Rename gdb exception types
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
42a4f53d 3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c
SS
23#include "bfd.h"
24#include "symtab.h"
25#include "symfile.h"
26#include "objfiles.h"
27#include "gdbtypes.h"
28#include "expression.h"
29#include "language.h"
30#include "target.h"
31#include "value.h"
32#include "demangle.h"
33#include "complaints.h"
34#include "gdbcmd.h"
015a42b4 35#include "cp-abi.h"
ae5a43e0 36#include "hashtab.h"
8de20a37 37#include "cp-support.h"
ca092b61
DE
38#include "bcache.h"
39#include "dwarf2loc.h"
80180f79 40#include "gdbcore.h"
1841ee5d 41#include "floatformat.h"
ac3aafc7 42
6403aeea
SW
43/* Initialize BADNESS constants. */
44
a9d5ef47 45const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 46
a9d5ef47
SW
47const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
48const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 49
a9d5ef47 50const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 51
a9d5ef47
SW
52const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
53const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
54const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
e15c3eb4 55const struct rank CV_CONVERSION_BADNESS = {1, 0};
a9d5ef47
SW
56const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 60const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
61const struct rank BASE_CONVERSION_BADNESS = {2,0};
62const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
da096638 63const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 64const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 65const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 66
8da61cc4 67/* Floatformat pairs. */
f9e9243a
UW
68const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_half_big,
70 &floatformat_ieee_half_little
71};
8da61cc4
DJ
72const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_single_big,
74 &floatformat_ieee_single_little
75};
76const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_little
79};
80const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_littlebyte_bigword
83};
84const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_i387_ext,
86 &floatformat_i387_ext
87};
88const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_m68881_ext,
90 &floatformat_m68881_ext
91};
92const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_arm_ext_big,
94 &floatformat_arm_ext_littlebyte_bigword
95};
96const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_spill_big,
98 &floatformat_ia64_spill_little
99};
100const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_quad_big,
102 &floatformat_ia64_quad_little
103};
104const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_f,
106 &floatformat_vax_f
107};
108const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_d,
110 &floatformat_vax_d
111};
b14d30e1 112const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
f5aee5ee
AM
113 &floatformat_ibm_long_double_big,
114 &floatformat_ibm_long_double_little
b14d30e1 115};
8da61cc4 116
2873700e
KS
117/* Should opaque types be resolved? */
118
119static int opaque_type_resolution = 1;
120
121/* A flag to enable printing of debugging information of C++
122 overloading. */
123
124unsigned int overload_debug = 0;
125
a451cb65
KS
126/* A flag to enable strict type checking. */
127
128static int strict_type_checking = 1;
129
2873700e 130/* A function to show whether opaque types are resolved. */
5212577a 131
920d2a44
AC
132static void
133show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
134 struct cmd_list_element *c,
135 const char *value)
920d2a44 136{
3e43a32a
MS
137 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
138 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
139 value);
140}
141
2873700e 142/* A function to show whether C++ overload debugging is enabled. */
5212577a 143
920d2a44
AC
144static void
145show_overload_debug (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147{
7ba81444
MS
148 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
149 value);
920d2a44 150}
c906108c 151
a451cb65
KS
152/* A function to show the status of strict type checking. */
153
154static void
155show_strict_type_checking (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157{
158 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
159}
160
5212577a 161\f
e9bb382b
UW
162/* Allocate a new OBJFILE-associated type structure and fill it
163 with some defaults. Space for the type structure is allocated
164 on the objfile's objfile_obstack. */
c906108c
SS
165
166struct type *
fba45db2 167alloc_type (struct objfile *objfile)
c906108c 168{
52f0bd74 169 struct type *type;
c906108c 170
e9bb382b
UW
171 gdb_assert (objfile != NULL);
172
7ba81444 173 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
174 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
175 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
176 struct main_type);
177 OBJSTAT (objfile, n_types++);
c906108c 178
e9bb382b
UW
179 TYPE_OBJFILE_OWNED (type) = 1;
180 TYPE_OWNER (type).objfile = objfile;
c906108c 181
7ba81444 182 /* Initialize the fields that might not be zero. */
c906108c
SS
183
184 TYPE_CODE (type) = TYPE_CODE_UNDEF;
2fdde8f8 185 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 186
c16abbde 187 return type;
c906108c
SS
188}
189
e9bb382b
UW
190/* Allocate a new GDBARCH-associated type structure and fill it
191 with some defaults. Space for the type structure is allocated
8f57eec2 192 on the obstack associated with GDBARCH. */
e9bb382b
UW
193
194struct type *
195alloc_type_arch (struct gdbarch *gdbarch)
196{
197 struct type *type;
198
199 gdb_assert (gdbarch != NULL);
200
201 /* Alloc the structure and start off with all fields zeroed. */
202
8f57eec2
PP
203 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
204 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
e9bb382b
UW
205
206 TYPE_OBJFILE_OWNED (type) = 0;
207 TYPE_OWNER (type).gdbarch = gdbarch;
208
209 /* Initialize the fields that might not be zero. */
210
211 TYPE_CODE (type) = TYPE_CODE_UNDEF;
e9bb382b
UW
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215}
216
217/* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221struct type *
222alloc_type_copy (const struct type *type)
223{
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228}
229
230/* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233struct gdbarch *
234get_type_arch (const struct type *type)
235{
2fabdf33
AB
236 struct gdbarch *arch;
237
e9bb382b 238 if (TYPE_OBJFILE_OWNED (type))
2fabdf33 239 arch = get_objfile_arch (TYPE_OWNER (type).objfile);
e9bb382b 240 else
2fabdf33
AB
241 arch = TYPE_OWNER (type).gdbarch;
242
243 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
244 a gdbarch, however, this is very rare, and even then, in most cases
245 that get_type_arch is called, we assume that a non-NULL value is
246 returned. */
247 gdb_assert (arch != NULL);
248 return arch;
e9bb382b
UW
249}
250
99ad9427
YQ
251/* See gdbtypes.h. */
252
253struct type *
254get_target_type (struct type *type)
255{
256 if (type != NULL)
257 {
258 type = TYPE_TARGET_TYPE (type);
259 if (type != NULL)
260 type = check_typedef (type);
261 }
262
263 return type;
264}
265
2e056931
SM
266/* See gdbtypes.h. */
267
268unsigned int
269type_length_units (struct type *type)
270{
271 struct gdbarch *arch = get_type_arch (type);
272 int unit_size = gdbarch_addressable_memory_unit_size (arch);
273
274 return TYPE_LENGTH (type) / unit_size;
275}
276
2fdde8f8
DJ
277/* Alloc a new type instance structure, fill it with some defaults,
278 and point it at OLDTYPE. Allocate the new type instance from the
279 same place as OLDTYPE. */
280
281static struct type *
282alloc_type_instance (struct type *oldtype)
283{
284 struct type *type;
285
286 /* Allocate the structure. */
287
e9bb382b 288 if (! TYPE_OBJFILE_OWNED (oldtype))
2fabdf33 289 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
2fdde8f8 290 else
1deafd4e
PA
291 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
292 struct type);
293
2fdde8f8
DJ
294 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
295
296 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
297
c16abbde 298 return type;
2fdde8f8
DJ
299}
300
301/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 302 replacing it with something else. Preserve owner information. */
5212577a 303
2fdde8f8
DJ
304static void
305smash_type (struct type *type)
306{
e9bb382b
UW
307 int objfile_owned = TYPE_OBJFILE_OWNED (type);
308 union type_owner owner = TYPE_OWNER (type);
309
2fdde8f8
DJ
310 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
311
e9bb382b
UW
312 /* Restore owner information. */
313 TYPE_OBJFILE_OWNED (type) = objfile_owned;
314 TYPE_OWNER (type) = owner;
315
2fdde8f8
DJ
316 /* For now, delete the rings. */
317 TYPE_CHAIN (type) = type;
318
319 /* For now, leave the pointer/reference types alone. */
320}
321
c906108c
SS
322/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
323 to a pointer to memory where the pointer type should be stored.
324 If *TYPEPTR is zero, update it to point to the pointer type we return.
325 We allocate new memory if needed. */
326
327struct type *
fba45db2 328make_pointer_type (struct type *type, struct type **typeptr)
c906108c 329{
52f0bd74 330 struct type *ntype; /* New type */
053cb41b 331 struct type *chain;
c906108c
SS
332
333 ntype = TYPE_POINTER_TYPE (type);
334
c5aa993b 335 if (ntype)
c906108c 336 {
c5aa993b 337 if (typeptr == 0)
7ba81444
MS
338 return ntype; /* Don't care about alloc,
339 and have new type. */
c906108c 340 else if (*typeptr == 0)
c5aa993b 341 {
7ba81444 342 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 343 return ntype;
c5aa993b 344 }
c906108c
SS
345 }
346
347 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
348 {
e9bb382b 349 ntype = alloc_type_copy (type);
c906108c
SS
350 if (typeptr)
351 *typeptr = ntype;
352 }
7ba81444 353 else /* We have storage, but need to reset it. */
c906108c
SS
354 {
355 ntype = *typeptr;
053cb41b 356 chain = TYPE_CHAIN (ntype);
2fdde8f8 357 smash_type (ntype);
053cb41b 358 TYPE_CHAIN (ntype) = chain;
c906108c
SS
359 }
360
361 TYPE_TARGET_TYPE (ntype) = type;
362 TYPE_POINTER_TYPE (type) = ntype;
363
5212577a 364 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 365
50810684
UW
366 TYPE_LENGTH (ntype)
367 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
368 TYPE_CODE (ntype) = TYPE_CODE_PTR;
369
67b2adb2 370 /* Mark pointers as unsigned. The target converts between pointers
76e71323 371 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 372 gdbarch_address_to_pointer. */
876cecd0 373 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 374
053cb41b
JB
375 /* Update the length of all the other variants of this type. */
376 chain = TYPE_CHAIN (ntype);
377 while (chain != ntype)
378 {
379 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
380 chain = TYPE_CHAIN (chain);
381 }
382
c906108c
SS
383 return ntype;
384}
385
386/* Given a type TYPE, return a type of pointers to that type.
387 May need to construct such a type if this is the first use. */
388
389struct type *
fba45db2 390lookup_pointer_type (struct type *type)
c906108c 391{
c5aa993b 392 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
393}
394
7ba81444
MS
395/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
396 points to a pointer to memory where the reference type should be
397 stored. If *TYPEPTR is zero, update it to point to the reference
3b224330
AV
398 type we return. We allocate new memory if needed. REFCODE denotes
399 the kind of reference type to lookup (lvalue or rvalue reference). */
c906108c
SS
400
401struct type *
3b224330
AV
402make_reference_type (struct type *type, struct type **typeptr,
403 enum type_code refcode)
c906108c 404{
52f0bd74 405 struct type *ntype; /* New type */
3b224330 406 struct type **reftype;
1e98b326 407 struct type *chain;
c906108c 408
3b224330
AV
409 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
410
411 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
412 : TYPE_RVALUE_REFERENCE_TYPE (type));
c906108c 413
c5aa993b 414 if (ntype)
c906108c 415 {
c5aa993b 416 if (typeptr == 0)
7ba81444
MS
417 return ntype; /* Don't care about alloc,
418 and have new type. */
c906108c 419 else if (*typeptr == 0)
c5aa993b 420 {
7ba81444 421 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 422 return ntype;
c5aa993b 423 }
c906108c
SS
424 }
425
426 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
427 {
e9bb382b 428 ntype = alloc_type_copy (type);
c906108c
SS
429 if (typeptr)
430 *typeptr = ntype;
431 }
7ba81444 432 else /* We have storage, but need to reset it. */
c906108c
SS
433 {
434 ntype = *typeptr;
1e98b326 435 chain = TYPE_CHAIN (ntype);
2fdde8f8 436 smash_type (ntype);
1e98b326 437 TYPE_CHAIN (ntype) = chain;
c906108c
SS
438 }
439
440 TYPE_TARGET_TYPE (ntype) = type;
3b224330
AV
441 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
442 : &TYPE_RVALUE_REFERENCE_TYPE (type));
443
444 *reftype = ntype;
c906108c 445
7ba81444
MS
446 /* FIXME! Assume the machine has only one representation for
447 references, and that it matches the (only) representation for
448 pointers! */
c906108c 449
50810684
UW
450 TYPE_LENGTH (ntype) =
451 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
3b224330 452 TYPE_CODE (ntype) = refcode;
c5aa993b 453
3b224330 454 *reftype = ntype;
c906108c 455
1e98b326
JB
456 /* Update the length of all the other variants of this type. */
457 chain = TYPE_CHAIN (ntype);
458 while (chain != ntype)
459 {
460 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
461 chain = TYPE_CHAIN (chain);
462 }
463
c906108c
SS
464 return ntype;
465}
466
7ba81444
MS
467/* Same as above, but caller doesn't care about memory allocation
468 details. */
c906108c
SS
469
470struct type *
3b224330
AV
471lookup_reference_type (struct type *type, enum type_code refcode)
472{
473 return make_reference_type (type, (struct type **) 0, refcode);
474}
475
476/* Lookup the lvalue reference type for the type TYPE. */
477
478struct type *
479lookup_lvalue_reference_type (struct type *type)
480{
481 return lookup_reference_type (type, TYPE_CODE_REF);
482}
483
484/* Lookup the rvalue reference type for the type TYPE. */
485
486struct type *
487lookup_rvalue_reference_type (struct type *type)
c906108c 488{
3b224330 489 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
c906108c
SS
490}
491
7ba81444
MS
492/* Lookup a function type that returns type TYPE. TYPEPTR, if
493 nonzero, points to a pointer to memory where the function type
494 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 495 function type we return. We allocate new memory if needed. */
c906108c
SS
496
497struct type *
0c8b41f1 498make_function_type (struct type *type, struct type **typeptr)
c906108c 499{
52f0bd74 500 struct type *ntype; /* New type */
c906108c
SS
501
502 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
503 {
e9bb382b 504 ntype = alloc_type_copy (type);
c906108c
SS
505 if (typeptr)
506 *typeptr = ntype;
507 }
7ba81444 508 else /* We have storage, but need to reset it. */
c906108c
SS
509 {
510 ntype = *typeptr;
2fdde8f8 511 smash_type (ntype);
c906108c
SS
512 }
513
514 TYPE_TARGET_TYPE (ntype) = type;
515
516 TYPE_LENGTH (ntype) = 1;
517 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 518
b6cdc2c1
JK
519 INIT_FUNC_SPECIFIC (ntype);
520
c906108c
SS
521 return ntype;
522}
523
c906108c
SS
524/* Given a type TYPE, return a type of functions that return that type.
525 May need to construct such a type if this is the first use. */
526
527struct type *
fba45db2 528lookup_function_type (struct type *type)
c906108c 529{
0c8b41f1 530 return make_function_type (type, (struct type **) 0);
c906108c
SS
531}
532
71918a86 533/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
534 function type. If the final type in PARAM_TYPES is NULL, make a
535 varargs function. */
71918a86
TT
536
537struct type *
538lookup_function_type_with_arguments (struct type *type,
539 int nparams,
540 struct type **param_types)
541{
542 struct type *fn = make_function_type (type, (struct type **) 0);
543 int i;
544
e314d629 545 if (nparams > 0)
a6fb9c08 546 {
e314d629
TT
547 if (param_types[nparams - 1] == NULL)
548 {
549 --nparams;
550 TYPE_VARARGS (fn) = 1;
551 }
552 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
553 == TYPE_CODE_VOID)
554 {
555 --nparams;
556 /* Caller should have ensured this. */
557 gdb_assert (nparams == 0);
558 TYPE_PROTOTYPED (fn) = 1;
559 }
54990598
PA
560 else
561 TYPE_PROTOTYPED (fn) = 1;
a6fb9c08
TT
562 }
563
71918a86 564 TYPE_NFIELDS (fn) = nparams;
224c3ddb
SM
565 TYPE_FIELDS (fn)
566 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
71918a86
TT
567 for (i = 0; i < nparams; ++i)
568 TYPE_FIELD_TYPE (fn, i) = param_types[i];
569
570 return fn;
571}
572
47663de5
MS
573/* Identify address space identifier by name --
574 return the integer flag defined in gdbtypes.h. */
5212577a
DE
575
576int
50810684 577address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
47663de5 578{
8b2dbe47 579 int type_flags;
d8734c88 580
7ba81444 581 /* Check for known address space delimiters. */
47663de5 582 if (!strcmp (space_identifier, "code"))
876cecd0 583 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 584 else if (!strcmp (space_identifier, "data"))
876cecd0 585 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
586 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
587 && gdbarch_address_class_name_to_type_flags (gdbarch,
588 space_identifier,
589 &type_flags))
8b2dbe47 590 return type_flags;
47663de5 591 else
8a3fe4f8 592 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
593}
594
595/* Identify address space identifier by integer flag as defined in
7ba81444 596 gdbtypes.h -- return the string version of the adress space name. */
47663de5 597
321432c0 598const char *
50810684 599address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 600{
876cecd0 601 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 602 return "code";
876cecd0 603 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 604 return "data";
876cecd0 605 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
606 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
607 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
608 else
609 return NULL;
610}
611
2fdde8f8 612/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
613
614 If STORAGE is non-NULL, create the new type instance there.
615 STORAGE must be in the same obstack as TYPE. */
47663de5 616
b9362cc7 617static struct type *
2fdde8f8
DJ
618make_qualified_type (struct type *type, int new_flags,
619 struct type *storage)
47663de5
MS
620{
621 struct type *ntype;
622
623 ntype = type;
5f61c20e
JK
624 do
625 {
626 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
627 return ntype;
628 ntype = TYPE_CHAIN (ntype);
629 }
630 while (ntype != type);
47663de5 631
2fdde8f8
DJ
632 /* Create a new type instance. */
633 if (storage == NULL)
634 ntype = alloc_type_instance (type);
635 else
636 {
7ba81444
MS
637 /* If STORAGE was provided, it had better be in the same objfile
638 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
639 if one objfile is freed and the other kept, we'd have
640 dangling pointers. */
ad766c0a
JB
641 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
642
2fdde8f8
DJ
643 ntype = storage;
644 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
645 TYPE_CHAIN (ntype) = ntype;
646 }
47663de5
MS
647
648 /* Pointers or references to the original type are not relevant to
2fdde8f8 649 the new type. */
47663de5
MS
650 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
651 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 652
2fdde8f8
DJ
653 /* Chain the new qualified type to the old type. */
654 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
655 TYPE_CHAIN (type) = ntype;
656
657 /* Now set the instance flags and return the new type. */
658 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 659
ab5d3da6
KB
660 /* Set length of new type to that of the original type. */
661 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
662
47663de5
MS
663 return ntype;
664}
665
2fdde8f8
DJ
666/* Make an address-space-delimited variant of a type -- a type that
667 is identical to the one supplied except that it has an address
668 space attribute attached to it (such as "code" or "data").
669
7ba81444
MS
670 The space attributes "code" and "data" are for Harvard
671 architectures. The address space attributes are for architectures
672 which have alternately sized pointers or pointers with alternate
673 representations. */
2fdde8f8
DJ
674
675struct type *
676make_type_with_address_space (struct type *type, int space_flag)
677{
2fdde8f8 678 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
679 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
680 | TYPE_INSTANCE_FLAG_DATA_SPACE
681 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
682 | space_flag);
683
684 return make_qualified_type (type, new_flags, NULL);
685}
c906108c
SS
686
687/* Make a "c-v" variant of a type -- a type that is identical to the
688 one supplied except that it may have const or volatile attributes
689 CNST is a flag for setting the const attribute
690 VOLTL is a flag for setting the volatile attribute
691 TYPE is the base type whose variant we are creating.
c906108c 692
ad766c0a
JB
693 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
694 storage to hold the new qualified type; *TYPEPTR and TYPE must be
695 in the same objfile. Otherwise, allocate fresh memory for the new
696 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
697 new type we construct. */
5212577a 698
c906108c 699struct type *
7ba81444
MS
700make_cv_type (int cnst, int voltl,
701 struct type *type,
702 struct type **typeptr)
c906108c 703{
52f0bd74 704 struct type *ntype; /* New type */
c906108c 705
2fdde8f8 706 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
707 & ~(TYPE_INSTANCE_FLAG_CONST
708 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 709
c906108c 710 if (cnst)
876cecd0 711 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
712
713 if (voltl)
876cecd0 714 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 715
2fdde8f8 716 if (typeptr && *typeptr != NULL)
a02fd225 717 {
ad766c0a
JB
718 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
719 a C-V variant chain that threads across objfiles: if one
720 objfile gets freed, then the other has a broken C-V chain.
721
722 This code used to try to copy over the main type from TYPE to
723 *TYPEPTR if they were in different objfiles, but that's
724 wrong, too: TYPE may have a field list or member function
725 lists, which refer to types of their own, etc. etc. The
726 whole shebang would need to be copied over recursively; you
727 can't have inter-objfile pointers. The only thing to do is
728 to leave stub types as stub types, and look them up afresh by
729 name each time you encounter them. */
730 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
731 }
732
7ba81444
MS
733 ntype = make_qualified_type (type, new_flags,
734 typeptr ? *typeptr : NULL);
c906108c 735
2fdde8f8
DJ
736 if (typeptr != NULL)
737 *typeptr = ntype;
a02fd225 738
2fdde8f8 739 return ntype;
a02fd225 740}
c906108c 741
06d66ee9
TT
742/* Make a 'restrict'-qualified version of TYPE. */
743
744struct type *
745make_restrict_type (struct type *type)
746{
747 return make_qualified_type (type,
748 (TYPE_INSTANCE_FLAGS (type)
749 | TYPE_INSTANCE_FLAG_RESTRICT),
750 NULL);
751}
752
f1660027
TT
753/* Make a type without const, volatile, or restrict. */
754
755struct type *
756make_unqualified_type (struct type *type)
757{
758 return make_qualified_type (type,
759 (TYPE_INSTANCE_FLAGS (type)
760 & ~(TYPE_INSTANCE_FLAG_CONST
761 | TYPE_INSTANCE_FLAG_VOLATILE
762 | TYPE_INSTANCE_FLAG_RESTRICT)),
763 NULL);
764}
765
a2c2acaf
MW
766/* Make a '_Atomic'-qualified version of TYPE. */
767
768struct type *
769make_atomic_type (struct type *type)
770{
771 return make_qualified_type (type,
772 (TYPE_INSTANCE_FLAGS (type)
773 | TYPE_INSTANCE_FLAG_ATOMIC),
774 NULL);
775}
776
2fdde8f8
DJ
777/* Replace the contents of ntype with the type *type. This changes the
778 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
779 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 780
cda6c68a
JB
781 In order to build recursive types, it's inevitable that we'll need
782 to update types in place --- but this sort of indiscriminate
783 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
784 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
785 clear if more steps are needed. */
5212577a 786
dd6bda65
DJ
787void
788replace_type (struct type *ntype, struct type *type)
789{
ab5d3da6 790 struct type *chain;
dd6bda65 791
ad766c0a
JB
792 /* These two types had better be in the same objfile. Otherwise,
793 the assignment of one type's main type structure to the other
794 will produce a type with references to objects (names; field
795 lists; etc.) allocated on an objfile other than its own. */
e46dd0f4 796 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
ad766c0a 797
2fdde8f8 798 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 799
7ba81444
MS
800 /* The type length is not a part of the main type. Update it for
801 each type on the variant chain. */
ab5d3da6 802 chain = ntype;
5f61c20e
JK
803 do
804 {
805 /* Assert that this element of the chain has no address-class bits
806 set in its flags. Such type variants might have type lengths
807 which are supposed to be different from the non-address-class
808 variants. This assertion shouldn't ever be triggered because
809 symbol readers which do construct address-class variants don't
810 call replace_type(). */
811 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
812
813 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
814 chain = TYPE_CHAIN (chain);
815 }
816 while (ntype != chain);
ab5d3da6 817
2fdde8f8
DJ
818 /* Assert that the two types have equivalent instance qualifiers.
819 This should be true for at least all of our debug readers. */
820 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
821}
822
c906108c
SS
823/* Implement direct support for MEMBER_TYPE in GNU C++.
824 May need to construct such a type if this is the first use.
825 The TYPE is the type of the member. The DOMAIN is the type
826 of the aggregate that the member belongs to. */
827
828struct type *
0d5de010 829lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 830{
52f0bd74 831 struct type *mtype;
c906108c 832
e9bb382b 833 mtype = alloc_type_copy (type);
0d5de010 834 smash_to_memberptr_type (mtype, domain, type);
c16abbde 835 return mtype;
c906108c
SS
836}
837
0d5de010
DJ
838/* Return a pointer-to-method type, for a method of type TO_TYPE. */
839
840struct type *
841lookup_methodptr_type (struct type *to_type)
842{
843 struct type *mtype;
844
e9bb382b 845 mtype = alloc_type_copy (to_type);
0b92b5bb 846 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
847 return mtype;
848}
849
7ba81444
MS
850/* Allocate a stub method whose return type is TYPE. This apparently
851 happens for speed of symbol reading, since parsing out the
852 arguments to the method is cpu-intensive, the way we are doing it.
853 So, we will fill in arguments later. This always returns a fresh
854 type. */
c906108c
SS
855
856struct type *
fba45db2 857allocate_stub_method (struct type *type)
c906108c
SS
858{
859 struct type *mtype;
860
e9bb382b
UW
861 mtype = alloc_type_copy (type);
862 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
863 TYPE_LENGTH (mtype) = 1;
864 TYPE_STUB (mtype) = 1;
c906108c 865 TYPE_TARGET_TYPE (mtype) = type;
4bfb94b8 866 /* TYPE_SELF_TYPE (mtype) = unknown yet */
c16abbde 867 return mtype;
c906108c
SS
868}
869
0f59d5fc
PA
870/* See gdbtypes.h. */
871
872bool
873operator== (const dynamic_prop &l, const dynamic_prop &r)
874{
875 if (l.kind != r.kind)
876 return false;
877
878 switch (l.kind)
879 {
880 case PROP_UNDEFINED:
881 return true;
882 case PROP_CONST:
883 return l.data.const_val == r.data.const_val;
884 case PROP_ADDR_OFFSET:
885 case PROP_LOCEXPR:
886 case PROP_LOCLIST:
887 return l.data.baton == r.data.baton;
888 }
889
890 gdb_assert_not_reached ("unhandled dynamic_prop kind");
891}
892
893/* See gdbtypes.h. */
894
895bool
896operator== (const range_bounds &l, const range_bounds &r)
897{
898#define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
899
900 return (FIELD_EQ (low)
901 && FIELD_EQ (high)
902 && FIELD_EQ (flag_upper_bound_is_count)
903 && FIELD_EQ (flag_bound_evaluated));
904
905#undef FIELD_EQ
906}
907
729efb13
SA
908/* Create a range type with a dynamic range from LOW_BOUND to
909 HIGH_BOUND, inclusive. See create_range_type for further details. */
c906108c
SS
910
911struct type *
729efb13
SA
912create_range_type (struct type *result_type, struct type *index_type,
913 const struct dynamic_prop *low_bound,
914 const struct dynamic_prop *high_bound)
c906108c
SS
915{
916 if (result_type == NULL)
e9bb382b 917 result_type = alloc_type_copy (index_type);
c906108c
SS
918 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
919 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 920 if (TYPE_STUB (index_type))
876cecd0 921 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
922 else
923 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
729efb13 924
43bbcdc2
PH
925 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
926 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
729efb13
SA
927 TYPE_RANGE_DATA (result_type)->low = *low_bound;
928 TYPE_RANGE_DATA (result_type)->high = *high_bound;
c906108c 929
729efb13 930 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
876cecd0 931 TYPE_UNSIGNED (result_type) = 1;
c906108c 932
45e44d27
JB
933 /* Ada allows the declaration of range types whose upper bound is
934 less than the lower bound, so checking the lower bound is not
935 enough. Make sure we do not mark a range type whose upper bound
936 is negative as unsigned. */
937 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
938 TYPE_UNSIGNED (result_type) = 0;
939
262452ec 940 return result_type;
c906108c
SS
941}
942
729efb13
SA
943/* Create a range type using either a blank type supplied in
944 RESULT_TYPE, or creating a new type, inheriting the objfile from
945 INDEX_TYPE.
946
947 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
948 to HIGH_BOUND, inclusive.
949
950 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
951 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
952
953struct type *
954create_static_range_type (struct type *result_type, struct type *index_type,
955 LONGEST low_bound, LONGEST high_bound)
956{
957 struct dynamic_prop low, high;
958
959 low.kind = PROP_CONST;
960 low.data.const_val = low_bound;
961
962 high.kind = PROP_CONST;
963 high.data.const_val = high_bound;
964
965 result_type = create_range_type (result_type, index_type, &low, &high);
966
967 return result_type;
968}
969
80180f79
SA
970/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
971 are static, otherwise returns 0. */
972
973static int
974has_static_range (const struct range_bounds *bounds)
975{
976 return (bounds->low.kind == PROP_CONST
977 && bounds->high.kind == PROP_CONST);
978}
979
980
7ba81444
MS
981/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
982 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
983 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
984
985int
fba45db2 986get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c 987{
f168693b 988 type = check_typedef (type);
c906108c
SS
989 switch (TYPE_CODE (type))
990 {
991 case TYPE_CODE_RANGE:
992 *lowp = TYPE_LOW_BOUND (type);
993 *highp = TYPE_HIGH_BOUND (type);
994 return 1;
995 case TYPE_CODE_ENUM:
996 if (TYPE_NFIELDS (type) > 0)
997 {
998 /* The enums may not be sorted by value, so search all
0963b4bd 999 entries. */
c906108c
SS
1000 int i;
1001
14e75d8e 1002 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
c906108c
SS
1003 for (i = 0; i < TYPE_NFIELDS (type); i++)
1004 {
14e75d8e
JK
1005 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1006 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1007 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1008 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
1009 }
1010
7ba81444 1011 /* Set unsigned indicator if warranted. */
c5aa993b 1012 if (*lowp >= 0)
c906108c 1013 {
876cecd0 1014 TYPE_UNSIGNED (type) = 1;
c906108c
SS
1015 }
1016 }
1017 else
1018 {
1019 *lowp = 0;
1020 *highp = -1;
1021 }
1022 return 0;
1023 case TYPE_CODE_BOOL:
1024 *lowp = 0;
1025 *highp = 1;
1026 return 0;
1027 case TYPE_CODE_INT:
c5aa993b 1028 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
1029 return -1;
1030 if (!TYPE_UNSIGNED (type))
1031 {
c5aa993b 1032 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
1033 *highp = -*lowp - 1;
1034 return 0;
1035 }
86a73007 1036 /* fall through */
c906108c
SS
1037 case TYPE_CODE_CHAR:
1038 *lowp = 0;
1039 /* This round-about calculation is to avoid shifting by
7b83ea04 1040 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 1041 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
1042 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1043 *highp = (*highp - 1) | *highp;
1044 return 0;
1045 default:
1046 return -1;
1047 }
1048}
1049
dbc98a8b
KW
1050/* Assuming TYPE is a simple, non-empty array type, compute its upper
1051 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1052 Save the high bound into HIGH_BOUND if not NULL.
1053
0963b4bd 1054 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
1055 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1056
1057 We now simply use get_discrete_bounds call to get the values
1058 of the low and high bounds.
1059 get_discrete_bounds can return three values:
1060 1, meaning that index is a range,
1061 0, meaning that index is a discrete type,
1062 or -1 for failure. */
1063
1064int
1065get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1066{
1067 struct type *index = TYPE_INDEX_TYPE (type);
1068 LONGEST low = 0;
1069 LONGEST high = 0;
1070 int res;
1071
1072 if (index == NULL)
1073 return 0;
1074
1075 res = get_discrete_bounds (index, &low, &high);
1076 if (res == -1)
1077 return 0;
1078
1079 /* Check if the array bounds are undefined. */
1080 if (res == 1
1081 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1082 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1083 return 0;
1084
1085 if (low_bound)
1086 *low_bound = low;
1087
1088 if (high_bound)
1089 *high_bound = high;
1090
1091 return 1;
1092}
1093
aa715135
JG
1094/* Assuming that TYPE is a discrete type and VAL is a valid integer
1095 representation of a value of this type, save the corresponding
1096 position number in POS.
1097
1098 Its differs from VAL only in the case of enumeration types. In
1099 this case, the position number of the value of the first listed
1100 enumeration literal is zero; the position number of the value of
1101 each subsequent enumeration literal is one more than that of its
1102 predecessor in the list.
1103
1104 Return 1 if the operation was successful. Return zero otherwise,
1105 in which case the value of POS is unmodified.
1106*/
1107
1108int
1109discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1110{
1111 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1112 {
1113 int i;
1114
1115 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1116 {
1117 if (val == TYPE_FIELD_ENUMVAL (type, i))
1118 {
1119 *pos = i;
1120 return 1;
1121 }
1122 }
1123 /* Invalid enumeration value. */
1124 return 0;
1125 }
1126 else
1127 {
1128 *pos = val;
1129 return 1;
1130 }
1131}
1132
7ba81444
MS
1133/* Create an array type using either a blank type supplied in
1134 RESULT_TYPE, or creating a new type, inheriting the objfile from
1135 RANGE_TYPE.
c906108c
SS
1136
1137 Elements will be of type ELEMENT_TYPE, the indices will be of type
1138 RANGE_TYPE.
1139
a405673c
JB
1140 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1141 This byte stride property is added to the resulting array type
1142 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1143 argument can only be used to create types that are objfile-owned
1144 (see add_dyn_prop), meaning that either this function must be called
1145 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1146
1147 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
dc53a7ad
JB
1148 If BIT_STRIDE is not zero, build a packed array type whose element
1149 size is BIT_STRIDE. Otherwise, ignore this parameter.
1150
7ba81444
MS
1151 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1152 sure it is TYPE_CODE_UNDEF before we bash it into an array
1153 type? */
c906108c
SS
1154
1155struct type *
dc53a7ad
JB
1156create_array_type_with_stride (struct type *result_type,
1157 struct type *element_type,
1158 struct type *range_type,
a405673c 1159 struct dynamic_prop *byte_stride_prop,
dc53a7ad 1160 unsigned int bit_stride)
c906108c 1161{
a405673c
JB
1162 if (byte_stride_prop != NULL
1163 && byte_stride_prop->kind == PROP_CONST)
1164 {
1165 /* The byte stride is actually not dynamic. Pretend we were
1166 called with bit_stride set instead of byte_stride_prop.
1167 This will give us the same result type, while avoiding
1168 the need to handle this as a special case. */
1169 bit_stride = byte_stride_prop->data.const_val * 8;
1170 byte_stride_prop = NULL;
1171 }
1172
c906108c 1173 if (result_type == NULL)
e9bb382b
UW
1174 result_type = alloc_type_copy (range_type);
1175
c906108c
SS
1176 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1177 TYPE_TARGET_TYPE (result_type) = element_type;
a405673c
JB
1178 if (byte_stride_prop == NULL
1179 && has_static_range (TYPE_RANGE_DATA (range_type))
b4a7fcab
JB
1180 && (!type_not_associated (result_type)
1181 && !type_not_allocated (result_type)))
80180f79
SA
1182 {
1183 LONGEST low_bound, high_bound;
1184
1185 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1186 low_bound = high_bound = 0;
f168693b 1187 element_type = check_typedef (element_type);
80180f79
SA
1188 /* Be careful when setting the array length. Ada arrays can be
1189 empty arrays with the high_bound being smaller than the low_bound.
1190 In such cases, the array length should be zero. */
1191 if (high_bound < low_bound)
1192 TYPE_LENGTH (result_type) = 0;
1193 else if (bit_stride > 0)
1194 TYPE_LENGTH (result_type) =
1195 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1196 else
1197 TYPE_LENGTH (result_type) =
1198 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1199 }
ab0d6e0d 1200 else
80180f79
SA
1201 {
1202 /* This type is dynamic and its length needs to be computed
1203 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1204 undefined by setting it to zero. Although we are not expected
1205 to trust TYPE_LENGTH in this case, setting the size to zero
1206 allows us to avoid allocating objects of random sizes in case
1207 we accidently do. */
1208 TYPE_LENGTH (result_type) = 0;
1209 }
1210
c906108c
SS
1211 TYPE_NFIELDS (result_type) = 1;
1212 TYPE_FIELDS (result_type) =
1deafd4e 1213 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 1214 TYPE_INDEX_TYPE (result_type) = range_type;
a405673c 1215 if (byte_stride_prop != NULL)
50a82047 1216 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
a405673c 1217 else if (bit_stride > 0)
dc53a7ad 1218 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
c906108c 1219
a9ff5f12 1220 /* TYPE_TARGET_STUB will take care of zero length arrays. */
c906108c 1221 if (TYPE_LENGTH (result_type) == 0)
876cecd0 1222 TYPE_TARGET_STUB (result_type) = 1;
c906108c 1223
c16abbde 1224 return result_type;
c906108c
SS
1225}
1226
dc53a7ad
JB
1227/* Same as create_array_type_with_stride but with no bit_stride
1228 (BIT_STRIDE = 0), thus building an unpacked array. */
1229
1230struct type *
1231create_array_type (struct type *result_type,
1232 struct type *element_type,
1233 struct type *range_type)
1234{
1235 return create_array_type_with_stride (result_type, element_type,
a405673c 1236 range_type, NULL, 0);
dc53a7ad
JB
1237}
1238
e3506a9f
UW
1239struct type *
1240lookup_array_range_type (struct type *element_type,
63375b74 1241 LONGEST low_bound, LONGEST high_bound)
e3506a9f 1242{
929b5ad4
JB
1243 struct type *index_type;
1244 struct type *range_type;
1245
1246 if (TYPE_OBJFILE_OWNED (element_type))
1247 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1248 else
1249 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1250 range_type = create_static_range_type (NULL, index_type,
1251 low_bound, high_bound);
d8734c88 1252
e3506a9f
UW
1253 return create_array_type (NULL, element_type, range_type);
1254}
1255
7ba81444
MS
1256/* Create a string type using either a blank type supplied in
1257 RESULT_TYPE, or creating a new type. String types are similar
1258 enough to array of char types that we can use create_array_type to
1259 build the basic type and then bash it into a string type.
c906108c
SS
1260
1261 For fixed length strings, the range type contains 0 as the lower
1262 bound and the length of the string minus one as the upper bound.
1263
7ba81444
MS
1264 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1265 sure it is TYPE_CODE_UNDEF before we bash it into a string
1266 type? */
c906108c
SS
1267
1268struct type *
3b7538c0
UW
1269create_string_type (struct type *result_type,
1270 struct type *string_char_type,
7ba81444 1271 struct type *range_type)
c906108c
SS
1272{
1273 result_type = create_array_type (result_type,
f290d38e 1274 string_char_type,
c906108c
SS
1275 range_type);
1276 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 1277 return result_type;
c906108c
SS
1278}
1279
e3506a9f
UW
1280struct type *
1281lookup_string_range_type (struct type *string_char_type,
63375b74 1282 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1283{
1284 struct type *result_type;
d8734c88 1285
e3506a9f
UW
1286 result_type = lookup_array_range_type (string_char_type,
1287 low_bound, high_bound);
1288 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1289 return result_type;
1290}
1291
c906108c 1292struct type *
fba45db2 1293create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1294{
c906108c 1295 if (result_type == NULL)
e9bb382b
UW
1296 result_type = alloc_type_copy (domain_type);
1297
c906108c
SS
1298 TYPE_CODE (result_type) = TYPE_CODE_SET;
1299 TYPE_NFIELDS (result_type) = 1;
224c3ddb
SM
1300 TYPE_FIELDS (result_type)
1301 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 1302
74a9bb82 1303 if (!TYPE_STUB (domain_type))
c906108c 1304 {
f9780d5b 1305 LONGEST low_bound, high_bound, bit_length;
d8734c88 1306
c906108c
SS
1307 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1308 low_bound = high_bound = 0;
1309 bit_length = high_bound - low_bound + 1;
1310 TYPE_LENGTH (result_type)
1311 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1312 if (low_bound >= 0)
876cecd0 1313 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
1314 }
1315 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1316
c16abbde 1317 return result_type;
c906108c
SS
1318}
1319
ea37ba09
DJ
1320/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1321 and any array types nested inside it. */
1322
1323void
1324make_vector_type (struct type *array_type)
1325{
1326 struct type *inner_array, *elt_type;
1327 int flags;
1328
1329 /* Find the innermost array type, in case the array is
1330 multi-dimensional. */
1331 inner_array = array_type;
1332 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1333 inner_array = TYPE_TARGET_TYPE (inner_array);
1334
1335 elt_type = TYPE_TARGET_TYPE (inner_array);
1336 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1337 {
2844d6b5 1338 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1339 elt_type = make_qualified_type (elt_type, flags, NULL);
1340 TYPE_TARGET_TYPE (inner_array) = elt_type;
1341 }
1342
876cecd0 1343 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1344}
1345
794ac428 1346struct type *
ac3aafc7
EZ
1347init_vector_type (struct type *elt_type, int n)
1348{
1349 struct type *array_type;
d8734c88 1350
e3506a9f 1351 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1352 make_vector_type (array_type);
ac3aafc7
EZ
1353 return array_type;
1354}
1355
09e2d7c7
DE
1356/* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1357 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1358 confusing. "self" is a common enough replacement for "this".
1359 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1360 TYPE_CODE_METHOD. */
1361
1362struct type *
1363internal_type_self_type (struct type *type)
1364{
1365 switch (TYPE_CODE (type))
1366 {
1367 case TYPE_CODE_METHODPTR:
1368 case TYPE_CODE_MEMBERPTR:
eaaf76ab
DE
1369 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1370 return NULL;
09e2d7c7
DE
1371 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1372 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1373 case TYPE_CODE_METHOD:
eaaf76ab
DE
1374 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1375 return NULL;
09e2d7c7
DE
1376 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1377 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1378 default:
1379 gdb_assert_not_reached ("bad type");
1380 }
1381}
1382
1383/* Set the type of the class that TYPE belongs to.
1384 In c++ this is the class of "this".
1385 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1386 TYPE_CODE_METHOD. */
1387
1388void
1389set_type_self_type (struct type *type, struct type *self_type)
1390{
1391 switch (TYPE_CODE (type))
1392 {
1393 case TYPE_CODE_METHODPTR:
1394 case TYPE_CODE_MEMBERPTR:
1395 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1396 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1397 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1398 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1399 break;
1400 case TYPE_CODE_METHOD:
1401 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1402 INIT_FUNC_SPECIFIC (type);
1403 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1404 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1405 break;
1406 default:
1407 gdb_assert_not_reached ("bad type");
1408 }
1409}
1410
1411/* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
0d5de010
DJ
1412 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1413 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1414 TYPE doesn't include the offset (that's the value of the MEMBER
1415 itself), but does include the structure type into which it points
1416 (for some reason).
c906108c 1417
7ba81444
MS
1418 When "smashing" the type, we preserve the objfile that the old type
1419 pointed to, since we aren't changing where the type is actually
c906108c
SS
1420 allocated. */
1421
1422void
09e2d7c7 1423smash_to_memberptr_type (struct type *type, struct type *self_type,
0d5de010 1424 struct type *to_type)
c906108c 1425{
2fdde8f8 1426 smash_type (type);
09e2d7c7 1427 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c 1428 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1429 set_type_self_type (type, self_type);
0d5de010
DJ
1430 /* Assume that a data member pointer is the same size as a normal
1431 pointer. */
50810684
UW
1432 TYPE_LENGTH (type)
1433 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
c906108c
SS
1434}
1435
0b92b5bb
TT
1436/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1437
1438 When "smashing" the type, we preserve the objfile that the old type
1439 pointed to, since we aren't changing where the type is actually
1440 allocated. */
1441
1442void
1443smash_to_methodptr_type (struct type *type, struct type *to_type)
1444{
1445 smash_type (type);
09e2d7c7 1446 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
0b92b5bb 1447 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1448 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
0b92b5bb 1449 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
0b92b5bb
TT
1450}
1451
09e2d7c7 1452/* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
c906108c
SS
1453 METHOD just means `function that gets an extra "this" argument'.
1454
7ba81444
MS
1455 When "smashing" the type, we preserve the objfile that the old type
1456 pointed to, since we aren't changing where the type is actually
c906108c
SS
1457 allocated. */
1458
1459void
09e2d7c7 1460smash_to_method_type (struct type *type, struct type *self_type,
ad2f7632
DJ
1461 struct type *to_type, struct field *args,
1462 int nargs, int varargs)
c906108c 1463{
2fdde8f8 1464 smash_type (type);
09e2d7c7 1465 TYPE_CODE (type) = TYPE_CODE_METHOD;
c906108c 1466 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1467 set_type_self_type (type, self_type);
ad2f7632
DJ
1468 TYPE_FIELDS (type) = args;
1469 TYPE_NFIELDS (type) = nargs;
1470 if (varargs)
876cecd0 1471 TYPE_VARARGS (type) = 1;
c906108c 1472 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
c906108c
SS
1473}
1474
a737d952 1475/* A wrapper of TYPE_NAME which calls error if the type is anonymous.
d8228535
JK
1476 Since GCC PR debug/47510 DWARF provides associated information to detect the
1477 anonymous class linkage name from its typedef.
1478
1479 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1480 apply it itself. */
1481
1482const char *
a737d952 1483type_name_or_error (struct type *type)
d8228535
JK
1484{
1485 struct type *saved_type = type;
1486 const char *name;
1487 struct objfile *objfile;
1488
f168693b 1489 type = check_typedef (type);
d8228535 1490
a737d952 1491 name = TYPE_NAME (type);
d8228535
JK
1492 if (name != NULL)
1493 return name;
1494
a737d952 1495 name = TYPE_NAME (saved_type);
d8228535
JK
1496 objfile = TYPE_OBJFILE (saved_type);
1497 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
4262abfb
JK
1498 name ? name : "<anonymous>",
1499 objfile ? objfile_name (objfile) : "<arch>");
d8228535
JK
1500}
1501
7ba81444
MS
1502/* Lookup a typedef or primitive type named NAME, visible in lexical
1503 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1504 suitably defined. */
c906108c
SS
1505
1506struct type *
e6c014f2 1507lookup_typename (const struct language_defn *language,
ddd49eee 1508 struct gdbarch *gdbarch, const char *name,
34eaf542 1509 const struct block *block, int noerr)
c906108c 1510{
52f0bd74 1511 struct symbol *sym;
c906108c 1512
1994afbf 1513 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
d12307c1 1514 language->la_language, NULL).symbol;
c51fe631
DE
1515 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1516 return SYMBOL_TYPE (sym);
1517
c51fe631
DE
1518 if (noerr)
1519 return NULL;
1520 error (_("No type named %s."), name);
c906108c
SS
1521}
1522
1523struct type *
e6c014f2 1524lookup_unsigned_typename (const struct language_defn *language,
0d5cff50 1525 struct gdbarch *gdbarch, const char *name)
c906108c 1526{
224c3ddb 1527 char *uns = (char *) alloca (strlen (name) + 10);
c906108c
SS
1528
1529 strcpy (uns, "unsigned ");
1530 strcpy (uns + 9, name);
582942f4 1531 return lookup_typename (language, gdbarch, uns, NULL, 0);
c906108c
SS
1532}
1533
1534struct type *
e6c014f2 1535lookup_signed_typename (const struct language_defn *language,
0d5cff50 1536 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1537{
1538 struct type *t;
224c3ddb 1539 char *uns = (char *) alloca (strlen (name) + 8);
c906108c
SS
1540
1541 strcpy (uns, "signed ");
1542 strcpy (uns + 7, name);
582942f4 1543 t = lookup_typename (language, gdbarch, uns, NULL, 1);
7ba81444 1544 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1545 if (t != NULL)
1546 return t;
582942f4 1547 return lookup_typename (language, gdbarch, name, NULL, 0);
c906108c
SS
1548}
1549
1550/* Lookup a structure type named "struct NAME",
1551 visible in lexical block BLOCK. */
1552
1553struct type *
270140bd 1554lookup_struct (const char *name, const struct block *block)
c906108c 1555{
52f0bd74 1556 struct symbol *sym;
c906108c 1557
d12307c1 1558 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1559
1560 if (sym == NULL)
1561 {
8a3fe4f8 1562 error (_("No struct type named %s."), name);
c906108c
SS
1563 }
1564 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1565 {
7ba81444
MS
1566 error (_("This context has class, union or enum %s, not a struct."),
1567 name);
c906108c
SS
1568 }
1569 return (SYMBOL_TYPE (sym));
1570}
1571
1572/* Lookup a union type named "union NAME",
1573 visible in lexical block BLOCK. */
1574
1575struct type *
270140bd 1576lookup_union (const char *name, const struct block *block)
c906108c 1577{
52f0bd74 1578 struct symbol *sym;
c5aa993b 1579 struct type *t;
c906108c 1580
d12307c1 1581 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1582
1583 if (sym == NULL)
8a3fe4f8 1584 error (_("No union type named %s."), name);
c906108c 1585
c5aa993b 1586 t = SYMBOL_TYPE (sym);
c906108c
SS
1587
1588 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1589 return t;
c906108c 1590
7ba81444
MS
1591 /* If we get here, it's not a union. */
1592 error (_("This context has class, struct or enum %s, not a union."),
1593 name);
c906108c
SS
1594}
1595
c906108c
SS
1596/* Lookup an enum type named "enum NAME",
1597 visible in lexical block BLOCK. */
1598
1599struct type *
270140bd 1600lookup_enum (const char *name, const struct block *block)
c906108c 1601{
52f0bd74 1602 struct symbol *sym;
c906108c 1603
d12307c1 1604 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1605 if (sym == NULL)
1606 {
8a3fe4f8 1607 error (_("No enum type named %s."), name);
c906108c
SS
1608 }
1609 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1610 {
7ba81444
MS
1611 error (_("This context has class, struct or union %s, not an enum."),
1612 name);
c906108c
SS
1613 }
1614 return (SYMBOL_TYPE (sym));
1615}
1616
1617/* Lookup a template type named "template NAME<TYPE>",
1618 visible in lexical block BLOCK. */
1619
1620struct type *
7ba81444 1621lookup_template_type (char *name, struct type *type,
270140bd 1622 const struct block *block)
c906108c
SS
1623{
1624 struct symbol *sym;
7ba81444
MS
1625 char *nam = (char *)
1626 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1627
c906108c
SS
1628 strcpy (nam, name);
1629 strcat (nam, "<");
0004e5a2 1630 strcat (nam, TYPE_NAME (type));
0963b4bd 1631 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1632
d12307c1 1633 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
c906108c
SS
1634
1635 if (sym == NULL)
1636 {
8a3fe4f8 1637 error (_("No template type named %s."), name);
c906108c
SS
1638 }
1639 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1640 {
7ba81444
MS
1641 error (_("This context has class, union or enum %s, not a struct."),
1642 name);
c906108c
SS
1643 }
1644 return (SYMBOL_TYPE (sym));
1645}
1646
ef0bd204 1647/* See gdbtypes.h. */
c906108c 1648
ef0bd204
JB
1649struct_elt
1650lookup_struct_elt (struct type *type, const char *name, int noerr)
c906108c
SS
1651{
1652 int i;
1653
1654 for (;;)
1655 {
f168693b 1656 type = check_typedef (type);
c906108c
SS
1657 if (TYPE_CODE (type) != TYPE_CODE_PTR
1658 && TYPE_CODE (type) != TYPE_CODE_REF)
1659 break;
1660 type = TYPE_TARGET_TYPE (type);
1661 }
1662
687d6395
MS
1663 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1664 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1665 {
2f408ecb
PA
1666 std::string type_name = type_to_string (type);
1667 error (_("Type %s is not a structure or union type."),
1668 type_name.c_str ());
c906108c
SS
1669 }
1670
c906108c
SS
1671 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1672 {
0d5cff50 1673 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1674
db577aea 1675 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c 1676 {
ef0bd204 1677 return {&TYPE_FIELD (type, i), TYPE_FIELD_BITPOS (type, i)};
c906108c 1678 }
f5a010c0
PM
1679 else if (!t_field_name || *t_field_name == '\0')
1680 {
ef0bd204
JB
1681 struct_elt elt
1682 = lookup_struct_elt (TYPE_FIELD_TYPE (type, i), name, 1);
1683 if (elt.field != NULL)
1684 {
1685 elt.offset += TYPE_FIELD_BITPOS (type, i);
1686 return elt;
1687 }
f5a010c0 1688 }
c906108c
SS
1689 }
1690
1691 /* OK, it's not in this class. Recursively check the baseclasses. */
1692 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1693 {
ef0bd204
JB
1694 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1695 if (elt.field != NULL)
1696 return elt;
c906108c
SS
1697 }
1698
1699 if (noerr)
ef0bd204 1700 return {nullptr, 0};
c5aa993b 1701
2f408ecb
PA
1702 std::string type_name = type_to_string (type);
1703 error (_("Type %s has no component named %s."), type_name.c_str (), name);
c906108c
SS
1704}
1705
ef0bd204
JB
1706/* See gdbtypes.h. */
1707
1708struct type *
1709lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1710{
1711 struct_elt elt = lookup_struct_elt (type, name, noerr);
1712 if (elt.field != NULL)
1713 return FIELD_TYPE (*elt.field);
1714 else
1715 return NULL;
1716}
1717
ed3ef339
DE
1718/* Store in *MAX the largest number representable by unsigned integer type
1719 TYPE. */
1720
1721void
1722get_unsigned_type_max (struct type *type, ULONGEST *max)
1723{
1724 unsigned int n;
1725
f168693b 1726 type = check_typedef (type);
ed3ef339
DE
1727 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1728 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1729
1730 /* Written this way to avoid overflow. */
1731 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1732 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1733}
1734
1735/* Store in *MIN, *MAX the smallest and largest numbers representable by
1736 signed integer type TYPE. */
1737
1738void
1739get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1740{
1741 unsigned int n;
1742
f168693b 1743 type = check_typedef (type);
ed3ef339
DE
1744 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1745 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1746
1747 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1748 *min = -((ULONGEST) 1 << (n - 1));
1749 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1750}
1751
ae6ae975
DE
1752/* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1753 cplus_stuff.vptr_fieldno.
1754
1755 cplus_stuff is initialized to cplus_struct_default which does not
1756 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1757 designated initializers). We cope with that here. */
1758
1759int
1760internal_type_vptr_fieldno (struct type *type)
1761{
f168693b 1762 type = check_typedef (type);
ae6ae975
DE
1763 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1764 || TYPE_CODE (type) == TYPE_CODE_UNION);
1765 if (!HAVE_CPLUS_STRUCT (type))
1766 return -1;
1767 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1768}
1769
1770/* Set the value of cplus_stuff.vptr_fieldno. */
1771
1772void
1773set_type_vptr_fieldno (struct type *type, int fieldno)
1774{
f168693b 1775 type = check_typedef (type);
ae6ae975
DE
1776 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1777 || TYPE_CODE (type) == TYPE_CODE_UNION);
1778 if (!HAVE_CPLUS_STRUCT (type))
1779 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1780 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1781}
1782
1783/* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1784 cplus_stuff.vptr_basetype. */
1785
1786struct type *
1787internal_type_vptr_basetype (struct type *type)
1788{
f168693b 1789 type = check_typedef (type);
ae6ae975
DE
1790 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1791 || TYPE_CODE (type) == TYPE_CODE_UNION);
1792 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1793 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1794}
1795
1796/* Set the value of cplus_stuff.vptr_basetype. */
1797
1798void
1799set_type_vptr_basetype (struct type *type, struct type *basetype)
1800{
f168693b 1801 type = check_typedef (type);
ae6ae975
DE
1802 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1803 || TYPE_CODE (type) == TYPE_CODE_UNION);
1804 if (!HAVE_CPLUS_STRUCT (type))
1805 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1806 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1807}
1808
81fe8080
DE
1809/* Lookup the vptr basetype/fieldno values for TYPE.
1810 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1811 vptr_fieldno. Also, if found and basetype is from the same objfile,
1812 cache the results.
1813 If not found, return -1 and ignore BASETYPEP.
1814 Callers should be aware that in some cases (for example,
c906108c 1815 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1816 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1817 this function will not be able to find the
7ba81444 1818 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1819 vptr_basetype will remain NULL or incomplete. */
c906108c 1820
81fe8080
DE
1821int
1822get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c 1823{
f168693b 1824 type = check_typedef (type);
c906108c
SS
1825
1826 if (TYPE_VPTR_FIELDNO (type) < 0)
1827 {
1828 int i;
1829
7ba81444
MS
1830 /* We must start at zero in case the first (and only) baseclass
1831 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1832 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1833 {
81fe8080
DE
1834 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1835 int fieldno;
1836 struct type *basetype;
1837
1838 fieldno = get_vptr_fieldno (baseclass, &basetype);
1839 if (fieldno >= 0)
c906108c 1840 {
81fe8080 1841 /* If the type comes from a different objfile we can't cache
0963b4bd 1842 it, it may have a different lifetime. PR 2384 */
5ef73790 1843 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080 1844 {
ae6ae975
DE
1845 set_type_vptr_fieldno (type, fieldno);
1846 set_type_vptr_basetype (type, basetype);
81fe8080
DE
1847 }
1848 if (basetypep)
1849 *basetypep = basetype;
1850 return fieldno;
c906108c
SS
1851 }
1852 }
81fe8080
DE
1853
1854 /* Not found. */
1855 return -1;
1856 }
1857 else
1858 {
1859 if (basetypep)
1860 *basetypep = TYPE_VPTR_BASETYPE (type);
1861 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1862 }
1863}
1864
44e1a9eb
DJ
1865static void
1866stub_noname_complaint (void)
1867{
b98664d3 1868 complaint (_("stub type has NULL name"));
44e1a9eb
DJ
1869}
1870
a405673c
JB
1871/* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1872 attached to it, and that property has a non-constant value. */
1873
1874static int
1875array_type_has_dynamic_stride (struct type *type)
1876{
1877 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1878
1879 return (prop != NULL && prop->kind != PROP_CONST);
1880}
1881
d98b7a16 1882/* Worker for is_dynamic_type. */
80180f79 1883
d98b7a16 1884static int
ee715b5a 1885is_dynamic_type_internal (struct type *type, int top_level)
80180f79
SA
1886{
1887 type = check_typedef (type);
1888
e771e4be
PMR
1889 /* We only want to recognize references at the outermost level. */
1890 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1891 type = check_typedef (TYPE_TARGET_TYPE (type));
1892
3cdcd0ce
JB
1893 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1894 dynamic, even if the type itself is statically defined.
1895 From a user's point of view, this may appear counter-intuitive;
1896 but it makes sense in this context, because the point is to determine
1897 whether any part of the type needs to be resolved before it can
1898 be exploited. */
1899 if (TYPE_DATA_LOCATION (type) != NULL
1900 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1901 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1902 return 1;
1903
3f2f83dd
KB
1904 if (TYPE_ASSOCIATED_PROP (type))
1905 return 1;
1906
1907 if (TYPE_ALLOCATED_PROP (type))
1908 return 1;
1909
80180f79
SA
1910 switch (TYPE_CODE (type))
1911 {
6f8a3220 1912 case TYPE_CODE_RANGE:
ddb87a81
JB
1913 {
1914 /* A range type is obviously dynamic if it has at least one
1915 dynamic bound. But also consider the range type to be
1916 dynamic when its subtype is dynamic, even if the bounds
1917 of the range type are static. It allows us to assume that
1918 the subtype of a static range type is also static. */
1919 return (!has_static_range (TYPE_RANGE_DATA (type))
ee715b5a 1920 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
ddb87a81 1921 }
6f8a3220 1922
80180f79
SA
1923 case TYPE_CODE_ARRAY:
1924 {
80180f79 1925 gdb_assert (TYPE_NFIELDS (type) == 1);
6f8a3220 1926
a405673c 1927 /* The array is dynamic if either the bounds are dynamic... */
ee715b5a 1928 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
80180f79 1929 return 1;
a405673c
JB
1930 /* ... or the elements it contains have a dynamic contents... */
1931 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
1932 return 1;
1933 /* ... or if it has a dynamic stride... */
1934 if (array_type_has_dynamic_stride (type))
1935 return 1;
1936 return 0;
80180f79 1937 }
012370f6
TT
1938
1939 case TYPE_CODE_STRUCT:
1940 case TYPE_CODE_UNION:
1941 {
1942 int i;
1943
1944 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1945 if (!field_is_static (&TYPE_FIELD (type, i))
ee715b5a 1946 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
012370f6
TT
1947 return 1;
1948 }
1949 break;
80180f79 1950 }
92e2a17f
TT
1951
1952 return 0;
80180f79
SA
1953}
1954
d98b7a16
TT
1955/* See gdbtypes.h. */
1956
1957int
1958is_dynamic_type (struct type *type)
1959{
ee715b5a 1960 return is_dynamic_type_internal (type, 1);
d98b7a16
TT
1961}
1962
df25ebbd 1963static struct type *resolve_dynamic_type_internal
ee715b5a 1964 (struct type *type, struct property_addr_info *addr_stack, int top_level);
d98b7a16 1965
df25ebbd
JB
1966/* Given a dynamic range type (dyn_range_type) and a stack of
1967 struct property_addr_info elements, return a static version
1968 of that type. */
d190df30 1969
80180f79 1970static struct type *
df25ebbd
JB
1971resolve_dynamic_range (struct type *dyn_range_type,
1972 struct property_addr_info *addr_stack)
80180f79
SA
1973{
1974 CORE_ADDR value;
ddb87a81 1975 struct type *static_range_type, *static_target_type;
80180f79 1976 const struct dynamic_prop *prop;
80180f79
SA
1977 struct dynamic_prop low_bound, high_bound;
1978
6f8a3220 1979 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
80180f79 1980
6f8a3220 1981 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
63e43d3a 1982 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
1983 {
1984 low_bound.kind = PROP_CONST;
1985 low_bound.data.const_val = value;
1986 }
1987 else
1988 {
1989 low_bound.kind = PROP_UNDEFINED;
1990 low_bound.data.const_val = 0;
1991 }
1992
6f8a3220 1993 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
63e43d3a 1994 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
1995 {
1996 high_bound.kind = PROP_CONST;
1997 high_bound.data.const_val = value;
c451ebe5 1998
6f8a3220 1999 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
c451ebe5
SA
2000 high_bound.data.const_val
2001 = low_bound.data.const_val + high_bound.data.const_val - 1;
80180f79
SA
2002 }
2003 else
2004 {
2005 high_bound.kind = PROP_UNDEFINED;
2006 high_bound.data.const_val = 0;
2007 }
2008
ddb87a81
JB
2009 static_target_type
2010 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
ee715b5a 2011 addr_stack, 0);
6f8a3220 2012 static_range_type = create_range_type (copy_type (dyn_range_type),
ddb87a81 2013 static_target_type,
6f8a3220
JB
2014 &low_bound, &high_bound);
2015 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2016 return static_range_type;
2017}
2018
2019/* Resolves dynamic bound values of an array type TYPE to static ones.
df25ebbd
JB
2020 ADDR_STACK is a stack of struct property_addr_info to be used
2021 if needed during the dynamic resolution. */
6f8a3220
JB
2022
2023static struct type *
df25ebbd
JB
2024resolve_dynamic_array (struct type *type,
2025 struct property_addr_info *addr_stack)
6f8a3220
JB
2026{
2027 CORE_ADDR value;
2028 struct type *elt_type;
2029 struct type *range_type;
2030 struct type *ary_dim;
3f2f83dd 2031 struct dynamic_prop *prop;
a405673c 2032 unsigned int bit_stride = 0;
6f8a3220
JB
2033
2034 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
2035
3f2f83dd
KB
2036 type = copy_type (type);
2037
6f8a3220
JB
2038 elt_type = type;
2039 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
df25ebbd 2040 range_type = resolve_dynamic_range (range_type, addr_stack);
6f8a3220 2041
3f2f83dd
KB
2042 /* Resolve allocated/associated here before creating a new array type, which
2043 will update the length of the array accordingly. */
2044 prop = TYPE_ALLOCATED_PROP (type);
2045 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2046 {
2047 TYPE_DYN_PROP_ADDR (prop) = value;
2048 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2049 }
2050 prop = TYPE_ASSOCIATED_PROP (type);
2051 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2052 {
2053 TYPE_DYN_PROP_ADDR (prop) = value;
2054 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2055 }
2056
80180f79
SA
2057 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2058
2059 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
d0d84780 2060 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
80180f79
SA
2061 else
2062 elt_type = TYPE_TARGET_TYPE (type);
2063
a405673c
JB
2064 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2065 if (prop != NULL)
2066 {
2067 int prop_eval_ok
2068 = dwarf2_evaluate_property (prop, NULL, addr_stack, &value);
2069
2070 if (prop_eval_ok)
2071 {
2072 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2073 bit_stride = (unsigned int) (value * 8);
2074 }
2075 else
2076 {
2077 /* Could be a bug in our code, but it could also happen
2078 if the DWARF info is not correct. Issue a warning,
2079 and assume no byte/bit stride (leave bit_stride = 0). */
2080 warning (_("cannot determine array stride for type %s"),
2081 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2082 }
2083 }
2084 else
2085 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2086
2087 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2088 bit_stride);
80180f79
SA
2089}
2090
012370f6 2091/* Resolve dynamic bounds of members of the union TYPE to static
df25ebbd
JB
2092 bounds. ADDR_STACK is a stack of struct property_addr_info
2093 to be used if needed during the dynamic resolution. */
012370f6
TT
2094
2095static struct type *
df25ebbd
JB
2096resolve_dynamic_union (struct type *type,
2097 struct property_addr_info *addr_stack)
012370f6
TT
2098{
2099 struct type *resolved_type;
2100 int i;
2101 unsigned int max_len = 0;
2102
2103 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2104
2105 resolved_type = copy_type (type);
2106 TYPE_FIELDS (resolved_type)
224c3ddb
SM
2107 = (struct field *) TYPE_ALLOC (resolved_type,
2108 TYPE_NFIELDS (resolved_type)
2109 * sizeof (struct field));
012370f6
TT
2110 memcpy (TYPE_FIELDS (resolved_type),
2111 TYPE_FIELDS (type),
2112 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2113 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2114 {
2115 struct type *t;
2116
2117 if (field_is_static (&TYPE_FIELD (type, i)))
2118 continue;
2119
d98b7a16 2120 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2121 addr_stack, 0);
012370f6
TT
2122 TYPE_FIELD_TYPE (resolved_type, i) = t;
2123 if (TYPE_LENGTH (t) > max_len)
2124 max_len = TYPE_LENGTH (t);
2125 }
2126
2127 TYPE_LENGTH (resolved_type) = max_len;
2128 return resolved_type;
2129}
2130
2131/* Resolve dynamic bounds of members of the struct TYPE to static
df25ebbd
JB
2132 bounds. ADDR_STACK is a stack of struct property_addr_info to
2133 be used if needed during the dynamic resolution. */
012370f6
TT
2134
2135static struct type *
df25ebbd
JB
2136resolve_dynamic_struct (struct type *type,
2137 struct property_addr_info *addr_stack)
012370f6
TT
2138{
2139 struct type *resolved_type;
2140 int i;
6908c509 2141 unsigned resolved_type_bit_length = 0;
012370f6
TT
2142
2143 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2144 gdb_assert (TYPE_NFIELDS (type) > 0);
2145
2146 resolved_type = copy_type (type);
2147 TYPE_FIELDS (resolved_type)
224c3ddb
SM
2148 = (struct field *) TYPE_ALLOC (resolved_type,
2149 TYPE_NFIELDS (resolved_type)
2150 * sizeof (struct field));
012370f6
TT
2151 memcpy (TYPE_FIELDS (resolved_type),
2152 TYPE_FIELDS (type),
2153 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2154 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2155 {
6908c509 2156 unsigned new_bit_length;
df25ebbd 2157 struct property_addr_info pinfo;
012370f6
TT
2158
2159 if (field_is_static (&TYPE_FIELD (type, i)))
2160 continue;
2161
6908c509
JB
2162 /* As we know this field is not a static field, the field's
2163 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2164 this is the case, but only trigger a simple error rather
2165 than an internal error if that fails. While failing
2166 that verification indicates a bug in our code, the error
2167 is not severe enough to suggest to the user he stops
2168 his debugging session because of it. */
df25ebbd 2169 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
6908c509
JB
2170 error (_("Cannot determine struct field location"
2171 " (invalid location kind)"));
df25ebbd
JB
2172
2173 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
c3345124 2174 pinfo.valaddr = addr_stack->valaddr;
9920b434
BH
2175 pinfo.addr
2176 = (addr_stack->addr
2177 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
df25ebbd
JB
2178 pinfo.next = addr_stack;
2179
2180 TYPE_FIELD_TYPE (resolved_type, i)
2181 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2182 &pinfo, 0);
df25ebbd
JB
2183 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2184 == FIELD_LOC_KIND_BITPOS);
2185
6908c509
JB
2186 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2187 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2188 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2189 else
2190 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2191 * TARGET_CHAR_BIT);
2192
2193 /* Normally, we would use the position and size of the last field
2194 to determine the size of the enclosing structure. But GCC seems
2195 to be encoding the position of some fields incorrectly when
2196 the struct contains a dynamic field that is not placed last.
2197 So we compute the struct size based on the field that has
2198 the highest position + size - probably the best we can do. */
2199 if (new_bit_length > resolved_type_bit_length)
2200 resolved_type_bit_length = new_bit_length;
012370f6
TT
2201 }
2202
9920b434
BH
2203 /* The length of a type won't change for fortran, but it does for C and Ada.
2204 For fortran the size of dynamic fields might change over time but not the
2205 type length of the structure. If we adapt it, we run into problems
2206 when calculating the element offset for arrays of structs. */
2207 if (current_language->la_language != language_fortran)
2208 TYPE_LENGTH (resolved_type)
2209 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
6908c509 2210
9e195661
PMR
2211 /* The Ada language uses this field as a cache for static fixed types: reset
2212 it as RESOLVED_TYPE must have its own static fixed type. */
2213 TYPE_TARGET_TYPE (resolved_type) = NULL;
2214
012370f6
TT
2215 return resolved_type;
2216}
2217
d98b7a16 2218/* Worker for resolved_dynamic_type. */
80180f79 2219
d98b7a16 2220static struct type *
df25ebbd 2221resolve_dynamic_type_internal (struct type *type,
ee715b5a
PMR
2222 struct property_addr_info *addr_stack,
2223 int top_level)
80180f79
SA
2224{
2225 struct type *real_type = check_typedef (type);
6f8a3220 2226 struct type *resolved_type = type;
d9823cbb 2227 struct dynamic_prop *prop;
3cdcd0ce 2228 CORE_ADDR value;
80180f79 2229
ee715b5a 2230 if (!is_dynamic_type_internal (real_type, top_level))
80180f79
SA
2231 return type;
2232
5537b577 2233 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
6f8a3220 2234 {
cac9b138
JK
2235 resolved_type = copy_type (type);
2236 TYPE_TARGET_TYPE (resolved_type)
ee715b5a
PMR
2237 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2238 top_level);
5537b577
JK
2239 }
2240 else
2241 {
2242 /* Before trying to resolve TYPE, make sure it is not a stub. */
2243 type = real_type;
012370f6 2244
5537b577
JK
2245 switch (TYPE_CODE (type))
2246 {
e771e4be
PMR
2247 case TYPE_CODE_REF:
2248 {
2249 struct property_addr_info pinfo;
2250
2251 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
c3345124
JB
2252 pinfo.valaddr = NULL;
2253 if (addr_stack->valaddr != NULL)
2254 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2255 else
2256 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
e771e4be
PMR
2257 pinfo.next = addr_stack;
2258
2259 resolved_type = copy_type (type);
2260 TYPE_TARGET_TYPE (resolved_type)
2261 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2262 &pinfo, top_level);
2263 break;
2264 }
2265
5537b577 2266 case TYPE_CODE_ARRAY:
df25ebbd 2267 resolved_type = resolve_dynamic_array (type, addr_stack);
5537b577
JK
2268 break;
2269
2270 case TYPE_CODE_RANGE:
df25ebbd 2271 resolved_type = resolve_dynamic_range (type, addr_stack);
5537b577
JK
2272 break;
2273
2274 case TYPE_CODE_UNION:
df25ebbd 2275 resolved_type = resolve_dynamic_union (type, addr_stack);
5537b577
JK
2276 break;
2277
2278 case TYPE_CODE_STRUCT:
df25ebbd 2279 resolved_type = resolve_dynamic_struct (type, addr_stack);
5537b577
JK
2280 break;
2281 }
6f8a3220 2282 }
80180f79 2283
3cdcd0ce
JB
2284 /* Resolve data_location attribute. */
2285 prop = TYPE_DATA_LOCATION (resolved_type);
63e43d3a
PMR
2286 if (prop != NULL
2287 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
3cdcd0ce 2288 {
d9823cbb
KB
2289 TYPE_DYN_PROP_ADDR (prop) = value;
2290 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
3cdcd0ce 2291 }
3cdcd0ce 2292
80180f79
SA
2293 return resolved_type;
2294}
2295
d98b7a16
TT
2296/* See gdbtypes.h */
2297
2298struct type *
c3345124
JB
2299resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2300 CORE_ADDR addr)
d98b7a16 2301{
c3345124
JB
2302 struct property_addr_info pinfo
2303 = {check_typedef (type), valaddr, addr, NULL};
df25ebbd 2304
ee715b5a 2305 return resolve_dynamic_type_internal (type, &pinfo, 1);
d98b7a16
TT
2306}
2307
d9823cbb
KB
2308/* See gdbtypes.h */
2309
2310struct dynamic_prop *
2311get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2312{
2313 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2314
2315 while (node != NULL)
2316 {
2317 if (node->prop_kind == prop_kind)
283a9958 2318 return &node->prop;
d9823cbb
KB
2319 node = node->next;
2320 }
2321 return NULL;
2322}
2323
2324/* See gdbtypes.h */
2325
2326void
2327add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
50a82047 2328 struct type *type)
d9823cbb
KB
2329{
2330 struct dynamic_prop_list *temp;
2331
2332 gdb_assert (TYPE_OBJFILE_OWNED (type));
2333
50a82047
TT
2334 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2335 struct dynamic_prop_list);
d9823cbb 2336 temp->prop_kind = prop_kind;
283a9958 2337 temp->prop = prop;
d9823cbb
KB
2338 temp->next = TYPE_DYN_PROP_LIST (type);
2339
2340 TYPE_DYN_PROP_LIST (type) = temp;
2341}
2342
9920b434
BH
2343/* Remove dynamic property from TYPE in case it exists. */
2344
2345void
2346remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2347 struct type *type)
2348{
2349 struct dynamic_prop_list *prev_node, *curr_node;
2350
2351 curr_node = TYPE_DYN_PROP_LIST (type);
2352 prev_node = NULL;
2353
2354 while (NULL != curr_node)
2355 {
2356 if (curr_node->prop_kind == prop_kind)
2357 {
2358 /* Update the linked list but don't free anything.
2359 The property was allocated on objstack and it is not known
2360 if we are on top of it. Nevertheless, everything is released
2361 when the complete objstack is freed. */
2362 if (NULL == prev_node)
2363 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2364 else
2365 prev_node->next = curr_node->next;
2366
2367 return;
2368 }
2369
2370 prev_node = curr_node;
2371 curr_node = curr_node->next;
2372 }
2373}
d9823cbb 2374
92163a10
JK
2375/* Find the real type of TYPE. This function returns the real type,
2376 after removing all layers of typedefs, and completing opaque or stub
2377 types. Completion changes the TYPE argument, but stripping of
2378 typedefs does not.
2379
2380 Instance flags (e.g. const/volatile) are preserved as typedefs are
2381 stripped. If necessary a new qualified form of the underlying type
2382 is created.
2383
2384 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2385 not been computed and we're either in the middle of reading symbols, or
2386 there was no name for the typedef in the debug info.
2387
9bc118a5
DE
2388 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2389 QUITs in the symbol reading code can also throw.
2390 Thus this function can throw an exception.
2391
92163a10
JK
2392 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2393 the target type.
c906108c
SS
2394
2395 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 2396 we can find a full definition in some other file. If so, copy this
7ba81444
MS
2397 definition, so we can use it in future. There used to be a comment
2398 (but not any code) that if we don't find a full definition, we'd
2399 set a flag so we don't spend time in the future checking the same
2400 type. That would be a mistake, though--we might load in more
92163a10 2401 symbols which contain a full definition for the type. */
c906108c
SS
2402
2403struct type *
a02fd225 2404check_typedef (struct type *type)
c906108c
SS
2405{
2406 struct type *orig_type = type;
92163a10
JK
2407 /* While we're removing typedefs, we don't want to lose qualifiers.
2408 E.g., const/volatile. */
2409 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 2410
423c0af8
MS
2411 gdb_assert (type);
2412
c906108c
SS
2413 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2414 {
2415 if (!TYPE_TARGET_TYPE (type))
2416 {
0d5cff50 2417 const char *name;
c906108c
SS
2418 struct symbol *sym;
2419
2420 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 2421 reading a symtab. Infinite recursion is one danger. */
c906108c 2422 if (currently_reading_symtab)
92163a10 2423 return make_qualified_type (type, instance_flags, NULL);
c906108c 2424
a737d952 2425 name = TYPE_NAME (type);
e86ca25f
TT
2426 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2427 VAR_DOMAIN as appropriate? */
c906108c
SS
2428 if (name == NULL)
2429 {
23136709 2430 stub_noname_complaint ();
92163a10 2431 return make_qualified_type (type, instance_flags, NULL);
c906108c 2432 }
d12307c1 2433 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
2434 if (sym)
2435 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 2436 else /* TYPE_CODE_UNDEF */
e9bb382b 2437 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
2438 }
2439 type = TYPE_TARGET_TYPE (type);
c906108c 2440
92163a10
JK
2441 /* Preserve the instance flags as we traverse down the typedef chain.
2442
2443 Handling address spaces/classes is nasty, what do we do if there's a
2444 conflict?
2445 E.g., what if an outer typedef marks the type as class_1 and an inner
2446 typedef marks the type as class_2?
2447 This is the wrong place to do such error checking. We leave it to
2448 the code that created the typedef in the first place to flag the
2449 error. We just pick the outer address space (akin to letting the
2450 outer cast in a chain of casting win), instead of assuming
2451 "it can't happen". */
2452 {
2453 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2454 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2455 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2456 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2457
2458 /* Treat code vs data spaces and address classes separately. */
2459 if ((instance_flags & ALL_SPACES) != 0)
2460 new_instance_flags &= ~ALL_SPACES;
2461 if ((instance_flags & ALL_CLASSES) != 0)
2462 new_instance_flags &= ~ALL_CLASSES;
2463
2464 instance_flags |= new_instance_flags;
2465 }
2466 }
a02fd225 2467
7ba81444
MS
2468 /* If this is a struct/class/union with no fields, then check
2469 whether a full definition exists somewhere else. This is for
2470 systems where a type definition with no fields is issued for such
2471 types, instead of identifying them as stub types in the first
2472 place. */
c5aa993b 2473
7ba81444
MS
2474 if (TYPE_IS_OPAQUE (type)
2475 && opaque_type_resolution
2476 && !currently_reading_symtab)
c906108c 2477 {
a737d952 2478 const char *name = TYPE_NAME (type);
c5aa993b 2479 struct type *newtype;
d8734c88 2480
c906108c
SS
2481 if (name == NULL)
2482 {
23136709 2483 stub_noname_complaint ();
92163a10 2484 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2485 }
2486 newtype = lookup_transparent_type (name);
ad766c0a 2487
c906108c 2488 if (newtype)
ad766c0a 2489 {
7ba81444
MS
2490 /* If the resolved type and the stub are in the same
2491 objfile, then replace the stub type with the real deal.
2492 But if they're in separate objfiles, leave the stub
2493 alone; we'll just look up the transparent type every time
2494 we call check_typedef. We can't create pointers between
2495 types allocated to different objfiles, since they may
2496 have different lifetimes. Trying to copy NEWTYPE over to
2497 TYPE's objfile is pointless, too, since you'll have to
2498 move over any other types NEWTYPE refers to, which could
2499 be an unbounded amount of stuff. */
ad766c0a 2500 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
2501 type = make_qualified_type (newtype,
2502 TYPE_INSTANCE_FLAGS (type),
2503 type);
ad766c0a
JB
2504 else
2505 type = newtype;
2506 }
c906108c 2507 }
7ba81444
MS
2508 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2509 types. */
74a9bb82 2510 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 2511 {
a737d952 2512 const char *name = TYPE_NAME (type);
e86ca25f
TT
2513 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2514 as appropriate? */
c906108c 2515 struct symbol *sym;
d8734c88 2516
c906108c
SS
2517 if (name == NULL)
2518 {
23136709 2519 stub_noname_complaint ();
92163a10 2520 return make_qualified_type (type, instance_flags, NULL);
c906108c 2521 }
d12307c1 2522 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c 2523 if (sym)
c26f2453
JB
2524 {
2525 /* Same as above for opaque types, we can replace the stub
92163a10 2526 with the complete type only if they are in the same
c26f2453
JB
2527 objfile. */
2528 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
2529 type = make_qualified_type (SYMBOL_TYPE (sym),
2530 TYPE_INSTANCE_FLAGS (type),
2531 type);
c26f2453
JB
2532 else
2533 type = SYMBOL_TYPE (sym);
2534 }
c906108c
SS
2535 }
2536
74a9bb82 2537 if (TYPE_TARGET_STUB (type))
c906108c 2538 {
c906108c
SS
2539 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2540
74a9bb82 2541 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 2542 {
73e2eb35 2543 /* Nothing we can do. */
c5aa993b 2544 }
c906108c
SS
2545 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2546 {
2547 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 2548 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
2549 }
2550 }
92163a10
JK
2551
2552 type = make_qualified_type (type, instance_flags, NULL);
2553
7ba81444 2554 /* Cache TYPE_LENGTH for future use. */
c906108c 2555 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 2556
c906108c
SS
2557 return type;
2558}
2559
7ba81444 2560/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 2561 occurs, silently return a void type. */
c91ecb25 2562
b9362cc7 2563static struct type *
48319d1f 2564safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
2565{
2566 struct ui_file *saved_gdb_stderr;
34365054 2567 struct type *type = NULL; /* Initialize to keep gcc happy. */
c91ecb25 2568
7ba81444 2569 /* Suppress error messages. */
c91ecb25 2570 saved_gdb_stderr = gdb_stderr;
d7e74731 2571 gdb_stderr = &null_stream;
c91ecb25 2572
7ba81444 2573 /* Call parse_and_eval_type() without fear of longjmp()s. */
a70b8144 2574 try
8e7b59a5
KS
2575 {
2576 type = parse_and_eval_type (p, length);
2577 }
230d2906 2578 catch (const gdb_exception_error &except)
492d29ea
PA
2579 {
2580 type = builtin_type (gdbarch)->builtin_void;
2581 }
c91ecb25 2582
7ba81444 2583 /* Stop suppressing error messages. */
c91ecb25
ND
2584 gdb_stderr = saved_gdb_stderr;
2585
2586 return type;
2587}
2588
c906108c
SS
2589/* Ugly hack to convert method stubs into method types.
2590
7ba81444
MS
2591 He ain't kiddin'. This demangles the name of the method into a
2592 string including argument types, parses out each argument type,
2593 generates a string casting a zero to that type, evaluates the
2594 string, and stuffs the resulting type into an argtype vector!!!
2595 Then it knows the type of the whole function (including argument
2596 types for overloading), which info used to be in the stab's but was
2597 removed to hack back the space required for them. */
c906108c 2598
de17c821 2599static void
fba45db2 2600check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 2601{
50810684 2602 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
2603 struct fn_field *f;
2604 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
8de20a37
TT
2605 char *demangled_name = gdb_demangle (mangled_name,
2606 DMGL_PARAMS | DMGL_ANSI);
c906108c
SS
2607 char *argtypetext, *p;
2608 int depth = 0, argcount = 1;
ad2f7632 2609 struct field *argtypes;
c906108c
SS
2610 struct type *mtype;
2611
2612 /* Make sure we got back a function string that we can use. */
2613 if (demangled_name)
2614 p = strchr (demangled_name, '(');
502dcf4e
AC
2615 else
2616 p = NULL;
c906108c
SS
2617
2618 if (demangled_name == NULL || p == NULL)
7ba81444
MS
2619 error (_("Internal: Cannot demangle mangled name `%s'."),
2620 mangled_name);
c906108c
SS
2621
2622 /* Now, read in the parameters that define this type. */
2623 p += 1;
2624 argtypetext = p;
2625 while (*p)
2626 {
070ad9f0 2627 if (*p == '(' || *p == '<')
c906108c
SS
2628 {
2629 depth += 1;
2630 }
070ad9f0 2631 else if (*p == ')' || *p == '>')
c906108c
SS
2632 {
2633 depth -= 1;
2634 }
2635 else if (*p == ',' && depth == 0)
2636 {
2637 argcount += 1;
2638 }
2639
2640 p += 1;
2641 }
2642
ad2f7632 2643 /* If we read one argument and it was ``void'', don't count it. */
61012eef 2644 if (startswith (argtypetext, "(void)"))
ad2f7632 2645 argcount -= 1;
c906108c 2646
ad2f7632
DJ
2647 /* We need one extra slot, for the THIS pointer. */
2648
2649 argtypes = (struct field *)
2650 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 2651 p = argtypetext;
4a1970e4
DJ
2652
2653 /* Add THIS pointer for non-static methods. */
2654 f = TYPE_FN_FIELDLIST1 (type, method_id);
2655 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2656 argcount = 0;
2657 else
2658 {
ad2f7632 2659 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
2660 argcount = 1;
2661 }
c906108c 2662
0963b4bd 2663 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
2664 {
2665 depth = 0;
2666 while (*p)
2667 {
2668 if (depth <= 0 && (*p == ',' || *p == ')'))
2669 {
ad2f7632
DJ
2670 /* Avoid parsing of ellipsis, they will be handled below.
2671 Also avoid ``void'' as above. */
2672 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2673 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 2674 {
ad2f7632 2675 argtypes[argcount].type =
48319d1f 2676 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
2677 argcount += 1;
2678 }
2679 argtypetext = p + 1;
2680 }
2681
070ad9f0 2682 if (*p == '(' || *p == '<')
c906108c
SS
2683 {
2684 depth += 1;
2685 }
070ad9f0 2686 else if (*p == ')' || *p == '>')
c906108c
SS
2687 {
2688 depth -= 1;
2689 }
2690
2691 p += 1;
2692 }
2693 }
2694
c906108c
SS
2695 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2696
2697 /* Now update the old "stub" type into a real type. */
2698 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
09e2d7c7
DE
2699 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2700 We want a method (TYPE_CODE_METHOD). */
2701 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2702 argtypes, argcount, p[-2] == '.');
876cecd0 2703 TYPE_STUB (mtype) = 0;
c906108c 2704 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632
DJ
2705
2706 xfree (demangled_name);
c906108c
SS
2707}
2708
7ba81444
MS
2709/* This is the external interface to check_stub_method, above. This
2710 function unstubs all of the signatures for TYPE's METHOD_ID method
2711 name. After calling this function TYPE_FN_FIELD_STUB will be
2712 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2713 correct.
de17c821
DJ
2714
2715 This function unfortunately can not die until stabs do. */
2716
2717void
2718check_stub_method_group (struct type *type, int method_id)
2719{
2720 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2721 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
de17c821 2722
041be526
SM
2723 for (int j = 0; j < len; j++)
2724 {
2725 if (TYPE_FN_FIELD_STUB (f, j))
de17c821 2726 check_stub_method (type, method_id, j);
de17c821
DJ
2727 }
2728}
2729
9655fd1a
JK
2730/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2731const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
2732
2733void
fba45db2 2734allocate_cplus_struct_type (struct type *type)
c906108c 2735{
b4ba55a1
JB
2736 if (HAVE_CPLUS_STRUCT (type))
2737 /* Structure was already allocated. Nothing more to do. */
2738 return;
2739
2740 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2741 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2742 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2743 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
ae6ae975 2744 set_type_vptr_fieldno (type, -1);
c906108c
SS
2745}
2746
b4ba55a1
JB
2747const struct gnat_aux_type gnat_aux_default =
2748 { NULL };
2749
2750/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2751 and allocate the associated gnat-specific data. The gnat-specific
2752 data is also initialized to gnat_aux_default. */
5212577a 2753
b4ba55a1
JB
2754void
2755allocate_gnat_aux_type (struct type *type)
2756{
2757 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2758 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2759 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2760 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2761}
2762
ae438bc5
UW
2763/* Helper function to initialize a newly allocated type. Set type code
2764 to CODE and initialize the type-specific fields accordingly. */
2765
2766static void
2767set_type_code (struct type *type, enum type_code code)
2768{
2769 TYPE_CODE (type) = code;
2770
2771 switch (code)
2772 {
2773 case TYPE_CODE_STRUCT:
2774 case TYPE_CODE_UNION:
2775 case TYPE_CODE_NAMESPACE:
2776 INIT_CPLUS_SPECIFIC (type);
2777 break;
2778 case TYPE_CODE_FLT:
2779 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2780 break;
2781 case TYPE_CODE_FUNC:
2782 INIT_FUNC_SPECIFIC (type);
2783 break;
2784 }
2785}
2786
19f392bc
UW
2787/* Helper function to verify floating-point format and size.
2788 BIT is the type size in bits; if BIT equals -1, the size is
2789 determined by the floatformat. Returns size to be used. */
2790
2791static int
0db7851f 2792verify_floatformat (int bit, const struct floatformat *floatformat)
19f392bc 2793{
0db7851f 2794 gdb_assert (floatformat != NULL);
9b790ce7 2795
19f392bc 2796 if (bit == -1)
0db7851f 2797 bit = floatformat->totalsize;
19f392bc 2798
0db7851f
UW
2799 gdb_assert (bit >= 0);
2800 gdb_assert (bit >= floatformat->totalsize);
19f392bc
UW
2801
2802 return bit;
2803}
2804
0db7851f
UW
2805/* Return the floating-point format for a floating-point variable of
2806 type TYPE. */
2807
2808const struct floatformat *
2809floatformat_from_type (const struct type *type)
2810{
2811 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2812 gdb_assert (TYPE_FLOATFORMAT (type));
2813 return TYPE_FLOATFORMAT (type);
2814}
2815
c906108c
SS
2816/* Helper function to initialize the standard scalar types.
2817
86f62fd7
TT
2818 If NAME is non-NULL, then it is used to initialize the type name.
2819 Note that NAME is not copied; it is required to have a lifetime at
2820 least as long as OBJFILE. */
c906108c
SS
2821
2822struct type *
77b7c781 2823init_type (struct objfile *objfile, enum type_code code, int bit,
19f392bc 2824 const char *name)
c906108c 2825{
52f0bd74 2826 struct type *type;
c906108c
SS
2827
2828 type = alloc_type (objfile);
ae438bc5 2829 set_type_code (type, code);
77b7c781
UW
2830 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
2831 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
86f62fd7 2832 TYPE_NAME (type) = name;
c906108c 2833
c16abbde 2834 return type;
c906108c 2835}
19f392bc 2836
46a4882b
PA
2837/* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2838 to use with variables that have no debug info. NAME is the type
2839 name. */
2840
2841static struct type *
2842init_nodebug_var_type (struct objfile *objfile, const char *name)
2843{
2844 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2845}
2846
19f392bc
UW
2847/* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2848 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2849 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2850
2851struct type *
2852init_integer_type (struct objfile *objfile,
2853 int bit, int unsigned_p, const char *name)
2854{
2855 struct type *t;
2856
77b7c781 2857 t = init_type (objfile, TYPE_CODE_INT, bit, name);
19f392bc
UW
2858 if (unsigned_p)
2859 TYPE_UNSIGNED (t) = 1;
2860
2861 return t;
2862}
2863
2864/* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2865 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2866 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2867
2868struct type *
2869init_character_type (struct objfile *objfile,
2870 int bit, int unsigned_p, const char *name)
2871{
2872 struct type *t;
2873
77b7c781 2874 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
19f392bc
UW
2875 if (unsigned_p)
2876 TYPE_UNSIGNED (t) = 1;
2877
2878 return t;
2879}
2880
2881/* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2882 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2883 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2884
2885struct type *
2886init_boolean_type (struct objfile *objfile,
2887 int bit, int unsigned_p, const char *name)
2888{
2889 struct type *t;
2890
77b7c781 2891 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
19f392bc
UW
2892 if (unsigned_p)
2893 TYPE_UNSIGNED (t) = 1;
2894
2895 return t;
2896}
2897
2898/* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2899 BIT is the type size in bits; if BIT equals -1, the size is
2900 determined by the floatformat. NAME is the type name. Set the
2901 TYPE_FLOATFORMAT from FLOATFORMATS. */
2902
2903struct type *
2904init_float_type (struct objfile *objfile,
2905 int bit, const char *name,
2906 const struct floatformat **floatformats)
2907{
0db7851f
UW
2908 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2909 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
19f392bc
UW
2910 struct type *t;
2911
0db7851f 2912 bit = verify_floatformat (bit, fmt);
77b7c781 2913 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
0db7851f 2914 TYPE_FLOATFORMAT (t) = fmt;
19f392bc
UW
2915
2916 return t;
2917}
2918
2919/* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2920 BIT is the type size in bits. NAME is the type name. */
2921
2922struct type *
2923init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2924{
2925 struct type *t;
2926
77b7c781 2927 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
19f392bc
UW
2928 return t;
2929}
2930
2931/* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2932 NAME is the type name. TARGET_TYPE is the component float type. */
2933
2934struct type *
2935init_complex_type (struct objfile *objfile,
2936 const char *name, struct type *target_type)
2937{
2938 struct type *t;
2939
2940 t = init_type (objfile, TYPE_CODE_COMPLEX,
77b7c781 2941 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
19f392bc
UW
2942 TYPE_TARGET_TYPE (t) = target_type;
2943 return t;
2944}
2945
2946/* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
2947 BIT is the pointer type size in bits. NAME is the type name.
2948 TARGET_TYPE is the pointer target type. Always sets the pointer type's
2949 TYPE_UNSIGNED flag. */
2950
2951struct type *
2952init_pointer_type (struct objfile *objfile,
2953 int bit, const char *name, struct type *target_type)
2954{
2955 struct type *t;
2956
77b7c781 2957 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
19f392bc
UW
2958 TYPE_TARGET_TYPE (t) = target_type;
2959 TYPE_UNSIGNED (t) = 1;
2960 return t;
2961}
2962
2b4424c3
TT
2963/* See gdbtypes.h. */
2964
2965unsigned
2966type_raw_align (struct type *type)
2967{
2968 if (type->align_log2 != 0)
2969 return 1 << (type->align_log2 - 1);
2970 return 0;
2971}
2972
2973/* See gdbtypes.h. */
2974
2975unsigned
2976type_align (struct type *type)
2977{
5561fc30 2978 /* Check alignment provided in the debug information. */
2b4424c3
TT
2979 unsigned raw_align = type_raw_align (type);
2980 if (raw_align != 0)
2981 return raw_align;
2982
5561fc30
AB
2983 /* Allow the architecture to provide an alignment. */
2984 struct gdbarch *arch = get_type_arch (type);
2985 ULONGEST align = gdbarch_type_align (arch, type);
2986 if (align != 0)
2987 return align;
2988
2b4424c3
TT
2989 switch (TYPE_CODE (type))
2990 {
2991 case TYPE_CODE_PTR:
2992 case TYPE_CODE_FUNC:
2993 case TYPE_CODE_FLAGS:
2994 case TYPE_CODE_INT:
75ba10dc 2995 case TYPE_CODE_RANGE:
2b4424c3
TT
2996 case TYPE_CODE_FLT:
2997 case TYPE_CODE_ENUM:
2998 case TYPE_CODE_REF:
2999 case TYPE_CODE_RVALUE_REF:
3000 case TYPE_CODE_CHAR:
3001 case TYPE_CODE_BOOL:
3002 case TYPE_CODE_DECFLOAT:
70cd633e
AB
3003 case TYPE_CODE_METHODPTR:
3004 case TYPE_CODE_MEMBERPTR:
5561fc30 3005 align = type_length_units (check_typedef (type));
2b4424c3
TT
3006 break;
3007
3008 case TYPE_CODE_ARRAY:
3009 case TYPE_CODE_COMPLEX:
3010 case TYPE_CODE_TYPEDEF:
3011 align = type_align (TYPE_TARGET_TYPE (type));
3012 break;
3013
3014 case TYPE_CODE_STRUCT:
3015 case TYPE_CODE_UNION:
3016 {
3017 if (TYPE_NFIELDS (type) == 0)
3018 {
3019 /* An empty struct has alignment 1. */
3020 align = 1;
3021 break;
3022 }
3023 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3024 {
bf9a735e 3025 if (!field_is_static (&TYPE_FIELD (type, i)))
2b4424c3 3026 {
bf9a735e
AB
3027 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3028 if (f_align == 0)
3029 {
3030 /* Don't pretend we know something we don't. */
3031 align = 0;
3032 break;
3033 }
3034 if (f_align > align)
3035 align = f_align;
2b4424c3 3036 }
2b4424c3
TT
3037 }
3038 }
3039 break;
3040
3041 case TYPE_CODE_SET:
2b4424c3
TT
3042 case TYPE_CODE_STRING:
3043 /* Not sure what to do here, and these can't appear in C or C++
3044 anyway. */
3045 break;
3046
2b4424c3
TT
3047 case TYPE_CODE_VOID:
3048 align = 1;
3049 break;
3050
3051 case TYPE_CODE_ERROR:
3052 case TYPE_CODE_METHOD:
3053 default:
3054 break;
3055 }
3056
3057 if ((align & (align - 1)) != 0)
3058 {
3059 /* Not a power of 2, so pass. */
3060 align = 0;
3061 }
3062
3063 return align;
3064}
3065
3066/* See gdbtypes.h. */
3067
3068bool
3069set_type_align (struct type *type, ULONGEST align)
3070{
3071 /* Must be a power of 2. Zero is ok. */
3072 gdb_assert ((align & (align - 1)) == 0);
3073
3074 unsigned result = 0;
3075 while (align != 0)
3076 {
3077 ++result;
3078 align >>= 1;
3079 }
3080
3081 if (result >= (1 << TYPE_ALIGN_BITS))
3082 return false;
3083
3084 type->align_log2 = result;
3085 return true;
3086}
3087
5212577a
DE
3088\f
3089/* Queries on types. */
c906108c 3090
c906108c 3091int
fba45db2 3092can_dereference (struct type *t)
c906108c 3093{
7ba81444
MS
3094 /* FIXME: Should we return true for references as well as
3095 pointers? */
f168693b 3096 t = check_typedef (t);
c906108c
SS
3097 return
3098 (t != NULL
3099 && TYPE_CODE (t) == TYPE_CODE_PTR
3100 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3101}
3102
adf40b2e 3103int
fba45db2 3104is_integral_type (struct type *t)
adf40b2e 3105{
f168693b 3106 t = check_typedef (t);
adf40b2e
JM
3107 return
3108 ((t != NULL)
d4f3574e
SS
3109 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3110 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 3111 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
3112 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3113 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3114 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
3115}
3116
70100014
UW
3117int
3118is_floating_type (struct type *t)
3119{
3120 t = check_typedef (t);
3121 return
3122 ((t != NULL)
3123 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3124 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3125}
3126
e09342b5
TJB
3127/* Return true if TYPE is scalar. */
3128
220475ed 3129int
e09342b5
TJB
3130is_scalar_type (struct type *type)
3131{
f168693b 3132 type = check_typedef (type);
e09342b5
TJB
3133
3134 switch (TYPE_CODE (type))
3135 {
3136 case TYPE_CODE_ARRAY:
3137 case TYPE_CODE_STRUCT:
3138 case TYPE_CODE_UNION:
3139 case TYPE_CODE_SET:
3140 case TYPE_CODE_STRING:
e09342b5
TJB
3141 return 0;
3142 default:
3143 return 1;
3144 }
3145}
3146
3147/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
3148 the memory layout of a scalar type. E.g., an array or struct with only
3149 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
3150
3151int
3152is_scalar_type_recursive (struct type *t)
3153{
f168693b 3154 t = check_typedef (t);
e09342b5
TJB
3155
3156 if (is_scalar_type (t))
3157 return 1;
3158 /* Are we dealing with an array or string of known dimensions? */
3159 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3160 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3161 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3162 {
3163 LONGEST low_bound, high_bound;
3164 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3165
3166 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3167
3168 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3169 }
3170 /* Are we dealing with a struct with one element? */
3171 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3172 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3173 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3174 {
3175 int i, n = TYPE_NFIELDS (t);
3176
3177 /* If all elements of the union are scalar, then the union is scalar. */
3178 for (i = 0; i < n; i++)
3179 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3180 return 0;
3181
3182 return 1;
3183 }
3184
3185 return 0;
3186}
3187
6c659fc2
SC
3188/* Return true is T is a class or a union. False otherwise. */
3189
3190int
3191class_or_union_p (const struct type *t)
3192{
3193 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3194 || TYPE_CODE (t) == TYPE_CODE_UNION);
3195}
3196
4e8f195d
TT
3197/* A helper function which returns true if types A and B represent the
3198 "same" class type. This is true if the types have the same main
3199 type, or the same name. */
3200
3201int
3202class_types_same_p (const struct type *a, const struct type *b)
3203{
3204 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3205 || (TYPE_NAME (a) && TYPE_NAME (b)
3206 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3207}
3208
a9d5ef47
SW
3209/* If BASE is an ancestor of DCLASS return the distance between them.
3210 otherwise return -1;
3211 eg:
3212
3213 class A {};
3214 class B: public A {};
3215 class C: public B {};
3216 class D: C {};
3217
3218 distance_to_ancestor (A, A, 0) = 0
3219 distance_to_ancestor (A, B, 0) = 1
3220 distance_to_ancestor (A, C, 0) = 2
3221 distance_to_ancestor (A, D, 0) = 3
3222
3223 If PUBLIC is 1 then only public ancestors are considered,
3224 and the function returns the distance only if BASE is a public ancestor
3225 of DCLASS.
3226 Eg:
3227
0963b4bd 3228 distance_to_ancestor (A, D, 1) = -1. */
c906108c 3229
0526b37a 3230static int
fe978cb0 3231distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
c906108c
SS
3232{
3233 int i;
a9d5ef47 3234 int d;
c5aa993b 3235
f168693b
SM
3236 base = check_typedef (base);
3237 dclass = check_typedef (dclass);
c906108c 3238
4e8f195d 3239 if (class_types_same_p (base, dclass))
a9d5ef47 3240 return 0;
c906108c
SS
3241
3242 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 3243 {
fe978cb0 3244 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
0526b37a
SW
3245 continue;
3246
fe978cb0 3247 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
a9d5ef47
SW
3248 if (d >= 0)
3249 return 1 + d;
4e8f195d 3250 }
c906108c 3251
a9d5ef47 3252 return -1;
c906108c 3253}
4e8f195d 3254
0526b37a
SW
3255/* Check whether BASE is an ancestor or base class or DCLASS
3256 Return 1 if so, and 0 if not.
3257 Note: If BASE and DCLASS are of the same type, this function
3258 will return 1. So for some class A, is_ancestor (A, A) will
3259 return 1. */
3260
3261int
3262is_ancestor (struct type *base, struct type *dclass)
3263{
a9d5ef47 3264 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
3265}
3266
4e8f195d
TT
3267/* Like is_ancestor, but only returns true when BASE is a public
3268 ancestor of DCLASS. */
3269
3270int
3271is_public_ancestor (struct type *base, struct type *dclass)
3272{
a9d5ef47 3273 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
3274}
3275
3276/* A helper function for is_unique_ancestor. */
3277
3278static int
3279is_unique_ancestor_worker (struct type *base, struct type *dclass,
3280 int *offset,
8af8e3bc
PA
3281 const gdb_byte *valaddr, int embedded_offset,
3282 CORE_ADDR address, struct value *val)
4e8f195d
TT
3283{
3284 int i, count = 0;
3285
f168693b
SM
3286 base = check_typedef (base);
3287 dclass = check_typedef (dclass);
4e8f195d
TT
3288
3289 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3290 {
8af8e3bc
PA
3291 struct type *iter;
3292 int this_offset;
4e8f195d 3293
8af8e3bc
PA
3294 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3295
3296 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3297 address, val);
4e8f195d
TT
3298
3299 if (class_types_same_p (base, iter))
3300 {
3301 /* If this is the first subclass, set *OFFSET and set count
3302 to 1. Otherwise, if this is at the same offset as
3303 previous instances, do nothing. Otherwise, increment
3304 count. */
3305 if (*offset == -1)
3306 {
3307 *offset = this_offset;
3308 count = 1;
3309 }
3310 else if (this_offset == *offset)
3311 {
3312 /* Nothing. */
3313 }
3314 else
3315 ++count;
3316 }
3317 else
3318 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
3319 valaddr,
3320 embedded_offset + this_offset,
3321 address, val);
4e8f195d
TT
3322 }
3323
3324 return count;
3325}
3326
3327/* Like is_ancestor, but only returns true if BASE is a unique base
3328 class of the type of VAL. */
3329
3330int
3331is_unique_ancestor (struct type *base, struct value *val)
3332{
3333 int offset = -1;
3334
3335 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
3336 value_contents_for_printing (val),
3337 value_embedded_offset (val),
3338 value_address (val), val) == 1;
4e8f195d
TT
3339}
3340
c906108c 3341\f
5212577a 3342/* Overload resolution. */
c906108c 3343
6403aeea
SW
3344/* Return the sum of the rank of A with the rank of B. */
3345
3346struct rank
3347sum_ranks (struct rank a, struct rank b)
3348{
3349 struct rank c;
3350 c.rank = a.rank + b.rank;
a9d5ef47 3351 c.subrank = a.subrank + b.subrank;
6403aeea
SW
3352 return c;
3353}
3354
3355/* Compare rank A and B and return:
3356 0 if a = b
3357 1 if a is better than b
3358 -1 if b is better than a. */
3359
3360int
3361compare_ranks (struct rank a, struct rank b)
3362{
3363 if (a.rank == b.rank)
a9d5ef47
SW
3364 {
3365 if (a.subrank == b.subrank)
3366 return 0;
3367 if (a.subrank < b.subrank)
3368 return 1;
3369 if (a.subrank > b.subrank)
3370 return -1;
3371 }
6403aeea
SW
3372
3373 if (a.rank < b.rank)
3374 return 1;
3375
0963b4bd 3376 /* a.rank > b.rank */
6403aeea
SW
3377 return -1;
3378}
c5aa993b 3379
0963b4bd 3380/* Functions for overload resolution begin here. */
c906108c
SS
3381
3382/* Compare two badness vectors A and B and return the result.
7ba81444
MS
3383 0 => A and B are identical
3384 1 => A and B are incomparable
3385 2 => A is better than B
3386 3 => A is worse than B */
c906108c
SS
3387
3388int
82ceee50 3389compare_badness (const badness_vector &a, const badness_vector &b)
c906108c
SS
3390{
3391 int i;
3392 int tmp;
c5aa993b
JM
3393 short found_pos = 0; /* any positives in c? */
3394 short found_neg = 0; /* any negatives in c? */
3395
82ceee50
PA
3396 /* differing sizes => incomparable */
3397 if (a.size () != b.size ())
c906108c
SS
3398 return 1;
3399
c5aa993b 3400 /* Subtract b from a */
82ceee50 3401 for (i = 0; i < a.size (); i++)
c906108c 3402 {
82ceee50 3403 tmp = compare_ranks (b[i], a[i]);
c906108c 3404 if (tmp > 0)
c5aa993b 3405 found_pos = 1;
c906108c 3406 else if (tmp < 0)
c5aa993b 3407 found_neg = 1;
c906108c
SS
3408 }
3409
3410 if (found_pos)
3411 {
3412 if (found_neg)
c5aa993b 3413 return 1; /* incomparable */
c906108c 3414 else
c5aa993b 3415 return 3; /* A > B */
c906108c 3416 }
c5aa993b
JM
3417 else
3418 /* no positives */
c906108c
SS
3419 {
3420 if (found_neg)
c5aa993b 3421 return 2; /* A < B */
c906108c 3422 else
c5aa993b 3423 return 0; /* A == B */
c906108c
SS
3424 }
3425}
3426
6b1747cd 3427/* Rank a function by comparing its parameter types (PARMS), to the
82ceee50
PA
3428 types of an argument list (ARGS). Return the badness vector. This
3429 has ARGS.size() + 1 entries. */
c906108c 3430
82ceee50 3431badness_vector
6b1747cd
PA
3432rank_function (gdb::array_view<type *> parms,
3433 gdb::array_view<value *> args)
c906108c 3434{
82ceee50
PA
3435 /* add 1 for the length-match rank. */
3436 badness_vector bv;
3437 bv.reserve (1 + args.size ());
c906108c
SS
3438
3439 /* First compare the lengths of the supplied lists.
7ba81444 3440 If there is a mismatch, set it to a high value. */
c5aa993b 3441
c906108c 3442 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
3443 arguments and ellipsis parameter lists, we should consider those
3444 and rank the length-match more finely. */
c906108c 3445
82ceee50
PA
3446 bv.push_back ((args.size () != parms.size ())
3447 ? LENGTH_MISMATCH_BADNESS
3448 : EXACT_MATCH_BADNESS);
c906108c 3449
0963b4bd 3450 /* Now rank all the parameters of the candidate function. */
82ceee50
PA
3451 size_t min_len = std::min (parms.size (), args.size ());
3452
3453 for (size_t i = 0; i < min_len; i++)
3454 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3455 args[i]));
c906108c 3456
0963b4bd 3457 /* If more arguments than parameters, add dummy entries. */
82ceee50
PA
3458 for (size_t i = min_len; i < args.size (); i++)
3459 bv.push_back (TOO_FEW_PARAMS_BADNESS);
c906108c
SS
3460
3461 return bv;
3462}
3463
973ccf8b
DJ
3464/* Compare the names of two integer types, assuming that any sign
3465 qualifiers have been checked already. We do it this way because
3466 there may be an "int" in the name of one of the types. */
3467
3468static int
3469integer_types_same_name_p (const char *first, const char *second)
3470{
3471 int first_p, second_p;
3472
7ba81444
MS
3473 /* If both are shorts, return 1; if neither is a short, keep
3474 checking. */
973ccf8b
DJ
3475 first_p = (strstr (first, "short") != NULL);
3476 second_p = (strstr (second, "short") != NULL);
3477 if (first_p && second_p)
3478 return 1;
3479 if (first_p || second_p)
3480 return 0;
3481
3482 /* Likewise for long. */
3483 first_p = (strstr (first, "long") != NULL);
3484 second_p = (strstr (second, "long") != NULL);
3485 if (first_p && second_p)
3486 return 1;
3487 if (first_p || second_p)
3488 return 0;
3489
3490 /* Likewise for char. */
3491 first_p = (strstr (first, "char") != NULL);
3492 second_p = (strstr (second, "char") != NULL);
3493 if (first_p && second_p)
3494 return 1;
3495 if (first_p || second_p)
3496 return 0;
3497
3498 /* They must both be ints. */
3499 return 1;
3500}
3501
894882e3
TT
3502/* Compares type A to type B. Returns true if they represent the same
3503 type, false otherwise. */
7062b0a0 3504
894882e3 3505bool
7062b0a0
SW
3506types_equal (struct type *a, struct type *b)
3507{
3508 /* Identical type pointers. */
3509 /* However, this still doesn't catch all cases of same type for b
3510 and a. The reason is that builtin types are different from
3511 the same ones constructed from the object. */
3512 if (a == b)
894882e3 3513 return true;
7062b0a0
SW
3514
3515 /* Resolve typedefs */
3516 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3517 a = check_typedef (a);
3518 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3519 b = check_typedef (b);
3520
3521 /* If after resolving typedefs a and b are not of the same type
3522 code then they are not equal. */
3523 if (TYPE_CODE (a) != TYPE_CODE (b))
894882e3 3524 return false;
7062b0a0
SW
3525
3526 /* If a and b are both pointers types or both reference types then
3527 they are equal of the same type iff the objects they refer to are
3528 of the same type. */
3529 if (TYPE_CODE (a) == TYPE_CODE_PTR
3530 || TYPE_CODE (a) == TYPE_CODE_REF)
3531 return types_equal (TYPE_TARGET_TYPE (a),
3532 TYPE_TARGET_TYPE (b));
3533
0963b4bd 3534 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
3535 are exactly the same. This happens when we generate method
3536 stubs. The types won't point to the same address, but they
0963b4bd 3537 really are the same. */
7062b0a0
SW
3538
3539 if (TYPE_NAME (a) && TYPE_NAME (b)
3540 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
894882e3 3541 return true;
7062b0a0
SW
3542
3543 /* Check if identical after resolving typedefs. */
3544 if (a == b)
894882e3 3545 return true;
7062b0a0 3546
9ce98649
TT
3547 /* Two function types are equal if their argument and return types
3548 are equal. */
3549 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3550 {
3551 int i;
3552
3553 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
894882e3 3554 return false;
9ce98649
TT
3555
3556 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
894882e3 3557 return false;
9ce98649
TT
3558
3559 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3560 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
894882e3 3561 return false;
9ce98649 3562
894882e3 3563 return true;
9ce98649
TT
3564 }
3565
894882e3 3566 return false;
7062b0a0 3567}
ca092b61
DE
3568\f
3569/* Deep comparison of types. */
3570
3571/* An entry in the type-equality bcache. */
3572
894882e3 3573struct type_equality_entry
ca092b61 3574{
894882e3
TT
3575 type_equality_entry (struct type *t1, struct type *t2)
3576 : type1 (t1),
3577 type2 (t2)
3578 {
3579 }
ca092b61 3580
894882e3
TT
3581 struct type *type1, *type2;
3582};
ca092b61 3583
894882e3
TT
3584/* A helper function to compare two strings. Returns true if they are
3585 the same, false otherwise. Handles NULLs properly. */
ca092b61 3586
894882e3 3587static bool
ca092b61
DE
3588compare_maybe_null_strings (const char *s, const char *t)
3589{
894882e3
TT
3590 if (s == NULL || t == NULL)
3591 return s == t;
ca092b61
DE
3592 return strcmp (s, t) == 0;
3593}
3594
3595/* A helper function for check_types_worklist that checks two types for
894882e3
TT
3596 "deep" equality. Returns true if the types are considered the
3597 same, false otherwise. */
ca092b61 3598
894882e3 3599static bool
ca092b61 3600check_types_equal (struct type *type1, struct type *type2,
894882e3 3601 std::vector<type_equality_entry> *worklist)
ca092b61 3602{
f168693b
SM
3603 type1 = check_typedef (type1);
3604 type2 = check_typedef (type2);
ca092b61
DE
3605
3606 if (type1 == type2)
894882e3 3607 return true;
ca092b61
DE
3608
3609 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3610 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3611 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3612 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3613 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3614 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3615 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3616 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3617 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
894882e3 3618 return false;
ca092b61 3619
e86ca25f 3620 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
894882e3 3621 return false;
ca092b61 3622 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
894882e3 3623 return false;
ca092b61
DE
3624
3625 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3626 {
0f59d5fc 3627 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
894882e3 3628 return false;
ca092b61
DE
3629 }
3630 else
3631 {
3632 int i;
3633
3634 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3635 {
3636 const struct field *field1 = &TYPE_FIELD (type1, i);
3637 const struct field *field2 = &TYPE_FIELD (type2, i);
ca092b61
DE
3638
3639 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3640 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3641 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
894882e3 3642 return false;
ca092b61
DE
3643 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3644 FIELD_NAME (*field2)))
894882e3 3645 return false;
ca092b61
DE
3646 switch (FIELD_LOC_KIND (*field1))
3647 {
3648 case FIELD_LOC_KIND_BITPOS:
3649 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
894882e3 3650 return false;
ca092b61
DE
3651 break;
3652 case FIELD_LOC_KIND_ENUMVAL:
3653 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
894882e3 3654 return false;
ca092b61
DE
3655 break;
3656 case FIELD_LOC_KIND_PHYSADDR:
3657 if (FIELD_STATIC_PHYSADDR (*field1)
3658 != FIELD_STATIC_PHYSADDR (*field2))
894882e3 3659 return false;
ca092b61
DE
3660 break;
3661 case FIELD_LOC_KIND_PHYSNAME:
3662 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3663 FIELD_STATIC_PHYSNAME (*field2)))
894882e3 3664 return false;
ca092b61
DE
3665 break;
3666 case FIELD_LOC_KIND_DWARF_BLOCK:
3667 {
3668 struct dwarf2_locexpr_baton *block1, *block2;
3669
3670 block1 = FIELD_DWARF_BLOCK (*field1);
3671 block2 = FIELD_DWARF_BLOCK (*field2);
3672 if (block1->per_cu != block2->per_cu
3673 || block1->size != block2->size
3674 || memcmp (block1->data, block2->data, block1->size) != 0)
894882e3 3675 return false;
ca092b61
DE
3676 }
3677 break;
3678 default:
3679 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3680 "%d by check_types_equal"),
3681 FIELD_LOC_KIND (*field1));
3682 }
3683
894882e3 3684 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
ca092b61
DE
3685 }
3686 }
3687
3688 if (TYPE_TARGET_TYPE (type1) != NULL)
3689 {
ca092b61 3690 if (TYPE_TARGET_TYPE (type2) == NULL)
894882e3 3691 return false;
ca092b61 3692
894882e3
TT
3693 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
3694 TYPE_TARGET_TYPE (type2));
ca092b61
DE
3695 }
3696 else if (TYPE_TARGET_TYPE (type2) != NULL)
894882e3 3697 return false;
ca092b61 3698
894882e3 3699 return true;
ca092b61
DE
3700}
3701
894882e3
TT
3702/* Check types on a worklist for equality. Returns false if any pair
3703 is not equal, true if they are all considered equal. */
ca092b61 3704
894882e3
TT
3705static bool
3706check_types_worklist (std::vector<type_equality_entry> *worklist,
ca092b61
DE
3707 struct bcache *cache)
3708{
894882e3 3709 while (!worklist->empty ())
ca092b61 3710 {
ca092b61
DE
3711 int added;
3712
894882e3
TT
3713 struct type_equality_entry entry = std::move (worklist->back ());
3714 worklist->pop_back ();
ca092b61
DE
3715
3716 /* If the type pair has already been visited, we know it is
3717 ok. */
25629dfd 3718 cache->insert (&entry, sizeof (entry), &added);
ca092b61
DE
3719 if (!added)
3720 continue;
3721
894882e3
TT
3722 if (!check_types_equal (entry.type1, entry.type2, worklist))
3723 return false;
ca092b61 3724 }
7062b0a0 3725
894882e3 3726 return true;
ca092b61
DE
3727}
3728
894882e3
TT
3729/* Return true if types TYPE1 and TYPE2 are equal, as determined by a
3730 "deep comparison". Otherwise return false. */
ca092b61 3731
894882e3 3732bool
ca092b61
DE
3733types_deeply_equal (struct type *type1, struct type *type2)
3734{
894882e3 3735 std::vector<type_equality_entry> worklist;
ca092b61
DE
3736
3737 gdb_assert (type1 != NULL && type2 != NULL);
3738
3739 /* Early exit for the simple case. */
3740 if (type1 == type2)
894882e3 3741 return true;
ca092b61 3742
25629dfd 3743 struct bcache cache (nullptr, nullptr);
894882e3 3744 worklist.emplace_back (type1, type2);
25629dfd 3745 return check_types_worklist (&worklist, &cache);
ca092b61 3746}
3f2f83dd
KB
3747
3748/* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3749 Otherwise return one. */
3750
3751int
3752type_not_allocated (const struct type *type)
3753{
3754 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3755
3756 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3757 && !TYPE_DYN_PROP_ADDR (prop));
3758}
3759
3760/* Associated status of type TYPE. Return zero if type TYPE is associated.
3761 Otherwise return one. */
3762
3763int
3764type_not_associated (const struct type *type)
3765{
3766 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3767
3768 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3769 && !TYPE_DYN_PROP_ADDR (prop));
3770}
9293fc63
SM
3771
3772/* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
3773
3774static struct rank
3775rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
3776{
3777 struct rank rank = {0,0};
3778
3779 switch (TYPE_CODE (arg))
3780 {
3781 case TYPE_CODE_PTR:
3782
3783 /* Allowed pointer conversions are:
3784 (a) pointer to void-pointer conversion. */
3785 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3786 return VOID_PTR_CONVERSION_BADNESS;
3787
3788 /* (b) pointer to ancestor-pointer conversion. */
3789 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3790 TYPE_TARGET_TYPE (arg),
3791 0);
3792 if (rank.subrank >= 0)
3793 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3794
3795 return INCOMPATIBLE_TYPE_BADNESS;
3796 case TYPE_CODE_ARRAY:
3797 {
3798 struct type *t1 = TYPE_TARGET_TYPE (parm);
3799 struct type *t2 = TYPE_TARGET_TYPE (arg);
3800
3801 if (types_equal (t1, t2))
3802 {
3803 /* Make sure they are CV equal. */
3804 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3805 rank.subrank |= CV_CONVERSION_CONST;
3806 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3807 rank.subrank |= CV_CONVERSION_VOLATILE;
3808 if (rank.subrank != 0)
3809 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3810 return EXACT_MATCH_BADNESS;
3811 }
3812 return INCOMPATIBLE_TYPE_BADNESS;
3813 }
3814 case TYPE_CODE_FUNC:
3815 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3816 case TYPE_CODE_INT:
3817 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3818 {
3819 if (value_as_long (value) == 0)
3820 {
3821 /* Null pointer conversion: allow it to be cast to a pointer.
3822 [4.10.1 of C++ standard draft n3290] */
3823 return NULL_POINTER_CONVERSION_BADNESS;
3824 }
3825 else
3826 {
3827 /* If type checking is disabled, allow the conversion. */
3828 if (!strict_type_checking)
3829 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3830 }
3831 }
3832 /* fall through */
3833 case TYPE_CODE_ENUM:
3834 case TYPE_CODE_FLAGS:
3835 case TYPE_CODE_CHAR:
3836 case TYPE_CODE_RANGE:
3837 case TYPE_CODE_BOOL:
3838 default:
3839 return INCOMPATIBLE_TYPE_BADNESS;
3840 }
3841}
3842
b9f4512f
SM
3843/* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
3844
3845static struct rank
3846rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
3847{
3848 switch (TYPE_CODE (arg))
3849 {
3850 case TYPE_CODE_PTR:
3851 case TYPE_CODE_ARRAY:
3852 return rank_one_type (TYPE_TARGET_TYPE (parm),
3853 TYPE_TARGET_TYPE (arg), NULL);
3854 default:
3855 return INCOMPATIBLE_TYPE_BADNESS;
3856 }
3857}
3858
f1f832d6
SM
3859/* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
3860
3861static struct rank
3862rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
3863{
3864 switch (TYPE_CODE (arg))
3865 {
3866 case TYPE_CODE_PTR: /* funcptr -> func */
3867 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3868 default:
3869 return INCOMPATIBLE_TYPE_BADNESS;
3870 }
3871}
3872
34910087
SM
3873/* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
3874
3875static struct rank
3876rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
3877{
3878 switch (TYPE_CODE (arg))
3879 {
3880 case TYPE_CODE_INT:
3881 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3882 {
3883 /* Deal with signed, unsigned, and plain chars and
3884 signed and unsigned ints. */
3885 if (TYPE_NOSIGN (parm))
3886 {
3887 /* This case only for character types. */
3888 if (TYPE_NOSIGN (arg))
3889 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3890 else /* signed/unsigned char -> plain char */
3891 return INTEGER_CONVERSION_BADNESS;
3892 }
3893 else if (TYPE_UNSIGNED (parm))
3894 {
3895 if (TYPE_UNSIGNED (arg))
3896 {
3897 /* unsigned int -> unsigned int, or
3898 unsigned long -> unsigned long */
3899 if (integer_types_same_name_p (TYPE_NAME (parm),
3900 TYPE_NAME (arg)))
3901 return EXACT_MATCH_BADNESS;
3902 else if (integer_types_same_name_p (TYPE_NAME (arg),
3903 "int")
3904 && integer_types_same_name_p (TYPE_NAME (parm),
3905 "long"))
3906 /* unsigned int -> unsigned long */
3907 return INTEGER_PROMOTION_BADNESS;
3908 else
3909 /* unsigned long -> unsigned int */
3910 return INTEGER_CONVERSION_BADNESS;
3911 }
3912 else
3913 {
3914 if (integer_types_same_name_p (TYPE_NAME (arg),
3915 "long")
3916 && integer_types_same_name_p (TYPE_NAME (parm),
3917 "int"))
3918 /* signed long -> unsigned int */
3919 return INTEGER_CONVERSION_BADNESS;
3920 else
3921 /* signed int/long -> unsigned int/long */
3922 return INTEGER_CONVERSION_BADNESS;
3923 }
3924 }
3925 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3926 {
3927 if (integer_types_same_name_p (TYPE_NAME (parm),
3928 TYPE_NAME (arg)))
3929 return EXACT_MATCH_BADNESS;
3930 else if (integer_types_same_name_p (TYPE_NAME (arg),
3931 "int")
3932 && integer_types_same_name_p (TYPE_NAME (parm),
3933 "long"))
3934 return INTEGER_PROMOTION_BADNESS;
3935 else
3936 return INTEGER_CONVERSION_BADNESS;
3937 }
3938 else
3939 return INTEGER_CONVERSION_BADNESS;
3940 }
3941 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3942 return INTEGER_PROMOTION_BADNESS;
3943 else
3944 return INTEGER_CONVERSION_BADNESS;
3945 case TYPE_CODE_ENUM:
3946 case TYPE_CODE_FLAGS:
3947 case TYPE_CODE_CHAR:
3948 case TYPE_CODE_RANGE:
3949 case TYPE_CODE_BOOL:
3950 if (TYPE_DECLARED_CLASS (arg))
3951 return INCOMPATIBLE_TYPE_BADNESS;
3952 return INTEGER_PROMOTION_BADNESS;
3953 case TYPE_CODE_FLT:
3954 return INT_FLOAT_CONVERSION_BADNESS;
3955 case TYPE_CODE_PTR:
3956 return NS_POINTER_CONVERSION_BADNESS;
3957 default:
3958 return INCOMPATIBLE_TYPE_BADNESS;
3959 }
3960}
3961
793cd1d2
SM
3962/* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
3963
3964static struct rank
3965rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
3966{
3967 switch (TYPE_CODE (arg))
3968 {
3969 case TYPE_CODE_INT:
3970 case TYPE_CODE_CHAR:
3971 case TYPE_CODE_RANGE:
3972 case TYPE_CODE_BOOL:
3973 case TYPE_CODE_ENUM:
3974 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3975 return INCOMPATIBLE_TYPE_BADNESS;
3976 return INTEGER_CONVERSION_BADNESS;
3977 case TYPE_CODE_FLT:
3978 return INT_FLOAT_CONVERSION_BADNESS;
3979 default:
3980 return INCOMPATIBLE_TYPE_BADNESS;
3981 }
3982}
3983
41ea4728
SM
3984/* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
3985
3986static struct rank
3987rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
3988{
3989 switch (TYPE_CODE (arg))
3990 {
3991 case TYPE_CODE_RANGE:
3992 case TYPE_CODE_BOOL:
3993 case TYPE_CODE_ENUM:
3994 if (TYPE_DECLARED_CLASS (arg))
3995 return INCOMPATIBLE_TYPE_BADNESS;
3996 return INTEGER_CONVERSION_BADNESS;
3997 case TYPE_CODE_FLT:
3998 return INT_FLOAT_CONVERSION_BADNESS;
3999 case TYPE_CODE_INT:
4000 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4001 return INTEGER_CONVERSION_BADNESS;
4002 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4003 return INTEGER_PROMOTION_BADNESS;
4004 /* fall through */
4005 case TYPE_CODE_CHAR:
4006 /* Deal with signed, unsigned, and plain chars for C++ and
4007 with int cases falling through from previous case. */
4008 if (TYPE_NOSIGN (parm))
4009 {
4010 if (TYPE_NOSIGN (arg))
4011 return EXACT_MATCH_BADNESS;
4012 else
4013 return INTEGER_CONVERSION_BADNESS;
4014 }
4015 else if (TYPE_UNSIGNED (parm))
4016 {
4017 if (TYPE_UNSIGNED (arg))
4018 return EXACT_MATCH_BADNESS;
4019 else
4020 return INTEGER_PROMOTION_BADNESS;
4021 }
4022 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4023 return EXACT_MATCH_BADNESS;
4024 else
4025 return INTEGER_CONVERSION_BADNESS;
4026 default:
4027 return INCOMPATIBLE_TYPE_BADNESS;
4028 }
4029}
4030
0dd322dc
SM
4031/* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4032
4033static struct rank
4034rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4035{
4036 switch (TYPE_CODE (arg))
4037 {
4038 case TYPE_CODE_INT:
4039 case TYPE_CODE_CHAR:
4040 case TYPE_CODE_RANGE:
4041 case TYPE_CODE_BOOL:
4042 case TYPE_CODE_ENUM:
4043 return INTEGER_CONVERSION_BADNESS;
4044 case TYPE_CODE_FLT:
4045 return INT_FLOAT_CONVERSION_BADNESS;
4046 default:
4047 return INCOMPATIBLE_TYPE_BADNESS;
4048 }
4049}
4050
2c509035
SM
4051/* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4052
4053static struct rank
4054rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4055{
4056 switch (TYPE_CODE (arg))
4057 {
4058 /* n3290 draft, section 4.12.1 (conv.bool):
4059
4060 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4061 pointer to member type can be converted to a prvalue of type
4062 bool. A zero value, null pointer value, or null member pointer
4063 value is converted to false; any other value is converted to
4064 true. A prvalue of type std::nullptr_t can be converted to a
4065 prvalue of type bool; the resulting value is false." */
4066 case TYPE_CODE_INT:
4067 case TYPE_CODE_CHAR:
4068 case TYPE_CODE_ENUM:
4069 case TYPE_CODE_FLT:
4070 case TYPE_CODE_MEMBERPTR:
4071 case TYPE_CODE_PTR:
4072 return BOOL_CONVERSION_BADNESS;
4073 case TYPE_CODE_RANGE:
4074 return INCOMPATIBLE_TYPE_BADNESS;
4075 case TYPE_CODE_BOOL:
4076 return EXACT_MATCH_BADNESS;
4077 default:
4078 return INCOMPATIBLE_TYPE_BADNESS;
4079 }
4080}
4081
7f17b20d
SM
4082/* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4083
4084static struct rank
4085rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4086{
4087 switch (TYPE_CODE (arg))
4088 {
4089 case TYPE_CODE_FLT:
4090 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4091 return FLOAT_PROMOTION_BADNESS;
4092 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4093 return EXACT_MATCH_BADNESS;
4094 else
4095 return FLOAT_CONVERSION_BADNESS;
4096 case TYPE_CODE_INT:
4097 case TYPE_CODE_BOOL:
4098 case TYPE_CODE_ENUM:
4099 case TYPE_CODE_RANGE:
4100 case TYPE_CODE_CHAR:
4101 return INT_FLOAT_CONVERSION_BADNESS;
4102 default:
4103 return INCOMPATIBLE_TYPE_BADNESS;
4104 }
4105}
4106
2598a94b
SM
4107/* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4108
4109static struct rank
4110rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4111{
4112 switch (TYPE_CODE (arg))
4113 { /* Strictly not needed for C++, but... */
4114 case TYPE_CODE_FLT:
4115 return FLOAT_PROMOTION_BADNESS;
4116 case TYPE_CODE_COMPLEX:
4117 return EXACT_MATCH_BADNESS;
4118 default:
4119 return INCOMPATIBLE_TYPE_BADNESS;
4120 }
4121}
4122
595f96a9
SM
4123/* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4124
4125static struct rank
4126rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4127{
4128 struct rank rank = {0, 0};
4129
4130 switch (TYPE_CODE (arg))
4131 {
4132 case TYPE_CODE_STRUCT:
4133 /* Check for derivation */
4134 rank.subrank = distance_to_ancestor (parm, arg, 0);
4135 if (rank.subrank >= 0)
4136 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4137 /* fall through */
4138 default:
4139 return INCOMPATIBLE_TYPE_BADNESS;
4140 }
4141}
4142
f09ce22d
SM
4143/* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4144
4145static struct rank
4146rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4147{
4148 switch (TYPE_CODE (arg))
4149 {
4150 /* Not in C++ */
4151 case TYPE_CODE_SET:
4152 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4153 TYPE_FIELD_TYPE (arg, 0), NULL);
4154 default:
4155 return INCOMPATIBLE_TYPE_BADNESS;
4156 }
4157}
4158
c906108c
SS
4159/* Compare one type (PARM) for compatibility with another (ARG).
4160 * PARM is intended to be the parameter type of a function; and
4161 * ARG is the supplied argument's type. This function tests if
4162 * the latter can be converted to the former.
da096638 4163 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
4164 *
4165 * Return 0 if they are identical types;
4166 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
4167 * PARM is to ARG. The higher the return value, the worse the match.
4168 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 4169
6403aeea 4170struct rank
da096638 4171rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 4172{
a9d5ef47 4173 struct rank rank = {0,0};
7062b0a0 4174
c906108c
SS
4175 /* Resolve typedefs */
4176 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
4177 parm = check_typedef (parm);
4178 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
4179 arg = check_typedef (arg);
4180
e15c3eb4 4181 if (TYPE_IS_REFERENCE (parm) && value != NULL)
15c0a2a9 4182 {
e15c3eb4
KS
4183 if (VALUE_LVAL (value) == not_lval)
4184 {
4185 /* Rvalues should preferably bind to rvalue references or const
4186 lvalue references. */
4187 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4188 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4189 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4190 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4191 else
4192 return INCOMPATIBLE_TYPE_BADNESS;
4193 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4194 }
4195 else
4196 {
4197 /* Lvalues should prefer lvalue overloads. */
4198 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4199 {
4200 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4201 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4202 }
4203 }
15c0a2a9
AV
4204 }
4205
4206 if (types_equal (parm, arg))
15c0a2a9 4207 {
e15c3eb4
KS
4208 struct type *t1 = parm;
4209 struct type *t2 = arg;
15c0a2a9 4210
e15c3eb4
KS
4211 /* For pointers and references, compare target type. */
4212 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4213 {
4214 t1 = TYPE_TARGET_TYPE (parm);
4215 t2 = TYPE_TARGET_TYPE (arg);
4216 }
15c0a2a9 4217
e15c3eb4
KS
4218 /* Make sure they are CV equal, too. */
4219 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4220 rank.subrank |= CV_CONVERSION_CONST;
4221 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4222 rank.subrank |= CV_CONVERSION_VOLATILE;
4223 if (rank.subrank != 0)
4224 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4225 return EXACT_MATCH_BADNESS;
15c0a2a9
AV
4226 }
4227
db577aea 4228 /* See through references, since we can almost make non-references
7ba81444 4229 references. */
aa006118
AV
4230
4231 if (TYPE_IS_REFERENCE (arg))
da096638 4232 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
6403aeea 4233 REFERENCE_CONVERSION_BADNESS));
aa006118 4234 if (TYPE_IS_REFERENCE (parm))
da096638 4235 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
6403aeea 4236 REFERENCE_CONVERSION_BADNESS));
5d161b24 4237 if (overload_debug)
7ba81444
MS
4238 /* Debugging only. */
4239 fprintf_filtered (gdb_stderr,
4240 "------ Arg is %s [%d], parm is %s [%d]\n",
4241 TYPE_NAME (arg), TYPE_CODE (arg),
4242 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 4243
0963b4bd 4244 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
4245
4246 switch (TYPE_CODE (parm))
4247 {
c5aa993b 4248 case TYPE_CODE_PTR:
9293fc63 4249 return rank_one_type_parm_ptr (parm, arg, value);
c5aa993b 4250 case TYPE_CODE_ARRAY:
b9f4512f 4251 return rank_one_type_parm_array (parm, arg, value);
c5aa993b 4252 case TYPE_CODE_FUNC:
f1f832d6 4253 return rank_one_type_parm_func (parm, arg, value);
c5aa993b 4254 case TYPE_CODE_INT:
34910087 4255 return rank_one_type_parm_int (parm, arg, value);
c5aa993b 4256 case TYPE_CODE_ENUM:
793cd1d2 4257 return rank_one_type_parm_enum (parm, arg, value);
c5aa993b 4258 case TYPE_CODE_CHAR:
41ea4728 4259 return rank_one_type_parm_char (parm, arg, value);
c5aa993b 4260 case TYPE_CODE_RANGE:
0dd322dc 4261 return rank_one_type_parm_range (parm, arg, value);
c5aa993b 4262 case TYPE_CODE_BOOL:
2c509035 4263 return rank_one_type_parm_bool (parm, arg, value);
c5aa993b 4264 case TYPE_CODE_FLT:
7f17b20d 4265 return rank_one_type_parm_float (parm, arg, value);
c5aa993b 4266 case TYPE_CODE_COMPLEX:
2598a94b 4267 return rank_one_type_parm_complex (parm, arg, value);
c5aa993b 4268 case TYPE_CODE_STRUCT:
595f96a9 4269 return rank_one_type_parm_struct (parm, arg, value);
c5aa993b 4270 case TYPE_CODE_SET:
f09ce22d 4271 return rank_one_type_parm_set (parm, arg, value);
c5aa993b
JM
4272 default:
4273 return INCOMPATIBLE_TYPE_BADNESS;
4274 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
4275}
4276
0963b4bd 4277/* End of functions for overload resolution. */
5212577a
DE
4278\f
4279/* Routines to pretty-print types. */
c906108c 4280
c906108c 4281static void
fba45db2 4282print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
4283{
4284 int bitno;
4285
4286 for (bitno = 0; bitno < nbits; bitno++)
4287 {
4288 if ((bitno % 8) == 0)
4289 {
4290 puts_filtered (" ");
4291 }
4292 if (B_TST (bits, bitno))
a3f17187 4293 printf_filtered (("1"));
c906108c 4294 else
a3f17187 4295 printf_filtered (("0"));
c906108c
SS
4296 }
4297}
4298
ad2f7632 4299/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
4300 include it since we may get into a infinitely recursive
4301 situation. */
c906108c
SS
4302
4303static void
4c9e8482 4304print_args (struct field *args, int nargs, int spaces)
c906108c
SS
4305{
4306 if (args != NULL)
4307 {
ad2f7632
DJ
4308 int i;
4309
4310 for (i = 0; i < nargs; i++)
4c9e8482
DE
4311 {
4312 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4313 args[i].name != NULL ? args[i].name : "<NULL>");
4314 recursive_dump_type (args[i].type, spaces + 2);
4315 }
c906108c
SS
4316 }
4317}
4318
d6a843b5
JK
4319int
4320field_is_static (struct field *f)
4321{
4322 /* "static" fields are the fields whose location is not relative
4323 to the address of the enclosing struct. It would be nice to
4324 have a dedicated flag that would be set for static fields when
4325 the type is being created. But in practice, checking the field
254e6b9e 4326 loc_kind should give us an accurate answer. */
d6a843b5
JK
4327 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4328 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4329}
4330
c906108c 4331static void
fba45db2 4332dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
4333{
4334 int method_idx;
4335 int overload_idx;
4336 struct fn_field *f;
4337
4338 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 4339 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
4340 printf_filtered ("\n");
4341 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4342 {
4343 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4344 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4345 method_idx,
4346 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
4347 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4348 gdb_stdout);
a3f17187 4349 printf_filtered (_(") length %d\n"),
c906108c
SS
4350 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4351 for (overload_idx = 0;
4352 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4353 overload_idx++)
4354 {
4355 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4356 overload_idx,
4357 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
4358 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4359 gdb_stdout);
c906108c
SS
4360 printf_filtered (")\n");
4361 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
4362 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4363 gdb_stdout);
c906108c
SS
4364 printf_filtered ("\n");
4365
4366 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4367 spaces + 8 + 2);
4368
4369 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
4370 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4371 gdb_stdout);
c906108c 4372 printf_filtered ("\n");
4c9e8482
DE
4373 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4374 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4375 spaces + 8 + 2);
c906108c 4376 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
4377 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4378 gdb_stdout);
c906108c
SS
4379 printf_filtered ("\n");
4380
4381 printfi_filtered (spaces + 8, "is_const %d\n",
4382 TYPE_FN_FIELD_CONST (f, overload_idx));
4383 printfi_filtered (spaces + 8, "is_volatile %d\n",
4384 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4385 printfi_filtered (spaces + 8, "is_private %d\n",
4386 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4387 printfi_filtered (spaces + 8, "is_protected %d\n",
4388 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4389 printfi_filtered (spaces + 8, "is_stub %d\n",
4390 TYPE_FN_FIELD_STUB (f, overload_idx));
4391 printfi_filtered (spaces + 8, "voffset %u\n",
4392 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4393 }
4394 }
4395}
4396
4397static void
fba45db2 4398print_cplus_stuff (struct type *type, int spaces)
c906108c 4399{
ae6ae975
DE
4400 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4401 printfi_filtered (spaces, "vptr_basetype ");
4402 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4403 puts_filtered ("\n");
4404 if (TYPE_VPTR_BASETYPE (type) != NULL)
4405 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4406
c906108c
SS
4407 printfi_filtered (spaces, "n_baseclasses %d\n",
4408 TYPE_N_BASECLASSES (type));
4409 printfi_filtered (spaces, "nfn_fields %d\n",
4410 TYPE_NFN_FIELDS (type));
c906108c
SS
4411 if (TYPE_N_BASECLASSES (type) > 0)
4412 {
4413 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4414 TYPE_N_BASECLASSES (type));
7ba81444
MS
4415 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4416 gdb_stdout);
c906108c
SS
4417 printf_filtered (")");
4418
4419 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4420 TYPE_N_BASECLASSES (type));
4421 puts_filtered ("\n");
4422 }
4423 if (TYPE_NFIELDS (type) > 0)
4424 {
4425 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4426 {
7ba81444
MS
4427 printfi_filtered (spaces,
4428 "private_field_bits (%d bits at *",
c906108c 4429 TYPE_NFIELDS (type));
7ba81444
MS
4430 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4431 gdb_stdout);
c906108c
SS
4432 printf_filtered (")");
4433 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4434 TYPE_NFIELDS (type));
4435 puts_filtered ("\n");
4436 }
4437 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4438 {
7ba81444
MS
4439 printfi_filtered (spaces,
4440 "protected_field_bits (%d bits at *",
c906108c 4441 TYPE_NFIELDS (type));
7ba81444
MS
4442 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4443 gdb_stdout);
c906108c
SS
4444 printf_filtered (")");
4445 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4446 TYPE_NFIELDS (type));
4447 puts_filtered ("\n");
4448 }
4449 }
4450 if (TYPE_NFN_FIELDS (type) > 0)
4451 {
4452 dump_fn_fieldlists (type, spaces);
4453 }
4454}
4455
b4ba55a1
JB
4456/* Print the contents of the TYPE's type_specific union, assuming that
4457 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4458
4459static void
4460print_gnat_stuff (struct type *type, int spaces)
4461{
4462 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4463
8cd00c59
PMR
4464 if (descriptive_type == NULL)
4465 printfi_filtered (spaces + 2, "no descriptive type\n");
4466 else
4467 {
4468 printfi_filtered (spaces + 2, "descriptive type\n");
4469 recursive_dump_type (descriptive_type, spaces + 4);
4470 }
b4ba55a1
JB
4471}
4472
c906108c
SS
4473static struct obstack dont_print_type_obstack;
4474
4475void
fba45db2 4476recursive_dump_type (struct type *type, int spaces)
c906108c
SS
4477{
4478 int idx;
4479
4480 if (spaces == 0)
4481 obstack_begin (&dont_print_type_obstack, 0);
4482
4483 if (TYPE_NFIELDS (type) > 0
b4ba55a1 4484 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
4485 {
4486 struct type **first_dont_print
7ba81444 4487 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 4488
7ba81444
MS
4489 int i = (struct type **)
4490 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
4491
4492 while (--i >= 0)
4493 {
4494 if (type == first_dont_print[i])
4495 {
4496 printfi_filtered (spaces, "type node ");
d4f3574e 4497 gdb_print_host_address (type, gdb_stdout);
a3f17187 4498 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
4499 return;
4500 }
4501 }
4502
4503 obstack_ptr_grow (&dont_print_type_obstack, type);
4504 }
4505
4506 printfi_filtered (spaces, "type node ");
d4f3574e 4507 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
4508 printf_filtered ("\n");
4509 printfi_filtered (spaces, "name '%s' (",
4510 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 4511 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 4512 printf_filtered (")\n");
c906108c
SS
4513 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4514 switch (TYPE_CODE (type))
4515 {
c5aa993b
JM
4516 case TYPE_CODE_UNDEF:
4517 printf_filtered ("(TYPE_CODE_UNDEF)");
4518 break;
4519 case TYPE_CODE_PTR:
4520 printf_filtered ("(TYPE_CODE_PTR)");
4521 break;
4522 case TYPE_CODE_ARRAY:
4523 printf_filtered ("(TYPE_CODE_ARRAY)");
4524 break;
4525 case TYPE_CODE_STRUCT:
4526 printf_filtered ("(TYPE_CODE_STRUCT)");
4527 break;
4528 case TYPE_CODE_UNION:
4529 printf_filtered ("(TYPE_CODE_UNION)");
4530 break;
4531 case TYPE_CODE_ENUM:
4532 printf_filtered ("(TYPE_CODE_ENUM)");
4533 break;
4f2aea11
MK
4534 case TYPE_CODE_FLAGS:
4535 printf_filtered ("(TYPE_CODE_FLAGS)");
4536 break;
c5aa993b
JM
4537 case TYPE_CODE_FUNC:
4538 printf_filtered ("(TYPE_CODE_FUNC)");
4539 break;
4540 case TYPE_CODE_INT:
4541 printf_filtered ("(TYPE_CODE_INT)");
4542 break;
4543 case TYPE_CODE_FLT:
4544 printf_filtered ("(TYPE_CODE_FLT)");
4545 break;
4546 case TYPE_CODE_VOID:
4547 printf_filtered ("(TYPE_CODE_VOID)");
4548 break;
4549 case TYPE_CODE_SET:
4550 printf_filtered ("(TYPE_CODE_SET)");
4551 break;
4552 case TYPE_CODE_RANGE:
4553 printf_filtered ("(TYPE_CODE_RANGE)");
4554 break;
4555 case TYPE_CODE_STRING:
4556 printf_filtered ("(TYPE_CODE_STRING)");
4557 break;
4558 case TYPE_CODE_ERROR:
4559 printf_filtered ("(TYPE_CODE_ERROR)");
4560 break;
0d5de010
DJ
4561 case TYPE_CODE_MEMBERPTR:
4562 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4563 break;
4564 case TYPE_CODE_METHODPTR:
4565 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
4566 break;
4567 case TYPE_CODE_METHOD:
4568 printf_filtered ("(TYPE_CODE_METHOD)");
4569 break;
4570 case TYPE_CODE_REF:
4571 printf_filtered ("(TYPE_CODE_REF)");
4572 break;
4573 case TYPE_CODE_CHAR:
4574 printf_filtered ("(TYPE_CODE_CHAR)");
4575 break;
4576 case TYPE_CODE_BOOL:
4577 printf_filtered ("(TYPE_CODE_BOOL)");
4578 break;
e9e79dd9
FF
4579 case TYPE_CODE_COMPLEX:
4580 printf_filtered ("(TYPE_CODE_COMPLEX)");
4581 break;
c5aa993b
JM
4582 case TYPE_CODE_TYPEDEF:
4583 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4584 break;
5c4e30ca
DC
4585 case TYPE_CODE_NAMESPACE:
4586 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4587 break;
c5aa993b
JM
4588 default:
4589 printf_filtered ("(UNKNOWN TYPE CODE)");
4590 break;
c906108c
SS
4591 }
4592 puts_filtered ("\n");
cc1defb1 4593 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
e9bb382b
UW
4594 if (TYPE_OBJFILE_OWNED (type))
4595 {
4596 printfi_filtered (spaces, "objfile ");
4597 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4598 }
4599 else
4600 {
4601 printfi_filtered (spaces, "gdbarch ");
4602 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4603 }
c906108c
SS
4604 printf_filtered ("\n");
4605 printfi_filtered (spaces, "target_type ");
d4f3574e 4606 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
4607 printf_filtered ("\n");
4608 if (TYPE_TARGET_TYPE (type) != NULL)
4609 {
4610 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4611 }
4612 printfi_filtered (spaces, "pointer_type ");
d4f3574e 4613 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
4614 printf_filtered ("\n");
4615 printfi_filtered (spaces, "reference_type ");
d4f3574e 4616 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 4617 printf_filtered ("\n");
2fdde8f8
DJ
4618 printfi_filtered (spaces, "type_chain ");
4619 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 4620 printf_filtered ("\n");
7ba81444
MS
4621 printfi_filtered (spaces, "instance_flags 0x%x",
4622 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
4623 if (TYPE_CONST (type))
4624 {
a9ff5f12 4625 puts_filtered (" TYPE_CONST");
2fdde8f8
DJ
4626 }
4627 if (TYPE_VOLATILE (type))
4628 {
a9ff5f12 4629 puts_filtered (" TYPE_VOLATILE");
2fdde8f8
DJ
4630 }
4631 if (TYPE_CODE_SPACE (type))
4632 {
a9ff5f12 4633 puts_filtered (" TYPE_CODE_SPACE");
2fdde8f8
DJ
4634 }
4635 if (TYPE_DATA_SPACE (type))
4636 {
a9ff5f12 4637 puts_filtered (" TYPE_DATA_SPACE");
2fdde8f8 4638 }
8b2dbe47
KB
4639 if (TYPE_ADDRESS_CLASS_1 (type))
4640 {
a9ff5f12 4641 puts_filtered (" TYPE_ADDRESS_CLASS_1");
8b2dbe47
KB
4642 }
4643 if (TYPE_ADDRESS_CLASS_2 (type))
4644 {
a9ff5f12 4645 puts_filtered (" TYPE_ADDRESS_CLASS_2");
8b2dbe47 4646 }
06d66ee9
TT
4647 if (TYPE_RESTRICT (type))
4648 {
a9ff5f12 4649 puts_filtered (" TYPE_RESTRICT");
06d66ee9 4650 }
a2c2acaf
MW
4651 if (TYPE_ATOMIC (type))
4652 {
a9ff5f12 4653 puts_filtered (" TYPE_ATOMIC");
a2c2acaf 4654 }
2fdde8f8 4655 puts_filtered ("\n");
876cecd0
TT
4656
4657 printfi_filtered (spaces, "flags");
762a036f 4658 if (TYPE_UNSIGNED (type))
c906108c 4659 {
a9ff5f12 4660 puts_filtered (" TYPE_UNSIGNED");
c906108c 4661 }
762a036f
FF
4662 if (TYPE_NOSIGN (type))
4663 {
a9ff5f12 4664 puts_filtered (" TYPE_NOSIGN");
762a036f
FF
4665 }
4666 if (TYPE_STUB (type))
c906108c 4667 {
a9ff5f12 4668 puts_filtered (" TYPE_STUB");
c906108c 4669 }
762a036f
FF
4670 if (TYPE_TARGET_STUB (type))
4671 {
a9ff5f12 4672 puts_filtered (" TYPE_TARGET_STUB");
762a036f 4673 }
762a036f
FF
4674 if (TYPE_PROTOTYPED (type))
4675 {
a9ff5f12 4676 puts_filtered (" TYPE_PROTOTYPED");
762a036f
FF
4677 }
4678 if (TYPE_INCOMPLETE (type))
4679 {
a9ff5f12 4680 puts_filtered (" TYPE_INCOMPLETE");
762a036f 4681 }
762a036f
FF
4682 if (TYPE_VARARGS (type))
4683 {
a9ff5f12 4684 puts_filtered (" TYPE_VARARGS");
762a036f 4685 }
f5f8a009
EZ
4686 /* This is used for things like AltiVec registers on ppc. Gcc emits
4687 an attribute for the array type, which tells whether or not we
4688 have a vector, instead of a regular array. */
4689 if (TYPE_VECTOR (type))
4690 {
a9ff5f12 4691 puts_filtered (" TYPE_VECTOR");
f5f8a009 4692 }
876cecd0
TT
4693 if (TYPE_FIXED_INSTANCE (type))
4694 {
4695 puts_filtered (" TYPE_FIXED_INSTANCE");
4696 }
4697 if (TYPE_STUB_SUPPORTED (type))
4698 {
4699 puts_filtered (" TYPE_STUB_SUPPORTED");
4700 }
4701 if (TYPE_NOTTEXT (type))
4702 {
4703 puts_filtered (" TYPE_NOTTEXT");
4704 }
c906108c
SS
4705 puts_filtered ("\n");
4706 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 4707 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
4708 puts_filtered ("\n");
4709 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4710 {
14e75d8e
JK
4711 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4712 printfi_filtered (spaces + 2,
4713 "[%d] enumval %s type ",
4714 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4715 else
4716 printfi_filtered (spaces + 2,
6b850546
DT
4717 "[%d] bitpos %s bitsize %d type ",
4718 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
14e75d8e 4719 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 4720 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
4721 printf_filtered (" name '%s' (",
4722 TYPE_FIELD_NAME (type, idx) != NULL
4723 ? TYPE_FIELD_NAME (type, idx)
4724 : "<NULL>");
d4f3574e 4725 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
4726 printf_filtered (")\n");
4727 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4728 {
4729 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4730 }
4731 }
43bbcdc2
PH
4732 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4733 {
4734 printfi_filtered (spaces, "low %s%s high %s%s\n",
4735 plongest (TYPE_LOW_BOUND (type)),
4736 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4737 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
4738 TYPE_HIGH_BOUND_UNDEFINED (type)
4739 ? " (undefined)" : "");
43bbcdc2 4740 }
c906108c 4741
b4ba55a1
JB
4742 switch (TYPE_SPECIFIC_FIELD (type))
4743 {
4744 case TYPE_SPECIFIC_CPLUS_STUFF:
4745 printfi_filtered (spaces, "cplus_stuff ");
4746 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4747 gdb_stdout);
4748 puts_filtered ("\n");
4749 print_cplus_stuff (type, spaces);
4750 break;
8da61cc4 4751
b4ba55a1
JB
4752 case TYPE_SPECIFIC_GNAT_STUFF:
4753 printfi_filtered (spaces, "gnat_stuff ");
4754 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4755 puts_filtered ("\n");
4756 print_gnat_stuff (type, spaces);
4757 break;
701c159d 4758
b4ba55a1
JB
4759 case TYPE_SPECIFIC_FLOATFORMAT:
4760 printfi_filtered (spaces, "floatformat ");
0db7851f
UW
4761 if (TYPE_FLOATFORMAT (type) == NULL
4762 || TYPE_FLOATFORMAT (type)->name == NULL)
b4ba55a1
JB
4763 puts_filtered ("(null)");
4764 else
0db7851f 4765 puts_filtered (TYPE_FLOATFORMAT (type)->name);
b4ba55a1
JB
4766 puts_filtered ("\n");
4767 break;
c906108c 4768
b6cdc2c1 4769 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
4770 printfi_filtered (spaces, "calling_convention %d\n",
4771 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 4772 /* tail_call_list is not printed. */
b4ba55a1 4773 break;
09e2d7c7
DE
4774
4775 case TYPE_SPECIFIC_SELF_TYPE:
4776 printfi_filtered (spaces, "self_type ");
4777 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4778 puts_filtered ("\n");
4779 break;
c906108c 4780 }
b4ba55a1 4781
c906108c
SS
4782 if (spaces == 0)
4783 obstack_free (&dont_print_type_obstack, NULL);
4784}
5212577a 4785\f
ae5a43e0
DJ
4786/* Trivial helpers for the libiberty hash table, for mapping one
4787 type to another. */
4788
fd90ace4 4789struct type_pair : public allocate_on_obstack
ae5a43e0 4790{
fd90ace4
YQ
4791 type_pair (struct type *old_, struct type *newobj_)
4792 : old (old_), newobj (newobj_)
4793 {}
4794
4795 struct type * const old, * const newobj;
ae5a43e0
DJ
4796};
4797
4798static hashval_t
4799type_pair_hash (const void *item)
4800{
9a3c8263 4801 const struct type_pair *pair = (const struct type_pair *) item;
d8734c88 4802
ae5a43e0
DJ
4803 return htab_hash_pointer (pair->old);
4804}
4805
4806static int
4807type_pair_eq (const void *item_lhs, const void *item_rhs)
4808{
9a3c8263
SM
4809 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4810 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
d8734c88 4811
ae5a43e0
DJ
4812 return lhs->old == rhs->old;
4813}
4814
4815/* Allocate the hash table used by copy_type_recursive to walk
4816 types without duplicates. We use OBJFILE's obstack, because
4817 OBJFILE is about to be deleted. */
4818
4819htab_t
4820create_copied_types_hash (struct objfile *objfile)
4821{
4822 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4823 NULL, &objfile->objfile_obstack,
4824 hashtab_obstack_allocate,
4825 dummy_obstack_deallocate);
4826}
4827
d9823cbb
KB
4828/* Recursively copy (deep copy) a dynamic attribute list of a type. */
4829
4830static struct dynamic_prop_list *
4831copy_dynamic_prop_list (struct obstack *objfile_obstack,
4832 struct dynamic_prop_list *list)
4833{
4834 struct dynamic_prop_list *copy = list;
4835 struct dynamic_prop_list **node_ptr = &copy;
4836
4837 while (*node_ptr != NULL)
4838 {
4839 struct dynamic_prop_list *node_copy;
4840
224c3ddb
SM
4841 node_copy = ((struct dynamic_prop_list *)
4842 obstack_copy (objfile_obstack, *node_ptr,
4843 sizeof (struct dynamic_prop_list)));
283a9958 4844 node_copy->prop = (*node_ptr)->prop;
d9823cbb
KB
4845 *node_ptr = node_copy;
4846
4847 node_ptr = &node_copy->next;
4848 }
4849
4850 return copy;
4851}
4852
7ba81444 4853/* Recursively copy (deep copy) TYPE, if it is associated with
eed8b28a
PP
4854 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4855 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4856 it is not associated with OBJFILE. */
ae5a43e0
DJ
4857
4858struct type *
7ba81444
MS
4859copy_type_recursive (struct objfile *objfile,
4860 struct type *type,
ae5a43e0
DJ
4861 htab_t copied_types)
4862{
ae5a43e0
DJ
4863 void **slot;
4864 struct type *new_type;
4865
e9bb382b 4866 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
4867 return type;
4868
7ba81444
MS
4869 /* This type shouldn't be pointing to any types in other objfiles;
4870 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
4871 gdb_assert (TYPE_OBJFILE (type) == objfile);
4872
fd90ace4
YQ
4873 struct type_pair pair (type, nullptr);
4874
ae5a43e0
DJ
4875 slot = htab_find_slot (copied_types, &pair, INSERT);
4876 if (*slot != NULL)
fe978cb0 4877 return ((struct type_pair *) *slot)->newobj;
ae5a43e0 4878
e9bb382b 4879 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
4880
4881 /* We must add the new type to the hash table immediately, in case
4882 we encounter this type again during a recursive call below. */
fd90ace4
YQ
4883 struct type_pair *stored
4884 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
4885
ae5a43e0
DJ
4886 *slot = stored;
4887
876cecd0
TT
4888 /* Copy the common fields of types. For the main type, we simply
4889 copy the entire thing and then update specific fields as needed. */
4890 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
4891 TYPE_OBJFILE_OWNED (new_type) = 0;
4892 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 4893
ae5a43e0
DJ
4894 if (TYPE_NAME (type))
4895 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
ae5a43e0
DJ
4896
4897 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4898 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4899
4900 /* Copy the fields. */
ae5a43e0
DJ
4901 if (TYPE_NFIELDS (type))
4902 {
4903 int i, nfields;
4904
4905 nfields = TYPE_NFIELDS (type);
2fabdf33
AB
4906 TYPE_FIELDS (new_type) = (struct field *)
4907 TYPE_ZALLOC (new_type, nfields * sizeof (struct field));
ae5a43e0
DJ
4908 for (i = 0; i < nfields; i++)
4909 {
7ba81444
MS
4910 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4911 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
4912 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4913 if (TYPE_FIELD_TYPE (type, i))
4914 TYPE_FIELD_TYPE (new_type, i)
4915 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4916 copied_types);
4917 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
4918 TYPE_FIELD_NAME (new_type, i) =
4919 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 4920 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 4921 {
d6a843b5
JK
4922 case FIELD_LOC_KIND_BITPOS:
4923 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4924 TYPE_FIELD_BITPOS (type, i));
4925 break;
14e75d8e
JK
4926 case FIELD_LOC_KIND_ENUMVAL:
4927 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4928 TYPE_FIELD_ENUMVAL (type, i));
4929 break;
d6a843b5
JK
4930 case FIELD_LOC_KIND_PHYSADDR:
4931 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4932 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4933 break;
4934 case FIELD_LOC_KIND_PHYSNAME:
4935 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4936 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4937 i)));
4938 break;
4939 default:
4940 internal_error (__FILE__, __LINE__,
4941 _("Unexpected type field location kind: %d"),
4942 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
4943 }
4944 }
4945 }
4946
0963b4bd 4947 /* For range types, copy the bounds information. */
43bbcdc2
PH
4948 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4949 {
2fabdf33
AB
4950 TYPE_RANGE_DATA (new_type) = (struct range_bounds *)
4951 TYPE_ALLOC (new_type, sizeof (struct range_bounds));
43bbcdc2
PH
4952 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4953 }
4954
d9823cbb
KB
4955 if (TYPE_DYN_PROP_LIST (type) != NULL)
4956 TYPE_DYN_PROP_LIST (new_type)
4957 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4958 TYPE_DYN_PROP_LIST (type));
4959
3cdcd0ce 4960
ae5a43e0
DJ
4961 /* Copy pointers to other types. */
4962 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
4963 TYPE_TARGET_TYPE (new_type) =
4964 copy_type_recursive (objfile,
4965 TYPE_TARGET_TYPE (type),
4966 copied_types);
f6b3afbf 4967
ae5a43e0
DJ
4968 /* Maybe copy the type_specific bits.
4969
4970 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4971 base classes and methods. There's no fundamental reason why we
4972 can't, but at the moment it is not needed. */
4973
f6b3afbf
DE
4974 switch (TYPE_SPECIFIC_FIELD (type))
4975 {
4976 case TYPE_SPECIFIC_NONE:
4977 break;
4978 case TYPE_SPECIFIC_FUNC:
4979 INIT_FUNC_SPECIFIC (new_type);
4980 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4981 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4982 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4983 break;
4984 case TYPE_SPECIFIC_FLOATFORMAT:
4985 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4986 break;
4987 case TYPE_SPECIFIC_CPLUS_STUFF:
4988 INIT_CPLUS_SPECIFIC (new_type);
4989 break;
4990 case TYPE_SPECIFIC_GNAT_STUFF:
4991 INIT_GNAT_SPECIFIC (new_type);
4992 break;
09e2d7c7
DE
4993 case TYPE_SPECIFIC_SELF_TYPE:
4994 set_type_self_type (new_type,
4995 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4996 copied_types));
4997 break;
f6b3afbf
DE
4998 default:
4999 gdb_assert_not_reached ("bad type_specific_kind");
5000 }
ae5a43e0
DJ
5001
5002 return new_type;
5003}
5004
4af88198
JB
5005/* Make a copy of the given TYPE, except that the pointer & reference
5006 types are not preserved.
5007
5008 This function assumes that the given type has an associated objfile.
5009 This objfile is used to allocate the new type. */
5010
5011struct type *
5012copy_type (const struct type *type)
5013{
5014 struct type *new_type;
5015
e9bb382b 5016 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 5017
e9bb382b 5018 new_type = alloc_type_copy (type);
4af88198
JB
5019 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5020 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5021 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5022 sizeof (struct main_type));
d9823cbb
KB
5023 if (TYPE_DYN_PROP_LIST (type) != NULL)
5024 TYPE_DYN_PROP_LIST (new_type)
5025 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5026 TYPE_DYN_PROP_LIST (type));
4af88198
JB
5027
5028 return new_type;
5029}
5212577a 5030\f
e9bb382b
UW
5031/* Helper functions to initialize architecture-specific types. */
5032
5033/* Allocate a type structure associated with GDBARCH and set its
5034 CODE, LENGTH, and NAME fields. */
5212577a 5035
e9bb382b
UW
5036struct type *
5037arch_type (struct gdbarch *gdbarch,
77b7c781 5038 enum type_code code, int bit, const char *name)
e9bb382b
UW
5039{
5040 struct type *type;
5041
5042 type = alloc_type_arch (gdbarch);
ae438bc5 5043 set_type_code (type, code);
77b7c781
UW
5044 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5045 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
e9bb382b
UW
5046
5047 if (name)
6c214e7c 5048 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
e9bb382b
UW
5049
5050 return type;
5051}
5052
5053/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5054 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5055 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5056
e9bb382b
UW
5057struct type *
5058arch_integer_type (struct gdbarch *gdbarch,
695bfa52 5059 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5060{
5061 struct type *t;
5062
77b7c781 5063 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
e9bb382b
UW
5064 if (unsigned_p)
5065 TYPE_UNSIGNED (t) = 1;
e9bb382b
UW
5066
5067 return t;
5068}
5069
5070/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5071 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5072 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5073
e9bb382b
UW
5074struct type *
5075arch_character_type (struct gdbarch *gdbarch,
695bfa52 5076 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5077{
5078 struct type *t;
5079
77b7c781 5080 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
e9bb382b
UW
5081 if (unsigned_p)
5082 TYPE_UNSIGNED (t) = 1;
5083
5084 return t;
5085}
5086
5087/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5088 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5089 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5090
e9bb382b
UW
5091struct type *
5092arch_boolean_type (struct gdbarch *gdbarch,
695bfa52 5093 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5094{
5095 struct type *t;
5096
77b7c781 5097 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
e9bb382b
UW
5098 if (unsigned_p)
5099 TYPE_UNSIGNED (t) = 1;
5100
5101 return t;
5102}
5103
5104/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5105 BIT is the type size in bits; if BIT equals -1, the size is
5106 determined by the floatformat. NAME is the type name. Set the
5107 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 5108
27067745 5109struct type *
e9bb382b 5110arch_float_type (struct gdbarch *gdbarch,
695bfa52
TT
5111 int bit, const char *name,
5112 const struct floatformat **floatformats)
8da61cc4 5113{
0db7851f 5114 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
8da61cc4
DJ
5115 struct type *t;
5116
0db7851f 5117 bit = verify_floatformat (bit, fmt);
77b7c781 5118 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
0db7851f 5119 TYPE_FLOATFORMAT (t) = fmt;
b79497cb 5120
8da61cc4
DJ
5121 return t;
5122}
5123
88dfca6c
UW
5124/* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5125 BIT is the type size in bits. NAME is the type name. */
5126
5127struct type *
5128arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5129{
5130 struct type *t;
5131
77b7c781 5132 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
88dfca6c
UW
5133 return t;
5134}
5135
e9bb382b
UW
5136/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
5137 NAME is the type name. TARGET_TYPE is the component float type. */
5212577a 5138
27067745 5139struct type *
e9bb382b 5140arch_complex_type (struct gdbarch *gdbarch,
695bfa52 5141 const char *name, struct type *target_type)
27067745
UW
5142{
5143 struct type *t;
d8734c88 5144
e9bb382b 5145 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
77b7c781 5146 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
27067745
UW
5147 TYPE_TARGET_TYPE (t) = target_type;
5148 return t;
5149}
5150
88dfca6c
UW
5151/* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5152 BIT is the pointer type size in bits. NAME is the type name.
5153 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5154 TYPE_UNSIGNED flag. */
5155
5156struct type *
5157arch_pointer_type (struct gdbarch *gdbarch,
5158 int bit, const char *name, struct type *target_type)
5159{
5160 struct type *t;
5161
77b7c781 5162 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
88dfca6c
UW
5163 TYPE_TARGET_TYPE (t) = target_type;
5164 TYPE_UNSIGNED (t) = 1;
5165 return t;
5166}
5167
e9bb382b 5168/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
77b7c781 5169 NAME is the type name. BIT is the size of the flag word in bits. */
5212577a 5170
e9bb382b 5171struct type *
77b7c781 5172arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
e9bb382b 5173{
e9bb382b
UW
5174 struct type *type;
5175
77b7c781 5176 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
e9bb382b 5177 TYPE_UNSIGNED (type) = 1;
81516450
DE
5178 TYPE_NFIELDS (type) = 0;
5179 /* Pre-allocate enough space assuming every field is one bit. */
224c3ddb 5180 TYPE_FIELDS (type)
77b7c781 5181 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
e9bb382b
UW
5182
5183 return type;
5184}
5185
5186/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
81516450
DE
5187 position BITPOS is called NAME. Pass NAME as "" for fields that
5188 should not be printed. */
5189
5190void
5191append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
695bfa52 5192 struct type *field_type, const char *name)
81516450
DE
5193{
5194 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5195 int field_nr = TYPE_NFIELDS (type);
5196
5197 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5198 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5199 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5200 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5201 gdb_assert (name != NULL);
5202
5203 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5204 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5205 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5206 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5207 ++TYPE_NFIELDS (type);
5208}
5209
5210/* Special version of append_flags_type_field to add a flag field.
5211 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
e9bb382b 5212 position BITPOS is called NAME. */
5212577a 5213
e9bb382b 5214void
695bfa52 5215append_flags_type_flag (struct type *type, int bitpos, const char *name)
e9bb382b 5216{
81516450 5217 struct gdbarch *gdbarch = get_type_arch (type);
e9bb382b 5218
81516450
DE
5219 append_flags_type_field (type, bitpos, 1,
5220 builtin_type (gdbarch)->builtin_bool,
5221 name);
e9bb382b
UW
5222}
5223
5224/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5225 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 5226
e9bb382b 5227struct type *
695bfa52
TT
5228arch_composite_type (struct gdbarch *gdbarch, const char *name,
5229 enum type_code code)
e9bb382b
UW
5230{
5231 struct type *t;
d8734c88 5232
e9bb382b
UW
5233 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5234 t = arch_type (gdbarch, code, 0, NULL);
e86ca25f 5235 TYPE_NAME (t) = name;
e9bb382b
UW
5236 INIT_CPLUS_SPECIFIC (t);
5237 return t;
5238}
5239
5240/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
5241 Do not set the field's position or adjust the type's length;
5242 the caller should do so. Return the new field. */
5212577a 5243
f5dff777 5244struct field *
695bfa52 5245append_composite_type_field_raw (struct type *t, const char *name,
f5dff777 5246 struct type *field)
e9bb382b
UW
5247{
5248 struct field *f;
d8734c88 5249
e9bb382b 5250 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
224c3ddb
SM
5251 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5252 TYPE_NFIELDS (t));
e9bb382b
UW
5253 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5254 memset (f, 0, sizeof f[0]);
5255 FIELD_TYPE (f[0]) = field;
5256 FIELD_NAME (f[0]) = name;
f5dff777
DJ
5257 return f;
5258}
5259
5260/* Add new field with name NAME and type FIELD to composite type T.
5261 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 5262
f5dff777 5263void
695bfa52 5264append_composite_type_field_aligned (struct type *t, const char *name,
f5dff777
DJ
5265 struct type *field, int alignment)
5266{
5267 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 5268
e9bb382b
UW
5269 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5270 {
5271 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5272 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5273 }
5274 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5275 {
5276 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5277 if (TYPE_NFIELDS (t) > 1)
5278 {
f41f5e61
PA
5279 SET_FIELD_BITPOS (f[0],
5280 (FIELD_BITPOS (f[-1])
5281 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5282 * TARGET_CHAR_BIT)));
e9bb382b
UW
5283
5284 if (alignment)
5285 {
86c3c1fc
AB
5286 int left;
5287
5288 alignment *= TARGET_CHAR_BIT;
5289 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 5290
e9bb382b
UW
5291 if (left)
5292 {
f41f5e61 5293 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 5294 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
5295 }
5296 }
5297 }
5298 }
5299}
5300
5301/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 5302
e9bb382b 5303void
695bfa52 5304append_composite_type_field (struct type *t, const char *name,
e9bb382b
UW
5305 struct type *field)
5306{
5307 append_composite_type_field_aligned (t, name, field, 0);
5308}
5309
000177f0
AC
5310static struct gdbarch_data *gdbtypes_data;
5311
5312const struct builtin_type *
5313builtin_type (struct gdbarch *gdbarch)
5314{
9a3c8263 5315 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
000177f0
AC
5316}
5317
5318static void *
5319gdbtypes_post_init (struct gdbarch *gdbarch)
5320{
5321 struct builtin_type *builtin_type
5322 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5323
46bf5051 5324 /* Basic types. */
e9bb382b 5325 builtin_type->builtin_void
77b7c781 5326 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
e9bb382b
UW
5327 builtin_type->builtin_char
5328 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5329 !gdbarch_char_signed (gdbarch), "char");
c413c448 5330 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
e9bb382b
UW
5331 builtin_type->builtin_signed_char
5332 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5333 0, "signed char");
5334 builtin_type->builtin_unsigned_char
5335 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5336 1, "unsigned char");
5337 builtin_type->builtin_short
5338 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5339 0, "short");
5340 builtin_type->builtin_unsigned_short
5341 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5342 1, "unsigned short");
5343 builtin_type->builtin_int
5344 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5345 0, "int");
5346 builtin_type->builtin_unsigned_int
5347 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5348 1, "unsigned int");
5349 builtin_type->builtin_long
5350 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5351 0, "long");
5352 builtin_type->builtin_unsigned_long
5353 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5354 1, "unsigned long");
5355 builtin_type->builtin_long_long
5356 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5357 0, "long long");
5358 builtin_type->builtin_unsigned_long_long
5359 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5360 1, "unsigned long long");
70bd8e24 5361 builtin_type->builtin_float
e9bb382b 5362 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 5363 "float", gdbarch_float_format (gdbarch));
70bd8e24 5364 builtin_type->builtin_double
e9bb382b 5365 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 5366 "double", gdbarch_double_format (gdbarch));
70bd8e24 5367 builtin_type->builtin_long_double
e9bb382b 5368 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 5369 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 5370 builtin_type->builtin_complex
e9bb382b
UW
5371 = arch_complex_type (gdbarch, "complex",
5372 builtin_type->builtin_float);
70bd8e24 5373 builtin_type->builtin_double_complex
e9bb382b
UW
5374 = arch_complex_type (gdbarch, "double complex",
5375 builtin_type->builtin_double);
5376 builtin_type->builtin_string
77b7c781 5377 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
e9bb382b 5378 builtin_type->builtin_bool
77b7c781 5379 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
000177f0 5380
7678ef8f
TJB
5381 /* The following three are about decimal floating point types, which
5382 are 32-bits, 64-bits and 128-bits respectively. */
5383 builtin_type->builtin_decfloat
88dfca6c 5384 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
7678ef8f 5385 builtin_type->builtin_decdouble
88dfca6c 5386 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
7678ef8f 5387 builtin_type->builtin_declong
88dfca6c 5388 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
7678ef8f 5389
69feb676 5390 /* "True" character types. */
e9bb382b
UW
5391 builtin_type->builtin_true_char
5392 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5393 builtin_type->builtin_true_unsigned_char
5394 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 5395
df4df182 5396 /* Fixed-size integer types. */
e9bb382b
UW
5397 builtin_type->builtin_int0
5398 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5399 builtin_type->builtin_int8
5400 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5401 builtin_type->builtin_uint8
5402 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5403 builtin_type->builtin_int16
5404 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5405 builtin_type->builtin_uint16
5406 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
d1908f2d
JD
5407 builtin_type->builtin_int24
5408 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5409 builtin_type->builtin_uint24
5410 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
e9bb382b
UW
5411 builtin_type->builtin_int32
5412 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5413 builtin_type->builtin_uint32
5414 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5415 builtin_type->builtin_int64
5416 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5417 builtin_type->builtin_uint64
5418 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5419 builtin_type->builtin_int128
5420 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5421 builtin_type->builtin_uint128
5422 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
5423 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5424 TYPE_INSTANCE_FLAG_NOTTEXT;
5425 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5426 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 5427
9a22f0d0
PM
5428 /* Wide character types. */
5429 builtin_type->builtin_char16
53e710ac 5430 = arch_integer_type (gdbarch, 16, 1, "char16_t");
9a22f0d0 5431 builtin_type->builtin_char32
53e710ac 5432 = arch_integer_type (gdbarch, 32, 1, "char32_t");
53375380
PA
5433 builtin_type->builtin_wchar
5434 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5435 !gdbarch_wchar_signed (gdbarch), "wchar_t");
9a22f0d0 5436
46bf5051 5437 /* Default data/code pointer types. */
e9bb382b
UW
5438 builtin_type->builtin_data_ptr
5439 = lookup_pointer_type (builtin_type->builtin_void);
5440 builtin_type->builtin_func_ptr
5441 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
5442 builtin_type->builtin_func_func
5443 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 5444
78267919 5445 /* This type represents a GDB internal function. */
e9bb382b
UW
5446 builtin_type->internal_fn
5447 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5448 "<internal function>");
78267919 5449
e81e7f5e
SC
5450 /* This type represents an xmethod. */
5451 builtin_type->xmethod
5452 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5453
46bf5051
UW
5454 return builtin_type;
5455}
5456
46bf5051
UW
5457/* This set of objfile-based types is intended to be used by symbol
5458 readers as basic types. */
5459
5460static const struct objfile_data *objfile_type_data;
5461
5462const struct objfile_type *
5463objfile_type (struct objfile *objfile)
5464{
5465 struct gdbarch *gdbarch;
5466 struct objfile_type *objfile_type
9a3c8263 5467 = (struct objfile_type *) objfile_data (objfile, objfile_type_data);
46bf5051
UW
5468
5469 if (objfile_type)
5470 return objfile_type;
5471
5472 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5473 1, struct objfile_type);
5474
5475 /* Use the objfile architecture to determine basic type properties. */
5476 gdbarch = get_objfile_arch (objfile);
5477
5478 /* Basic types. */
5479 objfile_type->builtin_void
77b7c781 5480 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
46bf5051 5481 objfile_type->builtin_char
19f392bc
UW
5482 = init_integer_type (objfile, TARGET_CHAR_BIT,
5483 !gdbarch_char_signed (gdbarch), "char");
c413c448 5484 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
46bf5051 5485 objfile_type->builtin_signed_char
19f392bc
UW
5486 = init_integer_type (objfile, TARGET_CHAR_BIT,
5487 0, "signed char");
46bf5051 5488 objfile_type->builtin_unsigned_char
19f392bc
UW
5489 = init_integer_type (objfile, TARGET_CHAR_BIT,
5490 1, "unsigned char");
46bf5051 5491 objfile_type->builtin_short
19f392bc
UW
5492 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5493 0, "short");
46bf5051 5494 objfile_type->builtin_unsigned_short
19f392bc
UW
5495 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5496 1, "unsigned short");
46bf5051 5497 objfile_type->builtin_int
19f392bc
UW
5498 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5499 0, "int");
46bf5051 5500 objfile_type->builtin_unsigned_int
19f392bc
UW
5501 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5502 1, "unsigned int");
46bf5051 5503 objfile_type->builtin_long
19f392bc
UW
5504 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5505 0, "long");
46bf5051 5506 objfile_type->builtin_unsigned_long
19f392bc
UW
5507 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5508 1, "unsigned long");
46bf5051 5509 objfile_type->builtin_long_long
19f392bc
UW
5510 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5511 0, "long long");
46bf5051 5512 objfile_type->builtin_unsigned_long_long
19f392bc
UW
5513 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5514 1, "unsigned long long");
46bf5051 5515 objfile_type->builtin_float
19f392bc
UW
5516 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5517 "float", gdbarch_float_format (gdbarch));
46bf5051 5518 objfile_type->builtin_double
19f392bc
UW
5519 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5520 "double", gdbarch_double_format (gdbarch));
46bf5051 5521 objfile_type->builtin_long_double
19f392bc
UW
5522 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5523 "long double", gdbarch_long_double_format (gdbarch));
46bf5051
UW
5524
5525 /* This type represents a type that was unrecognized in symbol read-in. */
5526 objfile_type->builtin_error
19f392bc 5527 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
46bf5051
UW
5528
5529 /* The following set of types is used for symbols with no
5530 debug information. */
5531 objfile_type->nodebug_text_symbol
77b7c781 5532 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5533 "<text variable, no debug info>");
0875794a 5534 objfile_type->nodebug_text_gnu_ifunc_symbol
77b7c781 5535 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5536 "<text gnu-indirect-function variable, no debug info>");
19f392bc 5537 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
0875794a 5538 objfile_type->nodebug_got_plt_symbol
19f392bc
UW
5539 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5540 "<text from jump slot in .got.plt, no debug info>",
5541 objfile_type->nodebug_text_symbol);
46bf5051 5542 objfile_type->nodebug_data_symbol
46a4882b 5543 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
46bf5051 5544 objfile_type->nodebug_unknown_symbol
46a4882b 5545 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
46bf5051 5546 objfile_type->nodebug_tls_symbol
46a4882b 5547 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
000177f0
AC
5548
5549 /* NOTE: on some targets, addresses and pointers are not necessarily
0a7cfe2c 5550 the same.
000177f0
AC
5551
5552 The upshot is:
5553 - gdb's `struct type' always describes the target's
5554 representation.
5555 - gdb's `struct value' objects should always hold values in
5556 target form.
5557 - gdb's CORE_ADDR values are addresses in the unified virtual
5558 address space that the assembler and linker work with. Thus,
5559 since target_read_memory takes a CORE_ADDR as an argument, it
5560 can access any memory on the target, even if the processor has
5561 separate code and data address spaces.
5562
46bf5051
UW
5563 In this context, objfile_type->builtin_core_addr is a bit odd:
5564 it's a target type for a value the target will never see. It's
5565 only used to hold the values of (typeless) linker symbols, which
5566 are indeed in the unified virtual address space. */
000177f0 5567
46bf5051 5568 objfile_type->builtin_core_addr
19f392bc
UW
5569 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5570 "__CORE_ADDR");
64c50499 5571
46bf5051
UW
5572 set_objfile_data (objfile, objfile_type_data, objfile_type);
5573 return objfile_type;
000177f0
AC
5574}
5575
c906108c 5576void
fba45db2 5577_initialize_gdbtypes (void)
c906108c 5578{
5674de60 5579 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
46bf5051 5580 objfile_type_data = register_objfile_data ();
5674de60 5581
ccce17b0
YQ
5582 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5583 _("Set debugging of C++ overloading."),
5584 _("Show debugging of C++ overloading."),
5585 _("When enabled, ranking of the "
5586 "functions is displayed."),
5587 NULL,
5588 show_overload_debug,
5589 &setdebuglist, &showdebuglist);
5674de60 5590
7ba81444 5591 /* Add user knob for controlling resolution of opaque types. */
5674de60 5592 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
5593 &opaque_type_resolution,
5594 _("Set resolution of opaque struct/class/union"
5595 " types (if set before loading symbols)."),
5596 _("Show resolution of opaque struct/class/union"
5597 " types (if set before loading symbols)."),
5598 NULL, NULL,
5674de60
UW
5599 show_opaque_type_resolution,
5600 &setlist, &showlist);
a451cb65
KS
5601
5602 /* Add an option to permit non-strict type checking. */
5603 add_setshow_boolean_cmd ("type", class_support,
5604 &strict_type_checking,
5605 _("Set strict type checking."),
5606 _("Show strict type checking."),
5607 NULL, NULL,
5608 show_strict_type_checking,
5609 &setchecklist, &showchecklist);
c906108c 5610}
This page took 2.796459 seconds and 4 git commands to generate.