Check has_more in mi_create_dynamic_varobj
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
28e7fd62 3 Copyright (C) 1992-2013 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
0e9f083f 23#include <string.h>
c906108c
SS
24#include "bfd.h"
25#include "symtab.h"
26#include "symfile.h"
27#include "objfiles.h"
28#include "gdbtypes.h"
29#include "expression.h"
30#include "language.h"
31#include "target.h"
32#include "value.h"
33#include "demangle.h"
34#include "complaints.h"
35#include "gdbcmd.h"
015a42b4 36#include "cp-abi.h"
a02fd225 37#include "gdb_assert.h"
ae5a43e0 38#include "hashtab.h"
8e7b59a5 39#include "exceptions.h"
8de20a37 40#include "cp-support.h"
ac3aafc7 41
6403aeea
SW
42/* Initialize BADNESS constants. */
43
a9d5ef47 44const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 45
a9d5ef47
SW
46const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 48
a9d5ef47 49const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 50
a9d5ef47
SW
51const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 58const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
59const struct rank BASE_CONVERSION_BADNESS = {2,0};
60const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
da096638 61const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 62const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 63const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 64
8da61cc4 65/* Floatformat pairs. */
f9e9243a
UW
66const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
69};
8da61cc4
DJ
70const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
73};
74const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
77};
78const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
81};
82const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
84 &floatformat_i387_ext
85};
86const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
89};
90const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
93};
94const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
97};
98const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
101};
102const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_vax_f,
104 &floatformat_vax_f
105};
106const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_d,
108 &floatformat_vax_d
109};
b14d30e1 110const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
f5aee5ee
AM
111 &floatformat_ibm_long_double_big,
112 &floatformat_ibm_long_double_little
b14d30e1 113};
8da61cc4 114
2873700e
KS
115/* Should opaque types be resolved? */
116
117static int opaque_type_resolution = 1;
118
119/* A flag to enable printing of debugging information of C++
120 overloading. */
121
122unsigned int overload_debug = 0;
123
a451cb65
KS
124/* A flag to enable strict type checking. */
125
126static int strict_type_checking = 1;
127
2873700e 128/* A function to show whether opaque types are resolved. */
5212577a 129
920d2a44
AC
130static void
131show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
132 struct cmd_list_element *c,
133 const char *value)
920d2a44 134{
3e43a32a
MS
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
137 value);
138}
139
2873700e 140/* A function to show whether C++ overload debugging is enabled. */
5212577a 141
920d2a44
AC
142static void
143show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145{
7ba81444
MS
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
147 value);
920d2a44 148}
c906108c 149
a451cb65
KS
150/* A function to show the status of strict type checking. */
151
152static void
153show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155{
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
157}
158
5212577a 159\f
e9bb382b
UW
160/* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
c906108c
SS
163
164struct type *
fba45db2 165alloc_type (struct objfile *objfile)
c906108c 166{
52f0bd74 167 struct type *type;
c906108c 168
e9bb382b
UW
169 gdb_assert (objfile != NULL);
170
7ba81444 171 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
174 struct main_type);
175 OBJSTAT (objfile, n_types++);
c906108c 176
e9bb382b
UW
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
c906108c 179
7ba81444 180 /* Initialize the fields that might not be zero. */
c906108c
SS
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
c906108c 183 TYPE_VPTR_FIELDNO (type) = -1;
2fdde8f8 184 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 185
c16abbde 186 return type;
c906108c
SS
187}
188
e9bb382b
UW
189/* Allocate a new GDBARCH-associated type structure and fill it
190 with some defaults. Space for the type structure is allocated
191 on the heap. */
192
193struct type *
194alloc_type_arch (struct gdbarch *gdbarch)
195{
196 struct type *type;
197
198 gdb_assert (gdbarch != NULL);
199
200 /* Alloc the structure and start off with all fields zeroed. */
201
202 type = XZALLOC (struct type);
203 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
204
205 TYPE_OBJFILE_OWNED (type) = 0;
206 TYPE_OWNER (type).gdbarch = gdbarch;
207
208 /* Initialize the fields that might not be zero. */
209
210 TYPE_CODE (type) = TYPE_CODE_UNDEF;
211 TYPE_VPTR_FIELDNO (type) = -1;
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215}
216
217/* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221struct type *
222alloc_type_copy (const struct type *type)
223{
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228}
229
230/* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233struct gdbarch *
234get_type_arch (const struct type *type)
235{
236 if (TYPE_OBJFILE_OWNED (type))
237 return get_objfile_arch (TYPE_OWNER (type).objfile);
238 else
239 return TYPE_OWNER (type).gdbarch;
240}
241
99ad9427
YQ
242/* See gdbtypes.h. */
243
244struct type *
245get_target_type (struct type *type)
246{
247 if (type != NULL)
248 {
249 type = TYPE_TARGET_TYPE (type);
250 if (type != NULL)
251 type = check_typedef (type);
252 }
253
254 return type;
255}
256
2fdde8f8
DJ
257/* Alloc a new type instance structure, fill it with some defaults,
258 and point it at OLDTYPE. Allocate the new type instance from the
259 same place as OLDTYPE. */
260
261static struct type *
262alloc_type_instance (struct type *oldtype)
263{
264 struct type *type;
265
266 /* Allocate the structure. */
267
e9bb382b 268 if (! TYPE_OBJFILE_OWNED (oldtype))
1deafd4e 269 type = XZALLOC (struct type);
2fdde8f8 270 else
1deafd4e
PA
271 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
272 struct type);
273
2fdde8f8
DJ
274 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
275
276 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
277
c16abbde 278 return type;
2fdde8f8
DJ
279}
280
281/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 282 replacing it with something else. Preserve owner information. */
5212577a 283
2fdde8f8
DJ
284static void
285smash_type (struct type *type)
286{
e9bb382b
UW
287 int objfile_owned = TYPE_OBJFILE_OWNED (type);
288 union type_owner owner = TYPE_OWNER (type);
289
2fdde8f8
DJ
290 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
291
e9bb382b
UW
292 /* Restore owner information. */
293 TYPE_OBJFILE_OWNED (type) = objfile_owned;
294 TYPE_OWNER (type) = owner;
295
2fdde8f8
DJ
296 /* For now, delete the rings. */
297 TYPE_CHAIN (type) = type;
298
299 /* For now, leave the pointer/reference types alone. */
300}
301
c906108c
SS
302/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
303 to a pointer to memory where the pointer type should be stored.
304 If *TYPEPTR is zero, update it to point to the pointer type we return.
305 We allocate new memory if needed. */
306
307struct type *
fba45db2 308make_pointer_type (struct type *type, struct type **typeptr)
c906108c 309{
52f0bd74 310 struct type *ntype; /* New type */
053cb41b 311 struct type *chain;
c906108c
SS
312
313 ntype = TYPE_POINTER_TYPE (type);
314
c5aa993b 315 if (ntype)
c906108c 316 {
c5aa993b 317 if (typeptr == 0)
7ba81444
MS
318 return ntype; /* Don't care about alloc,
319 and have new type. */
c906108c 320 else if (*typeptr == 0)
c5aa993b 321 {
7ba81444 322 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 323 return ntype;
c5aa993b 324 }
c906108c
SS
325 }
326
327 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
328 {
e9bb382b 329 ntype = alloc_type_copy (type);
c906108c
SS
330 if (typeptr)
331 *typeptr = ntype;
332 }
7ba81444 333 else /* We have storage, but need to reset it. */
c906108c
SS
334 {
335 ntype = *typeptr;
053cb41b 336 chain = TYPE_CHAIN (ntype);
2fdde8f8 337 smash_type (ntype);
053cb41b 338 TYPE_CHAIN (ntype) = chain;
c906108c
SS
339 }
340
341 TYPE_TARGET_TYPE (ntype) = type;
342 TYPE_POINTER_TYPE (type) = ntype;
343
5212577a 344 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 345
50810684
UW
346 TYPE_LENGTH (ntype)
347 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
348 TYPE_CODE (ntype) = TYPE_CODE_PTR;
349
67b2adb2 350 /* Mark pointers as unsigned. The target converts between pointers
76e71323 351 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 352 gdbarch_address_to_pointer. */
876cecd0 353 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 354
053cb41b
JB
355 /* Update the length of all the other variants of this type. */
356 chain = TYPE_CHAIN (ntype);
357 while (chain != ntype)
358 {
359 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
360 chain = TYPE_CHAIN (chain);
361 }
362
c906108c
SS
363 return ntype;
364}
365
366/* Given a type TYPE, return a type of pointers to that type.
367 May need to construct such a type if this is the first use. */
368
369struct type *
fba45db2 370lookup_pointer_type (struct type *type)
c906108c 371{
c5aa993b 372 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
373}
374
7ba81444
MS
375/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
376 points to a pointer to memory where the reference type should be
377 stored. If *TYPEPTR is zero, update it to point to the reference
378 type we return. We allocate new memory if needed. */
c906108c
SS
379
380struct type *
fba45db2 381make_reference_type (struct type *type, struct type **typeptr)
c906108c 382{
52f0bd74 383 struct type *ntype; /* New type */
1e98b326 384 struct type *chain;
c906108c
SS
385
386 ntype = TYPE_REFERENCE_TYPE (type);
387
c5aa993b 388 if (ntype)
c906108c 389 {
c5aa993b 390 if (typeptr == 0)
7ba81444
MS
391 return ntype; /* Don't care about alloc,
392 and have new type. */
c906108c 393 else if (*typeptr == 0)
c5aa993b 394 {
7ba81444 395 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 396 return ntype;
c5aa993b 397 }
c906108c
SS
398 }
399
400 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
401 {
e9bb382b 402 ntype = alloc_type_copy (type);
c906108c
SS
403 if (typeptr)
404 *typeptr = ntype;
405 }
7ba81444 406 else /* We have storage, but need to reset it. */
c906108c
SS
407 {
408 ntype = *typeptr;
1e98b326 409 chain = TYPE_CHAIN (ntype);
2fdde8f8 410 smash_type (ntype);
1e98b326 411 TYPE_CHAIN (ntype) = chain;
c906108c
SS
412 }
413
414 TYPE_TARGET_TYPE (ntype) = type;
415 TYPE_REFERENCE_TYPE (type) = ntype;
416
7ba81444
MS
417 /* FIXME! Assume the machine has only one representation for
418 references, and that it matches the (only) representation for
419 pointers! */
c906108c 420
50810684
UW
421 TYPE_LENGTH (ntype) =
422 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c 423 TYPE_CODE (ntype) = TYPE_CODE_REF;
c5aa993b 424
c906108c
SS
425 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
426 TYPE_REFERENCE_TYPE (type) = ntype;
427
1e98b326
JB
428 /* Update the length of all the other variants of this type. */
429 chain = TYPE_CHAIN (ntype);
430 while (chain != ntype)
431 {
432 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
433 chain = TYPE_CHAIN (chain);
434 }
435
c906108c
SS
436 return ntype;
437}
438
7ba81444
MS
439/* Same as above, but caller doesn't care about memory allocation
440 details. */
c906108c
SS
441
442struct type *
fba45db2 443lookup_reference_type (struct type *type)
c906108c 444{
c5aa993b 445 return make_reference_type (type, (struct type **) 0);
c906108c
SS
446}
447
7ba81444
MS
448/* Lookup a function type that returns type TYPE. TYPEPTR, if
449 nonzero, points to a pointer to memory where the function type
450 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 451 function type we return. We allocate new memory if needed. */
c906108c
SS
452
453struct type *
0c8b41f1 454make_function_type (struct type *type, struct type **typeptr)
c906108c 455{
52f0bd74 456 struct type *ntype; /* New type */
c906108c
SS
457
458 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
459 {
e9bb382b 460 ntype = alloc_type_copy (type);
c906108c
SS
461 if (typeptr)
462 *typeptr = ntype;
463 }
7ba81444 464 else /* We have storage, but need to reset it. */
c906108c
SS
465 {
466 ntype = *typeptr;
2fdde8f8 467 smash_type (ntype);
c906108c
SS
468 }
469
470 TYPE_TARGET_TYPE (ntype) = type;
471
472 TYPE_LENGTH (ntype) = 1;
473 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 474
b6cdc2c1
JK
475 INIT_FUNC_SPECIFIC (ntype);
476
c906108c
SS
477 return ntype;
478}
479
c906108c
SS
480/* Given a type TYPE, return a type of functions that return that type.
481 May need to construct such a type if this is the first use. */
482
483struct type *
fba45db2 484lookup_function_type (struct type *type)
c906108c 485{
0c8b41f1 486 return make_function_type (type, (struct type **) 0);
c906108c
SS
487}
488
71918a86 489/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
490 function type. If the final type in PARAM_TYPES is NULL, make a
491 varargs function. */
71918a86
TT
492
493struct type *
494lookup_function_type_with_arguments (struct type *type,
495 int nparams,
496 struct type **param_types)
497{
498 struct type *fn = make_function_type (type, (struct type **) 0);
499 int i;
500
e314d629 501 if (nparams > 0)
a6fb9c08 502 {
e314d629
TT
503 if (param_types[nparams - 1] == NULL)
504 {
505 --nparams;
506 TYPE_VARARGS (fn) = 1;
507 }
508 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
509 == TYPE_CODE_VOID)
510 {
511 --nparams;
512 /* Caller should have ensured this. */
513 gdb_assert (nparams == 0);
514 TYPE_PROTOTYPED (fn) = 1;
515 }
a6fb9c08
TT
516 }
517
71918a86
TT
518 TYPE_NFIELDS (fn) = nparams;
519 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
520 for (i = 0; i < nparams; ++i)
521 TYPE_FIELD_TYPE (fn, i) = param_types[i];
522
523 return fn;
524}
525
47663de5
MS
526/* Identify address space identifier by name --
527 return the integer flag defined in gdbtypes.h. */
5212577a
DE
528
529int
50810684 530address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
47663de5 531{
8b2dbe47 532 int type_flags;
d8734c88 533
7ba81444 534 /* Check for known address space delimiters. */
47663de5 535 if (!strcmp (space_identifier, "code"))
876cecd0 536 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 537 else if (!strcmp (space_identifier, "data"))
876cecd0 538 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
539 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
540 && gdbarch_address_class_name_to_type_flags (gdbarch,
541 space_identifier,
542 &type_flags))
8b2dbe47 543 return type_flags;
47663de5 544 else
8a3fe4f8 545 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
546}
547
548/* Identify address space identifier by integer flag as defined in
7ba81444 549 gdbtypes.h -- return the string version of the adress space name. */
47663de5 550
321432c0 551const char *
50810684 552address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 553{
876cecd0 554 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 555 return "code";
876cecd0 556 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 557 return "data";
876cecd0 558 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
559 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
560 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
561 else
562 return NULL;
563}
564
2fdde8f8 565/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
566
567 If STORAGE is non-NULL, create the new type instance there.
568 STORAGE must be in the same obstack as TYPE. */
47663de5 569
b9362cc7 570static struct type *
2fdde8f8
DJ
571make_qualified_type (struct type *type, int new_flags,
572 struct type *storage)
47663de5
MS
573{
574 struct type *ntype;
575
576 ntype = type;
5f61c20e
JK
577 do
578 {
579 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
580 return ntype;
581 ntype = TYPE_CHAIN (ntype);
582 }
583 while (ntype != type);
47663de5 584
2fdde8f8
DJ
585 /* Create a new type instance. */
586 if (storage == NULL)
587 ntype = alloc_type_instance (type);
588 else
589 {
7ba81444
MS
590 /* If STORAGE was provided, it had better be in the same objfile
591 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
592 if one objfile is freed and the other kept, we'd have
593 dangling pointers. */
ad766c0a
JB
594 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
595
2fdde8f8
DJ
596 ntype = storage;
597 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
598 TYPE_CHAIN (ntype) = ntype;
599 }
47663de5
MS
600
601 /* Pointers or references to the original type are not relevant to
2fdde8f8 602 the new type. */
47663de5
MS
603 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
604 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 605
2fdde8f8
DJ
606 /* Chain the new qualified type to the old type. */
607 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
608 TYPE_CHAIN (type) = ntype;
609
610 /* Now set the instance flags and return the new type. */
611 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 612
ab5d3da6
KB
613 /* Set length of new type to that of the original type. */
614 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
615
47663de5
MS
616 return ntype;
617}
618
2fdde8f8
DJ
619/* Make an address-space-delimited variant of a type -- a type that
620 is identical to the one supplied except that it has an address
621 space attribute attached to it (such as "code" or "data").
622
7ba81444
MS
623 The space attributes "code" and "data" are for Harvard
624 architectures. The address space attributes are for architectures
625 which have alternately sized pointers or pointers with alternate
626 representations. */
2fdde8f8
DJ
627
628struct type *
629make_type_with_address_space (struct type *type, int space_flag)
630{
2fdde8f8 631 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
632 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
633 | TYPE_INSTANCE_FLAG_DATA_SPACE
634 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
635 | space_flag);
636
637 return make_qualified_type (type, new_flags, NULL);
638}
c906108c
SS
639
640/* Make a "c-v" variant of a type -- a type that is identical to the
641 one supplied except that it may have const or volatile attributes
642 CNST is a flag for setting the const attribute
643 VOLTL is a flag for setting the volatile attribute
644 TYPE is the base type whose variant we are creating.
c906108c 645
ad766c0a
JB
646 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
647 storage to hold the new qualified type; *TYPEPTR and TYPE must be
648 in the same objfile. Otherwise, allocate fresh memory for the new
649 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
650 new type we construct. */
5212577a 651
c906108c 652struct type *
7ba81444
MS
653make_cv_type (int cnst, int voltl,
654 struct type *type,
655 struct type **typeptr)
c906108c 656{
52f0bd74 657 struct type *ntype; /* New type */
c906108c 658
2fdde8f8 659 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
660 & ~(TYPE_INSTANCE_FLAG_CONST
661 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 662
c906108c 663 if (cnst)
876cecd0 664 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
665
666 if (voltl)
876cecd0 667 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 668
2fdde8f8 669 if (typeptr && *typeptr != NULL)
a02fd225 670 {
ad766c0a
JB
671 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
672 a C-V variant chain that threads across objfiles: if one
673 objfile gets freed, then the other has a broken C-V chain.
674
675 This code used to try to copy over the main type from TYPE to
676 *TYPEPTR if they were in different objfiles, but that's
677 wrong, too: TYPE may have a field list or member function
678 lists, which refer to types of their own, etc. etc. The
679 whole shebang would need to be copied over recursively; you
680 can't have inter-objfile pointers. The only thing to do is
681 to leave stub types as stub types, and look them up afresh by
682 name each time you encounter them. */
683 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
684 }
685
7ba81444
MS
686 ntype = make_qualified_type (type, new_flags,
687 typeptr ? *typeptr : NULL);
c906108c 688
2fdde8f8
DJ
689 if (typeptr != NULL)
690 *typeptr = ntype;
a02fd225 691
2fdde8f8 692 return ntype;
a02fd225 693}
c906108c 694
06d66ee9
TT
695/* Make a 'restrict'-qualified version of TYPE. */
696
697struct type *
698make_restrict_type (struct type *type)
699{
700 return make_qualified_type (type,
701 (TYPE_INSTANCE_FLAGS (type)
702 | TYPE_INSTANCE_FLAG_RESTRICT),
703 NULL);
704}
705
2fdde8f8
DJ
706/* Replace the contents of ntype with the type *type. This changes the
707 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
708 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 709
cda6c68a
JB
710 In order to build recursive types, it's inevitable that we'll need
711 to update types in place --- but this sort of indiscriminate
712 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
713 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
714 clear if more steps are needed. */
5212577a 715
dd6bda65
DJ
716void
717replace_type (struct type *ntype, struct type *type)
718{
ab5d3da6 719 struct type *chain;
dd6bda65 720
ad766c0a
JB
721 /* These two types had better be in the same objfile. Otherwise,
722 the assignment of one type's main type structure to the other
723 will produce a type with references to objects (names; field
724 lists; etc.) allocated on an objfile other than its own. */
725 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
726
2fdde8f8 727 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 728
7ba81444
MS
729 /* The type length is not a part of the main type. Update it for
730 each type on the variant chain. */
ab5d3da6 731 chain = ntype;
5f61c20e
JK
732 do
733 {
734 /* Assert that this element of the chain has no address-class bits
735 set in its flags. Such type variants might have type lengths
736 which are supposed to be different from the non-address-class
737 variants. This assertion shouldn't ever be triggered because
738 symbol readers which do construct address-class variants don't
739 call replace_type(). */
740 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
741
742 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
743 chain = TYPE_CHAIN (chain);
744 }
745 while (ntype != chain);
ab5d3da6 746
2fdde8f8
DJ
747 /* Assert that the two types have equivalent instance qualifiers.
748 This should be true for at least all of our debug readers. */
749 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
750}
751
c906108c
SS
752/* Implement direct support for MEMBER_TYPE in GNU C++.
753 May need to construct such a type if this is the first use.
754 The TYPE is the type of the member. The DOMAIN is the type
755 of the aggregate that the member belongs to. */
756
757struct type *
0d5de010 758lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 759{
52f0bd74 760 struct type *mtype;
c906108c 761
e9bb382b 762 mtype = alloc_type_copy (type);
0d5de010 763 smash_to_memberptr_type (mtype, domain, type);
c16abbde 764 return mtype;
c906108c
SS
765}
766
0d5de010
DJ
767/* Return a pointer-to-method type, for a method of type TO_TYPE. */
768
769struct type *
770lookup_methodptr_type (struct type *to_type)
771{
772 struct type *mtype;
773
e9bb382b 774 mtype = alloc_type_copy (to_type);
0b92b5bb 775 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
776 return mtype;
777}
778
7ba81444
MS
779/* Allocate a stub method whose return type is TYPE. This apparently
780 happens for speed of symbol reading, since parsing out the
781 arguments to the method is cpu-intensive, the way we are doing it.
782 So, we will fill in arguments later. This always returns a fresh
783 type. */
c906108c
SS
784
785struct type *
fba45db2 786allocate_stub_method (struct type *type)
c906108c
SS
787{
788 struct type *mtype;
789
e9bb382b
UW
790 mtype = alloc_type_copy (type);
791 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
792 TYPE_LENGTH (mtype) = 1;
793 TYPE_STUB (mtype) = 1;
c906108c
SS
794 TYPE_TARGET_TYPE (mtype) = type;
795 /* _DOMAIN_TYPE (mtype) = unknown yet */
c16abbde 796 return mtype;
c906108c
SS
797}
798
7ba81444
MS
799/* Create a range type using either a blank type supplied in
800 RESULT_TYPE, or creating a new type, inheriting the objfile from
801 INDEX_TYPE.
c906108c 802
7ba81444
MS
803 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
804 to HIGH_BOUND, inclusive.
c906108c 805
7ba81444
MS
806 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
807 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
c906108c
SS
808
809struct type *
fba45db2 810create_range_type (struct type *result_type, struct type *index_type,
43bbcdc2 811 LONGEST low_bound, LONGEST high_bound)
c906108c
SS
812{
813 if (result_type == NULL)
e9bb382b 814 result_type = alloc_type_copy (index_type);
c906108c
SS
815 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
816 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 817 if (TYPE_STUB (index_type))
876cecd0 818 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
819 else
820 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
43bbcdc2
PH
821 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
822 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
262452ec
JK
823 TYPE_LOW_BOUND (result_type) = low_bound;
824 TYPE_HIGH_BOUND (result_type) = high_bound;
c906108c 825
c5aa993b 826 if (low_bound >= 0)
876cecd0 827 TYPE_UNSIGNED (result_type) = 1;
c906108c 828
262452ec 829 return result_type;
c906108c
SS
830}
831
7ba81444
MS
832/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
833 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
834 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
835
836int
fba45db2 837get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c
SS
838{
839 CHECK_TYPEDEF (type);
840 switch (TYPE_CODE (type))
841 {
842 case TYPE_CODE_RANGE:
843 *lowp = TYPE_LOW_BOUND (type);
844 *highp = TYPE_HIGH_BOUND (type);
845 return 1;
846 case TYPE_CODE_ENUM:
847 if (TYPE_NFIELDS (type) > 0)
848 {
849 /* The enums may not be sorted by value, so search all
0963b4bd 850 entries. */
c906108c
SS
851 int i;
852
14e75d8e 853 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
c906108c
SS
854 for (i = 0; i < TYPE_NFIELDS (type); i++)
855 {
14e75d8e
JK
856 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
857 *lowp = TYPE_FIELD_ENUMVAL (type, i);
858 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
859 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
860 }
861
7ba81444 862 /* Set unsigned indicator if warranted. */
c5aa993b 863 if (*lowp >= 0)
c906108c 864 {
876cecd0 865 TYPE_UNSIGNED (type) = 1;
c906108c
SS
866 }
867 }
868 else
869 {
870 *lowp = 0;
871 *highp = -1;
872 }
873 return 0;
874 case TYPE_CODE_BOOL:
875 *lowp = 0;
876 *highp = 1;
877 return 0;
878 case TYPE_CODE_INT:
c5aa993b 879 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
880 return -1;
881 if (!TYPE_UNSIGNED (type))
882 {
c5aa993b 883 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
884 *highp = -*lowp - 1;
885 return 0;
886 }
7ba81444 887 /* ... fall through for unsigned ints ... */
c906108c
SS
888 case TYPE_CODE_CHAR:
889 *lowp = 0;
890 /* This round-about calculation is to avoid shifting by
7b83ea04 891 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 892 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
893 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
894 *highp = (*highp - 1) | *highp;
895 return 0;
896 default:
897 return -1;
898 }
899}
900
dbc98a8b
KW
901/* Assuming TYPE is a simple, non-empty array type, compute its upper
902 and lower bound. Save the low bound into LOW_BOUND if not NULL.
903 Save the high bound into HIGH_BOUND if not NULL.
904
0963b4bd 905 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
906 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
907
908 We now simply use get_discrete_bounds call to get the values
909 of the low and high bounds.
910 get_discrete_bounds can return three values:
911 1, meaning that index is a range,
912 0, meaning that index is a discrete type,
913 or -1 for failure. */
914
915int
916get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
917{
918 struct type *index = TYPE_INDEX_TYPE (type);
919 LONGEST low = 0;
920 LONGEST high = 0;
921 int res;
922
923 if (index == NULL)
924 return 0;
925
926 res = get_discrete_bounds (index, &low, &high);
927 if (res == -1)
928 return 0;
929
930 /* Check if the array bounds are undefined. */
931 if (res == 1
932 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
933 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
934 return 0;
935
936 if (low_bound)
937 *low_bound = low;
938
939 if (high_bound)
940 *high_bound = high;
941
942 return 1;
943}
944
7ba81444
MS
945/* Create an array type using either a blank type supplied in
946 RESULT_TYPE, or creating a new type, inheriting the objfile from
947 RANGE_TYPE.
c906108c
SS
948
949 Elements will be of type ELEMENT_TYPE, the indices will be of type
950 RANGE_TYPE.
951
7ba81444
MS
952 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
953 sure it is TYPE_CODE_UNDEF before we bash it into an array
954 type? */
c906108c
SS
955
956struct type *
7ba81444
MS
957create_array_type (struct type *result_type,
958 struct type *element_type,
fba45db2 959 struct type *range_type)
c906108c
SS
960{
961 LONGEST low_bound, high_bound;
962
963 if (result_type == NULL)
e9bb382b
UW
964 result_type = alloc_type_copy (range_type);
965
c906108c
SS
966 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
967 TYPE_TARGET_TYPE (result_type) = element_type;
968 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
969 low_bound = high_bound = 0;
970 CHECK_TYPEDEF (element_type);
ab0d6e0d
JB
971 /* Be careful when setting the array length. Ada arrays can be
972 empty arrays with the high_bound being smaller than the low_bound.
973 In such cases, the array length should be zero. */
974 if (high_bound < low_bound)
975 TYPE_LENGTH (result_type) = 0;
976 else
977 TYPE_LENGTH (result_type) =
978 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
c906108c
SS
979 TYPE_NFIELDS (result_type) = 1;
980 TYPE_FIELDS (result_type) =
1deafd4e 981 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 982 TYPE_INDEX_TYPE (result_type) = range_type;
c906108c
SS
983 TYPE_VPTR_FIELDNO (result_type) = -1;
984
0963b4bd 985 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
c906108c 986 if (TYPE_LENGTH (result_type) == 0)
876cecd0 987 TYPE_TARGET_STUB (result_type) = 1;
c906108c 988
c16abbde 989 return result_type;
c906108c
SS
990}
991
e3506a9f
UW
992struct type *
993lookup_array_range_type (struct type *element_type,
63375b74 994 LONGEST low_bound, LONGEST high_bound)
e3506a9f 995{
50810684 996 struct gdbarch *gdbarch = get_type_arch (element_type);
e3506a9f
UW
997 struct type *index_type = builtin_type (gdbarch)->builtin_int;
998 struct type *range_type
999 = create_range_type (NULL, index_type, low_bound, high_bound);
d8734c88 1000
e3506a9f
UW
1001 return create_array_type (NULL, element_type, range_type);
1002}
1003
7ba81444
MS
1004/* Create a string type using either a blank type supplied in
1005 RESULT_TYPE, or creating a new type. String types are similar
1006 enough to array of char types that we can use create_array_type to
1007 build the basic type and then bash it into a string type.
c906108c
SS
1008
1009 For fixed length strings, the range type contains 0 as the lower
1010 bound and the length of the string minus one as the upper bound.
1011
7ba81444
MS
1012 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1013 sure it is TYPE_CODE_UNDEF before we bash it into a string
1014 type? */
c906108c
SS
1015
1016struct type *
3b7538c0
UW
1017create_string_type (struct type *result_type,
1018 struct type *string_char_type,
7ba81444 1019 struct type *range_type)
c906108c
SS
1020{
1021 result_type = create_array_type (result_type,
f290d38e 1022 string_char_type,
c906108c
SS
1023 range_type);
1024 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 1025 return result_type;
c906108c
SS
1026}
1027
e3506a9f
UW
1028struct type *
1029lookup_string_range_type (struct type *string_char_type,
63375b74 1030 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1031{
1032 struct type *result_type;
d8734c88 1033
e3506a9f
UW
1034 result_type = lookup_array_range_type (string_char_type,
1035 low_bound, high_bound);
1036 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1037 return result_type;
1038}
1039
c906108c 1040struct type *
fba45db2 1041create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1042{
c906108c 1043 if (result_type == NULL)
e9bb382b
UW
1044 result_type = alloc_type_copy (domain_type);
1045
c906108c
SS
1046 TYPE_CODE (result_type) = TYPE_CODE_SET;
1047 TYPE_NFIELDS (result_type) = 1;
1deafd4e 1048 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 1049
74a9bb82 1050 if (!TYPE_STUB (domain_type))
c906108c 1051 {
f9780d5b 1052 LONGEST low_bound, high_bound, bit_length;
d8734c88 1053
c906108c
SS
1054 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1055 low_bound = high_bound = 0;
1056 bit_length = high_bound - low_bound + 1;
1057 TYPE_LENGTH (result_type)
1058 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1059 if (low_bound >= 0)
876cecd0 1060 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
1061 }
1062 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1063
c16abbde 1064 return result_type;
c906108c
SS
1065}
1066
ea37ba09
DJ
1067/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1068 and any array types nested inside it. */
1069
1070void
1071make_vector_type (struct type *array_type)
1072{
1073 struct type *inner_array, *elt_type;
1074 int flags;
1075
1076 /* Find the innermost array type, in case the array is
1077 multi-dimensional. */
1078 inner_array = array_type;
1079 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1080 inner_array = TYPE_TARGET_TYPE (inner_array);
1081
1082 elt_type = TYPE_TARGET_TYPE (inner_array);
1083 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1084 {
2844d6b5 1085 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1086 elt_type = make_qualified_type (elt_type, flags, NULL);
1087 TYPE_TARGET_TYPE (inner_array) = elt_type;
1088 }
1089
876cecd0 1090 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1091}
1092
794ac428 1093struct type *
ac3aafc7
EZ
1094init_vector_type (struct type *elt_type, int n)
1095{
1096 struct type *array_type;
d8734c88 1097
e3506a9f 1098 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1099 make_vector_type (array_type);
ac3aafc7
EZ
1100 return array_type;
1101}
1102
0d5de010
DJ
1103/* Smash TYPE to be a type of pointers to members of DOMAIN with type
1104 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1105 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1106 TYPE doesn't include the offset (that's the value of the MEMBER
1107 itself), but does include the structure type into which it points
1108 (for some reason).
c906108c 1109
7ba81444
MS
1110 When "smashing" the type, we preserve the objfile that the old type
1111 pointed to, since we aren't changing where the type is actually
c906108c
SS
1112 allocated. */
1113
1114void
0d5de010
DJ
1115smash_to_memberptr_type (struct type *type, struct type *domain,
1116 struct type *to_type)
c906108c 1117{
2fdde8f8 1118 smash_type (type);
c906108c
SS
1119 TYPE_TARGET_TYPE (type) = to_type;
1120 TYPE_DOMAIN_TYPE (type) = domain;
0d5de010
DJ
1121 /* Assume that a data member pointer is the same size as a normal
1122 pointer. */
50810684
UW
1123 TYPE_LENGTH (type)
1124 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
0d5de010 1125 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c
SS
1126}
1127
0b92b5bb
TT
1128/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1129
1130 When "smashing" the type, we preserve the objfile that the old type
1131 pointed to, since we aren't changing where the type is actually
1132 allocated. */
1133
1134void
1135smash_to_methodptr_type (struct type *type, struct type *to_type)
1136{
1137 smash_type (type);
1138 TYPE_TARGET_TYPE (type) = to_type;
1139 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1140 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1141 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1142}
1143
c906108c
SS
1144/* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1145 METHOD just means `function that gets an extra "this" argument'.
1146
7ba81444
MS
1147 When "smashing" the type, we preserve the objfile that the old type
1148 pointed to, since we aren't changing where the type is actually
c906108c
SS
1149 allocated. */
1150
1151void
fba45db2 1152smash_to_method_type (struct type *type, struct type *domain,
ad2f7632
DJ
1153 struct type *to_type, struct field *args,
1154 int nargs, int varargs)
c906108c 1155{
2fdde8f8 1156 smash_type (type);
c906108c
SS
1157 TYPE_TARGET_TYPE (type) = to_type;
1158 TYPE_DOMAIN_TYPE (type) = domain;
ad2f7632
DJ
1159 TYPE_FIELDS (type) = args;
1160 TYPE_NFIELDS (type) = nargs;
1161 if (varargs)
876cecd0 1162 TYPE_VARARGS (type) = 1;
c906108c
SS
1163 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1164 TYPE_CODE (type) = TYPE_CODE_METHOD;
1165}
1166
1167/* Return a typename for a struct/union/enum type without "struct ",
1168 "union ", or "enum ". If the type has a NULL name, return NULL. */
1169
0d5cff50 1170const char *
aa1ee363 1171type_name_no_tag (const struct type *type)
c906108c
SS
1172{
1173 if (TYPE_TAG_NAME (type) != NULL)
1174 return TYPE_TAG_NAME (type);
1175
7ba81444
MS
1176 /* Is there code which expects this to return the name if there is
1177 no tag name? My guess is that this is mainly used for C++ in
1178 cases where the two will always be the same. */
c906108c
SS
1179 return TYPE_NAME (type);
1180}
1181
d8228535
JK
1182/* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1183 Since GCC PR debug/47510 DWARF provides associated information to detect the
1184 anonymous class linkage name from its typedef.
1185
1186 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1187 apply it itself. */
1188
1189const char *
1190type_name_no_tag_or_error (struct type *type)
1191{
1192 struct type *saved_type = type;
1193 const char *name;
1194 struct objfile *objfile;
1195
1196 CHECK_TYPEDEF (type);
1197
1198 name = type_name_no_tag (type);
1199 if (name != NULL)
1200 return name;
1201
1202 name = type_name_no_tag (saved_type);
1203 objfile = TYPE_OBJFILE (saved_type);
1204 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
4262abfb
JK
1205 name ? name : "<anonymous>",
1206 objfile ? objfile_name (objfile) : "<arch>");
d8228535
JK
1207}
1208
7ba81444
MS
1209/* Lookup a typedef or primitive type named NAME, visible in lexical
1210 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1211 suitably defined. */
c906108c
SS
1212
1213struct type *
e6c014f2 1214lookup_typename (const struct language_defn *language,
ddd49eee 1215 struct gdbarch *gdbarch, const char *name,
34eaf542 1216 const struct block *block, int noerr)
c906108c 1217{
52f0bd74 1218 struct symbol *sym;
659c9f3a 1219 struct type *type;
c906108c 1220
774b6a14 1221 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
c51fe631
DE
1222 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1223 return SYMBOL_TYPE (sym);
1224
659c9f3a
DE
1225 type = language_lookup_primitive_type_by_name (language, gdbarch, name);
1226 if (type)
1227 return type;
c51fe631
DE
1228
1229 if (noerr)
1230 return NULL;
1231 error (_("No type named %s."), name);
c906108c
SS
1232}
1233
1234struct type *
e6c014f2 1235lookup_unsigned_typename (const struct language_defn *language,
0d5cff50 1236 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1237{
1238 char *uns = alloca (strlen (name) + 10);
1239
1240 strcpy (uns, "unsigned ");
1241 strcpy (uns + 9, name);
e6c014f2 1242 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
c906108c
SS
1243}
1244
1245struct type *
e6c014f2 1246lookup_signed_typename (const struct language_defn *language,
0d5cff50 1247 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1248{
1249 struct type *t;
1250 char *uns = alloca (strlen (name) + 8);
1251
1252 strcpy (uns, "signed ");
1253 strcpy (uns + 7, name);
e6c014f2 1254 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
7ba81444 1255 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1256 if (t != NULL)
1257 return t;
e6c014f2 1258 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
c906108c
SS
1259}
1260
1261/* Lookup a structure type named "struct NAME",
1262 visible in lexical block BLOCK. */
1263
1264struct type *
270140bd 1265lookup_struct (const char *name, const struct block *block)
c906108c 1266{
52f0bd74 1267 struct symbol *sym;
c906108c 1268
2570f2b7 1269 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1270
1271 if (sym == NULL)
1272 {
8a3fe4f8 1273 error (_("No struct type named %s."), name);
c906108c
SS
1274 }
1275 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1276 {
7ba81444
MS
1277 error (_("This context has class, union or enum %s, not a struct."),
1278 name);
c906108c
SS
1279 }
1280 return (SYMBOL_TYPE (sym));
1281}
1282
1283/* Lookup a union type named "union NAME",
1284 visible in lexical block BLOCK. */
1285
1286struct type *
270140bd 1287lookup_union (const char *name, const struct block *block)
c906108c 1288{
52f0bd74 1289 struct symbol *sym;
c5aa993b 1290 struct type *t;
c906108c 1291
2570f2b7 1292 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1293
1294 if (sym == NULL)
8a3fe4f8 1295 error (_("No union type named %s."), name);
c906108c 1296
c5aa993b 1297 t = SYMBOL_TYPE (sym);
c906108c
SS
1298
1299 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1300 return t;
c906108c 1301
7ba81444
MS
1302 /* If we get here, it's not a union. */
1303 error (_("This context has class, struct or enum %s, not a union."),
1304 name);
c906108c
SS
1305}
1306
c906108c
SS
1307/* Lookup an enum type named "enum NAME",
1308 visible in lexical block BLOCK. */
1309
1310struct type *
270140bd 1311lookup_enum (const char *name, const struct block *block)
c906108c 1312{
52f0bd74 1313 struct symbol *sym;
c906108c 1314
2570f2b7 1315 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1316 if (sym == NULL)
1317 {
8a3fe4f8 1318 error (_("No enum type named %s."), name);
c906108c
SS
1319 }
1320 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1321 {
7ba81444
MS
1322 error (_("This context has class, struct or union %s, not an enum."),
1323 name);
c906108c
SS
1324 }
1325 return (SYMBOL_TYPE (sym));
1326}
1327
1328/* Lookup a template type named "template NAME<TYPE>",
1329 visible in lexical block BLOCK. */
1330
1331struct type *
7ba81444 1332lookup_template_type (char *name, struct type *type,
270140bd 1333 const struct block *block)
c906108c
SS
1334{
1335 struct symbol *sym;
7ba81444
MS
1336 char *nam = (char *)
1337 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1338
c906108c
SS
1339 strcpy (nam, name);
1340 strcat (nam, "<");
0004e5a2 1341 strcat (nam, TYPE_NAME (type));
0963b4bd 1342 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1343
2570f2b7 1344 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
c906108c
SS
1345
1346 if (sym == NULL)
1347 {
8a3fe4f8 1348 error (_("No template type named %s."), name);
c906108c
SS
1349 }
1350 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1351 {
7ba81444
MS
1352 error (_("This context has class, union or enum %s, not a struct."),
1353 name);
c906108c
SS
1354 }
1355 return (SYMBOL_TYPE (sym));
1356}
1357
7ba81444
MS
1358/* Given a type TYPE, lookup the type of the component of type named
1359 NAME.
c906108c 1360
7ba81444
MS
1361 TYPE can be either a struct or union, or a pointer or reference to
1362 a struct or union. If it is a pointer or reference, its target
1363 type is automatically used. Thus '.' and '->' are interchangable,
1364 as specified for the definitions of the expression element types
1365 STRUCTOP_STRUCT and STRUCTOP_PTR.
c906108c
SS
1366
1367 If NOERR is nonzero, return zero if NAME is not suitably defined.
1368 If NAME is the name of a baseclass type, return that type. */
1369
1370struct type *
d7561cbb 1371lookup_struct_elt_type (struct type *type, const char *name, int noerr)
c906108c
SS
1372{
1373 int i;
c92817ce 1374 char *typename;
c906108c
SS
1375
1376 for (;;)
1377 {
1378 CHECK_TYPEDEF (type);
1379 if (TYPE_CODE (type) != TYPE_CODE_PTR
1380 && TYPE_CODE (type) != TYPE_CODE_REF)
1381 break;
1382 type = TYPE_TARGET_TYPE (type);
1383 }
1384
687d6395
MS
1385 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1386 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1387 {
c92817ce
TT
1388 typename = type_to_string (type);
1389 make_cleanup (xfree, typename);
1390 error (_("Type %s is not a structure or union type."), typename);
c906108c
SS
1391 }
1392
1393#if 0
7ba81444
MS
1394 /* FIXME: This change put in by Michael seems incorrect for the case
1395 where the structure tag name is the same as the member name.
0963b4bd 1396 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
7ba81444 1397 foo; } bell;" Disabled by fnf. */
c906108c
SS
1398 {
1399 char *typename;
1400
1401 typename = type_name_no_tag (type);
762f08a3 1402 if (typename != NULL && strcmp (typename, name) == 0)
c906108c
SS
1403 return type;
1404 }
1405#endif
1406
1407 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1408 {
0d5cff50 1409 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1410
db577aea 1411 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1412 {
1413 return TYPE_FIELD_TYPE (type, i);
1414 }
f5a010c0
PM
1415 else if (!t_field_name || *t_field_name == '\0')
1416 {
d8734c88
MS
1417 struct type *subtype
1418 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1419
f5a010c0
PM
1420 if (subtype != NULL)
1421 return subtype;
1422 }
c906108c
SS
1423 }
1424
1425 /* OK, it's not in this class. Recursively check the baseclasses. */
1426 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1427 {
1428 struct type *t;
1429
9733fc94 1430 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
c906108c
SS
1431 if (t != NULL)
1432 {
1433 return t;
1434 }
1435 }
1436
1437 if (noerr)
1438 {
1439 return NULL;
1440 }
c5aa993b 1441
c92817ce
TT
1442 typename = type_to_string (type);
1443 make_cleanup (xfree, typename);
1444 error (_("Type %s has no component named %s."), typename, name);
c906108c
SS
1445}
1446
81fe8080
DE
1447/* Lookup the vptr basetype/fieldno values for TYPE.
1448 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1449 vptr_fieldno. Also, if found and basetype is from the same objfile,
1450 cache the results.
1451 If not found, return -1 and ignore BASETYPEP.
1452 Callers should be aware that in some cases (for example,
c906108c 1453 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1454 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1455 this function will not be able to find the
7ba81444 1456 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1457 vptr_basetype will remain NULL or incomplete. */
c906108c 1458
81fe8080
DE
1459int
1460get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c
SS
1461{
1462 CHECK_TYPEDEF (type);
1463
1464 if (TYPE_VPTR_FIELDNO (type) < 0)
1465 {
1466 int i;
1467
7ba81444
MS
1468 /* We must start at zero in case the first (and only) baseclass
1469 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1470 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1471 {
81fe8080
DE
1472 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1473 int fieldno;
1474 struct type *basetype;
1475
1476 fieldno = get_vptr_fieldno (baseclass, &basetype);
1477 if (fieldno >= 0)
c906108c 1478 {
81fe8080 1479 /* If the type comes from a different objfile we can't cache
0963b4bd 1480 it, it may have a different lifetime. PR 2384 */
5ef73790 1481 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080
DE
1482 {
1483 TYPE_VPTR_FIELDNO (type) = fieldno;
1484 TYPE_VPTR_BASETYPE (type) = basetype;
1485 }
1486 if (basetypep)
1487 *basetypep = basetype;
1488 return fieldno;
c906108c
SS
1489 }
1490 }
81fe8080
DE
1491
1492 /* Not found. */
1493 return -1;
1494 }
1495 else
1496 {
1497 if (basetypep)
1498 *basetypep = TYPE_VPTR_BASETYPE (type);
1499 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1500 }
1501}
1502
44e1a9eb
DJ
1503static void
1504stub_noname_complaint (void)
1505{
e2e0b3e5 1506 complaint (&symfile_complaints, _("stub type has NULL name"));
44e1a9eb
DJ
1507}
1508
92163a10
JK
1509/* Find the real type of TYPE. This function returns the real type,
1510 after removing all layers of typedefs, and completing opaque or stub
1511 types. Completion changes the TYPE argument, but stripping of
1512 typedefs does not.
1513
1514 Instance flags (e.g. const/volatile) are preserved as typedefs are
1515 stripped. If necessary a new qualified form of the underlying type
1516 is created.
1517
1518 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1519 not been computed and we're either in the middle of reading symbols, or
1520 there was no name for the typedef in the debug info.
1521
9bc118a5
DE
1522 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
1523 QUITs in the symbol reading code can also throw.
1524 Thus this function can throw an exception.
1525
92163a10
JK
1526 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1527 the target type.
c906108c
SS
1528
1529 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 1530 we can find a full definition in some other file. If so, copy this
7ba81444
MS
1531 definition, so we can use it in future. There used to be a comment
1532 (but not any code) that if we don't find a full definition, we'd
1533 set a flag so we don't spend time in the future checking the same
1534 type. That would be a mistake, though--we might load in more
92163a10 1535 symbols which contain a full definition for the type. */
c906108c
SS
1536
1537struct type *
a02fd225 1538check_typedef (struct type *type)
c906108c
SS
1539{
1540 struct type *orig_type = type;
92163a10
JK
1541 /* While we're removing typedefs, we don't want to lose qualifiers.
1542 E.g., const/volatile. */
1543 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 1544
423c0af8
MS
1545 gdb_assert (type);
1546
c906108c
SS
1547 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1548 {
1549 if (!TYPE_TARGET_TYPE (type))
1550 {
0d5cff50 1551 const char *name;
c906108c
SS
1552 struct symbol *sym;
1553
1554 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 1555 reading a symtab. Infinite recursion is one danger. */
c906108c 1556 if (currently_reading_symtab)
92163a10 1557 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
1558
1559 name = type_name_no_tag (type);
7ba81444
MS
1560 /* FIXME: shouldn't we separately check the TYPE_NAME and
1561 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1562 VAR_DOMAIN as appropriate? (this code was written before
1563 TYPE_NAME and TYPE_TAG_NAME were separate). */
c906108c
SS
1564 if (name == NULL)
1565 {
23136709 1566 stub_noname_complaint ();
92163a10 1567 return make_qualified_type (type, instance_flags, NULL);
c906108c 1568 }
2570f2b7 1569 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c
SS
1570 if (sym)
1571 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 1572 else /* TYPE_CODE_UNDEF */
e9bb382b 1573 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
1574 }
1575 type = TYPE_TARGET_TYPE (type);
c906108c 1576
92163a10
JK
1577 /* Preserve the instance flags as we traverse down the typedef chain.
1578
1579 Handling address spaces/classes is nasty, what do we do if there's a
1580 conflict?
1581 E.g., what if an outer typedef marks the type as class_1 and an inner
1582 typedef marks the type as class_2?
1583 This is the wrong place to do such error checking. We leave it to
1584 the code that created the typedef in the first place to flag the
1585 error. We just pick the outer address space (akin to letting the
1586 outer cast in a chain of casting win), instead of assuming
1587 "it can't happen". */
1588 {
1589 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1590 | TYPE_INSTANCE_FLAG_DATA_SPACE);
1591 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1592 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1593
1594 /* Treat code vs data spaces and address classes separately. */
1595 if ((instance_flags & ALL_SPACES) != 0)
1596 new_instance_flags &= ~ALL_SPACES;
1597 if ((instance_flags & ALL_CLASSES) != 0)
1598 new_instance_flags &= ~ALL_CLASSES;
1599
1600 instance_flags |= new_instance_flags;
1601 }
1602 }
a02fd225 1603
7ba81444
MS
1604 /* If this is a struct/class/union with no fields, then check
1605 whether a full definition exists somewhere else. This is for
1606 systems where a type definition with no fields is issued for such
1607 types, instead of identifying them as stub types in the first
1608 place. */
c5aa993b 1609
7ba81444
MS
1610 if (TYPE_IS_OPAQUE (type)
1611 && opaque_type_resolution
1612 && !currently_reading_symtab)
c906108c 1613 {
0d5cff50 1614 const char *name = type_name_no_tag (type);
c5aa993b 1615 struct type *newtype;
d8734c88 1616
c906108c
SS
1617 if (name == NULL)
1618 {
23136709 1619 stub_noname_complaint ();
92163a10 1620 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
1621 }
1622 newtype = lookup_transparent_type (name);
ad766c0a 1623
c906108c 1624 if (newtype)
ad766c0a 1625 {
7ba81444
MS
1626 /* If the resolved type and the stub are in the same
1627 objfile, then replace the stub type with the real deal.
1628 But if they're in separate objfiles, leave the stub
1629 alone; we'll just look up the transparent type every time
1630 we call check_typedef. We can't create pointers between
1631 types allocated to different objfiles, since they may
1632 have different lifetimes. Trying to copy NEWTYPE over to
1633 TYPE's objfile is pointless, too, since you'll have to
1634 move over any other types NEWTYPE refers to, which could
1635 be an unbounded amount of stuff. */
ad766c0a 1636 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
1637 type = make_qualified_type (newtype,
1638 TYPE_INSTANCE_FLAGS (type),
1639 type);
ad766c0a
JB
1640 else
1641 type = newtype;
1642 }
c906108c 1643 }
7ba81444
MS
1644 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1645 types. */
74a9bb82 1646 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 1647 {
0d5cff50 1648 const char *name = type_name_no_tag (type);
c906108c 1649 /* FIXME: shouldn't we separately check the TYPE_NAME and the
176620f1 1650 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
7b83ea04
AC
1651 as appropriate? (this code was written before TYPE_NAME and
1652 TYPE_TAG_NAME were separate). */
c906108c 1653 struct symbol *sym;
d8734c88 1654
c906108c
SS
1655 if (name == NULL)
1656 {
23136709 1657 stub_noname_complaint ();
92163a10 1658 return make_qualified_type (type, instance_flags, NULL);
c906108c 1659 }
2570f2b7 1660 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c 1661 if (sym)
c26f2453
JB
1662 {
1663 /* Same as above for opaque types, we can replace the stub
92163a10 1664 with the complete type only if they are in the same
c26f2453
JB
1665 objfile. */
1666 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
1667 type = make_qualified_type (SYMBOL_TYPE (sym),
1668 TYPE_INSTANCE_FLAGS (type),
1669 type);
c26f2453
JB
1670 else
1671 type = SYMBOL_TYPE (sym);
1672 }
c906108c
SS
1673 }
1674
74a9bb82 1675 if (TYPE_TARGET_STUB (type))
c906108c
SS
1676 {
1677 struct type *range_type;
1678 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1679
74a9bb82 1680 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 1681 {
73e2eb35 1682 /* Nothing we can do. */
c5aa993b 1683 }
c906108c
SS
1684 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1685 && TYPE_NFIELDS (type) == 1
262452ec 1686 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
c906108c
SS
1687 == TYPE_CODE_RANGE))
1688 {
1689 /* Now recompute the length of the array type, based on its
ab0d6e0d
JB
1690 number of elements and the target type's length.
1691 Watch out for Ada null Ada arrays where the high bound
0963b4bd 1692 is smaller than the low bound. */
43bbcdc2
PH
1693 const LONGEST low_bound = TYPE_LOW_BOUND (range_type);
1694 const LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
1695 ULONGEST len;
1696
ab0d6e0d 1697 if (high_bound < low_bound)
43bbcdc2 1698 len = 0;
d8734c88
MS
1699 else
1700 {
1701 /* For now, we conservatively take the array length to be 0
1702 if its length exceeds UINT_MAX. The code below assumes
1703 that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1,
1704 which is technically not guaranteed by C, but is usually true
1705 (because it would be true if x were unsigned with its
0963b4bd 1706 high-order bit on). It uses the fact that
d8734c88
MS
1707 high_bound-low_bound is always representable in
1708 ULONGEST and that if high_bound-low_bound+1 overflows,
1709 it overflows to 0. We must change these tests if we
1710 decide to increase the representation of TYPE_LENGTH
0963b4bd 1711 from unsigned int to ULONGEST. */
d8734c88
MS
1712 ULONGEST ulow = low_bound, uhigh = high_bound;
1713 ULONGEST tlen = TYPE_LENGTH (target_type);
1714
1715 len = tlen * (uhigh - ulow + 1);
1716 if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh
1717 || len > UINT_MAX)
1718 len = 0;
1719 }
43bbcdc2 1720 TYPE_LENGTH (type) = len;
876cecd0 1721 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
1722 }
1723 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1724 {
1725 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 1726 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
1727 }
1728 }
92163a10
JK
1729
1730 type = make_qualified_type (type, instance_flags, NULL);
1731
7ba81444 1732 /* Cache TYPE_LENGTH for future use. */
c906108c 1733 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 1734
c906108c
SS
1735 return type;
1736}
1737
7ba81444 1738/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 1739 occurs, silently return a void type. */
c91ecb25 1740
b9362cc7 1741static struct type *
48319d1f 1742safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
1743{
1744 struct ui_file *saved_gdb_stderr;
34365054 1745 struct type *type = NULL; /* Initialize to keep gcc happy. */
8e7b59a5 1746 volatile struct gdb_exception except;
c91ecb25 1747
7ba81444 1748 /* Suppress error messages. */
c91ecb25
ND
1749 saved_gdb_stderr = gdb_stderr;
1750 gdb_stderr = ui_file_new ();
1751
7ba81444 1752 /* Call parse_and_eval_type() without fear of longjmp()s. */
8e7b59a5
KS
1753 TRY_CATCH (except, RETURN_MASK_ERROR)
1754 {
1755 type = parse_and_eval_type (p, length);
1756 }
1757
1758 if (except.reason < 0)
48319d1f 1759 type = builtin_type (gdbarch)->builtin_void;
c91ecb25 1760
7ba81444 1761 /* Stop suppressing error messages. */
c91ecb25
ND
1762 ui_file_delete (gdb_stderr);
1763 gdb_stderr = saved_gdb_stderr;
1764
1765 return type;
1766}
1767
c906108c
SS
1768/* Ugly hack to convert method stubs into method types.
1769
7ba81444
MS
1770 He ain't kiddin'. This demangles the name of the method into a
1771 string including argument types, parses out each argument type,
1772 generates a string casting a zero to that type, evaluates the
1773 string, and stuffs the resulting type into an argtype vector!!!
1774 Then it knows the type of the whole function (including argument
1775 types for overloading), which info used to be in the stab's but was
1776 removed to hack back the space required for them. */
c906108c 1777
de17c821 1778static void
fba45db2 1779check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 1780{
50810684 1781 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
1782 struct fn_field *f;
1783 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
8de20a37
TT
1784 char *demangled_name = gdb_demangle (mangled_name,
1785 DMGL_PARAMS | DMGL_ANSI);
c906108c
SS
1786 char *argtypetext, *p;
1787 int depth = 0, argcount = 1;
ad2f7632 1788 struct field *argtypes;
c906108c
SS
1789 struct type *mtype;
1790
1791 /* Make sure we got back a function string that we can use. */
1792 if (demangled_name)
1793 p = strchr (demangled_name, '(');
502dcf4e
AC
1794 else
1795 p = NULL;
c906108c
SS
1796
1797 if (demangled_name == NULL || p == NULL)
7ba81444
MS
1798 error (_("Internal: Cannot demangle mangled name `%s'."),
1799 mangled_name);
c906108c
SS
1800
1801 /* Now, read in the parameters that define this type. */
1802 p += 1;
1803 argtypetext = p;
1804 while (*p)
1805 {
070ad9f0 1806 if (*p == '(' || *p == '<')
c906108c
SS
1807 {
1808 depth += 1;
1809 }
070ad9f0 1810 else if (*p == ')' || *p == '>')
c906108c
SS
1811 {
1812 depth -= 1;
1813 }
1814 else if (*p == ',' && depth == 0)
1815 {
1816 argcount += 1;
1817 }
1818
1819 p += 1;
1820 }
1821
ad2f7632
DJ
1822 /* If we read one argument and it was ``void'', don't count it. */
1823 if (strncmp (argtypetext, "(void)", 6) == 0)
1824 argcount -= 1;
c906108c 1825
ad2f7632
DJ
1826 /* We need one extra slot, for the THIS pointer. */
1827
1828 argtypes = (struct field *)
1829 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 1830 p = argtypetext;
4a1970e4
DJ
1831
1832 /* Add THIS pointer for non-static methods. */
1833 f = TYPE_FN_FIELDLIST1 (type, method_id);
1834 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1835 argcount = 0;
1836 else
1837 {
ad2f7632 1838 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
1839 argcount = 1;
1840 }
c906108c 1841
0963b4bd 1842 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
1843 {
1844 depth = 0;
1845 while (*p)
1846 {
1847 if (depth <= 0 && (*p == ',' || *p == ')'))
1848 {
ad2f7632
DJ
1849 /* Avoid parsing of ellipsis, they will be handled below.
1850 Also avoid ``void'' as above. */
1851 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1852 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 1853 {
ad2f7632 1854 argtypes[argcount].type =
48319d1f 1855 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
1856 argcount += 1;
1857 }
1858 argtypetext = p + 1;
1859 }
1860
070ad9f0 1861 if (*p == '(' || *p == '<')
c906108c
SS
1862 {
1863 depth += 1;
1864 }
070ad9f0 1865 else if (*p == ')' || *p == '>')
c906108c
SS
1866 {
1867 depth -= 1;
1868 }
1869
1870 p += 1;
1871 }
1872 }
1873
c906108c
SS
1874 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1875
1876 /* Now update the old "stub" type into a real type. */
1877 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1878 TYPE_DOMAIN_TYPE (mtype) = type;
ad2f7632
DJ
1879 TYPE_FIELDS (mtype) = argtypes;
1880 TYPE_NFIELDS (mtype) = argcount;
876cecd0 1881 TYPE_STUB (mtype) = 0;
c906108c 1882 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632 1883 if (p[-2] == '.')
876cecd0 1884 TYPE_VARARGS (mtype) = 1;
ad2f7632
DJ
1885
1886 xfree (demangled_name);
c906108c
SS
1887}
1888
7ba81444
MS
1889/* This is the external interface to check_stub_method, above. This
1890 function unstubs all of the signatures for TYPE's METHOD_ID method
1891 name. After calling this function TYPE_FN_FIELD_STUB will be
1892 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1893 correct.
de17c821
DJ
1894
1895 This function unfortunately can not die until stabs do. */
1896
1897void
1898check_stub_method_group (struct type *type, int method_id)
1899{
1900 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1901 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
f710f4fc 1902 int j, found_stub = 0;
de17c821
DJ
1903
1904 for (j = 0; j < len; j++)
1905 if (TYPE_FN_FIELD_STUB (f, j))
1906 {
1907 found_stub = 1;
1908 check_stub_method (type, method_id, j);
1909 }
1910
7ba81444
MS
1911 /* GNU v3 methods with incorrect names were corrected when we read
1912 in type information, because it was cheaper to do it then. The
1913 only GNU v2 methods with incorrect method names are operators and
1914 destructors; destructors were also corrected when we read in type
1915 information.
de17c821
DJ
1916
1917 Therefore the only thing we need to handle here are v2 operator
1918 names. */
1919 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1920 {
1921 int ret;
1922 char dem_opname[256];
1923
7ba81444
MS
1924 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1925 method_id),
de17c821
DJ
1926 dem_opname, DMGL_ANSI);
1927 if (!ret)
7ba81444
MS
1928 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1929 method_id),
de17c821
DJ
1930 dem_opname, 0);
1931 if (ret)
1932 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1933 }
1934}
1935
9655fd1a
JK
1936/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
1937const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
1938
1939void
fba45db2 1940allocate_cplus_struct_type (struct type *type)
c906108c 1941{
b4ba55a1
JB
1942 if (HAVE_CPLUS_STRUCT (type))
1943 /* Structure was already allocated. Nothing more to do. */
1944 return;
1945
1946 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
1947 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1948 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1949 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
c906108c
SS
1950}
1951
b4ba55a1
JB
1952const struct gnat_aux_type gnat_aux_default =
1953 { NULL };
1954
1955/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
1956 and allocate the associated gnat-specific data. The gnat-specific
1957 data is also initialized to gnat_aux_default. */
5212577a 1958
b4ba55a1
JB
1959void
1960allocate_gnat_aux_type (struct type *type)
1961{
1962 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
1963 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
1964 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
1965 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
1966}
1967
c906108c
SS
1968/* Helper function to initialize the standard scalar types.
1969
86f62fd7
TT
1970 If NAME is non-NULL, then it is used to initialize the type name.
1971 Note that NAME is not copied; it is required to have a lifetime at
1972 least as long as OBJFILE. */
c906108c
SS
1973
1974struct type *
7ba81444 1975init_type (enum type_code code, int length, int flags,
748e18ae 1976 const char *name, struct objfile *objfile)
c906108c 1977{
52f0bd74 1978 struct type *type;
c906108c
SS
1979
1980 type = alloc_type (objfile);
1981 TYPE_CODE (type) = code;
1982 TYPE_LENGTH (type) = length;
876cecd0
TT
1983
1984 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1985 if (flags & TYPE_FLAG_UNSIGNED)
1986 TYPE_UNSIGNED (type) = 1;
1987 if (flags & TYPE_FLAG_NOSIGN)
1988 TYPE_NOSIGN (type) = 1;
1989 if (flags & TYPE_FLAG_STUB)
1990 TYPE_STUB (type) = 1;
1991 if (flags & TYPE_FLAG_TARGET_STUB)
1992 TYPE_TARGET_STUB (type) = 1;
1993 if (flags & TYPE_FLAG_STATIC)
1994 TYPE_STATIC (type) = 1;
1995 if (flags & TYPE_FLAG_PROTOTYPED)
1996 TYPE_PROTOTYPED (type) = 1;
1997 if (flags & TYPE_FLAG_INCOMPLETE)
1998 TYPE_INCOMPLETE (type) = 1;
1999 if (flags & TYPE_FLAG_VARARGS)
2000 TYPE_VARARGS (type) = 1;
2001 if (flags & TYPE_FLAG_VECTOR)
2002 TYPE_VECTOR (type) = 1;
2003 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2004 TYPE_STUB_SUPPORTED (type) = 1;
876cecd0
TT
2005 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2006 TYPE_FIXED_INSTANCE (type) = 1;
0875794a
JK
2007 if (flags & TYPE_FLAG_GNU_IFUNC)
2008 TYPE_GNU_IFUNC (type) = 1;
876cecd0 2009
86f62fd7 2010 TYPE_NAME (type) = name;
c906108c
SS
2011
2012 /* C++ fancies. */
2013
973ccf8b 2014 if (name && strcmp (name, "char") == 0)
876cecd0 2015 TYPE_NOSIGN (type) = 1;
973ccf8b 2016
b4ba55a1 2017 switch (code)
c906108c 2018 {
b4ba55a1
JB
2019 case TYPE_CODE_STRUCT:
2020 case TYPE_CODE_UNION:
2021 case TYPE_CODE_NAMESPACE:
2022 INIT_CPLUS_SPECIFIC (type);
2023 break;
2024 case TYPE_CODE_FLT:
2025 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2026 break;
2027 case TYPE_CODE_FUNC:
b6cdc2c1 2028 INIT_FUNC_SPECIFIC (type);
b4ba55a1 2029 break;
c906108c 2030 }
c16abbde 2031 return type;
c906108c 2032}
5212577a
DE
2033\f
2034/* Queries on types. */
c906108c 2035
c906108c 2036int
fba45db2 2037can_dereference (struct type *t)
c906108c 2038{
7ba81444
MS
2039 /* FIXME: Should we return true for references as well as
2040 pointers? */
c906108c
SS
2041 CHECK_TYPEDEF (t);
2042 return
2043 (t != NULL
2044 && TYPE_CODE (t) == TYPE_CODE_PTR
2045 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2046}
2047
adf40b2e 2048int
fba45db2 2049is_integral_type (struct type *t)
adf40b2e
JM
2050{
2051 CHECK_TYPEDEF (t);
2052 return
2053 ((t != NULL)
d4f3574e
SS
2054 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2055 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 2056 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
2057 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2058 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2059 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
2060}
2061
e09342b5
TJB
2062/* Return true if TYPE is scalar. */
2063
2064static int
2065is_scalar_type (struct type *type)
2066{
2067 CHECK_TYPEDEF (type);
2068
2069 switch (TYPE_CODE (type))
2070 {
2071 case TYPE_CODE_ARRAY:
2072 case TYPE_CODE_STRUCT:
2073 case TYPE_CODE_UNION:
2074 case TYPE_CODE_SET:
2075 case TYPE_CODE_STRING:
e09342b5
TJB
2076 return 0;
2077 default:
2078 return 1;
2079 }
2080}
2081
2082/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
2083 the memory layout of a scalar type. E.g., an array or struct with only
2084 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
2085
2086int
2087is_scalar_type_recursive (struct type *t)
2088{
2089 CHECK_TYPEDEF (t);
2090
2091 if (is_scalar_type (t))
2092 return 1;
2093 /* Are we dealing with an array or string of known dimensions? */
2094 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2095 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2096 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2097 {
2098 LONGEST low_bound, high_bound;
2099 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2100
2101 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2102
2103 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2104 }
2105 /* Are we dealing with a struct with one element? */
2106 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2107 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2108 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2109 {
2110 int i, n = TYPE_NFIELDS (t);
2111
2112 /* If all elements of the union are scalar, then the union is scalar. */
2113 for (i = 0; i < n; i++)
2114 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2115 return 0;
2116
2117 return 1;
2118 }
2119
2120 return 0;
2121}
2122
4e8f195d
TT
2123/* A helper function which returns true if types A and B represent the
2124 "same" class type. This is true if the types have the same main
2125 type, or the same name. */
2126
2127int
2128class_types_same_p (const struct type *a, const struct type *b)
2129{
2130 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2131 || (TYPE_NAME (a) && TYPE_NAME (b)
2132 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2133}
2134
a9d5ef47
SW
2135/* If BASE is an ancestor of DCLASS return the distance between them.
2136 otherwise return -1;
2137 eg:
2138
2139 class A {};
2140 class B: public A {};
2141 class C: public B {};
2142 class D: C {};
2143
2144 distance_to_ancestor (A, A, 0) = 0
2145 distance_to_ancestor (A, B, 0) = 1
2146 distance_to_ancestor (A, C, 0) = 2
2147 distance_to_ancestor (A, D, 0) = 3
2148
2149 If PUBLIC is 1 then only public ancestors are considered,
2150 and the function returns the distance only if BASE is a public ancestor
2151 of DCLASS.
2152 Eg:
2153
0963b4bd 2154 distance_to_ancestor (A, D, 1) = -1. */
c906108c 2155
0526b37a 2156static int
a9d5ef47 2157distance_to_ancestor (struct type *base, struct type *dclass, int public)
c906108c
SS
2158{
2159 int i;
a9d5ef47 2160 int d;
c5aa993b 2161
c906108c
SS
2162 CHECK_TYPEDEF (base);
2163 CHECK_TYPEDEF (dclass);
2164
4e8f195d 2165 if (class_types_same_p (base, dclass))
a9d5ef47 2166 return 0;
c906108c
SS
2167
2168 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 2169 {
0526b37a
SW
2170 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2171 continue;
2172
a9d5ef47
SW
2173 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2174 if (d >= 0)
2175 return 1 + d;
4e8f195d 2176 }
c906108c 2177
a9d5ef47 2178 return -1;
c906108c 2179}
4e8f195d 2180
0526b37a
SW
2181/* Check whether BASE is an ancestor or base class or DCLASS
2182 Return 1 if so, and 0 if not.
2183 Note: If BASE and DCLASS are of the same type, this function
2184 will return 1. So for some class A, is_ancestor (A, A) will
2185 return 1. */
2186
2187int
2188is_ancestor (struct type *base, struct type *dclass)
2189{
a9d5ef47 2190 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
2191}
2192
4e8f195d
TT
2193/* Like is_ancestor, but only returns true when BASE is a public
2194 ancestor of DCLASS. */
2195
2196int
2197is_public_ancestor (struct type *base, struct type *dclass)
2198{
a9d5ef47 2199 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
2200}
2201
2202/* A helper function for is_unique_ancestor. */
2203
2204static int
2205is_unique_ancestor_worker (struct type *base, struct type *dclass,
2206 int *offset,
8af8e3bc
PA
2207 const gdb_byte *valaddr, int embedded_offset,
2208 CORE_ADDR address, struct value *val)
4e8f195d
TT
2209{
2210 int i, count = 0;
2211
2212 CHECK_TYPEDEF (base);
2213 CHECK_TYPEDEF (dclass);
2214
2215 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2216 {
8af8e3bc
PA
2217 struct type *iter;
2218 int this_offset;
4e8f195d 2219
8af8e3bc
PA
2220 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2221
2222 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2223 address, val);
4e8f195d
TT
2224
2225 if (class_types_same_p (base, iter))
2226 {
2227 /* If this is the first subclass, set *OFFSET and set count
2228 to 1. Otherwise, if this is at the same offset as
2229 previous instances, do nothing. Otherwise, increment
2230 count. */
2231 if (*offset == -1)
2232 {
2233 *offset = this_offset;
2234 count = 1;
2235 }
2236 else if (this_offset == *offset)
2237 {
2238 /* Nothing. */
2239 }
2240 else
2241 ++count;
2242 }
2243 else
2244 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
2245 valaddr,
2246 embedded_offset + this_offset,
2247 address, val);
4e8f195d
TT
2248 }
2249
2250 return count;
2251}
2252
2253/* Like is_ancestor, but only returns true if BASE is a unique base
2254 class of the type of VAL. */
2255
2256int
2257is_unique_ancestor (struct type *base, struct value *val)
2258{
2259 int offset = -1;
2260
2261 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
2262 value_contents_for_printing (val),
2263 value_embedded_offset (val),
2264 value_address (val), val) == 1;
4e8f195d
TT
2265}
2266
c906108c 2267\f
5212577a 2268/* Overload resolution. */
c906108c 2269
6403aeea
SW
2270/* Return the sum of the rank of A with the rank of B. */
2271
2272struct rank
2273sum_ranks (struct rank a, struct rank b)
2274{
2275 struct rank c;
2276 c.rank = a.rank + b.rank;
a9d5ef47 2277 c.subrank = a.subrank + b.subrank;
6403aeea
SW
2278 return c;
2279}
2280
2281/* Compare rank A and B and return:
2282 0 if a = b
2283 1 if a is better than b
2284 -1 if b is better than a. */
2285
2286int
2287compare_ranks (struct rank a, struct rank b)
2288{
2289 if (a.rank == b.rank)
a9d5ef47
SW
2290 {
2291 if (a.subrank == b.subrank)
2292 return 0;
2293 if (a.subrank < b.subrank)
2294 return 1;
2295 if (a.subrank > b.subrank)
2296 return -1;
2297 }
6403aeea
SW
2298
2299 if (a.rank < b.rank)
2300 return 1;
2301
0963b4bd 2302 /* a.rank > b.rank */
6403aeea
SW
2303 return -1;
2304}
c5aa993b 2305
0963b4bd 2306/* Functions for overload resolution begin here. */
c906108c
SS
2307
2308/* Compare two badness vectors A and B and return the result.
7ba81444
MS
2309 0 => A and B are identical
2310 1 => A and B are incomparable
2311 2 => A is better than B
2312 3 => A is worse than B */
c906108c
SS
2313
2314int
fba45db2 2315compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
2316{
2317 int i;
2318 int tmp;
c5aa993b
JM
2319 short found_pos = 0; /* any positives in c? */
2320 short found_neg = 0; /* any negatives in c? */
2321
2322 /* differing lengths => incomparable */
c906108c
SS
2323 if (a->length != b->length)
2324 return 1;
2325
c5aa993b
JM
2326 /* Subtract b from a */
2327 for (i = 0; i < a->length; i++)
c906108c 2328 {
6403aeea 2329 tmp = compare_ranks (b->rank[i], a->rank[i]);
c906108c 2330 if (tmp > 0)
c5aa993b 2331 found_pos = 1;
c906108c 2332 else if (tmp < 0)
c5aa993b 2333 found_neg = 1;
c906108c
SS
2334 }
2335
2336 if (found_pos)
2337 {
2338 if (found_neg)
c5aa993b 2339 return 1; /* incomparable */
c906108c 2340 else
c5aa993b 2341 return 3; /* A > B */
c906108c 2342 }
c5aa993b
JM
2343 else
2344 /* no positives */
c906108c
SS
2345 {
2346 if (found_neg)
c5aa993b 2347 return 2; /* A < B */
c906108c 2348 else
c5aa993b 2349 return 0; /* A == B */
c906108c
SS
2350 }
2351}
2352
7ba81444
MS
2353/* Rank a function by comparing its parameter types (PARMS, length
2354 NPARMS), to the types of an argument list (ARGS, length NARGS).
2355 Return a pointer to a badness vector. This has NARGS + 1
2356 entries. */
c906108c
SS
2357
2358struct badness_vector *
7ba81444 2359rank_function (struct type **parms, int nparms,
da096638 2360 struct value **args, int nargs)
c906108c
SS
2361{
2362 int i;
c5aa993b 2363 struct badness_vector *bv;
c906108c
SS
2364 int min_len = nparms < nargs ? nparms : nargs;
2365
2366 bv = xmalloc (sizeof (struct badness_vector));
0963b4bd 2367 bv->length = nargs + 1; /* add 1 for the length-match rank. */
c906108c
SS
2368 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2369
2370 /* First compare the lengths of the supplied lists.
7ba81444 2371 If there is a mismatch, set it to a high value. */
c5aa993b 2372
c906108c 2373 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
2374 arguments and ellipsis parameter lists, we should consider those
2375 and rank the length-match more finely. */
c906108c 2376
6403aeea
SW
2377 LENGTH_MATCH (bv) = (nargs != nparms)
2378 ? LENGTH_MISMATCH_BADNESS
2379 : EXACT_MATCH_BADNESS;
c906108c 2380
0963b4bd 2381 /* Now rank all the parameters of the candidate function. */
74cc24b0 2382 for (i = 1; i <= min_len; i++)
da096638
KS
2383 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2384 args[i - 1]);
c906108c 2385
0963b4bd 2386 /* If more arguments than parameters, add dummy entries. */
c5aa993b 2387 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
2388 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2389
2390 return bv;
2391}
2392
973ccf8b
DJ
2393/* Compare the names of two integer types, assuming that any sign
2394 qualifiers have been checked already. We do it this way because
2395 there may be an "int" in the name of one of the types. */
2396
2397static int
2398integer_types_same_name_p (const char *first, const char *second)
2399{
2400 int first_p, second_p;
2401
7ba81444
MS
2402 /* If both are shorts, return 1; if neither is a short, keep
2403 checking. */
973ccf8b
DJ
2404 first_p = (strstr (first, "short") != NULL);
2405 second_p = (strstr (second, "short") != NULL);
2406 if (first_p && second_p)
2407 return 1;
2408 if (first_p || second_p)
2409 return 0;
2410
2411 /* Likewise for long. */
2412 first_p = (strstr (first, "long") != NULL);
2413 second_p = (strstr (second, "long") != NULL);
2414 if (first_p && second_p)
2415 return 1;
2416 if (first_p || second_p)
2417 return 0;
2418
2419 /* Likewise for char. */
2420 first_p = (strstr (first, "char") != NULL);
2421 second_p = (strstr (second, "char") != NULL);
2422 if (first_p && second_p)
2423 return 1;
2424 if (first_p || second_p)
2425 return 0;
2426
2427 /* They must both be ints. */
2428 return 1;
2429}
2430
7062b0a0
SW
2431/* Compares type A to type B returns 1 if the represent the same type
2432 0 otherwise. */
2433
bd69fc68 2434int
7062b0a0
SW
2435types_equal (struct type *a, struct type *b)
2436{
2437 /* Identical type pointers. */
2438 /* However, this still doesn't catch all cases of same type for b
2439 and a. The reason is that builtin types are different from
2440 the same ones constructed from the object. */
2441 if (a == b)
2442 return 1;
2443
2444 /* Resolve typedefs */
2445 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2446 a = check_typedef (a);
2447 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2448 b = check_typedef (b);
2449
2450 /* If after resolving typedefs a and b are not of the same type
2451 code then they are not equal. */
2452 if (TYPE_CODE (a) != TYPE_CODE (b))
2453 return 0;
2454
2455 /* If a and b are both pointers types or both reference types then
2456 they are equal of the same type iff the objects they refer to are
2457 of the same type. */
2458 if (TYPE_CODE (a) == TYPE_CODE_PTR
2459 || TYPE_CODE (a) == TYPE_CODE_REF)
2460 return types_equal (TYPE_TARGET_TYPE (a),
2461 TYPE_TARGET_TYPE (b));
2462
0963b4bd 2463 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
2464 are exactly the same. This happens when we generate method
2465 stubs. The types won't point to the same address, but they
0963b4bd 2466 really are the same. */
7062b0a0
SW
2467
2468 if (TYPE_NAME (a) && TYPE_NAME (b)
2469 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2470 return 1;
2471
2472 /* Check if identical after resolving typedefs. */
2473 if (a == b)
2474 return 1;
2475
9ce98649
TT
2476 /* Two function types are equal if their argument and return types
2477 are equal. */
2478 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
2479 {
2480 int i;
2481
2482 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
2483 return 0;
2484
2485 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
2486 return 0;
2487
2488 for (i = 0; i < TYPE_NFIELDS (a); ++i)
2489 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
2490 return 0;
2491
2492 return 1;
2493 }
2494
7062b0a0
SW
2495 return 0;
2496}
2497
c906108c
SS
2498/* Compare one type (PARM) for compatibility with another (ARG).
2499 * PARM is intended to be the parameter type of a function; and
2500 * ARG is the supplied argument's type. This function tests if
2501 * the latter can be converted to the former.
da096638 2502 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
2503 *
2504 * Return 0 if they are identical types;
2505 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
2506 * PARM is to ARG. The higher the return value, the worse the match.
2507 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 2508
6403aeea 2509struct rank
da096638 2510rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 2511{
a9d5ef47 2512 struct rank rank = {0,0};
7062b0a0
SW
2513
2514 if (types_equal (parm, arg))
6403aeea 2515 return EXACT_MATCH_BADNESS;
c906108c
SS
2516
2517 /* Resolve typedefs */
2518 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2519 parm = check_typedef (parm);
2520 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2521 arg = check_typedef (arg);
2522
db577aea 2523 /* See through references, since we can almost make non-references
7ba81444 2524 references. */
db577aea 2525 if (TYPE_CODE (arg) == TYPE_CODE_REF)
da096638 2526 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
6403aeea 2527 REFERENCE_CONVERSION_BADNESS));
db577aea 2528 if (TYPE_CODE (parm) == TYPE_CODE_REF)
da096638 2529 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
6403aeea 2530 REFERENCE_CONVERSION_BADNESS));
5d161b24 2531 if (overload_debug)
7ba81444
MS
2532 /* Debugging only. */
2533 fprintf_filtered (gdb_stderr,
2534 "------ Arg is %s [%d], parm is %s [%d]\n",
2535 TYPE_NAME (arg), TYPE_CODE (arg),
2536 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 2537
0963b4bd 2538 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
2539
2540 switch (TYPE_CODE (parm))
2541 {
c5aa993b
JM
2542 case TYPE_CODE_PTR:
2543 switch (TYPE_CODE (arg))
2544 {
2545 case TYPE_CODE_PTR:
7062b0a0
SW
2546
2547 /* Allowed pointer conversions are:
2548 (a) pointer to void-pointer conversion. */
2549 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
c5aa993b 2550 return VOID_PTR_CONVERSION_BADNESS;
7062b0a0
SW
2551
2552 /* (b) pointer to ancestor-pointer conversion. */
a9d5ef47
SW
2553 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
2554 TYPE_TARGET_TYPE (arg),
2555 0);
2556 if (rank.subrank >= 0)
2557 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
7062b0a0
SW
2558
2559 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 2560 case TYPE_CODE_ARRAY:
7062b0a0
SW
2561 if (types_equal (TYPE_TARGET_TYPE (parm),
2562 TYPE_TARGET_TYPE (arg)))
6403aeea 2563 return EXACT_MATCH_BADNESS;
7062b0a0 2564 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 2565 case TYPE_CODE_FUNC:
da096638 2566 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
c5aa993b 2567 case TYPE_CODE_INT:
a451cb65 2568 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
da096638 2569 {
a451cb65
KS
2570 if (value_as_long (value) == 0)
2571 {
2572 /* Null pointer conversion: allow it to be cast to a pointer.
2573 [4.10.1 of C++ standard draft n3290] */
2574 return NULL_POINTER_CONVERSION_BADNESS;
2575 }
2576 else
2577 {
2578 /* If type checking is disabled, allow the conversion. */
2579 if (!strict_type_checking)
2580 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
2581 }
da096638
KS
2582 }
2583 /* fall through */
c5aa993b 2584 case TYPE_CODE_ENUM:
4f2aea11 2585 case TYPE_CODE_FLAGS:
c5aa993b
JM
2586 case TYPE_CODE_CHAR:
2587 case TYPE_CODE_RANGE:
2588 case TYPE_CODE_BOOL:
c5aa993b
JM
2589 default:
2590 return INCOMPATIBLE_TYPE_BADNESS;
2591 }
2592 case TYPE_CODE_ARRAY:
2593 switch (TYPE_CODE (arg))
2594 {
2595 case TYPE_CODE_PTR:
2596 case TYPE_CODE_ARRAY:
7ba81444 2597 return rank_one_type (TYPE_TARGET_TYPE (parm),
da096638 2598 TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
2599 default:
2600 return INCOMPATIBLE_TYPE_BADNESS;
2601 }
2602 case TYPE_CODE_FUNC:
2603 switch (TYPE_CODE (arg))
2604 {
2605 case TYPE_CODE_PTR: /* funcptr -> func */
da096638 2606 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
2607 default:
2608 return INCOMPATIBLE_TYPE_BADNESS;
2609 }
2610 case TYPE_CODE_INT:
2611 switch (TYPE_CODE (arg))
2612 {
2613 case TYPE_CODE_INT:
2614 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2615 {
2616 /* Deal with signed, unsigned, and plain chars and
7ba81444 2617 signed and unsigned ints. */
c5aa993b
JM
2618 if (TYPE_NOSIGN (parm))
2619 {
0963b4bd 2620 /* This case only for character types. */
7ba81444 2621 if (TYPE_NOSIGN (arg))
6403aeea 2622 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
7ba81444
MS
2623 else /* signed/unsigned char -> plain char */
2624 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2625 }
2626 else if (TYPE_UNSIGNED (parm))
2627 {
2628 if (TYPE_UNSIGNED (arg))
2629 {
7ba81444
MS
2630 /* unsigned int -> unsigned int, or
2631 unsigned long -> unsigned long */
2632 if (integer_types_same_name_p (TYPE_NAME (parm),
2633 TYPE_NAME (arg)))
6403aeea 2634 return EXACT_MATCH_BADNESS;
7ba81444
MS
2635 else if (integer_types_same_name_p (TYPE_NAME (arg),
2636 "int")
2637 && integer_types_same_name_p (TYPE_NAME (parm),
2638 "long"))
3e43a32a
MS
2639 /* unsigned int -> unsigned long */
2640 return INTEGER_PROMOTION_BADNESS;
c5aa993b 2641 else
3e43a32a
MS
2642 /* unsigned long -> unsigned int */
2643 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2644 }
2645 else
2646 {
7ba81444
MS
2647 if (integer_types_same_name_p (TYPE_NAME (arg),
2648 "long")
2649 && integer_types_same_name_p (TYPE_NAME (parm),
2650 "int"))
3e43a32a
MS
2651 /* signed long -> unsigned int */
2652 return INTEGER_CONVERSION_BADNESS;
c5aa993b 2653 else
3e43a32a
MS
2654 /* signed int/long -> unsigned int/long */
2655 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2656 }
2657 }
2658 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2659 {
7ba81444
MS
2660 if (integer_types_same_name_p (TYPE_NAME (parm),
2661 TYPE_NAME (arg)))
6403aeea 2662 return EXACT_MATCH_BADNESS;
7ba81444
MS
2663 else if (integer_types_same_name_p (TYPE_NAME (arg),
2664 "int")
2665 && integer_types_same_name_p (TYPE_NAME (parm),
2666 "long"))
c5aa993b
JM
2667 return INTEGER_PROMOTION_BADNESS;
2668 else
1c5cb38e 2669 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2670 }
2671 else
1c5cb38e 2672 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2673 }
2674 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2675 return INTEGER_PROMOTION_BADNESS;
2676 else
1c5cb38e 2677 return INTEGER_CONVERSION_BADNESS;
c5aa993b 2678 case TYPE_CODE_ENUM:
4f2aea11 2679 case TYPE_CODE_FLAGS:
c5aa993b
JM
2680 case TYPE_CODE_CHAR:
2681 case TYPE_CODE_RANGE:
2682 case TYPE_CODE_BOOL:
2683 return INTEGER_PROMOTION_BADNESS;
2684 case TYPE_CODE_FLT:
2685 return INT_FLOAT_CONVERSION_BADNESS;
2686 case TYPE_CODE_PTR:
2687 return NS_POINTER_CONVERSION_BADNESS;
2688 default:
2689 return INCOMPATIBLE_TYPE_BADNESS;
2690 }
2691 break;
2692 case TYPE_CODE_ENUM:
2693 switch (TYPE_CODE (arg))
2694 {
2695 case TYPE_CODE_INT:
2696 case TYPE_CODE_CHAR:
2697 case TYPE_CODE_RANGE:
2698 case TYPE_CODE_BOOL:
2699 case TYPE_CODE_ENUM:
1c5cb38e 2700 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2701 case TYPE_CODE_FLT:
2702 return INT_FLOAT_CONVERSION_BADNESS;
2703 default:
2704 return INCOMPATIBLE_TYPE_BADNESS;
2705 }
2706 break;
2707 case TYPE_CODE_CHAR:
2708 switch (TYPE_CODE (arg))
2709 {
2710 case TYPE_CODE_RANGE:
2711 case TYPE_CODE_BOOL:
2712 case TYPE_CODE_ENUM:
1c5cb38e 2713 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2714 case TYPE_CODE_FLT:
2715 return INT_FLOAT_CONVERSION_BADNESS;
2716 case TYPE_CODE_INT:
2717 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
1c5cb38e 2718 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2719 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2720 return INTEGER_PROMOTION_BADNESS;
2721 /* >>> !! else fall through !! <<< */
2722 case TYPE_CODE_CHAR:
7ba81444
MS
2723 /* Deal with signed, unsigned, and plain chars for C++ and
2724 with int cases falling through from previous case. */
c5aa993b
JM
2725 if (TYPE_NOSIGN (parm))
2726 {
2727 if (TYPE_NOSIGN (arg))
6403aeea 2728 return EXACT_MATCH_BADNESS;
c5aa993b 2729 else
1c5cb38e 2730 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2731 }
2732 else if (TYPE_UNSIGNED (parm))
2733 {
2734 if (TYPE_UNSIGNED (arg))
6403aeea 2735 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2736 else
2737 return INTEGER_PROMOTION_BADNESS;
2738 }
2739 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
6403aeea 2740 return EXACT_MATCH_BADNESS;
c5aa993b 2741 else
1c5cb38e 2742 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2743 default:
2744 return INCOMPATIBLE_TYPE_BADNESS;
2745 }
2746 break;
2747 case TYPE_CODE_RANGE:
2748 switch (TYPE_CODE (arg))
2749 {
2750 case TYPE_CODE_INT:
2751 case TYPE_CODE_CHAR:
2752 case TYPE_CODE_RANGE:
2753 case TYPE_CODE_BOOL:
2754 case TYPE_CODE_ENUM:
1c5cb38e 2755 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2756 case TYPE_CODE_FLT:
2757 return INT_FLOAT_CONVERSION_BADNESS;
2758 default:
2759 return INCOMPATIBLE_TYPE_BADNESS;
2760 }
2761 break;
2762 case TYPE_CODE_BOOL:
2763 switch (TYPE_CODE (arg))
2764 {
5b4f6e25
KS
2765 /* n3290 draft, section 4.12.1 (conv.bool):
2766
2767 "A prvalue of arithmetic, unscoped enumeration, pointer, or
2768 pointer to member type can be converted to a prvalue of type
2769 bool. A zero value, null pointer value, or null member pointer
2770 value is converted to false; any other value is converted to
2771 true. A prvalue of type std::nullptr_t can be converted to a
2772 prvalue of type bool; the resulting value is false." */
c5aa993b
JM
2773 case TYPE_CODE_INT:
2774 case TYPE_CODE_CHAR:
c5aa993b
JM
2775 case TYPE_CODE_ENUM:
2776 case TYPE_CODE_FLT:
5b4f6e25 2777 case TYPE_CODE_MEMBERPTR:
c5aa993b 2778 case TYPE_CODE_PTR:
5b4f6e25
KS
2779 return BOOL_CONVERSION_BADNESS;
2780 case TYPE_CODE_RANGE:
2781 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 2782 case TYPE_CODE_BOOL:
6403aeea 2783 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2784 default:
2785 return INCOMPATIBLE_TYPE_BADNESS;
2786 }
2787 break;
2788 case TYPE_CODE_FLT:
2789 switch (TYPE_CODE (arg))
2790 {
2791 case TYPE_CODE_FLT:
2792 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2793 return FLOAT_PROMOTION_BADNESS;
2794 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
6403aeea 2795 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2796 else
2797 return FLOAT_CONVERSION_BADNESS;
2798 case TYPE_CODE_INT:
2799 case TYPE_CODE_BOOL:
2800 case TYPE_CODE_ENUM:
2801 case TYPE_CODE_RANGE:
2802 case TYPE_CODE_CHAR:
2803 return INT_FLOAT_CONVERSION_BADNESS;
2804 default:
2805 return INCOMPATIBLE_TYPE_BADNESS;
2806 }
2807 break;
2808 case TYPE_CODE_COMPLEX:
2809 switch (TYPE_CODE (arg))
7ba81444 2810 { /* Strictly not needed for C++, but... */
c5aa993b
JM
2811 case TYPE_CODE_FLT:
2812 return FLOAT_PROMOTION_BADNESS;
2813 case TYPE_CODE_COMPLEX:
6403aeea 2814 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2815 default:
2816 return INCOMPATIBLE_TYPE_BADNESS;
2817 }
2818 break;
2819 case TYPE_CODE_STRUCT:
0963b4bd 2820 /* currently same as TYPE_CODE_CLASS. */
c5aa993b
JM
2821 switch (TYPE_CODE (arg))
2822 {
2823 case TYPE_CODE_STRUCT:
2824 /* Check for derivation */
a9d5ef47
SW
2825 rank.subrank = distance_to_ancestor (parm, arg, 0);
2826 if (rank.subrank >= 0)
2827 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
c5aa993b
JM
2828 /* else fall through */
2829 default:
2830 return INCOMPATIBLE_TYPE_BADNESS;
2831 }
2832 break;
2833 case TYPE_CODE_UNION:
2834 switch (TYPE_CODE (arg))
2835 {
2836 case TYPE_CODE_UNION:
2837 default:
2838 return INCOMPATIBLE_TYPE_BADNESS;
2839 }
2840 break;
0d5de010 2841 case TYPE_CODE_MEMBERPTR:
c5aa993b
JM
2842 switch (TYPE_CODE (arg))
2843 {
2844 default:
2845 return INCOMPATIBLE_TYPE_BADNESS;
2846 }
2847 break;
2848 case TYPE_CODE_METHOD:
2849 switch (TYPE_CODE (arg))
2850 {
2851
2852 default:
2853 return INCOMPATIBLE_TYPE_BADNESS;
2854 }
2855 break;
2856 case TYPE_CODE_REF:
2857 switch (TYPE_CODE (arg))
2858 {
2859
2860 default:
2861 return INCOMPATIBLE_TYPE_BADNESS;
2862 }
2863
2864 break;
2865 case TYPE_CODE_SET:
2866 switch (TYPE_CODE (arg))
2867 {
2868 /* Not in C++ */
2869 case TYPE_CODE_SET:
7ba81444 2870 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
da096638 2871 TYPE_FIELD_TYPE (arg, 0), NULL);
c5aa993b
JM
2872 default:
2873 return INCOMPATIBLE_TYPE_BADNESS;
2874 }
2875 break;
2876 case TYPE_CODE_VOID:
2877 default:
2878 return INCOMPATIBLE_TYPE_BADNESS;
2879 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
2880}
2881
0963b4bd 2882/* End of functions for overload resolution. */
5212577a
DE
2883\f
2884/* Routines to pretty-print types. */
c906108c 2885
c906108c 2886static void
fba45db2 2887print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
2888{
2889 int bitno;
2890
2891 for (bitno = 0; bitno < nbits; bitno++)
2892 {
2893 if ((bitno % 8) == 0)
2894 {
2895 puts_filtered (" ");
2896 }
2897 if (B_TST (bits, bitno))
a3f17187 2898 printf_filtered (("1"));
c906108c 2899 else
a3f17187 2900 printf_filtered (("0"));
c906108c
SS
2901 }
2902}
2903
ad2f7632 2904/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
2905 include it since we may get into a infinitely recursive
2906 situation. */
c906108c
SS
2907
2908static void
ad2f7632 2909print_arg_types (struct field *args, int nargs, int spaces)
c906108c
SS
2910{
2911 if (args != NULL)
2912 {
ad2f7632
DJ
2913 int i;
2914
2915 for (i = 0; i < nargs; i++)
2916 recursive_dump_type (args[i].type, spaces + 2);
c906108c
SS
2917 }
2918}
2919
d6a843b5
JK
2920int
2921field_is_static (struct field *f)
2922{
2923 /* "static" fields are the fields whose location is not relative
2924 to the address of the enclosing struct. It would be nice to
2925 have a dedicated flag that would be set for static fields when
2926 the type is being created. But in practice, checking the field
254e6b9e 2927 loc_kind should give us an accurate answer. */
d6a843b5
JK
2928 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
2929 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
2930}
2931
c906108c 2932static void
fba45db2 2933dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
2934{
2935 int method_idx;
2936 int overload_idx;
2937 struct fn_field *f;
2938
2939 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 2940 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
2941 printf_filtered ("\n");
2942 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2943 {
2944 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2945 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2946 method_idx,
2947 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
2948 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2949 gdb_stdout);
a3f17187 2950 printf_filtered (_(") length %d\n"),
c906108c
SS
2951 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2952 for (overload_idx = 0;
2953 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2954 overload_idx++)
2955 {
2956 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2957 overload_idx,
2958 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
2959 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2960 gdb_stdout);
c906108c
SS
2961 printf_filtered (")\n");
2962 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
2963 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2964 gdb_stdout);
c906108c
SS
2965 printf_filtered ("\n");
2966
2967 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2968 spaces + 8 + 2);
2969
2970 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
2971 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2972 gdb_stdout);
c906108c
SS
2973 printf_filtered ("\n");
2974
ad2f7632 2975 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
7ba81444
MS
2976 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2977 overload_idx)),
ad2f7632 2978 spaces);
c906108c 2979 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
2980 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2981 gdb_stdout);
c906108c
SS
2982 printf_filtered ("\n");
2983
2984 printfi_filtered (spaces + 8, "is_const %d\n",
2985 TYPE_FN_FIELD_CONST (f, overload_idx));
2986 printfi_filtered (spaces + 8, "is_volatile %d\n",
2987 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2988 printfi_filtered (spaces + 8, "is_private %d\n",
2989 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2990 printfi_filtered (spaces + 8, "is_protected %d\n",
2991 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2992 printfi_filtered (spaces + 8, "is_stub %d\n",
2993 TYPE_FN_FIELD_STUB (f, overload_idx));
2994 printfi_filtered (spaces + 8, "voffset %u\n",
2995 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2996 }
2997 }
2998}
2999
3000static void
fba45db2 3001print_cplus_stuff (struct type *type, int spaces)
c906108c
SS
3002{
3003 printfi_filtered (spaces, "n_baseclasses %d\n",
3004 TYPE_N_BASECLASSES (type));
3005 printfi_filtered (spaces, "nfn_fields %d\n",
3006 TYPE_NFN_FIELDS (type));
c906108c
SS
3007 if (TYPE_N_BASECLASSES (type) > 0)
3008 {
3009 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3010 TYPE_N_BASECLASSES (type));
7ba81444
MS
3011 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3012 gdb_stdout);
c906108c
SS
3013 printf_filtered (")");
3014
3015 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3016 TYPE_N_BASECLASSES (type));
3017 puts_filtered ("\n");
3018 }
3019 if (TYPE_NFIELDS (type) > 0)
3020 {
3021 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3022 {
7ba81444
MS
3023 printfi_filtered (spaces,
3024 "private_field_bits (%d bits at *",
c906108c 3025 TYPE_NFIELDS (type));
7ba81444
MS
3026 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3027 gdb_stdout);
c906108c
SS
3028 printf_filtered (")");
3029 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3030 TYPE_NFIELDS (type));
3031 puts_filtered ("\n");
3032 }
3033 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3034 {
7ba81444
MS
3035 printfi_filtered (spaces,
3036 "protected_field_bits (%d bits at *",
c906108c 3037 TYPE_NFIELDS (type));
7ba81444
MS
3038 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3039 gdb_stdout);
c906108c
SS
3040 printf_filtered (")");
3041 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3042 TYPE_NFIELDS (type));
3043 puts_filtered ("\n");
3044 }
3045 }
3046 if (TYPE_NFN_FIELDS (type) > 0)
3047 {
3048 dump_fn_fieldlists (type, spaces);
3049 }
3050}
3051
b4ba55a1
JB
3052/* Print the contents of the TYPE's type_specific union, assuming that
3053 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3054
3055static void
3056print_gnat_stuff (struct type *type, int spaces)
3057{
3058 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3059
3060 recursive_dump_type (descriptive_type, spaces + 2);
3061}
3062
c906108c
SS
3063static struct obstack dont_print_type_obstack;
3064
3065void
fba45db2 3066recursive_dump_type (struct type *type, int spaces)
c906108c
SS
3067{
3068 int idx;
3069
3070 if (spaces == 0)
3071 obstack_begin (&dont_print_type_obstack, 0);
3072
3073 if (TYPE_NFIELDS (type) > 0
b4ba55a1 3074 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
3075 {
3076 struct type **first_dont_print
7ba81444 3077 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 3078
7ba81444
MS
3079 int i = (struct type **)
3080 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
3081
3082 while (--i >= 0)
3083 {
3084 if (type == first_dont_print[i])
3085 {
3086 printfi_filtered (spaces, "type node ");
d4f3574e 3087 gdb_print_host_address (type, gdb_stdout);
a3f17187 3088 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
3089 return;
3090 }
3091 }
3092
3093 obstack_ptr_grow (&dont_print_type_obstack, type);
3094 }
3095
3096 printfi_filtered (spaces, "type node ");
d4f3574e 3097 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
3098 printf_filtered ("\n");
3099 printfi_filtered (spaces, "name '%s' (",
3100 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 3101 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 3102 printf_filtered (")\n");
e9e79dd9
FF
3103 printfi_filtered (spaces, "tagname '%s' (",
3104 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3105 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3106 printf_filtered (")\n");
c906108c
SS
3107 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3108 switch (TYPE_CODE (type))
3109 {
c5aa993b
JM
3110 case TYPE_CODE_UNDEF:
3111 printf_filtered ("(TYPE_CODE_UNDEF)");
3112 break;
3113 case TYPE_CODE_PTR:
3114 printf_filtered ("(TYPE_CODE_PTR)");
3115 break;
3116 case TYPE_CODE_ARRAY:
3117 printf_filtered ("(TYPE_CODE_ARRAY)");
3118 break;
3119 case TYPE_CODE_STRUCT:
3120 printf_filtered ("(TYPE_CODE_STRUCT)");
3121 break;
3122 case TYPE_CODE_UNION:
3123 printf_filtered ("(TYPE_CODE_UNION)");
3124 break;
3125 case TYPE_CODE_ENUM:
3126 printf_filtered ("(TYPE_CODE_ENUM)");
3127 break;
4f2aea11
MK
3128 case TYPE_CODE_FLAGS:
3129 printf_filtered ("(TYPE_CODE_FLAGS)");
3130 break;
c5aa993b
JM
3131 case TYPE_CODE_FUNC:
3132 printf_filtered ("(TYPE_CODE_FUNC)");
3133 break;
3134 case TYPE_CODE_INT:
3135 printf_filtered ("(TYPE_CODE_INT)");
3136 break;
3137 case TYPE_CODE_FLT:
3138 printf_filtered ("(TYPE_CODE_FLT)");
3139 break;
3140 case TYPE_CODE_VOID:
3141 printf_filtered ("(TYPE_CODE_VOID)");
3142 break;
3143 case TYPE_CODE_SET:
3144 printf_filtered ("(TYPE_CODE_SET)");
3145 break;
3146 case TYPE_CODE_RANGE:
3147 printf_filtered ("(TYPE_CODE_RANGE)");
3148 break;
3149 case TYPE_CODE_STRING:
3150 printf_filtered ("(TYPE_CODE_STRING)");
3151 break;
3152 case TYPE_CODE_ERROR:
3153 printf_filtered ("(TYPE_CODE_ERROR)");
3154 break;
0d5de010
DJ
3155 case TYPE_CODE_MEMBERPTR:
3156 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3157 break;
3158 case TYPE_CODE_METHODPTR:
3159 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
3160 break;
3161 case TYPE_CODE_METHOD:
3162 printf_filtered ("(TYPE_CODE_METHOD)");
3163 break;
3164 case TYPE_CODE_REF:
3165 printf_filtered ("(TYPE_CODE_REF)");
3166 break;
3167 case TYPE_CODE_CHAR:
3168 printf_filtered ("(TYPE_CODE_CHAR)");
3169 break;
3170 case TYPE_CODE_BOOL:
3171 printf_filtered ("(TYPE_CODE_BOOL)");
3172 break;
e9e79dd9
FF
3173 case TYPE_CODE_COMPLEX:
3174 printf_filtered ("(TYPE_CODE_COMPLEX)");
3175 break;
c5aa993b
JM
3176 case TYPE_CODE_TYPEDEF:
3177 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3178 break;
5c4e30ca
DC
3179 case TYPE_CODE_NAMESPACE:
3180 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3181 break;
c5aa993b
JM
3182 default:
3183 printf_filtered ("(UNKNOWN TYPE CODE)");
3184 break;
c906108c
SS
3185 }
3186 puts_filtered ("\n");
3187 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9bb382b
UW
3188 if (TYPE_OBJFILE_OWNED (type))
3189 {
3190 printfi_filtered (spaces, "objfile ");
3191 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3192 }
3193 else
3194 {
3195 printfi_filtered (spaces, "gdbarch ");
3196 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3197 }
c906108c
SS
3198 printf_filtered ("\n");
3199 printfi_filtered (spaces, "target_type ");
d4f3574e 3200 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
3201 printf_filtered ("\n");
3202 if (TYPE_TARGET_TYPE (type) != NULL)
3203 {
3204 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3205 }
3206 printfi_filtered (spaces, "pointer_type ");
d4f3574e 3207 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
3208 printf_filtered ("\n");
3209 printfi_filtered (spaces, "reference_type ");
d4f3574e 3210 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 3211 printf_filtered ("\n");
2fdde8f8
DJ
3212 printfi_filtered (spaces, "type_chain ");
3213 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 3214 printf_filtered ("\n");
7ba81444
MS
3215 printfi_filtered (spaces, "instance_flags 0x%x",
3216 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
3217 if (TYPE_CONST (type))
3218 {
3219 puts_filtered (" TYPE_FLAG_CONST");
3220 }
3221 if (TYPE_VOLATILE (type))
3222 {
3223 puts_filtered (" TYPE_FLAG_VOLATILE");
3224 }
3225 if (TYPE_CODE_SPACE (type))
3226 {
3227 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3228 }
3229 if (TYPE_DATA_SPACE (type))
3230 {
3231 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3232 }
8b2dbe47
KB
3233 if (TYPE_ADDRESS_CLASS_1 (type))
3234 {
3235 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3236 }
3237 if (TYPE_ADDRESS_CLASS_2 (type))
3238 {
3239 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3240 }
06d66ee9
TT
3241 if (TYPE_RESTRICT (type))
3242 {
3243 puts_filtered (" TYPE_FLAG_RESTRICT");
3244 }
2fdde8f8 3245 puts_filtered ("\n");
876cecd0
TT
3246
3247 printfi_filtered (spaces, "flags");
762a036f 3248 if (TYPE_UNSIGNED (type))
c906108c
SS
3249 {
3250 puts_filtered (" TYPE_FLAG_UNSIGNED");
3251 }
762a036f
FF
3252 if (TYPE_NOSIGN (type))
3253 {
3254 puts_filtered (" TYPE_FLAG_NOSIGN");
3255 }
3256 if (TYPE_STUB (type))
c906108c
SS
3257 {
3258 puts_filtered (" TYPE_FLAG_STUB");
3259 }
762a036f
FF
3260 if (TYPE_TARGET_STUB (type))
3261 {
3262 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3263 }
3264 if (TYPE_STATIC (type))
3265 {
3266 puts_filtered (" TYPE_FLAG_STATIC");
3267 }
762a036f
FF
3268 if (TYPE_PROTOTYPED (type))
3269 {
3270 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3271 }
3272 if (TYPE_INCOMPLETE (type))
3273 {
3274 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3275 }
762a036f
FF
3276 if (TYPE_VARARGS (type))
3277 {
3278 puts_filtered (" TYPE_FLAG_VARARGS");
3279 }
f5f8a009
EZ
3280 /* This is used for things like AltiVec registers on ppc. Gcc emits
3281 an attribute for the array type, which tells whether or not we
3282 have a vector, instead of a regular array. */
3283 if (TYPE_VECTOR (type))
3284 {
3285 puts_filtered (" TYPE_FLAG_VECTOR");
3286 }
876cecd0
TT
3287 if (TYPE_FIXED_INSTANCE (type))
3288 {
3289 puts_filtered (" TYPE_FIXED_INSTANCE");
3290 }
3291 if (TYPE_STUB_SUPPORTED (type))
3292 {
3293 puts_filtered (" TYPE_STUB_SUPPORTED");
3294 }
3295 if (TYPE_NOTTEXT (type))
3296 {
3297 puts_filtered (" TYPE_NOTTEXT");
3298 }
c906108c
SS
3299 puts_filtered ("\n");
3300 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 3301 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
3302 puts_filtered ("\n");
3303 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3304 {
14e75d8e
JK
3305 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
3306 printfi_filtered (spaces + 2,
3307 "[%d] enumval %s type ",
3308 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
3309 else
3310 printfi_filtered (spaces + 2,
3311 "[%d] bitpos %d bitsize %d type ",
3312 idx, TYPE_FIELD_BITPOS (type, idx),
3313 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 3314 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
3315 printf_filtered (" name '%s' (",
3316 TYPE_FIELD_NAME (type, idx) != NULL
3317 ? TYPE_FIELD_NAME (type, idx)
3318 : "<NULL>");
d4f3574e 3319 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
3320 printf_filtered (")\n");
3321 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3322 {
3323 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3324 }
3325 }
43bbcdc2
PH
3326 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3327 {
3328 printfi_filtered (spaces, "low %s%s high %s%s\n",
3329 plongest (TYPE_LOW_BOUND (type)),
3330 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3331 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
3332 TYPE_HIGH_BOUND_UNDEFINED (type)
3333 ? " (undefined)" : "");
43bbcdc2 3334 }
c906108c 3335 printfi_filtered (spaces, "vptr_basetype ");
d4f3574e 3336 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
c906108c
SS
3337 puts_filtered ("\n");
3338 if (TYPE_VPTR_BASETYPE (type) != NULL)
3339 {
3340 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3341 }
7ba81444
MS
3342 printfi_filtered (spaces, "vptr_fieldno %d\n",
3343 TYPE_VPTR_FIELDNO (type));
c906108c 3344
b4ba55a1
JB
3345 switch (TYPE_SPECIFIC_FIELD (type))
3346 {
3347 case TYPE_SPECIFIC_CPLUS_STUFF:
3348 printfi_filtered (spaces, "cplus_stuff ");
3349 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3350 gdb_stdout);
3351 puts_filtered ("\n");
3352 print_cplus_stuff (type, spaces);
3353 break;
8da61cc4 3354
b4ba55a1
JB
3355 case TYPE_SPECIFIC_GNAT_STUFF:
3356 printfi_filtered (spaces, "gnat_stuff ");
3357 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3358 puts_filtered ("\n");
3359 print_gnat_stuff (type, spaces);
3360 break;
701c159d 3361
b4ba55a1
JB
3362 case TYPE_SPECIFIC_FLOATFORMAT:
3363 printfi_filtered (spaces, "floatformat ");
3364 if (TYPE_FLOATFORMAT (type) == NULL)
3365 puts_filtered ("(null)");
3366 else
3367 {
3368 puts_filtered ("{ ");
3369 if (TYPE_FLOATFORMAT (type)[0] == NULL
3370 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3371 puts_filtered ("(null)");
3372 else
3373 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3374
3375 puts_filtered (", ");
3376 if (TYPE_FLOATFORMAT (type)[1] == NULL
3377 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3378 puts_filtered ("(null)");
3379 else
3380 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3381
3382 puts_filtered (" }");
3383 }
3384 puts_filtered ("\n");
3385 break;
c906108c 3386
b6cdc2c1 3387 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
3388 printfi_filtered (spaces, "calling_convention %d\n",
3389 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 3390 /* tail_call_list is not printed. */
b4ba55a1 3391 break;
c906108c 3392 }
b4ba55a1 3393
c906108c
SS
3394 if (spaces == 0)
3395 obstack_free (&dont_print_type_obstack, NULL);
3396}
5212577a 3397\f
ae5a43e0
DJ
3398/* Trivial helpers for the libiberty hash table, for mapping one
3399 type to another. */
3400
3401struct type_pair
3402{
3403 struct type *old, *new;
3404};
3405
3406static hashval_t
3407type_pair_hash (const void *item)
3408{
3409 const struct type_pair *pair = item;
d8734c88 3410
ae5a43e0
DJ
3411 return htab_hash_pointer (pair->old);
3412}
3413
3414static int
3415type_pair_eq (const void *item_lhs, const void *item_rhs)
3416{
3417 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
d8734c88 3418
ae5a43e0
DJ
3419 return lhs->old == rhs->old;
3420}
3421
3422/* Allocate the hash table used by copy_type_recursive to walk
3423 types without duplicates. We use OBJFILE's obstack, because
3424 OBJFILE is about to be deleted. */
3425
3426htab_t
3427create_copied_types_hash (struct objfile *objfile)
3428{
3429 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3430 NULL, &objfile->objfile_obstack,
3431 hashtab_obstack_allocate,
3432 dummy_obstack_deallocate);
3433}
3434
7ba81444
MS
3435/* Recursively copy (deep copy) TYPE, if it is associated with
3436 OBJFILE. Return a new type allocated using malloc, a saved type if
3437 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3438 not associated with OBJFILE. */
ae5a43e0
DJ
3439
3440struct type *
7ba81444
MS
3441copy_type_recursive (struct objfile *objfile,
3442 struct type *type,
ae5a43e0
DJ
3443 htab_t copied_types)
3444{
3445 struct type_pair *stored, pair;
3446 void **slot;
3447 struct type *new_type;
3448
e9bb382b 3449 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
3450 return type;
3451
7ba81444
MS
3452 /* This type shouldn't be pointing to any types in other objfiles;
3453 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
3454 gdb_assert (TYPE_OBJFILE (type) == objfile);
3455
3456 pair.old = type;
3457 slot = htab_find_slot (copied_types, &pair, INSERT);
3458 if (*slot != NULL)
3459 return ((struct type_pair *) *slot)->new;
3460
e9bb382b 3461 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
3462
3463 /* We must add the new type to the hash table immediately, in case
3464 we encounter this type again during a recursive call below. */
3e43a32a
MS
3465 stored
3466 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
ae5a43e0
DJ
3467 stored->old = type;
3468 stored->new = new_type;
3469 *slot = stored;
3470
876cecd0
TT
3471 /* Copy the common fields of types. For the main type, we simply
3472 copy the entire thing and then update specific fields as needed. */
3473 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
3474 TYPE_OBJFILE_OWNED (new_type) = 0;
3475 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 3476
ae5a43e0
DJ
3477 if (TYPE_NAME (type))
3478 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3479 if (TYPE_TAG_NAME (type))
3480 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
ae5a43e0
DJ
3481
3482 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3483 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3484
3485 /* Copy the fields. */
ae5a43e0
DJ
3486 if (TYPE_NFIELDS (type))
3487 {
3488 int i, nfields;
3489
3490 nfields = TYPE_NFIELDS (type);
1deafd4e 3491 TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
ae5a43e0
DJ
3492 for (i = 0; i < nfields; i++)
3493 {
7ba81444
MS
3494 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3495 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
3496 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3497 if (TYPE_FIELD_TYPE (type, i))
3498 TYPE_FIELD_TYPE (new_type, i)
3499 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3500 copied_types);
3501 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
3502 TYPE_FIELD_NAME (new_type, i) =
3503 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 3504 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 3505 {
d6a843b5
JK
3506 case FIELD_LOC_KIND_BITPOS:
3507 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3508 TYPE_FIELD_BITPOS (type, i));
3509 break;
14e75d8e
JK
3510 case FIELD_LOC_KIND_ENUMVAL:
3511 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
3512 TYPE_FIELD_ENUMVAL (type, i));
3513 break;
d6a843b5
JK
3514 case FIELD_LOC_KIND_PHYSADDR:
3515 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3516 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3517 break;
3518 case FIELD_LOC_KIND_PHYSNAME:
3519 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3520 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3521 i)));
3522 break;
3523 default:
3524 internal_error (__FILE__, __LINE__,
3525 _("Unexpected type field location kind: %d"),
3526 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
3527 }
3528 }
3529 }
3530
0963b4bd 3531 /* For range types, copy the bounds information. */
43bbcdc2
PH
3532 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3533 {
3534 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3535 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3536 }
3537
ae5a43e0
DJ
3538 /* Copy pointers to other types. */
3539 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
3540 TYPE_TARGET_TYPE (new_type) =
3541 copy_type_recursive (objfile,
3542 TYPE_TARGET_TYPE (type),
3543 copied_types);
ae5a43e0 3544 if (TYPE_VPTR_BASETYPE (type))
7ba81444
MS
3545 TYPE_VPTR_BASETYPE (new_type) =
3546 copy_type_recursive (objfile,
3547 TYPE_VPTR_BASETYPE (type),
3548 copied_types);
ae5a43e0
DJ
3549 /* Maybe copy the type_specific bits.
3550
3551 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3552 base classes and methods. There's no fundamental reason why we
3553 can't, but at the moment it is not needed. */
3554
3555 if (TYPE_CODE (type) == TYPE_CODE_FLT)
d5d6fca5 3556 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
ae5a43e0
DJ
3557 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3558 || TYPE_CODE (type) == TYPE_CODE_UNION
ae5a43e0
DJ
3559 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3560 INIT_CPLUS_SPECIFIC (new_type);
3561
3562 return new_type;
3563}
3564
4af88198
JB
3565/* Make a copy of the given TYPE, except that the pointer & reference
3566 types are not preserved.
3567
3568 This function assumes that the given type has an associated objfile.
3569 This objfile is used to allocate the new type. */
3570
3571struct type *
3572copy_type (const struct type *type)
3573{
3574 struct type *new_type;
3575
e9bb382b 3576 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 3577
e9bb382b 3578 new_type = alloc_type_copy (type);
4af88198
JB
3579 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3580 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3581 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3582 sizeof (struct main_type));
3583
3584 return new_type;
3585}
5212577a 3586\f
e9bb382b
UW
3587/* Helper functions to initialize architecture-specific types. */
3588
3589/* Allocate a type structure associated with GDBARCH and set its
3590 CODE, LENGTH, and NAME fields. */
5212577a 3591
e9bb382b
UW
3592struct type *
3593arch_type (struct gdbarch *gdbarch,
3594 enum type_code code, int length, char *name)
3595{
3596 struct type *type;
3597
3598 type = alloc_type_arch (gdbarch);
3599 TYPE_CODE (type) = code;
3600 TYPE_LENGTH (type) = length;
3601
3602 if (name)
3603 TYPE_NAME (type) = xstrdup (name);
3604
3605 return type;
3606}
3607
3608/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
3609 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3610 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 3611
e9bb382b
UW
3612struct type *
3613arch_integer_type (struct gdbarch *gdbarch,
3614 int bit, int unsigned_p, char *name)
3615{
3616 struct type *t;
3617
3618 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
3619 if (unsigned_p)
3620 TYPE_UNSIGNED (t) = 1;
3621 if (name && strcmp (name, "char") == 0)
3622 TYPE_NOSIGN (t) = 1;
3623
3624 return t;
3625}
3626
3627/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
3628 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3629 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 3630
e9bb382b
UW
3631struct type *
3632arch_character_type (struct gdbarch *gdbarch,
3633 int bit, int unsigned_p, char *name)
3634{
3635 struct type *t;
3636
3637 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
3638 if (unsigned_p)
3639 TYPE_UNSIGNED (t) = 1;
3640
3641 return t;
3642}
3643
3644/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
3645 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3646 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 3647
e9bb382b
UW
3648struct type *
3649arch_boolean_type (struct gdbarch *gdbarch,
3650 int bit, int unsigned_p, char *name)
3651{
3652 struct type *t;
3653
3654 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
3655 if (unsigned_p)
3656 TYPE_UNSIGNED (t) = 1;
3657
3658 return t;
3659}
3660
3661/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
3662 BIT is the type size in bits; if BIT equals -1, the size is
3663 determined by the floatformat. NAME is the type name. Set the
3664 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 3665
27067745 3666struct type *
e9bb382b
UW
3667arch_float_type (struct gdbarch *gdbarch,
3668 int bit, char *name, const struct floatformat **floatformats)
8da61cc4
DJ
3669{
3670 struct type *t;
3671
3672 if (bit == -1)
3673 {
3674 gdb_assert (floatformats != NULL);
3675 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3676 bit = floatformats[0]->totalsize;
3677 }
3678 gdb_assert (bit >= 0);
3679
e9bb382b 3680 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
8da61cc4
DJ
3681 TYPE_FLOATFORMAT (t) = floatformats;
3682 return t;
3683}
3684
e9bb382b
UW
3685/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
3686 NAME is the type name. TARGET_TYPE is the component float type. */
5212577a 3687
27067745 3688struct type *
e9bb382b
UW
3689arch_complex_type (struct gdbarch *gdbarch,
3690 char *name, struct type *target_type)
27067745
UW
3691{
3692 struct type *t;
d8734c88 3693
e9bb382b
UW
3694 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
3695 2 * TYPE_LENGTH (target_type), name);
27067745
UW
3696 TYPE_TARGET_TYPE (t) = target_type;
3697 return t;
3698}
3699
e9bb382b 3700/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
eb90ce83 3701 NAME is the type name. LENGTH is the size of the flag word in bytes. */
5212577a 3702
e9bb382b
UW
3703struct type *
3704arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
3705{
3706 int nfields = length * TARGET_CHAR_BIT;
3707 struct type *type;
3708
3709 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
3710 TYPE_UNSIGNED (type) = 1;
3711 TYPE_NFIELDS (type) = nfields;
3712 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
3713
3714 return type;
3715}
3716
3717/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
3718 position BITPOS is called NAME. */
5212577a 3719
e9bb382b
UW
3720void
3721append_flags_type_flag (struct type *type, int bitpos, char *name)
3722{
3723 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
3724 gdb_assert (bitpos < TYPE_NFIELDS (type));
3725 gdb_assert (bitpos >= 0);
3726
3727 if (name)
3728 {
3729 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
945b3a32 3730 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
e9bb382b
UW
3731 }
3732 else
3733 {
3734 /* Don't show this field to the user. */
945b3a32 3735 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
e9bb382b
UW
3736 }
3737}
3738
3739/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
3740 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 3741
e9bb382b
UW
3742struct type *
3743arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
3744{
3745 struct type *t;
d8734c88 3746
e9bb382b
UW
3747 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
3748 t = arch_type (gdbarch, code, 0, NULL);
3749 TYPE_TAG_NAME (t) = name;
3750 INIT_CPLUS_SPECIFIC (t);
3751 return t;
3752}
3753
3754/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
3755 Do not set the field's position or adjust the type's length;
3756 the caller should do so. Return the new field. */
5212577a 3757
f5dff777
DJ
3758struct field *
3759append_composite_type_field_raw (struct type *t, char *name,
3760 struct type *field)
e9bb382b
UW
3761{
3762 struct field *f;
d8734c88 3763
e9bb382b
UW
3764 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
3765 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
3766 sizeof (struct field) * TYPE_NFIELDS (t));
3767 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
3768 memset (f, 0, sizeof f[0]);
3769 FIELD_TYPE (f[0]) = field;
3770 FIELD_NAME (f[0]) = name;
f5dff777
DJ
3771 return f;
3772}
3773
3774/* Add new field with name NAME and type FIELD to composite type T.
3775 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 3776
f5dff777
DJ
3777void
3778append_composite_type_field_aligned (struct type *t, char *name,
3779 struct type *field, int alignment)
3780{
3781 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 3782
e9bb382b
UW
3783 if (TYPE_CODE (t) == TYPE_CODE_UNION)
3784 {
3785 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
3786 TYPE_LENGTH (t) = TYPE_LENGTH (field);
3787 }
3788 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
3789 {
3790 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
3791 if (TYPE_NFIELDS (t) > 1)
3792 {
f41f5e61
PA
3793 SET_FIELD_BITPOS (f[0],
3794 (FIELD_BITPOS (f[-1])
3795 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
3796 * TARGET_CHAR_BIT)));
e9bb382b
UW
3797
3798 if (alignment)
3799 {
86c3c1fc
AB
3800 int left;
3801
3802 alignment *= TARGET_CHAR_BIT;
3803 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 3804
e9bb382b
UW
3805 if (left)
3806 {
f41f5e61 3807 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 3808 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
3809 }
3810 }
3811 }
3812 }
3813}
3814
3815/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 3816
e9bb382b
UW
3817void
3818append_composite_type_field (struct type *t, char *name,
3819 struct type *field)
3820{
3821 append_composite_type_field_aligned (t, name, field, 0);
3822}
3823
000177f0
AC
3824static struct gdbarch_data *gdbtypes_data;
3825
3826const struct builtin_type *
3827builtin_type (struct gdbarch *gdbarch)
3828{
3829 return gdbarch_data (gdbarch, gdbtypes_data);
3830}
3831
3832static void *
3833gdbtypes_post_init (struct gdbarch *gdbarch)
3834{
3835 struct builtin_type *builtin_type
3836 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3837
46bf5051 3838 /* Basic types. */
e9bb382b
UW
3839 builtin_type->builtin_void
3840 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
3841 builtin_type->builtin_char
3842 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3843 !gdbarch_char_signed (gdbarch), "char");
3844 builtin_type->builtin_signed_char
3845 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3846 0, "signed char");
3847 builtin_type->builtin_unsigned_char
3848 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3849 1, "unsigned char");
3850 builtin_type->builtin_short
3851 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3852 0, "short");
3853 builtin_type->builtin_unsigned_short
3854 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3855 1, "unsigned short");
3856 builtin_type->builtin_int
3857 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3858 0, "int");
3859 builtin_type->builtin_unsigned_int
3860 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3861 1, "unsigned int");
3862 builtin_type->builtin_long
3863 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3864 0, "long");
3865 builtin_type->builtin_unsigned_long
3866 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3867 1, "unsigned long");
3868 builtin_type->builtin_long_long
3869 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3870 0, "long long");
3871 builtin_type->builtin_unsigned_long_long
3872 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3873 1, "unsigned long long");
70bd8e24 3874 builtin_type->builtin_float
e9bb382b 3875 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 3876 "float", gdbarch_float_format (gdbarch));
70bd8e24 3877 builtin_type->builtin_double
e9bb382b 3878 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 3879 "double", gdbarch_double_format (gdbarch));
70bd8e24 3880 builtin_type->builtin_long_double
e9bb382b 3881 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 3882 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 3883 builtin_type->builtin_complex
e9bb382b
UW
3884 = arch_complex_type (gdbarch, "complex",
3885 builtin_type->builtin_float);
70bd8e24 3886 builtin_type->builtin_double_complex
e9bb382b
UW
3887 = arch_complex_type (gdbarch, "double complex",
3888 builtin_type->builtin_double);
3889 builtin_type->builtin_string
3890 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
3891 builtin_type->builtin_bool
3892 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
000177f0 3893
7678ef8f
TJB
3894 /* The following three are about decimal floating point types, which
3895 are 32-bits, 64-bits and 128-bits respectively. */
3896 builtin_type->builtin_decfloat
e9bb382b 3897 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
7678ef8f 3898 builtin_type->builtin_decdouble
e9bb382b 3899 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
7678ef8f 3900 builtin_type->builtin_declong
e9bb382b 3901 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
7678ef8f 3902
69feb676 3903 /* "True" character types. */
e9bb382b
UW
3904 builtin_type->builtin_true_char
3905 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
3906 builtin_type->builtin_true_unsigned_char
3907 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 3908
df4df182 3909 /* Fixed-size integer types. */
e9bb382b
UW
3910 builtin_type->builtin_int0
3911 = arch_integer_type (gdbarch, 0, 0, "int0_t");
3912 builtin_type->builtin_int8
3913 = arch_integer_type (gdbarch, 8, 0, "int8_t");
3914 builtin_type->builtin_uint8
3915 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
3916 builtin_type->builtin_int16
3917 = arch_integer_type (gdbarch, 16, 0, "int16_t");
3918 builtin_type->builtin_uint16
3919 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
3920 builtin_type->builtin_int32
3921 = arch_integer_type (gdbarch, 32, 0, "int32_t");
3922 builtin_type->builtin_uint32
3923 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
3924 builtin_type->builtin_int64
3925 = arch_integer_type (gdbarch, 64, 0, "int64_t");
3926 builtin_type->builtin_uint64
3927 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
3928 builtin_type->builtin_int128
3929 = arch_integer_type (gdbarch, 128, 0, "int128_t");
3930 builtin_type->builtin_uint128
3931 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
3932 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
3933 TYPE_INSTANCE_FLAG_NOTTEXT;
3934 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
3935 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 3936
9a22f0d0
PM
3937 /* Wide character types. */
3938 builtin_type->builtin_char16
3939 = arch_integer_type (gdbarch, 16, 0, "char16_t");
3940 builtin_type->builtin_char32
3941 = arch_integer_type (gdbarch, 32, 0, "char32_t");
3942
3943
46bf5051 3944 /* Default data/code pointer types. */
e9bb382b
UW
3945 builtin_type->builtin_data_ptr
3946 = lookup_pointer_type (builtin_type->builtin_void);
3947 builtin_type->builtin_func_ptr
3948 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
3949 builtin_type->builtin_func_func
3950 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 3951
78267919 3952 /* This type represents a GDB internal function. */
e9bb382b
UW
3953 builtin_type->internal_fn
3954 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
3955 "<internal function>");
78267919 3956
46bf5051
UW
3957 return builtin_type;
3958}
3959
46bf5051
UW
3960/* This set of objfile-based types is intended to be used by symbol
3961 readers as basic types. */
3962
3963static const struct objfile_data *objfile_type_data;
3964
3965const struct objfile_type *
3966objfile_type (struct objfile *objfile)
3967{
3968 struct gdbarch *gdbarch;
3969 struct objfile_type *objfile_type
3970 = objfile_data (objfile, objfile_type_data);
3971
3972 if (objfile_type)
3973 return objfile_type;
3974
3975 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
3976 1, struct objfile_type);
3977
3978 /* Use the objfile architecture to determine basic type properties. */
3979 gdbarch = get_objfile_arch (objfile);
3980
3981 /* Basic types. */
3982 objfile_type->builtin_void
3983 = init_type (TYPE_CODE_VOID, 1,
3984 0,
3985 "void", objfile);
3986
3987 objfile_type->builtin_char
3988 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3989 (TYPE_FLAG_NOSIGN
3990 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3991 "char", objfile);
3992 objfile_type->builtin_signed_char
3993 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3994 0,
3995 "signed char", objfile);
3996 objfile_type->builtin_unsigned_char
3997 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3998 TYPE_FLAG_UNSIGNED,
3999 "unsigned char", objfile);
4000 objfile_type->builtin_short
4001 = init_type (TYPE_CODE_INT,
4002 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4003 0, "short", objfile);
4004 objfile_type->builtin_unsigned_short
4005 = init_type (TYPE_CODE_INT,
4006 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4007 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4008 objfile_type->builtin_int
4009 = init_type (TYPE_CODE_INT,
4010 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4011 0, "int", objfile);
4012 objfile_type->builtin_unsigned_int
4013 = init_type (TYPE_CODE_INT,
4014 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4015 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4016 objfile_type->builtin_long
4017 = init_type (TYPE_CODE_INT,
4018 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4019 0, "long", objfile);
4020 objfile_type->builtin_unsigned_long
4021 = init_type (TYPE_CODE_INT,
4022 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4023 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4024 objfile_type->builtin_long_long
4025 = init_type (TYPE_CODE_INT,
4026 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4027 0, "long long", objfile);
4028 objfile_type->builtin_unsigned_long_long
4029 = init_type (TYPE_CODE_INT,
4030 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4031 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4032
4033 objfile_type->builtin_float
4034 = init_type (TYPE_CODE_FLT,
4035 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4036 0, "float", objfile);
4037 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4038 = gdbarch_float_format (gdbarch);
4039 objfile_type->builtin_double
4040 = init_type (TYPE_CODE_FLT,
4041 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4042 0, "double", objfile);
4043 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4044 = gdbarch_double_format (gdbarch);
4045 objfile_type->builtin_long_double
4046 = init_type (TYPE_CODE_FLT,
4047 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4048 0, "long double", objfile);
4049 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4050 = gdbarch_long_double_format (gdbarch);
4051
4052 /* This type represents a type that was unrecognized in symbol read-in. */
4053 objfile_type->builtin_error
4054 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4055
4056 /* The following set of types is used for symbols with no
4057 debug information. */
4058 objfile_type->nodebug_text_symbol
4059 = init_type (TYPE_CODE_FUNC, 1, 0,
4060 "<text variable, no debug info>", objfile);
4061 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4062 = objfile_type->builtin_int;
0875794a
JK
4063 objfile_type->nodebug_text_gnu_ifunc_symbol
4064 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4065 "<text gnu-indirect-function variable, no debug info>",
4066 objfile);
4067 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4068 = objfile_type->nodebug_text_symbol;
4069 objfile_type->nodebug_got_plt_symbol
4070 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4071 "<text from jump slot in .got.plt, no debug info>",
4072 objfile);
4073 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4074 = objfile_type->nodebug_text_symbol;
46bf5051
UW
4075 objfile_type->nodebug_data_symbol
4076 = init_type (TYPE_CODE_INT,
4077 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4078 "<data variable, no debug info>", objfile);
4079 objfile_type->nodebug_unknown_symbol
4080 = init_type (TYPE_CODE_INT, 1, 0,
4081 "<variable (not text or data), no debug info>", objfile);
4082 objfile_type->nodebug_tls_symbol
4083 = init_type (TYPE_CODE_INT,
4084 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4085 "<thread local variable, no debug info>", objfile);
000177f0
AC
4086
4087 /* NOTE: on some targets, addresses and pointers are not necessarily
0a7cfe2c 4088 the same.
000177f0
AC
4089
4090 The upshot is:
4091 - gdb's `struct type' always describes the target's
4092 representation.
4093 - gdb's `struct value' objects should always hold values in
4094 target form.
4095 - gdb's CORE_ADDR values are addresses in the unified virtual
4096 address space that the assembler and linker work with. Thus,
4097 since target_read_memory takes a CORE_ADDR as an argument, it
4098 can access any memory on the target, even if the processor has
4099 separate code and data address spaces.
4100
46bf5051
UW
4101 In this context, objfile_type->builtin_core_addr is a bit odd:
4102 it's a target type for a value the target will never see. It's
4103 only used to hold the values of (typeless) linker symbols, which
4104 are indeed in the unified virtual address space. */
000177f0 4105
46bf5051
UW
4106 objfile_type->builtin_core_addr
4107 = init_type (TYPE_CODE_INT,
4108 gdbarch_addr_bit (gdbarch) / 8,
4109 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
64c50499 4110
46bf5051
UW
4111 set_objfile_data (objfile, objfile_type_data, objfile_type);
4112 return objfile_type;
000177f0
AC
4113}
4114
5212577a 4115extern initialize_file_ftype _initialize_gdbtypes;
46bf5051 4116
c906108c 4117void
fba45db2 4118_initialize_gdbtypes (void)
c906108c 4119{
5674de60 4120 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
46bf5051 4121 objfile_type_data = register_objfile_data ();
5674de60 4122
ccce17b0
YQ
4123 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4124 _("Set debugging of C++ overloading."),
4125 _("Show debugging of C++ overloading."),
4126 _("When enabled, ranking of the "
4127 "functions is displayed."),
4128 NULL,
4129 show_overload_debug,
4130 &setdebuglist, &showdebuglist);
5674de60 4131
7ba81444 4132 /* Add user knob for controlling resolution of opaque types. */
5674de60 4133 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
4134 &opaque_type_resolution,
4135 _("Set resolution of opaque struct/class/union"
4136 " types (if set before loading symbols)."),
4137 _("Show resolution of opaque struct/class/union"
4138 " types (if set before loading symbols)."),
4139 NULL, NULL,
5674de60
UW
4140 show_opaque_type_resolution,
4141 &setlist, &showlist);
a451cb65
KS
4142
4143 /* Add an option to permit non-strict type checking. */
4144 add_setshow_boolean_cmd ("type", class_support,
4145 &strict_type_checking,
4146 _("Set strict type checking."),
4147 _("Show strict type checking."),
4148 NULL, NULL,
4149 show_strict_type_checking,
4150 &setchecklist, &showchecklist);
c906108c 4151}
This page took 1.362234 seconds and 4 git commands to generate.