that would be set for static fields when
4732 the type is being created. But in practice, checking the field
254e6b9e 4733 loc_kind should give us an accurate answer. */
d6a843b5
JK
4734 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4735 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4736}
4737
c906108c 4738static void
fba45db2 4739dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
4740{
4741 int method_idx;
4742 int overload_idx;
4743 struct fn_field *f;
4744
4745 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 4746 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
4747 printf_filtered ("\n");
4748 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4749 {
4750 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4751 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4752 method_idx,
4753 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
4754 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4755 gdb_stdout);
a3f17187 4756 printf_filtered (_(") length %d\n"),
c906108c
SS
4757 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4758 for (overload_idx = 0;
4759 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4760 overload_idx++)
4761 {
4762 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4763 overload_idx,
4764 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
4765 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4766 gdb_stdout);
c906108c
SS
4767 printf_filtered (")\n");
4768 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
4769 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4770 gdb_stdout);
c906108c
SS
4771 printf_filtered ("\n");
4772
4773 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4774 spaces + 8 + 2);
4775
4776 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
4777 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4778 gdb_stdout);
c906108c 4779 printf_filtered ("\n");
4c9e8482 4780 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
1f704f76 4781 TYPE_FN_FIELD_TYPE (f, overload_idx)->num_fields (),
4c9e8482 4782 spaces + 8 + 2);
c906108c 4783 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
4784 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4785 gdb_stdout);
c906108c
SS
4786 printf_filtered ("\n");
4787
4788 printfi_filtered (spaces + 8, "is_const %d\n",
4789 TYPE_FN_FIELD_CONST (f, overload_idx));
4790 printfi_filtered (spaces + 8, "is_volatile %d\n",
4791 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4792 printfi_filtered (spaces + 8, "is_private %d\n",
4793 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4794 printfi_filtered (spaces + 8, "is_protected %d\n",
4795 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4796 printfi_filtered (spaces + 8, "is_stub %d\n",
4797 TYPE_FN_FIELD_STUB (f, overload_idx));
e35000a7
TBA
4798 printfi_filtered (spaces + 8, "defaulted %d\n",
4799 TYPE_FN_FIELD_DEFAULTED (f, overload_idx));
4800 printfi_filtered (spaces + 8, "is_deleted %d\n",
4801 TYPE_FN_FIELD_DELETED (f, overload_idx));
c906108c
SS
4802 printfi_filtered (spaces + 8, "voffset %u\n",
4803 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4804 }
4805 }
4806}
4807
4808static void
fba45db2 4809print_cplus_stuff (struct type *type, int spaces)
c906108c 4810{
ae6ae975
DE
4811 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4812 printfi_filtered (spaces, "vptr_basetype ");
4813 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4814 puts_filtered ("\n");
4815 if (TYPE_VPTR_BASETYPE (type) != NULL)
4816 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4817
c906108c
SS
4818 printfi_filtered (spaces, "n_baseclasses %d\n",
4819 TYPE_N_BASECLASSES (type));
4820 printfi_filtered (spaces, "nfn_fields %d\n",
4821 TYPE_NFN_FIELDS (type));
c906108c
SS
4822 if (TYPE_N_BASECLASSES (type) > 0)
4823 {
4824 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4825 TYPE_N_BASECLASSES (type));
7ba81444
MS
4826 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4827 gdb_stdout);
c906108c
SS
4828 printf_filtered (")");
4829
4830 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4831 TYPE_N_BASECLASSES (type));
4832 puts_filtered ("\n");
4833 }
1f704f76 4834 if (type->num_fields () > 0)
c906108c
SS
4835 {
4836 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4837 {
7ba81444
MS
4838 printfi_filtered (spaces,
4839 "private_field_bits (%d bits at *",
1f704f76 4840 type->num_fields ());
7ba81444
MS
4841 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4842 gdb_stdout);
c906108c
SS
4843 printf_filtered (")");
4844 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
1f704f76 4845 type->num_fields ());
c906108c
SS
4846 puts_filtered ("\n");
4847 }
4848 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4849 {
7ba81444
MS
4850 printfi_filtered (spaces,
4851 "protected_field_bits (%d bits at *",
1f704f76 4852 type->num_fields ());
7ba81444
MS
4853 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4854 gdb_stdout);
c906108c
SS
4855 printf_filtered (")");
4856 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
1f704f76 4857 type->num_fields ());
c906108c
SS
4858 puts_filtered ("\n");
4859 }
4860 }
4861 if (TYPE_NFN_FIELDS (type) > 0)
4862 {
4863 dump_fn_fieldlists (type, spaces);
4864 }
e35000a7
TBA
4865
4866 printfi_filtered (spaces, "calling_convention %d\n",
4867 TYPE_CPLUS_CALLING_CONVENTION (type));
c906108c
SS
4868}
4869
b4ba55a1
JB
4870/* Print the contents of the TYPE's type_specific union, assuming that
4871 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4872
4873static void
4874print_gnat_stuff (struct type *type, int spaces)
4875{
4876 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4877
8cd00c59
PMR
4878 if (descriptive_type == NULL)
4879 printfi_filtered (spaces + 2, "no descriptive type\n");
4880 else
4881 {
4882 printfi_filtered (spaces + 2, "descriptive type\n");
4883 recursive_dump_type (descriptive_type, spaces + 4);
4884 }
b4ba55a1
JB
4885}
4886
c906108c
SS
4887static struct obstack dont_print_type_obstack;
4888
4889void
fba45db2 4890recursive_dump_type (struct type *type, int spaces)
c906108c
SS
4891{
4892 int idx;
4893
4894 if (spaces == 0)
4895 obstack_begin (&dont_print_type_obstack, 0);
4896
1f704f76 4897 if (type->num_fields () > 0
b4ba55a1 4898 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
4899 {
4900 struct type **first_dont_print
7ba81444 4901 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 4902
7ba81444
MS
4903 int i = (struct type **)
4904 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
4905
4906 while (--i >= 0)
4907 {
4908 if (type == first_dont_print[i])
4909 {
4910 printfi_filtered (spaces, "type node ");
d4f3574e 4911 gdb_print_host_address (type, gdb_stdout);
a3f17187 4912 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
4913 return;
4914 }
4915 }
4916
4917 obstack_ptr_grow (&dont_print_type_obstack, type);
4918 }
4919
4920 printfi_filtered (spaces, "type node ");
d4f3574e 4921 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
4922 printf_filtered ("\n");
4923 printfi_filtered (spaces, "name '%s' (",
7d93a1e0
SM
4924 type->name () ? type->name () : "<NULL>");
4925 gdb_print_host_address (type->name (), gdb_stdout);
c906108c 4926 printf_filtered (")\n");
78134374
SM
4927 printfi_filtered (spaces, "code 0x%x ", type->code ());
4928 switch (type->code ())
c906108c 4929 {
c5aa993b
JM
4930 case TYPE_CODE_UNDEF:
4931 printf_filtered ("(TYPE_CODE_UNDEF)");
4932 break;
4933 case TYPE_CODE_PTR:
4934 printf_filtered ("(TYPE_CODE_PTR)");
4935 break;
4936 case TYPE_CODE_ARRAY:
4937 printf_filtered ("(TYPE_CODE_ARRAY)");
4938 break;
4939 case TYPE_CODE_STRUCT:
4940 printf_filtered ("(TYPE_CODE_STRUCT)");
4941 break;
4942 case TYPE_CODE_UNION:
4943 printf_filtered ("(TYPE_CODE_UNION)");
4944 break;
4945 case TYPE_CODE_ENUM:
4946 printf_filtered ("(TYPE_CODE_ENUM)");
4947 break;
4f2aea11
MK
4948 case TYPE_CODE_FLAGS:
4949 printf_filtered ("(TYPE_CODE_FLAGS)");
4950 break;
c5aa993b
JM
4951 case TYPE_CODE_FUNC:
4952 printf_filtered ("(TYPE_CODE_FUNC)");
4953 break;
4954 case TYPE_CODE_INT:
4955 printf_filtered ("(TYPE_CODE_INT)");
4956 break;
4957 case TYPE_CODE_FLT:
4958 printf_filtered ("(TYPE_CODE_FLT)");
4959 break;
4960 case TYPE_CODE_VOID:
4961 printf_filtered ("(TYPE_CODE_VOID)");
4962 break;
4963 case TYPE_CODE_SET:
4964 printf_filtered ("(TYPE_CODE_SET)");
4965 break;
4966 case TYPE_CODE_RANGE:
4967 printf_filtered ("(TYPE_CODE_RANGE)");
4968 break;
4969 case TYPE_CODE_STRING:
4970 printf_filtered ("(TYPE_CODE_STRING)");
4971 break;
4972 case TYPE_CODE_ERROR:
4973 printf_filtered ("(TYPE_CODE_ERROR)");
4974 break;
0d5de010
DJ
4975 case TYPE_CODE_MEMBERPTR:
4976 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4977 break;
4978 case TYPE_CODE_METHODPTR:
4979 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
4980 break;
4981 case TYPE_CODE_METHOD:
4982 printf_filtered ("(TYPE_CODE_METHOD)");
4983 break;
4984 case TYPE_CODE_REF:
4985 printf_filtered ("(TYPE_CODE_REF)");
4986 break;
4987 case TYPE_CODE_CHAR:
4988 printf_filtered ("(TYPE_CODE_CHAR)");
4989 break;
4990 case TYPE_CODE_BOOL:
4991 printf_filtered ("(TYPE_CODE_BOOL)");
4992 break;
e9e79dd9
FF
4993 case TYPE_CODE_COMPLEX:
4994 printf_filtered ("(TYPE_CODE_COMPLEX)");
4995 break;
c5aa993b
JM
4996 case TYPE_CODE_TYPEDEF:
4997 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4998 break;
5c4e30ca
DC
4999 case TYPE_CODE_NAMESPACE:
5000 printf_filtered ("(TYPE_CODE_NAMESPACE)");
5001 break;
c5aa993b
JM
5002 default:
5003 printf_filtered ("(UNKNOWN TYPE CODE)");
5004 break;
c906108c
SS
5005 }
5006 puts_filtered ("\n");
cc1defb1 5007 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
e9bb382b
UW
5008 if (TYPE_OBJFILE_OWNED (type))
5009 {
5010 printfi_filtered (spaces, "objfile ");
5011 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
5012 }
5013 else
5014 {
5015 printfi_filtered (spaces, "gdbarch ");
5016 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
5017 }
c906108c
SS
5018 printf_filtered ("\n");
5019 printfi_filtered (spaces, "target_type ");
d4f3574e 5020 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
5021 printf_filtered ("\n");
5022 if (TYPE_TARGET_TYPE (type) != NULL)
5023 {
5024 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
5025 }
5026 printfi_filtered (spaces, "pointer_type ");
d4f3574e 5027 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
5028 printf_filtered ("\n");
5029 printfi_filtered (spaces, "reference_type ");
d4f3574e 5030 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 5031 printf_filtered ("\n");
2fdde8f8
DJ
5032 printfi_filtered (spaces, "type_chain ");
5033 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 5034 printf_filtered ("\n");
7ba81444
MS
5035 printfi_filtered (spaces, "instance_flags 0x%x",
5036 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
5037 if (TYPE_CONST (type))
5038 {
a9ff5f12 5039 puts_filtered (" TYPE_CONST");
2fdde8f8
DJ
5040 }
5041 if (TYPE_VOLATILE (type))
5042 {
a9ff5f12 5043 puts_filtered (" TYPE_VOLATILE");
2fdde8f8
DJ
5044 }
5045 if (TYPE_CODE_SPACE (type))
5046 {
a9ff5f12 5047 puts_filtered (" TYPE_CODE_SPACE");
2fdde8f8
DJ
5048 }
5049 if (TYPE_DATA_SPACE (type))
5050 {
a9ff5f12 5051 puts_filtered (" TYPE_DATA_SPACE");
2fdde8f8 5052 }
8b2dbe47
KB
5053 if (TYPE_ADDRESS_CLASS_1 (type))
5054 {
a9ff5f12 5055 puts_filtered (" TYPE_ADDRESS_CLASS_1");
8b2dbe47
KB
5056 }
5057 if (TYPE_ADDRESS_CLASS_2 (type))
5058 {
a9ff5f12 5059 puts_filtered (" TYPE_ADDRESS_CLASS_2");
8b2dbe47 5060 }
06d66ee9
TT
5061 if (TYPE_RESTRICT (type))
5062 {
a9ff5f12 5063 puts_filtered (" TYPE_RESTRICT");
06d66ee9 5064 }
a2c2acaf
MW
5065 if (TYPE_ATOMIC (type))
5066 {
a9ff5f12 5067 puts_filtered (" TYPE_ATOMIC");
a2c2acaf 5068 }
2fdde8f8 5069 puts_filtered ("\n");
876cecd0
TT
5070
5071 printfi_filtered (spaces, "flags");
762a036f 5072 if (TYPE_UNSIGNED (type))
c906108c 5073 {
a9ff5f12 5074 puts_filtered (" TYPE_UNSIGNED");
c906108c 5075 }
762a036f
FF
5076 if (TYPE_NOSIGN (type))
5077 {
a9ff5f12 5078 puts_filtered (" TYPE_NOSIGN");
762a036f 5079 }
34877895
PJ
5080 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
5081 {
5082 puts_filtered (" TYPE_ENDIANITY_NOT_DEFAULT");
5083 }
762a036f 5084 if (TYPE_STUB (type))
c906108c 5085 {
a9ff5f12 5086 puts_filtered (" TYPE_STUB");
c906108c 5087 }
762a036f
FF
5088 if (TYPE_TARGET_STUB (type))
5089 {
a9ff5f12 5090 puts_filtered (" TYPE_TARGET_STUB");
762a036f 5091 }
762a036f
FF
5092 if (TYPE_PROTOTYPED (type))
5093 {
a9ff5f12 5094 puts_filtered (" TYPE_PROTOTYPED");
762a036f 5095 }
762a036f
FF
5096 if (TYPE_VARARGS (type))
5097 {
a9ff5f12 5098 puts_filtered (" TYPE_VARARGS");
762a036f 5099 }
f5f8a009
EZ
5100 /* This is used for things like AltiVec registers on ppc. Gcc emits
5101 an attribute for the array type, which tells whether or not we
5102 have a vector, instead of a regular array. */
5103 if (TYPE_VECTOR (type))
5104 {
a9ff5f12 5105 puts_filtered (" TYPE_VECTOR");
f5f8a009 5106 }
876cecd0
TT
5107 if (TYPE_FIXED_INSTANCE (type))
5108 {
5109 puts_filtered (" TYPE_FIXED_INSTANCE");
5110 }
5111 if (TYPE_STUB_SUPPORTED (type))
5112 {
5113 puts_filtered (" TYPE_STUB_SUPPORTED");
5114 }
5115 if (TYPE_NOTTEXT (type))
5116 {
5117 puts_filtered (" TYPE_NOTTEXT");
5118 }
c906108c 5119 puts_filtered ("\n");
1f704f76 5120 printfi_filtered (spaces, "nfields %d ", type->num_fields ());
80fc5e77 5121 gdb_print_host_address (type->fields (), gdb_stdout);
c906108c 5122 puts_filtered ("\n");
1f704f76 5123 for (idx = 0; idx < type->num_fields (); idx++)
c906108c 5124 {
78134374 5125 if (type->code () == TYPE_CODE_ENUM)
14e75d8e
JK
5126 printfi_filtered (spaces + 2,
5127 "[%d] enumval %s type ",
5128 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
5129 else
5130 printfi_filtered (spaces + 2,
6b850546
DT
5131 "[%d] bitpos %s bitsize %d type ",
5132 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
14e75d8e 5133 TYPE_FIELD_BITSIZE (type, idx));
940da03e 5134 gdb_print_host_address (type->field (idx).type (), gdb_stdout);
c906108c
SS
5135 printf_filtered (" name '%s' (",
5136 TYPE_FIELD_NAME (type, idx) != NULL
5137 ? TYPE_FIELD_NAME (type, idx)
5138 : "<NULL>");
d4f3574e 5139 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c 5140 printf_filtered (")\n");
940da03e 5141 if (type->field (idx).type () != NULL)
c906108c 5142 {
940da03e 5143 recursive_dump_type (type->field (idx).type (), spaces + 4);
c906108c
SS
5144 }
5145 }
78134374 5146 if (type->code () == TYPE_CODE_RANGE)
43bbcdc2
PH
5147 {
5148 printfi_filtered (spaces, "low %s%s high %s%s\n",
5149 plongest (TYPE_LOW_BOUND (type)),
5150 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
5151 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
5152 TYPE_HIGH_BOUND_UNDEFINED (type)
5153 ? " (undefined)" : "");
43bbcdc2 5154 }
c906108c 5155
b4ba55a1
JB
5156 switch (TYPE_SPECIFIC_FIELD (type))
5157 {
5158 case TYPE_SPECIFIC_CPLUS_STUFF:
5159 printfi_filtered (spaces, "cplus_stuff ");
5160 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
5161 gdb_stdout);
5162 puts_filtered ("\n");
5163 print_cplus_stuff (type, spaces);
5164 break;
8da61cc4 5165
b4ba55a1
JB
5166 case TYPE_SPECIFIC_GNAT_STUFF:
5167 printfi_filtered (spaces, "gnat_stuff ");
5168 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
5169 puts_filtered ("\n");
5170 print_gnat_stuff (type, spaces);
5171 break;
701c159d 5172
b4ba55a1
JB
5173 case TYPE_SPECIFIC_FLOATFORMAT:
5174 printfi_filtered (spaces, "floatformat ");
0db7851f
UW
5175 if (TYPE_FLOATFORMAT (type) == NULL
5176 || TYPE_FLOATFORMAT (type)->name == NULL)
b4ba55a1
JB
5177 puts_filtered ("(null)");
5178 else
0db7851f 5179 puts_filtered (TYPE_FLOATFORMAT (type)->name);
b4ba55a1
JB
5180 puts_filtered ("\n");
5181 break;
c906108c 5182
b6cdc2c1 5183 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
5184 printfi_filtered (spaces, "calling_convention %d\n",
5185 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 5186 /* tail_call_list is not printed. */
b4ba55a1 5187 break;
09e2d7c7
DE
5188
5189 case TYPE_SPECIFIC_SELF_TYPE:
5190 printfi_filtered (spaces, "self_type ");
5191 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
5192 puts_filtered ("\n");
5193 break;
c906108c 5194 }
b4ba55a1 5195
c906108c
SS
5196 if (spaces == 0)
5197 obstack_free (&dont_print_type_obstack, NULL);
5198}
5212577a 5199\f
ae5a43e0
DJ
5200/* Trivial helpers for the libiberty hash table, for mapping one
5201 type to another. */
5202
fd90ace4 5203struct type_pair : public allocate_on_obstack
ae5a43e0 5204{
fd90ace4
YQ
5205 type_pair (struct type *old_, struct type *newobj_)
5206 : old (old_), newobj (newobj_)
5207 {}
5208
5209 struct type * const old, * const newobj;
ae5a43e0
DJ
5210};
5211
5212static hashval_t
5213type_pair_hash (const void *item)
5214{
9a3c8263 5215 const struct type_pair *pair = (const struct type_pair *) item;
d8734c88 5216
ae5a43e0
DJ
5217 return htab_hash_pointer (pair->old);
5218}
5219
5220static int
5221type_pair_eq (const void *item_lhs, const void *item_rhs)
5222{
9a3c8263
SM
5223 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
5224 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
d8734c88 5225
ae5a43e0
DJ
5226 return lhs->old == rhs->old;
5227}
5228
5229/* Allocate the hash table used by copy_type_recursive to walk
5230 types without duplicates. We use OBJFILE's obstack, because
5231 OBJFILE is about to be deleted. */
5232
5233htab_t
5234create_copied_types_hash (struct objfile *objfile)
5235{
5236 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
5237 NULL, &objfile->objfile_obstack,
5238 hashtab_obstack_allocate,
5239 dummy_obstack_deallocate);
5240}
5241
d9823cbb
KB
5242/* Recursively copy (deep copy) a dynamic attribute list of a type. */
5243
5244static struct dynamic_prop_list *
5245copy_dynamic_prop_list (struct obstack *objfile_obstack,
5246 struct dynamic_prop_list *list)
5247{
5248 struct dynamic_prop_list *copy = list;
5249 struct dynamic_prop_list **node_ptr = &copy;
5250
5251 while (*node_ptr != NULL)
5252 {
5253 struct dynamic_prop_list *node_copy;
5254
224c3ddb
SM
5255 node_copy = ((struct dynamic_prop_list *)
5256 obstack_copy (objfile_obstack, *node_ptr,
5257 sizeof (struct dynamic_prop_list)));
283a9958 5258 node_copy->prop = (*node_ptr)->prop;
d9823cbb
KB
5259 *node_ptr = node_copy;
5260
5261 node_ptr = &node_copy->next;
5262 }
5263
5264 return copy;
5265}
5266
7ba81444 5267/* Recursively copy (deep copy) TYPE, if it is associated with
eed8b28a
PP
5268 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
5269 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
5270 it is not associated with OBJFILE. */
ae5a43e0
DJ
5271
5272struct type *
7ba81444
MS
5273copy_type_recursive (struct objfile *objfile,
5274 struct type *type,
ae5a43e0
DJ
5275 htab_t copied_types)
5276{
ae5a43e0
DJ
5277 void **slot;
5278 struct type *new_type;
5279
e9bb382b 5280 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
5281 return type;
5282
7ba81444
MS
5283 /* This type shouldn't be pointing to any types in other objfiles;
5284 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
5285 gdb_assert (TYPE_OBJFILE (type) == objfile);
5286
fd90ace4
YQ
5287 struct type_pair pair (type, nullptr);
5288
ae5a43e0
DJ
5289 slot = htab_find_slot (copied_types, &pair, INSERT);
5290 if (*slot != NULL)
fe978cb0 5291 return ((struct type_pair *) *slot)->newobj;
ae5a43e0 5292
e9bb382b 5293 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
5294
5295 /* We must add the new type to the hash table immediately, in case
5296 we encounter this type again during a recursive call below. */
fd90ace4
YQ
5297 struct type_pair *stored
5298 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
5299
ae5a43e0
DJ
5300 *slot = stored;
5301
876cecd0
TT
5302 /* Copy the common fields of types. For the main type, we simply
5303 copy the entire thing and then update specific fields as needed. */
5304 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
5305 TYPE_OBJFILE_OWNED (new_type) = 0;
5306 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 5307
7d93a1e0
SM
5308 if (type->name ())
5309 new_type->set_name (xstrdup (type->name ()));
ae5a43e0
DJ
5310
5311 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5312 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5313
5314 /* Copy the fields. */
1f704f76 5315 if (type->num_fields ())
ae5a43e0
DJ
5316 {
5317 int i, nfields;
5318
1f704f76 5319 nfields = type->num_fields ();
3cabb6b0
SM
5320 new_type->set_fields
5321 ((struct field *)
5322 TYPE_ZALLOC (new_type, nfields * sizeof (struct field)));
5323
ae5a43e0
DJ
5324 for (i = 0; i < nfields; i++)
5325 {
7ba81444
MS
5326 TYPE_FIELD_ARTIFICIAL (new_type, i) =
5327 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0 5328 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
940da03e 5329 if (type->field (i).type ())
5d14b6e5 5330 new_type->field (i).set_type
940da03e 5331 (copy_type_recursive (objfile, type->field (i).type (),
5d14b6e5 5332 copied_types));
ae5a43e0 5333 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
5334 TYPE_FIELD_NAME (new_type, i) =
5335 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 5336 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 5337 {
d6a843b5 5338 case FIELD_LOC_KIND_BITPOS:
ceacbf6e 5339 SET_FIELD_BITPOS (new_type->field (i),
d6a843b5
JK
5340 TYPE_FIELD_BITPOS (type, i));
5341 break;
14e75d8e 5342 case FIELD_LOC_KIND_ENUMVAL:
ceacbf6e 5343 SET_FIELD_ENUMVAL (new_type->field (i),
14e75d8e
JK
5344 TYPE_FIELD_ENUMVAL (type, i));
5345 break;
d6a843b5 5346 case FIELD_LOC_KIND_PHYSADDR:
ceacbf6e 5347 SET_FIELD_PHYSADDR (new_type->field (i),
d6a843b5
JK
5348 TYPE_FIELD_STATIC_PHYSADDR (type, i));
5349 break;
5350 case FIELD_LOC_KIND_PHYSNAME:
ceacbf6e 5351 SET_FIELD_PHYSNAME (new_type->field (i),
d6a843b5
JK
5352 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
5353 i)));
5354 break;
5355 default:
5356 internal_error (__FILE__, __LINE__,
5357 _("Unexpected type field location kind: %d"),
5358 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
5359 }
5360 }
5361 }
5362
0963b4bd 5363 /* For range types, copy the bounds information. */
78134374 5364 if (type->code () == TYPE_CODE_RANGE)
43bbcdc2 5365 {
2fabdf33
AB
5366 TYPE_RANGE_DATA (new_type) = (struct range_bounds *)
5367 TYPE_ALLOC (new_type, sizeof (struct range_bounds));
43bbcdc2
PH
5368 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
5369 }
5370
98d48915
SM
5371 if (type->main_type->dyn_prop_list != NULL)
5372 new_type->main_type->dyn_prop_list
d9823cbb 5373 = copy_dynamic_prop_list (&objfile->objfile_obstack,
98d48915 5374 type->main_type->dyn_prop_list);
d9823cbb 5375
3cdcd0ce 5376
ae5a43e0
DJ
5377 /* Copy pointers to other types. */
5378 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
5379 TYPE_TARGET_TYPE (new_type) =
5380 copy_type_recursive (objfile,
5381 TYPE_TARGET_TYPE (type),
5382 copied_types);
f6b3afbf 5383
ae5a43e0
DJ
5384 /* Maybe copy the type_specific bits.
5385
5386 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
5387 base classes and methods. There's no fundamental reason why we
5388 can't, but at the moment it is not needed. */
5389
f6b3afbf
DE
5390 switch (TYPE_SPECIFIC_FIELD (type))
5391 {
5392 case TYPE_SPECIFIC_NONE:
5393 break;
5394 case TYPE_SPECIFIC_FUNC:
5395 INIT_FUNC_SPECIFIC (new_type);
5396 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
5397 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
5398 TYPE_TAIL_CALL_LIST (new_type) = NULL;
5399 break;
5400 case TYPE_SPECIFIC_FLOATFORMAT:
5401 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
5402 break;
5403 case TYPE_SPECIFIC_CPLUS_STUFF:
5404 INIT_CPLUS_SPECIFIC (new_type);
5405 break;
5406 case TYPE_SPECIFIC_GNAT_STUFF:
5407 INIT_GNAT_SPECIFIC (new_type);
5408 break;
09e2d7c7
DE
5409 case TYPE_SPECIFIC_SELF_TYPE:
5410 set_type_self_type (new_type,
5411 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5412 copied_types));
5413 break;
f6b3afbf
DE
5414 default:
5415 gdb_assert_not_reached ("bad type_specific_kind");
5416 }
ae5a43e0
DJ
5417
5418 return new_type;
5419}
5420
4af88198
JB
5421/* Make a copy of the given TYPE, except that the pointer & reference
5422 types are not preserved.
5423
5424 This function assumes that the given type has an associated objfile.
5425 This objfile is used to allocate the new type. */
5426
5427struct type *
5428copy_type (const struct type *type)
5429{
5430 struct type *new_type;
5431
e9bb382b 5432 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 5433
e9bb382b 5434 new_type = alloc_type_copy (type);
4af88198
JB
5435 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5436 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5437 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5438 sizeof (struct main_type));
98d48915
SM
5439 if (type->main_type->dyn_prop_list != NULL)
5440 new_type->main_type->dyn_prop_list
d9823cbb 5441 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
98d48915 5442 type->main_type->dyn_prop_list);
4af88198
JB
5443
5444 return new_type;
5445}
5212577a 5446\f
e9bb382b
UW
5447/* Helper functions to initialize architecture-specific types. */
5448
5449/* Allocate a type structure associated with GDBARCH and set its
5450 CODE, LENGTH, and NAME fields. */
5212577a 5451
e9bb382b
UW
5452struct type *
5453arch_type (struct gdbarch *gdbarch,
77b7c781 5454 enum type_code code, int bit, const char *name)
e9bb382b
UW
5455{
5456 struct type *type;
5457
5458 type = alloc_type_arch (gdbarch);
ae438bc5 5459 set_type_code (type, code);
77b7c781
UW
5460 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5461 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
e9bb382b
UW
5462
5463 if (name)
d0e39ea2 5464 type->set_name (gdbarch_obstack_strdup (gdbarch, name));
e9bb382b
UW
5465
5466 return type;
5467}
5468
5469/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5470 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5471 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5472
e9bb382b
UW
5473struct type *
5474arch_integer_type (struct gdbarch *gdbarch,
695bfa52 5475 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5476{
5477 struct type *t;
5478
77b7c781 5479 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
e9bb382b
UW
5480 if (unsigned_p)
5481 TYPE_UNSIGNED (t) = 1;
e9bb382b
UW
5482
5483 return t;
5484}
5485
5486/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5487 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5488 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5489
e9bb382b
UW
5490struct type *
5491arch_character_type (struct gdbarch *gdbarch,
695bfa52 5492 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5493{
5494 struct type *t;
5495
77b7c781 5496 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
e9bb382b
UW
5497 if (unsigned_p)
5498 TYPE_UNSIGNED (t) = 1;
5499
5500 return t;
5501}
5502
5503/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5504 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5505 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5506
e9bb382b
UW
5507struct type *
5508arch_boolean_type (struct gdbarch *gdbarch,
695bfa52 5509 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5510{
5511 struct type *t;
5512
77b7c781 5513 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
e9bb382b
UW
5514 if (unsigned_p)
5515 TYPE_UNSIGNED (t) = 1;
5516
5517 return t;
5518}
5519
5520/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5521 BIT is the type size in bits; if BIT equals -1, the size is
5522 determined by the floatformat. NAME is the type name. Set the
5523 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 5524
27067745 5525struct type *
e9bb382b 5526arch_float_type (struct gdbarch *gdbarch,
695bfa52
TT
5527 int bit, const char *name,
5528 const struct floatformat **floatformats)
8da61cc4 5529{
0db7851f 5530 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
8da61cc4
DJ
5531 struct type *t;
5532
0db7851f 5533 bit = verify_floatformat (bit, fmt);
77b7c781 5534 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
0db7851f 5535 TYPE_FLOATFORMAT (t) = fmt;
b79497cb 5536
8da61cc4
DJ
5537 return t;
5538}
5539
88dfca6c
UW
5540/* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5541 BIT is the type size in bits. NAME is the type name. */
5542
5543struct type *
5544arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5545{
5546 struct type *t;
5547
77b7c781 5548 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
88dfca6c
UW
5549 return t;
5550}
5551
88dfca6c
UW
5552/* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5553 BIT is the pointer type size in bits. NAME is the type name.
5554 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5555 TYPE_UNSIGNED flag. */
5556
5557struct type *
5558arch_pointer_type (struct gdbarch *gdbarch,
5559 int bit, const char *name, struct type *target_type)
5560{
5561 struct type *t;
5562
77b7c781 5563 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
88dfca6c
UW
5564 TYPE_TARGET_TYPE (t) = target_type;
5565 TYPE_UNSIGNED (t) = 1;
5566 return t;
5567}
5568
e9bb382b 5569/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
77b7c781 5570 NAME is the type name. BIT is the size of the flag word in bits. */
5212577a 5571
e9bb382b 5572struct type *
77b7c781 5573arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
e9bb382b 5574{
e9bb382b
UW
5575 struct type *type;
5576
77b7c781 5577 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
e9bb382b 5578 TYPE_UNSIGNED (type) = 1;
5e33d5f4 5579 type->set_num_fields (0);
81516450 5580 /* Pre-allocate enough space assuming every field is one bit. */
3cabb6b0
SM
5581 type->set_fields
5582 ((struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field)));
e9bb382b
UW
5583
5584 return type;
5585}
5586
5587/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
81516450
DE
5588 position BITPOS is called NAME. Pass NAME as "" for fields that
5589 should not be printed. */
5590
5591void
5592append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
695bfa52 5593 struct type *field_type, const char *name)
81516450
DE
5594{
5595 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1f704f76 5596 int field_nr = type->num_fields ();
81516450 5597
78134374 5598 gdb_assert (type->code () == TYPE_CODE_FLAGS);
1f704f76 5599 gdb_assert (type->num_fields () + 1 <= type_bitsize);
81516450
DE
5600 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5601 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5602 gdb_assert (name != NULL);
5603
5604 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5d14b6e5 5605 type->field (field_nr).set_type (field_type);
ceacbf6e 5606 SET_FIELD_BITPOS (type->field (field_nr), start_bitpos);
81516450 5607 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5e33d5f4 5608 type->set_num_fields (type->num_fields () + 1);
81516450
DE
5609}
5610
5611/* Special version of append_flags_type_field to add a flag field.
5612 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
e9bb382b 5613 position BITPOS is called NAME. */
5212577a 5614
e9bb382b 5615void
695bfa52 5616append_flags_type_flag (struct type *type, int bitpos, const char *name)
e9bb382b 5617{
81516450 5618 struct gdbarch *gdbarch = get_type_arch (type);
e9bb382b 5619
81516450
DE
5620 append_flags_type_field (type, bitpos, 1,
5621 builtin_type (gdbarch)->builtin_bool,
5622 name);
e9bb382b
UW
5623}
5624
5625/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5626 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 5627
e9bb382b 5628struct type *
695bfa52
TT
5629arch_composite_type (struct gdbarch *gdbarch, const char *name,
5630 enum type_code code)
e9bb382b
UW
5631{
5632 struct type *t;
d8734c88 5633
e9bb382b
UW
5634 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5635 t = arch_type (gdbarch, code, 0, NULL);
d0e39ea2 5636 t->set_name (name);
e9bb382b
UW
5637 INIT_CPLUS_SPECIFIC (t);
5638 return t;
5639}
5640
5641/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
5642 Do not set the field's position or adjust the type's length;
5643 the caller should do so. Return the new field. */
5212577a 5644
f5dff777 5645struct field *
695bfa52 5646append_composite_type_field_raw (struct type *t, const char *name,
f5dff777 5647 struct type *field)
e9bb382b
UW
5648{
5649 struct field *f;
d8734c88 5650
1f704f76 5651 t->set_num_fields (t->num_fields () + 1);
80fc5e77 5652 t->set_fields (XRESIZEVEC (struct field, t->fields (),
3cabb6b0 5653 t->num_fields ()));
80fc5e77 5654 f = &t->field (t->num_fields () - 1);
e9bb382b 5655 memset (f, 0, sizeof f[0]);
5d14b6e5 5656 f[0].set_type (field);
e9bb382b 5657 FIELD_NAME (f[0]) = name;
f5dff777
DJ
5658 return f;
5659}
5660
5661/* Add new field with name NAME and type FIELD to composite type T.
5662 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 5663
f5dff777 5664void
695bfa52 5665append_composite_type_field_aligned (struct type *t, const char *name,
f5dff777
DJ
5666 struct type *field, int alignment)
5667{
5668 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 5669
78134374 5670 if (t->code () == TYPE_CODE_UNION)
e9bb382b
UW
5671 {
5672 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5673 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5674 }
78134374 5675 else if (t->code () == TYPE_CODE_STRUCT)
e9bb382b
UW
5676 {
5677 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
1f704f76 5678 if (t->num_fields () > 1)
e9bb382b 5679 {
f41f5e61
PA
5680 SET_FIELD_BITPOS (f[0],
5681 (FIELD_BITPOS (f[-1])
b6cdac4b 5682 + (TYPE_LENGTH (f[-1].type ())
f41f5e61 5683 * TARGET_CHAR_BIT)));
e9bb382b
UW
5684
5685 if (alignment)
5686 {
86c3c1fc
AB
5687 int left;
5688
5689 alignment *= TARGET_CHAR_BIT;
5690 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 5691
e9bb382b
UW
5692 if (left)
5693 {
f41f5e61 5694 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 5695 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
5696 }
5697 }
5698 }
5699 }
5700}
5701
5702/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 5703
e9bb382b 5704void
695bfa52 5705append_composite_type_field (struct type *t, const char *name,
e9bb382b
UW
5706 struct type *field)
5707{
5708 append_composite_type_field_aligned (t, name, field, 0);
5709}
5710
000177f0
AC
5711static struct gdbarch_data *gdbtypes_data;
5712
5713const struct builtin_type *
5714builtin_type (struct gdbarch *gdbarch)
5715{
9a3c8263 5716 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
000177f0
AC
5717}
5718
5719static void *
5720gdbtypes_post_init (struct gdbarch *gdbarch)
5721{
5722 struct builtin_type *builtin_type
5723 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5724
46bf5051 5725 /* Basic types. */
e9bb382b 5726 builtin_type->builtin_void
77b7c781 5727 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
e9bb382b
UW
5728 builtin_type->builtin_char
5729 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5730 !gdbarch_char_signed (gdbarch), "char");
c413c448 5731 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
e9bb382b
UW
5732 builtin_type->builtin_signed_char
5733 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5734 0, "signed char");
5735 builtin_type->builtin_unsigned_char
5736 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5737 1, "unsigned char");
5738 builtin_type->builtin_short
5739 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5740 0, "short");
5741 builtin_type->builtin_unsigned_short
5742 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5743 1, "unsigned short");
5744 builtin_type->builtin_int
5745 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5746 0, "int");
5747 builtin_type->builtin_unsigned_int
5748 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5749 1, "unsigned int");
5750 builtin_type->builtin_long
5751 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5752 0, "long");
5753 builtin_type->builtin_unsigned_long
5754 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5755 1, "unsigned long");
5756 builtin_type->builtin_long_long
5757 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5758 0, "long long");
5759 builtin_type->builtin_unsigned_long_long
5760 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5761 1, "unsigned long long");
a6d0f249
AH
5762 builtin_type->builtin_half
5763 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5764 "half", gdbarch_half_format (gdbarch));
70bd8e24 5765 builtin_type->builtin_float
e9bb382b 5766 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 5767 "float", gdbarch_float_format (gdbarch));
70bd8e24 5768 builtin_type->builtin_double
e9bb382b 5769 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 5770 "double", gdbarch_double_format (gdbarch));
70bd8e24 5771 builtin_type->builtin_long_double
e9bb382b 5772 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 5773 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 5774 builtin_type->builtin_complex
5b930b45 5775 = init_complex_type ("complex", builtin_type->builtin_float);
70bd8e24 5776 builtin_type->builtin_double_complex
5b930b45 5777 = init_complex_type ("double complex", builtin_type->builtin_double);
e9bb382b 5778 builtin_type->builtin_string
77b7c781 5779 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
e9bb382b 5780 builtin_type->builtin_bool
77b7c781 5781 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
000177f0 5782
7678ef8f
TJB
5783 /* The following three are about decimal floating point types, which
5784 are 32-bits, 64-bits and 128-bits respectively. */
5785 builtin_type->builtin_decfloat
88dfca6c 5786 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
7678ef8f 5787 builtin_type->builtin_decdouble
88dfca6c 5788 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
7678ef8f 5789 builtin_type->builtin_declong
88dfca6c 5790 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
7678ef8f 5791
69feb676 5792 /* "True" character types. */
e9bb382b
UW
5793 builtin_type->builtin_true_char
5794 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5795 builtin_type->builtin_true_unsigned_char
5796 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 5797
df4df182 5798 /* Fixed-size integer types. */
e9bb382b
UW
5799 builtin_type->builtin_int0
5800 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5801 builtin_type->builtin_int8
5802 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5803 builtin_type->builtin_uint8
5804 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5805 builtin_type->builtin_int16
5806 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5807 builtin_type->builtin_uint16
5808 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
d1908f2d
JD
5809 builtin_type->builtin_int24
5810 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5811 builtin_type->builtin_uint24
5812 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
e9bb382b
UW
5813 builtin_type->builtin_int32
5814 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5815 builtin_type->builtin_uint32
5816 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5817 builtin_type->builtin_int64
5818 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5819 builtin_type->builtin_uint64
5820 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5821 builtin_type->builtin_int128
5822 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5823 builtin_type->builtin_uint128
5824 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
5825 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5826 TYPE_INSTANCE_FLAG_NOTTEXT;
5827 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5828 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 5829
9a22f0d0
PM
5830 /* Wide character types. */
5831 builtin_type->builtin_char16
53e710ac 5832 = arch_integer_type (gdbarch, 16, 1, "char16_t");
9a22f0d0 5833 builtin_type->builtin_char32
53e710ac 5834 = arch_integer_type (gdbarch, 32, 1, "char32_t");
53375380
PA
5835 builtin_type->builtin_wchar
5836 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5837 !gdbarch_wchar_signed (gdbarch), "wchar_t");
9a22f0d0 5838
46bf5051 5839 /* Default data/code pointer types. */
e9bb382b
UW
5840 builtin_type->builtin_data_ptr
5841 = lookup_pointer_type (builtin_type->builtin_void);
5842 builtin_type->builtin_func_ptr
5843 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
5844 builtin_type->builtin_func_func
5845 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 5846
78267919 5847 /* This type represents a GDB internal function. */
e9bb382b
UW
5848 builtin_type->internal_fn
5849 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5850 "<internal function>");
78267919 5851
e81e7f5e
SC
5852 /* This type represents an xmethod. */
5853 builtin_type->xmethod
5854 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5855
46bf5051
UW
5856 return builtin_type;
5857}
5858
46bf5051
UW
5859/* This set of objfile-based types is intended to be used by symbol
5860 readers as basic types. */
5861
7a102139
TT
5862static const struct objfile_key<struct objfile_type,
5863 gdb::noop_deleter<struct objfile_type>>
5864 objfile_type_data;
46bf5051
UW
5865
5866const struct objfile_type *
5867objfile_type (struct objfile *objfile)
5868{
5869 struct gdbarch *gdbarch;
7a102139 5870 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
46bf5051
UW
5871
5872 if (objfile_type)
5873 return objfile_type;
5874
5875 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5876 1, struct objfile_type);
5877
5878 /* Use the objfile architecture to determine basic type properties. */
08feed99 5879 gdbarch = objfile->arch ();
46bf5051
UW
5880
5881 /* Basic types. */
5882 objfile_type->builtin_void
77b7c781 5883 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
46bf5051 5884 objfile_type->builtin_char
19f392bc
UW
5885 = init_integer_type (objfile, TARGET_CHAR_BIT,
5886 !gdbarch_char_signed (gdbarch), "char");
c413c448 5887 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
46bf5051 5888 objfile_type->builtin_signed_char
19f392bc
UW
5889 = init_integer_type (objfile, TARGET_CHAR_BIT,
5890 0, "signed char");
46bf5051 5891 objfile_type->builtin_unsigned_char
19f392bc
UW
5892 = init_integer_type (objfile, TARGET_CHAR_BIT,
5893 1, "unsigned char");
46bf5051 5894 objfile_type->builtin_short
19f392bc
UW
5895 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5896 0, "short");
46bf5051 5897 objfile_type->builtin_unsigned_short
19f392bc
UW
5898 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5899 1, "unsigned short");
46bf5051 5900 objfile_type->builtin_int
19f392bc
UW
5901 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5902 0, "int");
46bf5051 5903 objfile_type->builtin_unsigned_int
19f392bc
UW
5904 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5905 1, "unsigned int");
46bf5051 5906 objfile_type->builtin_long
19f392bc
UW
5907 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5908 0, "long");
46bf5051 5909 objfile_type->builtin_unsigned_long
19f392bc
UW
5910 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5911 1, "unsigned long");
46bf5051 5912 objfile_type->builtin_long_long
19f392bc
UW
5913 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5914 0, "long long");
46bf5051 5915 objfile_type->builtin_unsigned_long_long
19f392bc
UW
5916 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5917 1, "unsigned long long");
46bf5051 5918 objfile_type->builtin_float
19f392bc
UW
5919 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5920 "float", gdbarch_float_format (gdbarch));
46bf5051 5921 objfile_type->builtin_double
19f392bc
UW
5922 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5923 "double", gdbarch_double_format (gdbarch));
46bf5051 5924 objfile_type->builtin_long_double
19f392bc
UW
5925 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5926 "long double", gdbarch_long_double_format (gdbarch));
46bf5051
UW
5927
5928 /* This type represents a type that was unrecognized in symbol read-in. */
5929 objfile_type->builtin_error
19f392bc 5930 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
46bf5051
UW
5931
5932 /* The following set of types is used for symbols with no
5933 debug information. */
5934 objfile_type->nodebug_text_symbol
77b7c781 5935 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5936 "<text variable, no debug info>");
0875794a 5937 objfile_type->nodebug_text_gnu_ifunc_symbol
77b7c781 5938 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5939 "<text gnu-indirect-function variable, no debug info>");
19f392bc 5940 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
0875794a 5941 objfile_type->nodebug_got_plt_symbol
19f392bc
UW
5942 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5943 "<text from jump slot in .got.plt, no debug info>",
5944 objfile_type->nodebug_text_symbol);
46bf5051 5945 objfile_type->nodebug_data_symbol
46a4882b 5946 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
46bf5051 5947 objfile_type->nodebug_unknown_symbol
46a4882b 5948 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
46bf5051 5949 objfile_type->nodebug_tls_symbol
46a4882b 5950 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
000177f0
AC
5951
5952 /* NOTE: on some targets, addresses and pointers are not necessarily
0a7cfe2c 5953 the same.
000177f0
AC
5954
5955 The upshot is:
5956 - gdb's `struct type' always describes the target's
5957 representation.
5958 - gdb's `struct value' objects should always hold values in
5959 target form.
5960 - gdb's CORE_ADDR values are addresses in the unified virtual
5961 address space that the assembler and linker work with. Thus,
5962 since target_read_memory takes a CORE_ADDR as an argument, it
5963 can access any memory on the target, even if the processor has
5964 separate code and data address spaces.
5965
46bf5051
UW
5966 In this context, objfile_type->builtin_core_addr is a bit odd:
5967 it's a target type for a value the target will never see. It's
5968 only used to hold the values of (typeless) linker symbols, which
5969 are indeed in the unified virtual address space. */
000177f0 5970
46bf5051 5971 objfile_type->builtin_core_addr
19f392bc
UW
5972 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5973 "__CORE_ADDR");
64c50499 5974
7a102139 5975 objfile_type_data.set (objfile, objfile_type);
46bf5051 5976 return objfile_type;
000177f0
AC
5977}
5978
6c265988 5979void _initialize_gdbtypes ();
c906108c 5980void
6c265988 5981_initialize_gdbtypes ()
c906108c 5982{
5674de60
UW
5983 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5984
ccce17b0
YQ
5985 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5986 _("Set debugging of C++ overloading."),
5987 _("Show debugging of C++ overloading."),
5988 _("When enabled, ranking of the "
5989 "functions is displayed."),
5990 NULL,
5991 show_overload_debug,
5992 &setdebuglist, &showdebuglist);
5674de60 5993
7ba81444 5994 /* Add user knob for controlling resolution of opaque types. */
5674de60 5995 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
5996 &opaque_type_resolution,
5997 _("Set resolution of opaque struct/class/union"
5998 " types (if set before loading symbols)."),
5999 _("Show resolution of opaque struct/class/union"
6000 " types (if set before loading symbols)."),
6001 NULL, NULL,
5674de60
UW
6002 show_opaque_type_resolution,
6003 &setlist, &showlist);
a451cb65
KS
6004
6005 /* Add an option to permit non-strict type checking. */
6006 add_setshow_boolean_cmd ("type", class_support,
6007 &strict_type_checking,
6008 _("Set strict type checking."),
6009 _("Show strict type checking."),
6010 NULL, NULL,
6011 show_strict_type_checking,
6012 &setchecklist, &showchecklist);
c906108c 6013}
This page took 2.470732 seconds and 4 git commands to generate.