gdb/dwarf: Introduce dwarf2_per_cu_int_type function
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
42a4f53d 3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c
SS
23#include "bfd.h"
24#include "symtab.h"
25#include "symfile.h"
26#include "objfiles.h"
27#include "gdbtypes.h"
28#include "expression.h"
29#include "language.h"
30#include "target.h"
31#include "value.h"
32#include "demangle.h"
33#include "complaints.h"
34#include "gdbcmd.h"
015a42b4 35#include "cp-abi.h"
ae5a43e0 36#include "hashtab.h"
8de20a37 37#include "cp-support.h"
ca092b61
DE
38#include "bcache.h"
39#include "dwarf2loc.h"
80180f79 40#include "gdbcore.h"
1841ee5d 41#include "floatformat.h"
ac3aafc7 42
6403aeea
SW
43/* Initialize BADNESS constants. */
44
a9d5ef47 45const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 46
a9d5ef47
SW
47const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
48const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 49
a9d5ef47 50const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 51
a9d5ef47
SW
52const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
53const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
54const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
e15c3eb4 55const struct rank CV_CONVERSION_BADNESS = {1, 0};
a9d5ef47
SW
56const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 60const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
61const struct rank BASE_CONVERSION_BADNESS = {2,0};
62const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
da096638 63const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 64const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 65const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 66
8da61cc4 67/* Floatformat pairs. */
f9e9243a
UW
68const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_half_big,
70 &floatformat_ieee_half_little
71};
8da61cc4
DJ
72const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_single_big,
74 &floatformat_ieee_single_little
75};
76const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_little
79};
80const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_littlebyte_bigword
83};
84const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_i387_ext,
86 &floatformat_i387_ext
87};
88const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_m68881_ext,
90 &floatformat_m68881_ext
91};
92const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_arm_ext_big,
94 &floatformat_arm_ext_littlebyte_bigword
95};
96const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_spill_big,
98 &floatformat_ia64_spill_little
99};
100const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_quad_big,
102 &floatformat_ia64_quad_little
103};
104const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_f,
106 &floatformat_vax_f
107};
108const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_d,
110 &floatformat_vax_d
111};
b14d30e1 112const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
f5aee5ee
AM
113 &floatformat_ibm_long_double_big,
114 &floatformat_ibm_long_double_little
b14d30e1 115};
8da61cc4 116
2873700e
KS
117/* Should opaque types be resolved? */
118
491144b5 119static bool opaque_type_resolution = true;
2873700e 120
79bb1944 121/* See gdbtypes.h. */
2873700e
KS
122
123unsigned int overload_debug = 0;
124
a451cb65
KS
125/* A flag to enable strict type checking. */
126
491144b5 127static bool strict_type_checking = true;
a451cb65 128
2873700e 129/* A function to show whether opaque types are resolved. */
5212577a 130
920d2a44
AC
131static void
132show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
133 struct cmd_list_element *c,
134 const char *value)
920d2a44 135{
3e43a32a
MS
136 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
137 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
138 value);
139}
140
2873700e 141/* A function to show whether C++ overload debugging is enabled. */
5212577a 142
920d2a44
AC
143static void
144show_overload_debug (struct ui_file *file, int from_tty,
145 struct cmd_list_element *c, const char *value)
146{
7ba81444
MS
147 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
148 value);
920d2a44 149}
c906108c 150
a451cb65
KS
151/* A function to show the status of strict type checking. */
152
153static void
154show_strict_type_checking (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156{
157 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
158}
159
5212577a 160\f
e9bb382b
UW
161/* Allocate a new OBJFILE-associated type structure and fill it
162 with some defaults. Space for the type structure is allocated
163 on the objfile's objfile_obstack. */
c906108c
SS
164
165struct type *
fba45db2 166alloc_type (struct objfile *objfile)
c906108c 167{
52f0bd74 168 struct type *type;
c906108c 169
e9bb382b
UW
170 gdb_assert (objfile != NULL);
171
7ba81444 172 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
173 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
174 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
175 struct main_type);
176 OBJSTAT (objfile, n_types++);
c906108c 177
e9bb382b
UW
178 TYPE_OBJFILE_OWNED (type) = 1;
179 TYPE_OWNER (type).objfile = objfile;
c906108c 180
7ba81444 181 /* Initialize the fields that might not be zero. */
c906108c
SS
182
183 TYPE_CODE (type) = TYPE_CODE_UNDEF;
2fdde8f8 184 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 185
c16abbde 186 return type;
c906108c
SS
187}
188
e9bb382b
UW
189/* Allocate a new GDBARCH-associated type structure and fill it
190 with some defaults. Space for the type structure is allocated
8f57eec2 191 on the obstack associated with GDBARCH. */
e9bb382b
UW
192
193struct type *
194alloc_type_arch (struct gdbarch *gdbarch)
195{
196 struct type *type;
197
198 gdb_assert (gdbarch != NULL);
199
200 /* Alloc the structure and start off with all fields zeroed. */
201
8f57eec2
PP
202 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
203 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
e9bb382b
UW
204
205 TYPE_OBJFILE_OWNED (type) = 0;
206 TYPE_OWNER (type).gdbarch = gdbarch;
207
208 /* Initialize the fields that might not be zero. */
209
210 TYPE_CODE (type) = TYPE_CODE_UNDEF;
e9bb382b
UW
211 TYPE_CHAIN (type) = type; /* Chain back to itself. */
212
213 return type;
214}
215
216/* If TYPE is objfile-associated, allocate a new type structure
217 associated with the same objfile. If TYPE is gdbarch-associated,
218 allocate a new type structure associated with the same gdbarch. */
219
220struct type *
221alloc_type_copy (const struct type *type)
222{
223 if (TYPE_OBJFILE_OWNED (type))
224 return alloc_type (TYPE_OWNER (type).objfile);
225 else
226 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
227}
228
229/* If TYPE is gdbarch-associated, return that architecture.
230 If TYPE is objfile-associated, return that objfile's architecture. */
231
232struct gdbarch *
233get_type_arch (const struct type *type)
234{
2fabdf33
AB
235 struct gdbarch *arch;
236
e9bb382b 237 if (TYPE_OBJFILE_OWNED (type))
2fabdf33 238 arch = get_objfile_arch (TYPE_OWNER (type).objfile);
e9bb382b 239 else
2fabdf33
AB
240 arch = TYPE_OWNER (type).gdbarch;
241
242 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
243 a gdbarch, however, this is very rare, and even then, in most cases
244 that get_type_arch is called, we assume that a non-NULL value is
245 returned. */
246 gdb_assert (arch != NULL);
247 return arch;
e9bb382b
UW
248}
249
99ad9427
YQ
250/* See gdbtypes.h. */
251
252struct type *
253get_target_type (struct type *type)
254{
255 if (type != NULL)
256 {
257 type = TYPE_TARGET_TYPE (type);
258 if (type != NULL)
259 type = check_typedef (type);
260 }
261
262 return type;
263}
264
2e056931
SM
265/* See gdbtypes.h. */
266
267unsigned int
268type_length_units (struct type *type)
269{
270 struct gdbarch *arch = get_type_arch (type);
271 int unit_size = gdbarch_addressable_memory_unit_size (arch);
272
273 return TYPE_LENGTH (type) / unit_size;
274}
275
2fdde8f8
DJ
276/* Alloc a new type instance structure, fill it with some defaults,
277 and point it at OLDTYPE. Allocate the new type instance from the
278 same place as OLDTYPE. */
279
280static struct type *
281alloc_type_instance (struct type *oldtype)
282{
283 struct type *type;
284
285 /* Allocate the structure. */
286
e9bb382b 287 if (! TYPE_OBJFILE_OWNED (oldtype))
2fabdf33 288 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
2fdde8f8 289 else
1deafd4e
PA
290 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
291 struct type);
292
2fdde8f8
DJ
293 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
294
295 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
296
c16abbde 297 return type;
2fdde8f8
DJ
298}
299
300/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 301 replacing it with something else. Preserve owner information. */
5212577a 302
2fdde8f8
DJ
303static void
304smash_type (struct type *type)
305{
e9bb382b
UW
306 int objfile_owned = TYPE_OBJFILE_OWNED (type);
307 union type_owner owner = TYPE_OWNER (type);
308
2fdde8f8
DJ
309 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
310
e9bb382b
UW
311 /* Restore owner information. */
312 TYPE_OBJFILE_OWNED (type) = objfile_owned;
313 TYPE_OWNER (type) = owner;
314
2fdde8f8
DJ
315 /* For now, delete the rings. */
316 TYPE_CHAIN (type) = type;
317
318 /* For now, leave the pointer/reference types alone. */
319}
320
c906108c
SS
321/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
322 to a pointer to memory where the pointer type should be stored.
323 If *TYPEPTR is zero, update it to point to the pointer type we return.
324 We allocate new memory if needed. */
325
326struct type *
fba45db2 327make_pointer_type (struct type *type, struct type **typeptr)
c906108c 328{
52f0bd74 329 struct type *ntype; /* New type */
053cb41b 330 struct type *chain;
c906108c
SS
331
332 ntype = TYPE_POINTER_TYPE (type);
333
c5aa993b 334 if (ntype)
c906108c 335 {
c5aa993b 336 if (typeptr == 0)
7ba81444
MS
337 return ntype; /* Don't care about alloc,
338 and have new type. */
c906108c 339 else if (*typeptr == 0)
c5aa993b 340 {
7ba81444 341 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 342 return ntype;
c5aa993b 343 }
c906108c
SS
344 }
345
346 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
347 {
e9bb382b 348 ntype = alloc_type_copy (type);
c906108c
SS
349 if (typeptr)
350 *typeptr = ntype;
351 }
7ba81444 352 else /* We have storage, but need to reset it. */
c906108c
SS
353 {
354 ntype = *typeptr;
053cb41b 355 chain = TYPE_CHAIN (ntype);
2fdde8f8 356 smash_type (ntype);
053cb41b 357 TYPE_CHAIN (ntype) = chain;
c906108c
SS
358 }
359
360 TYPE_TARGET_TYPE (ntype) = type;
361 TYPE_POINTER_TYPE (type) = ntype;
362
5212577a 363 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 364
50810684
UW
365 TYPE_LENGTH (ntype)
366 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
367 TYPE_CODE (ntype) = TYPE_CODE_PTR;
368
67b2adb2 369 /* Mark pointers as unsigned. The target converts between pointers
76e71323 370 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 371 gdbarch_address_to_pointer. */
876cecd0 372 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 373
053cb41b
JB
374 /* Update the length of all the other variants of this type. */
375 chain = TYPE_CHAIN (ntype);
376 while (chain != ntype)
377 {
378 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
379 chain = TYPE_CHAIN (chain);
380 }
381
c906108c
SS
382 return ntype;
383}
384
385/* Given a type TYPE, return a type of pointers to that type.
386 May need to construct such a type if this is the first use. */
387
388struct type *
fba45db2 389lookup_pointer_type (struct type *type)
c906108c 390{
c5aa993b 391 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
392}
393
7ba81444
MS
394/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
395 points to a pointer to memory where the reference type should be
396 stored. If *TYPEPTR is zero, update it to point to the reference
3b224330
AV
397 type we return. We allocate new memory if needed. REFCODE denotes
398 the kind of reference type to lookup (lvalue or rvalue reference). */
c906108c
SS
399
400struct type *
3b224330
AV
401make_reference_type (struct type *type, struct type **typeptr,
402 enum type_code refcode)
c906108c 403{
52f0bd74 404 struct type *ntype; /* New type */
3b224330 405 struct type **reftype;
1e98b326 406 struct type *chain;
c906108c 407
3b224330
AV
408 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
409
410 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
411 : TYPE_RVALUE_REFERENCE_TYPE (type));
c906108c 412
c5aa993b 413 if (ntype)
c906108c 414 {
c5aa993b 415 if (typeptr == 0)
7ba81444
MS
416 return ntype; /* Don't care about alloc,
417 and have new type. */
c906108c 418 else if (*typeptr == 0)
c5aa993b 419 {
7ba81444 420 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 421 return ntype;
c5aa993b 422 }
c906108c
SS
423 }
424
425 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
426 {
e9bb382b 427 ntype = alloc_type_copy (type);
c906108c
SS
428 if (typeptr)
429 *typeptr = ntype;
430 }
7ba81444 431 else /* We have storage, but need to reset it. */
c906108c
SS
432 {
433 ntype = *typeptr;
1e98b326 434 chain = TYPE_CHAIN (ntype);
2fdde8f8 435 smash_type (ntype);
1e98b326 436 TYPE_CHAIN (ntype) = chain;
c906108c
SS
437 }
438
439 TYPE_TARGET_TYPE (ntype) = type;
3b224330
AV
440 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
441 : &TYPE_RVALUE_REFERENCE_TYPE (type));
442
443 *reftype = ntype;
c906108c 444
7ba81444
MS
445 /* FIXME! Assume the machine has only one representation for
446 references, and that it matches the (only) representation for
447 pointers! */
c906108c 448
50810684
UW
449 TYPE_LENGTH (ntype) =
450 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
3b224330 451 TYPE_CODE (ntype) = refcode;
c5aa993b 452
3b224330 453 *reftype = ntype;
c906108c 454
1e98b326
JB
455 /* Update the length of all the other variants of this type. */
456 chain = TYPE_CHAIN (ntype);
457 while (chain != ntype)
458 {
459 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
460 chain = TYPE_CHAIN (chain);
461 }
462
c906108c
SS
463 return ntype;
464}
465
7ba81444
MS
466/* Same as above, but caller doesn't care about memory allocation
467 details. */
c906108c
SS
468
469struct type *
3b224330
AV
470lookup_reference_type (struct type *type, enum type_code refcode)
471{
472 return make_reference_type (type, (struct type **) 0, refcode);
473}
474
475/* Lookup the lvalue reference type for the type TYPE. */
476
477struct type *
478lookup_lvalue_reference_type (struct type *type)
479{
480 return lookup_reference_type (type, TYPE_CODE_REF);
481}
482
483/* Lookup the rvalue reference type for the type TYPE. */
484
485struct type *
486lookup_rvalue_reference_type (struct type *type)
c906108c 487{
3b224330 488 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
c906108c
SS
489}
490
7ba81444
MS
491/* Lookup a function type that returns type TYPE. TYPEPTR, if
492 nonzero, points to a pointer to memory where the function type
493 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 494 function type we return. We allocate new memory if needed. */
c906108c
SS
495
496struct type *
0c8b41f1 497make_function_type (struct type *type, struct type **typeptr)
c906108c 498{
52f0bd74 499 struct type *ntype; /* New type */
c906108c
SS
500
501 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
502 {
e9bb382b 503 ntype = alloc_type_copy (type);
c906108c
SS
504 if (typeptr)
505 *typeptr = ntype;
506 }
7ba81444 507 else /* We have storage, but need to reset it. */
c906108c
SS
508 {
509 ntype = *typeptr;
2fdde8f8 510 smash_type (ntype);
c906108c
SS
511 }
512
513 TYPE_TARGET_TYPE (ntype) = type;
514
515 TYPE_LENGTH (ntype) = 1;
516 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 517
b6cdc2c1
JK
518 INIT_FUNC_SPECIFIC (ntype);
519
c906108c
SS
520 return ntype;
521}
522
c906108c
SS
523/* Given a type TYPE, return a type of functions that return that type.
524 May need to construct such a type if this is the first use. */
525
526struct type *
fba45db2 527lookup_function_type (struct type *type)
c906108c 528{
0c8b41f1 529 return make_function_type (type, (struct type **) 0);
c906108c
SS
530}
531
71918a86 532/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
533 function type. If the final type in PARAM_TYPES is NULL, make a
534 varargs function. */
71918a86
TT
535
536struct type *
537lookup_function_type_with_arguments (struct type *type,
538 int nparams,
539 struct type **param_types)
540{
541 struct type *fn = make_function_type (type, (struct type **) 0);
542 int i;
543
e314d629 544 if (nparams > 0)
a6fb9c08 545 {
e314d629
TT
546 if (param_types[nparams - 1] == NULL)
547 {
548 --nparams;
549 TYPE_VARARGS (fn) = 1;
550 }
551 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
552 == TYPE_CODE_VOID)
553 {
554 --nparams;
555 /* Caller should have ensured this. */
556 gdb_assert (nparams == 0);
557 TYPE_PROTOTYPED (fn) = 1;
558 }
54990598
PA
559 else
560 TYPE_PROTOTYPED (fn) = 1;
a6fb9c08
TT
561 }
562
71918a86 563 TYPE_NFIELDS (fn) = nparams;
224c3ddb
SM
564 TYPE_FIELDS (fn)
565 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
71918a86
TT
566 for (i = 0; i < nparams; ++i)
567 TYPE_FIELD_TYPE (fn, i) = param_types[i];
568
569 return fn;
570}
571
47663de5
MS
572/* Identify address space identifier by name --
573 return the integer flag defined in gdbtypes.h. */
5212577a
DE
574
575int
61f4b350
TT
576address_space_name_to_int (struct gdbarch *gdbarch,
577 const char *space_identifier)
47663de5 578{
8b2dbe47 579 int type_flags;
d8734c88 580
7ba81444 581 /* Check for known address space delimiters. */
47663de5 582 if (!strcmp (space_identifier, "code"))
876cecd0 583 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 584 else if (!strcmp (space_identifier, "data"))
876cecd0 585 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
586 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
587 && gdbarch_address_class_name_to_type_flags (gdbarch,
588 space_identifier,
589 &type_flags))
8b2dbe47 590 return type_flags;
47663de5 591 else
8a3fe4f8 592 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
593}
594
595/* Identify address space identifier by integer flag as defined in
7ba81444 596 gdbtypes.h -- return the string version of the adress space name. */
47663de5 597
321432c0 598const char *
50810684 599address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 600{
876cecd0 601 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 602 return "code";
876cecd0 603 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 604 return "data";
876cecd0 605 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
606 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
607 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
608 else
609 return NULL;
610}
611
2fdde8f8 612/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
613
614 If STORAGE is non-NULL, create the new type instance there.
615 STORAGE must be in the same obstack as TYPE. */
47663de5 616
b9362cc7 617static struct type *
2fdde8f8
DJ
618make_qualified_type (struct type *type, int new_flags,
619 struct type *storage)
47663de5
MS
620{
621 struct type *ntype;
622
623 ntype = type;
5f61c20e
JK
624 do
625 {
626 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
627 return ntype;
628 ntype = TYPE_CHAIN (ntype);
629 }
630 while (ntype != type);
47663de5 631
2fdde8f8
DJ
632 /* Create a new type instance. */
633 if (storage == NULL)
634 ntype = alloc_type_instance (type);
635 else
636 {
7ba81444
MS
637 /* If STORAGE was provided, it had better be in the same objfile
638 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
639 if one objfile is freed and the other kept, we'd have
640 dangling pointers. */
ad766c0a
JB
641 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
642
2fdde8f8
DJ
643 ntype = storage;
644 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
645 TYPE_CHAIN (ntype) = ntype;
646 }
47663de5
MS
647
648 /* Pointers or references to the original type are not relevant to
2fdde8f8 649 the new type. */
47663de5
MS
650 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
651 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 652
2fdde8f8
DJ
653 /* Chain the new qualified type to the old type. */
654 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
655 TYPE_CHAIN (type) = ntype;
656
657 /* Now set the instance flags and return the new type. */
658 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 659
ab5d3da6
KB
660 /* Set length of new type to that of the original type. */
661 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
662
47663de5
MS
663 return ntype;
664}
665
2fdde8f8
DJ
666/* Make an address-space-delimited variant of a type -- a type that
667 is identical to the one supplied except that it has an address
668 space attribute attached to it (such as "code" or "data").
669
7ba81444
MS
670 The space attributes "code" and "data" are for Harvard
671 architectures. The address space attributes are for architectures
672 which have alternately sized pointers or pointers with alternate
673 representations. */
2fdde8f8
DJ
674
675struct type *
676make_type_with_address_space (struct type *type, int space_flag)
677{
2fdde8f8 678 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
679 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
680 | TYPE_INSTANCE_FLAG_DATA_SPACE
681 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
682 | space_flag);
683
684 return make_qualified_type (type, new_flags, NULL);
685}
c906108c
SS
686
687/* Make a "c-v" variant of a type -- a type that is identical to the
688 one supplied except that it may have const or volatile attributes
689 CNST is a flag for setting the const attribute
690 VOLTL is a flag for setting the volatile attribute
691 TYPE is the base type whose variant we are creating.
c906108c 692
ad766c0a
JB
693 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
694 storage to hold the new qualified type; *TYPEPTR and TYPE must be
695 in the same objfile. Otherwise, allocate fresh memory for the new
696 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
697 new type we construct. */
5212577a 698
c906108c 699struct type *
7ba81444
MS
700make_cv_type (int cnst, int voltl,
701 struct type *type,
702 struct type **typeptr)
c906108c 703{
52f0bd74 704 struct type *ntype; /* New type */
c906108c 705
2fdde8f8 706 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
707 & ~(TYPE_INSTANCE_FLAG_CONST
708 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 709
c906108c 710 if (cnst)
876cecd0 711 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
712
713 if (voltl)
876cecd0 714 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 715
2fdde8f8 716 if (typeptr && *typeptr != NULL)
a02fd225 717 {
ad766c0a
JB
718 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
719 a C-V variant chain that threads across objfiles: if one
720 objfile gets freed, then the other has a broken C-V chain.
721
722 This code used to try to copy over the main type from TYPE to
723 *TYPEPTR if they were in different objfiles, but that's
724 wrong, too: TYPE may have a field list or member function
725 lists, which refer to types of their own, etc. etc. The
726 whole shebang would need to be copied over recursively; you
727 can't have inter-objfile pointers. The only thing to do is
728 to leave stub types as stub types, and look them up afresh by
729 name each time you encounter them. */
730 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
731 }
732
7ba81444
MS
733 ntype = make_qualified_type (type, new_flags,
734 typeptr ? *typeptr : NULL);
c906108c 735
2fdde8f8
DJ
736 if (typeptr != NULL)
737 *typeptr = ntype;
a02fd225 738
2fdde8f8 739 return ntype;
a02fd225 740}
c906108c 741
06d66ee9
TT
742/* Make a 'restrict'-qualified version of TYPE. */
743
744struct type *
745make_restrict_type (struct type *type)
746{
747 return make_qualified_type (type,
748 (TYPE_INSTANCE_FLAGS (type)
749 | TYPE_INSTANCE_FLAG_RESTRICT),
750 NULL);
751}
752
f1660027
TT
753/* Make a type without const, volatile, or restrict. */
754
755struct type *
756make_unqualified_type (struct type *type)
757{
758 return make_qualified_type (type,
759 (TYPE_INSTANCE_FLAGS (type)
760 & ~(TYPE_INSTANCE_FLAG_CONST
761 | TYPE_INSTANCE_FLAG_VOLATILE
762 | TYPE_INSTANCE_FLAG_RESTRICT)),
763 NULL);
764}
765
a2c2acaf
MW
766/* Make a '_Atomic'-qualified version of TYPE. */
767
768struct type *
769make_atomic_type (struct type *type)
770{
771 return make_qualified_type (type,
772 (TYPE_INSTANCE_FLAGS (type)
773 | TYPE_INSTANCE_FLAG_ATOMIC),
774 NULL);
775}
776
2fdde8f8
DJ
777/* Replace the contents of ntype with the type *type. This changes the
778 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
779 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 780
cda6c68a
JB
781 In order to build recursive types, it's inevitable that we'll need
782 to update types in place --- but this sort of indiscriminate
783 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
784 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
785 clear if more steps are needed. */
5212577a 786
dd6bda65
DJ
787void
788replace_type (struct type *ntype, struct type *type)
789{
ab5d3da6 790 struct type *chain;
dd6bda65 791
ad766c0a
JB
792 /* These two types had better be in the same objfile. Otherwise,
793 the assignment of one type's main type structure to the other
794 will produce a type with references to objects (names; field
795 lists; etc.) allocated on an objfile other than its own. */
e46dd0f4 796 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
ad766c0a 797
2fdde8f8 798 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 799
7ba81444
MS
800 /* The type length is not a part of the main type. Update it for
801 each type on the variant chain. */
ab5d3da6 802 chain = ntype;
5f61c20e
JK
803 do
804 {
805 /* Assert that this element of the chain has no address-class bits
806 set in its flags. Such type variants might have type lengths
807 which are supposed to be different from the non-address-class
808 variants. This assertion shouldn't ever be triggered because
809 symbol readers which do construct address-class variants don't
810 call replace_type(). */
811 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
812
813 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
814 chain = TYPE_CHAIN (chain);
815 }
816 while (ntype != chain);
ab5d3da6 817
2fdde8f8
DJ
818 /* Assert that the two types have equivalent instance qualifiers.
819 This should be true for at least all of our debug readers. */
820 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
821}
822
c906108c
SS
823/* Implement direct support for MEMBER_TYPE in GNU C++.
824 May need to construct such a type if this is the first use.
825 The TYPE is the type of the member. The DOMAIN is the type
826 of the aggregate that the member belongs to. */
827
828struct type *
0d5de010 829lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 830{
52f0bd74 831 struct type *mtype;
c906108c 832
e9bb382b 833 mtype = alloc_type_copy (type);
0d5de010 834 smash_to_memberptr_type (mtype, domain, type);
c16abbde 835 return mtype;
c906108c
SS
836}
837
0d5de010
DJ
838/* Return a pointer-to-method type, for a method of type TO_TYPE. */
839
840struct type *
841lookup_methodptr_type (struct type *to_type)
842{
843 struct type *mtype;
844
e9bb382b 845 mtype = alloc_type_copy (to_type);
0b92b5bb 846 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
847 return mtype;
848}
849
7ba81444
MS
850/* Allocate a stub method whose return type is TYPE. This apparently
851 happens for speed of symbol reading, since parsing out the
852 arguments to the method is cpu-intensive, the way we are doing it.
853 So, we will fill in arguments later. This always returns a fresh
854 type. */
c906108c
SS
855
856struct type *
fba45db2 857allocate_stub_method (struct type *type)
c906108c
SS
858{
859 struct type *mtype;
860
e9bb382b
UW
861 mtype = alloc_type_copy (type);
862 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
863 TYPE_LENGTH (mtype) = 1;
864 TYPE_STUB (mtype) = 1;
c906108c 865 TYPE_TARGET_TYPE (mtype) = type;
4bfb94b8 866 /* TYPE_SELF_TYPE (mtype) = unknown yet */
c16abbde 867 return mtype;
c906108c
SS
868}
869
0f59d5fc
PA
870/* See gdbtypes.h. */
871
872bool
873operator== (const dynamic_prop &l, const dynamic_prop &r)
874{
875 if (l.kind != r.kind)
876 return false;
877
878 switch (l.kind)
879 {
880 case PROP_UNDEFINED:
881 return true;
882 case PROP_CONST:
883 return l.data.const_val == r.data.const_val;
884 case PROP_ADDR_OFFSET:
885 case PROP_LOCEXPR:
886 case PROP_LOCLIST:
887 return l.data.baton == r.data.baton;
888 }
889
890 gdb_assert_not_reached ("unhandled dynamic_prop kind");
891}
892
893/* See gdbtypes.h. */
894
895bool
896operator== (const range_bounds &l, const range_bounds &r)
897{
898#define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
899
900 return (FIELD_EQ (low)
901 && FIELD_EQ (high)
902 && FIELD_EQ (flag_upper_bound_is_count)
4e962e74
TT
903 && FIELD_EQ (flag_bound_evaluated)
904 && FIELD_EQ (bias));
0f59d5fc
PA
905
906#undef FIELD_EQ
907}
908
729efb13
SA
909/* Create a range type with a dynamic range from LOW_BOUND to
910 HIGH_BOUND, inclusive. See create_range_type for further details. */
c906108c
SS
911
912struct type *
729efb13
SA
913create_range_type (struct type *result_type, struct type *index_type,
914 const struct dynamic_prop *low_bound,
4e962e74
TT
915 const struct dynamic_prop *high_bound,
916 LONGEST bias)
c906108c 917{
b86352cf
AB
918 /* The INDEX_TYPE should be a type capable of holding the upper and lower
919 bounds, as such a zero sized, or void type makes no sense. */
920 gdb_assert (TYPE_CODE (index_type) != TYPE_CODE_VOID);
921 gdb_assert (TYPE_LENGTH (index_type) > 0);
922
c906108c 923 if (result_type == NULL)
e9bb382b 924 result_type = alloc_type_copy (index_type);
c906108c
SS
925 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
926 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 927 if (TYPE_STUB (index_type))
876cecd0 928 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
929 else
930 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
729efb13 931
43bbcdc2
PH
932 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
933 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
729efb13
SA
934 TYPE_RANGE_DATA (result_type)->low = *low_bound;
935 TYPE_RANGE_DATA (result_type)->high = *high_bound;
4e962e74 936 TYPE_RANGE_DATA (result_type)->bias = bias;
c906108c 937
5bbd8269
AB
938 /* Initialize the stride to be a constant, the value will already be zero
939 thanks to the use of TYPE_ZALLOC above. */
940 TYPE_RANGE_DATA (result_type)->stride.kind = PROP_CONST;
941
729efb13 942 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
876cecd0 943 TYPE_UNSIGNED (result_type) = 1;
c906108c 944
45e44d27
JB
945 /* Ada allows the declaration of range types whose upper bound is
946 less than the lower bound, so checking the lower bound is not
947 enough. Make sure we do not mark a range type whose upper bound
948 is negative as unsigned. */
949 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
950 TYPE_UNSIGNED (result_type) = 0;
951
262452ec 952 return result_type;
c906108c
SS
953}
954
5bbd8269
AB
955/* See gdbtypes.h. */
956
957struct type *
958create_range_type_with_stride (struct type *result_type,
959 struct type *index_type,
960 const struct dynamic_prop *low_bound,
961 const struct dynamic_prop *high_bound,
962 LONGEST bias,
963 const struct dynamic_prop *stride,
964 bool byte_stride_p)
965{
966 result_type = create_range_type (result_type, index_type, low_bound,
967 high_bound, bias);
968
969 gdb_assert (stride != nullptr);
970 TYPE_RANGE_DATA (result_type)->stride = *stride;
971 TYPE_RANGE_DATA (result_type)->flag_is_byte_stride = byte_stride_p;
972
973 return result_type;
974}
975
976
977
729efb13
SA
978/* Create a range type using either a blank type supplied in
979 RESULT_TYPE, or creating a new type, inheriting the objfile from
980 INDEX_TYPE.
981
982 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
983 to HIGH_BOUND, inclusive.
984
985 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
986 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
987
988struct type *
989create_static_range_type (struct type *result_type, struct type *index_type,
990 LONGEST low_bound, LONGEST high_bound)
991{
992 struct dynamic_prop low, high;
993
994 low.kind = PROP_CONST;
995 low.data.const_val = low_bound;
996
997 high.kind = PROP_CONST;
998 high.data.const_val = high_bound;
999
4e962e74 1000 result_type = create_range_type (result_type, index_type, &low, &high, 0);
729efb13
SA
1001
1002 return result_type;
1003}
1004
80180f79
SA
1005/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
1006 are static, otherwise returns 0. */
1007
5bbd8269 1008static bool
80180f79
SA
1009has_static_range (const struct range_bounds *bounds)
1010{
5bbd8269
AB
1011 /* If the range doesn't have a defined stride then its stride field will
1012 be initialized to the constant 0. */
80180f79 1013 return (bounds->low.kind == PROP_CONST
5bbd8269
AB
1014 && bounds->high.kind == PROP_CONST
1015 && bounds->stride.kind == PROP_CONST);
80180f79
SA
1016}
1017
1018
7ba81444
MS
1019/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
1020 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
1021 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
1022
1023int
fba45db2 1024get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c 1025{
f168693b 1026 type = check_typedef (type);
c906108c
SS
1027 switch (TYPE_CODE (type))
1028 {
1029 case TYPE_CODE_RANGE:
1030 *lowp = TYPE_LOW_BOUND (type);
1031 *highp = TYPE_HIGH_BOUND (type);
1032 return 1;
1033 case TYPE_CODE_ENUM:
1034 if (TYPE_NFIELDS (type) > 0)
1035 {
1036 /* The enums may not be sorted by value, so search all
0963b4bd 1037 entries. */
c906108c
SS
1038 int i;
1039
14e75d8e 1040 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
c906108c
SS
1041 for (i = 0; i < TYPE_NFIELDS (type); i++)
1042 {
14e75d8e
JK
1043 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1044 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1045 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1046 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
1047 }
1048
7ba81444 1049 /* Set unsigned indicator if warranted. */
c5aa993b 1050 if (*lowp >= 0)
c906108c 1051 {
876cecd0 1052 TYPE_UNSIGNED (type) = 1;
c906108c
SS
1053 }
1054 }
1055 else
1056 {
1057 *lowp = 0;
1058 *highp = -1;
1059 }
1060 return 0;
1061 case TYPE_CODE_BOOL:
1062 *lowp = 0;
1063 *highp = 1;
1064 return 0;
1065 case TYPE_CODE_INT:
c5aa993b 1066 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
1067 return -1;
1068 if (!TYPE_UNSIGNED (type))
1069 {
c5aa993b 1070 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
1071 *highp = -*lowp - 1;
1072 return 0;
1073 }
86a73007 1074 /* fall through */
c906108c
SS
1075 case TYPE_CODE_CHAR:
1076 *lowp = 0;
1077 /* This round-about calculation is to avoid shifting by
7b83ea04 1078 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 1079 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
1080 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1081 *highp = (*highp - 1) | *highp;
1082 return 0;
1083 default:
1084 return -1;
1085 }
1086}
1087
dbc98a8b
KW
1088/* Assuming TYPE is a simple, non-empty array type, compute its upper
1089 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1090 Save the high bound into HIGH_BOUND if not NULL.
1091
0963b4bd 1092 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
1093 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1094
1095 We now simply use get_discrete_bounds call to get the values
1096 of the low and high bounds.
1097 get_discrete_bounds can return three values:
1098 1, meaning that index is a range,
1099 0, meaning that index is a discrete type,
1100 or -1 for failure. */
1101
1102int
1103get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1104{
1105 struct type *index = TYPE_INDEX_TYPE (type);
1106 LONGEST low = 0;
1107 LONGEST high = 0;
1108 int res;
1109
1110 if (index == NULL)
1111 return 0;
1112
1113 res = get_discrete_bounds (index, &low, &high);
1114 if (res == -1)
1115 return 0;
1116
1117 /* Check if the array bounds are undefined. */
1118 if (res == 1
1119 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1120 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1121 return 0;
1122
1123 if (low_bound)
1124 *low_bound = low;
1125
1126 if (high_bound)
1127 *high_bound = high;
1128
1129 return 1;
1130}
1131
aa715135
JG
1132/* Assuming that TYPE is a discrete type and VAL is a valid integer
1133 representation of a value of this type, save the corresponding
1134 position number in POS.
1135
1136 Its differs from VAL only in the case of enumeration types. In
1137 this case, the position number of the value of the first listed
1138 enumeration literal is zero; the position number of the value of
1139 each subsequent enumeration literal is one more than that of its
1140 predecessor in the list.
1141
1142 Return 1 if the operation was successful. Return zero otherwise,
1143 in which case the value of POS is unmodified.
1144*/
1145
1146int
1147discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1148{
1149 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1150 {
1151 int i;
1152
1153 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1154 {
1155 if (val == TYPE_FIELD_ENUMVAL (type, i))
1156 {
1157 *pos = i;
1158 return 1;
1159 }
1160 }
1161 /* Invalid enumeration value. */
1162 return 0;
1163 }
1164 else
1165 {
1166 *pos = val;
1167 return 1;
1168 }
1169}
1170
7ba81444
MS
1171/* Create an array type using either a blank type supplied in
1172 RESULT_TYPE, or creating a new type, inheriting the objfile from
1173 RANGE_TYPE.
c906108c
SS
1174
1175 Elements will be of type ELEMENT_TYPE, the indices will be of type
1176 RANGE_TYPE.
1177
a405673c
JB
1178 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1179 This byte stride property is added to the resulting array type
1180 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1181 argument can only be used to create types that are objfile-owned
1182 (see add_dyn_prop), meaning that either this function must be called
1183 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1184
1185 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
dc53a7ad
JB
1186 If BIT_STRIDE is not zero, build a packed array type whose element
1187 size is BIT_STRIDE. Otherwise, ignore this parameter.
1188
7ba81444
MS
1189 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1190 sure it is TYPE_CODE_UNDEF before we bash it into an array
1191 type? */
c906108c
SS
1192
1193struct type *
dc53a7ad
JB
1194create_array_type_with_stride (struct type *result_type,
1195 struct type *element_type,
1196 struct type *range_type,
a405673c 1197 struct dynamic_prop *byte_stride_prop,
dc53a7ad 1198 unsigned int bit_stride)
c906108c 1199{
a405673c
JB
1200 if (byte_stride_prop != NULL
1201 && byte_stride_prop->kind == PROP_CONST)
1202 {
1203 /* The byte stride is actually not dynamic. Pretend we were
1204 called with bit_stride set instead of byte_stride_prop.
1205 This will give us the same result type, while avoiding
1206 the need to handle this as a special case. */
1207 bit_stride = byte_stride_prop->data.const_val * 8;
1208 byte_stride_prop = NULL;
1209 }
1210
c906108c 1211 if (result_type == NULL)
e9bb382b
UW
1212 result_type = alloc_type_copy (range_type);
1213
c906108c
SS
1214 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1215 TYPE_TARGET_TYPE (result_type) = element_type;
a405673c
JB
1216 if (byte_stride_prop == NULL
1217 && has_static_range (TYPE_RANGE_DATA (range_type))
b4a7fcab
JB
1218 && (!type_not_associated (result_type)
1219 && !type_not_allocated (result_type)))
80180f79
SA
1220 {
1221 LONGEST low_bound, high_bound;
5bbd8269
AB
1222 unsigned int stride;
1223
1224 /* If the array itself doesn't provide a stride value then take
1225 whatever stride the range provides. Don't update BIT_STRIDE as
1226 we don't want to place the stride value from the range into this
1227 arrays bit size field. */
1228 stride = bit_stride;
1229 if (stride == 0)
1230 stride = TYPE_BIT_STRIDE (range_type);
80180f79
SA
1231
1232 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1233 low_bound = high_bound = 0;
f168693b 1234 element_type = check_typedef (element_type);
80180f79
SA
1235 /* Be careful when setting the array length. Ada arrays can be
1236 empty arrays with the high_bound being smaller than the low_bound.
1237 In such cases, the array length should be zero. */
1238 if (high_bound < low_bound)
1239 TYPE_LENGTH (result_type) = 0;
5bbd8269 1240 else if (stride > 0)
80180f79 1241 TYPE_LENGTH (result_type) =
5bbd8269 1242 (stride * (high_bound - low_bound + 1) + 7) / 8;
80180f79
SA
1243 else
1244 TYPE_LENGTH (result_type) =
1245 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1246 }
ab0d6e0d 1247 else
80180f79
SA
1248 {
1249 /* This type is dynamic and its length needs to be computed
1250 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1251 undefined by setting it to zero. Although we are not expected
1252 to trust TYPE_LENGTH in this case, setting the size to zero
1253 allows us to avoid allocating objects of random sizes in case
1254 we accidently do. */
1255 TYPE_LENGTH (result_type) = 0;
1256 }
1257
c906108c
SS
1258 TYPE_NFIELDS (result_type) = 1;
1259 TYPE_FIELDS (result_type) =
1deafd4e 1260 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 1261 TYPE_INDEX_TYPE (result_type) = range_type;
a405673c 1262 if (byte_stride_prop != NULL)
50a82047 1263 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
a405673c 1264 else if (bit_stride > 0)
dc53a7ad 1265 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
c906108c 1266
a9ff5f12 1267 /* TYPE_TARGET_STUB will take care of zero length arrays. */
c906108c 1268 if (TYPE_LENGTH (result_type) == 0)
876cecd0 1269 TYPE_TARGET_STUB (result_type) = 1;
c906108c 1270
c16abbde 1271 return result_type;
c906108c
SS
1272}
1273
dc53a7ad
JB
1274/* Same as create_array_type_with_stride but with no bit_stride
1275 (BIT_STRIDE = 0), thus building an unpacked array. */
1276
1277struct type *
1278create_array_type (struct type *result_type,
1279 struct type *element_type,
1280 struct type *range_type)
1281{
1282 return create_array_type_with_stride (result_type, element_type,
a405673c 1283 range_type, NULL, 0);
dc53a7ad
JB
1284}
1285
e3506a9f
UW
1286struct type *
1287lookup_array_range_type (struct type *element_type,
63375b74 1288 LONGEST low_bound, LONGEST high_bound)
e3506a9f 1289{
929b5ad4
JB
1290 struct type *index_type;
1291 struct type *range_type;
1292
1293 if (TYPE_OBJFILE_OWNED (element_type))
1294 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1295 else
1296 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1297 range_type = create_static_range_type (NULL, index_type,
1298 low_bound, high_bound);
d8734c88 1299
e3506a9f
UW
1300 return create_array_type (NULL, element_type, range_type);
1301}
1302
7ba81444
MS
1303/* Create a string type using either a blank type supplied in
1304 RESULT_TYPE, or creating a new type. String types are similar
1305 enough to array of char types that we can use create_array_type to
1306 build the basic type and then bash it into a string type.
c906108c
SS
1307
1308 For fixed length strings, the range type contains 0 as the lower
1309 bound and the length of the string minus one as the upper bound.
1310
7ba81444
MS
1311 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1312 sure it is TYPE_CODE_UNDEF before we bash it into a string
1313 type? */
c906108c
SS
1314
1315struct type *
3b7538c0
UW
1316create_string_type (struct type *result_type,
1317 struct type *string_char_type,
7ba81444 1318 struct type *range_type)
c906108c
SS
1319{
1320 result_type = create_array_type (result_type,
f290d38e 1321 string_char_type,
c906108c
SS
1322 range_type);
1323 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 1324 return result_type;
c906108c
SS
1325}
1326
e3506a9f
UW
1327struct type *
1328lookup_string_range_type (struct type *string_char_type,
63375b74 1329 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1330{
1331 struct type *result_type;
d8734c88 1332
e3506a9f
UW
1333 result_type = lookup_array_range_type (string_char_type,
1334 low_bound, high_bound);
1335 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1336 return result_type;
1337}
1338
c906108c 1339struct type *
fba45db2 1340create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1341{
c906108c 1342 if (result_type == NULL)
e9bb382b
UW
1343 result_type = alloc_type_copy (domain_type);
1344
c906108c
SS
1345 TYPE_CODE (result_type) = TYPE_CODE_SET;
1346 TYPE_NFIELDS (result_type) = 1;
224c3ddb
SM
1347 TYPE_FIELDS (result_type)
1348 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 1349
74a9bb82 1350 if (!TYPE_STUB (domain_type))
c906108c 1351 {
f9780d5b 1352 LONGEST low_bound, high_bound, bit_length;
d8734c88 1353
c906108c
SS
1354 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1355 low_bound = high_bound = 0;
1356 bit_length = high_bound - low_bound + 1;
1357 TYPE_LENGTH (result_type)
1358 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1359 if (low_bound >= 0)
876cecd0 1360 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
1361 }
1362 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1363
c16abbde 1364 return result_type;
c906108c
SS
1365}
1366
ea37ba09
DJ
1367/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1368 and any array types nested inside it. */
1369
1370void
1371make_vector_type (struct type *array_type)
1372{
1373 struct type *inner_array, *elt_type;
1374 int flags;
1375
1376 /* Find the innermost array type, in case the array is
1377 multi-dimensional. */
1378 inner_array = array_type;
1379 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1380 inner_array = TYPE_TARGET_TYPE (inner_array);
1381
1382 elt_type = TYPE_TARGET_TYPE (inner_array);
1383 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1384 {
2844d6b5 1385 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1386 elt_type = make_qualified_type (elt_type, flags, NULL);
1387 TYPE_TARGET_TYPE (inner_array) = elt_type;
1388 }
1389
876cecd0 1390 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1391}
1392
794ac428 1393struct type *
ac3aafc7
EZ
1394init_vector_type (struct type *elt_type, int n)
1395{
1396 struct type *array_type;
d8734c88 1397
e3506a9f 1398 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1399 make_vector_type (array_type);
ac3aafc7
EZ
1400 return array_type;
1401}
1402
09e2d7c7
DE
1403/* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1404 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1405 confusing. "self" is a common enough replacement for "this".
1406 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1407 TYPE_CODE_METHOD. */
1408
1409struct type *
1410internal_type_self_type (struct type *type)
1411{
1412 switch (TYPE_CODE (type))
1413 {
1414 case TYPE_CODE_METHODPTR:
1415 case TYPE_CODE_MEMBERPTR:
eaaf76ab
DE
1416 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1417 return NULL;
09e2d7c7
DE
1418 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1419 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1420 case TYPE_CODE_METHOD:
eaaf76ab
DE
1421 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1422 return NULL;
09e2d7c7
DE
1423 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1424 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1425 default:
1426 gdb_assert_not_reached ("bad type");
1427 }
1428}
1429
1430/* Set the type of the class that TYPE belongs to.
1431 In c++ this is the class of "this".
1432 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1433 TYPE_CODE_METHOD. */
1434
1435void
1436set_type_self_type (struct type *type, struct type *self_type)
1437{
1438 switch (TYPE_CODE (type))
1439 {
1440 case TYPE_CODE_METHODPTR:
1441 case TYPE_CODE_MEMBERPTR:
1442 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1443 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1444 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1445 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1446 break;
1447 case TYPE_CODE_METHOD:
1448 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1449 INIT_FUNC_SPECIFIC (type);
1450 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1451 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1452 break;
1453 default:
1454 gdb_assert_not_reached ("bad type");
1455 }
1456}
1457
1458/* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
0d5de010
DJ
1459 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1460 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1461 TYPE doesn't include the offset (that's the value of the MEMBER
1462 itself), but does include the structure type into which it points
1463 (for some reason).
c906108c 1464
7ba81444
MS
1465 When "smashing" the type, we preserve the objfile that the old type
1466 pointed to, since we aren't changing where the type is actually
c906108c
SS
1467 allocated. */
1468
1469void
09e2d7c7 1470smash_to_memberptr_type (struct type *type, struct type *self_type,
0d5de010 1471 struct type *to_type)
c906108c 1472{
2fdde8f8 1473 smash_type (type);
09e2d7c7 1474 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c 1475 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1476 set_type_self_type (type, self_type);
0d5de010
DJ
1477 /* Assume that a data member pointer is the same size as a normal
1478 pointer. */
50810684
UW
1479 TYPE_LENGTH (type)
1480 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
c906108c
SS
1481}
1482
0b92b5bb
TT
1483/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1484
1485 When "smashing" the type, we preserve the objfile that the old type
1486 pointed to, since we aren't changing where the type is actually
1487 allocated. */
1488
1489void
1490smash_to_methodptr_type (struct type *type, struct type *to_type)
1491{
1492 smash_type (type);
09e2d7c7 1493 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
0b92b5bb 1494 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1495 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
0b92b5bb 1496 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
0b92b5bb
TT
1497}
1498
09e2d7c7 1499/* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
c906108c
SS
1500 METHOD just means `function that gets an extra "this" argument'.
1501
7ba81444
MS
1502 When "smashing" the type, we preserve the objfile that the old type
1503 pointed to, since we aren't changing where the type is actually
c906108c
SS
1504 allocated. */
1505
1506void
09e2d7c7 1507smash_to_method_type (struct type *type, struct type *self_type,
ad2f7632
DJ
1508 struct type *to_type, struct field *args,
1509 int nargs, int varargs)
c906108c 1510{
2fdde8f8 1511 smash_type (type);
09e2d7c7 1512 TYPE_CODE (type) = TYPE_CODE_METHOD;
c906108c 1513 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1514 set_type_self_type (type, self_type);
ad2f7632
DJ
1515 TYPE_FIELDS (type) = args;
1516 TYPE_NFIELDS (type) = nargs;
1517 if (varargs)
876cecd0 1518 TYPE_VARARGS (type) = 1;
c906108c 1519 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
c906108c
SS
1520}
1521
a737d952 1522/* A wrapper of TYPE_NAME which calls error if the type is anonymous.
d8228535
JK
1523 Since GCC PR debug/47510 DWARF provides associated information to detect the
1524 anonymous class linkage name from its typedef.
1525
1526 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1527 apply it itself. */
1528
1529const char *
a737d952 1530type_name_or_error (struct type *type)
d8228535
JK
1531{
1532 struct type *saved_type = type;
1533 const char *name;
1534 struct objfile *objfile;
1535
f168693b 1536 type = check_typedef (type);
d8228535 1537
a737d952 1538 name = TYPE_NAME (type);
d8228535
JK
1539 if (name != NULL)
1540 return name;
1541
a737d952 1542 name = TYPE_NAME (saved_type);
d8228535
JK
1543 objfile = TYPE_OBJFILE (saved_type);
1544 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
4262abfb
JK
1545 name ? name : "<anonymous>",
1546 objfile ? objfile_name (objfile) : "<arch>");
d8228535
JK
1547}
1548
7ba81444
MS
1549/* Lookup a typedef or primitive type named NAME, visible in lexical
1550 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1551 suitably defined. */
c906108c
SS
1552
1553struct type *
e6c014f2 1554lookup_typename (const struct language_defn *language,
ddd49eee 1555 struct gdbarch *gdbarch, const char *name,
34eaf542 1556 const struct block *block, int noerr)
c906108c 1557{
52f0bd74 1558 struct symbol *sym;
c906108c 1559
1994afbf 1560 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
d12307c1 1561 language->la_language, NULL).symbol;
c51fe631
DE
1562 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1563 return SYMBOL_TYPE (sym);
1564
c51fe631
DE
1565 if (noerr)
1566 return NULL;
1567 error (_("No type named %s."), name);
c906108c
SS
1568}
1569
1570struct type *
e6c014f2 1571lookup_unsigned_typename (const struct language_defn *language,
0d5cff50 1572 struct gdbarch *gdbarch, const char *name)
c906108c 1573{
224c3ddb 1574 char *uns = (char *) alloca (strlen (name) + 10);
c906108c
SS
1575
1576 strcpy (uns, "unsigned ");
1577 strcpy (uns + 9, name);
582942f4 1578 return lookup_typename (language, gdbarch, uns, NULL, 0);
c906108c
SS
1579}
1580
1581struct type *
e6c014f2 1582lookup_signed_typename (const struct language_defn *language,
0d5cff50 1583 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1584{
1585 struct type *t;
224c3ddb 1586 char *uns = (char *) alloca (strlen (name) + 8);
c906108c
SS
1587
1588 strcpy (uns, "signed ");
1589 strcpy (uns + 7, name);
582942f4 1590 t = lookup_typename (language, gdbarch, uns, NULL, 1);
7ba81444 1591 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1592 if (t != NULL)
1593 return t;
582942f4 1594 return lookup_typename (language, gdbarch, name, NULL, 0);
c906108c
SS
1595}
1596
1597/* Lookup a structure type named "struct NAME",
1598 visible in lexical block BLOCK. */
1599
1600struct type *
270140bd 1601lookup_struct (const char *name, const struct block *block)
c906108c 1602{
52f0bd74 1603 struct symbol *sym;
c906108c 1604
d12307c1 1605 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1606
1607 if (sym == NULL)
1608 {
8a3fe4f8 1609 error (_("No struct type named %s."), name);
c906108c
SS
1610 }
1611 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1612 {
7ba81444
MS
1613 error (_("This context has class, union or enum %s, not a struct."),
1614 name);
c906108c
SS
1615 }
1616 return (SYMBOL_TYPE (sym));
1617}
1618
1619/* Lookup a union type named "union NAME",
1620 visible in lexical block BLOCK. */
1621
1622struct type *
270140bd 1623lookup_union (const char *name, const struct block *block)
c906108c 1624{
52f0bd74 1625 struct symbol *sym;
c5aa993b 1626 struct type *t;
c906108c 1627
d12307c1 1628 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1629
1630 if (sym == NULL)
8a3fe4f8 1631 error (_("No union type named %s."), name);
c906108c 1632
c5aa993b 1633 t = SYMBOL_TYPE (sym);
c906108c
SS
1634
1635 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1636 return t;
c906108c 1637
7ba81444
MS
1638 /* If we get here, it's not a union. */
1639 error (_("This context has class, struct or enum %s, not a union."),
1640 name);
c906108c
SS
1641}
1642
c906108c
SS
1643/* Lookup an enum type named "enum NAME",
1644 visible in lexical block BLOCK. */
1645
1646struct type *
270140bd 1647lookup_enum (const char *name, const struct block *block)
c906108c 1648{
52f0bd74 1649 struct symbol *sym;
c906108c 1650
d12307c1 1651 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1652 if (sym == NULL)
1653 {
8a3fe4f8 1654 error (_("No enum type named %s."), name);
c906108c
SS
1655 }
1656 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1657 {
7ba81444
MS
1658 error (_("This context has class, struct or union %s, not an enum."),
1659 name);
c906108c
SS
1660 }
1661 return (SYMBOL_TYPE (sym));
1662}
1663
1664/* Lookup a template type named "template NAME<TYPE>",
1665 visible in lexical block BLOCK. */
1666
1667struct type *
61f4b350 1668lookup_template_type (const char *name, struct type *type,
270140bd 1669 const struct block *block)
c906108c
SS
1670{
1671 struct symbol *sym;
7ba81444
MS
1672 char *nam = (char *)
1673 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1674
c906108c
SS
1675 strcpy (nam, name);
1676 strcat (nam, "<");
0004e5a2 1677 strcat (nam, TYPE_NAME (type));
0963b4bd 1678 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1679
d12307c1 1680 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
c906108c
SS
1681
1682 if (sym == NULL)
1683 {
8a3fe4f8 1684 error (_("No template type named %s."), name);
c906108c
SS
1685 }
1686 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1687 {
7ba81444
MS
1688 error (_("This context has class, union or enum %s, not a struct."),
1689 name);
c906108c
SS
1690 }
1691 return (SYMBOL_TYPE (sym));
1692}
1693
ef0bd204 1694/* See gdbtypes.h. */
c906108c 1695
ef0bd204
JB
1696struct_elt
1697lookup_struct_elt (struct type *type, const char *name, int noerr)
c906108c
SS
1698{
1699 int i;
1700
1701 for (;;)
1702 {
f168693b 1703 type = check_typedef (type);
c906108c
SS
1704 if (TYPE_CODE (type) != TYPE_CODE_PTR
1705 && TYPE_CODE (type) != TYPE_CODE_REF)
1706 break;
1707 type = TYPE_TARGET_TYPE (type);
1708 }
1709
687d6395
MS
1710 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1711 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1712 {
2f408ecb
PA
1713 std::string type_name = type_to_string (type);
1714 error (_("Type %s is not a structure or union type."),
1715 type_name.c_str ());
c906108c
SS
1716 }
1717
c906108c
SS
1718 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1719 {
0d5cff50 1720 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1721
db577aea 1722 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c 1723 {
ef0bd204 1724 return {&TYPE_FIELD (type, i), TYPE_FIELD_BITPOS (type, i)};
c906108c 1725 }
f5a010c0
PM
1726 else if (!t_field_name || *t_field_name == '\0')
1727 {
ef0bd204
JB
1728 struct_elt elt
1729 = lookup_struct_elt (TYPE_FIELD_TYPE (type, i), name, 1);
1730 if (elt.field != NULL)
1731 {
1732 elt.offset += TYPE_FIELD_BITPOS (type, i);
1733 return elt;
1734 }
f5a010c0 1735 }
c906108c
SS
1736 }
1737
1738 /* OK, it's not in this class. Recursively check the baseclasses. */
1739 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1740 {
ef0bd204
JB
1741 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1742 if (elt.field != NULL)
1743 return elt;
c906108c
SS
1744 }
1745
1746 if (noerr)
ef0bd204 1747 return {nullptr, 0};
c5aa993b 1748
2f408ecb
PA
1749 std::string type_name = type_to_string (type);
1750 error (_("Type %s has no component named %s."), type_name.c_str (), name);
c906108c
SS
1751}
1752
ef0bd204
JB
1753/* See gdbtypes.h. */
1754
1755struct type *
1756lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1757{
1758 struct_elt elt = lookup_struct_elt (type, name, noerr);
1759 if (elt.field != NULL)
1760 return FIELD_TYPE (*elt.field);
1761 else
1762 return NULL;
1763}
1764
ed3ef339
DE
1765/* Store in *MAX the largest number representable by unsigned integer type
1766 TYPE. */
1767
1768void
1769get_unsigned_type_max (struct type *type, ULONGEST *max)
1770{
1771 unsigned int n;
1772
f168693b 1773 type = check_typedef (type);
ed3ef339
DE
1774 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1775 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1776
1777 /* Written this way to avoid overflow. */
1778 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1779 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1780}
1781
1782/* Store in *MIN, *MAX the smallest and largest numbers representable by
1783 signed integer type TYPE. */
1784
1785void
1786get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1787{
1788 unsigned int n;
1789
f168693b 1790 type = check_typedef (type);
ed3ef339
DE
1791 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1792 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1793
1794 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1795 *min = -((ULONGEST) 1 << (n - 1));
1796 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1797}
1798
ae6ae975
DE
1799/* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1800 cplus_stuff.vptr_fieldno.
1801
1802 cplus_stuff is initialized to cplus_struct_default which does not
1803 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1804 designated initializers). We cope with that here. */
1805
1806int
1807internal_type_vptr_fieldno (struct type *type)
1808{
f168693b 1809 type = check_typedef (type);
ae6ae975
DE
1810 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1811 || TYPE_CODE (type) == TYPE_CODE_UNION);
1812 if (!HAVE_CPLUS_STRUCT (type))
1813 return -1;
1814 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1815}
1816
1817/* Set the value of cplus_stuff.vptr_fieldno. */
1818
1819void
1820set_type_vptr_fieldno (struct type *type, int fieldno)
1821{
f168693b 1822 type = check_typedef (type);
ae6ae975
DE
1823 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1824 || TYPE_CODE (type) == TYPE_CODE_UNION);
1825 if (!HAVE_CPLUS_STRUCT (type))
1826 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1827 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1828}
1829
1830/* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1831 cplus_stuff.vptr_basetype. */
1832
1833struct type *
1834internal_type_vptr_basetype (struct type *type)
1835{
f168693b 1836 type = check_typedef (type);
ae6ae975
DE
1837 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1838 || TYPE_CODE (type) == TYPE_CODE_UNION);
1839 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1840 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1841}
1842
1843/* Set the value of cplus_stuff.vptr_basetype. */
1844
1845void
1846set_type_vptr_basetype (struct type *type, struct type *basetype)
1847{
f168693b 1848 type = check_typedef (type);
ae6ae975
DE
1849 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1850 || TYPE_CODE (type) == TYPE_CODE_UNION);
1851 if (!HAVE_CPLUS_STRUCT (type))
1852 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1853 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1854}
1855
81fe8080
DE
1856/* Lookup the vptr basetype/fieldno values for TYPE.
1857 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1858 vptr_fieldno. Also, if found and basetype is from the same objfile,
1859 cache the results.
1860 If not found, return -1 and ignore BASETYPEP.
1861 Callers should be aware that in some cases (for example,
c906108c 1862 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1863 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1864 this function will not be able to find the
7ba81444 1865 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1866 vptr_basetype will remain NULL or incomplete. */
c906108c 1867
81fe8080
DE
1868int
1869get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c 1870{
f168693b 1871 type = check_typedef (type);
c906108c
SS
1872
1873 if (TYPE_VPTR_FIELDNO (type) < 0)
1874 {
1875 int i;
1876
7ba81444
MS
1877 /* We must start at zero in case the first (and only) baseclass
1878 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1879 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1880 {
81fe8080
DE
1881 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1882 int fieldno;
1883 struct type *basetype;
1884
1885 fieldno = get_vptr_fieldno (baseclass, &basetype);
1886 if (fieldno >= 0)
c906108c 1887 {
81fe8080 1888 /* If the type comes from a different objfile we can't cache
0963b4bd 1889 it, it may have a different lifetime. PR 2384 */
5ef73790 1890 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080 1891 {
ae6ae975
DE
1892 set_type_vptr_fieldno (type, fieldno);
1893 set_type_vptr_basetype (type, basetype);
81fe8080
DE
1894 }
1895 if (basetypep)
1896 *basetypep = basetype;
1897 return fieldno;
c906108c
SS
1898 }
1899 }
81fe8080
DE
1900
1901 /* Not found. */
1902 return -1;
1903 }
1904 else
1905 {
1906 if (basetypep)
1907 *basetypep = TYPE_VPTR_BASETYPE (type);
1908 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1909 }
1910}
1911
44e1a9eb
DJ
1912static void
1913stub_noname_complaint (void)
1914{
b98664d3 1915 complaint (_("stub type has NULL name"));
44e1a9eb
DJ
1916}
1917
a405673c
JB
1918/* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1919 attached to it, and that property has a non-constant value. */
1920
1921static int
1922array_type_has_dynamic_stride (struct type *type)
1923{
1924 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1925
1926 return (prop != NULL && prop->kind != PROP_CONST);
1927}
1928
d98b7a16 1929/* Worker for is_dynamic_type. */
80180f79 1930
d98b7a16 1931static int
ee715b5a 1932is_dynamic_type_internal (struct type *type, int top_level)
80180f79
SA
1933{
1934 type = check_typedef (type);
1935
e771e4be
PMR
1936 /* We only want to recognize references at the outermost level. */
1937 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1938 type = check_typedef (TYPE_TARGET_TYPE (type));
1939
3cdcd0ce
JB
1940 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1941 dynamic, even if the type itself is statically defined.
1942 From a user's point of view, this may appear counter-intuitive;
1943 but it makes sense in this context, because the point is to determine
1944 whether any part of the type needs to be resolved before it can
1945 be exploited. */
1946 if (TYPE_DATA_LOCATION (type) != NULL
1947 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1948 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1949 return 1;
1950
3f2f83dd
KB
1951 if (TYPE_ASSOCIATED_PROP (type))
1952 return 1;
1953
1954 if (TYPE_ALLOCATED_PROP (type))
1955 return 1;
1956
80180f79
SA
1957 switch (TYPE_CODE (type))
1958 {
6f8a3220 1959 case TYPE_CODE_RANGE:
ddb87a81
JB
1960 {
1961 /* A range type is obviously dynamic if it has at least one
1962 dynamic bound. But also consider the range type to be
1963 dynamic when its subtype is dynamic, even if the bounds
1964 of the range type are static. It allows us to assume that
1965 the subtype of a static range type is also static. */
1966 return (!has_static_range (TYPE_RANGE_DATA (type))
ee715b5a 1967 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
ddb87a81 1968 }
6f8a3220 1969
80180f79
SA
1970 case TYPE_CODE_ARRAY:
1971 {
80180f79 1972 gdb_assert (TYPE_NFIELDS (type) == 1);
6f8a3220 1973
a405673c 1974 /* The array is dynamic if either the bounds are dynamic... */
ee715b5a 1975 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
80180f79 1976 return 1;
a405673c
JB
1977 /* ... or the elements it contains have a dynamic contents... */
1978 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
1979 return 1;
1980 /* ... or if it has a dynamic stride... */
1981 if (array_type_has_dynamic_stride (type))
1982 return 1;
1983 return 0;
80180f79 1984 }
012370f6
TT
1985
1986 case TYPE_CODE_STRUCT:
1987 case TYPE_CODE_UNION:
1988 {
1989 int i;
1990
1991 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1992 if (!field_is_static (&TYPE_FIELD (type, i))
ee715b5a 1993 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
012370f6
TT
1994 return 1;
1995 }
1996 break;
80180f79 1997 }
92e2a17f
TT
1998
1999 return 0;
80180f79
SA
2000}
2001
d98b7a16
TT
2002/* See gdbtypes.h. */
2003
2004int
2005is_dynamic_type (struct type *type)
2006{
ee715b5a 2007 return is_dynamic_type_internal (type, 1);
d98b7a16
TT
2008}
2009
df25ebbd 2010static struct type *resolve_dynamic_type_internal
ee715b5a 2011 (struct type *type, struct property_addr_info *addr_stack, int top_level);
d98b7a16 2012
df25ebbd
JB
2013/* Given a dynamic range type (dyn_range_type) and a stack of
2014 struct property_addr_info elements, return a static version
2015 of that type. */
d190df30 2016
80180f79 2017static struct type *
df25ebbd
JB
2018resolve_dynamic_range (struct type *dyn_range_type,
2019 struct property_addr_info *addr_stack)
80180f79
SA
2020{
2021 CORE_ADDR value;
ddb87a81 2022 struct type *static_range_type, *static_target_type;
80180f79 2023 const struct dynamic_prop *prop;
5bbd8269 2024 struct dynamic_prop low_bound, high_bound, stride;
80180f79 2025
6f8a3220 2026 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
80180f79 2027
6f8a3220 2028 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
63e43d3a 2029 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
2030 {
2031 low_bound.kind = PROP_CONST;
2032 low_bound.data.const_val = value;
2033 }
2034 else
2035 {
2036 low_bound.kind = PROP_UNDEFINED;
2037 low_bound.data.const_val = 0;
2038 }
2039
6f8a3220 2040 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
63e43d3a 2041 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
2042 {
2043 high_bound.kind = PROP_CONST;
2044 high_bound.data.const_val = value;
c451ebe5 2045
6f8a3220 2046 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
c451ebe5
SA
2047 high_bound.data.const_val
2048 = low_bound.data.const_val + high_bound.data.const_val - 1;
80180f79
SA
2049 }
2050 else
2051 {
2052 high_bound.kind = PROP_UNDEFINED;
2053 high_bound.data.const_val = 0;
2054 }
2055
5bbd8269
AB
2056 bool byte_stride_p = TYPE_RANGE_DATA (dyn_range_type)->flag_is_byte_stride;
2057 prop = &TYPE_RANGE_DATA (dyn_range_type)->stride;
2058 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2059 {
2060 stride.kind = PROP_CONST;
2061 stride.data.const_val = value;
2062
2063 /* If we have a bit stride that is not an exact number of bytes then
2064 I really don't think this is going to work with current GDB, the
2065 array indexing code in GDB seems to be pretty heavily tied to byte
2066 offsets right now. Assuming 8 bits in a byte. */
2067 struct gdbarch *gdbarch = get_type_arch (dyn_range_type);
2068 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
2069 if (!byte_stride_p && (value % (unit_size * 8)) != 0)
2070 error (_("bit strides that are not a multiple of the byte size "
2071 "are currently not supported"));
2072 }
2073 else
2074 {
2075 stride.kind = PROP_UNDEFINED;
2076 stride.data.const_val = 0;
2077 byte_stride_p = true;
2078 }
2079
ddb87a81
JB
2080 static_target_type
2081 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
ee715b5a 2082 addr_stack, 0);
4e962e74 2083 LONGEST bias = TYPE_RANGE_DATA (dyn_range_type)->bias;
5bbd8269
AB
2084 static_range_type = create_range_type_with_stride
2085 (copy_type (dyn_range_type), static_target_type,
2086 &low_bound, &high_bound, bias, &stride, byte_stride_p);
6f8a3220
JB
2087 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2088 return static_range_type;
2089}
2090
2091/* Resolves dynamic bound values of an array type TYPE to static ones.
df25ebbd
JB
2092 ADDR_STACK is a stack of struct property_addr_info to be used
2093 if needed during the dynamic resolution. */
6f8a3220
JB
2094
2095static struct type *
df25ebbd
JB
2096resolve_dynamic_array (struct type *type,
2097 struct property_addr_info *addr_stack)
6f8a3220
JB
2098{
2099 CORE_ADDR value;
2100 struct type *elt_type;
2101 struct type *range_type;
2102 struct type *ary_dim;
3f2f83dd 2103 struct dynamic_prop *prop;
a405673c 2104 unsigned int bit_stride = 0;
6f8a3220
JB
2105
2106 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
2107
3f2f83dd
KB
2108 type = copy_type (type);
2109
6f8a3220
JB
2110 elt_type = type;
2111 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
df25ebbd 2112 range_type = resolve_dynamic_range (range_type, addr_stack);
6f8a3220 2113
3f2f83dd
KB
2114 /* Resolve allocated/associated here before creating a new array type, which
2115 will update the length of the array accordingly. */
2116 prop = TYPE_ALLOCATED_PROP (type);
2117 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2118 {
2119 TYPE_DYN_PROP_ADDR (prop) = value;
2120 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2121 }
2122 prop = TYPE_ASSOCIATED_PROP (type);
2123 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2124 {
2125 TYPE_DYN_PROP_ADDR (prop) = value;
2126 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2127 }
2128
80180f79
SA
2129 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2130
2131 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
d0d84780 2132 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
80180f79
SA
2133 else
2134 elt_type = TYPE_TARGET_TYPE (type);
2135
a405673c
JB
2136 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2137 if (prop != NULL)
2138 {
603490bf 2139 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
a405673c
JB
2140 {
2141 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2142 bit_stride = (unsigned int) (value * 8);
2143 }
2144 else
2145 {
2146 /* Could be a bug in our code, but it could also happen
2147 if the DWARF info is not correct. Issue a warning,
2148 and assume no byte/bit stride (leave bit_stride = 0). */
2149 warning (_("cannot determine array stride for type %s"),
2150 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2151 }
2152 }
2153 else
2154 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2155
2156 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2157 bit_stride);
80180f79
SA
2158}
2159
012370f6 2160/* Resolve dynamic bounds of members of the union TYPE to static
df25ebbd
JB
2161 bounds. ADDR_STACK is a stack of struct property_addr_info
2162 to be used if needed during the dynamic resolution. */
012370f6
TT
2163
2164static struct type *
df25ebbd
JB
2165resolve_dynamic_union (struct type *type,
2166 struct property_addr_info *addr_stack)
012370f6
TT
2167{
2168 struct type *resolved_type;
2169 int i;
2170 unsigned int max_len = 0;
2171
2172 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2173
2174 resolved_type = copy_type (type);
2175 TYPE_FIELDS (resolved_type)
224c3ddb
SM
2176 = (struct field *) TYPE_ALLOC (resolved_type,
2177 TYPE_NFIELDS (resolved_type)
2178 * sizeof (struct field));
012370f6
TT
2179 memcpy (TYPE_FIELDS (resolved_type),
2180 TYPE_FIELDS (type),
2181 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2182 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2183 {
2184 struct type *t;
2185
2186 if (field_is_static (&TYPE_FIELD (type, i)))
2187 continue;
2188
d98b7a16 2189 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2190 addr_stack, 0);
012370f6
TT
2191 TYPE_FIELD_TYPE (resolved_type, i) = t;
2192 if (TYPE_LENGTH (t) > max_len)
2193 max_len = TYPE_LENGTH (t);
2194 }
2195
2196 TYPE_LENGTH (resolved_type) = max_len;
2197 return resolved_type;
2198}
2199
2200/* Resolve dynamic bounds of members of the struct TYPE to static
df25ebbd
JB
2201 bounds. ADDR_STACK is a stack of struct property_addr_info to
2202 be used if needed during the dynamic resolution. */
012370f6
TT
2203
2204static struct type *
df25ebbd
JB
2205resolve_dynamic_struct (struct type *type,
2206 struct property_addr_info *addr_stack)
012370f6
TT
2207{
2208 struct type *resolved_type;
2209 int i;
6908c509 2210 unsigned resolved_type_bit_length = 0;
012370f6
TT
2211
2212 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2213 gdb_assert (TYPE_NFIELDS (type) > 0);
2214
2215 resolved_type = copy_type (type);
2216 TYPE_FIELDS (resolved_type)
224c3ddb
SM
2217 = (struct field *) TYPE_ALLOC (resolved_type,
2218 TYPE_NFIELDS (resolved_type)
2219 * sizeof (struct field));
012370f6
TT
2220 memcpy (TYPE_FIELDS (resolved_type),
2221 TYPE_FIELDS (type),
2222 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2223 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2224 {
6908c509 2225 unsigned new_bit_length;
df25ebbd 2226 struct property_addr_info pinfo;
012370f6
TT
2227
2228 if (field_is_static (&TYPE_FIELD (type, i)))
2229 continue;
2230
6908c509
JB
2231 /* As we know this field is not a static field, the field's
2232 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2233 this is the case, but only trigger a simple error rather
2234 than an internal error if that fails. While failing
2235 that verification indicates a bug in our code, the error
2236 is not severe enough to suggest to the user he stops
2237 his debugging session because of it. */
df25ebbd 2238 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
6908c509
JB
2239 error (_("Cannot determine struct field location"
2240 " (invalid location kind)"));
df25ebbd
JB
2241
2242 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
c3345124 2243 pinfo.valaddr = addr_stack->valaddr;
9920b434
BH
2244 pinfo.addr
2245 = (addr_stack->addr
2246 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
df25ebbd
JB
2247 pinfo.next = addr_stack;
2248
2249 TYPE_FIELD_TYPE (resolved_type, i)
2250 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2251 &pinfo, 0);
df25ebbd
JB
2252 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2253 == FIELD_LOC_KIND_BITPOS);
2254
6908c509
JB
2255 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2256 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2257 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2258 else
2259 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2260 * TARGET_CHAR_BIT);
2261
2262 /* Normally, we would use the position and size of the last field
2263 to determine the size of the enclosing structure. But GCC seems
2264 to be encoding the position of some fields incorrectly when
2265 the struct contains a dynamic field that is not placed last.
2266 So we compute the struct size based on the field that has
2267 the highest position + size - probably the best we can do. */
2268 if (new_bit_length > resolved_type_bit_length)
2269 resolved_type_bit_length = new_bit_length;
012370f6
TT
2270 }
2271
9920b434
BH
2272 /* The length of a type won't change for fortran, but it does for C and Ada.
2273 For fortran the size of dynamic fields might change over time but not the
2274 type length of the structure. If we adapt it, we run into problems
2275 when calculating the element offset for arrays of structs. */
2276 if (current_language->la_language != language_fortran)
2277 TYPE_LENGTH (resolved_type)
2278 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
6908c509 2279
9e195661
PMR
2280 /* The Ada language uses this field as a cache for static fixed types: reset
2281 it as RESOLVED_TYPE must have its own static fixed type. */
2282 TYPE_TARGET_TYPE (resolved_type) = NULL;
2283
012370f6
TT
2284 return resolved_type;
2285}
2286
d98b7a16 2287/* Worker for resolved_dynamic_type. */
80180f79 2288
d98b7a16 2289static struct type *
df25ebbd 2290resolve_dynamic_type_internal (struct type *type,
ee715b5a
PMR
2291 struct property_addr_info *addr_stack,
2292 int top_level)
80180f79
SA
2293{
2294 struct type *real_type = check_typedef (type);
6f8a3220 2295 struct type *resolved_type = type;
d9823cbb 2296 struct dynamic_prop *prop;
3cdcd0ce 2297 CORE_ADDR value;
80180f79 2298
ee715b5a 2299 if (!is_dynamic_type_internal (real_type, top_level))
80180f79
SA
2300 return type;
2301
5537b577 2302 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
6f8a3220 2303 {
cac9b138
JK
2304 resolved_type = copy_type (type);
2305 TYPE_TARGET_TYPE (resolved_type)
ee715b5a
PMR
2306 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2307 top_level);
5537b577
JK
2308 }
2309 else
2310 {
2311 /* Before trying to resolve TYPE, make sure it is not a stub. */
2312 type = real_type;
012370f6 2313
5537b577
JK
2314 switch (TYPE_CODE (type))
2315 {
e771e4be
PMR
2316 case TYPE_CODE_REF:
2317 {
2318 struct property_addr_info pinfo;
2319
2320 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
c3345124
JB
2321 pinfo.valaddr = NULL;
2322 if (addr_stack->valaddr != NULL)
2323 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2324 else
2325 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
e771e4be
PMR
2326 pinfo.next = addr_stack;
2327
2328 resolved_type = copy_type (type);
2329 TYPE_TARGET_TYPE (resolved_type)
2330 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2331 &pinfo, top_level);
2332 break;
2333 }
2334
5537b577 2335 case TYPE_CODE_ARRAY:
df25ebbd 2336 resolved_type = resolve_dynamic_array (type, addr_stack);
5537b577
JK
2337 break;
2338
2339 case TYPE_CODE_RANGE:
df25ebbd 2340 resolved_type = resolve_dynamic_range (type, addr_stack);
5537b577
JK
2341 break;
2342
2343 case TYPE_CODE_UNION:
df25ebbd 2344 resolved_type = resolve_dynamic_union (type, addr_stack);
5537b577
JK
2345 break;
2346
2347 case TYPE_CODE_STRUCT:
df25ebbd 2348 resolved_type = resolve_dynamic_struct (type, addr_stack);
5537b577
JK
2349 break;
2350 }
6f8a3220 2351 }
80180f79 2352
3cdcd0ce
JB
2353 /* Resolve data_location attribute. */
2354 prop = TYPE_DATA_LOCATION (resolved_type);
63e43d3a
PMR
2355 if (prop != NULL
2356 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
3cdcd0ce 2357 {
d9823cbb
KB
2358 TYPE_DYN_PROP_ADDR (prop) = value;
2359 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
3cdcd0ce 2360 }
3cdcd0ce 2361
80180f79
SA
2362 return resolved_type;
2363}
2364
d98b7a16
TT
2365/* See gdbtypes.h */
2366
2367struct type *
c3345124
JB
2368resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2369 CORE_ADDR addr)
d98b7a16 2370{
c3345124
JB
2371 struct property_addr_info pinfo
2372 = {check_typedef (type), valaddr, addr, NULL};
df25ebbd 2373
ee715b5a 2374 return resolve_dynamic_type_internal (type, &pinfo, 1);
d98b7a16
TT
2375}
2376
d9823cbb
KB
2377/* See gdbtypes.h */
2378
2379struct dynamic_prop *
2380get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2381{
2382 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2383
2384 while (node != NULL)
2385 {
2386 if (node->prop_kind == prop_kind)
283a9958 2387 return &node->prop;
d9823cbb
KB
2388 node = node->next;
2389 }
2390 return NULL;
2391}
2392
2393/* See gdbtypes.h */
2394
2395void
2396add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
50a82047 2397 struct type *type)
d9823cbb
KB
2398{
2399 struct dynamic_prop_list *temp;
2400
2401 gdb_assert (TYPE_OBJFILE_OWNED (type));
2402
50a82047
TT
2403 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2404 struct dynamic_prop_list);
d9823cbb 2405 temp->prop_kind = prop_kind;
283a9958 2406 temp->prop = prop;
d9823cbb
KB
2407 temp->next = TYPE_DYN_PROP_LIST (type);
2408
2409 TYPE_DYN_PROP_LIST (type) = temp;
2410}
2411
9920b434
BH
2412/* Remove dynamic property from TYPE in case it exists. */
2413
2414void
2415remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2416 struct type *type)
2417{
2418 struct dynamic_prop_list *prev_node, *curr_node;
2419
2420 curr_node = TYPE_DYN_PROP_LIST (type);
2421 prev_node = NULL;
2422
2423 while (NULL != curr_node)
2424 {
2425 if (curr_node->prop_kind == prop_kind)
2426 {
2427 /* Update the linked list but don't free anything.
2428 The property was allocated on objstack and it is not known
2429 if we are on top of it. Nevertheless, everything is released
2430 when the complete objstack is freed. */
2431 if (NULL == prev_node)
2432 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2433 else
2434 prev_node->next = curr_node->next;
2435
2436 return;
2437 }
2438
2439 prev_node = curr_node;
2440 curr_node = curr_node->next;
2441 }
2442}
d9823cbb 2443
92163a10
JK
2444/* Find the real type of TYPE. This function returns the real type,
2445 after removing all layers of typedefs, and completing opaque or stub
2446 types. Completion changes the TYPE argument, but stripping of
2447 typedefs does not.
2448
2449 Instance flags (e.g. const/volatile) are preserved as typedefs are
2450 stripped. If necessary a new qualified form of the underlying type
2451 is created.
2452
2453 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2454 not been computed and we're either in the middle of reading symbols, or
2455 there was no name for the typedef in the debug info.
2456
9bc118a5
DE
2457 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2458 QUITs in the symbol reading code can also throw.
2459 Thus this function can throw an exception.
2460
92163a10
JK
2461 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2462 the target type.
c906108c
SS
2463
2464 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 2465 we can find a full definition in some other file. If so, copy this
7ba81444
MS
2466 definition, so we can use it in future. There used to be a comment
2467 (but not any code) that if we don't find a full definition, we'd
2468 set a flag so we don't spend time in the future checking the same
2469 type. That would be a mistake, though--we might load in more
92163a10 2470 symbols which contain a full definition for the type. */
c906108c
SS
2471
2472struct type *
a02fd225 2473check_typedef (struct type *type)
c906108c
SS
2474{
2475 struct type *orig_type = type;
92163a10
JK
2476 /* While we're removing typedefs, we don't want to lose qualifiers.
2477 E.g., const/volatile. */
2478 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 2479
423c0af8
MS
2480 gdb_assert (type);
2481
c906108c
SS
2482 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2483 {
2484 if (!TYPE_TARGET_TYPE (type))
2485 {
0d5cff50 2486 const char *name;
c906108c
SS
2487 struct symbol *sym;
2488
2489 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 2490 reading a symtab. Infinite recursion is one danger. */
c906108c 2491 if (currently_reading_symtab)
92163a10 2492 return make_qualified_type (type, instance_flags, NULL);
c906108c 2493
a737d952 2494 name = TYPE_NAME (type);
e86ca25f
TT
2495 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2496 VAR_DOMAIN as appropriate? */
c906108c
SS
2497 if (name == NULL)
2498 {
23136709 2499 stub_noname_complaint ();
92163a10 2500 return make_qualified_type (type, instance_flags, NULL);
c906108c 2501 }
d12307c1 2502 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
2503 if (sym)
2504 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 2505 else /* TYPE_CODE_UNDEF */
e9bb382b 2506 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
2507 }
2508 type = TYPE_TARGET_TYPE (type);
c906108c 2509
92163a10
JK
2510 /* Preserve the instance flags as we traverse down the typedef chain.
2511
2512 Handling address spaces/classes is nasty, what do we do if there's a
2513 conflict?
2514 E.g., what if an outer typedef marks the type as class_1 and an inner
2515 typedef marks the type as class_2?
2516 This is the wrong place to do such error checking. We leave it to
2517 the code that created the typedef in the first place to flag the
2518 error. We just pick the outer address space (akin to letting the
2519 outer cast in a chain of casting win), instead of assuming
2520 "it can't happen". */
2521 {
2522 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2523 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2524 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2525 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2526
2527 /* Treat code vs data spaces and address classes separately. */
2528 if ((instance_flags & ALL_SPACES) != 0)
2529 new_instance_flags &= ~ALL_SPACES;
2530 if ((instance_flags & ALL_CLASSES) != 0)
2531 new_instance_flags &= ~ALL_CLASSES;
2532
2533 instance_flags |= new_instance_flags;
2534 }
2535 }
a02fd225 2536
7ba81444
MS
2537 /* If this is a struct/class/union with no fields, then check
2538 whether a full definition exists somewhere else. This is for
2539 systems where a type definition with no fields is issued for such
2540 types, instead of identifying them as stub types in the first
2541 place. */
c5aa993b 2542
7ba81444
MS
2543 if (TYPE_IS_OPAQUE (type)
2544 && opaque_type_resolution
2545 && !currently_reading_symtab)
c906108c 2546 {
a737d952 2547 const char *name = TYPE_NAME (type);
c5aa993b 2548 struct type *newtype;
d8734c88 2549
c906108c
SS
2550 if (name == NULL)
2551 {
23136709 2552 stub_noname_complaint ();
92163a10 2553 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2554 }
2555 newtype = lookup_transparent_type (name);
ad766c0a 2556
c906108c 2557 if (newtype)
ad766c0a 2558 {
7ba81444
MS
2559 /* If the resolved type and the stub are in the same
2560 objfile, then replace the stub type with the real deal.
2561 But if they're in separate objfiles, leave the stub
2562 alone; we'll just look up the transparent type every time
2563 we call check_typedef. We can't create pointers between
2564 types allocated to different objfiles, since they may
2565 have different lifetimes. Trying to copy NEWTYPE over to
2566 TYPE's objfile is pointless, too, since you'll have to
2567 move over any other types NEWTYPE refers to, which could
2568 be an unbounded amount of stuff. */
ad766c0a 2569 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
2570 type = make_qualified_type (newtype,
2571 TYPE_INSTANCE_FLAGS (type),
2572 type);
ad766c0a
JB
2573 else
2574 type = newtype;
2575 }
c906108c 2576 }
7ba81444
MS
2577 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2578 types. */
74a9bb82 2579 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 2580 {
a737d952 2581 const char *name = TYPE_NAME (type);
e86ca25f
TT
2582 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2583 as appropriate? */
c906108c 2584 struct symbol *sym;
d8734c88 2585
c906108c
SS
2586 if (name == NULL)
2587 {
23136709 2588 stub_noname_complaint ();
92163a10 2589 return make_qualified_type (type, instance_flags, NULL);
c906108c 2590 }
d12307c1 2591 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c 2592 if (sym)
c26f2453
JB
2593 {
2594 /* Same as above for opaque types, we can replace the stub
92163a10 2595 with the complete type only if they are in the same
c26f2453
JB
2596 objfile. */
2597 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
2598 type = make_qualified_type (SYMBOL_TYPE (sym),
2599 TYPE_INSTANCE_FLAGS (type),
2600 type);
c26f2453
JB
2601 else
2602 type = SYMBOL_TYPE (sym);
2603 }
c906108c
SS
2604 }
2605
74a9bb82 2606 if (TYPE_TARGET_STUB (type))
c906108c 2607 {
c906108c
SS
2608 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2609
74a9bb82 2610 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 2611 {
73e2eb35 2612 /* Nothing we can do. */
c5aa993b 2613 }
c906108c
SS
2614 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2615 {
2616 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 2617 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
2618 }
2619 }
92163a10
JK
2620
2621 type = make_qualified_type (type, instance_flags, NULL);
2622
7ba81444 2623 /* Cache TYPE_LENGTH for future use. */
c906108c 2624 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 2625
c906108c
SS
2626 return type;
2627}
2628
7ba81444 2629/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 2630 occurs, silently return a void type. */
c91ecb25 2631
b9362cc7 2632static struct type *
48319d1f 2633safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
2634{
2635 struct ui_file *saved_gdb_stderr;
34365054 2636 struct type *type = NULL; /* Initialize to keep gcc happy. */
c91ecb25 2637
7ba81444 2638 /* Suppress error messages. */
c91ecb25 2639 saved_gdb_stderr = gdb_stderr;
d7e74731 2640 gdb_stderr = &null_stream;
c91ecb25 2641
7ba81444 2642 /* Call parse_and_eval_type() without fear of longjmp()s. */
a70b8144 2643 try
8e7b59a5
KS
2644 {
2645 type = parse_and_eval_type (p, length);
2646 }
230d2906 2647 catch (const gdb_exception_error &except)
492d29ea
PA
2648 {
2649 type = builtin_type (gdbarch)->builtin_void;
2650 }
c91ecb25 2651
7ba81444 2652 /* Stop suppressing error messages. */
c91ecb25
ND
2653 gdb_stderr = saved_gdb_stderr;
2654
2655 return type;
2656}
2657
c906108c
SS
2658/* Ugly hack to convert method stubs into method types.
2659
7ba81444
MS
2660 He ain't kiddin'. This demangles the name of the method into a
2661 string including argument types, parses out each argument type,
2662 generates a string casting a zero to that type, evaluates the
2663 string, and stuffs the resulting type into an argtype vector!!!
2664 Then it knows the type of the whole function (including argument
2665 types for overloading), which info used to be in the stab's but was
2666 removed to hack back the space required for them. */
c906108c 2667
de17c821 2668static void
fba45db2 2669check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 2670{
50810684 2671 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
2672 struct fn_field *f;
2673 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
8de20a37
TT
2674 char *demangled_name = gdb_demangle (mangled_name,
2675 DMGL_PARAMS | DMGL_ANSI);
c906108c
SS
2676 char *argtypetext, *p;
2677 int depth = 0, argcount = 1;
ad2f7632 2678 struct field *argtypes;
c906108c
SS
2679 struct type *mtype;
2680
2681 /* Make sure we got back a function string that we can use. */
2682 if (demangled_name)
2683 p = strchr (demangled_name, '(');
502dcf4e
AC
2684 else
2685 p = NULL;
c906108c
SS
2686
2687 if (demangled_name == NULL || p == NULL)
7ba81444
MS
2688 error (_("Internal: Cannot demangle mangled name `%s'."),
2689 mangled_name);
c906108c
SS
2690
2691 /* Now, read in the parameters that define this type. */
2692 p += 1;
2693 argtypetext = p;
2694 while (*p)
2695 {
070ad9f0 2696 if (*p == '(' || *p == '<')
c906108c
SS
2697 {
2698 depth += 1;
2699 }
070ad9f0 2700 else if (*p == ')' || *p == '>')
c906108c
SS
2701 {
2702 depth -= 1;
2703 }
2704 else if (*p == ',' && depth == 0)
2705 {
2706 argcount += 1;
2707 }
2708
2709 p += 1;
2710 }
2711
ad2f7632 2712 /* If we read one argument and it was ``void'', don't count it. */
61012eef 2713 if (startswith (argtypetext, "(void)"))
ad2f7632 2714 argcount -= 1;
c906108c 2715
ad2f7632
DJ
2716 /* We need one extra slot, for the THIS pointer. */
2717
2718 argtypes = (struct field *)
2719 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 2720 p = argtypetext;
4a1970e4
DJ
2721
2722 /* Add THIS pointer for non-static methods. */
2723 f = TYPE_FN_FIELDLIST1 (type, method_id);
2724 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2725 argcount = 0;
2726 else
2727 {
ad2f7632 2728 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
2729 argcount = 1;
2730 }
c906108c 2731
0963b4bd 2732 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
2733 {
2734 depth = 0;
2735 while (*p)
2736 {
2737 if (depth <= 0 && (*p == ',' || *p == ')'))
2738 {
ad2f7632
DJ
2739 /* Avoid parsing of ellipsis, they will be handled below.
2740 Also avoid ``void'' as above. */
2741 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2742 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 2743 {
ad2f7632 2744 argtypes[argcount].type =
48319d1f 2745 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
2746 argcount += 1;
2747 }
2748 argtypetext = p + 1;
2749 }
2750
070ad9f0 2751 if (*p == '(' || *p == '<')
c906108c
SS
2752 {
2753 depth += 1;
2754 }
070ad9f0 2755 else if (*p == ')' || *p == '>')
c906108c
SS
2756 {
2757 depth -= 1;
2758 }
2759
2760 p += 1;
2761 }
2762 }
2763
c906108c
SS
2764 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2765
2766 /* Now update the old "stub" type into a real type. */
2767 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
09e2d7c7
DE
2768 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2769 We want a method (TYPE_CODE_METHOD). */
2770 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2771 argtypes, argcount, p[-2] == '.');
876cecd0 2772 TYPE_STUB (mtype) = 0;
c906108c 2773 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632
DJ
2774
2775 xfree (demangled_name);
c906108c
SS
2776}
2777
7ba81444
MS
2778/* This is the external interface to check_stub_method, above. This
2779 function unstubs all of the signatures for TYPE's METHOD_ID method
2780 name. After calling this function TYPE_FN_FIELD_STUB will be
2781 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2782 correct.
de17c821
DJ
2783
2784 This function unfortunately can not die until stabs do. */
2785
2786void
2787check_stub_method_group (struct type *type, int method_id)
2788{
2789 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2790 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
de17c821 2791
041be526
SM
2792 for (int j = 0; j < len; j++)
2793 {
2794 if (TYPE_FN_FIELD_STUB (f, j))
de17c821 2795 check_stub_method (type, method_id, j);
de17c821
DJ
2796 }
2797}
2798
405feb71 2799/* Ensure it is in .rodata (if available) by working around GCC PR 44690. */
9655fd1a 2800const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
2801
2802void
fba45db2 2803allocate_cplus_struct_type (struct type *type)
c906108c 2804{
b4ba55a1
JB
2805 if (HAVE_CPLUS_STRUCT (type))
2806 /* Structure was already allocated. Nothing more to do. */
2807 return;
2808
2809 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2810 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2811 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2812 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
ae6ae975 2813 set_type_vptr_fieldno (type, -1);
c906108c
SS
2814}
2815
b4ba55a1
JB
2816const struct gnat_aux_type gnat_aux_default =
2817 { NULL };
2818
2819/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2820 and allocate the associated gnat-specific data. The gnat-specific
2821 data is also initialized to gnat_aux_default. */
5212577a 2822
b4ba55a1
JB
2823void
2824allocate_gnat_aux_type (struct type *type)
2825{
2826 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2827 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2828 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2829 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2830}
2831
ae438bc5
UW
2832/* Helper function to initialize a newly allocated type. Set type code
2833 to CODE and initialize the type-specific fields accordingly. */
2834
2835static void
2836set_type_code (struct type *type, enum type_code code)
2837{
2838 TYPE_CODE (type) = code;
2839
2840 switch (code)
2841 {
2842 case TYPE_CODE_STRUCT:
2843 case TYPE_CODE_UNION:
2844 case TYPE_CODE_NAMESPACE:
2845 INIT_CPLUS_SPECIFIC (type);
2846 break;
2847 case TYPE_CODE_FLT:
2848 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2849 break;
2850 case TYPE_CODE_FUNC:
2851 INIT_FUNC_SPECIFIC (type);
2852 break;
2853 }
2854}
2855
19f392bc
UW
2856/* Helper function to verify floating-point format and size.
2857 BIT is the type size in bits; if BIT equals -1, the size is
2858 determined by the floatformat. Returns size to be used. */
2859
2860static int
0db7851f 2861verify_floatformat (int bit, const struct floatformat *floatformat)
19f392bc 2862{
0db7851f 2863 gdb_assert (floatformat != NULL);
9b790ce7 2864
19f392bc 2865 if (bit == -1)
0db7851f 2866 bit = floatformat->totalsize;
19f392bc 2867
0db7851f
UW
2868 gdb_assert (bit >= 0);
2869 gdb_assert (bit >= floatformat->totalsize);
19f392bc
UW
2870
2871 return bit;
2872}
2873
0db7851f
UW
2874/* Return the floating-point format for a floating-point variable of
2875 type TYPE. */
2876
2877const struct floatformat *
2878floatformat_from_type (const struct type *type)
2879{
2880 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2881 gdb_assert (TYPE_FLOATFORMAT (type));
2882 return TYPE_FLOATFORMAT (type);
2883}
2884
c906108c
SS
2885/* Helper function to initialize the standard scalar types.
2886
86f62fd7
TT
2887 If NAME is non-NULL, then it is used to initialize the type name.
2888 Note that NAME is not copied; it is required to have a lifetime at
2889 least as long as OBJFILE. */
c906108c
SS
2890
2891struct type *
77b7c781 2892init_type (struct objfile *objfile, enum type_code code, int bit,
19f392bc 2893 const char *name)
c906108c 2894{
52f0bd74 2895 struct type *type;
c906108c
SS
2896
2897 type = alloc_type (objfile);
ae438bc5 2898 set_type_code (type, code);
77b7c781
UW
2899 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
2900 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
86f62fd7 2901 TYPE_NAME (type) = name;
c906108c 2902
c16abbde 2903 return type;
c906108c 2904}
19f392bc 2905
46a4882b
PA
2906/* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2907 to use with variables that have no debug info. NAME is the type
2908 name. */
2909
2910static struct type *
2911init_nodebug_var_type (struct objfile *objfile, const char *name)
2912{
2913 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2914}
2915
19f392bc
UW
2916/* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2917 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2918 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2919
2920struct type *
2921init_integer_type (struct objfile *objfile,
2922 int bit, int unsigned_p, const char *name)
2923{
2924 struct type *t;
2925
77b7c781 2926 t = init_type (objfile, TYPE_CODE_INT, bit, name);
19f392bc
UW
2927 if (unsigned_p)
2928 TYPE_UNSIGNED (t) = 1;
2929
2930 return t;
2931}
2932
2933/* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2934 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2935 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2936
2937struct type *
2938init_character_type (struct objfile *objfile,
2939 int bit, int unsigned_p, const char *name)
2940{
2941 struct type *t;
2942
77b7c781 2943 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
19f392bc
UW
2944 if (unsigned_p)
2945 TYPE_UNSIGNED (t) = 1;
2946
2947 return t;
2948}
2949
2950/* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2951 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2952 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2953
2954struct type *
2955init_boolean_type (struct objfile *objfile,
2956 int bit, int unsigned_p, const char *name)
2957{
2958 struct type *t;
2959
77b7c781 2960 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
19f392bc
UW
2961 if (unsigned_p)
2962 TYPE_UNSIGNED (t) = 1;
2963
2964 return t;
2965}
2966
2967/* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2968 BIT is the type size in bits; if BIT equals -1, the size is
2969 determined by the floatformat. NAME is the type name. Set the
2970 TYPE_FLOATFORMAT from FLOATFORMATS. */
2971
2972struct type *
2973init_float_type (struct objfile *objfile,
2974 int bit, const char *name,
2975 const struct floatformat **floatformats)
2976{
0db7851f
UW
2977 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2978 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
19f392bc
UW
2979 struct type *t;
2980
0db7851f 2981 bit = verify_floatformat (bit, fmt);
77b7c781 2982 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
0db7851f 2983 TYPE_FLOATFORMAT (t) = fmt;
19f392bc
UW
2984
2985 return t;
2986}
2987
2988/* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2989 BIT is the type size in bits. NAME is the type name. */
2990
2991struct type *
2992init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2993{
2994 struct type *t;
2995
77b7c781 2996 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
19f392bc
UW
2997 return t;
2998}
2999
3000/* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
3001 NAME is the type name. TARGET_TYPE is the component float type. */
3002
3003struct type *
3004init_complex_type (struct objfile *objfile,
3005 const char *name, struct type *target_type)
3006{
3007 struct type *t;
3008
3009 t = init_type (objfile, TYPE_CODE_COMPLEX,
77b7c781 3010 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
19f392bc
UW
3011 TYPE_TARGET_TYPE (t) = target_type;
3012 return t;
3013}
3014
3015/* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
3016 BIT is the pointer type size in bits. NAME is the type name.
3017 TARGET_TYPE is the pointer target type. Always sets the pointer type's
3018 TYPE_UNSIGNED flag. */
3019
3020struct type *
3021init_pointer_type (struct objfile *objfile,
3022 int bit, const char *name, struct type *target_type)
3023{
3024 struct type *t;
3025
77b7c781 3026 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
19f392bc
UW
3027 TYPE_TARGET_TYPE (t) = target_type;
3028 TYPE_UNSIGNED (t) = 1;
3029 return t;
3030}
3031
2b4424c3
TT
3032/* See gdbtypes.h. */
3033
3034unsigned
3035type_raw_align (struct type *type)
3036{
3037 if (type->align_log2 != 0)
3038 return 1 << (type->align_log2 - 1);
3039 return 0;
3040}
3041
3042/* See gdbtypes.h. */
3043
3044unsigned
3045type_align (struct type *type)
3046{
5561fc30 3047 /* Check alignment provided in the debug information. */
2b4424c3
TT
3048 unsigned raw_align = type_raw_align (type);
3049 if (raw_align != 0)
3050 return raw_align;
3051
5561fc30
AB
3052 /* Allow the architecture to provide an alignment. */
3053 struct gdbarch *arch = get_type_arch (type);
3054 ULONGEST align = gdbarch_type_align (arch, type);
3055 if (align != 0)
3056 return align;
3057
2b4424c3
TT
3058 switch (TYPE_CODE (type))
3059 {
3060 case TYPE_CODE_PTR:
3061 case TYPE_CODE_FUNC:
3062 case TYPE_CODE_FLAGS:
3063 case TYPE_CODE_INT:
75ba10dc 3064 case TYPE_CODE_RANGE:
2b4424c3
TT
3065 case TYPE_CODE_FLT:
3066 case TYPE_CODE_ENUM:
3067 case TYPE_CODE_REF:
3068 case TYPE_CODE_RVALUE_REF:
3069 case TYPE_CODE_CHAR:
3070 case TYPE_CODE_BOOL:
3071 case TYPE_CODE_DECFLOAT:
70cd633e
AB
3072 case TYPE_CODE_METHODPTR:
3073 case TYPE_CODE_MEMBERPTR:
5561fc30 3074 align = type_length_units (check_typedef (type));
2b4424c3
TT
3075 break;
3076
3077 case TYPE_CODE_ARRAY:
3078 case TYPE_CODE_COMPLEX:
3079 case TYPE_CODE_TYPEDEF:
3080 align = type_align (TYPE_TARGET_TYPE (type));
3081 break;
3082
3083 case TYPE_CODE_STRUCT:
3084 case TYPE_CODE_UNION:
3085 {
41077b66 3086 int number_of_non_static_fields = 0;
2b4424c3
TT
3087 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3088 {
bf9a735e 3089 if (!field_is_static (&TYPE_FIELD (type, i)))
2b4424c3 3090 {
41077b66 3091 number_of_non_static_fields++;
bf9a735e
AB
3092 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3093 if (f_align == 0)
3094 {
3095 /* Don't pretend we know something we don't. */
3096 align = 0;
3097 break;
3098 }
3099 if (f_align > align)
3100 align = f_align;
2b4424c3 3101 }
2b4424c3 3102 }
41077b66
AB
3103 /* A struct with no fields, or with only static fields has an
3104 alignment of 1. */
3105 if (number_of_non_static_fields == 0)
3106 align = 1;
2b4424c3
TT
3107 }
3108 break;
3109
3110 case TYPE_CODE_SET:
2b4424c3
TT
3111 case TYPE_CODE_STRING:
3112 /* Not sure what to do here, and these can't appear in C or C++
3113 anyway. */
3114 break;
3115
2b4424c3
TT
3116 case TYPE_CODE_VOID:
3117 align = 1;
3118 break;
3119
3120 case TYPE_CODE_ERROR:
3121 case TYPE_CODE_METHOD:
3122 default:
3123 break;
3124 }
3125
3126 if ((align & (align - 1)) != 0)
3127 {
3128 /* Not a power of 2, so pass. */
3129 align = 0;
3130 }
3131
3132 return align;
3133}
3134
3135/* See gdbtypes.h. */
3136
3137bool
3138set_type_align (struct type *type, ULONGEST align)
3139{
3140 /* Must be a power of 2. Zero is ok. */
3141 gdb_assert ((align & (align - 1)) == 0);
3142
3143 unsigned result = 0;
3144 while (align != 0)
3145 {
3146 ++result;
3147 align >>= 1;
3148 }
3149
3150 if (result >= (1 << TYPE_ALIGN_BITS))
3151 return false;
3152
3153 type->align_log2 = result;
3154 return true;
3155}
3156
5212577a
DE
3157\f
3158/* Queries on types. */
c906108c 3159
c906108c 3160int
fba45db2 3161can_dereference (struct type *t)
c906108c 3162{
7ba81444
MS
3163 /* FIXME: Should we return true for references as well as
3164 pointers? */
f168693b 3165 t = check_typedef (t);
c906108c
SS
3166 return
3167 (t != NULL
3168 && TYPE_CODE (t) == TYPE_CODE_PTR
3169 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3170}
3171
adf40b2e 3172int
fba45db2 3173is_integral_type (struct type *t)
adf40b2e 3174{
f168693b 3175 t = check_typedef (t);
adf40b2e
JM
3176 return
3177 ((t != NULL)
d4f3574e
SS
3178 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3179 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 3180 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
3181 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3182 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3183 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
3184}
3185
70100014
UW
3186int
3187is_floating_type (struct type *t)
3188{
3189 t = check_typedef (t);
3190 return
3191 ((t != NULL)
3192 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3193 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3194}
3195
e09342b5
TJB
3196/* Return true if TYPE is scalar. */
3197
220475ed 3198int
e09342b5
TJB
3199is_scalar_type (struct type *type)
3200{
f168693b 3201 type = check_typedef (type);
e09342b5
TJB
3202
3203 switch (TYPE_CODE (type))
3204 {
3205 case TYPE_CODE_ARRAY:
3206 case TYPE_CODE_STRUCT:
3207 case TYPE_CODE_UNION:
3208 case TYPE_CODE_SET:
3209 case TYPE_CODE_STRING:
e09342b5
TJB
3210 return 0;
3211 default:
3212 return 1;
3213 }
3214}
3215
3216/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
3217 the memory layout of a scalar type. E.g., an array or struct with only
3218 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
3219
3220int
3221is_scalar_type_recursive (struct type *t)
3222{
f168693b 3223 t = check_typedef (t);
e09342b5
TJB
3224
3225 if (is_scalar_type (t))
3226 return 1;
3227 /* Are we dealing with an array or string of known dimensions? */
3228 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3229 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3230 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3231 {
3232 LONGEST low_bound, high_bound;
3233 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3234
3235 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3236
3237 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3238 }
3239 /* Are we dealing with a struct with one element? */
3240 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3241 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3242 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3243 {
3244 int i, n = TYPE_NFIELDS (t);
3245
3246 /* If all elements of the union are scalar, then the union is scalar. */
3247 for (i = 0; i < n; i++)
3248 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3249 return 0;
3250
3251 return 1;
3252 }
3253
3254 return 0;
3255}
3256
6c659fc2
SC
3257/* Return true is T is a class or a union. False otherwise. */
3258
3259int
3260class_or_union_p (const struct type *t)
3261{
3262 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3263 || TYPE_CODE (t) == TYPE_CODE_UNION);
3264}
3265
4e8f195d
TT
3266/* A helper function which returns true if types A and B represent the
3267 "same" class type. This is true if the types have the same main
3268 type, or the same name. */
3269
3270int
3271class_types_same_p (const struct type *a, const struct type *b)
3272{
3273 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3274 || (TYPE_NAME (a) && TYPE_NAME (b)
3275 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3276}
3277
a9d5ef47
SW
3278/* If BASE is an ancestor of DCLASS return the distance between them.
3279 otherwise return -1;
3280 eg:
3281
3282 class A {};
3283 class B: public A {};
3284 class C: public B {};
3285 class D: C {};
3286
3287 distance_to_ancestor (A, A, 0) = 0
3288 distance_to_ancestor (A, B, 0) = 1
3289 distance_to_ancestor (A, C, 0) = 2
3290 distance_to_ancestor (A, D, 0) = 3
3291
3292 If PUBLIC is 1 then only public ancestors are considered,
3293 and the function returns the distance only if BASE is a public ancestor
3294 of DCLASS.
3295 Eg:
3296
0963b4bd 3297 distance_to_ancestor (A, D, 1) = -1. */
c906108c 3298
0526b37a 3299static int
fe978cb0 3300distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
c906108c
SS
3301{
3302 int i;
a9d5ef47 3303 int d;
c5aa993b 3304
f168693b
SM
3305 base = check_typedef (base);
3306 dclass = check_typedef (dclass);
c906108c 3307
4e8f195d 3308 if (class_types_same_p (base, dclass))
a9d5ef47 3309 return 0;
c906108c
SS
3310
3311 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 3312 {
fe978cb0 3313 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
0526b37a
SW
3314 continue;
3315
fe978cb0 3316 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
a9d5ef47
SW
3317 if (d >= 0)
3318 return 1 + d;
4e8f195d 3319 }
c906108c 3320
a9d5ef47 3321 return -1;
c906108c 3322}
4e8f195d 3323
0526b37a
SW
3324/* Check whether BASE is an ancestor or base class or DCLASS
3325 Return 1 if so, and 0 if not.
3326 Note: If BASE and DCLASS are of the same type, this function
3327 will return 1. So for some class A, is_ancestor (A, A) will
3328 return 1. */
3329
3330int
3331is_ancestor (struct type *base, struct type *dclass)
3332{
a9d5ef47 3333 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
3334}
3335
4e8f195d
TT
3336/* Like is_ancestor, but only returns true when BASE is a public
3337 ancestor of DCLASS. */
3338
3339int
3340is_public_ancestor (struct type *base, struct type *dclass)
3341{
a9d5ef47 3342 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
3343}
3344
3345/* A helper function for is_unique_ancestor. */
3346
3347static int
3348is_unique_ancestor_worker (struct type *base, struct type *dclass,
3349 int *offset,
8af8e3bc
PA
3350 const gdb_byte *valaddr, int embedded_offset,
3351 CORE_ADDR address, struct value *val)
4e8f195d
TT
3352{
3353 int i, count = 0;
3354
f168693b
SM
3355 base = check_typedef (base);
3356 dclass = check_typedef (dclass);
4e8f195d
TT
3357
3358 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3359 {
8af8e3bc
PA
3360 struct type *iter;
3361 int this_offset;
4e8f195d 3362
8af8e3bc
PA
3363 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3364
3365 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3366 address, val);
4e8f195d
TT
3367
3368 if (class_types_same_p (base, iter))
3369 {
3370 /* If this is the first subclass, set *OFFSET and set count
3371 to 1. Otherwise, if this is at the same offset as
3372 previous instances, do nothing. Otherwise, increment
3373 count. */
3374 if (*offset == -1)
3375 {
3376 *offset = this_offset;
3377 count = 1;
3378 }
3379 else if (this_offset == *offset)
3380 {
3381 /* Nothing. */
3382 }
3383 else
3384 ++count;
3385 }
3386 else
3387 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
3388 valaddr,
3389 embedded_offset + this_offset,
3390 address, val);
4e8f195d
TT
3391 }
3392
3393 return count;
3394}
3395
3396/* Like is_ancestor, but only returns true if BASE is a unique base
3397 class of the type of VAL. */
3398
3399int
3400is_unique_ancestor (struct type *base, struct value *val)
3401{
3402 int offset = -1;
3403
3404 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
3405 value_contents_for_printing (val),
3406 value_embedded_offset (val),
3407 value_address (val), val) == 1;
4e8f195d
TT
3408}
3409
c906108c 3410\f
5212577a 3411/* Overload resolution. */
c906108c 3412
6403aeea
SW
3413/* Return the sum of the rank of A with the rank of B. */
3414
3415struct rank
3416sum_ranks (struct rank a, struct rank b)
3417{
3418 struct rank c;
3419 c.rank = a.rank + b.rank;
a9d5ef47 3420 c.subrank = a.subrank + b.subrank;
6403aeea
SW
3421 return c;
3422}
3423
3424/* Compare rank A and B and return:
3425 0 if a = b
3426 1 if a is better than b
3427 -1 if b is better than a. */
3428
3429int
3430compare_ranks (struct rank a, struct rank b)
3431{
3432 if (a.rank == b.rank)
a9d5ef47
SW
3433 {
3434 if (a.subrank == b.subrank)
3435 return 0;
3436 if (a.subrank < b.subrank)
3437 return 1;
3438 if (a.subrank > b.subrank)
3439 return -1;
3440 }
6403aeea
SW
3441
3442 if (a.rank < b.rank)
3443 return 1;
3444
0963b4bd 3445 /* a.rank > b.rank */
6403aeea
SW
3446 return -1;
3447}
c5aa993b 3448
0963b4bd 3449/* Functions for overload resolution begin here. */
c906108c
SS
3450
3451/* Compare two badness vectors A and B and return the result.
7ba81444
MS
3452 0 => A and B are identical
3453 1 => A and B are incomparable
3454 2 => A is better than B
3455 3 => A is worse than B */
c906108c
SS
3456
3457int
82ceee50 3458compare_badness (const badness_vector &a, const badness_vector &b)
c906108c
SS
3459{
3460 int i;
3461 int tmp;
c5aa993b
JM
3462 short found_pos = 0; /* any positives in c? */
3463 short found_neg = 0; /* any negatives in c? */
3464
82ceee50
PA
3465 /* differing sizes => incomparable */
3466 if (a.size () != b.size ())
c906108c
SS
3467 return 1;
3468
c5aa993b 3469 /* Subtract b from a */
82ceee50 3470 for (i = 0; i < a.size (); i++)
c906108c 3471 {
82ceee50 3472 tmp = compare_ranks (b[i], a[i]);
c906108c 3473 if (tmp > 0)
c5aa993b 3474 found_pos = 1;
c906108c 3475 else if (tmp < 0)
c5aa993b 3476 found_neg = 1;
c906108c
SS
3477 }
3478
3479 if (found_pos)
3480 {
3481 if (found_neg)
c5aa993b 3482 return 1; /* incomparable */
c906108c 3483 else
c5aa993b 3484 return 3; /* A > B */
c906108c 3485 }
c5aa993b
JM
3486 else
3487 /* no positives */
c906108c
SS
3488 {
3489 if (found_neg)
c5aa993b 3490 return 2; /* A < B */
c906108c 3491 else
c5aa993b 3492 return 0; /* A == B */
c906108c
SS
3493 }
3494}
3495
6b1747cd 3496/* Rank a function by comparing its parameter types (PARMS), to the
82ceee50
PA
3497 types of an argument list (ARGS). Return the badness vector. This
3498 has ARGS.size() + 1 entries. */
c906108c 3499
82ceee50 3500badness_vector
6b1747cd
PA
3501rank_function (gdb::array_view<type *> parms,
3502 gdb::array_view<value *> args)
c906108c 3503{
82ceee50
PA
3504 /* add 1 for the length-match rank. */
3505 badness_vector bv;
3506 bv.reserve (1 + args.size ());
c906108c
SS
3507
3508 /* First compare the lengths of the supplied lists.
7ba81444 3509 If there is a mismatch, set it to a high value. */
c5aa993b 3510
c906108c 3511 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
3512 arguments and ellipsis parameter lists, we should consider those
3513 and rank the length-match more finely. */
c906108c 3514
82ceee50
PA
3515 bv.push_back ((args.size () != parms.size ())
3516 ? LENGTH_MISMATCH_BADNESS
3517 : EXACT_MATCH_BADNESS);
c906108c 3518
0963b4bd 3519 /* Now rank all the parameters of the candidate function. */
82ceee50
PA
3520 size_t min_len = std::min (parms.size (), args.size ());
3521
3522 for (size_t i = 0; i < min_len; i++)
3523 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3524 args[i]));
c906108c 3525
0963b4bd 3526 /* If more arguments than parameters, add dummy entries. */
82ceee50
PA
3527 for (size_t i = min_len; i < args.size (); i++)
3528 bv.push_back (TOO_FEW_PARAMS_BADNESS);
c906108c
SS
3529
3530 return bv;
3531}
3532
973ccf8b
DJ
3533/* Compare the names of two integer types, assuming that any sign
3534 qualifiers have been checked already. We do it this way because
3535 there may be an "int" in the name of one of the types. */
3536
3537static int
3538integer_types_same_name_p (const char *first, const char *second)
3539{
3540 int first_p, second_p;
3541
7ba81444
MS
3542 /* If both are shorts, return 1; if neither is a short, keep
3543 checking. */
973ccf8b
DJ
3544 first_p = (strstr (first, "short") != NULL);
3545 second_p = (strstr (second, "short") != NULL);
3546 if (first_p && second_p)
3547 return 1;
3548 if (first_p || second_p)
3549 return 0;
3550
3551 /* Likewise for long. */
3552 first_p = (strstr (first, "long") != NULL);
3553 second_p = (strstr (second, "long") != NULL);
3554 if (first_p && second_p)
3555 return 1;
3556 if (first_p || second_p)
3557 return 0;
3558
3559 /* Likewise for char. */
3560 first_p = (strstr (first, "char") != NULL);
3561 second_p = (strstr (second, "char") != NULL);
3562 if (first_p && second_p)
3563 return 1;
3564 if (first_p || second_p)
3565 return 0;
3566
3567 /* They must both be ints. */
3568 return 1;
3569}
3570
894882e3
TT
3571/* Compares type A to type B. Returns true if they represent the same
3572 type, false otherwise. */
7062b0a0 3573
894882e3 3574bool
7062b0a0
SW
3575types_equal (struct type *a, struct type *b)
3576{
3577 /* Identical type pointers. */
3578 /* However, this still doesn't catch all cases of same type for b
3579 and a. The reason is that builtin types are different from
3580 the same ones constructed from the object. */
3581 if (a == b)
894882e3 3582 return true;
7062b0a0
SW
3583
3584 /* Resolve typedefs */
3585 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3586 a = check_typedef (a);
3587 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3588 b = check_typedef (b);
3589
3590 /* If after resolving typedefs a and b are not of the same type
3591 code then they are not equal. */
3592 if (TYPE_CODE (a) != TYPE_CODE (b))
894882e3 3593 return false;
7062b0a0
SW
3594
3595 /* If a and b are both pointers types or both reference types then
3596 they are equal of the same type iff the objects they refer to are
3597 of the same type. */
3598 if (TYPE_CODE (a) == TYPE_CODE_PTR
3599 || TYPE_CODE (a) == TYPE_CODE_REF)
3600 return types_equal (TYPE_TARGET_TYPE (a),
3601 TYPE_TARGET_TYPE (b));
3602
0963b4bd 3603 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
3604 are exactly the same. This happens when we generate method
3605 stubs. The types won't point to the same address, but they
0963b4bd 3606 really are the same. */
7062b0a0
SW
3607
3608 if (TYPE_NAME (a) && TYPE_NAME (b)
3609 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
894882e3 3610 return true;
7062b0a0
SW
3611
3612 /* Check if identical after resolving typedefs. */
3613 if (a == b)
894882e3 3614 return true;
7062b0a0 3615
9ce98649
TT
3616 /* Two function types are equal if their argument and return types
3617 are equal. */
3618 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3619 {
3620 int i;
3621
3622 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
894882e3 3623 return false;
9ce98649
TT
3624
3625 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
894882e3 3626 return false;
9ce98649
TT
3627
3628 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3629 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
894882e3 3630 return false;
9ce98649 3631
894882e3 3632 return true;
9ce98649
TT
3633 }
3634
894882e3 3635 return false;
7062b0a0 3636}
ca092b61
DE
3637\f
3638/* Deep comparison of types. */
3639
3640/* An entry in the type-equality bcache. */
3641
894882e3 3642struct type_equality_entry
ca092b61 3643{
894882e3
TT
3644 type_equality_entry (struct type *t1, struct type *t2)
3645 : type1 (t1),
3646 type2 (t2)
3647 {
3648 }
ca092b61 3649
894882e3
TT
3650 struct type *type1, *type2;
3651};
ca092b61 3652
894882e3
TT
3653/* A helper function to compare two strings. Returns true if they are
3654 the same, false otherwise. Handles NULLs properly. */
ca092b61 3655
894882e3 3656static bool
ca092b61
DE
3657compare_maybe_null_strings (const char *s, const char *t)
3658{
894882e3
TT
3659 if (s == NULL || t == NULL)
3660 return s == t;
ca092b61
DE
3661 return strcmp (s, t) == 0;
3662}
3663
3664/* A helper function for check_types_worklist that checks two types for
894882e3
TT
3665 "deep" equality. Returns true if the types are considered the
3666 same, false otherwise. */
ca092b61 3667
894882e3 3668static bool
ca092b61 3669check_types_equal (struct type *type1, struct type *type2,
894882e3 3670 std::vector<type_equality_entry> *worklist)
ca092b61 3671{
f168693b
SM
3672 type1 = check_typedef (type1);
3673 type2 = check_typedef (type2);
ca092b61
DE
3674
3675 if (type1 == type2)
894882e3 3676 return true;
ca092b61
DE
3677
3678 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3679 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3680 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3681 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
34877895 3682 || TYPE_ENDIANITY_NOT_DEFAULT (type1) != TYPE_ENDIANITY_NOT_DEFAULT (type2)
ca092b61
DE
3683 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3684 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3685 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3686 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3687 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
894882e3 3688 return false;
ca092b61 3689
e86ca25f 3690 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
894882e3 3691 return false;
ca092b61 3692 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
894882e3 3693 return false;
ca092b61
DE
3694
3695 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3696 {
0f59d5fc 3697 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
894882e3 3698 return false;
ca092b61
DE
3699 }
3700 else
3701 {
3702 int i;
3703
3704 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3705 {
3706 const struct field *field1 = &TYPE_FIELD (type1, i);
3707 const struct field *field2 = &TYPE_FIELD (type2, i);
ca092b61
DE
3708
3709 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3710 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3711 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
894882e3 3712 return false;
ca092b61
DE
3713 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3714 FIELD_NAME (*field2)))
894882e3 3715 return false;
ca092b61
DE
3716 switch (FIELD_LOC_KIND (*field1))
3717 {
3718 case FIELD_LOC_KIND_BITPOS:
3719 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
894882e3 3720 return false;
ca092b61
DE
3721 break;
3722 case FIELD_LOC_KIND_ENUMVAL:
3723 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
894882e3 3724 return false;
ca092b61
DE
3725 break;
3726 case FIELD_LOC_KIND_PHYSADDR:
3727 if (FIELD_STATIC_PHYSADDR (*field1)
3728 != FIELD_STATIC_PHYSADDR (*field2))
894882e3 3729 return false;
ca092b61
DE
3730 break;
3731 case FIELD_LOC_KIND_PHYSNAME:
3732 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3733 FIELD_STATIC_PHYSNAME (*field2)))
894882e3 3734 return false;
ca092b61
DE
3735 break;
3736 case FIELD_LOC_KIND_DWARF_BLOCK:
3737 {
3738 struct dwarf2_locexpr_baton *block1, *block2;
3739
3740 block1 = FIELD_DWARF_BLOCK (*field1);
3741 block2 = FIELD_DWARF_BLOCK (*field2);
3742 if (block1->per_cu != block2->per_cu
3743 || block1->size != block2->size
3744 || memcmp (block1->data, block2->data, block1->size) != 0)
894882e3 3745 return false;
ca092b61
DE
3746 }
3747 break;
3748 default:
3749 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3750 "%d by check_types_equal"),
3751 FIELD_LOC_KIND (*field1));
3752 }
3753
894882e3 3754 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
ca092b61
DE
3755 }
3756 }
3757
3758 if (TYPE_TARGET_TYPE (type1) != NULL)
3759 {
ca092b61 3760 if (TYPE_TARGET_TYPE (type2) == NULL)
894882e3 3761 return false;
ca092b61 3762
894882e3
TT
3763 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
3764 TYPE_TARGET_TYPE (type2));
ca092b61
DE
3765 }
3766 else if (TYPE_TARGET_TYPE (type2) != NULL)
894882e3 3767 return false;
ca092b61 3768
894882e3 3769 return true;
ca092b61
DE
3770}
3771
894882e3
TT
3772/* Check types on a worklist for equality. Returns false if any pair
3773 is not equal, true if they are all considered equal. */
ca092b61 3774
894882e3
TT
3775static bool
3776check_types_worklist (std::vector<type_equality_entry> *worklist,
ca092b61
DE
3777 struct bcache *cache)
3778{
894882e3 3779 while (!worklist->empty ())
ca092b61 3780 {
ca092b61
DE
3781 int added;
3782
894882e3
TT
3783 struct type_equality_entry entry = std::move (worklist->back ());
3784 worklist->pop_back ();
ca092b61
DE
3785
3786 /* If the type pair has already been visited, we know it is
3787 ok. */
25629dfd 3788 cache->insert (&entry, sizeof (entry), &added);
ca092b61
DE
3789 if (!added)
3790 continue;
3791
894882e3
TT
3792 if (!check_types_equal (entry.type1, entry.type2, worklist))
3793 return false;
ca092b61 3794 }
7062b0a0 3795
894882e3 3796 return true;
ca092b61
DE
3797}
3798
894882e3
TT
3799/* Return true if types TYPE1 and TYPE2 are equal, as determined by a
3800 "deep comparison". Otherwise return false. */
ca092b61 3801
894882e3 3802bool
ca092b61
DE
3803types_deeply_equal (struct type *type1, struct type *type2)
3804{
894882e3 3805 std::vector<type_equality_entry> worklist;
ca092b61
DE
3806
3807 gdb_assert (type1 != NULL && type2 != NULL);
3808
3809 /* Early exit for the simple case. */
3810 if (type1 == type2)
894882e3 3811 return true;
ca092b61 3812
25629dfd 3813 struct bcache cache (nullptr, nullptr);
894882e3 3814 worklist.emplace_back (type1, type2);
25629dfd 3815 return check_types_worklist (&worklist, &cache);
ca092b61 3816}
3f2f83dd
KB
3817
3818/* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3819 Otherwise return one. */
3820
3821int
3822type_not_allocated (const struct type *type)
3823{
3824 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3825
3826 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3827 && !TYPE_DYN_PROP_ADDR (prop));
3828}
3829
3830/* Associated status of type TYPE. Return zero if type TYPE is associated.
3831 Otherwise return one. */
3832
3833int
3834type_not_associated (const struct type *type)
3835{
3836 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3837
3838 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3839 && !TYPE_DYN_PROP_ADDR (prop));
3840}
9293fc63
SM
3841
3842/* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
3843
3844static struct rank
3845rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
3846{
3847 struct rank rank = {0,0};
3848
3849 switch (TYPE_CODE (arg))
3850 {
3851 case TYPE_CODE_PTR:
3852
3853 /* Allowed pointer conversions are:
3854 (a) pointer to void-pointer conversion. */
3855 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3856 return VOID_PTR_CONVERSION_BADNESS;
3857
3858 /* (b) pointer to ancestor-pointer conversion. */
3859 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3860 TYPE_TARGET_TYPE (arg),
3861 0);
3862 if (rank.subrank >= 0)
3863 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3864
3865 return INCOMPATIBLE_TYPE_BADNESS;
3866 case TYPE_CODE_ARRAY:
3867 {
3868 struct type *t1 = TYPE_TARGET_TYPE (parm);
3869 struct type *t2 = TYPE_TARGET_TYPE (arg);
3870
3871 if (types_equal (t1, t2))
3872 {
3873 /* Make sure they are CV equal. */
3874 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3875 rank.subrank |= CV_CONVERSION_CONST;
3876 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3877 rank.subrank |= CV_CONVERSION_VOLATILE;
3878 if (rank.subrank != 0)
3879 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3880 return EXACT_MATCH_BADNESS;
3881 }
3882 return INCOMPATIBLE_TYPE_BADNESS;
3883 }
3884 case TYPE_CODE_FUNC:
3885 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3886 case TYPE_CODE_INT:
3887 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3888 {
3889 if (value_as_long (value) == 0)
3890 {
3891 /* Null pointer conversion: allow it to be cast to a pointer.
3892 [4.10.1 of C++ standard draft n3290] */
3893 return NULL_POINTER_CONVERSION_BADNESS;
3894 }
3895 else
3896 {
3897 /* If type checking is disabled, allow the conversion. */
3898 if (!strict_type_checking)
3899 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3900 }
3901 }
3902 /* fall through */
3903 case TYPE_CODE_ENUM:
3904 case TYPE_CODE_FLAGS:
3905 case TYPE_CODE_CHAR:
3906 case TYPE_CODE_RANGE:
3907 case TYPE_CODE_BOOL:
3908 default:
3909 return INCOMPATIBLE_TYPE_BADNESS;
3910 }
3911}
3912
b9f4512f
SM
3913/* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
3914
3915static struct rank
3916rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
3917{
3918 switch (TYPE_CODE (arg))
3919 {
3920 case TYPE_CODE_PTR:
3921 case TYPE_CODE_ARRAY:
3922 return rank_one_type (TYPE_TARGET_TYPE (parm),
3923 TYPE_TARGET_TYPE (arg), NULL);
3924 default:
3925 return INCOMPATIBLE_TYPE_BADNESS;
3926 }
3927}
3928
f1f832d6
SM
3929/* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
3930
3931static struct rank
3932rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
3933{
3934 switch (TYPE_CODE (arg))
3935 {
3936 case TYPE_CODE_PTR: /* funcptr -> func */
3937 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3938 default:
3939 return INCOMPATIBLE_TYPE_BADNESS;
3940 }
3941}
3942
34910087
SM
3943/* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
3944
3945static struct rank
3946rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
3947{
3948 switch (TYPE_CODE (arg))
3949 {
3950 case TYPE_CODE_INT:
3951 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3952 {
3953 /* Deal with signed, unsigned, and plain chars and
3954 signed and unsigned ints. */
3955 if (TYPE_NOSIGN (parm))
3956 {
3957 /* This case only for character types. */
3958 if (TYPE_NOSIGN (arg))
3959 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3960 else /* signed/unsigned char -> plain char */
3961 return INTEGER_CONVERSION_BADNESS;
3962 }
3963 else if (TYPE_UNSIGNED (parm))
3964 {
3965 if (TYPE_UNSIGNED (arg))
3966 {
3967 /* unsigned int -> unsigned int, or
3968 unsigned long -> unsigned long */
3969 if (integer_types_same_name_p (TYPE_NAME (parm),
3970 TYPE_NAME (arg)))
3971 return EXACT_MATCH_BADNESS;
3972 else if (integer_types_same_name_p (TYPE_NAME (arg),
3973 "int")
3974 && integer_types_same_name_p (TYPE_NAME (parm),
3975 "long"))
3976 /* unsigned int -> unsigned long */
3977 return INTEGER_PROMOTION_BADNESS;
3978 else
3979 /* unsigned long -> unsigned int */
3980 return INTEGER_CONVERSION_BADNESS;
3981 }
3982 else
3983 {
3984 if (integer_types_same_name_p (TYPE_NAME (arg),
3985 "long")
3986 && integer_types_same_name_p (TYPE_NAME (parm),
3987 "int"))
3988 /* signed long -> unsigned int */
3989 return INTEGER_CONVERSION_BADNESS;
3990 else
3991 /* signed int/long -> unsigned int/long */
3992 return INTEGER_CONVERSION_BADNESS;
3993 }
3994 }
3995 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3996 {
3997 if (integer_types_same_name_p (TYPE_NAME (parm),
3998 TYPE_NAME (arg)))
3999 return EXACT_MATCH_BADNESS;
4000 else if (integer_types_same_name_p (TYPE_NAME (arg),
4001 "int")
4002 && integer_types_same_name_p (TYPE_NAME (parm),
4003 "long"))
4004 return INTEGER_PROMOTION_BADNESS;
4005 else
4006 return INTEGER_CONVERSION_BADNESS;
4007 }
4008 else
4009 return INTEGER_CONVERSION_BADNESS;
4010 }
4011 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4012 return INTEGER_PROMOTION_BADNESS;
4013 else
4014 return INTEGER_CONVERSION_BADNESS;
4015 case TYPE_CODE_ENUM:
4016 case TYPE_CODE_FLAGS:
4017 case TYPE_CODE_CHAR:
4018 case TYPE_CODE_RANGE:
4019 case TYPE_CODE_BOOL:
4020 if (TYPE_DECLARED_CLASS (arg))
4021 return INCOMPATIBLE_TYPE_BADNESS;
4022 return INTEGER_PROMOTION_BADNESS;
4023 case TYPE_CODE_FLT:
4024 return INT_FLOAT_CONVERSION_BADNESS;
4025 case TYPE_CODE_PTR:
4026 return NS_POINTER_CONVERSION_BADNESS;
4027 default:
4028 return INCOMPATIBLE_TYPE_BADNESS;
4029 }
4030}
4031
793cd1d2
SM
4032/* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
4033
4034static struct rank
4035rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
4036{
4037 switch (TYPE_CODE (arg))
4038 {
4039 case TYPE_CODE_INT:
4040 case TYPE_CODE_CHAR:
4041 case TYPE_CODE_RANGE:
4042 case TYPE_CODE_BOOL:
4043 case TYPE_CODE_ENUM:
4044 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4045 return INCOMPATIBLE_TYPE_BADNESS;
4046 return INTEGER_CONVERSION_BADNESS;
4047 case TYPE_CODE_FLT:
4048 return INT_FLOAT_CONVERSION_BADNESS;
4049 default:
4050 return INCOMPATIBLE_TYPE_BADNESS;
4051 }
4052}
4053
41ea4728
SM
4054/* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
4055
4056static struct rank
4057rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
4058{
4059 switch (TYPE_CODE (arg))
4060 {
4061 case TYPE_CODE_RANGE:
4062 case TYPE_CODE_BOOL:
4063 case TYPE_CODE_ENUM:
4064 if (TYPE_DECLARED_CLASS (arg))
4065 return INCOMPATIBLE_TYPE_BADNESS;
4066 return INTEGER_CONVERSION_BADNESS;
4067 case TYPE_CODE_FLT:
4068 return INT_FLOAT_CONVERSION_BADNESS;
4069 case TYPE_CODE_INT:
4070 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4071 return INTEGER_CONVERSION_BADNESS;
4072 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4073 return INTEGER_PROMOTION_BADNESS;
4074 /* fall through */
4075 case TYPE_CODE_CHAR:
4076 /* Deal with signed, unsigned, and plain chars for C++ and
4077 with int cases falling through from previous case. */
4078 if (TYPE_NOSIGN (parm))
4079 {
4080 if (TYPE_NOSIGN (arg))
4081 return EXACT_MATCH_BADNESS;
4082 else
4083 return INTEGER_CONVERSION_BADNESS;
4084 }
4085 else if (TYPE_UNSIGNED (parm))
4086 {
4087 if (TYPE_UNSIGNED (arg))
4088 return EXACT_MATCH_BADNESS;
4089 else
4090 return INTEGER_PROMOTION_BADNESS;
4091 }
4092 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4093 return EXACT_MATCH_BADNESS;
4094 else
4095 return INTEGER_CONVERSION_BADNESS;
4096 default:
4097 return INCOMPATIBLE_TYPE_BADNESS;
4098 }
4099}
4100
0dd322dc
SM
4101/* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4102
4103static struct rank
4104rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4105{
4106 switch (TYPE_CODE (arg))
4107 {
4108 case TYPE_CODE_INT:
4109 case TYPE_CODE_CHAR:
4110 case TYPE_CODE_RANGE:
4111 case TYPE_CODE_BOOL:
4112 case TYPE_CODE_ENUM:
4113 return INTEGER_CONVERSION_BADNESS;
4114 case TYPE_CODE_FLT:
4115 return INT_FLOAT_CONVERSION_BADNESS;
4116 default:
4117 return INCOMPATIBLE_TYPE_BADNESS;
4118 }
4119}
4120
2c509035
SM
4121/* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4122
4123static struct rank
4124rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4125{
4126 switch (TYPE_CODE (arg))
4127 {
4128 /* n3290 draft, section 4.12.1 (conv.bool):
4129
4130 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4131 pointer to member type can be converted to a prvalue of type
4132 bool. A zero value, null pointer value, or null member pointer
4133 value is converted to false; any other value is converted to
4134 true. A prvalue of type std::nullptr_t can be converted to a
4135 prvalue of type bool; the resulting value is false." */
4136 case TYPE_CODE_INT:
4137 case TYPE_CODE_CHAR:
4138 case TYPE_CODE_ENUM:
4139 case TYPE_CODE_FLT:
4140 case TYPE_CODE_MEMBERPTR:
4141 case TYPE_CODE_PTR:
4142 return BOOL_CONVERSION_BADNESS;
4143 case TYPE_CODE_RANGE:
4144 return INCOMPATIBLE_TYPE_BADNESS;
4145 case TYPE_CODE_BOOL:
4146 return EXACT_MATCH_BADNESS;
4147 default:
4148 return INCOMPATIBLE_TYPE_BADNESS;
4149 }
4150}
4151
7f17b20d
SM
4152/* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4153
4154static struct rank
4155rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4156{
4157 switch (TYPE_CODE (arg))
4158 {
4159 case TYPE_CODE_FLT:
4160 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4161 return FLOAT_PROMOTION_BADNESS;
4162 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4163 return EXACT_MATCH_BADNESS;
4164 else
4165 return FLOAT_CONVERSION_BADNESS;
4166 case TYPE_CODE_INT:
4167 case TYPE_CODE_BOOL:
4168 case TYPE_CODE_ENUM:
4169 case TYPE_CODE_RANGE:
4170 case TYPE_CODE_CHAR:
4171 return INT_FLOAT_CONVERSION_BADNESS;
4172 default:
4173 return INCOMPATIBLE_TYPE_BADNESS;
4174 }
4175}
4176
2598a94b
SM
4177/* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4178
4179static struct rank
4180rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4181{
4182 switch (TYPE_CODE (arg))
4183 { /* Strictly not needed for C++, but... */
4184 case TYPE_CODE_FLT:
4185 return FLOAT_PROMOTION_BADNESS;
4186 case TYPE_CODE_COMPLEX:
4187 return EXACT_MATCH_BADNESS;
4188 default:
4189 return INCOMPATIBLE_TYPE_BADNESS;
4190 }
4191}
4192
595f96a9
SM
4193/* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4194
4195static struct rank
4196rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4197{
4198 struct rank rank = {0, 0};
4199
4200 switch (TYPE_CODE (arg))
4201 {
4202 case TYPE_CODE_STRUCT:
4203 /* Check for derivation */
4204 rank.subrank = distance_to_ancestor (parm, arg, 0);
4205 if (rank.subrank >= 0)
4206 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4207 /* fall through */
4208 default:
4209 return INCOMPATIBLE_TYPE_BADNESS;
4210 }
4211}
4212
f09ce22d
SM
4213/* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4214
4215static struct rank
4216rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4217{
4218 switch (TYPE_CODE (arg))
4219 {
4220 /* Not in C++ */
4221 case TYPE_CODE_SET:
4222 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4223 TYPE_FIELD_TYPE (arg, 0), NULL);
4224 default:
4225 return INCOMPATIBLE_TYPE_BADNESS;
4226 }
4227}
4228
c906108c
SS
4229/* Compare one type (PARM) for compatibility with another (ARG).
4230 * PARM is intended to be the parameter type of a function; and
4231 * ARG is the supplied argument's type. This function tests if
4232 * the latter can be converted to the former.
da096638 4233 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
4234 *
4235 * Return 0 if they are identical types;
4236 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
4237 * PARM is to ARG. The higher the return value, the worse the match.
4238 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 4239
6403aeea 4240struct rank
da096638 4241rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 4242{
a9d5ef47 4243 struct rank rank = {0,0};
7062b0a0 4244
c906108c
SS
4245 /* Resolve typedefs */
4246 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
4247 parm = check_typedef (parm);
4248 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
4249 arg = check_typedef (arg);
4250
e15c3eb4 4251 if (TYPE_IS_REFERENCE (parm) && value != NULL)
15c0a2a9 4252 {
e15c3eb4
KS
4253 if (VALUE_LVAL (value) == not_lval)
4254 {
4255 /* Rvalues should preferably bind to rvalue references or const
4256 lvalue references. */
4257 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4258 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4259 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4260 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4261 else
4262 return INCOMPATIBLE_TYPE_BADNESS;
4263 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4264 }
4265 else
4266 {
4267 /* Lvalues should prefer lvalue overloads. */
4268 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4269 {
4270 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4271 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4272 }
4273 }
15c0a2a9
AV
4274 }
4275
4276 if (types_equal (parm, arg))
15c0a2a9 4277 {
e15c3eb4
KS
4278 struct type *t1 = parm;
4279 struct type *t2 = arg;
15c0a2a9 4280
e15c3eb4
KS
4281 /* For pointers and references, compare target type. */
4282 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4283 {
4284 t1 = TYPE_TARGET_TYPE (parm);
4285 t2 = TYPE_TARGET_TYPE (arg);
4286 }
15c0a2a9 4287
e15c3eb4
KS
4288 /* Make sure they are CV equal, too. */
4289 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4290 rank.subrank |= CV_CONVERSION_CONST;
4291 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4292 rank.subrank |= CV_CONVERSION_VOLATILE;
4293 if (rank.subrank != 0)
4294 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4295 return EXACT_MATCH_BADNESS;
15c0a2a9
AV
4296 }
4297
db577aea 4298 /* See through references, since we can almost make non-references
7ba81444 4299 references. */
aa006118
AV
4300
4301 if (TYPE_IS_REFERENCE (arg))
da096638 4302 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
6403aeea 4303 REFERENCE_CONVERSION_BADNESS));
aa006118 4304 if (TYPE_IS_REFERENCE (parm))
da096638 4305 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
6403aeea 4306 REFERENCE_CONVERSION_BADNESS));
5d161b24 4307 if (overload_debug)
7ba81444
MS
4308 /* Debugging only. */
4309 fprintf_filtered (gdb_stderr,
4310 "------ Arg is %s [%d], parm is %s [%d]\n",
4311 TYPE_NAME (arg), TYPE_CODE (arg),
4312 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 4313
0963b4bd 4314 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
4315
4316 switch (TYPE_CODE (parm))
4317 {
c5aa993b 4318 case TYPE_CODE_PTR:
9293fc63 4319 return rank_one_type_parm_ptr (parm, arg, value);
c5aa993b 4320 case TYPE_CODE_ARRAY:
b9f4512f 4321 return rank_one_type_parm_array (parm, arg, value);
c5aa993b 4322 case TYPE_CODE_FUNC:
f1f832d6 4323 return rank_one_type_parm_func (parm, arg, value);
c5aa993b 4324 case TYPE_CODE_INT:
34910087 4325 return rank_one_type_parm_int (parm, arg, value);
c5aa993b 4326 case TYPE_CODE_ENUM:
793cd1d2 4327 return rank_one_type_parm_enum (parm, arg, value);
c5aa993b 4328 case TYPE_CODE_CHAR:
41ea4728 4329 return rank_one_type_parm_char (parm, arg, value);
c5aa993b 4330 case TYPE_CODE_RANGE:
0dd322dc 4331 return rank_one_type_parm_range (parm, arg, value);
c5aa993b 4332 case TYPE_CODE_BOOL:
2c509035 4333 return rank_one_type_parm_bool (parm, arg, value);
c5aa993b 4334 case TYPE_CODE_FLT:
7f17b20d 4335 return rank_one_type_parm_float (parm, arg, value);
c5aa993b 4336 case TYPE_CODE_COMPLEX:
2598a94b 4337 return rank_one_type_parm_complex (parm, arg, value);
c5aa993b 4338 case TYPE_CODE_STRUCT:
595f96a9 4339 return rank_one_type_parm_struct (parm, arg, value);
c5aa993b 4340 case TYPE_CODE_SET:
f09ce22d 4341 return rank_one_type_parm_set (parm, arg, value);
c5aa993b
JM
4342 default:
4343 return INCOMPATIBLE_TYPE_BADNESS;
4344 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
4345}
4346
0963b4bd 4347/* End of functions for overload resolution. */
5212577a
DE
4348\f
4349/* Routines to pretty-print types. */
c906108c 4350
c906108c 4351static void
fba45db2 4352print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
4353{
4354 int bitno;
4355
4356 for (bitno = 0; bitno < nbits; bitno++)
4357 {
4358 if ((bitno % 8) == 0)
4359 {
4360 puts_filtered (" ");
4361 }
4362 if (B_TST (bits, bitno))
a3f17187 4363 printf_filtered (("1"));
c906108c 4364 else
a3f17187 4365 printf_filtered (("0"));
c906108c
SS
4366 }
4367}
4368
ad2f7632 4369/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
4370 include it since we may get into a infinitely recursive
4371 situation. */
c906108c
SS
4372
4373static void
4c9e8482 4374print_args (struct field *args, int nargs, int spaces)
c906108c
SS
4375{
4376 if (args != NULL)
4377 {
ad2f7632
DJ
4378 int i;
4379
4380 for (i = 0; i < nargs; i++)
4c9e8482
DE
4381 {
4382 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4383 args[i].name != NULL ? args[i].name : "<NULL>");
4384 recursive_dump_type (args[i].type, spaces + 2);
4385 }
c906108c
SS
4386 }
4387}
4388
d6a843b5
JK
4389int
4390field_is_static (struct field *f)
4391{
4392 /* "static" fields are the fields whose location is not relative
4393 to the address of the enclosing struct. It would be nice to
4394 have a dedicated flag that would be set for static fields when
4395 the type is being created. But in practice, checking the field
254e6b9e 4396 loc_kind should give us an accurate answer. */
d6a843b5
JK
4397 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4398 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4399}
4400
c906108c 4401static void
fba45db2 4402dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
4403{
4404 int method_idx;
4405 int overload_idx;
4406 struct fn_field *f;
4407
4408 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 4409 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
4410 printf_filtered ("\n");
4411 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4412 {
4413 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4414 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4415 method_idx,
4416 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
4417 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4418 gdb_stdout);
a3f17187 4419 printf_filtered (_(") length %d\n"),
c906108c
SS
4420 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4421 for (overload_idx = 0;
4422 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4423 overload_idx++)
4424 {
4425 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4426 overload_idx,
4427 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
4428 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4429 gdb_stdout);
c906108c
SS
4430 printf_filtered (")\n");
4431 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
4432 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4433 gdb_stdout);
c906108c
SS
4434 printf_filtered ("\n");
4435
4436 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4437 spaces + 8 + 2);
4438
4439 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
4440 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4441 gdb_stdout);
c906108c 4442 printf_filtered ("\n");
4c9e8482
DE
4443 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4444 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4445 spaces + 8 + 2);
c906108c 4446 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
4447 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4448 gdb_stdout);
c906108c
SS
4449 printf_filtered ("\n");
4450
4451 printfi_filtered (spaces + 8, "is_const %d\n",
4452 TYPE_FN_FIELD_CONST (f, overload_idx));
4453 printfi_filtered (spaces + 8, "is_volatile %d\n",
4454 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4455 printfi_filtered (spaces + 8, "is_private %d\n",
4456 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4457 printfi_filtered (spaces + 8, "is_protected %d\n",
4458 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4459 printfi_filtered (spaces + 8, "is_stub %d\n",
4460 TYPE_FN_FIELD_STUB (f, overload_idx));
4461 printfi_filtered (spaces + 8, "voffset %u\n",
4462 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4463 }
4464 }
4465}
4466
4467static void
fba45db2 4468print_cplus_stuff (struct type *type, int spaces)
c906108c 4469{
ae6ae975
DE
4470 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4471 printfi_filtered (spaces, "vptr_basetype ");
4472 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4473 puts_filtered ("\n");
4474 if (TYPE_VPTR_BASETYPE (type) != NULL)
4475 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4476
c906108c
SS
4477 printfi_filtered (spaces, "n_baseclasses %d\n",
4478 TYPE_N_BASECLASSES (type));
4479 printfi_filtered (spaces, "nfn_fields %d\n",
4480 TYPE_NFN_FIELDS (type));
c906108c
SS
4481 if (TYPE_N_BASECLASSES (type) > 0)
4482 {
4483 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4484 TYPE_N_BASECLASSES (type));
7ba81444
MS
4485 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4486 gdb_stdout);
c906108c
SS
4487 printf_filtered (")");
4488
4489 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4490 TYPE_N_BASECLASSES (type));
4491 puts_filtered ("\n");
4492 }
4493 if (TYPE_NFIELDS (type) > 0)
4494 {
4495 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4496 {
7ba81444
MS
4497 printfi_filtered (spaces,
4498 "private_field_bits (%d bits at *",
c906108c 4499 TYPE_NFIELDS (type));
7ba81444
MS
4500 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4501 gdb_stdout);
c906108c
SS
4502 printf_filtered (")");
4503 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4504 TYPE_NFIELDS (type));
4505 puts_filtered ("\n");
4506 }
4507 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4508 {
7ba81444
MS
4509 printfi_filtered (spaces,
4510 "protected_field_bits (%d bits at *",
c906108c 4511 TYPE_NFIELDS (type));
7ba81444
MS
4512 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4513 gdb_stdout);
c906108c
SS
4514 printf_filtered (")");
4515 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4516 TYPE_NFIELDS (type));
4517 puts_filtered ("\n");
4518 }
4519 }
4520 if (TYPE_NFN_FIELDS (type) > 0)
4521 {
4522 dump_fn_fieldlists (type, spaces);
4523 }
4524}
4525
b4ba55a1
JB
4526/* Print the contents of the TYPE's type_specific union, assuming that
4527 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4528
4529static void
4530print_gnat_stuff (struct type *type, int spaces)
4531{
4532 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4533
8cd00c59
PMR
4534 if (descriptive_type == NULL)
4535 printfi_filtered (spaces + 2, "no descriptive type\n");
4536 else
4537 {
4538 printfi_filtered (spaces + 2, "descriptive type\n");
4539 recursive_dump_type (descriptive_type, spaces + 4);
4540 }
b4ba55a1
JB
4541}
4542
c906108c
SS
4543static struct obstack dont_print_type_obstack;
4544
4545void
fba45db2 4546recursive_dump_type (struct type *type, int spaces)
c906108c
SS
4547{
4548 int idx;
4549
4550 if (spaces == 0)
4551 obstack_begin (&dont_print_type_obstack, 0);
4552
4553 if (TYPE_NFIELDS (type) > 0
b4ba55a1 4554 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
4555 {
4556 struct type **first_dont_print
7ba81444 4557 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 4558
7ba81444
MS
4559 int i = (struct type **)
4560 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
4561
4562 while (--i >= 0)
4563 {
4564 if (type == first_dont_print[i])
4565 {
4566 printfi_filtered (spaces, "type node ");
d4f3574e 4567 gdb_print_host_address (type, gdb_stdout);
a3f17187 4568 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
4569 return;
4570 }
4571 }
4572
4573 obstack_ptr_grow (&dont_print_type_obstack, type);
4574 }
4575
4576 printfi_filtered (spaces, "type node ");
d4f3574e 4577 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
4578 printf_filtered ("\n");
4579 printfi_filtered (spaces, "name '%s' (",
4580 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 4581 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 4582 printf_filtered (")\n");
c906108c
SS
4583 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4584 switch (TYPE_CODE (type))
4585 {
c5aa993b
JM
4586 case TYPE_CODE_UNDEF:
4587 printf_filtered ("(TYPE_CODE_UNDEF)");
4588 break;
4589 case TYPE_CODE_PTR:
4590 printf_filtered ("(TYPE_CODE_PTR)");
4591 break;
4592 case TYPE_CODE_ARRAY:
4593 printf_filtered ("(TYPE_CODE_ARRAY)");
4594 break;
4595 case TYPE_CODE_STRUCT:
4596 printf_filtered ("(TYPE_CODE_STRUCT)");
4597 break;
4598 case TYPE_CODE_UNION:
4599 printf_filtered ("(TYPE_CODE_UNION)");
4600 break;
4601 case TYPE_CODE_ENUM:
4602 printf_filtered ("(TYPE_CODE_ENUM)");
4603 break;
4f2aea11
MK
4604 case TYPE_CODE_FLAGS:
4605 printf_filtered ("(TYPE_CODE_FLAGS)");
4606 break;
c5aa993b
JM
4607 case TYPE_CODE_FUNC:
4608 printf_filtered ("(TYPE_CODE_FUNC)");
4609 break;
4610 case TYPE_CODE_INT:
4611 printf_filtered ("(TYPE_CODE_INT)");
4612 break;
4613 case TYPE_CODE_FLT:
4614 printf_filtered ("(TYPE_CODE_FLT)");
4615 break;
4616 case TYPE_CODE_VOID:
4617 printf_filtered ("(TYPE_CODE_VOID)");
4618 break;
4619 case TYPE_CODE_SET:
4620 printf_filtered ("(TYPE_CODE_SET)");
4621 break;
4622 case TYPE_CODE_RANGE:
4623 printf_filtered ("(TYPE_CODE_RANGE)");
4624 break;
4625 case TYPE_CODE_STRING:
4626 printf_filtered ("(TYPE_CODE_STRING)");
4627 break;
4628 case TYPE_CODE_ERROR:
4629 printf_filtered ("(TYPE_CODE_ERROR)");
4630 break;
0d5de010
DJ
4631 case TYPE_CODE_MEMBERPTR:
4632 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4633 break;
4634 case TYPE_CODE_METHODPTR:
4635 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
4636 break;
4637 case TYPE_CODE_METHOD:
4638 printf_filtered ("(TYPE_CODE_METHOD)");
4639 break;
4640 case TYPE_CODE_REF:
4641 printf_filtered ("(TYPE_CODE_REF)");
4642 break;
4643 case TYPE_CODE_CHAR:
4644 printf_filtered ("(TYPE_CODE_CHAR)");
4645 break;
4646 case TYPE_CODE_BOOL:
4647 printf_filtered ("(TYPE_CODE_BOOL)");
4648 break;
e9e79dd9
FF
4649 case TYPE_CODE_COMPLEX:
4650 printf_filtered ("(TYPE_CODE_COMPLEX)");
4651 break;
c5aa993b
JM
4652 case TYPE_CODE_TYPEDEF:
4653 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4654 break;
5c4e30ca
DC
4655 case TYPE_CODE_NAMESPACE:
4656 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4657 break;
c5aa993b
JM
4658 default:
4659 printf_filtered ("(UNKNOWN TYPE CODE)");
4660 break;
c906108c
SS
4661 }
4662 puts_filtered ("\n");
cc1defb1 4663 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
e9bb382b
UW
4664 if (TYPE_OBJFILE_OWNED (type))
4665 {
4666 printfi_filtered (spaces, "objfile ");
4667 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4668 }
4669 else
4670 {
4671 printfi_filtered (spaces, "gdbarch ");
4672 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4673 }
c906108c
SS
4674 printf_filtered ("\n");
4675 printfi_filtered (spaces, "target_type ");
d4f3574e 4676 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
4677 printf_filtered ("\n");
4678 if (TYPE_TARGET_TYPE (type) != NULL)
4679 {
4680 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4681 }
4682 printfi_filtered (spaces, "pointer_type ");
d4f3574e 4683 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
4684 printf_filtered ("\n");
4685 printfi_filtered (spaces, "reference_type ");
d4f3574e 4686 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 4687 printf_filtered ("\n");
2fdde8f8
DJ
4688 printfi_filtered (spaces, "type_chain ");
4689 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 4690 printf_filtered ("\n");
7ba81444
MS
4691 printfi_filtered (spaces, "instance_flags 0x%x",
4692 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
4693 if (TYPE_CONST (type))
4694 {
a9ff5f12 4695 puts_filtered (" TYPE_CONST");
2fdde8f8
DJ
4696 }
4697 if (TYPE_VOLATILE (type))
4698 {
a9ff5f12 4699 puts_filtered (" TYPE_VOLATILE");
2fdde8f8
DJ
4700 }
4701 if (TYPE_CODE_SPACE (type))
4702 {
a9ff5f12 4703 puts_filtered (" TYPE_CODE_SPACE");
2fdde8f8
DJ
4704 }
4705 if (TYPE_DATA_SPACE (type))
4706 {
a9ff5f12 4707 puts_filtered (" TYPE_DATA_SPACE");
2fdde8f8 4708 }
8b2dbe47
KB
4709 if (TYPE_ADDRESS_CLASS_1 (type))
4710 {
a9ff5f12 4711 puts_filtered (" TYPE_ADDRESS_CLASS_1");
8b2dbe47
KB
4712 }
4713 if (TYPE_ADDRESS_CLASS_2 (type))
4714 {
a9ff5f12 4715 puts_filtered (" TYPE_ADDRESS_CLASS_2");
8b2dbe47 4716 }
06d66ee9
TT
4717 if (TYPE_RESTRICT (type))
4718 {
a9ff5f12 4719 puts_filtered (" TYPE_RESTRICT");
06d66ee9 4720 }
a2c2acaf
MW
4721 if (TYPE_ATOMIC (type))
4722 {
a9ff5f12 4723 puts_filtered (" TYPE_ATOMIC");
a2c2acaf 4724 }
2fdde8f8 4725 puts_filtered ("\n");
876cecd0
TT
4726
4727 printfi_filtered (spaces, "flags");
762a036f 4728 if (TYPE_UNSIGNED (type))
c906108c 4729 {
a9ff5f12 4730 puts_filtered (" TYPE_UNSIGNED");
c906108c 4731 }
762a036f
FF
4732 if (TYPE_NOSIGN (type))
4733 {
a9ff5f12 4734 puts_filtered (" TYPE_NOSIGN");
762a036f 4735 }
34877895
PJ
4736 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
4737 {
4738 puts_filtered (" TYPE_ENDIANITY_NOT_DEFAULT");
4739 }
762a036f 4740 if (TYPE_STUB (type))
c906108c 4741 {
a9ff5f12 4742 puts_filtered (" TYPE_STUB");
c906108c 4743 }
762a036f
FF
4744 if (TYPE_TARGET_STUB (type))
4745 {
a9ff5f12 4746 puts_filtered (" TYPE_TARGET_STUB");
762a036f 4747 }
762a036f
FF
4748 if (TYPE_PROTOTYPED (type))
4749 {
a9ff5f12 4750 puts_filtered (" TYPE_PROTOTYPED");
762a036f
FF
4751 }
4752 if (TYPE_INCOMPLETE (type))
4753 {
a9ff5f12 4754 puts_filtered (" TYPE_INCOMPLETE");
762a036f 4755 }
762a036f
FF
4756 if (TYPE_VARARGS (type))
4757 {
a9ff5f12 4758 puts_filtered (" TYPE_VARARGS");
762a036f 4759 }
f5f8a009
EZ
4760 /* This is used for things like AltiVec registers on ppc. Gcc emits
4761 an attribute for the array type, which tells whether or not we
4762 have a vector, instead of a regular array. */
4763 if (TYPE_VECTOR (type))
4764 {
a9ff5f12 4765 puts_filtered (" TYPE_VECTOR");
f5f8a009 4766 }
876cecd0
TT
4767 if (TYPE_FIXED_INSTANCE (type))
4768 {
4769 puts_filtered (" TYPE_FIXED_INSTANCE");
4770 }
4771 if (TYPE_STUB_SUPPORTED (type))
4772 {
4773 puts_filtered (" TYPE_STUB_SUPPORTED");
4774 }
4775 if (TYPE_NOTTEXT (type))
4776 {
4777 puts_filtered (" TYPE_NOTTEXT");
4778 }
c906108c
SS
4779 puts_filtered ("\n");
4780 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 4781 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
4782 puts_filtered ("\n");
4783 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4784 {
14e75d8e
JK
4785 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4786 printfi_filtered (spaces + 2,
4787 "[%d] enumval %s type ",
4788 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4789 else
4790 printfi_filtered (spaces + 2,
6b850546
DT
4791 "[%d] bitpos %s bitsize %d type ",
4792 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
14e75d8e 4793 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 4794 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
4795 printf_filtered (" name '%s' (",
4796 TYPE_FIELD_NAME (type, idx) != NULL
4797 ? TYPE_FIELD_NAME (type, idx)
4798 : "<NULL>");
d4f3574e 4799 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
4800 printf_filtered (")\n");
4801 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4802 {
4803 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4804 }
4805 }
43bbcdc2
PH
4806 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4807 {
4808 printfi_filtered (spaces, "low %s%s high %s%s\n",
4809 plongest (TYPE_LOW_BOUND (type)),
4810 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4811 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
4812 TYPE_HIGH_BOUND_UNDEFINED (type)
4813 ? " (undefined)" : "");
43bbcdc2 4814 }
c906108c 4815
b4ba55a1
JB
4816 switch (TYPE_SPECIFIC_FIELD (type))
4817 {
4818 case TYPE_SPECIFIC_CPLUS_STUFF:
4819 printfi_filtered (spaces, "cplus_stuff ");
4820 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4821 gdb_stdout);
4822 puts_filtered ("\n");
4823 print_cplus_stuff (type, spaces);
4824 break;
8da61cc4 4825
b4ba55a1
JB
4826 case TYPE_SPECIFIC_GNAT_STUFF:
4827 printfi_filtered (spaces, "gnat_stuff ");
4828 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4829 puts_filtered ("\n");
4830 print_gnat_stuff (type, spaces);
4831 break;
701c159d 4832
b4ba55a1
JB
4833 case TYPE_SPECIFIC_FLOATFORMAT:
4834 printfi_filtered (spaces, "floatformat ");
0db7851f
UW
4835 if (TYPE_FLOATFORMAT (type) == NULL
4836 || TYPE_FLOATFORMAT (type)->name == NULL)
b4ba55a1
JB
4837 puts_filtered ("(null)");
4838 else
0db7851f 4839 puts_filtered (TYPE_FLOATFORMAT (type)->name);
b4ba55a1
JB
4840 puts_filtered ("\n");
4841 break;
c906108c 4842
b6cdc2c1 4843 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
4844 printfi_filtered (spaces, "calling_convention %d\n",
4845 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 4846 /* tail_call_list is not printed. */
b4ba55a1 4847 break;
09e2d7c7
DE
4848
4849 case TYPE_SPECIFIC_SELF_TYPE:
4850 printfi_filtered (spaces, "self_type ");
4851 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4852 puts_filtered ("\n");
4853 break;
c906108c 4854 }
b4ba55a1 4855
c906108c
SS
4856 if (spaces == 0)
4857 obstack_free (&dont_print_type_obstack, NULL);
4858}
5212577a 4859\f
ae5a43e0
DJ
4860/* Trivial helpers for the libiberty hash table, for mapping one
4861 type to another. */
4862
fd90ace4 4863struct type_pair : public allocate_on_obstack
ae5a43e0 4864{
fd90ace4
YQ
4865 type_pair (struct type *old_, struct type *newobj_)
4866 : old (old_), newobj (newobj_)
4867 {}
4868
4869 struct type * const old, * const newobj;
ae5a43e0
DJ
4870};
4871
4872static hashval_t
4873type_pair_hash (const void *item)
4874{
9a3c8263 4875 const struct type_pair *pair = (const struct type_pair *) item;
d8734c88 4876
ae5a43e0
DJ
4877 return htab_hash_pointer (pair->old);
4878}
4879
4880static int
4881type_pair_eq (const void *item_lhs, const void *item_rhs)
4882{
9a3c8263
SM
4883 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4884 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
d8734c88 4885
ae5a43e0
DJ
4886 return lhs->old == rhs->old;
4887}
4888
4889/* Allocate the hash table used by copy_type_recursive to walk
4890 types without duplicates. We use OBJFILE's obstack, because
4891 OBJFILE is about to be deleted. */
4892
4893htab_t
4894create_copied_types_hash (struct objfile *objfile)
4895{
4896 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4897 NULL, &objfile->objfile_obstack,
4898 hashtab_obstack_allocate,
4899 dummy_obstack_deallocate);
4900}
4901
d9823cbb
KB
4902/* Recursively copy (deep copy) a dynamic attribute list of a type. */
4903
4904static struct dynamic_prop_list *
4905copy_dynamic_prop_list (struct obstack *objfile_obstack,
4906 struct dynamic_prop_list *list)
4907{
4908 struct dynamic_prop_list *copy = list;
4909 struct dynamic_prop_list **node_ptr = &copy;
4910
4911 while (*node_ptr != NULL)
4912 {
4913 struct dynamic_prop_list *node_copy;
4914
224c3ddb
SM
4915 node_copy = ((struct dynamic_prop_list *)
4916 obstack_copy (objfile_obstack, *node_ptr,
4917 sizeof (struct dynamic_prop_list)));
283a9958 4918 node_copy->prop = (*node_ptr)->prop;
d9823cbb
KB
4919 *node_ptr = node_copy;
4920
4921 node_ptr = &node_copy->next;
4922 }
4923
4924 return copy;
4925}
4926
7ba81444 4927/* Recursively copy (deep copy) TYPE, if it is associated with
eed8b28a
PP
4928 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4929 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4930 it is not associated with OBJFILE. */
ae5a43e0
DJ
4931
4932struct type *
7ba81444
MS
4933copy_type_recursive (struct objfile *objfile,
4934 struct type *type,
ae5a43e0
DJ
4935 htab_t copied_types)
4936{
ae5a43e0
DJ
4937 void **slot;
4938 struct type *new_type;
4939
e9bb382b 4940 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
4941 return type;
4942
7ba81444
MS
4943 /* This type shouldn't be pointing to any types in other objfiles;
4944 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
4945 gdb_assert (TYPE_OBJFILE (type) == objfile);
4946
fd90ace4
YQ
4947 struct type_pair pair (type, nullptr);
4948
ae5a43e0
DJ
4949 slot = htab_find_slot (copied_types, &pair, INSERT);
4950 if (*slot != NULL)
fe978cb0 4951 return ((struct type_pair *) *slot)->newobj;
ae5a43e0 4952
e9bb382b 4953 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
4954
4955 /* We must add the new type to the hash table immediately, in case
4956 we encounter this type again during a recursive call below. */
fd90ace4
YQ
4957 struct type_pair *stored
4958 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
4959
ae5a43e0
DJ
4960 *slot = stored;
4961
876cecd0
TT
4962 /* Copy the common fields of types. For the main type, we simply
4963 copy the entire thing and then update specific fields as needed. */
4964 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
4965 TYPE_OBJFILE_OWNED (new_type) = 0;
4966 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 4967
ae5a43e0
DJ
4968 if (TYPE_NAME (type))
4969 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
ae5a43e0
DJ
4970
4971 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4972 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4973
4974 /* Copy the fields. */
ae5a43e0
DJ
4975 if (TYPE_NFIELDS (type))
4976 {
4977 int i, nfields;
4978
4979 nfields = TYPE_NFIELDS (type);
2fabdf33
AB
4980 TYPE_FIELDS (new_type) = (struct field *)
4981 TYPE_ZALLOC (new_type, nfields * sizeof (struct field));
ae5a43e0
DJ
4982 for (i = 0; i < nfields; i++)
4983 {
7ba81444
MS
4984 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4985 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
4986 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4987 if (TYPE_FIELD_TYPE (type, i))
4988 TYPE_FIELD_TYPE (new_type, i)
4989 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4990 copied_types);
4991 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
4992 TYPE_FIELD_NAME (new_type, i) =
4993 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 4994 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 4995 {
d6a843b5
JK
4996 case FIELD_LOC_KIND_BITPOS:
4997 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4998 TYPE_FIELD_BITPOS (type, i));
4999 break;
14e75d8e
JK
5000 case FIELD_LOC_KIND_ENUMVAL:
5001 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
5002 TYPE_FIELD_ENUMVAL (type, i));
5003 break;
d6a843b5
JK
5004 case FIELD_LOC_KIND_PHYSADDR:
5005 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
5006 TYPE_FIELD_STATIC_PHYSADDR (type, i));
5007 break;
5008 case FIELD_LOC_KIND_PHYSNAME:
5009 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
5010 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
5011 i)));
5012 break;
5013 default:
5014 internal_error (__FILE__, __LINE__,
5015 _("Unexpected type field location kind: %d"),
5016 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
5017 }
5018 }
5019 }
5020
0963b4bd 5021 /* For range types, copy the bounds information. */
43bbcdc2
PH
5022 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
5023 {
2fabdf33
AB
5024 TYPE_RANGE_DATA (new_type) = (struct range_bounds *)
5025 TYPE_ALLOC (new_type, sizeof (struct range_bounds));
43bbcdc2
PH
5026 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
5027 }
5028
d9823cbb
KB
5029 if (TYPE_DYN_PROP_LIST (type) != NULL)
5030 TYPE_DYN_PROP_LIST (new_type)
5031 = copy_dynamic_prop_list (&objfile->objfile_obstack,
5032 TYPE_DYN_PROP_LIST (type));
5033
3cdcd0ce 5034
ae5a43e0
DJ
5035 /* Copy pointers to other types. */
5036 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
5037 TYPE_TARGET_TYPE (new_type) =
5038 copy_type_recursive (objfile,
5039 TYPE_TARGET_TYPE (type),
5040 copied_types);
f6b3afbf 5041
ae5a43e0
DJ
5042 /* Maybe copy the type_specific bits.
5043
5044 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
5045 base classes and methods. There's no fundamental reason why we
5046 can't, but at the moment it is not needed. */
5047
f6b3afbf
DE
5048 switch (TYPE_SPECIFIC_FIELD (type))
5049 {
5050 case TYPE_SPECIFIC_NONE:
5051 break;
5052 case TYPE_SPECIFIC_FUNC:
5053 INIT_FUNC_SPECIFIC (new_type);
5054 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
5055 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
5056 TYPE_TAIL_CALL_LIST (new_type) = NULL;
5057 break;
5058 case TYPE_SPECIFIC_FLOATFORMAT:
5059 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
5060 break;
5061 case TYPE_SPECIFIC_CPLUS_STUFF:
5062 INIT_CPLUS_SPECIFIC (new_type);
5063 break;
5064 case TYPE_SPECIFIC_GNAT_STUFF:
5065 INIT_GNAT_SPECIFIC (new_type);
5066 break;
09e2d7c7
DE
5067 case TYPE_SPECIFIC_SELF_TYPE:
5068 set_type_self_type (new_type,
5069 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5070 copied_types));
5071 break;
f6b3afbf
DE
5072 default:
5073 gdb_assert_not_reached ("bad type_specific_kind");
5074 }
ae5a43e0
DJ
5075
5076 return new_type;
5077}
5078
4af88198
JB
5079/* Make a copy of the given TYPE, except that the pointer & reference
5080 types are not preserved.
5081
5082 This function assumes that the given type has an associated objfile.
5083 This objfile is used to allocate the new type. */
5084
5085struct type *
5086copy_type (const struct type *type)
5087{
5088 struct type *new_type;
5089
e9bb382b 5090 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 5091
e9bb382b 5092 new_type = alloc_type_copy (type);
4af88198
JB
5093 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5094 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5095 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5096 sizeof (struct main_type));
d9823cbb
KB
5097 if (TYPE_DYN_PROP_LIST (type) != NULL)
5098 TYPE_DYN_PROP_LIST (new_type)
5099 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5100 TYPE_DYN_PROP_LIST (type));
4af88198
JB
5101
5102 return new_type;
5103}
5212577a 5104\f
e9bb382b
UW
5105/* Helper functions to initialize architecture-specific types. */
5106
5107/* Allocate a type structure associated with GDBARCH and set its
5108 CODE, LENGTH, and NAME fields. */
5212577a 5109
e9bb382b
UW
5110struct type *
5111arch_type (struct gdbarch *gdbarch,
77b7c781 5112 enum type_code code, int bit, const char *name)
e9bb382b
UW
5113{
5114 struct type *type;
5115
5116 type = alloc_type_arch (gdbarch);
ae438bc5 5117 set_type_code (type, code);
77b7c781
UW
5118 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5119 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
e9bb382b
UW
5120
5121 if (name)
6c214e7c 5122 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
e9bb382b
UW
5123
5124 return type;
5125}
5126
5127/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5128 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5129 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5130
e9bb382b
UW
5131struct type *
5132arch_integer_type (struct gdbarch *gdbarch,
695bfa52 5133 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5134{
5135 struct type *t;
5136
77b7c781 5137 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
e9bb382b
UW
5138 if (unsigned_p)
5139 TYPE_UNSIGNED (t) = 1;
e9bb382b
UW
5140
5141 return t;
5142}
5143
5144/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5145 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5146 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5147
e9bb382b
UW
5148struct type *
5149arch_character_type (struct gdbarch *gdbarch,
695bfa52 5150 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5151{
5152 struct type *t;
5153
77b7c781 5154 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
e9bb382b
UW
5155 if (unsigned_p)
5156 TYPE_UNSIGNED (t) = 1;
5157
5158 return t;
5159}
5160
5161/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5162 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5163 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5164
e9bb382b
UW
5165struct type *
5166arch_boolean_type (struct gdbarch *gdbarch,
695bfa52 5167 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5168{
5169 struct type *t;
5170
77b7c781 5171 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
e9bb382b
UW
5172 if (unsigned_p)
5173 TYPE_UNSIGNED (t) = 1;
5174
5175 return t;
5176}
5177
5178/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5179 BIT is the type size in bits; if BIT equals -1, the size is
5180 determined by the floatformat. NAME is the type name. Set the
5181 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 5182
27067745 5183struct type *
e9bb382b 5184arch_float_type (struct gdbarch *gdbarch,
695bfa52
TT
5185 int bit, const char *name,
5186 const struct floatformat **floatformats)
8da61cc4 5187{
0db7851f 5188 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
8da61cc4
DJ
5189 struct type *t;
5190
0db7851f 5191 bit = verify_floatformat (bit, fmt);
77b7c781 5192 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
0db7851f 5193 TYPE_FLOATFORMAT (t) = fmt;
b79497cb 5194
8da61cc4
DJ
5195 return t;
5196}
5197
88dfca6c
UW
5198/* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5199 BIT is the type size in bits. NAME is the type name. */
5200
5201struct type *
5202arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5203{
5204 struct type *t;
5205
77b7c781 5206 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
88dfca6c
UW
5207 return t;
5208}
5209
e9bb382b
UW
5210/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
5211 NAME is the type name. TARGET_TYPE is the component float type. */
5212577a 5212
27067745 5213struct type *
e9bb382b 5214arch_complex_type (struct gdbarch *gdbarch,
695bfa52 5215 const char *name, struct type *target_type)
27067745
UW
5216{
5217 struct type *t;
d8734c88 5218
e9bb382b 5219 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
77b7c781 5220 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
27067745
UW
5221 TYPE_TARGET_TYPE (t) = target_type;
5222 return t;
5223}
5224
88dfca6c
UW
5225/* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5226 BIT is the pointer type size in bits. NAME is the type name.
5227 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5228 TYPE_UNSIGNED flag. */
5229
5230struct type *
5231arch_pointer_type (struct gdbarch *gdbarch,
5232 int bit, const char *name, struct type *target_type)
5233{
5234 struct type *t;
5235
77b7c781 5236 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
88dfca6c
UW
5237 TYPE_TARGET_TYPE (t) = target_type;
5238 TYPE_UNSIGNED (t) = 1;
5239 return t;
5240}
5241
e9bb382b 5242/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
77b7c781 5243 NAME is the type name. BIT is the size of the flag word in bits. */
5212577a 5244
e9bb382b 5245struct type *
77b7c781 5246arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
e9bb382b 5247{
e9bb382b
UW
5248 struct type *type;
5249
77b7c781 5250 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
e9bb382b 5251 TYPE_UNSIGNED (type) = 1;
81516450
DE
5252 TYPE_NFIELDS (type) = 0;
5253 /* Pre-allocate enough space assuming every field is one bit. */
224c3ddb 5254 TYPE_FIELDS (type)
77b7c781 5255 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
e9bb382b
UW
5256
5257 return type;
5258}
5259
5260/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
81516450
DE
5261 position BITPOS is called NAME. Pass NAME as "" for fields that
5262 should not be printed. */
5263
5264void
5265append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
695bfa52 5266 struct type *field_type, const char *name)
81516450
DE
5267{
5268 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5269 int field_nr = TYPE_NFIELDS (type);
5270
5271 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5272 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5273 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5274 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5275 gdb_assert (name != NULL);
5276
5277 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5278 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5279 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5280 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5281 ++TYPE_NFIELDS (type);
5282}
5283
5284/* Special version of append_flags_type_field to add a flag field.
5285 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
e9bb382b 5286 position BITPOS is called NAME. */
5212577a 5287
e9bb382b 5288void
695bfa52 5289append_flags_type_flag (struct type *type, int bitpos, const char *name)
e9bb382b 5290{
81516450 5291 struct gdbarch *gdbarch = get_type_arch (type);
e9bb382b 5292
81516450
DE
5293 append_flags_type_field (type, bitpos, 1,
5294 builtin_type (gdbarch)->builtin_bool,
5295 name);
e9bb382b
UW
5296}
5297
5298/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5299 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 5300
e9bb382b 5301struct type *
695bfa52
TT
5302arch_composite_type (struct gdbarch *gdbarch, const char *name,
5303 enum type_code code)
e9bb382b
UW
5304{
5305 struct type *t;
d8734c88 5306
e9bb382b
UW
5307 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5308 t = arch_type (gdbarch, code, 0, NULL);
e86ca25f 5309 TYPE_NAME (t) = name;
e9bb382b
UW
5310 INIT_CPLUS_SPECIFIC (t);
5311 return t;
5312}
5313
5314/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
5315 Do not set the field's position or adjust the type's length;
5316 the caller should do so. Return the new field. */
5212577a 5317
f5dff777 5318struct field *
695bfa52 5319append_composite_type_field_raw (struct type *t, const char *name,
f5dff777 5320 struct type *field)
e9bb382b
UW
5321{
5322 struct field *f;
d8734c88 5323
e9bb382b 5324 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
224c3ddb
SM
5325 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5326 TYPE_NFIELDS (t));
e9bb382b
UW
5327 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5328 memset (f, 0, sizeof f[0]);
5329 FIELD_TYPE (f[0]) = field;
5330 FIELD_NAME (f[0]) = name;
f5dff777
DJ
5331 return f;
5332}
5333
5334/* Add new field with name NAME and type FIELD to composite type T.
5335 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 5336
f5dff777 5337void
695bfa52 5338append_composite_type_field_aligned (struct type *t, const char *name,
f5dff777
DJ
5339 struct type *field, int alignment)
5340{
5341 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 5342
e9bb382b
UW
5343 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5344 {
5345 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5346 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5347 }
5348 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5349 {
5350 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5351 if (TYPE_NFIELDS (t) > 1)
5352 {
f41f5e61
PA
5353 SET_FIELD_BITPOS (f[0],
5354 (FIELD_BITPOS (f[-1])
5355 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5356 * TARGET_CHAR_BIT)));
e9bb382b
UW
5357
5358 if (alignment)
5359 {
86c3c1fc
AB
5360 int left;
5361
5362 alignment *= TARGET_CHAR_BIT;
5363 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 5364
e9bb382b
UW
5365 if (left)
5366 {
f41f5e61 5367 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 5368 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
5369 }
5370 }
5371 }
5372 }
5373}
5374
5375/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 5376
e9bb382b 5377void
695bfa52 5378append_composite_type_field (struct type *t, const char *name,
e9bb382b
UW
5379 struct type *field)
5380{
5381 append_composite_type_field_aligned (t, name, field, 0);
5382}
5383
000177f0
AC
5384static struct gdbarch_data *gdbtypes_data;
5385
5386const struct builtin_type *
5387builtin_type (struct gdbarch *gdbarch)
5388{
9a3c8263 5389 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
000177f0
AC
5390}
5391
5392static void *
5393gdbtypes_post_init (struct gdbarch *gdbarch)
5394{
5395 struct builtin_type *builtin_type
5396 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5397
46bf5051 5398 /* Basic types. */
e9bb382b 5399 builtin_type->builtin_void
77b7c781 5400 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
e9bb382b
UW
5401 builtin_type->builtin_char
5402 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5403 !gdbarch_char_signed (gdbarch), "char");
c413c448 5404 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
e9bb382b
UW
5405 builtin_type->builtin_signed_char
5406 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5407 0, "signed char");
5408 builtin_type->builtin_unsigned_char
5409 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5410 1, "unsigned char");
5411 builtin_type->builtin_short
5412 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5413 0, "short");
5414 builtin_type->builtin_unsigned_short
5415 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5416 1, "unsigned short");
5417 builtin_type->builtin_int
5418 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5419 0, "int");
5420 builtin_type->builtin_unsigned_int
5421 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5422 1, "unsigned int");
5423 builtin_type->builtin_long
5424 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5425 0, "long");
5426 builtin_type->builtin_unsigned_long
5427 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5428 1, "unsigned long");
5429 builtin_type->builtin_long_long
5430 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5431 0, "long long");
5432 builtin_type->builtin_unsigned_long_long
5433 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5434 1, "unsigned long long");
a6d0f249
AH
5435 builtin_type->builtin_half
5436 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5437 "half", gdbarch_half_format (gdbarch));
70bd8e24 5438 builtin_type->builtin_float
e9bb382b 5439 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 5440 "float", gdbarch_float_format (gdbarch));
70bd8e24 5441 builtin_type->builtin_double
e9bb382b 5442 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 5443 "double", gdbarch_double_format (gdbarch));
70bd8e24 5444 builtin_type->builtin_long_double
e9bb382b 5445 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 5446 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 5447 builtin_type->builtin_complex
e9bb382b
UW
5448 = arch_complex_type (gdbarch, "complex",
5449 builtin_type->builtin_float);
70bd8e24 5450 builtin_type->builtin_double_complex
e9bb382b
UW
5451 = arch_complex_type (gdbarch, "double complex",
5452 builtin_type->builtin_double);
5453 builtin_type->builtin_string
77b7c781 5454 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
e9bb382b 5455 builtin_type->builtin_bool
77b7c781 5456 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
000177f0 5457
7678ef8f
TJB
5458 /* The following three are about decimal floating point types, which
5459 are 32-bits, 64-bits and 128-bits respectively. */
5460 builtin_type->builtin_decfloat
88dfca6c 5461 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
7678ef8f 5462 builtin_type->builtin_decdouble
88dfca6c 5463 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
7678ef8f 5464 builtin_type->builtin_declong
88dfca6c 5465 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
7678ef8f 5466
69feb676 5467 /* "True" character types. */
e9bb382b
UW
5468 builtin_type->builtin_true_char
5469 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5470 builtin_type->builtin_true_unsigned_char
5471 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 5472
df4df182 5473 /* Fixed-size integer types. */
e9bb382b
UW
5474 builtin_type->builtin_int0
5475 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5476 builtin_type->builtin_int8
5477 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5478 builtin_type->builtin_uint8
5479 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5480 builtin_type->builtin_int16
5481 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5482 builtin_type->builtin_uint16
5483 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
d1908f2d
JD
5484 builtin_type->builtin_int24
5485 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5486 builtin_type->builtin_uint24
5487 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
e9bb382b
UW
5488 builtin_type->builtin_int32
5489 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5490 builtin_type->builtin_uint32
5491 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5492 builtin_type->builtin_int64
5493 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5494 builtin_type->builtin_uint64
5495 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5496 builtin_type->builtin_int128
5497 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5498 builtin_type->builtin_uint128
5499 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
5500 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5501 TYPE_INSTANCE_FLAG_NOTTEXT;
5502 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5503 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 5504
9a22f0d0
PM
5505 /* Wide character types. */
5506 builtin_type->builtin_char16
53e710ac 5507 = arch_integer_type (gdbarch, 16, 1, "char16_t");
9a22f0d0 5508 builtin_type->builtin_char32
53e710ac 5509 = arch_integer_type (gdbarch, 32, 1, "char32_t");
53375380
PA
5510 builtin_type->builtin_wchar
5511 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5512 !gdbarch_wchar_signed (gdbarch), "wchar_t");
9a22f0d0 5513
46bf5051 5514 /* Default data/code pointer types. */
e9bb382b
UW
5515 builtin_type->builtin_data_ptr
5516 = lookup_pointer_type (builtin_type->builtin_void);
5517 builtin_type->builtin_func_ptr
5518 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
5519 builtin_type->builtin_func_func
5520 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 5521
78267919 5522 /* This type represents a GDB internal function. */
e9bb382b
UW
5523 builtin_type->internal_fn
5524 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5525 "<internal function>");
78267919 5526
e81e7f5e
SC
5527 /* This type represents an xmethod. */
5528 builtin_type->xmethod
5529 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5530
46bf5051
UW
5531 return builtin_type;
5532}
5533
46bf5051
UW
5534/* This set of objfile-based types is intended to be used by symbol
5535 readers as basic types. */
5536
7a102139
TT
5537static const struct objfile_key<struct objfile_type,
5538 gdb::noop_deleter<struct objfile_type>>
5539 objfile_type_data;
46bf5051
UW
5540
5541const struct objfile_type *
5542objfile_type (struct objfile *objfile)
5543{
5544 struct gdbarch *gdbarch;
7a102139 5545 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
46bf5051
UW
5546
5547 if (objfile_type)
5548 return objfile_type;
5549
5550 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5551 1, struct objfile_type);
5552
5553 /* Use the objfile architecture to determine basic type properties. */
5554 gdbarch = get_objfile_arch (objfile);
5555
5556 /* Basic types. */
5557 objfile_type->builtin_void
77b7c781 5558 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
46bf5051 5559 objfile_type->builtin_char
19f392bc
UW
5560 = init_integer_type (objfile, TARGET_CHAR_BIT,
5561 !gdbarch_char_signed (gdbarch), "char");
c413c448 5562 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
46bf5051 5563 objfile_type->builtin_signed_char
19f392bc
UW
5564 = init_integer_type (objfile, TARGET_CHAR_BIT,
5565 0, "signed char");
46bf5051 5566 objfile_type->builtin_unsigned_char
19f392bc
UW
5567 = init_integer_type (objfile, TARGET_CHAR_BIT,
5568 1, "unsigned char");
46bf5051 5569 objfile_type->builtin_short
19f392bc
UW
5570 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5571 0, "short");
46bf5051 5572 objfile_type->builtin_unsigned_short
19f392bc
UW
5573 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5574 1, "unsigned short");
46bf5051 5575 objfile_type->builtin_int
19f392bc
UW
5576 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5577 0, "int");
46bf5051 5578 objfile_type->builtin_unsigned_int
19f392bc
UW
5579 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5580 1, "unsigned int");
46bf5051 5581 objfile_type->builtin_long
19f392bc
UW
5582 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5583 0, "long");
46bf5051 5584 objfile_type->builtin_unsigned_long
19f392bc
UW
5585 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5586 1, "unsigned long");
46bf5051 5587 objfile_type->builtin_long_long
19f392bc
UW
5588 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5589 0, "long long");
46bf5051 5590 objfile_type->builtin_unsigned_long_long
19f392bc
UW
5591 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5592 1, "unsigned long long");
46bf5051 5593 objfile_type->builtin_float
19f392bc
UW
5594 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5595 "float", gdbarch_float_format (gdbarch));
46bf5051 5596 objfile_type->builtin_double
19f392bc
UW
5597 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5598 "double", gdbarch_double_format (gdbarch));
46bf5051 5599 objfile_type->builtin_long_double
19f392bc
UW
5600 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5601 "long double", gdbarch_long_double_format (gdbarch));
46bf5051
UW
5602
5603 /* This type represents a type that was unrecognized in symbol read-in. */
5604 objfile_type->builtin_error
19f392bc 5605 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
46bf5051
UW
5606
5607 /* The following set of types is used for symbols with no
5608 debug information. */
5609 objfile_type->nodebug_text_symbol
77b7c781 5610 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5611 "<text variable, no debug info>");
0875794a 5612 objfile_type->nodebug_text_gnu_ifunc_symbol
77b7c781 5613 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5614 "<text gnu-indirect-function variable, no debug info>");
19f392bc 5615 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
0875794a 5616 objfile_type->nodebug_got_plt_symbol
19f392bc
UW
5617 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5618 "<text from jump slot in .got.plt, no debug info>",
5619 objfile_type->nodebug_text_symbol);
46bf5051 5620 objfile_type->nodebug_data_symbol
46a4882b 5621 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
46bf5051 5622 objfile_type->nodebug_unknown_symbol
46a4882b 5623 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
46bf5051 5624 objfile_type->nodebug_tls_symbol
46a4882b 5625 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
000177f0
AC
5626
5627 /* NOTE: on some targets, addresses and pointers are not necessarily
0a7cfe2c 5628 the same.
000177f0
AC
5629
5630 The upshot is:
5631 - gdb's `struct type' always describes the target's
5632 representation.
5633 - gdb's `struct value' objects should always hold values in
5634 target form.
5635 - gdb's CORE_ADDR values are addresses in the unified virtual
5636 address space that the assembler and linker work with. Thus,
5637 since target_read_memory takes a CORE_ADDR as an argument, it
5638 can access any memory on the target, even if the processor has
5639 separate code and data address spaces.
5640
46bf5051
UW
5641 In this context, objfile_type->builtin_core_addr is a bit odd:
5642 it's a target type for a value the target will never see. It's
5643 only used to hold the values of (typeless) linker symbols, which
5644 are indeed in the unified virtual address space. */
000177f0 5645
46bf5051 5646 objfile_type->builtin_core_addr
19f392bc
UW
5647 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5648 "__CORE_ADDR");
64c50499 5649
7a102139 5650 objfile_type_data.set (objfile, objfile_type);
46bf5051 5651 return objfile_type;
000177f0
AC
5652}
5653
c906108c 5654void
fba45db2 5655_initialize_gdbtypes (void)
c906108c 5656{
5674de60
UW
5657 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5658
ccce17b0
YQ
5659 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5660 _("Set debugging of C++ overloading."),
5661 _("Show debugging of C++ overloading."),
5662 _("When enabled, ranking of the "
5663 "functions is displayed."),
5664 NULL,
5665 show_overload_debug,
5666 &setdebuglist, &showdebuglist);
5674de60 5667
7ba81444 5668 /* Add user knob for controlling resolution of opaque types. */
5674de60 5669 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
5670 &opaque_type_resolution,
5671 _("Set resolution of opaque struct/class/union"
5672 " types (if set before loading symbols)."),
5673 _("Show resolution of opaque struct/class/union"
5674 " types (if set before loading symbols)."),
5675 NULL, NULL,
5674de60
UW
5676 show_opaque_type_resolution,
5677 &setlist, &showlist);
a451cb65
KS
5678
5679 /* Add an option to permit non-strict type checking. */
5680 add_setshow_boolean_cmd ("type", class_support,
5681 &strict_type_checking,
5682 _("Set strict type checking."),
5683 _("Show strict type checking."),
5684 NULL, NULL,
5685 show_strict_type_checking,
5686 &setchecklist, &showchecklist);
c906108c 5687}
34877895
PJ
5688
5689/* See gdbtypes.h. */
5690enum bfd_endian
5691type_byte_order (const struct type *type)
5692{
5693 bfd_endian byteorder = gdbarch_byte_order (get_type_arch (type));
5694 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
5695 {
5696 if (byteorder == BFD_ENDIAN_BIG)
5697 return BFD_ENDIAN_LITTLE;
5698 else if (byteorder == BFD_ENDIAN_LITTLE)
5699 return BFD_ENDIAN_BIG;
5700 else
5701 return BFD_ENDIAN_UNKNOWN;
5702 }
5703
5704 return byteorder;
5705}
This page took 2.003093 seconds and 4 git commands to generate.