gdb/
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
9b254dd1 3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002,
7b6bb8da 4 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4c38e0a4 5 Free Software Foundation, Inc.
4f2aea11 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#include "defs.h"
25#include "gdb_string.h"
26#include "bfd.h"
27#include "symtab.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "gdbtypes.h"
31#include "expression.h"
32#include "language.h"
33#include "target.h"
34#include "value.h"
35#include "demangle.h"
36#include "complaints.h"
37#include "gdbcmd.h"
c91ecb25 38#include "wrapper.h"
015a42b4 39#include "cp-abi.h"
a02fd225 40#include "gdb_assert.h"
ae5a43e0 41#include "hashtab.h"
c906108c 42
ac3aafc7 43
6403aeea
SW
44/* Initialize BADNESS constants. */
45
a9d5ef47 46const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 47
a9d5ef47
SW
48const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
49const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 50
a9d5ef47 51const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 52
a9d5ef47
SW
53const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
54const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
55const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
56const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
60const struct rank BOOL_PTR_CONVERSION_BADNESS = {3,0};
61const struct rank BASE_CONVERSION_BADNESS = {2,0};
62const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
6403aeea 63
a9d5ef47 64const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
6403aeea 65
8da61cc4 66/* Floatformat pairs. */
f9e9243a
UW
67const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
68 &floatformat_ieee_half_big,
69 &floatformat_ieee_half_little
70};
8da61cc4
DJ
71const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
72 &floatformat_ieee_single_big,
73 &floatformat_ieee_single_little
74};
75const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
76 &floatformat_ieee_double_big,
77 &floatformat_ieee_double_little
78};
79const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
80 &floatformat_ieee_double_big,
81 &floatformat_ieee_double_littlebyte_bigword
82};
83const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
84 &floatformat_i387_ext,
85 &floatformat_i387_ext
86};
87const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
88 &floatformat_m68881_ext,
89 &floatformat_m68881_ext
90};
91const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
92 &floatformat_arm_ext_big,
93 &floatformat_arm_ext_littlebyte_bigword
94};
95const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
96 &floatformat_ia64_spill_big,
97 &floatformat_ia64_spill_little
98};
99const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
100 &floatformat_ia64_quad_big,
101 &floatformat_ia64_quad_little
102};
103const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
104 &floatformat_vax_f,
105 &floatformat_vax_f
106};
107const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
108 &floatformat_vax_d,
109 &floatformat_vax_d
110};
b14d30e1
JM
111const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
112 &floatformat_ibm_long_double,
113 &floatformat_ibm_long_double
114};
8da61cc4 115
8da61cc4 116
c906108c 117int opaque_type_resolution = 1;
920d2a44
AC
118static void
119show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
120 struct cmd_list_element *c,
121 const char *value)
920d2a44 122{
3e43a32a
MS
123 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
124 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
125 value);
126}
127
5d161b24 128int overload_debug = 0;
920d2a44
AC
129static void
130show_overload_debug (struct ui_file *file, int from_tty,
131 struct cmd_list_element *c, const char *value)
132{
7ba81444
MS
133 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
134 value);
920d2a44 135}
c906108c 136
c5aa993b
JM
137struct extra
138 {
139 char str[128];
140 int len;
7ba81444 141 }; /* Maximum extension is 128! FIXME */
c906108c 142
a14ed312 143static void print_bit_vector (B_TYPE *, int);
ad2f7632 144static void print_arg_types (struct field *, int, int);
a14ed312
KB
145static void dump_fn_fieldlists (struct type *, int);
146static void print_cplus_stuff (struct type *, int);
7a292a7a 147
c906108c 148
e9bb382b
UW
149/* Allocate a new OBJFILE-associated type structure and fill it
150 with some defaults. Space for the type structure is allocated
151 on the objfile's objfile_obstack. */
c906108c
SS
152
153struct type *
fba45db2 154alloc_type (struct objfile *objfile)
c906108c 155{
52f0bd74 156 struct type *type;
c906108c 157
e9bb382b
UW
158 gdb_assert (objfile != NULL);
159
7ba81444 160 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
161 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
162 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
163 struct main_type);
164 OBJSTAT (objfile, n_types++);
c906108c 165
e9bb382b
UW
166 TYPE_OBJFILE_OWNED (type) = 1;
167 TYPE_OWNER (type).objfile = objfile;
c906108c 168
7ba81444 169 /* Initialize the fields that might not be zero. */
c906108c
SS
170
171 TYPE_CODE (type) = TYPE_CODE_UNDEF;
c906108c 172 TYPE_VPTR_FIELDNO (type) = -1;
2fdde8f8 173 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 174
c16abbde 175 return type;
c906108c
SS
176}
177
e9bb382b
UW
178/* Allocate a new GDBARCH-associated type structure and fill it
179 with some defaults. Space for the type structure is allocated
180 on the heap. */
181
182struct type *
183alloc_type_arch (struct gdbarch *gdbarch)
184{
185 struct type *type;
186
187 gdb_assert (gdbarch != NULL);
188
189 /* Alloc the structure and start off with all fields zeroed. */
190
191 type = XZALLOC (struct type);
192 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
193
194 TYPE_OBJFILE_OWNED (type) = 0;
195 TYPE_OWNER (type).gdbarch = gdbarch;
196
197 /* Initialize the fields that might not be zero. */
198
199 TYPE_CODE (type) = TYPE_CODE_UNDEF;
200 TYPE_VPTR_FIELDNO (type) = -1;
201 TYPE_CHAIN (type) = type; /* Chain back to itself. */
202
203 return type;
204}
205
206/* If TYPE is objfile-associated, allocate a new type structure
207 associated with the same objfile. If TYPE is gdbarch-associated,
208 allocate a new type structure associated with the same gdbarch. */
209
210struct type *
211alloc_type_copy (const struct type *type)
212{
213 if (TYPE_OBJFILE_OWNED (type))
214 return alloc_type (TYPE_OWNER (type).objfile);
215 else
216 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
217}
218
219/* If TYPE is gdbarch-associated, return that architecture.
220 If TYPE is objfile-associated, return that objfile's architecture. */
221
222struct gdbarch *
223get_type_arch (const struct type *type)
224{
225 if (TYPE_OBJFILE_OWNED (type))
226 return get_objfile_arch (TYPE_OWNER (type).objfile);
227 else
228 return TYPE_OWNER (type).gdbarch;
229}
230
231
2fdde8f8
DJ
232/* Alloc a new type instance structure, fill it with some defaults,
233 and point it at OLDTYPE. Allocate the new type instance from the
234 same place as OLDTYPE. */
235
236static struct type *
237alloc_type_instance (struct type *oldtype)
238{
239 struct type *type;
240
241 /* Allocate the structure. */
242
e9bb382b 243 if (! TYPE_OBJFILE_OWNED (oldtype))
1deafd4e 244 type = XZALLOC (struct type);
2fdde8f8 245 else
1deafd4e
PA
246 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
247 struct type);
248
2fdde8f8
DJ
249 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
250
251 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
252
c16abbde 253 return type;
2fdde8f8
DJ
254}
255
256/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 257 replacing it with something else. Preserve owner information. */
2fdde8f8
DJ
258static void
259smash_type (struct type *type)
260{
e9bb382b
UW
261 int objfile_owned = TYPE_OBJFILE_OWNED (type);
262 union type_owner owner = TYPE_OWNER (type);
263
2fdde8f8
DJ
264 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
265
e9bb382b
UW
266 /* Restore owner information. */
267 TYPE_OBJFILE_OWNED (type) = objfile_owned;
268 TYPE_OWNER (type) = owner;
269
2fdde8f8
DJ
270 /* For now, delete the rings. */
271 TYPE_CHAIN (type) = type;
272
273 /* For now, leave the pointer/reference types alone. */
274}
275
c906108c
SS
276/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
277 to a pointer to memory where the pointer type should be stored.
278 If *TYPEPTR is zero, update it to point to the pointer type we return.
279 We allocate new memory if needed. */
280
281struct type *
fba45db2 282make_pointer_type (struct type *type, struct type **typeptr)
c906108c 283{
52f0bd74 284 struct type *ntype; /* New type */
053cb41b 285 struct type *chain;
c906108c
SS
286
287 ntype = TYPE_POINTER_TYPE (type);
288
c5aa993b 289 if (ntype)
c906108c 290 {
c5aa993b 291 if (typeptr == 0)
7ba81444
MS
292 return ntype; /* Don't care about alloc,
293 and have new type. */
c906108c 294 else if (*typeptr == 0)
c5aa993b 295 {
7ba81444 296 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 297 return ntype;
c5aa993b 298 }
c906108c
SS
299 }
300
301 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
302 {
e9bb382b 303 ntype = alloc_type_copy (type);
c906108c
SS
304 if (typeptr)
305 *typeptr = ntype;
306 }
7ba81444 307 else /* We have storage, but need to reset it. */
c906108c
SS
308 {
309 ntype = *typeptr;
053cb41b 310 chain = TYPE_CHAIN (ntype);
2fdde8f8 311 smash_type (ntype);
053cb41b 312 TYPE_CHAIN (ntype) = chain;
c906108c
SS
313 }
314
315 TYPE_TARGET_TYPE (ntype) = type;
316 TYPE_POINTER_TYPE (type) = ntype;
317
7ba81444
MS
318 /* FIXME! Assume the machine has only one representation for
319 pointers! */
c906108c 320
50810684
UW
321 TYPE_LENGTH (ntype)
322 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
323 TYPE_CODE (ntype) = TYPE_CODE_PTR;
324
67b2adb2 325 /* Mark pointers as unsigned. The target converts between pointers
76e71323 326 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 327 gdbarch_address_to_pointer. */
876cecd0 328 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 329
c906108c
SS
330 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
331 TYPE_POINTER_TYPE (type) = ntype;
332
053cb41b
JB
333 /* Update the length of all the other variants of this type. */
334 chain = TYPE_CHAIN (ntype);
335 while (chain != ntype)
336 {
337 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
338 chain = TYPE_CHAIN (chain);
339 }
340
c906108c
SS
341 return ntype;
342}
343
344/* Given a type TYPE, return a type of pointers to that type.
345 May need to construct such a type if this is the first use. */
346
347struct type *
fba45db2 348lookup_pointer_type (struct type *type)
c906108c 349{
c5aa993b 350 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
351}
352
7ba81444
MS
353/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
354 points to a pointer to memory where the reference type should be
355 stored. If *TYPEPTR is zero, update it to point to the reference
356 type we return. We allocate new memory if needed. */
c906108c
SS
357
358struct type *
fba45db2 359make_reference_type (struct type *type, struct type **typeptr)
c906108c 360{
52f0bd74 361 struct type *ntype; /* New type */
1e98b326 362 struct type *chain;
c906108c
SS
363
364 ntype = TYPE_REFERENCE_TYPE (type);
365
c5aa993b 366 if (ntype)
c906108c 367 {
c5aa993b 368 if (typeptr == 0)
7ba81444
MS
369 return ntype; /* Don't care about alloc,
370 and have new type. */
c906108c 371 else if (*typeptr == 0)
c5aa993b 372 {
7ba81444 373 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 374 return ntype;
c5aa993b 375 }
c906108c
SS
376 }
377
378 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
379 {
e9bb382b 380 ntype = alloc_type_copy (type);
c906108c
SS
381 if (typeptr)
382 *typeptr = ntype;
383 }
7ba81444 384 else /* We have storage, but need to reset it. */
c906108c
SS
385 {
386 ntype = *typeptr;
1e98b326 387 chain = TYPE_CHAIN (ntype);
2fdde8f8 388 smash_type (ntype);
1e98b326 389 TYPE_CHAIN (ntype) = chain;
c906108c
SS
390 }
391
392 TYPE_TARGET_TYPE (ntype) = type;
393 TYPE_REFERENCE_TYPE (type) = ntype;
394
7ba81444
MS
395 /* FIXME! Assume the machine has only one representation for
396 references, and that it matches the (only) representation for
397 pointers! */
c906108c 398
50810684
UW
399 TYPE_LENGTH (ntype) =
400 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c 401 TYPE_CODE (ntype) = TYPE_CODE_REF;
c5aa993b 402
c906108c
SS
403 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
404 TYPE_REFERENCE_TYPE (type) = ntype;
405
1e98b326
JB
406 /* Update the length of all the other variants of this type. */
407 chain = TYPE_CHAIN (ntype);
408 while (chain != ntype)
409 {
410 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
411 chain = TYPE_CHAIN (chain);
412 }
413
c906108c
SS
414 return ntype;
415}
416
7ba81444
MS
417/* Same as above, but caller doesn't care about memory allocation
418 details. */
c906108c
SS
419
420struct type *
fba45db2 421lookup_reference_type (struct type *type)
c906108c 422{
c5aa993b 423 return make_reference_type (type, (struct type **) 0);
c906108c
SS
424}
425
7ba81444
MS
426/* Lookup a function type that returns type TYPE. TYPEPTR, if
427 nonzero, points to a pointer to memory where the function type
428 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 429 function type we return. We allocate new memory if needed. */
c906108c
SS
430
431struct type *
0c8b41f1 432make_function_type (struct type *type, struct type **typeptr)
c906108c 433{
52f0bd74 434 struct type *ntype; /* New type */
c906108c
SS
435
436 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
437 {
e9bb382b 438 ntype = alloc_type_copy (type);
c906108c
SS
439 if (typeptr)
440 *typeptr = ntype;
441 }
7ba81444 442 else /* We have storage, but need to reset it. */
c906108c
SS
443 {
444 ntype = *typeptr;
2fdde8f8 445 smash_type (ntype);
c906108c
SS
446 }
447
448 TYPE_TARGET_TYPE (ntype) = type;
449
450 TYPE_LENGTH (ntype) = 1;
451 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 452
c906108c
SS
453 return ntype;
454}
455
456
457/* Given a type TYPE, return a type of functions that return that type.
458 May need to construct such a type if this is the first use. */
459
460struct type *
fba45db2 461lookup_function_type (struct type *type)
c906108c 462{
0c8b41f1 463 return make_function_type (type, (struct type **) 0);
c906108c
SS
464}
465
47663de5
MS
466/* Identify address space identifier by name --
467 return the integer flag defined in gdbtypes.h. */
468extern int
50810684 469address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
47663de5 470{
8b2dbe47 471 int type_flags;
d8734c88 472
7ba81444 473 /* Check for known address space delimiters. */
47663de5 474 if (!strcmp (space_identifier, "code"))
876cecd0 475 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 476 else if (!strcmp (space_identifier, "data"))
876cecd0 477 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
478 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
479 && gdbarch_address_class_name_to_type_flags (gdbarch,
480 space_identifier,
481 &type_flags))
8b2dbe47 482 return type_flags;
47663de5 483 else
8a3fe4f8 484 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
485}
486
487/* Identify address space identifier by integer flag as defined in
7ba81444 488 gdbtypes.h -- return the string version of the adress space name. */
47663de5 489
321432c0 490const char *
50810684 491address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 492{
876cecd0 493 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 494 return "code";
876cecd0 495 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 496 return "data";
876cecd0 497 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
498 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
499 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
500 else
501 return NULL;
502}
503
2fdde8f8 504/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
505
506 If STORAGE is non-NULL, create the new type instance there.
507 STORAGE must be in the same obstack as TYPE. */
47663de5 508
b9362cc7 509static struct type *
2fdde8f8
DJ
510make_qualified_type (struct type *type, int new_flags,
511 struct type *storage)
47663de5
MS
512{
513 struct type *ntype;
514
515 ntype = type;
5f61c20e
JK
516 do
517 {
518 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
519 return ntype;
520 ntype = TYPE_CHAIN (ntype);
521 }
522 while (ntype != type);
47663de5 523
2fdde8f8
DJ
524 /* Create a new type instance. */
525 if (storage == NULL)
526 ntype = alloc_type_instance (type);
527 else
528 {
7ba81444
MS
529 /* If STORAGE was provided, it had better be in the same objfile
530 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
531 if one objfile is freed and the other kept, we'd have
532 dangling pointers. */
ad766c0a
JB
533 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
534
2fdde8f8
DJ
535 ntype = storage;
536 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
537 TYPE_CHAIN (ntype) = ntype;
538 }
47663de5
MS
539
540 /* Pointers or references to the original type are not relevant to
2fdde8f8 541 the new type. */
47663de5
MS
542 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
543 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 544
2fdde8f8
DJ
545 /* Chain the new qualified type to the old type. */
546 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
547 TYPE_CHAIN (type) = ntype;
548
549 /* Now set the instance flags and return the new type. */
550 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 551
ab5d3da6
KB
552 /* Set length of new type to that of the original type. */
553 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
554
47663de5
MS
555 return ntype;
556}
557
2fdde8f8
DJ
558/* Make an address-space-delimited variant of a type -- a type that
559 is identical to the one supplied except that it has an address
560 space attribute attached to it (such as "code" or "data").
561
7ba81444
MS
562 The space attributes "code" and "data" are for Harvard
563 architectures. The address space attributes are for architectures
564 which have alternately sized pointers or pointers with alternate
565 representations. */
2fdde8f8
DJ
566
567struct type *
568make_type_with_address_space (struct type *type, int space_flag)
569{
2fdde8f8 570 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
571 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
572 | TYPE_INSTANCE_FLAG_DATA_SPACE
573 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
574 | space_flag);
575
576 return make_qualified_type (type, new_flags, NULL);
577}
c906108c
SS
578
579/* Make a "c-v" variant of a type -- a type that is identical to the
580 one supplied except that it may have const or volatile attributes
581 CNST is a flag for setting the const attribute
582 VOLTL is a flag for setting the volatile attribute
583 TYPE is the base type whose variant we are creating.
c906108c 584
ad766c0a
JB
585 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
586 storage to hold the new qualified type; *TYPEPTR and TYPE must be
587 in the same objfile. Otherwise, allocate fresh memory for the new
588 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
589 new type we construct. */
c906108c 590struct type *
7ba81444
MS
591make_cv_type (int cnst, int voltl,
592 struct type *type,
593 struct type **typeptr)
c906108c 594{
52f0bd74 595 struct type *ntype; /* New type */
c906108c 596
2fdde8f8 597 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
598 & ~(TYPE_INSTANCE_FLAG_CONST
599 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 600
c906108c 601 if (cnst)
876cecd0 602 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
603
604 if (voltl)
876cecd0 605 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 606
2fdde8f8 607 if (typeptr && *typeptr != NULL)
a02fd225 608 {
ad766c0a
JB
609 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
610 a C-V variant chain that threads across objfiles: if one
611 objfile gets freed, then the other has a broken C-V chain.
612
613 This code used to try to copy over the main type from TYPE to
614 *TYPEPTR if they were in different objfiles, but that's
615 wrong, too: TYPE may have a field list or member function
616 lists, which refer to types of their own, etc. etc. The
617 whole shebang would need to be copied over recursively; you
618 can't have inter-objfile pointers. The only thing to do is
619 to leave stub types as stub types, and look them up afresh by
620 name each time you encounter them. */
621 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
622 }
623
7ba81444
MS
624 ntype = make_qualified_type (type, new_flags,
625 typeptr ? *typeptr : NULL);
c906108c 626
2fdde8f8
DJ
627 if (typeptr != NULL)
628 *typeptr = ntype;
a02fd225 629
2fdde8f8 630 return ntype;
a02fd225 631}
c906108c 632
2fdde8f8
DJ
633/* Replace the contents of ntype with the type *type. This changes the
634 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
635 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 636
cda6c68a
JB
637 In order to build recursive types, it's inevitable that we'll need
638 to update types in place --- but this sort of indiscriminate
639 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
640 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
641 clear if more steps are needed. */
dd6bda65
DJ
642void
643replace_type (struct type *ntype, struct type *type)
644{
ab5d3da6 645 struct type *chain;
dd6bda65 646
ad766c0a
JB
647 /* These two types had better be in the same objfile. Otherwise,
648 the assignment of one type's main type structure to the other
649 will produce a type with references to objects (names; field
650 lists; etc.) allocated on an objfile other than its own. */
651 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
652
2fdde8f8 653 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 654
7ba81444
MS
655 /* The type length is not a part of the main type. Update it for
656 each type on the variant chain. */
ab5d3da6 657 chain = ntype;
5f61c20e
JK
658 do
659 {
660 /* Assert that this element of the chain has no address-class bits
661 set in its flags. Such type variants might have type lengths
662 which are supposed to be different from the non-address-class
663 variants. This assertion shouldn't ever be triggered because
664 symbol readers which do construct address-class variants don't
665 call replace_type(). */
666 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
667
668 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
669 chain = TYPE_CHAIN (chain);
670 }
671 while (ntype != chain);
ab5d3da6 672
2fdde8f8
DJ
673 /* Assert that the two types have equivalent instance qualifiers.
674 This should be true for at least all of our debug readers. */
675 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
676}
677
c906108c
SS
678/* Implement direct support for MEMBER_TYPE in GNU C++.
679 May need to construct such a type if this is the first use.
680 The TYPE is the type of the member. The DOMAIN is the type
681 of the aggregate that the member belongs to. */
682
683struct type *
0d5de010 684lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 685{
52f0bd74 686 struct type *mtype;
c906108c 687
e9bb382b 688 mtype = alloc_type_copy (type);
0d5de010 689 smash_to_memberptr_type (mtype, domain, type);
c16abbde 690 return mtype;
c906108c
SS
691}
692
0d5de010
DJ
693/* Return a pointer-to-method type, for a method of type TO_TYPE. */
694
695struct type *
696lookup_methodptr_type (struct type *to_type)
697{
698 struct type *mtype;
699
e9bb382b 700 mtype = alloc_type_copy (to_type);
0b92b5bb 701 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
702 return mtype;
703}
704
7ba81444
MS
705/* Allocate a stub method whose return type is TYPE. This apparently
706 happens for speed of symbol reading, since parsing out the
707 arguments to the method is cpu-intensive, the way we are doing it.
708 So, we will fill in arguments later. This always returns a fresh
709 type. */
c906108c
SS
710
711struct type *
fba45db2 712allocate_stub_method (struct type *type)
c906108c
SS
713{
714 struct type *mtype;
715
e9bb382b
UW
716 mtype = alloc_type_copy (type);
717 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
718 TYPE_LENGTH (mtype) = 1;
719 TYPE_STUB (mtype) = 1;
c906108c
SS
720 TYPE_TARGET_TYPE (mtype) = type;
721 /* _DOMAIN_TYPE (mtype) = unknown yet */
c16abbde 722 return mtype;
c906108c
SS
723}
724
7ba81444
MS
725/* Create a range type using either a blank type supplied in
726 RESULT_TYPE, or creating a new type, inheriting the objfile from
727 INDEX_TYPE.
c906108c 728
7ba81444
MS
729 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
730 to HIGH_BOUND, inclusive.
c906108c 731
7ba81444
MS
732 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
733 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
c906108c
SS
734
735struct type *
fba45db2 736create_range_type (struct type *result_type, struct type *index_type,
43bbcdc2 737 LONGEST low_bound, LONGEST high_bound)
c906108c
SS
738{
739 if (result_type == NULL)
e9bb382b 740 result_type = alloc_type_copy (index_type);
c906108c
SS
741 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
742 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 743 if (TYPE_STUB (index_type))
876cecd0 744 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
745 else
746 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
43bbcdc2
PH
747 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
748 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
262452ec
JK
749 TYPE_LOW_BOUND (result_type) = low_bound;
750 TYPE_HIGH_BOUND (result_type) = high_bound;
c906108c 751
c5aa993b 752 if (low_bound >= 0)
876cecd0 753 TYPE_UNSIGNED (result_type) = 1;
c906108c 754
262452ec 755 return result_type;
c906108c
SS
756}
757
7ba81444
MS
758/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
759 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
760 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
761
762int
fba45db2 763get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c
SS
764{
765 CHECK_TYPEDEF (type);
766 switch (TYPE_CODE (type))
767 {
768 case TYPE_CODE_RANGE:
769 *lowp = TYPE_LOW_BOUND (type);
770 *highp = TYPE_HIGH_BOUND (type);
771 return 1;
772 case TYPE_CODE_ENUM:
773 if (TYPE_NFIELDS (type) > 0)
774 {
775 /* The enums may not be sorted by value, so search all
0963b4bd 776 entries. */
c906108c
SS
777 int i;
778
779 *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
780 for (i = 0; i < TYPE_NFIELDS (type); i++)
781 {
782 if (TYPE_FIELD_BITPOS (type, i) < *lowp)
783 *lowp = TYPE_FIELD_BITPOS (type, i);
784 if (TYPE_FIELD_BITPOS (type, i) > *highp)
785 *highp = TYPE_FIELD_BITPOS (type, i);
786 }
787
7ba81444 788 /* Set unsigned indicator if warranted. */
c5aa993b 789 if (*lowp >= 0)
c906108c 790 {
876cecd0 791 TYPE_UNSIGNED (type) = 1;
c906108c
SS
792 }
793 }
794 else
795 {
796 *lowp = 0;
797 *highp = -1;
798 }
799 return 0;
800 case TYPE_CODE_BOOL:
801 *lowp = 0;
802 *highp = 1;
803 return 0;
804 case TYPE_CODE_INT:
c5aa993b 805 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
806 return -1;
807 if (!TYPE_UNSIGNED (type))
808 {
c5aa993b 809 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
810 *highp = -*lowp - 1;
811 return 0;
812 }
7ba81444 813 /* ... fall through for unsigned ints ... */
c906108c
SS
814 case TYPE_CODE_CHAR:
815 *lowp = 0;
816 /* This round-about calculation is to avoid shifting by
7b83ea04 817 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 818 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
819 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
820 *highp = (*highp - 1) | *highp;
821 return 0;
822 default:
823 return -1;
824 }
825}
826
dbc98a8b
KW
827/* Assuming TYPE is a simple, non-empty array type, compute its upper
828 and lower bound. Save the low bound into LOW_BOUND if not NULL.
829 Save the high bound into HIGH_BOUND if not NULL.
830
0963b4bd 831 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
832 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
833
834 We now simply use get_discrete_bounds call to get the values
835 of the low and high bounds.
836 get_discrete_bounds can return three values:
837 1, meaning that index is a range,
838 0, meaning that index is a discrete type,
839 or -1 for failure. */
840
841int
842get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
843{
844 struct type *index = TYPE_INDEX_TYPE (type);
845 LONGEST low = 0;
846 LONGEST high = 0;
847 int res;
848
849 if (index == NULL)
850 return 0;
851
852 res = get_discrete_bounds (index, &low, &high);
853 if (res == -1)
854 return 0;
855
856 /* Check if the array bounds are undefined. */
857 if (res == 1
858 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
859 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
860 return 0;
861
862 if (low_bound)
863 *low_bound = low;
864
865 if (high_bound)
866 *high_bound = high;
867
868 return 1;
869}
870
7ba81444
MS
871/* Create an array type using either a blank type supplied in
872 RESULT_TYPE, or creating a new type, inheriting the objfile from
873 RANGE_TYPE.
c906108c
SS
874
875 Elements will be of type ELEMENT_TYPE, the indices will be of type
876 RANGE_TYPE.
877
7ba81444
MS
878 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
879 sure it is TYPE_CODE_UNDEF before we bash it into an array
880 type? */
c906108c
SS
881
882struct type *
7ba81444
MS
883create_array_type (struct type *result_type,
884 struct type *element_type,
fba45db2 885 struct type *range_type)
c906108c
SS
886{
887 LONGEST low_bound, high_bound;
888
889 if (result_type == NULL)
e9bb382b
UW
890 result_type = alloc_type_copy (range_type);
891
c906108c
SS
892 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
893 TYPE_TARGET_TYPE (result_type) = element_type;
894 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
895 low_bound = high_bound = 0;
896 CHECK_TYPEDEF (element_type);
ab0d6e0d
JB
897 /* Be careful when setting the array length. Ada arrays can be
898 empty arrays with the high_bound being smaller than the low_bound.
899 In such cases, the array length should be zero. */
900 if (high_bound < low_bound)
901 TYPE_LENGTH (result_type) = 0;
902 else
903 TYPE_LENGTH (result_type) =
904 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
c906108c
SS
905 TYPE_NFIELDS (result_type) = 1;
906 TYPE_FIELDS (result_type) =
1deafd4e 907 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 908 TYPE_INDEX_TYPE (result_type) = range_type;
c906108c
SS
909 TYPE_VPTR_FIELDNO (result_type) = -1;
910
0963b4bd 911 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
c906108c 912 if (TYPE_LENGTH (result_type) == 0)
876cecd0 913 TYPE_TARGET_STUB (result_type) = 1;
c906108c 914
c16abbde 915 return result_type;
c906108c
SS
916}
917
e3506a9f
UW
918struct type *
919lookup_array_range_type (struct type *element_type,
920 int low_bound, int high_bound)
921{
50810684 922 struct gdbarch *gdbarch = get_type_arch (element_type);
e3506a9f
UW
923 struct type *index_type = builtin_type (gdbarch)->builtin_int;
924 struct type *range_type
925 = create_range_type (NULL, index_type, low_bound, high_bound);
d8734c88 926
e3506a9f
UW
927 return create_array_type (NULL, element_type, range_type);
928}
929
7ba81444
MS
930/* Create a string type using either a blank type supplied in
931 RESULT_TYPE, or creating a new type. String types are similar
932 enough to array of char types that we can use create_array_type to
933 build the basic type and then bash it into a string type.
c906108c
SS
934
935 For fixed length strings, the range type contains 0 as the lower
936 bound and the length of the string minus one as the upper bound.
937
7ba81444
MS
938 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
939 sure it is TYPE_CODE_UNDEF before we bash it into a string
940 type? */
c906108c
SS
941
942struct type *
3b7538c0
UW
943create_string_type (struct type *result_type,
944 struct type *string_char_type,
7ba81444 945 struct type *range_type)
c906108c
SS
946{
947 result_type = create_array_type (result_type,
f290d38e 948 string_char_type,
c906108c
SS
949 range_type);
950 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 951 return result_type;
c906108c
SS
952}
953
e3506a9f
UW
954struct type *
955lookup_string_range_type (struct type *string_char_type,
956 int low_bound, int high_bound)
957{
958 struct type *result_type;
d8734c88 959
e3506a9f
UW
960 result_type = lookup_array_range_type (string_char_type,
961 low_bound, high_bound);
962 TYPE_CODE (result_type) = TYPE_CODE_STRING;
963 return result_type;
964}
965
c906108c 966struct type *
fba45db2 967create_set_type (struct type *result_type, struct type *domain_type)
c906108c 968{
c906108c 969 if (result_type == NULL)
e9bb382b
UW
970 result_type = alloc_type_copy (domain_type);
971
c906108c
SS
972 TYPE_CODE (result_type) = TYPE_CODE_SET;
973 TYPE_NFIELDS (result_type) = 1;
1deafd4e 974 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 975
74a9bb82 976 if (!TYPE_STUB (domain_type))
c906108c 977 {
f9780d5b 978 LONGEST low_bound, high_bound, bit_length;
d8734c88 979
c906108c
SS
980 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
981 low_bound = high_bound = 0;
982 bit_length = high_bound - low_bound + 1;
983 TYPE_LENGTH (result_type)
984 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 985 if (low_bound >= 0)
876cecd0 986 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
987 }
988 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
989
c16abbde 990 return result_type;
c906108c
SS
991}
992
ea37ba09
DJ
993/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
994 and any array types nested inside it. */
995
996void
997make_vector_type (struct type *array_type)
998{
999 struct type *inner_array, *elt_type;
1000 int flags;
1001
1002 /* Find the innermost array type, in case the array is
1003 multi-dimensional. */
1004 inner_array = array_type;
1005 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1006 inner_array = TYPE_TARGET_TYPE (inner_array);
1007
1008 elt_type = TYPE_TARGET_TYPE (inner_array);
1009 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1010 {
2844d6b5 1011 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1012 elt_type = make_qualified_type (elt_type, flags, NULL);
1013 TYPE_TARGET_TYPE (inner_array) = elt_type;
1014 }
1015
876cecd0 1016 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1017}
1018
794ac428 1019struct type *
ac3aafc7
EZ
1020init_vector_type (struct type *elt_type, int n)
1021{
1022 struct type *array_type;
d8734c88 1023
e3506a9f 1024 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1025 make_vector_type (array_type);
ac3aafc7
EZ
1026 return array_type;
1027}
1028
0d5de010
DJ
1029/* Smash TYPE to be a type of pointers to members of DOMAIN with type
1030 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1031 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1032 TYPE doesn't include the offset (that's the value of the MEMBER
1033 itself), but does include the structure type into which it points
1034 (for some reason).
c906108c 1035
7ba81444
MS
1036 When "smashing" the type, we preserve the objfile that the old type
1037 pointed to, since we aren't changing where the type is actually
c906108c
SS
1038 allocated. */
1039
1040void
0d5de010
DJ
1041smash_to_memberptr_type (struct type *type, struct type *domain,
1042 struct type *to_type)
c906108c 1043{
2fdde8f8 1044 smash_type (type);
c906108c
SS
1045 TYPE_TARGET_TYPE (type) = to_type;
1046 TYPE_DOMAIN_TYPE (type) = domain;
0d5de010
DJ
1047 /* Assume that a data member pointer is the same size as a normal
1048 pointer. */
50810684
UW
1049 TYPE_LENGTH (type)
1050 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
0d5de010 1051 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c
SS
1052}
1053
0b92b5bb
TT
1054/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1055
1056 When "smashing" the type, we preserve the objfile that the old type
1057 pointed to, since we aren't changing where the type is actually
1058 allocated. */
1059
1060void
1061smash_to_methodptr_type (struct type *type, struct type *to_type)
1062{
1063 smash_type (type);
1064 TYPE_TARGET_TYPE (type) = to_type;
1065 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1066 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1067 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1068}
1069
c906108c
SS
1070/* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1071 METHOD just means `function that gets an extra "this" argument'.
1072
7ba81444
MS
1073 When "smashing" the type, we preserve the objfile that the old type
1074 pointed to, since we aren't changing where the type is actually
c906108c
SS
1075 allocated. */
1076
1077void
fba45db2 1078smash_to_method_type (struct type *type, struct type *domain,
ad2f7632
DJ
1079 struct type *to_type, struct field *args,
1080 int nargs, int varargs)
c906108c 1081{
2fdde8f8 1082 smash_type (type);
c906108c
SS
1083 TYPE_TARGET_TYPE (type) = to_type;
1084 TYPE_DOMAIN_TYPE (type) = domain;
ad2f7632
DJ
1085 TYPE_FIELDS (type) = args;
1086 TYPE_NFIELDS (type) = nargs;
1087 if (varargs)
876cecd0 1088 TYPE_VARARGS (type) = 1;
c906108c
SS
1089 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1090 TYPE_CODE (type) = TYPE_CODE_METHOD;
1091}
1092
1093/* Return a typename for a struct/union/enum type without "struct ",
1094 "union ", or "enum ". If the type has a NULL name, return NULL. */
1095
1096char *
aa1ee363 1097type_name_no_tag (const struct type *type)
c906108c
SS
1098{
1099 if (TYPE_TAG_NAME (type) != NULL)
1100 return TYPE_TAG_NAME (type);
1101
7ba81444
MS
1102 /* Is there code which expects this to return the name if there is
1103 no tag name? My guess is that this is mainly used for C++ in
1104 cases where the two will always be the same. */
c906108c
SS
1105 return TYPE_NAME (type);
1106}
1107
7ba81444
MS
1108/* Lookup a typedef or primitive type named NAME, visible in lexical
1109 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1110 suitably defined. */
c906108c
SS
1111
1112struct type *
e6c014f2
UW
1113lookup_typename (const struct language_defn *language,
1114 struct gdbarch *gdbarch, char *name,
34eaf542 1115 const struct block *block, int noerr)
c906108c 1116{
52f0bd74
AC
1117 struct symbol *sym;
1118 struct type *tmp;
c906108c 1119
774b6a14 1120 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
c906108c
SS
1121 if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
1122 {
e6c014f2 1123 tmp = language_lookup_primitive_type_by_name (language, gdbarch, name);
c906108c
SS
1124 if (tmp)
1125 {
c16abbde 1126 return tmp;
c906108c
SS
1127 }
1128 else if (!tmp && noerr)
1129 {
c16abbde 1130 return NULL;
c906108c
SS
1131 }
1132 else
1133 {
8a3fe4f8 1134 error (_("No type named %s."), name);
c906108c
SS
1135 }
1136 }
1137 return (SYMBOL_TYPE (sym));
1138}
1139
1140struct type *
e6c014f2
UW
1141lookup_unsigned_typename (const struct language_defn *language,
1142 struct gdbarch *gdbarch, char *name)
c906108c
SS
1143{
1144 char *uns = alloca (strlen (name) + 10);
1145
1146 strcpy (uns, "unsigned ");
1147 strcpy (uns + 9, name);
e6c014f2 1148 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
c906108c
SS
1149}
1150
1151struct type *
e6c014f2
UW
1152lookup_signed_typename (const struct language_defn *language,
1153 struct gdbarch *gdbarch, char *name)
c906108c
SS
1154{
1155 struct type *t;
1156 char *uns = alloca (strlen (name) + 8);
1157
1158 strcpy (uns, "signed ");
1159 strcpy (uns + 7, name);
e6c014f2 1160 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
7ba81444 1161 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1162 if (t != NULL)
1163 return t;
e6c014f2 1164 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
c906108c
SS
1165}
1166
1167/* Lookup a structure type named "struct NAME",
1168 visible in lexical block BLOCK. */
1169
1170struct type *
fba45db2 1171lookup_struct (char *name, struct block *block)
c906108c 1172{
52f0bd74 1173 struct symbol *sym;
c906108c 1174
2570f2b7 1175 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1176
1177 if (sym == NULL)
1178 {
8a3fe4f8 1179 error (_("No struct type named %s."), name);
c906108c
SS
1180 }
1181 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1182 {
7ba81444
MS
1183 error (_("This context has class, union or enum %s, not a struct."),
1184 name);
c906108c
SS
1185 }
1186 return (SYMBOL_TYPE (sym));
1187}
1188
1189/* Lookup a union type named "union NAME",
1190 visible in lexical block BLOCK. */
1191
1192struct type *
fba45db2 1193lookup_union (char *name, struct block *block)
c906108c 1194{
52f0bd74 1195 struct symbol *sym;
c5aa993b 1196 struct type *t;
c906108c 1197
2570f2b7 1198 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1199
1200 if (sym == NULL)
8a3fe4f8 1201 error (_("No union type named %s."), name);
c906108c 1202
c5aa993b 1203 t = SYMBOL_TYPE (sym);
c906108c
SS
1204
1205 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1206 return t;
c906108c 1207
7ba81444
MS
1208 /* If we get here, it's not a union. */
1209 error (_("This context has class, struct or enum %s, not a union."),
1210 name);
c906108c
SS
1211}
1212
1213
1214/* Lookup an enum type named "enum NAME",
1215 visible in lexical block BLOCK. */
1216
1217struct type *
fba45db2 1218lookup_enum (char *name, struct block *block)
c906108c 1219{
52f0bd74 1220 struct symbol *sym;
c906108c 1221
2570f2b7 1222 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1223 if (sym == NULL)
1224 {
8a3fe4f8 1225 error (_("No enum type named %s."), name);
c906108c
SS
1226 }
1227 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1228 {
7ba81444
MS
1229 error (_("This context has class, struct or union %s, not an enum."),
1230 name);
c906108c
SS
1231 }
1232 return (SYMBOL_TYPE (sym));
1233}
1234
1235/* Lookup a template type named "template NAME<TYPE>",
1236 visible in lexical block BLOCK. */
1237
1238struct type *
7ba81444
MS
1239lookup_template_type (char *name, struct type *type,
1240 struct block *block)
c906108c
SS
1241{
1242 struct symbol *sym;
7ba81444
MS
1243 char *nam = (char *)
1244 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1245
c906108c
SS
1246 strcpy (nam, name);
1247 strcat (nam, "<");
0004e5a2 1248 strcat (nam, TYPE_NAME (type));
0963b4bd 1249 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1250
2570f2b7 1251 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
c906108c
SS
1252
1253 if (sym == NULL)
1254 {
8a3fe4f8 1255 error (_("No template type named %s."), name);
c906108c
SS
1256 }
1257 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1258 {
7ba81444
MS
1259 error (_("This context has class, union or enum %s, not a struct."),
1260 name);
c906108c
SS
1261 }
1262 return (SYMBOL_TYPE (sym));
1263}
1264
7ba81444
MS
1265/* Given a type TYPE, lookup the type of the component of type named
1266 NAME.
c906108c 1267
7ba81444
MS
1268 TYPE can be either a struct or union, or a pointer or reference to
1269 a struct or union. If it is a pointer or reference, its target
1270 type is automatically used. Thus '.' and '->' are interchangable,
1271 as specified for the definitions of the expression element types
1272 STRUCTOP_STRUCT and STRUCTOP_PTR.
c906108c
SS
1273
1274 If NOERR is nonzero, return zero if NAME is not suitably defined.
1275 If NAME is the name of a baseclass type, return that type. */
1276
1277struct type *
fba45db2 1278lookup_struct_elt_type (struct type *type, char *name, int noerr)
c906108c
SS
1279{
1280 int i;
c92817ce 1281 char *typename;
c906108c
SS
1282
1283 for (;;)
1284 {
1285 CHECK_TYPEDEF (type);
1286 if (TYPE_CODE (type) != TYPE_CODE_PTR
1287 && TYPE_CODE (type) != TYPE_CODE_REF)
1288 break;
1289 type = TYPE_TARGET_TYPE (type);
1290 }
1291
687d6395
MS
1292 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1293 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1294 {
c92817ce
TT
1295 typename = type_to_string (type);
1296 make_cleanup (xfree, typename);
1297 error (_("Type %s is not a structure or union type."), typename);
c906108c
SS
1298 }
1299
1300#if 0
7ba81444
MS
1301 /* FIXME: This change put in by Michael seems incorrect for the case
1302 where the structure tag name is the same as the member name.
0963b4bd 1303 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
7ba81444 1304 foo; } bell;" Disabled by fnf. */
c906108c
SS
1305 {
1306 char *typename;
1307
1308 typename = type_name_no_tag (type);
762f08a3 1309 if (typename != NULL && strcmp (typename, name) == 0)
c906108c
SS
1310 return type;
1311 }
1312#endif
1313
1314 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1315 {
1316 char *t_field_name = TYPE_FIELD_NAME (type, i);
1317
db577aea 1318 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1319 {
1320 return TYPE_FIELD_TYPE (type, i);
1321 }
f5a010c0
PM
1322 else if (!t_field_name || *t_field_name == '\0')
1323 {
d8734c88
MS
1324 struct type *subtype
1325 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1326
f5a010c0
PM
1327 if (subtype != NULL)
1328 return subtype;
1329 }
c906108c
SS
1330 }
1331
1332 /* OK, it's not in this class. Recursively check the baseclasses. */
1333 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1334 {
1335 struct type *t;
1336
9733fc94 1337 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
c906108c
SS
1338 if (t != NULL)
1339 {
1340 return t;
1341 }
1342 }
1343
1344 if (noerr)
1345 {
1346 return NULL;
1347 }
c5aa993b 1348
c92817ce
TT
1349 typename = type_to_string (type);
1350 make_cleanup (xfree, typename);
1351 error (_("Type %s has no component named %s."), typename, name);
c906108c
SS
1352}
1353
81fe8080
DE
1354/* Lookup the vptr basetype/fieldno values for TYPE.
1355 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1356 vptr_fieldno. Also, if found and basetype is from the same objfile,
1357 cache the results.
1358 If not found, return -1 and ignore BASETYPEP.
1359 Callers should be aware that in some cases (for example,
c906108c 1360 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1361 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1362 this function will not be able to find the
7ba81444 1363 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1364 vptr_basetype will remain NULL or incomplete. */
c906108c 1365
81fe8080
DE
1366int
1367get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c
SS
1368{
1369 CHECK_TYPEDEF (type);
1370
1371 if (TYPE_VPTR_FIELDNO (type) < 0)
1372 {
1373 int i;
1374
7ba81444
MS
1375 /* We must start at zero in case the first (and only) baseclass
1376 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1377 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1378 {
81fe8080
DE
1379 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1380 int fieldno;
1381 struct type *basetype;
1382
1383 fieldno = get_vptr_fieldno (baseclass, &basetype);
1384 if (fieldno >= 0)
c906108c 1385 {
81fe8080 1386 /* If the type comes from a different objfile we can't cache
0963b4bd 1387 it, it may have a different lifetime. PR 2384 */
5ef73790 1388 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080
DE
1389 {
1390 TYPE_VPTR_FIELDNO (type) = fieldno;
1391 TYPE_VPTR_BASETYPE (type) = basetype;
1392 }
1393 if (basetypep)
1394 *basetypep = basetype;
1395 return fieldno;
c906108c
SS
1396 }
1397 }
81fe8080
DE
1398
1399 /* Not found. */
1400 return -1;
1401 }
1402 else
1403 {
1404 if (basetypep)
1405 *basetypep = TYPE_VPTR_BASETYPE (type);
1406 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1407 }
1408}
1409
44e1a9eb
DJ
1410static void
1411stub_noname_complaint (void)
1412{
e2e0b3e5 1413 complaint (&symfile_complaints, _("stub type has NULL name"));
44e1a9eb
DJ
1414}
1415
92163a10
JK
1416/* Find the real type of TYPE. This function returns the real type,
1417 after removing all layers of typedefs, and completing opaque or stub
1418 types. Completion changes the TYPE argument, but stripping of
1419 typedefs does not.
1420
1421 Instance flags (e.g. const/volatile) are preserved as typedefs are
1422 stripped. If necessary a new qualified form of the underlying type
1423 is created.
1424
1425 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1426 not been computed and we're either in the middle of reading symbols, or
1427 there was no name for the typedef in the debug info.
1428
1429 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1430 the target type.
c906108c
SS
1431
1432 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 1433 we can find a full definition in some other file. If so, copy this
7ba81444
MS
1434 definition, so we can use it in future. There used to be a comment
1435 (but not any code) that if we don't find a full definition, we'd
1436 set a flag so we don't spend time in the future checking the same
1437 type. That would be a mistake, though--we might load in more
92163a10 1438 symbols which contain a full definition for the type. */
c906108c
SS
1439
1440struct type *
a02fd225 1441check_typedef (struct type *type)
c906108c
SS
1442{
1443 struct type *orig_type = type;
92163a10
JK
1444 /* While we're removing typedefs, we don't want to lose qualifiers.
1445 E.g., const/volatile. */
1446 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 1447
423c0af8
MS
1448 gdb_assert (type);
1449
c906108c
SS
1450 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1451 {
1452 if (!TYPE_TARGET_TYPE (type))
1453 {
c5aa993b 1454 char *name;
c906108c
SS
1455 struct symbol *sym;
1456
1457 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 1458 reading a symtab. Infinite recursion is one danger. */
c906108c 1459 if (currently_reading_symtab)
92163a10 1460 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
1461
1462 name = type_name_no_tag (type);
7ba81444
MS
1463 /* FIXME: shouldn't we separately check the TYPE_NAME and
1464 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1465 VAR_DOMAIN as appropriate? (this code was written before
1466 TYPE_NAME and TYPE_TAG_NAME were separate). */
c906108c
SS
1467 if (name == NULL)
1468 {
23136709 1469 stub_noname_complaint ();
92163a10 1470 return make_qualified_type (type, instance_flags, NULL);
c906108c 1471 }
2570f2b7 1472 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c
SS
1473 if (sym)
1474 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 1475 else /* TYPE_CODE_UNDEF */
e9bb382b 1476 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
1477 }
1478 type = TYPE_TARGET_TYPE (type);
c906108c 1479
92163a10
JK
1480 /* Preserve the instance flags as we traverse down the typedef chain.
1481
1482 Handling address spaces/classes is nasty, what do we do if there's a
1483 conflict?
1484 E.g., what if an outer typedef marks the type as class_1 and an inner
1485 typedef marks the type as class_2?
1486 This is the wrong place to do such error checking. We leave it to
1487 the code that created the typedef in the first place to flag the
1488 error. We just pick the outer address space (akin to letting the
1489 outer cast in a chain of casting win), instead of assuming
1490 "it can't happen". */
1491 {
1492 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1493 | TYPE_INSTANCE_FLAG_DATA_SPACE);
1494 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1495 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1496
1497 /* Treat code vs data spaces and address classes separately. */
1498 if ((instance_flags & ALL_SPACES) != 0)
1499 new_instance_flags &= ~ALL_SPACES;
1500 if ((instance_flags & ALL_CLASSES) != 0)
1501 new_instance_flags &= ~ALL_CLASSES;
1502
1503 instance_flags |= new_instance_flags;
1504 }
1505 }
a02fd225 1506
7ba81444
MS
1507 /* If this is a struct/class/union with no fields, then check
1508 whether a full definition exists somewhere else. This is for
1509 systems where a type definition with no fields is issued for such
1510 types, instead of identifying them as stub types in the first
1511 place. */
c5aa993b 1512
7ba81444
MS
1513 if (TYPE_IS_OPAQUE (type)
1514 && opaque_type_resolution
1515 && !currently_reading_symtab)
c906108c 1516 {
c5aa993b
JM
1517 char *name = type_name_no_tag (type);
1518 struct type *newtype;
d8734c88 1519
c906108c
SS
1520 if (name == NULL)
1521 {
23136709 1522 stub_noname_complaint ();
92163a10 1523 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
1524 }
1525 newtype = lookup_transparent_type (name);
ad766c0a 1526
c906108c 1527 if (newtype)
ad766c0a 1528 {
7ba81444
MS
1529 /* If the resolved type and the stub are in the same
1530 objfile, then replace the stub type with the real deal.
1531 But if they're in separate objfiles, leave the stub
1532 alone; we'll just look up the transparent type every time
1533 we call check_typedef. We can't create pointers between
1534 types allocated to different objfiles, since they may
1535 have different lifetimes. Trying to copy NEWTYPE over to
1536 TYPE's objfile is pointless, too, since you'll have to
1537 move over any other types NEWTYPE refers to, which could
1538 be an unbounded amount of stuff. */
ad766c0a 1539 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
1540 type = make_qualified_type (newtype,
1541 TYPE_INSTANCE_FLAGS (type),
1542 type);
ad766c0a
JB
1543 else
1544 type = newtype;
1545 }
c906108c 1546 }
7ba81444
MS
1547 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1548 types. */
74a9bb82 1549 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 1550 {
c5aa993b 1551 char *name = type_name_no_tag (type);
c906108c 1552 /* FIXME: shouldn't we separately check the TYPE_NAME and the
176620f1 1553 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
7b83ea04
AC
1554 as appropriate? (this code was written before TYPE_NAME and
1555 TYPE_TAG_NAME were separate). */
c906108c 1556 struct symbol *sym;
d8734c88 1557
c906108c
SS
1558 if (name == NULL)
1559 {
23136709 1560 stub_noname_complaint ();
92163a10 1561 return make_qualified_type (type, instance_flags, NULL);
c906108c 1562 }
2570f2b7 1563 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c 1564 if (sym)
c26f2453
JB
1565 {
1566 /* Same as above for opaque types, we can replace the stub
92163a10 1567 with the complete type only if they are in the same
c26f2453
JB
1568 objfile. */
1569 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
1570 type = make_qualified_type (SYMBOL_TYPE (sym),
1571 TYPE_INSTANCE_FLAGS (type),
1572 type);
c26f2453
JB
1573 else
1574 type = SYMBOL_TYPE (sym);
1575 }
c906108c
SS
1576 }
1577
74a9bb82 1578 if (TYPE_TARGET_STUB (type))
c906108c
SS
1579 {
1580 struct type *range_type;
1581 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1582
74a9bb82 1583 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 1584 {
73e2eb35 1585 /* Nothing we can do. */
c5aa993b 1586 }
c906108c
SS
1587 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1588 && TYPE_NFIELDS (type) == 1
262452ec 1589 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
c906108c
SS
1590 == TYPE_CODE_RANGE))
1591 {
1592 /* Now recompute the length of the array type, based on its
ab0d6e0d
JB
1593 number of elements and the target type's length.
1594 Watch out for Ada null Ada arrays where the high bound
0963b4bd 1595 is smaller than the low bound. */
43bbcdc2
PH
1596 const LONGEST low_bound = TYPE_LOW_BOUND (range_type);
1597 const LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
1598 ULONGEST len;
1599
ab0d6e0d 1600 if (high_bound < low_bound)
43bbcdc2 1601 len = 0;
d8734c88
MS
1602 else
1603 {
1604 /* For now, we conservatively take the array length to be 0
1605 if its length exceeds UINT_MAX. The code below assumes
1606 that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1,
1607 which is technically not guaranteed by C, but is usually true
1608 (because it would be true if x were unsigned with its
0963b4bd 1609 high-order bit on). It uses the fact that
d8734c88
MS
1610 high_bound-low_bound is always representable in
1611 ULONGEST and that if high_bound-low_bound+1 overflows,
1612 it overflows to 0. We must change these tests if we
1613 decide to increase the representation of TYPE_LENGTH
0963b4bd 1614 from unsigned int to ULONGEST. */
d8734c88
MS
1615 ULONGEST ulow = low_bound, uhigh = high_bound;
1616 ULONGEST tlen = TYPE_LENGTH (target_type);
1617
1618 len = tlen * (uhigh - ulow + 1);
1619 if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh
1620 || len > UINT_MAX)
1621 len = 0;
1622 }
43bbcdc2 1623 TYPE_LENGTH (type) = len;
876cecd0 1624 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
1625 }
1626 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1627 {
1628 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 1629 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
1630 }
1631 }
92163a10
JK
1632
1633 type = make_qualified_type (type, instance_flags, NULL);
1634
7ba81444 1635 /* Cache TYPE_LENGTH for future use. */
c906108c 1636 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 1637
c906108c
SS
1638 return type;
1639}
1640
7ba81444 1641/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 1642 occurs, silently return a void type. */
c91ecb25 1643
b9362cc7 1644static struct type *
48319d1f 1645safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
1646{
1647 struct ui_file *saved_gdb_stderr;
1648 struct type *type;
1649
7ba81444 1650 /* Suppress error messages. */
c91ecb25
ND
1651 saved_gdb_stderr = gdb_stderr;
1652 gdb_stderr = ui_file_new ();
1653
7ba81444 1654 /* Call parse_and_eval_type() without fear of longjmp()s. */
c91ecb25 1655 if (!gdb_parse_and_eval_type (p, length, &type))
48319d1f 1656 type = builtin_type (gdbarch)->builtin_void;
c91ecb25 1657
7ba81444 1658 /* Stop suppressing error messages. */
c91ecb25
ND
1659 ui_file_delete (gdb_stderr);
1660 gdb_stderr = saved_gdb_stderr;
1661
1662 return type;
1663}
1664
c906108c
SS
1665/* Ugly hack to convert method stubs into method types.
1666
7ba81444
MS
1667 He ain't kiddin'. This demangles the name of the method into a
1668 string including argument types, parses out each argument type,
1669 generates a string casting a zero to that type, evaluates the
1670 string, and stuffs the resulting type into an argtype vector!!!
1671 Then it knows the type of the whole function (including argument
1672 types for overloading), which info used to be in the stab's but was
1673 removed to hack back the space required for them. */
c906108c 1674
de17c821 1675static void
fba45db2 1676check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 1677{
50810684 1678 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
1679 struct fn_field *f;
1680 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1681 char *demangled_name = cplus_demangle (mangled_name,
1682 DMGL_PARAMS | DMGL_ANSI);
1683 char *argtypetext, *p;
1684 int depth = 0, argcount = 1;
ad2f7632 1685 struct field *argtypes;
c906108c
SS
1686 struct type *mtype;
1687
1688 /* Make sure we got back a function string that we can use. */
1689 if (demangled_name)
1690 p = strchr (demangled_name, '(');
502dcf4e
AC
1691 else
1692 p = NULL;
c906108c
SS
1693
1694 if (demangled_name == NULL || p == NULL)
7ba81444
MS
1695 error (_("Internal: Cannot demangle mangled name `%s'."),
1696 mangled_name);
c906108c
SS
1697
1698 /* Now, read in the parameters that define this type. */
1699 p += 1;
1700 argtypetext = p;
1701 while (*p)
1702 {
070ad9f0 1703 if (*p == '(' || *p == '<')
c906108c
SS
1704 {
1705 depth += 1;
1706 }
070ad9f0 1707 else if (*p == ')' || *p == '>')
c906108c
SS
1708 {
1709 depth -= 1;
1710 }
1711 else if (*p == ',' && depth == 0)
1712 {
1713 argcount += 1;
1714 }
1715
1716 p += 1;
1717 }
1718
ad2f7632
DJ
1719 /* If we read one argument and it was ``void'', don't count it. */
1720 if (strncmp (argtypetext, "(void)", 6) == 0)
1721 argcount -= 1;
c906108c 1722
ad2f7632
DJ
1723 /* We need one extra slot, for the THIS pointer. */
1724
1725 argtypes = (struct field *)
1726 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 1727 p = argtypetext;
4a1970e4
DJ
1728
1729 /* Add THIS pointer for non-static methods. */
1730 f = TYPE_FN_FIELDLIST1 (type, method_id);
1731 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1732 argcount = 0;
1733 else
1734 {
ad2f7632 1735 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
1736 argcount = 1;
1737 }
c906108c 1738
0963b4bd 1739 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
1740 {
1741 depth = 0;
1742 while (*p)
1743 {
1744 if (depth <= 0 && (*p == ',' || *p == ')'))
1745 {
ad2f7632
DJ
1746 /* Avoid parsing of ellipsis, they will be handled below.
1747 Also avoid ``void'' as above. */
1748 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1749 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 1750 {
ad2f7632 1751 argtypes[argcount].type =
48319d1f 1752 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
1753 argcount += 1;
1754 }
1755 argtypetext = p + 1;
1756 }
1757
070ad9f0 1758 if (*p == '(' || *p == '<')
c906108c
SS
1759 {
1760 depth += 1;
1761 }
070ad9f0 1762 else if (*p == ')' || *p == '>')
c906108c
SS
1763 {
1764 depth -= 1;
1765 }
1766
1767 p += 1;
1768 }
1769 }
1770
c906108c
SS
1771 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1772
1773 /* Now update the old "stub" type into a real type. */
1774 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1775 TYPE_DOMAIN_TYPE (mtype) = type;
ad2f7632
DJ
1776 TYPE_FIELDS (mtype) = argtypes;
1777 TYPE_NFIELDS (mtype) = argcount;
876cecd0 1778 TYPE_STUB (mtype) = 0;
c906108c 1779 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632 1780 if (p[-2] == '.')
876cecd0 1781 TYPE_VARARGS (mtype) = 1;
ad2f7632
DJ
1782
1783 xfree (demangled_name);
c906108c
SS
1784}
1785
7ba81444
MS
1786/* This is the external interface to check_stub_method, above. This
1787 function unstubs all of the signatures for TYPE's METHOD_ID method
1788 name. After calling this function TYPE_FN_FIELD_STUB will be
1789 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1790 correct.
de17c821
DJ
1791
1792 This function unfortunately can not die until stabs do. */
1793
1794void
1795check_stub_method_group (struct type *type, int method_id)
1796{
1797 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1798 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
f710f4fc 1799 int j, found_stub = 0;
de17c821
DJ
1800
1801 for (j = 0; j < len; j++)
1802 if (TYPE_FN_FIELD_STUB (f, j))
1803 {
1804 found_stub = 1;
1805 check_stub_method (type, method_id, j);
1806 }
1807
7ba81444
MS
1808 /* GNU v3 methods with incorrect names were corrected when we read
1809 in type information, because it was cheaper to do it then. The
1810 only GNU v2 methods with incorrect method names are operators and
1811 destructors; destructors were also corrected when we read in type
1812 information.
de17c821
DJ
1813
1814 Therefore the only thing we need to handle here are v2 operator
1815 names. */
1816 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1817 {
1818 int ret;
1819 char dem_opname[256];
1820
7ba81444
MS
1821 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1822 method_id),
de17c821
DJ
1823 dem_opname, DMGL_ANSI);
1824 if (!ret)
7ba81444
MS
1825 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1826 method_id),
de17c821
DJ
1827 dem_opname, 0);
1828 if (ret)
1829 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1830 }
1831}
1832
9655fd1a
JK
1833/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
1834const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
1835
1836void
fba45db2 1837allocate_cplus_struct_type (struct type *type)
c906108c 1838{
b4ba55a1
JB
1839 if (HAVE_CPLUS_STRUCT (type))
1840 /* Structure was already allocated. Nothing more to do. */
1841 return;
1842
1843 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
1844 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1845 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1846 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
c906108c
SS
1847}
1848
b4ba55a1
JB
1849const struct gnat_aux_type gnat_aux_default =
1850 { NULL };
1851
1852/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
1853 and allocate the associated gnat-specific data. The gnat-specific
1854 data is also initialized to gnat_aux_default. */
1855void
1856allocate_gnat_aux_type (struct type *type)
1857{
1858 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
1859 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
1860 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
1861 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
1862}
1863
1864
c906108c
SS
1865/* Helper function to initialize the standard scalar types.
1866
e9bb382b
UW
1867 If NAME is non-NULL, then we make a copy of the string pointed
1868 to by name in the objfile_obstack for that objfile, and initialize
1869 the type name to that copy. There are places (mipsread.c in particular),
1870 where init_type is called with a NULL value for NAME). */
c906108c
SS
1871
1872struct type *
7ba81444
MS
1873init_type (enum type_code code, int length, int flags,
1874 char *name, struct objfile *objfile)
c906108c 1875{
52f0bd74 1876 struct type *type;
c906108c
SS
1877
1878 type = alloc_type (objfile);
1879 TYPE_CODE (type) = code;
1880 TYPE_LENGTH (type) = length;
876cecd0
TT
1881
1882 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1883 if (flags & TYPE_FLAG_UNSIGNED)
1884 TYPE_UNSIGNED (type) = 1;
1885 if (flags & TYPE_FLAG_NOSIGN)
1886 TYPE_NOSIGN (type) = 1;
1887 if (flags & TYPE_FLAG_STUB)
1888 TYPE_STUB (type) = 1;
1889 if (flags & TYPE_FLAG_TARGET_STUB)
1890 TYPE_TARGET_STUB (type) = 1;
1891 if (flags & TYPE_FLAG_STATIC)
1892 TYPE_STATIC (type) = 1;
1893 if (flags & TYPE_FLAG_PROTOTYPED)
1894 TYPE_PROTOTYPED (type) = 1;
1895 if (flags & TYPE_FLAG_INCOMPLETE)
1896 TYPE_INCOMPLETE (type) = 1;
1897 if (flags & TYPE_FLAG_VARARGS)
1898 TYPE_VARARGS (type) = 1;
1899 if (flags & TYPE_FLAG_VECTOR)
1900 TYPE_VECTOR (type) = 1;
1901 if (flags & TYPE_FLAG_STUB_SUPPORTED)
1902 TYPE_STUB_SUPPORTED (type) = 1;
876cecd0
TT
1903 if (flags & TYPE_FLAG_FIXED_INSTANCE)
1904 TYPE_FIXED_INSTANCE (type) = 1;
0875794a
JK
1905 if (flags & TYPE_FLAG_GNU_IFUNC)
1906 TYPE_GNU_IFUNC (type) = 1;
876cecd0 1907
e9bb382b
UW
1908 if (name)
1909 TYPE_NAME (type) = obsavestring (name, strlen (name),
1910 &objfile->objfile_obstack);
c906108c
SS
1911
1912 /* C++ fancies. */
1913
973ccf8b 1914 if (name && strcmp (name, "char") == 0)
876cecd0 1915 TYPE_NOSIGN (type) = 1;
973ccf8b 1916
b4ba55a1 1917 switch (code)
c906108c 1918 {
b4ba55a1
JB
1919 case TYPE_CODE_STRUCT:
1920 case TYPE_CODE_UNION:
1921 case TYPE_CODE_NAMESPACE:
1922 INIT_CPLUS_SPECIFIC (type);
1923 break;
1924 case TYPE_CODE_FLT:
1925 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
1926 break;
1927 case TYPE_CODE_FUNC:
1928 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CALLING_CONVENTION;
1929 break;
c906108c 1930 }
c16abbde 1931 return type;
c906108c
SS
1932}
1933
c906108c 1934int
fba45db2 1935can_dereference (struct type *t)
c906108c 1936{
7ba81444
MS
1937 /* FIXME: Should we return true for references as well as
1938 pointers? */
c906108c
SS
1939 CHECK_TYPEDEF (t);
1940 return
1941 (t != NULL
1942 && TYPE_CODE (t) == TYPE_CODE_PTR
1943 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1944}
1945
adf40b2e 1946int
fba45db2 1947is_integral_type (struct type *t)
adf40b2e
JM
1948{
1949 CHECK_TYPEDEF (t);
1950 return
1951 ((t != NULL)
d4f3574e
SS
1952 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1953 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 1954 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
1955 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1956 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1957 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
1958}
1959
e09342b5
TJB
1960/* Return true if TYPE is scalar. */
1961
1962static int
1963is_scalar_type (struct type *type)
1964{
1965 CHECK_TYPEDEF (type);
1966
1967 switch (TYPE_CODE (type))
1968 {
1969 case TYPE_CODE_ARRAY:
1970 case TYPE_CODE_STRUCT:
1971 case TYPE_CODE_UNION:
1972 case TYPE_CODE_SET:
1973 case TYPE_CODE_STRING:
1974 case TYPE_CODE_BITSTRING:
1975 return 0;
1976 default:
1977 return 1;
1978 }
1979}
1980
1981/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
1982 the memory layout of a scalar type. E.g., an array or struct with only
1983 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
1984
1985int
1986is_scalar_type_recursive (struct type *t)
1987{
1988 CHECK_TYPEDEF (t);
1989
1990 if (is_scalar_type (t))
1991 return 1;
1992 /* Are we dealing with an array or string of known dimensions? */
1993 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
1994 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
1995 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
1996 {
1997 LONGEST low_bound, high_bound;
1998 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
1999
2000 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2001
2002 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2003 }
2004 /* Are we dealing with a struct with one element? */
2005 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2006 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2007 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2008 {
2009 int i, n = TYPE_NFIELDS (t);
2010
2011 /* If all elements of the union are scalar, then the union is scalar. */
2012 for (i = 0; i < n; i++)
2013 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2014 return 0;
2015
2016 return 1;
2017 }
2018
2019 return 0;
2020}
2021
4e8f195d
TT
2022/* A helper function which returns true if types A and B represent the
2023 "same" class type. This is true if the types have the same main
2024 type, or the same name. */
2025
2026int
2027class_types_same_p (const struct type *a, const struct type *b)
2028{
2029 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2030 || (TYPE_NAME (a) && TYPE_NAME (b)
2031 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2032}
2033
a9d5ef47
SW
2034/* If BASE is an ancestor of DCLASS return the distance between them.
2035 otherwise return -1;
2036 eg:
2037
2038 class A {};
2039 class B: public A {};
2040 class C: public B {};
2041 class D: C {};
2042
2043 distance_to_ancestor (A, A, 0) = 0
2044 distance_to_ancestor (A, B, 0) = 1
2045 distance_to_ancestor (A, C, 0) = 2
2046 distance_to_ancestor (A, D, 0) = 3
2047
2048 If PUBLIC is 1 then only public ancestors are considered,
2049 and the function returns the distance only if BASE is a public ancestor
2050 of DCLASS.
2051 Eg:
2052
0963b4bd 2053 distance_to_ancestor (A, D, 1) = -1. */
c906108c 2054
0526b37a 2055static int
a9d5ef47 2056distance_to_ancestor (struct type *base, struct type *dclass, int public)
c906108c
SS
2057{
2058 int i;
a9d5ef47 2059 int d;
c5aa993b 2060
c906108c
SS
2061 CHECK_TYPEDEF (base);
2062 CHECK_TYPEDEF (dclass);
2063
4e8f195d 2064 if (class_types_same_p (base, dclass))
a9d5ef47 2065 return 0;
c906108c
SS
2066
2067 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 2068 {
0526b37a
SW
2069 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2070 continue;
2071
a9d5ef47
SW
2072 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2073 if (d >= 0)
2074 return 1 + d;
4e8f195d 2075 }
c906108c 2076
a9d5ef47 2077 return -1;
c906108c 2078}
4e8f195d 2079
0526b37a
SW
2080/* Check whether BASE is an ancestor or base class or DCLASS
2081 Return 1 if so, and 0 if not.
2082 Note: If BASE and DCLASS are of the same type, this function
2083 will return 1. So for some class A, is_ancestor (A, A) will
2084 return 1. */
2085
2086int
2087is_ancestor (struct type *base, struct type *dclass)
2088{
a9d5ef47 2089 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
2090}
2091
4e8f195d
TT
2092/* Like is_ancestor, but only returns true when BASE is a public
2093 ancestor of DCLASS. */
2094
2095int
2096is_public_ancestor (struct type *base, struct type *dclass)
2097{
a9d5ef47 2098 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
2099}
2100
2101/* A helper function for is_unique_ancestor. */
2102
2103static int
2104is_unique_ancestor_worker (struct type *base, struct type *dclass,
2105 int *offset,
8af8e3bc
PA
2106 const gdb_byte *valaddr, int embedded_offset,
2107 CORE_ADDR address, struct value *val)
4e8f195d
TT
2108{
2109 int i, count = 0;
2110
2111 CHECK_TYPEDEF (base);
2112 CHECK_TYPEDEF (dclass);
2113
2114 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2115 {
8af8e3bc
PA
2116 struct type *iter;
2117 int this_offset;
4e8f195d 2118
8af8e3bc
PA
2119 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2120
2121 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2122 address, val);
4e8f195d
TT
2123
2124 if (class_types_same_p (base, iter))
2125 {
2126 /* If this is the first subclass, set *OFFSET and set count
2127 to 1. Otherwise, if this is at the same offset as
2128 previous instances, do nothing. Otherwise, increment
2129 count. */
2130 if (*offset == -1)
2131 {
2132 *offset = this_offset;
2133 count = 1;
2134 }
2135 else if (this_offset == *offset)
2136 {
2137 /* Nothing. */
2138 }
2139 else
2140 ++count;
2141 }
2142 else
2143 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
2144 valaddr,
2145 embedded_offset + this_offset,
2146 address, val);
4e8f195d
TT
2147 }
2148
2149 return count;
2150}
2151
2152/* Like is_ancestor, but only returns true if BASE is a unique base
2153 class of the type of VAL. */
2154
2155int
2156is_unique_ancestor (struct type *base, struct value *val)
2157{
2158 int offset = -1;
2159
2160 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
2161 value_contents_for_printing (val),
2162 value_embedded_offset (val),
2163 value_address (val), val) == 1;
4e8f195d
TT
2164}
2165
c906108c
SS
2166\f
2167
6403aeea
SW
2168/* Return the sum of the rank of A with the rank of B. */
2169
2170struct rank
2171sum_ranks (struct rank a, struct rank b)
2172{
2173 struct rank c;
2174 c.rank = a.rank + b.rank;
a9d5ef47 2175 c.subrank = a.subrank + b.subrank;
6403aeea
SW
2176 return c;
2177}
2178
2179/* Compare rank A and B and return:
2180 0 if a = b
2181 1 if a is better than b
2182 -1 if b is better than a. */
2183
2184int
2185compare_ranks (struct rank a, struct rank b)
2186{
2187 if (a.rank == b.rank)
a9d5ef47
SW
2188 {
2189 if (a.subrank == b.subrank)
2190 return 0;
2191 if (a.subrank < b.subrank)
2192 return 1;
2193 if (a.subrank > b.subrank)
2194 return -1;
2195 }
6403aeea
SW
2196
2197 if (a.rank < b.rank)
2198 return 1;
2199
0963b4bd 2200 /* a.rank > b.rank */
6403aeea
SW
2201 return -1;
2202}
c5aa993b 2203
0963b4bd 2204/* Functions for overload resolution begin here. */
c906108c
SS
2205
2206/* Compare two badness vectors A and B and return the result.
7ba81444
MS
2207 0 => A and B are identical
2208 1 => A and B are incomparable
2209 2 => A is better than B
2210 3 => A is worse than B */
c906108c
SS
2211
2212int
fba45db2 2213compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
2214{
2215 int i;
2216 int tmp;
c5aa993b
JM
2217 short found_pos = 0; /* any positives in c? */
2218 short found_neg = 0; /* any negatives in c? */
2219
2220 /* differing lengths => incomparable */
c906108c
SS
2221 if (a->length != b->length)
2222 return 1;
2223
c5aa993b
JM
2224 /* Subtract b from a */
2225 for (i = 0; i < a->length; i++)
c906108c 2226 {
6403aeea 2227 tmp = compare_ranks (b->rank[i], a->rank[i]);
c906108c 2228 if (tmp > 0)
c5aa993b 2229 found_pos = 1;
c906108c 2230 else if (tmp < 0)
c5aa993b 2231 found_neg = 1;
c906108c
SS
2232 }
2233
2234 if (found_pos)
2235 {
2236 if (found_neg)
c5aa993b 2237 return 1; /* incomparable */
c906108c 2238 else
c5aa993b 2239 return 3; /* A > B */
c906108c 2240 }
c5aa993b
JM
2241 else
2242 /* no positives */
c906108c
SS
2243 {
2244 if (found_neg)
c5aa993b 2245 return 2; /* A < B */
c906108c 2246 else
c5aa993b 2247 return 0; /* A == B */
c906108c
SS
2248 }
2249}
2250
7ba81444
MS
2251/* Rank a function by comparing its parameter types (PARMS, length
2252 NPARMS), to the types of an argument list (ARGS, length NARGS).
2253 Return a pointer to a badness vector. This has NARGS + 1
2254 entries. */
c906108c
SS
2255
2256struct badness_vector *
7ba81444
MS
2257rank_function (struct type **parms, int nparms,
2258 struct type **args, int nargs)
c906108c
SS
2259{
2260 int i;
c5aa993b 2261 struct badness_vector *bv;
c906108c
SS
2262 int min_len = nparms < nargs ? nparms : nargs;
2263
2264 bv = xmalloc (sizeof (struct badness_vector));
0963b4bd 2265 bv->length = nargs + 1; /* add 1 for the length-match rank. */
c906108c
SS
2266 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2267
2268 /* First compare the lengths of the supplied lists.
7ba81444 2269 If there is a mismatch, set it to a high value. */
c5aa993b 2270
c906108c 2271 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
2272 arguments and ellipsis parameter lists, we should consider those
2273 and rank the length-match more finely. */
c906108c 2274
6403aeea
SW
2275 LENGTH_MATCH (bv) = (nargs != nparms)
2276 ? LENGTH_MISMATCH_BADNESS
2277 : EXACT_MATCH_BADNESS;
c906108c 2278
0963b4bd 2279 /* Now rank all the parameters of the candidate function. */
74cc24b0
DB
2280 for (i = 1; i <= min_len; i++)
2281 bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
c906108c 2282
0963b4bd 2283 /* If more arguments than parameters, add dummy entries. */
c5aa993b 2284 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
2285 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2286
2287 return bv;
2288}
2289
973ccf8b
DJ
2290/* Compare the names of two integer types, assuming that any sign
2291 qualifiers have been checked already. We do it this way because
2292 there may be an "int" in the name of one of the types. */
2293
2294static int
2295integer_types_same_name_p (const char *first, const char *second)
2296{
2297 int first_p, second_p;
2298
7ba81444
MS
2299 /* If both are shorts, return 1; if neither is a short, keep
2300 checking. */
973ccf8b
DJ
2301 first_p = (strstr (first, "short") != NULL);
2302 second_p = (strstr (second, "short") != NULL);
2303 if (first_p && second_p)
2304 return 1;
2305 if (first_p || second_p)
2306 return 0;
2307
2308 /* Likewise for long. */
2309 first_p = (strstr (first, "long") != NULL);
2310 second_p = (strstr (second, "long") != NULL);
2311 if (first_p && second_p)
2312 return 1;
2313 if (first_p || second_p)
2314 return 0;
2315
2316 /* Likewise for char. */
2317 first_p = (strstr (first, "char") != NULL);
2318 second_p = (strstr (second, "char") != NULL);
2319 if (first_p && second_p)
2320 return 1;
2321 if (first_p || second_p)
2322 return 0;
2323
2324 /* They must both be ints. */
2325 return 1;
2326}
2327
7062b0a0
SW
2328/* Compares type A to type B returns 1 if the represent the same type
2329 0 otherwise. */
2330
2331static int
2332types_equal (struct type *a, struct type *b)
2333{
2334 /* Identical type pointers. */
2335 /* However, this still doesn't catch all cases of same type for b
2336 and a. The reason is that builtin types are different from
2337 the same ones constructed from the object. */
2338 if (a == b)
2339 return 1;
2340
2341 /* Resolve typedefs */
2342 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2343 a = check_typedef (a);
2344 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2345 b = check_typedef (b);
2346
2347 /* If after resolving typedefs a and b are not of the same type
2348 code then they are not equal. */
2349 if (TYPE_CODE (a) != TYPE_CODE (b))
2350 return 0;
2351
2352 /* If a and b are both pointers types or both reference types then
2353 they are equal of the same type iff the objects they refer to are
2354 of the same type. */
2355 if (TYPE_CODE (a) == TYPE_CODE_PTR
2356 || TYPE_CODE (a) == TYPE_CODE_REF)
2357 return types_equal (TYPE_TARGET_TYPE (a),
2358 TYPE_TARGET_TYPE (b));
2359
0963b4bd 2360 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
2361 are exactly the same. This happens when we generate method
2362 stubs. The types won't point to the same address, but they
0963b4bd 2363 really are the same. */
7062b0a0
SW
2364
2365 if (TYPE_NAME (a) && TYPE_NAME (b)
2366 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2367 return 1;
2368
2369 /* Check if identical after resolving typedefs. */
2370 if (a == b)
2371 return 1;
2372
2373 return 0;
2374}
2375
c906108c
SS
2376/* Compare one type (PARM) for compatibility with another (ARG).
2377 * PARM is intended to be the parameter type of a function; and
2378 * ARG is the supplied argument's type. This function tests if
2379 * the latter can be converted to the former.
2380 *
2381 * Return 0 if they are identical types;
2382 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
2383 * PARM is to ARG. The higher the return value, the worse the match.
2384 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 2385
6403aeea 2386struct rank
fba45db2 2387rank_one_type (struct type *parm, struct type *arg)
c906108c 2388{
a9d5ef47 2389 struct rank rank = {0,0};
7062b0a0
SW
2390
2391 if (types_equal (parm, arg))
6403aeea 2392 return EXACT_MATCH_BADNESS;
c906108c
SS
2393
2394 /* Resolve typedefs */
2395 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2396 parm = check_typedef (parm);
2397 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2398 arg = check_typedef (arg);
2399
db577aea 2400 /* See through references, since we can almost make non-references
7ba81444 2401 references. */
db577aea 2402 if (TYPE_CODE (arg) == TYPE_CODE_REF)
6403aeea
SW
2403 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg)),
2404 REFERENCE_CONVERSION_BADNESS));
db577aea 2405 if (TYPE_CODE (parm) == TYPE_CODE_REF)
6403aeea
SW
2406 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg),
2407 REFERENCE_CONVERSION_BADNESS));
5d161b24 2408 if (overload_debug)
7ba81444
MS
2409 /* Debugging only. */
2410 fprintf_filtered (gdb_stderr,
2411 "------ Arg is %s [%d], parm is %s [%d]\n",
2412 TYPE_NAME (arg), TYPE_CODE (arg),
2413 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 2414
0963b4bd 2415 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
2416
2417 switch (TYPE_CODE (parm))
2418 {
c5aa993b
JM
2419 case TYPE_CODE_PTR:
2420 switch (TYPE_CODE (arg))
2421 {
2422 case TYPE_CODE_PTR:
7062b0a0
SW
2423
2424 /* Allowed pointer conversions are:
2425 (a) pointer to void-pointer conversion. */
2426 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
c5aa993b 2427 return VOID_PTR_CONVERSION_BADNESS;
7062b0a0
SW
2428
2429 /* (b) pointer to ancestor-pointer conversion. */
a9d5ef47
SW
2430 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
2431 TYPE_TARGET_TYPE (arg),
2432 0);
2433 if (rank.subrank >= 0)
2434 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
7062b0a0
SW
2435
2436 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 2437 case TYPE_CODE_ARRAY:
7062b0a0
SW
2438 if (types_equal (TYPE_TARGET_TYPE (parm),
2439 TYPE_TARGET_TYPE (arg)))
6403aeea 2440 return EXACT_MATCH_BADNESS;
7062b0a0 2441 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b
JM
2442 case TYPE_CODE_FUNC:
2443 return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
2444 case TYPE_CODE_INT:
2445 case TYPE_CODE_ENUM:
4f2aea11 2446 case TYPE_CODE_FLAGS:
c5aa993b
JM
2447 case TYPE_CODE_CHAR:
2448 case TYPE_CODE_RANGE:
2449 case TYPE_CODE_BOOL:
c5aa993b
JM
2450 default:
2451 return INCOMPATIBLE_TYPE_BADNESS;
2452 }
2453 case TYPE_CODE_ARRAY:
2454 switch (TYPE_CODE (arg))
2455 {
2456 case TYPE_CODE_PTR:
2457 case TYPE_CODE_ARRAY:
7ba81444
MS
2458 return rank_one_type (TYPE_TARGET_TYPE (parm),
2459 TYPE_TARGET_TYPE (arg));
c5aa993b
JM
2460 default:
2461 return INCOMPATIBLE_TYPE_BADNESS;
2462 }
2463 case TYPE_CODE_FUNC:
2464 switch (TYPE_CODE (arg))
2465 {
2466 case TYPE_CODE_PTR: /* funcptr -> func */
2467 return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
2468 default:
2469 return INCOMPATIBLE_TYPE_BADNESS;
2470 }
2471 case TYPE_CODE_INT:
2472 switch (TYPE_CODE (arg))
2473 {
2474 case TYPE_CODE_INT:
2475 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2476 {
2477 /* Deal with signed, unsigned, and plain chars and
7ba81444 2478 signed and unsigned ints. */
c5aa993b
JM
2479 if (TYPE_NOSIGN (parm))
2480 {
0963b4bd 2481 /* This case only for character types. */
7ba81444 2482 if (TYPE_NOSIGN (arg))
6403aeea 2483 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
7ba81444
MS
2484 else /* signed/unsigned char -> plain char */
2485 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2486 }
2487 else if (TYPE_UNSIGNED (parm))
2488 {
2489 if (TYPE_UNSIGNED (arg))
2490 {
7ba81444
MS
2491 /* unsigned int -> unsigned int, or
2492 unsigned long -> unsigned long */
2493 if (integer_types_same_name_p (TYPE_NAME (parm),
2494 TYPE_NAME (arg)))
6403aeea 2495 return EXACT_MATCH_BADNESS;
7ba81444
MS
2496 else if (integer_types_same_name_p (TYPE_NAME (arg),
2497 "int")
2498 && integer_types_same_name_p (TYPE_NAME (parm),
2499 "long"))
3e43a32a
MS
2500 /* unsigned int -> unsigned long */
2501 return INTEGER_PROMOTION_BADNESS;
c5aa993b 2502 else
3e43a32a
MS
2503 /* unsigned long -> unsigned int */
2504 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2505 }
2506 else
2507 {
7ba81444
MS
2508 if (integer_types_same_name_p (TYPE_NAME (arg),
2509 "long")
2510 && integer_types_same_name_p (TYPE_NAME (parm),
2511 "int"))
3e43a32a
MS
2512 /* signed long -> unsigned int */
2513 return INTEGER_CONVERSION_BADNESS;
c5aa993b 2514 else
3e43a32a
MS
2515 /* signed int/long -> unsigned int/long */
2516 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2517 }
2518 }
2519 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2520 {
7ba81444
MS
2521 if (integer_types_same_name_p (TYPE_NAME (parm),
2522 TYPE_NAME (arg)))
6403aeea 2523 return EXACT_MATCH_BADNESS;
7ba81444
MS
2524 else if (integer_types_same_name_p (TYPE_NAME (arg),
2525 "int")
2526 && integer_types_same_name_p (TYPE_NAME (parm),
2527 "long"))
c5aa993b
JM
2528 return INTEGER_PROMOTION_BADNESS;
2529 else
1c5cb38e 2530 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2531 }
2532 else
1c5cb38e 2533 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2534 }
2535 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2536 return INTEGER_PROMOTION_BADNESS;
2537 else
1c5cb38e 2538 return INTEGER_CONVERSION_BADNESS;
c5aa993b 2539 case TYPE_CODE_ENUM:
4f2aea11 2540 case TYPE_CODE_FLAGS:
c5aa993b
JM
2541 case TYPE_CODE_CHAR:
2542 case TYPE_CODE_RANGE:
2543 case TYPE_CODE_BOOL:
2544 return INTEGER_PROMOTION_BADNESS;
2545 case TYPE_CODE_FLT:
2546 return INT_FLOAT_CONVERSION_BADNESS;
2547 case TYPE_CODE_PTR:
2548 return NS_POINTER_CONVERSION_BADNESS;
2549 default:
2550 return INCOMPATIBLE_TYPE_BADNESS;
2551 }
2552 break;
2553 case TYPE_CODE_ENUM:
2554 switch (TYPE_CODE (arg))
2555 {
2556 case TYPE_CODE_INT:
2557 case TYPE_CODE_CHAR:
2558 case TYPE_CODE_RANGE:
2559 case TYPE_CODE_BOOL:
2560 case TYPE_CODE_ENUM:
1c5cb38e 2561 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2562 case TYPE_CODE_FLT:
2563 return INT_FLOAT_CONVERSION_BADNESS;
2564 default:
2565 return INCOMPATIBLE_TYPE_BADNESS;
2566 }
2567 break;
2568 case TYPE_CODE_CHAR:
2569 switch (TYPE_CODE (arg))
2570 {
2571 case TYPE_CODE_RANGE:
2572 case TYPE_CODE_BOOL:
2573 case TYPE_CODE_ENUM:
1c5cb38e 2574 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2575 case TYPE_CODE_FLT:
2576 return INT_FLOAT_CONVERSION_BADNESS;
2577 case TYPE_CODE_INT:
2578 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
1c5cb38e 2579 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2580 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2581 return INTEGER_PROMOTION_BADNESS;
2582 /* >>> !! else fall through !! <<< */
2583 case TYPE_CODE_CHAR:
7ba81444
MS
2584 /* Deal with signed, unsigned, and plain chars for C++ and
2585 with int cases falling through from previous case. */
c5aa993b
JM
2586 if (TYPE_NOSIGN (parm))
2587 {
2588 if (TYPE_NOSIGN (arg))
6403aeea 2589 return EXACT_MATCH_BADNESS;
c5aa993b 2590 else
1c5cb38e 2591 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2592 }
2593 else if (TYPE_UNSIGNED (parm))
2594 {
2595 if (TYPE_UNSIGNED (arg))
6403aeea 2596 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2597 else
2598 return INTEGER_PROMOTION_BADNESS;
2599 }
2600 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
6403aeea 2601 return EXACT_MATCH_BADNESS;
c5aa993b 2602 else
1c5cb38e 2603 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2604 default:
2605 return INCOMPATIBLE_TYPE_BADNESS;
2606 }
2607 break;
2608 case TYPE_CODE_RANGE:
2609 switch (TYPE_CODE (arg))
2610 {
2611 case TYPE_CODE_INT:
2612 case TYPE_CODE_CHAR:
2613 case TYPE_CODE_RANGE:
2614 case TYPE_CODE_BOOL:
2615 case TYPE_CODE_ENUM:
1c5cb38e 2616 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2617 case TYPE_CODE_FLT:
2618 return INT_FLOAT_CONVERSION_BADNESS;
2619 default:
2620 return INCOMPATIBLE_TYPE_BADNESS;
2621 }
2622 break;
2623 case TYPE_CODE_BOOL:
2624 switch (TYPE_CODE (arg))
2625 {
2626 case TYPE_CODE_INT:
2627 case TYPE_CODE_CHAR:
2628 case TYPE_CODE_RANGE:
2629 case TYPE_CODE_ENUM:
2630 case TYPE_CODE_FLT:
026ffab7 2631 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 2632 case TYPE_CODE_PTR:
026ffab7 2633 return BOOL_PTR_CONVERSION_BADNESS;
c5aa993b 2634 case TYPE_CODE_BOOL:
6403aeea 2635 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2636 default:
2637 return INCOMPATIBLE_TYPE_BADNESS;
2638 }
2639 break;
2640 case TYPE_CODE_FLT:
2641 switch (TYPE_CODE (arg))
2642 {
2643 case TYPE_CODE_FLT:
2644 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2645 return FLOAT_PROMOTION_BADNESS;
2646 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
6403aeea 2647 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2648 else
2649 return FLOAT_CONVERSION_BADNESS;
2650 case TYPE_CODE_INT:
2651 case TYPE_CODE_BOOL:
2652 case TYPE_CODE_ENUM:
2653 case TYPE_CODE_RANGE:
2654 case TYPE_CODE_CHAR:
2655 return INT_FLOAT_CONVERSION_BADNESS;
2656 default:
2657 return INCOMPATIBLE_TYPE_BADNESS;
2658 }
2659 break;
2660 case TYPE_CODE_COMPLEX:
2661 switch (TYPE_CODE (arg))
7ba81444 2662 { /* Strictly not needed for C++, but... */
c5aa993b
JM
2663 case TYPE_CODE_FLT:
2664 return FLOAT_PROMOTION_BADNESS;
2665 case TYPE_CODE_COMPLEX:
6403aeea 2666 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2667 default:
2668 return INCOMPATIBLE_TYPE_BADNESS;
2669 }
2670 break;
2671 case TYPE_CODE_STRUCT:
0963b4bd 2672 /* currently same as TYPE_CODE_CLASS. */
c5aa993b
JM
2673 switch (TYPE_CODE (arg))
2674 {
2675 case TYPE_CODE_STRUCT:
2676 /* Check for derivation */
a9d5ef47
SW
2677 rank.subrank = distance_to_ancestor (parm, arg, 0);
2678 if (rank.subrank >= 0)
2679 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
c5aa993b
JM
2680 /* else fall through */
2681 default:
2682 return INCOMPATIBLE_TYPE_BADNESS;
2683 }
2684 break;
2685 case TYPE_CODE_UNION:
2686 switch (TYPE_CODE (arg))
2687 {
2688 case TYPE_CODE_UNION:
2689 default:
2690 return INCOMPATIBLE_TYPE_BADNESS;
2691 }
2692 break;
0d5de010 2693 case TYPE_CODE_MEMBERPTR:
c5aa993b
JM
2694 switch (TYPE_CODE (arg))
2695 {
2696 default:
2697 return INCOMPATIBLE_TYPE_BADNESS;
2698 }
2699 break;
2700 case TYPE_CODE_METHOD:
2701 switch (TYPE_CODE (arg))
2702 {
2703
2704 default:
2705 return INCOMPATIBLE_TYPE_BADNESS;
2706 }
2707 break;
2708 case TYPE_CODE_REF:
2709 switch (TYPE_CODE (arg))
2710 {
2711
2712 default:
2713 return INCOMPATIBLE_TYPE_BADNESS;
2714 }
2715
2716 break;
2717 case TYPE_CODE_SET:
2718 switch (TYPE_CODE (arg))
2719 {
2720 /* Not in C++ */
2721 case TYPE_CODE_SET:
7ba81444
MS
2722 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
2723 TYPE_FIELD_TYPE (arg, 0));
c5aa993b
JM
2724 default:
2725 return INCOMPATIBLE_TYPE_BADNESS;
2726 }
2727 break;
2728 case TYPE_CODE_VOID:
2729 default:
2730 return INCOMPATIBLE_TYPE_BADNESS;
2731 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
2732}
2733
c5aa993b 2734
0963b4bd 2735/* End of functions for overload resolution. */
c906108c 2736
c906108c 2737static void
fba45db2 2738print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
2739{
2740 int bitno;
2741
2742 for (bitno = 0; bitno < nbits; bitno++)
2743 {
2744 if ((bitno % 8) == 0)
2745 {
2746 puts_filtered (" ");
2747 }
2748 if (B_TST (bits, bitno))
a3f17187 2749 printf_filtered (("1"));
c906108c 2750 else
a3f17187 2751 printf_filtered (("0"));
c906108c
SS
2752 }
2753}
2754
ad2f7632 2755/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
2756 include it since we may get into a infinitely recursive
2757 situation. */
c906108c
SS
2758
2759static void
ad2f7632 2760print_arg_types (struct field *args, int nargs, int spaces)
c906108c
SS
2761{
2762 if (args != NULL)
2763 {
ad2f7632
DJ
2764 int i;
2765
2766 for (i = 0; i < nargs; i++)
2767 recursive_dump_type (args[i].type, spaces + 2);
c906108c
SS
2768 }
2769}
2770
d6a843b5
JK
2771int
2772field_is_static (struct field *f)
2773{
2774 /* "static" fields are the fields whose location is not relative
2775 to the address of the enclosing struct. It would be nice to
2776 have a dedicated flag that would be set for static fields when
2777 the type is being created. But in practice, checking the field
254e6b9e 2778 loc_kind should give us an accurate answer. */
d6a843b5
JK
2779 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
2780 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
2781}
2782
c906108c 2783static void
fba45db2 2784dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
2785{
2786 int method_idx;
2787 int overload_idx;
2788 struct fn_field *f;
2789
2790 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 2791 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
2792 printf_filtered ("\n");
2793 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2794 {
2795 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2796 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2797 method_idx,
2798 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
2799 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2800 gdb_stdout);
a3f17187 2801 printf_filtered (_(") length %d\n"),
c906108c
SS
2802 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2803 for (overload_idx = 0;
2804 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2805 overload_idx++)
2806 {
2807 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2808 overload_idx,
2809 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
2810 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2811 gdb_stdout);
c906108c
SS
2812 printf_filtered (")\n");
2813 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
2814 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2815 gdb_stdout);
c906108c
SS
2816 printf_filtered ("\n");
2817
2818 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2819 spaces + 8 + 2);
2820
2821 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
2822 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2823 gdb_stdout);
c906108c
SS
2824 printf_filtered ("\n");
2825
ad2f7632 2826 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
7ba81444
MS
2827 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2828 overload_idx)),
ad2f7632 2829 spaces);
c906108c 2830 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
2831 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2832 gdb_stdout);
c906108c
SS
2833 printf_filtered ("\n");
2834
2835 printfi_filtered (spaces + 8, "is_const %d\n",
2836 TYPE_FN_FIELD_CONST (f, overload_idx));
2837 printfi_filtered (spaces + 8, "is_volatile %d\n",
2838 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2839 printfi_filtered (spaces + 8, "is_private %d\n",
2840 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2841 printfi_filtered (spaces + 8, "is_protected %d\n",
2842 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2843 printfi_filtered (spaces + 8, "is_stub %d\n",
2844 TYPE_FN_FIELD_STUB (f, overload_idx));
2845 printfi_filtered (spaces + 8, "voffset %u\n",
2846 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2847 }
2848 }
2849}
2850
2851static void
fba45db2 2852print_cplus_stuff (struct type *type, int spaces)
c906108c
SS
2853{
2854 printfi_filtered (spaces, "n_baseclasses %d\n",
2855 TYPE_N_BASECLASSES (type));
2856 printfi_filtered (spaces, "nfn_fields %d\n",
2857 TYPE_NFN_FIELDS (type));
2858 printfi_filtered (spaces, "nfn_fields_total %d\n",
2859 TYPE_NFN_FIELDS_TOTAL (type));
2860 if (TYPE_N_BASECLASSES (type) > 0)
2861 {
2862 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2863 TYPE_N_BASECLASSES (type));
7ba81444
MS
2864 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2865 gdb_stdout);
c906108c
SS
2866 printf_filtered (")");
2867
2868 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2869 TYPE_N_BASECLASSES (type));
2870 puts_filtered ("\n");
2871 }
2872 if (TYPE_NFIELDS (type) > 0)
2873 {
2874 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2875 {
7ba81444
MS
2876 printfi_filtered (spaces,
2877 "private_field_bits (%d bits at *",
c906108c 2878 TYPE_NFIELDS (type));
7ba81444
MS
2879 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2880 gdb_stdout);
c906108c
SS
2881 printf_filtered (")");
2882 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2883 TYPE_NFIELDS (type));
2884 puts_filtered ("\n");
2885 }
2886 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2887 {
7ba81444
MS
2888 printfi_filtered (spaces,
2889 "protected_field_bits (%d bits at *",
c906108c 2890 TYPE_NFIELDS (type));
7ba81444
MS
2891 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2892 gdb_stdout);
c906108c
SS
2893 printf_filtered (")");
2894 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2895 TYPE_NFIELDS (type));
2896 puts_filtered ("\n");
2897 }
2898 }
2899 if (TYPE_NFN_FIELDS (type) > 0)
2900 {
2901 dump_fn_fieldlists (type, spaces);
2902 }
2903}
2904
b4ba55a1
JB
2905/* Print the contents of the TYPE's type_specific union, assuming that
2906 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
2907
2908static void
2909print_gnat_stuff (struct type *type, int spaces)
2910{
2911 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
2912
2913 recursive_dump_type (descriptive_type, spaces + 2);
2914}
2915
c906108c
SS
2916static struct obstack dont_print_type_obstack;
2917
2918void
fba45db2 2919recursive_dump_type (struct type *type, int spaces)
c906108c
SS
2920{
2921 int idx;
2922
2923 if (spaces == 0)
2924 obstack_begin (&dont_print_type_obstack, 0);
2925
2926 if (TYPE_NFIELDS (type) > 0
b4ba55a1 2927 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
2928 {
2929 struct type **first_dont_print
7ba81444 2930 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 2931
7ba81444
MS
2932 int i = (struct type **)
2933 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
2934
2935 while (--i >= 0)
2936 {
2937 if (type == first_dont_print[i])
2938 {
2939 printfi_filtered (spaces, "type node ");
d4f3574e 2940 gdb_print_host_address (type, gdb_stdout);
a3f17187 2941 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
2942 return;
2943 }
2944 }
2945
2946 obstack_ptr_grow (&dont_print_type_obstack, type);
2947 }
2948
2949 printfi_filtered (spaces, "type node ");
d4f3574e 2950 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
2951 printf_filtered ("\n");
2952 printfi_filtered (spaces, "name '%s' (",
2953 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 2954 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 2955 printf_filtered (")\n");
e9e79dd9
FF
2956 printfi_filtered (spaces, "tagname '%s' (",
2957 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2958 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2959 printf_filtered (")\n");
c906108c
SS
2960 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2961 switch (TYPE_CODE (type))
2962 {
c5aa993b
JM
2963 case TYPE_CODE_UNDEF:
2964 printf_filtered ("(TYPE_CODE_UNDEF)");
2965 break;
2966 case TYPE_CODE_PTR:
2967 printf_filtered ("(TYPE_CODE_PTR)");
2968 break;
2969 case TYPE_CODE_ARRAY:
2970 printf_filtered ("(TYPE_CODE_ARRAY)");
2971 break;
2972 case TYPE_CODE_STRUCT:
2973 printf_filtered ("(TYPE_CODE_STRUCT)");
2974 break;
2975 case TYPE_CODE_UNION:
2976 printf_filtered ("(TYPE_CODE_UNION)");
2977 break;
2978 case TYPE_CODE_ENUM:
2979 printf_filtered ("(TYPE_CODE_ENUM)");
2980 break;
4f2aea11
MK
2981 case TYPE_CODE_FLAGS:
2982 printf_filtered ("(TYPE_CODE_FLAGS)");
2983 break;
c5aa993b
JM
2984 case TYPE_CODE_FUNC:
2985 printf_filtered ("(TYPE_CODE_FUNC)");
2986 break;
2987 case TYPE_CODE_INT:
2988 printf_filtered ("(TYPE_CODE_INT)");
2989 break;
2990 case TYPE_CODE_FLT:
2991 printf_filtered ("(TYPE_CODE_FLT)");
2992 break;
2993 case TYPE_CODE_VOID:
2994 printf_filtered ("(TYPE_CODE_VOID)");
2995 break;
2996 case TYPE_CODE_SET:
2997 printf_filtered ("(TYPE_CODE_SET)");
2998 break;
2999 case TYPE_CODE_RANGE:
3000 printf_filtered ("(TYPE_CODE_RANGE)");
3001 break;
3002 case TYPE_CODE_STRING:
3003 printf_filtered ("(TYPE_CODE_STRING)");
3004 break;
e9e79dd9
FF
3005 case TYPE_CODE_BITSTRING:
3006 printf_filtered ("(TYPE_CODE_BITSTRING)");
3007 break;
c5aa993b
JM
3008 case TYPE_CODE_ERROR:
3009 printf_filtered ("(TYPE_CODE_ERROR)");
3010 break;
0d5de010
DJ
3011 case TYPE_CODE_MEMBERPTR:
3012 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3013 break;
3014 case TYPE_CODE_METHODPTR:
3015 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
3016 break;
3017 case TYPE_CODE_METHOD:
3018 printf_filtered ("(TYPE_CODE_METHOD)");
3019 break;
3020 case TYPE_CODE_REF:
3021 printf_filtered ("(TYPE_CODE_REF)");
3022 break;
3023 case TYPE_CODE_CHAR:
3024 printf_filtered ("(TYPE_CODE_CHAR)");
3025 break;
3026 case TYPE_CODE_BOOL:
3027 printf_filtered ("(TYPE_CODE_BOOL)");
3028 break;
e9e79dd9
FF
3029 case TYPE_CODE_COMPLEX:
3030 printf_filtered ("(TYPE_CODE_COMPLEX)");
3031 break;
c5aa993b
JM
3032 case TYPE_CODE_TYPEDEF:
3033 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3034 break;
5c4e30ca
DC
3035 case TYPE_CODE_NAMESPACE:
3036 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3037 break;
c5aa993b
JM
3038 default:
3039 printf_filtered ("(UNKNOWN TYPE CODE)");
3040 break;
c906108c
SS
3041 }
3042 puts_filtered ("\n");
3043 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9bb382b
UW
3044 if (TYPE_OBJFILE_OWNED (type))
3045 {
3046 printfi_filtered (spaces, "objfile ");
3047 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3048 }
3049 else
3050 {
3051 printfi_filtered (spaces, "gdbarch ");
3052 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3053 }
c906108c
SS
3054 printf_filtered ("\n");
3055 printfi_filtered (spaces, "target_type ");
d4f3574e 3056 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
3057 printf_filtered ("\n");
3058 if (TYPE_TARGET_TYPE (type) != NULL)
3059 {
3060 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3061 }
3062 printfi_filtered (spaces, "pointer_type ");
d4f3574e 3063 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
3064 printf_filtered ("\n");
3065 printfi_filtered (spaces, "reference_type ");
d4f3574e 3066 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 3067 printf_filtered ("\n");
2fdde8f8
DJ
3068 printfi_filtered (spaces, "type_chain ");
3069 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 3070 printf_filtered ("\n");
7ba81444
MS
3071 printfi_filtered (spaces, "instance_flags 0x%x",
3072 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
3073 if (TYPE_CONST (type))
3074 {
3075 puts_filtered (" TYPE_FLAG_CONST");
3076 }
3077 if (TYPE_VOLATILE (type))
3078 {
3079 puts_filtered (" TYPE_FLAG_VOLATILE");
3080 }
3081 if (TYPE_CODE_SPACE (type))
3082 {
3083 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3084 }
3085 if (TYPE_DATA_SPACE (type))
3086 {
3087 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3088 }
8b2dbe47
KB
3089 if (TYPE_ADDRESS_CLASS_1 (type))
3090 {
3091 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3092 }
3093 if (TYPE_ADDRESS_CLASS_2 (type))
3094 {
3095 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3096 }
2fdde8f8 3097 puts_filtered ("\n");
876cecd0
TT
3098
3099 printfi_filtered (spaces, "flags");
762a036f 3100 if (TYPE_UNSIGNED (type))
c906108c
SS
3101 {
3102 puts_filtered (" TYPE_FLAG_UNSIGNED");
3103 }
762a036f
FF
3104 if (TYPE_NOSIGN (type))
3105 {
3106 puts_filtered (" TYPE_FLAG_NOSIGN");
3107 }
3108 if (TYPE_STUB (type))
c906108c
SS
3109 {
3110 puts_filtered (" TYPE_FLAG_STUB");
3111 }
762a036f
FF
3112 if (TYPE_TARGET_STUB (type))
3113 {
3114 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3115 }
3116 if (TYPE_STATIC (type))
3117 {
3118 puts_filtered (" TYPE_FLAG_STATIC");
3119 }
762a036f
FF
3120 if (TYPE_PROTOTYPED (type))
3121 {
3122 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3123 }
3124 if (TYPE_INCOMPLETE (type))
3125 {
3126 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3127 }
762a036f
FF
3128 if (TYPE_VARARGS (type))
3129 {
3130 puts_filtered (" TYPE_FLAG_VARARGS");
3131 }
f5f8a009
EZ
3132 /* This is used for things like AltiVec registers on ppc. Gcc emits
3133 an attribute for the array type, which tells whether or not we
3134 have a vector, instead of a regular array. */
3135 if (TYPE_VECTOR (type))
3136 {
3137 puts_filtered (" TYPE_FLAG_VECTOR");
3138 }
876cecd0
TT
3139 if (TYPE_FIXED_INSTANCE (type))
3140 {
3141 puts_filtered (" TYPE_FIXED_INSTANCE");
3142 }
3143 if (TYPE_STUB_SUPPORTED (type))
3144 {
3145 puts_filtered (" TYPE_STUB_SUPPORTED");
3146 }
3147 if (TYPE_NOTTEXT (type))
3148 {
3149 puts_filtered (" TYPE_NOTTEXT");
3150 }
c906108c
SS
3151 puts_filtered ("\n");
3152 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 3153 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
3154 puts_filtered ("\n");
3155 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3156 {
3157 printfi_filtered (spaces + 2,
3158 "[%d] bitpos %d bitsize %d type ",
3159 idx, TYPE_FIELD_BITPOS (type, idx),
3160 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 3161 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
3162 printf_filtered (" name '%s' (",
3163 TYPE_FIELD_NAME (type, idx) != NULL
3164 ? TYPE_FIELD_NAME (type, idx)
3165 : "<NULL>");
d4f3574e 3166 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
3167 printf_filtered (")\n");
3168 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3169 {
3170 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3171 }
3172 }
43bbcdc2
PH
3173 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3174 {
3175 printfi_filtered (spaces, "low %s%s high %s%s\n",
3176 plongest (TYPE_LOW_BOUND (type)),
3177 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3178 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
3179 TYPE_HIGH_BOUND_UNDEFINED (type)
3180 ? " (undefined)" : "");
43bbcdc2 3181 }
c906108c 3182 printfi_filtered (spaces, "vptr_basetype ");
d4f3574e 3183 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
c906108c
SS
3184 puts_filtered ("\n");
3185 if (TYPE_VPTR_BASETYPE (type) != NULL)
3186 {
3187 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3188 }
7ba81444
MS
3189 printfi_filtered (spaces, "vptr_fieldno %d\n",
3190 TYPE_VPTR_FIELDNO (type));
c906108c 3191
b4ba55a1
JB
3192 switch (TYPE_SPECIFIC_FIELD (type))
3193 {
3194 case TYPE_SPECIFIC_CPLUS_STUFF:
3195 printfi_filtered (spaces, "cplus_stuff ");
3196 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3197 gdb_stdout);
3198 puts_filtered ("\n");
3199 print_cplus_stuff (type, spaces);
3200 break;
8da61cc4 3201
b4ba55a1
JB
3202 case TYPE_SPECIFIC_GNAT_STUFF:
3203 printfi_filtered (spaces, "gnat_stuff ");
3204 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3205 puts_filtered ("\n");
3206 print_gnat_stuff (type, spaces);
3207 break;
701c159d 3208
b4ba55a1
JB
3209 case TYPE_SPECIFIC_FLOATFORMAT:
3210 printfi_filtered (spaces, "floatformat ");
3211 if (TYPE_FLOATFORMAT (type) == NULL)
3212 puts_filtered ("(null)");
3213 else
3214 {
3215 puts_filtered ("{ ");
3216 if (TYPE_FLOATFORMAT (type)[0] == NULL
3217 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3218 puts_filtered ("(null)");
3219 else
3220 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3221
3222 puts_filtered (", ");
3223 if (TYPE_FLOATFORMAT (type)[1] == NULL
3224 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3225 puts_filtered ("(null)");
3226 else
3227 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3228
3229 puts_filtered (" }");
3230 }
3231 puts_filtered ("\n");
3232 break;
c906108c 3233
b4ba55a1
JB
3234 case TYPE_SPECIFIC_CALLING_CONVENTION:
3235 printfi_filtered (spaces, "calling_convention %d\n",
3236 TYPE_CALLING_CONVENTION (type));
3237 break;
c906108c 3238 }
b4ba55a1 3239
c906108c
SS
3240 if (spaces == 0)
3241 obstack_free (&dont_print_type_obstack, NULL);
3242}
3243
ae5a43e0
DJ
3244/* Trivial helpers for the libiberty hash table, for mapping one
3245 type to another. */
3246
3247struct type_pair
3248{
3249 struct type *old, *new;
3250};
3251
3252static hashval_t
3253type_pair_hash (const void *item)
3254{
3255 const struct type_pair *pair = item;
d8734c88 3256
ae5a43e0
DJ
3257 return htab_hash_pointer (pair->old);
3258}
3259
3260static int
3261type_pair_eq (const void *item_lhs, const void *item_rhs)
3262{
3263 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
d8734c88 3264
ae5a43e0
DJ
3265 return lhs->old == rhs->old;
3266}
3267
3268/* Allocate the hash table used by copy_type_recursive to walk
3269 types without duplicates. We use OBJFILE's obstack, because
3270 OBJFILE is about to be deleted. */
3271
3272htab_t
3273create_copied_types_hash (struct objfile *objfile)
3274{
3275 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3276 NULL, &objfile->objfile_obstack,
3277 hashtab_obstack_allocate,
3278 dummy_obstack_deallocate);
3279}
3280
7ba81444
MS
3281/* Recursively copy (deep copy) TYPE, if it is associated with
3282 OBJFILE. Return a new type allocated using malloc, a saved type if
3283 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3284 not associated with OBJFILE. */
ae5a43e0
DJ
3285
3286struct type *
7ba81444
MS
3287copy_type_recursive (struct objfile *objfile,
3288 struct type *type,
ae5a43e0
DJ
3289 htab_t copied_types)
3290{
3291 struct type_pair *stored, pair;
3292 void **slot;
3293 struct type *new_type;
3294
e9bb382b 3295 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
3296 return type;
3297
7ba81444
MS
3298 /* This type shouldn't be pointing to any types in other objfiles;
3299 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
3300 gdb_assert (TYPE_OBJFILE (type) == objfile);
3301
3302 pair.old = type;
3303 slot = htab_find_slot (copied_types, &pair, INSERT);
3304 if (*slot != NULL)
3305 return ((struct type_pair *) *slot)->new;
3306
e9bb382b 3307 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
3308
3309 /* We must add the new type to the hash table immediately, in case
3310 we encounter this type again during a recursive call below. */
3e43a32a
MS
3311 stored
3312 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
ae5a43e0
DJ
3313 stored->old = type;
3314 stored->new = new_type;
3315 *slot = stored;
3316
876cecd0
TT
3317 /* Copy the common fields of types. For the main type, we simply
3318 copy the entire thing and then update specific fields as needed. */
3319 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
3320 TYPE_OBJFILE_OWNED (new_type) = 0;
3321 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 3322
ae5a43e0
DJ
3323 if (TYPE_NAME (type))
3324 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3325 if (TYPE_TAG_NAME (type))
3326 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
ae5a43e0
DJ
3327
3328 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3329 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3330
3331 /* Copy the fields. */
ae5a43e0
DJ
3332 if (TYPE_NFIELDS (type))
3333 {
3334 int i, nfields;
3335
3336 nfields = TYPE_NFIELDS (type);
1deafd4e 3337 TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
ae5a43e0
DJ
3338 for (i = 0; i < nfields; i++)
3339 {
7ba81444
MS
3340 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3341 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
3342 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3343 if (TYPE_FIELD_TYPE (type, i))
3344 TYPE_FIELD_TYPE (new_type, i)
3345 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3346 copied_types);
3347 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
3348 TYPE_FIELD_NAME (new_type, i) =
3349 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 3350 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 3351 {
d6a843b5
JK
3352 case FIELD_LOC_KIND_BITPOS:
3353 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3354 TYPE_FIELD_BITPOS (type, i));
3355 break;
3356 case FIELD_LOC_KIND_PHYSADDR:
3357 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3358 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3359 break;
3360 case FIELD_LOC_KIND_PHYSNAME:
3361 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3362 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3363 i)));
3364 break;
3365 default:
3366 internal_error (__FILE__, __LINE__,
3367 _("Unexpected type field location kind: %d"),
3368 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
3369 }
3370 }
3371 }
3372
0963b4bd 3373 /* For range types, copy the bounds information. */
43bbcdc2
PH
3374 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3375 {
3376 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3377 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3378 }
3379
ae5a43e0
DJ
3380 /* Copy pointers to other types. */
3381 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
3382 TYPE_TARGET_TYPE (new_type) =
3383 copy_type_recursive (objfile,
3384 TYPE_TARGET_TYPE (type),
3385 copied_types);
ae5a43e0 3386 if (TYPE_VPTR_BASETYPE (type))
7ba81444
MS
3387 TYPE_VPTR_BASETYPE (new_type) =
3388 copy_type_recursive (objfile,
3389 TYPE_VPTR_BASETYPE (type),
3390 copied_types);
ae5a43e0
DJ
3391 /* Maybe copy the type_specific bits.
3392
3393 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3394 base classes and methods. There's no fundamental reason why we
3395 can't, but at the moment it is not needed. */
3396
3397 if (TYPE_CODE (type) == TYPE_CODE_FLT)
d5d6fca5 3398 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
ae5a43e0
DJ
3399 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3400 || TYPE_CODE (type) == TYPE_CODE_UNION
ae5a43e0
DJ
3401 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3402 INIT_CPLUS_SPECIFIC (new_type);
3403
3404 return new_type;
3405}
3406
4af88198
JB
3407/* Make a copy of the given TYPE, except that the pointer & reference
3408 types are not preserved.
3409
3410 This function assumes that the given type has an associated objfile.
3411 This objfile is used to allocate the new type. */
3412
3413struct type *
3414copy_type (const struct type *type)
3415{
3416 struct type *new_type;
3417
e9bb382b 3418 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 3419
e9bb382b 3420 new_type = alloc_type_copy (type);
4af88198
JB
3421 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3422 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3423 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3424 sizeof (struct main_type));
3425
3426 return new_type;
3427}
3428
e9bb382b
UW
3429
3430/* Helper functions to initialize architecture-specific types. */
3431
3432/* Allocate a type structure associated with GDBARCH and set its
3433 CODE, LENGTH, and NAME fields. */
3434struct type *
3435arch_type (struct gdbarch *gdbarch,
3436 enum type_code code, int length, char *name)
3437{
3438 struct type *type;
3439
3440 type = alloc_type_arch (gdbarch);
3441 TYPE_CODE (type) = code;
3442 TYPE_LENGTH (type) = length;
3443
3444 if (name)
3445 TYPE_NAME (type) = xstrdup (name);
3446
3447 return type;
3448}
3449
3450/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
3451 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3452 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3453struct type *
3454arch_integer_type (struct gdbarch *gdbarch,
3455 int bit, int unsigned_p, char *name)
3456{
3457 struct type *t;
3458
3459 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
3460 if (unsigned_p)
3461 TYPE_UNSIGNED (t) = 1;
3462 if (name && strcmp (name, "char") == 0)
3463 TYPE_NOSIGN (t) = 1;
3464
3465 return t;
3466}
3467
3468/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
3469 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3470 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3471struct type *
3472arch_character_type (struct gdbarch *gdbarch,
3473 int bit, int unsigned_p, char *name)
3474{
3475 struct type *t;
3476
3477 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
3478 if (unsigned_p)
3479 TYPE_UNSIGNED (t) = 1;
3480
3481 return t;
3482}
3483
3484/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
3485 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3486 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3487struct type *
3488arch_boolean_type (struct gdbarch *gdbarch,
3489 int bit, int unsigned_p, char *name)
3490{
3491 struct type *t;
3492
3493 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
3494 if (unsigned_p)
3495 TYPE_UNSIGNED (t) = 1;
3496
3497 return t;
3498}
3499
3500/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
3501 BIT is the type size in bits; if BIT equals -1, the size is
3502 determined by the floatformat. NAME is the type name. Set the
3503 TYPE_FLOATFORMAT from FLOATFORMATS. */
27067745 3504struct type *
e9bb382b
UW
3505arch_float_type (struct gdbarch *gdbarch,
3506 int bit, char *name, const struct floatformat **floatformats)
8da61cc4
DJ
3507{
3508 struct type *t;
3509
3510 if (bit == -1)
3511 {
3512 gdb_assert (floatformats != NULL);
3513 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3514 bit = floatformats[0]->totalsize;
3515 }
3516 gdb_assert (bit >= 0);
3517
e9bb382b 3518 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
8da61cc4
DJ
3519 TYPE_FLOATFORMAT (t) = floatformats;
3520 return t;
3521}
3522
e9bb382b
UW
3523/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
3524 NAME is the type name. TARGET_TYPE is the component float type. */
27067745 3525struct type *
e9bb382b
UW
3526arch_complex_type (struct gdbarch *gdbarch,
3527 char *name, struct type *target_type)
27067745
UW
3528{
3529 struct type *t;
d8734c88 3530
e9bb382b
UW
3531 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
3532 2 * TYPE_LENGTH (target_type), name);
27067745
UW
3533 TYPE_TARGET_TYPE (t) = target_type;
3534 return t;
3535}
3536
e9bb382b 3537/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
eb90ce83 3538 NAME is the type name. LENGTH is the size of the flag word in bytes. */
e9bb382b
UW
3539struct type *
3540arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
3541{
3542 int nfields = length * TARGET_CHAR_BIT;
3543 struct type *type;
3544
3545 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
3546 TYPE_UNSIGNED (type) = 1;
3547 TYPE_NFIELDS (type) = nfields;
3548 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
3549
3550 return type;
3551}
3552
3553/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
3554 position BITPOS is called NAME. */
3555void
3556append_flags_type_flag (struct type *type, int bitpos, char *name)
3557{
3558 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
3559 gdb_assert (bitpos < TYPE_NFIELDS (type));
3560 gdb_assert (bitpos >= 0);
3561
3562 if (name)
3563 {
3564 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
3565 TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
3566 }
3567 else
3568 {
3569 /* Don't show this field to the user. */
3570 TYPE_FIELD_BITPOS (type, bitpos) = -1;
3571 }
3572}
3573
3574/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
3575 specified by CODE) associated with GDBARCH. NAME is the type name. */
3576struct type *
3577arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
3578{
3579 struct type *t;
d8734c88 3580
e9bb382b
UW
3581 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
3582 t = arch_type (gdbarch, code, 0, NULL);
3583 TYPE_TAG_NAME (t) = name;
3584 INIT_CPLUS_SPECIFIC (t);
3585 return t;
3586}
3587
3588/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
3589 Do not set the field's position or adjust the type's length;
3590 the caller should do so. Return the new field. */
3591struct field *
3592append_composite_type_field_raw (struct type *t, char *name,
3593 struct type *field)
e9bb382b
UW
3594{
3595 struct field *f;
d8734c88 3596
e9bb382b
UW
3597 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
3598 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
3599 sizeof (struct field) * TYPE_NFIELDS (t));
3600 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
3601 memset (f, 0, sizeof f[0]);
3602 FIELD_TYPE (f[0]) = field;
3603 FIELD_NAME (f[0]) = name;
f5dff777
DJ
3604 return f;
3605}
3606
3607/* Add new field with name NAME and type FIELD to composite type T.
3608 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
3609void
3610append_composite_type_field_aligned (struct type *t, char *name,
3611 struct type *field, int alignment)
3612{
3613 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 3614
e9bb382b
UW
3615 if (TYPE_CODE (t) == TYPE_CODE_UNION)
3616 {
3617 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
3618 TYPE_LENGTH (t) = TYPE_LENGTH (field);
3619 }
3620 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
3621 {
3622 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
3623 if (TYPE_NFIELDS (t) > 1)
3624 {
3625 FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
3626 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
3627 * TARGET_CHAR_BIT));
3628
3629 if (alignment)
3630 {
3631 int left = FIELD_BITPOS (f[0]) % (alignment * TARGET_CHAR_BIT);
d8734c88 3632
e9bb382b
UW
3633 if (left)
3634 {
3635 FIELD_BITPOS (f[0]) += left;
3636 TYPE_LENGTH (t) += left / TARGET_CHAR_BIT;
3637 }
3638 }
3639 }
3640 }
3641}
3642
3643/* Add new field with name NAME and type FIELD to composite type T. */
3644void
3645append_composite_type_field (struct type *t, char *name,
3646 struct type *field)
3647{
3648 append_composite_type_field_aligned (t, name, field, 0);
3649}
3650
3651
000177f0
AC
3652static struct gdbarch_data *gdbtypes_data;
3653
3654const struct builtin_type *
3655builtin_type (struct gdbarch *gdbarch)
3656{
3657 return gdbarch_data (gdbarch, gdbtypes_data);
3658}
3659
3660static void *
3661gdbtypes_post_init (struct gdbarch *gdbarch)
3662{
3663 struct builtin_type *builtin_type
3664 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3665
46bf5051 3666 /* Basic types. */
e9bb382b
UW
3667 builtin_type->builtin_void
3668 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
3669 builtin_type->builtin_char
3670 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3671 !gdbarch_char_signed (gdbarch), "char");
3672 builtin_type->builtin_signed_char
3673 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3674 0, "signed char");
3675 builtin_type->builtin_unsigned_char
3676 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3677 1, "unsigned char");
3678 builtin_type->builtin_short
3679 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3680 0, "short");
3681 builtin_type->builtin_unsigned_short
3682 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3683 1, "unsigned short");
3684 builtin_type->builtin_int
3685 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3686 0, "int");
3687 builtin_type->builtin_unsigned_int
3688 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3689 1, "unsigned int");
3690 builtin_type->builtin_long
3691 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3692 0, "long");
3693 builtin_type->builtin_unsigned_long
3694 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3695 1, "unsigned long");
3696 builtin_type->builtin_long_long
3697 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3698 0, "long long");
3699 builtin_type->builtin_unsigned_long_long
3700 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3701 1, "unsigned long long");
70bd8e24 3702 builtin_type->builtin_float
e9bb382b 3703 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 3704 "float", gdbarch_float_format (gdbarch));
70bd8e24 3705 builtin_type->builtin_double
e9bb382b 3706 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 3707 "double", gdbarch_double_format (gdbarch));
70bd8e24 3708 builtin_type->builtin_long_double
e9bb382b 3709 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 3710 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 3711 builtin_type->builtin_complex
e9bb382b
UW
3712 = arch_complex_type (gdbarch, "complex",
3713 builtin_type->builtin_float);
70bd8e24 3714 builtin_type->builtin_double_complex
e9bb382b
UW
3715 = arch_complex_type (gdbarch, "double complex",
3716 builtin_type->builtin_double);
3717 builtin_type->builtin_string
3718 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
3719 builtin_type->builtin_bool
3720 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
000177f0 3721
7678ef8f
TJB
3722 /* The following three are about decimal floating point types, which
3723 are 32-bits, 64-bits and 128-bits respectively. */
3724 builtin_type->builtin_decfloat
e9bb382b 3725 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
7678ef8f 3726 builtin_type->builtin_decdouble
e9bb382b 3727 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
7678ef8f 3728 builtin_type->builtin_declong
e9bb382b 3729 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
7678ef8f 3730
69feb676 3731 /* "True" character types. */
e9bb382b
UW
3732 builtin_type->builtin_true_char
3733 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
3734 builtin_type->builtin_true_unsigned_char
3735 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 3736
df4df182 3737 /* Fixed-size integer types. */
e9bb382b
UW
3738 builtin_type->builtin_int0
3739 = arch_integer_type (gdbarch, 0, 0, "int0_t");
3740 builtin_type->builtin_int8
3741 = arch_integer_type (gdbarch, 8, 0, "int8_t");
3742 builtin_type->builtin_uint8
3743 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
3744 builtin_type->builtin_int16
3745 = arch_integer_type (gdbarch, 16, 0, "int16_t");
3746 builtin_type->builtin_uint16
3747 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
3748 builtin_type->builtin_int32
3749 = arch_integer_type (gdbarch, 32, 0, "int32_t");
3750 builtin_type->builtin_uint32
3751 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
3752 builtin_type->builtin_int64
3753 = arch_integer_type (gdbarch, 64, 0, "int64_t");
3754 builtin_type->builtin_uint64
3755 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
3756 builtin_type->builtin_int128
3757 = arch_integer_type (gdbarch, 128, 0, "int128_t");
3758 builtin_type->builtin_uint128
3759 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
3760 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
3761 TYPE_INSTANCE_FLAG_NOTTEXT;
3762 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
3763 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 3764
9a22f0d0
PM
3765 /* Wide character types. */
3766 builtin_type->builtin_char16
3767 = arch_integer_type (gdbarch, 16, 0, "char16_t");
3768 builtin_type->builtin_char32
3769 = arch_integer_type (gdbarch, 32, 0, "char32_t");
3770
3771
46bf5051 3772 /* Default data/code pointer types. */
e9bb382b
UW
3773 builtin_type->builtin_data_ptr
3774 = lookup_pointer_type (builtin_type->builtin_void);
3775 builtin_type->builtin_func_ptr
3776 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
3777 builtin_type->builtin_func_func
3778 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 3779
78267919 3780 /* This type represents a GDB internal function. */
e9bb382b
UW
3781 builtin_type->internal_fn
3782 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
3783 "<internal function>");
78267919 3784
46bf5051
UW
3785 return builtin_type;
3786}
3787
3788
3789/* This set of objfile-based types is intended to be used by symbol
3790 readers as basic types. */
3791
3792static const struct objfile_data *objfile_type_data;
3793
3794const struct objfile_type *
3795objfile_type (struct objfile *objfile)
3796{
3797 struct gdbarch *gdbarch;
3798 struct objfile_type *objfile_type
3799 = objfile_data (objfile, objfile_type_data);
3800
3801 if (objfile_type)
3802 return objfile_type;
3803
3804 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
3805 1, struct objfile_type);
3806
3807 /* Use the objfile architecture to determine basic type properties. */
3808 gdbarch = get_objfile_arch (objfile);
3809
3810 /* Basic types. */
3811 objfile_type->builtin_void
3812 = init_type (TYPE_CODE_VOID, 1,
3813 0,
3814 "void", objfile);
3815
3816 objfile_type->builtin_char
3817 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3818 (TYPE_FLAG_NOSIGN
3819 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3820 "char", objfile);
3821 objfile_type->builtin_signed_char
3822 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3823 0,
3824 "signed char", objfile);
3825 objfile_type->builtin_unsigned_char
3826 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3827 TYPE_FLAG_UNSIGNED,
3828 "unsigned char", objfile);
3829 objfile_type->builtin_short
3830 = init_type (TYPE_CODE_INT,
3831 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3832 0, "short", objfile);
3833 objfile_type->builtin_unsigned_short
3834 = init_type (TYPE_CODE_INT,
3835 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3836 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
3837 objfile_type->builtin_int
3838 = init_type (TYPE_CODE_INT,
3839 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3840 0, "int", objfile);
3841 objfile_type->builtin_unsigned_int
3842 = init_type (TYPE_CODE_INT,
3843 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3844 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
3845 objfile_type->builtin_long
3846 = init_type (TYPE_CODE_INT,
3847 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3848 0, "long", objfile);
3849 objfile_type->builtin_unsigned_long
3850 = init_type (TYPE_CODE_INT,
3851 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3852 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
3853 objfile_type->builtin_long_long
3854 = init_type (TYPE_CODE_INT,
3855 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3856 0, "long long", objfile);
3857 objfile_type->builtin_unsigned_long_long
3858 = init_type (TYPE_CODE_INT,
3859 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3860 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
3861
3862 objfile_type->builtin_float
3863 = init_type (TYPE_CODE_FLT,
3864 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
3865 0, "float", objfile);
3866 TYPE_FLOATFORMAT (objfile_type->builtin_float)
3867 = gdbarch_float_format (gdbarch);
3868 objfile_type->builtin_double
3869 = init_type (TYPE_CODE_FLT,
3870 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
3871 0, "double", objfile);
3872 TYPE_FLOATFORMAT (objfile_type->builtin_double)
3873 = gdbarch_double_format (gdbarch);
3874 objfile_type->builtin_long_double
3875 = init_type (TYPE_CODE_FLT,
3876 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
3877 0, "long double", objfile);
3878 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
3879 = gdbarch_long_double_format (gdbarch);
3880
3881 /* This type represents a type that was unrecognized in symbol read-in. */
3882 objfile_type->builtin_error
3883 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
3884
3885 /* The following set of types is used for symbols with no
3886 debug information. */
3887 objfile_type->nodebug_text_symbol
3888 = init_type (TYPE_CODE_FUNC, 1, 0,
3889 "<text variable, no debug info>", objfile);
3890 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
3891 = objfile_type->builtin_int;
0875794a
JK
3892 objfile_type->nodebug_text_gnu_ifunc_symbol
3893 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
3894 "<text gnu-indirect-function variable, no debug info>",
3895 objfile);
3896 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
3897 = objfile_type->nodebug_text_symbol;
3898 objfile_type->nodebug_got_plt_symbol
3899 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
3900 "<text from jump slot in .got.plt, no debug info>",
3901 objfile);
3902 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
3903 = objfile_type->nodebug_text_symbol;
46bf5051
UW
3904 objfile_type->nodebug_data_symbol
3905 = init_type (TYPE_CODE_INT,
3906 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3907 "<data variable, no debug info>", objfile);
3908 objfile_type->nodebug_unknown_symbol
3909 = init_type (TYPE_CODE_INT, 1, 0,
3910 "<variable (not text or data), no debug info>", objfile);
3911 objfile_type->nodebug_tls_symbol
3912 = init_type (TYPE_CODE_INT,
3913 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3914 "<thread local variable, no debug info>", objfile);
000177f0
AC
3915
3916 /* NOTE: on some targets, addresses and pointers are not necessarily
3917 the same --- for example, on the D10V, pointers are 16 bits long,
3918 but addresses are 32 bits long. See doc/gdbint.texinfo,
3919 ``Pointers Are Not Always Addresses''.
3920
3921 The upshot is:
3922 - gdb's `struct type' always describes the target's
3923 representation.
3924 - gdb's `struct value' objects should always hold values in
3925 target form.
3926 - gdb's CORE_ADDR values are addresses in the unified virtual
3927 address space that the assembler and linker work with. Thus,
3928 since target_read_memory takes a CORE_ADDR as an argument, it
3929 can access any memory on the target, even if the processor has
3930 separate code and data address spaces.
3931
3932 So, for example:
3933 - If v is a value holding a D10V code pointer, its contents are
3934 in target form: a big-endian address left-shifted two bits.
3935 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3936 sizeof (void *) == 2 on the target.
3937
46bf5051
UW
3938 In this context, objfile_type->builtin_core_addr is a bit odd:
3939 it's a target type for a value the target will never see. It's
3940 only used to hold the values of (typeless) linker symbols, which
3941 are indeed in the unified virtual address space. */
000177f0 3942
46bf5051
UW
3943 objfile_type->builtin_core_addr
3944 = init_type (TYPE_CODE_INT,
3945 gdbarch_addr_bit (gdbarch) / 8,
3946 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
64c50499 3947
46bf5051
UW
3948 set_objfile_data (objfile, objfile_type_data, objfile_type);
3949 return objfile_type;
000177f0
AC
3950}
3951
46bf5051 3952
a14ed312 3953extern void _initialize_gdbtypes (void);
c906108c 3954void
fba45db2 3955_initialize_gdbtypes (void)
c906108c 3956{
5674de60 3957 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
46bf5051 3958 objfile_type_data = register_objfile_data ();
5674de60 3959
3e43a32a
MS
3960 add_setshow_zinteger_cmd ("overload", no_class, &overload_debug,
3961 _("Set debugging of C++ overloading."),
3962 _("Show debugging of C++ overloading."),
3963 _("When enabled, ranking of the "
3964 "functions is displayed."),
85c07804 3965 NULL,
920d2a44 3966 show_overload_debug,
85c07804 3967 &setdebuglist, &showdebuglist);
5674de60 3968
7ba81444 3969 /* Add user knob for controlling resolution of opaque types. */
5674de60 3970 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
3971 &opaque_type_resolution,
3972 _("Set resolution of opaque struct/class/union"
3973 " types (if set before loading symbols)."),
3974 _("Show resolution of opaque struct/class/union"
3975 " types (if set before loading symbols)."),
3976 NULL, NULL,
5674de60
UW
3977 show_opaque_type_resolution,
3978 &setlist, &showlist);
c906108c 3979}
This page took 1.220337 seconds and 4 git commands to generate.