Split rank_one_type_parm_bool from rank_one_type
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
42a4f53d 3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c
SS
23#include "bfd.h"
24#include "symtab.h"
25#include "symfile.h"
26#include "objfiles.h"
27#include "gdbtypes.h"
28#include "expression.h"
29#include "language.h"
30#include "target.h"
31#include "value.h"
32#include "demangle.h"
33#include "complaints.h"
34#include "gdbcmd.h"
015a42b4 35#include "cp-abi.h"
ae5a43e0 36#include "hashtab.h"
8de20a37 37#include "cp-support.h"
ca092b61
DE
38#include "bcache.h"
39#include "dwarf2loc.h"
80180f79 40#include "gdbcore.h"
1841ee5d 41#include "floatformat.h"
ac3aafc7 42
6403aeea
SW
43/* Initialize BADNESS constants. */
44
a9d5ef47 45const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 46
a9d5ef47
SW
47const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
48const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 49
a9d5ef47 50const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 51
a9d5ef47
SW
52const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
53const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
54const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
e15c3eb4 55const struct rank CV_CONVERSION_BADNESS = {1, 0};
a9d5ef47
SW
56const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 60const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
61const struct rank BASE_CONVERSION_BADNESS = {2,0};
62const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
da096638 63const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 64const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 65const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 66
8da61cc4 67/* Floatformat pairs. */
f9e9243a
UW
68const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_half_big,
70 &floatformat_ieee_half_little
71};
8da61cc4
DJ
72const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_single_big,
74 &floatformat_ieee_single_little
75};
76const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_little
79};
80const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_littlebyte_bigword
83};
84const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_i387_ext,
86 &floatformat_i387_ext
87};
88const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_m68881_ext,
90 &floatformat_m68881_ext
91};
92const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_arm_ext_big,
94 &floatformat_arm_ext_littlebyte_bigword
95};
96const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_spill_big,
98 &floatformat_ia64_spill_little
99};
100const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_quad_big,
102 &floatformat_ia64_quad_little
103};
104const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_f,
106 &floatformat_vax_f
107};
108const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_d,
110 &floatformat_vax_d
111};
b14d30e1 112const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
f5aee5ee
AM
113 &floatformat_ibm_long_double_big,
114 &floatformat_ibm_long_double_little
b14d30e1 115};
8da61cc4 116
2873700e
KS
117/* Should opaque types be resolved? */
118
119static int opaque_type_resolution = 1;
120
121/* A flag to enable printing of debugging information of C++
122 overloading. */
123
124unsigned int overload_debug = 0;
125
a451cb65
KS
126/* A flag to enable strict type checking. */
127
128static int strict_type_checking = 1;
129
2873700e 130/* A function to show whether opaque types are resolved. */
5212577a 131
920d2a44
AC
132static void
133show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
134 struct cmd_list_element *c,
135 const char *value)
920d2a44 136{
3e43a32a
MS
137 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
138 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
139 value);
140}
141
2873700e 142/* A function to show whether C++ overload debugging is enabled. */
5212577a 143
920d2a44
AC
144static void
145show_overload_debug (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147{
7ba81444
MS
148 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
149 value);
920d2a44 150}
c906108c 151
a451cb65
KS
152/* A function to show the status of strict type checking. */
153
154static void
155show_strict_type_checking (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157{
158 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
159}
160
5212577a 161\f
e9bb382b
UW
162/* Allocate a new OBJFILE-associated type structure and fill it
163 with some defaults. Space for the type structure is allocated
164 on the objfile's objfile_obstack. */
c906108c
SS
165
166struct type *
fba45db2 167alloc_type (struct objfile *objfile)
c906108c 168{
52f0bd74 169 struct type *type;
c906108c 170
e9bb382b
UW
171 gdb_assert (objfile != NULL);
172
7ba81444 173 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
174 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
175 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
176 struct main_type);
177 OBJSTAT (objfile, n_types++);
c906108c 178
e9bb382b
UW
179 TYPE_OBJFILE_OWNED (type) = 1;
180 TYPE_OWNER (type).objfile = objfile;
c906108c 181
7ba81444 182 /* Initialize the fields that might not be zero. */
c906108c
SS
183
184 TYPE_CODE (type) = TYPE_CODE_UNDEF;
2fdde8f8 185 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 186
c16abbde 187 return type;
c906108c
SS
188}
189
e9bb382b
UW
190/* Allocate a new GDBARCH-associated type structure and fill it
191 with some defaults. Space for the type structure is allocated
8f57eec2 192 on the obstack associated with GDBARCH. */
e9bb382b
UW
193
194struct type *
195alloc_type_arch (struct gdbarch *gdbarch)
196{
197 struct type *type;
198
199 gdb_assert (gdbarch != NULL);
200
201 /* Alloc the structure and start off with all fields zeroed. */
202
8f57eec2
PP
203 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
204 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
e9bb382b
UW
205
206 TYPE_OBJFILE_OWNED (type) = 0;
207 TYPE_OWNER (type).gdbarch = gdbarch;
208
209 /* Initialize the fields that might not be zero. */
210
211 TYPE_CODE (type) = TYPE_CODE_UNDEF;
e9bb382b
UW
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215}
216
217/* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221struct type *
222alloc_type_copy (const struct type *type)
223{
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228}
229
230/* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233struct gdbarch *
234get_type_arch (const struct type *type)
235{
2fabdf33
AB
236 struct gdbarch *arch;
237
e9bb382b 238 if (TYPE_OBJFILE_OWNED (type))
2fabdf33 239 arch = get_objfile_arch (TYPE_OWNER (type).objfile);
e9bb382b 240 else
2fabdf33
AB
241 arch = TYPE_OWNER (type).gdbarch;
242
243 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
244 a gdbarch, however, this is very rare, and even then, in most cases
245 that get_type_arch is called, we assume that a non-NULL value is
246 returned. */
247 gdb_assert (arch != NULL);
248 return arch;
e9bb382b
UW
249}
250
99ad9427
YQ
251/* See gdbtypes.h. */
252
253struct type *
254get_target_type (struct type *type)
255{
256 if (type != NULL)
257 {
258 type = TYPE_TARGET_TYPE (type);
259 if (type != NULL)
260 type = check_typedef (type);
261 }
262
263 return type;
264}
265
2e056931
SM
266/* See gdbtypes.h. */
267
268unsigned int
269type_length_units (struct type *type)
270{
271 struct gdbarch *arch = get_type_arch (type);
272 int unit_size = gdbarch_addressable_memory_unit_size (arch);
273
274 return TYPE_LENGTH (type) / unit_size;
275}
276
2fdde8f8
DJ
277/* Alloc a new type instance structure, fill it with some defaults,
278 and point it at OLDTYPE. Allocate the new type instance from the
279 same place as OLDTYPE. */
280
281static struct type *
282alloc_type_instance (struct type *oldtype)
283{
284 struct type *type;
285
286 /* Allocate the structure. */
287
e9bb382b 288 if (! TYPE_OBJFILE_OWNED (oldtype))
2fabdf33 289 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
2fdde8f8 290 else
1deafd4e
PA
291 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
292 struct type);
293
2fdde8f8
DJ
294 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
295
296 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
297
c16abbde 298 return type;
2fdde8f8
DJ
299}
300
301/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 302 replacing it with something else. Preserve owner information. */
5212577a 303
2fdde8f8
DJ
304static void
305smash_type (struct type *type)
306{
e9bb382b
UW
307 int objfile_owned = TYPE_OBJFILE_OWNED (type);
308 union type_owner owner = TYPE_OWNER (type);
309
2fdde8f8
DJ
310 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
311
e9bb382b
UW
312 /* Restore owner information. */
313 TYPE_OBJFILE_OWNED (type) = objfile_owned;
314 TYPE_OWNER (type) = owner;
315
2fdde8f8
DJ
316 /* For now, delete the rings. */
317 TYPE_CHAIN (type) = type;
318
319 /* For now, leave the pointer/reference types alone. */
320}
321
c906108c
SS
322/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
323 to a pointer to memory where the pointer type should be stored.
324 If *TYPEPTR is zero, update it to point to the pointer type we return.
325 We allocate new memory if needed. */
326
327struct type *
fba45db2 328make_pointer_type (struct type *type, struct type **typeptr)
c906108c 329{
52f0bd74 330 struct type *ntype; /* New type */
053cb41b 331 struct type *chain;
c906108c
SS
332
333 ntype = TYPE_POINTER_TYPE (type);
334
c5aa993b 335 if (ntype)
c906108c 336 {
c5aa993b 337 if (typeptr == 0)
7ba81444
MS
338 return ntype; /* Don't care about alloc,
339 and have new type. */
c906108c 340 else if (*typeptr == 0)
c5aa993b 341 {
7ba81444 342 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 343 return ntype;
c5aa993b 344 }
c906108c
SS
345 }
346
347 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
348 {
e9bb382b 349 ntype = alloc_type_copy (type);
c906108c
SS
350 if (typeptr)
351 *typeptr = ntype;
352 }
7ba81444 353 else /* We have storage, but need to reset it. */
c906108c
SS
354 {
355 ntype = *typeptr;
053cb41b 356 chain = TYPE_CHAIN (ntype);
2fdde8f8 357 smash_type (ntype);
053cb41b 358 TYPE_CHAIN (ntype) = chain;
c906108c
SS
359 }
360
361 TYPE_TARGET_TYPE (ntype) = type;
362 TYPE_POINTER_TYPE (type) = ntype;
363
5212577a 364 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 365
50810684
UW
366 TYPE_LENGTH (ntype)
367 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
368 TYPE_CODE (ntype) = TYPE_CODE_PTR;
369
67b2adb2 370 /* Mark pointers as unsigned. The target converts between pointers
76e71323 371 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 372 gdbarch_address_to_pointer. */
876cecd0 373 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 374
053cb41b
JB
375 /* Update the length of all the other variants of this type. */
376 chain = TYPE_CHAIN (ntype);
377 while (chain != ntype)
378 {
379 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
380 chain = TYPE_CHAIN (chain);
381 }
382
c906108c
SS
383 return ntype;
384}
385
386/* Given a type TYPE, return a type of pointers to that type.
387 May need to construct such a type if this is the first use. */
388
389struct type *
fba45db2 390lookup_pointer_type (struct type *type)
c906108c 391{
c5aa993b 392 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
393}
394
7ba81444
MS
395/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
396 points to a pointer to memory where the reference type should be
397 stored. If *TYPEPTR is zero, update it to point to the reference
3b224330
AV
398 type we return. We allocate new memory if needed. REFCODE denotes
399 the kind of reference type to lookup (lvalue or rvalue reference). */
c906108c
SS
400
401struct type *
3b224330
AV
402make_reference_type (struct type *type, struct type **typeptr,
403 enum type_code refcode)
c906108c 404{
52f0bd74 405 struct type *ntype; /* New type */
3b224330 406 struct type **reftype;
1e98b326 407 struct type *chain;
c906108c 408
3b224330
AV
409 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
410
411 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
412 : TYPE_RVALUE_REFERENCE_TYPE (type));
c906108c 413
c5aa993b 414 if (ntype)
c906108c 415 {
c5aa993b 416 if (typeptr == 0)
7ba81444
MS
417 return ntype; /* Don't care about alloc,
418 and have new type. */
c906108c 419 else if (*typeptr == 0)
c5aa993b 420 {
7ba81444 421 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 422 return ntype;
c5aa993b 423 }
c906108c
SS
424 }
425
426 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
427 {
e9bb382b 428 ntype = alloc_type_copy (type);
c906108c
SS
429 if (typeptr)
430 *typeptr = ntype;
431 }
7ba81444 432 else /* We have storage, but need to reset it. */
c906108c
SS
433 {
434 ntype = *typeptr;
1e98b326 435 chain = TYPE_CHAIN (ntype);
2fdde8f8 436 smash_type (ntype);
1e98b326 437 TYPE_CHAIN (ntype) = chain;
c906108c
SS
438 }
439
440 TYPE_TARGET_TYPE (ntype) = type;
3b224330
AV
441 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
442 : &TYPE_RVALUE_REFERENCE_TYPE (type));
443
444 *reftype = ntype;
c906108c 445
7ba81444
MS
446 /* FIXME! Assume the machine has only one representation for
447 references, and that it matches the (only) representation for
448 pointers! */
c906108c 449
50810684
UW
450 TYPE_LENGTH (ntype) =
451 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
3b224330 452 TYPE_CODE (ntype) = refcode;
c5aa993b 453
3b224330 454 *reftype = ntype;
c906108c 455
1e98b326
JB
456 /* Update the length of all the other variants of this type. */
457 chain = TYPE_CHAIN (ntype);
458 while (chain != ntype)
459 {
460 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
461 chain = TYPE_CHAIN (chain);
462 }
463
c906108c
SS
464 return ntype;
465}
466
7ba81444
MS
467/* Same as above, but caller doesn't care about memory allocation
468 details. */
c906108c
SS
469
470struct type *
3b224330
AV
471lookup_reference_type (struct type *type, enum type_code refcode)
472{
473 return make_reference_type (type, (struct type **) 0, refcode);
474}
475
476/* Lookup the lvalue reference type for the type TYPE. */
477
478struct type *
479lookup_lvalue_reference_type (struct type *type)
480{
481 return lookup_reference_type (type, TYPE_CODE_REF);
482}
483
484/* Lookup the rvalue reference type for the type TYPE. */
485
486struct type *
487lookup_rvalue_reference_type (struct type *type)
c906108c 488{
3b224330 489 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
c906108c
SS
490}
491
7ba81444
MS
492/* Lookup a function type that returns type TYPE. TYPEPTR, if
493 nonzero, points to a pointer to memory where the function type
494 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 495 function type we return. We allocate new memory if needed. */
c906108c
SS
496
497struct type *
0c8b41f1 498make_function_type (struct type *type, struct type **typeptr)
c906108c 499{
52f0bd74 500 struct type *ntype; /* New type */
c906108c
SS
501
502 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
503 {
e9bb382b 504 ntype = alloc_type_copy (type);
c906108c
SS
505 if (typeptr)
506 *typeptr = ntype;
507 }
7ba81444 508 else /* We have storage, but need to reset it. */
c906108c
SS
509 {
510 ntype = *typeptr;
2fdde8f8 511 smash_type (ntype);
c906108c
SS
512 }
513
514 TYPE_TARGET_TYPE (ntype) = type;
515
516 TYPE_LENGTH (ntype) = 1;
517 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 518
b6cdc2c1
JK
519 INIT_FUNC_SPECIFIC (ntype);
520
c906108c
SS
521 return ntype;
522}
523
c906108c
SS
524/* Given a type TYPE, return a type of functions that return that type.
525 May need to construct such a type if this is the first use. */
526
527struct type *
fba45db2 528lookup_function_type (struct type *type)
c906108c 529{
0c8b41f1 530 return make_function_type (type, (struct type **) 0);
c906108c
SS
531}
532
71918a86 533/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
534 function type. If the final type in PARAM_TYPES is NULL, make a
535 varargs function. */
71918a86
TT
536
537struct type *
538lookup_function_type_with_arguments (struct type *type,
539 int nparams,
540 struct type **param_types)
541{
542 struct type *fn = make_function_type (type, (struct type **) 0);
543 int i;
544
e314d629 545 if (nparams > 0)
a6fb9c08 546 {
e314d629
TT
547 if (param_types[nparams - 1] == NULL)
548 {
549 --nparams;
550 TYPE_VARARGS (fn) = 1;
551 }
552 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
553 == TYPE_CODE_VOID)
554 {
555 --nparams;
556 /* Caller should have ensured this. */
557 gdb_assert (nparams == 0);
558 TYPE_PROTOTYPED (fn) = 1;
559 }
54990598
PA
560 else
561 TYPE_PROTOTYPED (fn) = 1;
a6fb9c08
TT
562 }
563
71918a86 564 TYPE_NFIELDS (fn) = nparams;
224c3ddb
SM
565 TYPE_FIELDS (fn)
566 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
71918a86
TT
567 for (i = 0; i < nparams; ++i)
568 TYPE_FIELD_TYPE (fn, i) = param_types[i];
569
570 return fn;
571}
572
47663de5
MS
573/* Identify address space identifier by name --
574 return the integer flag defined in gdbtypes.h. */
5212577a
DE
575
576int
50810684 577address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
47663de5 578{
8b2dbe47 579 int type_flags;
d8734c88 580
7ba81444 581 /* Check for known address space delimiters. */
47663de5 582 if (!strcmp (space_identifier, "code"))
876cecd0 583 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 584 else if (!strcmp (space_identifier, "data"))
876cecd0 585 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
586 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
587 && gdbarch_address_class_name_to_type_flags (gdbarch,
588 space_identifier,
589 &type_flags))
8b2dbe47 590 return type_flags;
47663de5 591 else
8a3fe4f8 592 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
593}
594
595/* Identify address space identifier by integer flag as defined in
7ba81444 596 gdbtypes.h -- return the string version of the adress space name. */
47663de5 597
321432c0 598const char *
50810684 599address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 600{
876cecd0 601 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 602 return "code";
876cecd0 603 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 604 return "data";
876cecd0 605 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
606 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
607 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
608 else
609 return NULL;
610}
611
2fdde8f8 612/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
613
614 If STORAGE is non-NULL, create the new type instance there.
615 STORAGE must be in the same obstack as TYPE. */
47663de5 616
b9362cc7 617static struct type *
2fdde8f8
DJ
618make_qualified_type (struct type *type, int new_flags,
619 struct type *storage)
47663de5
MS
620{
621 struct type *ntype;
622
623 ntype = type;
5f61c20e
JK
624 do
625 {
626 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
627 return ntype;
628 ntype = TYPE_CHAIN (ntype);
629 }
630 while (ntype != type);
47663de5 631
2fdde8f8
DJ
632 /* Create a new type instance. */
633 if (storage == NULL)
634 ntype = alloc_type_instance (type);
635 else
636 {
7ba81444
MS
637 /* If STORAGE was provided, it had better be in the same objfile
638 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
639 if one objfile is freed and the other kept, we'd have
640 dangling pointers. */
ad766c0a
JB
641 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
642
2fdde8f8
DJ
643 ntype = storage;
644 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
645 TYPE_CHAIN (ntype) = ntype;
646 }
47663de5
MS
647
648 /* Pointers or references to the original type are not relevant to
2fdde8f8 649 the new type. */
47663de5
MS
650 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
651 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 652
2fdde8f8
DJ
653 /* Chain the new qualified type to the old type. */
654 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
655 TYPE_CHAIN (type) = ntype;
656
657 /* Now set the instance flags and return the new type. */
658 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 659
ab5d3da6
KB
660 /* Set length of new type to that of the original type. */
661 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
662
47663de5
MS
663 return ntype;
664}
665
2fdde8f8
DJ
666/* Make an address-space-delimited variant of a type -- a type that
667 is identical to the one supplied except that it has an address
668 space attribute attached to it (such as "code" or "data").
669
7ba81444
MS
670 The space attributes "code" and "data" are for Harvard
671 architectures. The address space attributes are for architectures
672 which have alternately sized pointers or pointers with alternate
673 representations. */
2fdde8f8
DJ
674
675struct type *
676make_type_with_address_space (struct type *type, int space_flag)
677{
2fdde8f8 678 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
679 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
680 | TYPE_INSTANCE_FLAG_DATA_SPACE
681 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
682 | space_flag);
683
684 return make_qualified_type (type, new_flags, NULL);
685}
c906108c
SS
686
687/* Make a "c-v" variant of a type -- a type that is identical to the
688 one supplied except that it may have const or volatile attributes
689 CNST is a flag for setting the const attribute
690 VOLTL is a flag for setting the volatile attribute
691 TYPE is the base type whose variant we are creating.
c906108c 692
ad766c0a
JB
693 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
694 storage to hold the new qualified type; *TYPEPTR and TYPE must be
695 in the same objfile. Otherwise, allocate fresh memory for the new
696 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
697 new type we construct. */
5212577a 698
c906108c 699struct type *
7ba81444
MS
700make_cv_type (int cnst, int voltl,
701 struct type *type,
702 struct type **typeptr)
c906108c 703{
52f0bd74 704 struct type *ntype; /* New type */
c906108c 705
2fdde8f8 706 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
707 & ~(TYPE_INSTANCE_FLAG_CONST
708 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 709
c906108c 710 if (cnst)
876cecd0 711 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
712
713 if (voltl)
876cecd0 714 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 715
2fdde8f8 716 if (typeptr && *typeptr != NULL)
a02fd225 717 {
ad766c0a
JB
718 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
719 a C-V variant chain that threads across objfiles: if one
720 objfile gets freed, then the other has a broken C-V chain.
721
722 This code used to try to copy over the main type from TYPE to
723 *TYPEPTR if they were in different objfiles, but that's
724 wrong, too: TYPE may have a field list or member function
725 lists, which refer to types of their own, etc. etc. The
726 whole shebang would need to be copied over recursively; you
727 can't have inter-objfile pointers. The only thing to do is
728 to leave stub types as stub types, and look them up afresh by
729 name each time you encounter them. */
730 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
731 }
732
7ba81444
MS
733 ntype = make_qualified_type (type, new_flags,
734 typeptr ? *typeptr : NULL);
c906108c 735
2fdde8f8
DJ
736 if (typeptr != NULL)
737 *typeptr = ntype;
a02fd225 738
2fdde8f8 739 return ntype;
a02fd225 740}
c906108c 741
06d66ee9
TT
742/* Make a 'restrict'-qualified version of TYPE. */
743
744struct type *
745make_restrict_type (struct type *type)
746{
747 return make_qualified_type (type,
748 (TYPE_INSTANCE_FLAGS (type)
749 | TYPE_INSTANCE_FLAG_RESTRICT),
750 NULL);
751}
752
f1660027
TT
753/* Make a type without const, volatile, or restrict. */
754
755struct type *
756make_unqualified_type (struct type *type)
757{
758 return make_qualified_type (type,
759 (TYPE_INSTANCE_FLAGS (type)
760 & ~(TYPE_INSTANCE_FLAG_CONST
761 | TYPE_INSTANCE_FLAG_VOLATILE
762 | TYPE_INSTANCE_FLAG_RESTRICT)),
763 NULL);
764}
765
a2c2acaf
MW
766/* Make a '_Atomic'-qualified version of TYPE. */
767
768struct type *
769make_atomic_type (struct type *type)
770{
771 return make_qualified_type (type,
772 (TYPE_INSTANCE_FLAGS (type)
773 | TYPE_INSTANCE_FLAG_ATOMIC),
774 NULL);
775}
776
2fdde8f8
DJ
777/* Replace the contents of ntype with the type *type. This changes the
778 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
779 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 780
cda6c68a
JB
781 In order to build recursive types, it's inevitable that we'll need
782 to update types in place --- but this sort of indiscriminate
783 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
784 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
785 clear if more steps are needed. */
5212577a 786
dd6bda65
DJ
787void
788replace_type (struct type *ntype, struct type *type)
789{
ab5d3da6 790 struct type *chain;
dd6bda65 791
ad766c0a
JB
792 /* These two types had better be in the same objfile. Otherwise,
793 the assignment of one type's main type structure to the other
794 will produce a type with references to objects (names; field
795 lists; etc.) allocated on an objfile other than its own. */
e46dd0f4 796 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
ad766c0a 797
2fdde8f8 798 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 799
7ba81444
MS
800 /* The type length is not a part of the main type. Update it for
801 each type on the variant chain. */
ab5d3da6 802 chain = ntype;
5f61c20e
JK
803 do
804 {
805 /* Assert that this element of the chain has no address-class bits
806 set in its flags. Such type variants might have type lengths
807 which are supposed to be different from the non-address-class
808 variants. This assertion shouldn't ever be triggered because
809 symbol readers which do construct address-class variants don't
810 call replace_type(). */
811 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
812
813 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
814 chain = TYPE_CHAIN (chain);
815 }
816 while (ntype != chain);
ab5d3da6 817
2fdde8f8
DJ
818 /* Assert that the two types have equivalent instance qualifiers.
819 This should be true for at least all of our debug readers. */
820 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
821}
822
c906108c
SS
823/* Implement direct support for MEMBER_TYPE in GNU C++.
824 May need to construct such a type if this is the first use.
825 The TYPE is the type of the member. The DOMAIN is the type
826 of the aggregate that the member belongs to. */
827
828struct type *
0d5de010 829lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 830{
52f0bd74 831 struct type *mtype;
c906108c 832
e9bb382b 833 mtype = alloc_type_copy (type);
0d5de010 834 smash_to_memberptr_type (mtype, domain, type);
c16abbde 835 return mtype;
c906108c
SS
836}
837
0d5de010
DJ
838/* Return a pointer-to-method type, for a method of type TO_TYPE. */
839
840struct type *
841lookup_methodptr_type (struct type *to_type)
842{
843 struct type *mtype;
844
e9bb382b 845 mtype = alloc_type_copy (to_type);
0b92b5bb 846 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
847 return mtype;
848}
849
7ba81444
MS
850/* Allocate a stub method whose return type is TYPE. This apparently
851 happens for speed of symbol reading, since parsing out the
852 arguments to the method is cpu-intensive, the way we are doing it.
853 So, we will fill in arguments later. This always returns a fresh
854 type. */
c906108c
SS
855
856struct type *
fba45db2 857allocate_stub_method (struct type *type)
c906108c
SS
858{
859 struct type *mtype;
860
e9bb382b
UW
861 mtype = alloc_type_copy (type);
862 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
863 TYPE_LENGTH (mtype) = 1;
864 TYPE_STUB (mtype) = 1;
c906108c 865 TYPE_TARGET_TYPE (mtype) = type;
4bfb94b8 866 /* TYPE_SELF_TYPE (mtype) = unknown yet */
c16abbde 867 return mtype;
c906108c
SS
868}
869
0f59d5fc
PA
870/* See gdbtypes.h. */
871
872bool
873operator== (const dynamic_prop &l, const dynamic_prop &r)
874{
875 if (l.kind != r.kind)
876 return false;
877
878 switch (l.kind)
879 {
880 case PROP_UNDEFINED:
881 return true;
882 case PROP_CONST:
883 return l.data.const_val == r.data.const_val;
884 case PROP_ADDR_OFFSET:
885 case PROP_LOCEXPR:
886 case PROP_LOCLIST:
887 return l.data.baton == r.data.baton;
888 }
889
890 gdb_assert_not_reached ("unhandled dynamic_prop kind");
891}
892
893/* See gdbtypes.h. */
894
895bool
896operator== (const range_bounds &l, const range_bounds &r)
897{
898#define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
899
900 return (FIELD_EQ (low)
901 && FIELD_EQ (high)
902 && FIELD_EQ (flag_upper_bound_is_count)
903 && FIELD_EQ (flag_bound_evaluated));
904
905#undef FIELD_EQ
906}
907
729efb13
SA
908/* Create a range type with a dynamic range from LOW_BOUND to
909 HIGH_BOUND, inclusive. See create_range_type for further details. */
c906108c
SS
910
911struct type *
729efb13
SA
912create_range_type (struct type *result_type, struct type *index_type,
913 const struct dynamic_prop *low_bound,
914 const struct dynamic_prop *high_bound)
c906108c
SS
915{
916 if (result_type == NULL)
e9bb382b 917 result_type = alloc_type_copy (index_type);
c906108c
SS
918 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
919 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 920 if (TYPE_STUB (index_type))
876cecd0 921 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
922 else
923 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
729efb13 924
43bbcdc2
PH
925 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
926 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
729efb13
SA
927 TYPE_RANGE_DATA (result_type)->low = *low_bound;
928 TYPE_RANGE_DATA (result_type)->high = *high_bound;
c906108c 929
729efb13 930 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
876cecd0 931 TYPE_UNSIGNED (result_type) = 1;
c906108c 932
45e44d27
JB
933 /* Ada allows the declaration of range types whose upper bound is
934 less than the lower bound, so checking the lower bound is not
935 enough. Make sure we do not mark a range type whose upper bound
936 is negative as unsigned. */
937 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
938 TYPE_UNSIGNED (result_type) = 0;
939
262452ec 940 return result_type;
c906108c
SS
941}
942
729efb13
SA
943/* Create a range type using either a blank type supplied in
944 RESULT_TYPE, or creating a new type, inheriting the objfile from
945 INDEX_TYPE.
946
947 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
948 to HIGH_BOUND, inclusive.
949
950 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
951 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
952
953struct type *
954create_static_range_type (struct type *result_type, struct type *index_type,
955 LONGEST low_bound, LONGEST high_bound)
956{
957 struct dynamic_prop low, high;
958
959 low.kind = PROP_CONST;
960 low.data.const_val = low_bound;
961
962 high.kind = PROP_CONST;
963 high.data.const_val = high_bound;
964
965 result_type = create_range_type (result_type, index_type, &low, &high);
966
967 return result_type;
968}
969
80180f79
SA
970/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
971 are static, otherwise returns 0. */
972
973static int
974has_static_range (const struct range_bounds *bounds)
975{
976 return (bounds->low.kind == PROP_CONST
977 && bounds->high.kind == PROP_CONST);
978}
979
980
7ba81444
MS
981/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
982 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
983 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
984
985int
fba45db2 986get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c 987{
f168693b 988 type = check_typedef (type);
c906108c
SS
989 switch (TYPE_CODE (type))
990 {
991 case TYPE_CODE_RANGE:
992 *lowp = TYPE_LOW_BOUND (type);
993 *highp = TYPE_HIGH_BOUND (type);
994 return 1;
995 case TYPE_CODE_ENUM:
996 if (TYPE_NFIELDS (type) > 0)
997 {
998 /* The enums may not be sorted by value, so search all
0963b4bd 999 entries. */
c906108c
SS
1000 int i;
1001
14e75d8e 1002 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
c906108c
SS
1003 for (i = 0; i < TYPE_NFIELDS (type); i++)
1004 {
14e75d8e
JK
1005 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1006 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1007 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1008 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
1009 }
1010
7ba81444 1011 /* Set unsigned indicator if warranted. */
c5aa993b 1012 if (*lowp >= 0)
c906108c 1013 {
876cecd0 1014 TYPE_UNSIGNED (type) = 1;
c906108c
SS
1015 }
1016 }
1017 else
1018 {
1019 *lowp = 0;
1020 *highp = -1;
1021 }
1022 return 0;
1023 case TYPE_CODE_BOOL:
1024 *lowp = 0;
1025 *highp = 1;
1026 return 0;
1027 case TYPE_CODE_INT:
c5aa993b 1028 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
1029 return -1;
1030 if (!TYPE_UNSIGNED (type))
1031 {
c5aa993b 1032 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
1033 *highp = -*lowp - 1;
1034 return 0;
1035 }
86a73007 1036 /* fall through */
c906108c
SS
1037 case TYPE_CODE_CHAR:
1038 *lowp = 0;
1039 /* This round-about calculation is to avoid shifting by
7b83ea04 1040 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 1041 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
1042 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1043 *highp = (*highp - 1) | *highp;
1044 return 0;
1045 default:
1046 return -1;
1047 }
1048}
1049
dbc98a8b
KW
1050/* Assuming TYPE is a simple, non-empty array type, compute its upper
1051 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1052 Save the high bound into HIGH_BOUND if not NULL.
1053
0963b4bd 1054 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
1055 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1056
1057 We now simply use get_discrete_bounds call to get the values
1058 of the low and high bounds.
1059 get_discrete_bounds can return three values:
1060 1, meaning that index is a range,
1061 0, meaning that index is a discrete type,
1062 or -1 for failure. */
1063
1064int
1065get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1066{
1067 struct type *index = TYPE_INDEX_TYPE (type);
1068 LONGEST low = 0;
1069 LONGEST high = 0;
1070 int res;
1071
1072 if (index == NULL)
1073 return 0;
1074
1075 res = get_discrete_bounds (index, &low, &high);
1076 if (res == -1)
1077 return 0;
1078
1079 /* Check if the array bounds are undefined. */
1080 if (res == 1
1081 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1082 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1083 return 0;
1084
1085 if (low_bound)
1086 *low_bound = low;
1087
1088 if (high_bound)
1089 *high_bound = high;
1090
1091 return 1;
1092}
1093
aa715135
JG
1094/* Assuming that TYPE is a discrete type and VAL is a valid integer
1095 representation of a value of this type, save the corresponding
1096 position number in POS.
1097
1098 Its differs from VAL only in the case of enumeration types. In
1099 this case, the position number of the value of the first listed
1100 enumeration literal is zero; the position number of the value of
1101 each subsequent enumeration literal is one more than that of its
1102 predecessor in the list.
1103
1104 Return 1 if the operation was successful. Return zero otherwise,
1105 in which case the value of POS is unmodified.
1106*/
1107
1108int
1109discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1110{
1111 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1112 {
1113 int i;
1114
1115 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1116 {
1117 if (val == TYPE_FIELD_ENUMVAL (type, i))
1118 {
1119 *pos = i;
1120 return 1;
1121 }
1122 }
1123 /* Invalid enumeration value. */
1124 return 0;
1125 }
1126 else
1127 {
1128 *pos = val;
1129 return 1;
1130 }
1131}
1132
7ba81444
MS
1133/* Create an array type using either a blank type supplied in
1134 RESULT_TYPE, or creating a new type, inheriting the objfile from
1135 RANGE_TYPE.
c906108c
SS
1136
1137 Elements will be of type ELEMENT_TYPE, the indices will be of type
1138 RANGE_TYPE.
1139
a405673c
JB
1140 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1141 This byte stride property is added to the resulting array type
1142 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1143 argument can only be used to create types that are objfile-owned
1144 (see add_dyn_prop), meaning that either this function must be called
1145 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1146
1147 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
dc53a7ad
JB
1148 If BIT_STRIDE is not zero, build a packed array type whose element
1149 size is BIT_STRIDE. Otherwise, ignore this parameter.
1150
7ba81444
MS
1151 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1152 sure it is TYPE_CODE_UNDEF before we bash it into an array
1153 type? */
c906108c
SS
1154
1155struct type *
dc53a7ad
JB
1156create_array_type_with_stride (struct type *result_type,
1157 struct type *element_type,
1158 struct type *range_type,
a405673c 1159 struct dynamic_prop *byte_stride_prop,
dc53a7ad 1160 unsigned int bit_stride)
c906108c 1161{
a405673c
JB
1162 if (byte_stride_prop != NULL
1163 && byte_stride_prop->kind == PROP_CONST)
1164 {
1165 /* The byte stride is actually not dynamic. Pretend we were
1166 called with bit_stride set instead of byte_stride_prop.
1167 This will give us the same result type, while avoiding
1168 the need to handle this as a special case. */
1169 bit_stride = byte_stride_prop->data.const_val * 8;
1170 byte_stride_prop = NULL;
1171 }
1172
c906108c 1173 if (result_type == NULL)
e9bb382b
UW
1174 result_type = alloc_type_copy (range_type);
1175
c906108c
SS
1176 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1177 TYPE_TARGET_TYPE (result_type) = element_type;
a405673c
JB
1178 if (byte_stride_prop == NULL
1179 && has_static_range (TYPE_RANGE_DATA (range_type))
b4a7fcab
JB
1180 && (!type_not_associated (result_type)
1181 && !type_not_allocated (result_type)))
80180f79
SA
1182 {
1183 LONGEST low_bound, high_bound;
1184
1185 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1186 low_bound = high_bound = 0;
f168693b 1187 element_type = check_typedef (element_type);
80180f79
SA
1188 /* Be careful when setting the array length. Ada arrays can be
1189 empty arrays with the high_bound being smaller than the low_bound.
1190 In such cases, the array length should be zero. */
1191 if (high_bound < low_bound)
1192 TYPE_LENGTH (result_type) = 0;
1193 else if (bit_stride > 0)
1194 TYPE_LENGTH (result_type) =
1195 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1196 else
1197 TYPE_LENGTH (result_type) =
1198 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1199 }
ab0d6e0d 1200 else
80180f79
SA
1201 {
1202 /* This type is dynamic and its length needs to be computed
1203 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1204 undefined by setting it to zero. Although we are not expected
1205 to trust TYPE_LENGTH in this case, setting the size to zero
1206 allows us to avoid allocating objects of random sizes in case
1207 we accidently do. */
1208 TYPE_LENGTH (result_type) = 0;
1209 }
1210
c906108c
SS
1211 TYPE_NFIELDS (result_type) = 1;
1212 TYPE_FIELDS (result_type) =
1deafd4e 1213 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 1214 TYPE_INDEX_TYPE (result_type) = range_type;
a405673c 1215 if (byte_stride_prop != NULL)
50a82047 1216 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
a405673c 1217 else if (bit_stride > 0)
dc53a7ad 1218 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
c906108c 1219
a9ff5f12 1220 /* TYPE_TARGET_STUB will take care of zero length arrays. */
c906108c 1221 if (TYPE_LENGTH (result_type) == 0)
876cecd0 1222 TYPE_TARGET_STUB (result_type) = 1;
c906108c 1223
c16abbde 1224 return result_type;
c906108c
SS
1225}
1226
dc53a7ad
JB
1227/* Same as create_array_type_with_stride but with no bit_stride
1228 (BIT_STRIDE = 0), thus building an unpacked array. */
1229
1230struct type *
1231create_array_type (struct type *result_type,
1232 struct type *element_type,
1233 struct type *range_type)
1234{
1235 return create_array_type_with_stride (result_type, element_type,
a405673c 1236 range_type, NULL, 0);
dc53a7ad
JB
1237}
1238
e3506a9f
UW
1239struct type *
1240lookup_array_range_type (struct type *element_type,
63375b74 1241 LONGEST low_bound, LONGEST high_bound)
e3506a9f 1242{
929b5ad4
JB
1243 struct type *index_type;
1244 struct type *range_type;
1245
1246 if (TYPE_OBJFILE_OWNED (element_type))
1247 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1248 else
1249 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1250 range_type = create_static_range_type (NULL, index_type,
1251 low_bound, high_bound);
d8734c88 1252
e3506a9f
UW
1253 return create_array_type (NULL, element_type, range_type);
1254}
1255
7ba81444
MS
1256/* Create a string type using either a blank type supplied in
1257 RESULT_TYPE, or creating a new type. String types are similar
1258 enough to array of char types that we can use create_array_type to
1259 build the basic type and then bash it into a string type.
c906108c
SS
1260
1261 For fixed length strings, the range type contains 0 as the lower
1262 bound and the length of the string minus one as the upper bound.
1263
7ba81444
MS
1264 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1265 sure it is TYPE_CODE_UNDEF before we bash it into a string
1266 type? */
c906108c
SS
1267
1268struct type *
3b7538c0
UW
1269create_string_type (struct type *result_type,
1270 struct type *string_char_type,
7ba81444 1271 struct type *range_type)
c906108c
SS
1272{
1273 result_type = create_array_type (result_type,
f290d38e 1274 string_char_type,
c906108c
SS
1275 range_type);
1276 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 1277 return result_type;
c906108c
SS
1278}
1279
e3506a9f
UW
1280struct type *
1281lookup_string_range_type (struct type *string_char_type,
63375b74 1282 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1283{
1284 struct type *result_type;
d8734c88 1285
e3506a9f
UW
1286 result_type = lookup_array_range_type (string_char_type,
1287 low_bound, high_bound);
1288 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1289 return result_type;
1290}
1291
c906108c 1292struct type *
fba45db2 1293create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1294{
c906108c 1295 if (result_type == NULL)
e9bb382b
UW
1296 result_type = alloc_type_copy (domain_type);
1297
c906108c
SS
1298 TYPE_CODE (result_type) = TYPE_CODE_SET;
1299 TYPE_NFIELDS (result_type) = 1;
224c3ddb
SM
1300 TYPE_FIELDS (result_type)
1301 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 1302
74a9bb82 1303 if (!TYPE_STUB (domain_type))
c906108c 1304 {
f9780d5b 1305 LONGEST low_bound, high_bound, bit_length;
d8734c88 1306
c906108c
SS
1307 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1308 low_bound = high_bound = 0;
1309 bit_length = high_bound - low_bound + 1;
1310 TYPE_LENGTH (result_type)
1311 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1312 if (low_bound >= 0)
876cecd0 1313 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
1314 }
1315 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1316
c16abbde 1317 return result_type;
c906108c
SS
1318}
1319
ea37ba09
DJ
1320/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1321 and any array types nested inside it. */
1322
1323void
1324make_vector_type (struct type *array_type)
1325{
1326 struct type *inner_array, *elt_type;
1327 int flags;
1328
1329 /* Find the innermost array type, in case the array is
1330 multi-dimensional. */
1331 inner_array = array_type;
1332 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1333 inner_array = TYPE_TARGET_TYPE (inner_array);
1334
1335 elt_type = TYPE_TARGET_TYPE (inner_array);
1336 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1337 {
2844d6b5 1338 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1339 elt_type = make_qualified_type (elt_type, flags, NULL);
1340 TYPE_TARGET_TYPE (inner_array) = elt_type;
1341 }
1342
876cecd0 1343 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1344}
1345
794ac428 1346struct type *
ac3aafc7
EZ
1347init_vector_type (struct type *elt_type, int n)
1348{
1349 struct type *array_type;
d8734c88 1350
e3506a9f 1351 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1352 make_vector_type (array_type);
ac3aafc7
EZ
1353 return array_type;
1354}
1355
09e2d7c7
DE
1356/* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1357 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1358 confusing. "self" is a common enough replacement for "this".
1359 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1360 TYPE_CODE_METHOD. */
1361
1362struct type *
1363internal_type_self_type (struct type *type)
1364{
1365 switch (TYPE_CODE (type))
1366 {
1367 case TYPE_CODE_METHODPTR:
1368 case TYPE_CODE_MEMBERPTR:
eaaf76ab
DE
1369 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1370 return NULL;
09e2d7c7
DE
1371 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1372 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1373 case TYPE_CODE_METHOD:
eaaf76ab
DE
1374 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1375 return NULL;
09e2d7c7
DE
1376 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1377 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1378 default:
1379 gdb_assert_not_reached ("bad type");
1380 }
1381}
1382
1383/* Set the type of the class that TYPE belongs to.
1384 In c++ this is the class of "this".
1385 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1386 TYPE_CODE_METHOD. */
1387
1388void
1389set_type_self_type (struct type *type, struct type *self_type)
1390{
1391 switch (TYPE_CODE (type))
1392 {
1393 case TYPE_CODE_METHODPTR:
1394 case TYPE_CODE_MEMBERPTR:
1395 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1396 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1397 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1398 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1399 break;
1400 case TYPE_CODE_METHOD:
1401 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1402 INIT_FUNC_SPECIFIC (type);
1403 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1404 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1405 break;
1406 default:
1407 gdb_assert_not_reached ("bad type");
1408 }
1409}
1410
1411/* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
0d5de010
DJ
1412 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1413 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1414 TYPE doesn't include the offset (that's the value of the MEMBER
1415 itself), but does include the structure type into which it points
1416 (for some reason).
c906108c 1417
7ba81444
MS
1418 When "smashing" the type, we preserve the objfile that the old type
1419 pointed to, since we aren't changing where the type is actually
c906108c
SS
1420 allocated. */
1421
1422void
09e2d7c7 1423smash_to_memberptr_type (struct type *type, struct type *self_type,
0d5de010 1424 struct type *to_type)
c906108c 1425{
2fdde8f8 1426 smash_type (type);
09e2d7c7 1427 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c 1428 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1429 set_type_self_type (type, self_type);
0d5de010
DJ
1430 /* Assume that a data member pointer is the same size as a normal
1431 pointer. */
50810684
UW
1432 TYPE_LENGTH (type)
1433 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
c906108c
SS
1434}
1435
0b92b5bb
TT
1436/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1437
1438 When "smashing" the type, we preserve the objfile that the old type
1439 pointed to, since we aren't changing where the type is actually
1440 allocated. */
1441
1442void
1443smash_to_methodptr_type (struct type *type, struct type *to_type)
1444{
1445 smash_type (type);
09e2d7c7 1446 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
0b92b5bb 1447 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1448 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
0b92b5bb 1449 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
0b92b5bb
TT
1450}
1451
09e2d7c7 1452/* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
c906108c
SS
1453 METHOD just means `function that gets an extra "this" argument'.
1454
7ba81444
MS
1455 When "smashing" the type, we preserve the objfile that the old type
1456 pointed to, since we aren't changing where the type is actually
c906108c
SS
1457 allocated. */
1458
1459void
09e2d7c7 1460smash_to_method_type (struct type *type, struct type *self_type,
ad2f7632
DJ
1461 struct type *to_type, struct field *args,
1462 int nargs, int varargs)
c906108c 1463{
2fdde8f8 1464 smash_type (type);
09e2d7c7 1465 TYPE_CODE (type) = TYPE_CODE_METHOD;
c906108c 1466 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1467 set_type_self_type (type, self_type);
ad2f7632
DJ
1468 TYPE_FIELDS (type) = args;
1469 TYPE_NFIELDS (type) = nargs;
1470 if (varargs)
876cecd0 1471 TYPE_VARARGS (type) = 1;
c906108c 1472 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
c906108c
SS
1473}
1474
a737d952 1475/* A wrapper of TYPE_NAME which calls error if the type is anonymous.
d8228535
JK
1476 Since GCC PR debug/47510 DWARF provides associated information to detect the
1477 anonymous class linkage name from its typedef.
1478
1479 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1480 apply it itself. */
1481
1482const char *
a737d952 1483type_name_or_error (struct type *type)
d8228535
JK
1484{
1485 struct type *saved_type = type;
1486 const char *name;
1487 struct objfile *objfile;
1488
f168693b 1489 type = check_typedef (type);
d8228535 1490
a737d952 1491 name = TYPE_NAME (type);
d8228535
JK
1492 if (name != NULL)
1493 return name;
1494
a737d952 1495 name = TYPE_NAME (saved_type);
d8228535
JK
1496 objfile = TYPE_OBJFILE (saved_type);
1497 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
4262abfb
JK
1498 name ? name : "<anonymous>",
1499 objfile ? objfile_name (objfile) : "<arch>");
d8228535
JK
1500}
1501
7ba81444
MS
1502/* Lookup a typedef or primitive type named NAME, visible in lexical
1503 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1504 suitably defined. */
c906108c
SS
1505
1506struct type *
e6c014f2 1507lookup_typename (const struct language_defn *language,
ddd49eee 1508 struct gdbarch *gdbarch, const char *name,
34eaf542 1509 const struct block *block, int noerr)
c906108c 1510{
52f0bd74 1511 struct symbol *sym;
c906108c 1512
1994afbf 1513 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
d12307c1 1514 language->la_language, NULL).symbol;
c51fe631
DE
1515 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1516 return SYMBOL_TYPE (sym);
1517
c51fe631
DE
1518 if (noerr)
1519 return NULL;
1520 error (_("No type named %s."), name);
c906108c
SS
1521}
1522
1523struct type *
e6c014f2 1524lookup_unsigned_typename (const struct language_defn *language,
0d5cff50 1525 struct gdbarch *gdbarch, const char *name)
c906108c 1526{
224c3ddb 1527 char *uns = (char *) alloca (strlen (name) + 10);
c906108c
SS
1528
1529 strcpy (uns, "unsigned ");
1530 strcpy (uns + 9, name);
e6c014f2 1531 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
c906108c
SS
1532}
1533
1534struct type *
e6c014f2 1535lookup_signed_typename (const struct language_defn *language,
0d5cff50 1536 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1537{
1538 struct type *t;
224c3ddb 1539 char *uns = (char *) alloca (strlen (name) + 8);
c906108c
SS
1540
1541 strcpy (uns, "signed ");
1542 strcpy (uns + 7, name);
e6c014f2 1543 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
7ba81444 1544 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1545 if (t != NULL)
1546 return t;
e6c014f2 1547 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
c906108c
SS
1548}
1549
1550/* Lookup a structure type named "struct NAME",
1551 visible in lexical block BLOCK. */
1552
1553struct type *
270140bd 1554lookup_struct (const char *name, const struct block *block)
c906108c 1555{
52f0bd74 1556 struct symbol *sym;
c906108c 1557
d12307c1 1558 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1559
1560 if (sym == NULL)
1561 {
8a3fe4f8 1562 error (_("No struct type named %s."), name);
c906108c
SS
1563 }
1564 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1565 {
7ba81444
MS
1566 error (_("This context has class, union or enum %s, not a struct."),
1567 name);
c906108c
SS
1568 }
1569 return (SYMBOL_TYPE (sym));
1570}
1571
1572/* Lookup a union type named "union NAME",
1573 visible in lexical block BLOCK. */
1574
1575struct type *
270140bd 1576lookup_union (const char *name, const struct block *block)
c906108c 1577{
52f0bd74 1578 struct symbol *sym;
c5aa993b 1579 struct type *t;
c906108c 1580
d12307c1 1581 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1582
1583 if (sym == NULL)
8a3fe4f8 1584 error (_("No union type named %s."), name);
c906108c 1585
c5aa993b 1586 t = SYMBOL_TYPE (sym);
c906108c
SS
1587
1588 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1589 return t;
c906108c 1590
7ba81444
MS
1591 /* If we get here, it's not a union. */
1592 error (_("This context has class, struct or enum %s, not a union."),
1593 name);
c906108c
SS
1594}
1595
c906108c
SS
1596/* Lookup an enum type named "enum NAME",
1597 visible in lexical block BLOCK. */
1598
1599struct type *
270140bd 1600lookup_enum (const char *name, const struct block *block)
c906108c 1601{
52f0bd74 1602 struct symbol *sym;
c906108c 1603
d12307c1 1604 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1605 if (sym == NULL)
1606 {
8a3fe4f8 1607 error (_("No enum type named %s."), name);
c906108c
SS
1608 }
1609 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1610 {
7ba81444
MS
1611 error (_("This context has class, struct or union %s, not an enum."),
1612 name);
c906108c
SS
1613 }
1614 return (SYMBOL_TYPE (sym));
1615}
1616
1617/* Lookup a template type named "template NAME<TYPE>",
1618 visible in lexical block BLOCK. */
1619
1620struct type *
7ba81444 1621lookup_template_type (char *name, struct type *type,
270140bd 1622 const struct block *block)
c906108c
SS
1623{
1624 struct symbol *sym;
7ba81444
MS
1625 char *nam = (char *)
1626 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1627
c906108c
SS
1628 strcpy (nam, name);
1629 strcat (nam, "<");
0004e5a2 1630 strcat (nam, TYPE_NAME (type));
0963b4bd 1631 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1632
d12307c1 1633 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
c906108c
SS
1634
1635 if (sym == NULL)
1636 {
8a3fe4f8 1637 error (_("No template type named %s."), name);
c906108c
SS
1638 }
1639 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1640 {
7ba81444
MS
1641 error (_("This context has class, union or enum %s, not a struct."),
1642 name);
c906108c
SS
1643 }
1644 return (SYMBOL_TYPE (sym));
1645}
1646
7ba81444
MS
1647/* Given a type TYPE, lookup the type of the component of type named
1648 NAME.
c906108c 1649
7ba81444
MS
1650 TYPE can be either a struct or union, or a pointer or reference to
1651 a struct or union. If it is a pointer or reference, its target
1652 type is automatically used. Thus '.' and '->' are interchangable,
1653 as specified for the definitions of the expression element types
1654 STRUCTOP_STRUCT and STRUCTOP_PTR.
c906108c
SS
1655
1656 If NOERR is nonzero, return zero if NAME is not suitably defined.
1657 If NAME is the name of a baseclass type, return that type. */
1658
1659struct type *
d7561cbb 1660lookup_struct_elt_type (struct type *type, const char *name, int noerr)
c906108c
SS
1661{
1662 int i;
1663
1664 for (;;)
1665 {
f168693b 1666 type = check_typedef (type);
c906108c
SS
1667 if (TYPE_CODE (type) != TYPE_CODE_PTR
1668 && TYPE_CODE (type) != TYPE_CODE_REF)
1669 break;
1670 type = TYPE_TARGET_TYPE (type);
1671 }
1672
687d6395
MS
1673 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1674 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1675 {
2f408ecb
PA
1676 std::string type_name = type_to_string (type);
1677 error (_("Type %s is not a structure or union type."),
1678 type_name.c_str ());
c906108c
SS
1679 }
1680
1681#if 0
7ba81444
MS
1682 /* FIXME: This change put in by Michael seems incorrect for the case
1683 where the structure tag name is the same as the member name.
0963b4bd 1684 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
7ba81444 1685 foo; } bell;" Disabled by fnf. */
c906108c 1686 {
fe978cb0 1687 char *type_name;
c906108c 1688
a737d952 1689 type_name = TYPE_NAME (type);
fe978cb0 1690 if (type_name != NULL && strcmp (type_name, name) == 0)
c906108c
SS
1691 return type;
1692 }
1693#endif
1694
1695 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1696 {
0d5cff50 1697 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1698
db577aea 1699 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1700 {
1701 return TYPE_FIELD_TYPE (type, i);
1702 }
f5a010c0
PM
1703 else if (!t_field_name || *t_field_name == '\0')
1704 {
d8734c88
MS
1705 struct type *subtype
1706 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1707
f5a010c0
PM
1708 if (subtype != NULL)
1709 return subtype;
1710 }
c906108c
SS
1711 }
1712
1713 /* OK, it's not in this class. Recursively check the baseclasses. */
1714 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1715 {
1716 struct type *t;
1717
9733fc94 1718 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
c906108c
SS
1719 if (t != NULL)
1720 {
1721 return t;
1722 }
1723 }
1724
1725 if (noerr)
1726 {
1727 return NULL;
1728 }
c5aa993b 1729
2f408ecb
PA
1730 std::string type_name = type_to_string (type);
1731 error (_("Type %s has no component named %s."), type_name.c_str (), name);
c906108c
SS
1732}
1733
ed3ef339
DE
1734/* Store in *MAX the largest number representable by unsigned integer type
1735 TYPE. */
1736
1737void
1738get_unsigned_type_max (struct type *type, ULONGEST *max)
1739{
1740 unsigned int n;
1741
f168693b 1742 type = check_typedef (type);
ed3ef339
DE
1743 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1744 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1745
1746 /* Written this way to avoid overflow. */
1747 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1748 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1749}
1750
1751/* Store in *MIN, *MAX the smallest and largest numbers representable by
1752 signed integer type TYPE. */
1753
1754void
1755get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1756{
1757 unsigned int n;
1758
f168693b 1759 type = check_typedef (type);
ed3ef339
DE
1760 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1761 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1762
1763 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1764 *min = -((ULONGEST) 1 << (n - 1));
1765 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1766}
1767
ae6ae975
DE
1768/* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1769 cplus_stuff.vptr_fieldno.
1770
1771 cplus_stuff is initialized to cplus_struct_default which does not
1772 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1773 designated initializers). We cope with that here. */
1774
1775int
1776internal_type_vptr_fieldno (struct type *type)
1777{
f168693b 1778 type = check_typedef (type);
ae6ae975
DE
1779 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1780 || TYPE_CODE (type) == TYPE_CODE_UNION);
1781 if (!HAVE_CPLUS_STRUCT (type))
1782 return -1;
1783 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1784}
1785
1786/* Set the value of cplus_stuff.vptr_fieldno. */
1787
1788void
1789set_type_vptr_fieldno (struct type *type, int fieldno)
1790{
f168693b 1791 type = check_typedef (type);
ae6ae975
DE
1792 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1793 || TYPE_CODE (type) == TYPE_CODE_UNION);
1794 if (!HAVE_CPLUS_STRUCT (type))
1795 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1796 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1797}
1798
1799/* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1800 cplus_stuff.vptr_basetype. */
1801
1802struct type *
1803internal_type_vptr_basetype (struct type *type)
1804{
f168693b 1805 type = check_typedef (type);
ae6ae975
DE
1806 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1807 || TYPE_CODE (type) == TYPE_CODE_UNION);
1808 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1809 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1810}
1811
1812/* Set the value of cplus_stuff.vptr_basetype. */
1813
1814void
1815set_type_vptr_basetype (struct type *type, struct type *basetype)
1816{
f168693b 1817 type = check_typedef (type);
ae6ae975
DE
1818 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1819 || TYPE_CODE (type) == TYPE_CODE_UNION);
1820 if (!HAVE_CPLUS_STRUCT (type))
1821 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1822 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1823}
1824
81fe8080
DE
1825/* Lookup the vptr basetype/fieldno values for TYPE.
1826 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1827 vptr_fieldno. Also, if found and basetype is from the same objfile,
1828 cache the results.
1829 If not found, return -1 and ignore BASETYPEP.
1830 Callers should be aware that in some cases (for example,
c906108c 1831 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1832 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1833 this function will not be able to find the
7ba81444 1834 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1835 vptr_basetype will remain NULL or incomplete. */
c906108c 1836
81fe8080
DE
1837int
1838get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c 1839{
f168693b 1840 type = check_typedef (type);
c906108c
SS
1841
1842 if (TYPE_VPTR_FIELDNO (type) < 0)
1843 {
1844 int i;
1845
7ba81444
MS
1846 /* We must start at zero in case the first (and only) baseclass
1847 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1848 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1849 {
81fe8080
DE
1850 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1851 int fieldno;
1852 struct type *basetype;
1853
1854 fieldno = get_vptr_fieldno (baseclass, &basetype);
1855 if (fieldno >= 0)
c906108c 1856 {
81fe8080 1857 /* If the type comes from a different objfile we can't cache
0963b4bd 1858 it, it may have a different lifetime. PR 2384 */
5ef73790 1859 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080 1860 {
ae6ae975
DE
1861 set_type_vptr_fieldno (type, fieldno);
1862 set_type_vptr_basetype (type, basetype);
81fe8080
DE
1863 }
1864 if (basetypep)
1865 *basetypep = basetype;
1866 return fieldno;
c906108c
SS
1867 }
1868 }
81fe8080
DE
1869
1870 /* Not found. */
1871 return -1;
1872 }
1873 else
1874 {
1875 if (basetypep)
1876 *basetypep = TYPE_VPTR_BASETYPE (type);
1877 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1878 }
1879}
1880
44e1a9eb
DJ
1881static void
1882stub_noname_complaint (void)
1883{
b98664d3 1884 complaint (_("stub type has NULL name"));
44e1a9eb
DJ
1885}
1886
a405673c
JB
1887/* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1888 attached to it, and that property has a non-constant value. */
1889
1890static int
1891array_type_has_dynamic_stride (struct type *type)
1892{
1893 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1894
1895 return (prop != NULL && prop->kind != PROP_CONST);
1896}
1897
d98b7a16 1898/* Worker for is_dynamic_type. */
80180f79 1899
d98b7a16 1900static int
ee715b5a 1901is_dynamic_type_internal (struct type *type, int top_level)
80180f79
SA
1902{
1903 type = check_typedef (type);
1904
e771e4be
PMR
1905 /* We only want to recognize references at the outermost level. */
1906 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1907 type = check_typedef (TYPE_TARGET_TYPE (type));
1908
3cdcd0ce
JB
1909 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1910 dynamic, even if the type itself is statically defined.
1911 From a user's point of view, this may appear counter-intuitive;
1912 but it makes sense in this context, because the point is to determine
1913 whether any part of the type needs to be resolved before it can
1914 be exploited. */
1915 if (TYPE_DATA_LOCATION (type) != NULL
1916 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1917 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1918 return 1;
1919
3f2f83dd
KB
1920 if (TYPE_ASSOCIATED_PROP (type))
1921 return 1;
1922
1923 if (TYPE_ALLOCATED_PROP (type))
1924 return 1;
1925
80180f79
SA
1926 switch (TYPE_CODE (type))
1927 {
6f8a3220 1928 case TYPE_CODE_RANGE:
ddb87a81
JB
1929 {
1930 /* A range type is obviously dynamic if it has at least one
1931 dynamic bound. But also consider the range type to be
1932 dynamic when its subtype is dynamic, even if the bounds
1933 of the range type are static. It allows us to assume that
1934 the subtype of a static range type is also static. */
1935 return (!has_static_range (TYPE_RANGE_DATA (type))
ee715b5a 1936 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
ddb87a81 1937 }
6f8a3220 1938
80180f79
SA
1939 case TYPE_CODE_ARRAY:
1940 {
80180f79 1941 gdb_assert (TYPE_NFIELDS (type) == 1);
6f8a3220 1942
a405673c 1943 /* The array is dynamic if either the bounds are dynamic... */
ee715b5a 1944 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
80180f79 1945 return 1;
a405673c
JB
1946 /* ... or the elements it contains have a dynamic contents... */
1947 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
1948 return 1;
1949 /* ... or if it has a dynamic stride... */
1950 if (array_type_has_dynamic_stride (type))
1951 return 1;
1952 return 0;
80180f79 1953 }
012370f6
TT
1954
1955 case TYPE_CODE_STRUCT:
1956 case TYPE_CODE_UNION:
1957 {
1958 int i;
1959
1960 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1961 if (!field_is_static (&TYPE_FIELD (type, i))
ee715b5a 1962 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
012370f6
TT
1963 return 1;
1964 }
1965 break;
80180f79 1966 }
92e2a17f
TT
1967
1968 return 0;
80180f79
SA
1969}
1970
d98b7a16
TT
1971/* See gdbtypes.h. */
1972
1973int
1974is_dynamic_type (struct type *type)
1975{
ee715b5a 1976 return is_dynamic_type_internal (type, 1);
d98b7a16
TT
1977}
1978
df25ebbd 1979static struct type *resolve_dynamic_type_internal
ee715b5a 1980 (struct type *type, struct property_addr_info *addr_stack, int top_level);
d98b7a16 1981
df25ebbd
JB
1982/* Given a dynamic range type (dyn_range_type) and a stack of
1983 struct property_addr_info elements, return a static version
1984 of that type. */
d190df30 1985
80180f79 1986static struct type *
df25ebbd
JB
1987resolve_dynamic_range (struct type *dyn_range_type,
1988 struct property_addr_info *addr_stack)
80180f79
SA
1989{
1990 CORE_ADDR value;
ddb87a81 1991 struct type *static_range_type, *static_target_type;
80180f79 1992 const struct dynamic_prop *prop;
80180f79
SA
1993 struct dynamic_prop low_bound, high_bound;
1994
6f8a3220 1995 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
80180f79 1996
6f8a3220 1997 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
63e43d3a 1998 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
1999 {
2000 low_bound.kind = PROP_CONST;
2001 low_bound.data.const_val = value;
2002 }
2003 else
2004 {
2005 low_bound.kind = PROP_UNDEFINED;
2006 low_bound.data.const_val = 0;
2007 }
2008
6f8a3220 2009 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
63e43d3a 2010 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
2011 {
2012 high_bound.kind = PROP_CONST;
2013 high_bound.data.const_val = value;
c451ebe5 2014
6f8a3220 2015 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
c451ebe5
SA
2016 high_bound.data.const_val
2017 = low_bound.data.const_val + high_bound.data.const_val - 1;
80180f79
SA
2018 }
2019 else
2020 {
2021 high_bound.kind = PROP_UNDEFINED;
2022 high_bound.data.const_val = 0;
2023 }
2024
ddb87a81
JB
2025 static_target_type
2026 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
ee715b5a 2027 addr_stack, 0);
6f8a3220 2028 static_range_type = create_range_type (copy_type (dyn_range_type),
ddb87a81 2029 static_target_type,
6f8a3220
JB
2030 &low_bound, &high_bound);
2031 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2032 return static_range_type;
2033}
2034
2035/* Resolves dynamic bound values of an array type TYPE to static ones.
df25ebbd
JB
2036 ADDR_STACK is a stack of struct property_addr_info to be used
2037 if needed during the dynamic resolution. */
6f8a3220
JB
2038
2039static struct type *
df25ebbd
JB
2040resolve_dynamic_array (struct type *type,
2041 struct property_addr_info *addr_stack)
6f8a3220
JB
2042{
2043 CORE_ADDR value;
2044 struct type *elt_type;
2045 struct type *range_type;
2046 struct type *ary_dim;
3f2f83dd 2047 struct dynamic_prop *prop;
a405673c 2048 unsigned int bit_stride = 0;
6f8a3220
JB
2049
2050 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
2051
3f2f83dd
KB
2052 type = copy_type (type);
2053
6f8a3220
JB
2054 elt_type = type;
2055 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
df25ebbd 2056 range_type = resolve_dynamic_range (range_type, addr_stack);
6f8a3220 2057
3f2f83dd
KB
2058 /* Resolve allocated/associated here before creating a new array type, which
2059 will update the length of the array accordingly. */
2060 prop = TYPE_ALLOCATED_PROP (type);
2061 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2062 {
2063 TYPE_DYN_PROP_ADDR (prop) = value;
2064 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2065 }
2066 prop = TYPE_ASSOCIATED_PROP (type);
2067 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2068 {
2069 TYPE_DYN_PROP_ADDR (prop) = value;
2070 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2071 }
2072
80180f79
SA
2073 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2074
2075 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
d0d84780 2076 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
80180f79
SA
2077 else
2078 elt_type = TYPE_TARGET_TYPE (type);
2079
a405673c
JB
2080 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2081 if (prop != NULL)
2082 {
2083 int prop_eval_ok
2084 = dwarf2_evaluate_property (prop, NULL, addr_stack, &value);
2085
2086 if (prop_eval_ok)
2087 {
2088 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2089 bit_stride = (unsigned int) (value * 8);
2090 }
2091 else
2092 {
2093 /* Could be a bug in our code, but it could also happen
2094 if the DWARF info is not correct. Issue a warning,
2095 and assume no byte/bit stride (leave bit_stride = 0). */
2096 warning (_("cannot determine array stride for type %s"),
2097 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2098 }
2099 }
2100 else
2101 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2102
2103 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2104 bit_stride);
80180f79
SA
2105}
2106
012370f6 2107/* Resolve dynamic bounds of members of the union TYPE to static
df25ebbd
JB
2108 bounds. ADDR_STACK is a stack of struct property_addr_info
2109 to be used if needed during the dynamic resolution. */
012370f6
TT
2110
2111static struct type *
df25ebbd
JB
2112resolve_dynamic_union (struct type *type,
2113 struct property_addr_info *addr_stack)
012370f6
TT
2114{
2115 struct type *resolved_type;
2116 int i;
2117 unsigned int max_len = 0;
2118
2119 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2120
2121 resolved_type = copy_type (type);
2122 TYPE_FIELDS (resolved_type)
224c3ddb
SM
2123 = (struct field *) TYPE_ALLOC (resolved_type,
2124 TYPE_NFIELDS (resolved_type)
2125 * sizeof (struct field));
012370f6
TT
2126 memcpy (TYPE_FIELDS (resolved_type),
2127 TYPE_FIELDS (type),
2128 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2129 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2130 {
2131 struct type *t;
2132
2133 if (field_is_static (&TYPE_FIELD (type, i)))
2134 continue;
2135
d98b7a16 2136 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2137 addr_stack, 0);
012370f6
TT
2138 TYPE_FIELD_TYPE (resolved_type, i) = t;
2139 if (TYPE_LENGTH (t) > max_len)
2140 max_len = TYPE_LENGTH (t);
2141 }
2142
2143 TYPE_LENGTH (resolved_type) = max_len;
2144 return resolved_type;
2145}
2146
2147/* Resolve dynamic bounds of members of the struct TYPE to static
df25ebbd
JB
2148 bounds. ADDR_STACK is a stack of struct property_addr_info to
2149 be used if needed during the dynamic resolution. */
012370f6
TT
2150
2151static struct type *
df25ebbd
JB
2152resolve_dynamic_struct (struct type *type,
2153 struct property_addr_info *addr_stack)
012370f6
TT
2154{
2155 struct type *resolved_type;
2156 int i;
6908c509 2157 unsigned resolved_type_bit_length = 0;
012370f6
TT
2158
2159 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2160 gdb_assert (TYPE_NFIELDS (type) > 0);
2161
2162 resolved_type = copy_type (type);
2163 TYPE_FIELDS (resolved_type)
224c3ddb
SM
2164 = (struct field *) TYPE_ALLOC (resolved_type,
2165 TYPE_NFIELDS (resolved_type)
2166 * sizeof (struct field));
012370f6
TT
2167 memcpy (TYPE_FIELDS (resolved_type),
2168 TYPE_FIELDS (type),
2169 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2170 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2171 {
6908c509 2172 unsigned new_bit_length;
df25ebbd 2173 struct property_addr_info pinfo;
012370f6
TT
2174
2175 if (field_is_static (&TYPE_FIELD (type, i)))
2176 continue;
2177
6908c509
JB
2178 /* As we know this field is not a static field, the field's
2179 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2180 this is the case, but only trigger a simple error rather
2181 than an internal error if that fails. While failing
2182 that verification indicates a bug in our code, the error
2183 is not severe enough to suggest to the user he stops
2184 his debugging session because of it. */
df25ebbd 2185 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
6908c509
JB
2186 error (_("Cannot determine struct field location"
2187 " (invalid location kind)"));
df25ebbd
JB
2188
2189 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
c3345124 2190 pinfo.valaddr = addr_stack->valaddr;
9920b434
BH
2191 pinfo.addr
2192 = (addr_stack->addr
2193 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
df25ebbd
JB
2194 pinfo.next = addr_stack;
2195
2196 TYPE_FIELD_TYPE (resolved_type, i)
2197 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2198 &pinfo, 0);
df25ebbd
JB
2199 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2200 == FIELD_LOC_KIND_BITPOS);
2201
6908c509
JB
2202 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2203 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2204 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2205 else
2206 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2207 * TARGET_CHAR_BIT);
2208
2209 /* Normally, we would use the position and size of the last field
2210 to determine the size of the enclosing structure. But GCC seems
2211 to be encoding the position of some fields incorrectly when
2212 the struct contains a dynamic field that is not placed last.
2213 So we compute the struct size based on the field that has
2214 the highest position + size - probably the best we can do. */
2215 if (new_bit_length > resolved_type_bit_length)
2216 resolved_type_bit_length = new_bit_length;
012370f6
TT
2217 }
2218
9920b434
BH
2219 /* The length of a type won't change for fortran, but it does for C and Ada.
2220 For fortran the size of dynamic fields might change over time but not the
2221 type length of the structure. If we adapt it, we run into problems
2222 when calculating the element offset for arrays of structs. */
2223 if (current_language->la_language != language_fortran)
2224 TYPE_LENGTH (resolved_type)
2225 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
6908c509 2226
9e195661
PMR
2227 /* The Ada language uses this field as a cache for static fixed types: reset
2228 it as RESOLVED_TYPE must have its own static fixed type. */
2229 TYPE_TARGET_TYPE (resolved_type) = NULL;
2230
012370f6
TT
2231 return resolved_type;
2232}
2233
d98b7a16 2234/* Worker for resolved_dynamic_type. */
80180f79 2235
d98b7a16 2236static struct type *
df25ebbd 2237resolve_dynamic_type_internal (struct type *type,
ee715b5a
PMR
2238 struct property_addr_info *addr_stack,
2239 int top_level)
80180f79
SA
2240{
2241 struct type *real_type = check_typedef (type);
6f8a3220 2242 struct type *resolved_type = type;
d9823cbb 2243 struct dynamic_prop *prop;
3cdcd0ce 2244 CORE_ADDR value;
80180f79 2245
ee715b5a 2246 if (!is_dynamic_type_internal (real_type, top_level))
80180f79
SA
2247 return type;
2248
5537b577 2249 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
6f8a3220 2250 {
cac9b138
JK
2251 resolved_type = copy_type (type);
2252 TYPE_TARGET_TYPE (resolved_type)
ee715b5a
PMR
2253 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2254 top_level);
5537b577
JK
2255 }
2256 else
2257 {
2258 /* Before trying to resolve TYPE, make sure it is not a stub. */
2259 type = real_type;
012370f6 2260
5537b577
JK
2261 switch (TYPE_CODE (type))
2262 {
e771e4be
PMR
2263 case TYPE_CODE_REF:
2264 {
2265 struct property_addr_info pinfo;
2266
2267 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
c3345124
JB
2268 pinfo.valaddr = NULL;
2269 if (addr_stack->valaddr != NULL)
2270 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2271 else
2272 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
e771e4be
PMR
2273 pinfo.next = addr_stack;
2274
2275 resolved_type = copy_type (type);
2276 TYPE_TARGET_TYPE (resolved_type)
2277 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2278 &pinfo, top_level);
2279 break;
2280 }
2281
5537b577 2282 case TYPE_CODE_ARRAY:
df25ebbd 2283 resolved_type = resolve_dynamic_array (type, addr_stack);
5537b577
JK
2284 break;
2285
2286 case TYPE_CODE_RANGE:
df25ebbd 2287 resolved_type = resolve_dynamic_range (type, addr_stack);
5537b577
JK
2288 break;
2289
2290 case TYPE_CODE_UNION:
df25ebbd 2291 resolved_type = resolve_dynamic_union (type, addr_stack);
5537b577
JK
2292 break;
2293
2294 case TYPE_CODE_STRUCT:
df25ebbd 2295 resolved_type = resolve_dynamic_struct (type, addr_stack);
5537b577
JK
2296 break;
2297 }
6f8a3220 2298 }
80180f79 2299
3cdcd0ce
JB
2300 /* Resolve data_location attribute. */
2301 prop = TYPE_DATA_LOCATION (resolved_type);
63e43d3a
PMR
2302 if (prop != NULL
2303 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
3cdcd0ce 2304 {
d9823cbb
KB
2305 TYPE_DYN_PROP_ADDR (prop) = value;
2306 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
3cdcd0ce 2307 }
3cdcd0ce 2308
80180f79
SA
2309 return resolved_type;
2310}
2311
d98b7a16
TT
2312/* See gdbtypes.h */
2313
2314struct type *
c3345124
JB
2315resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2316 CORE_ADDR addr)
d98b7a16 2317{
c3345124
JB
2318 struct property_addr_info pinfo
2319 = {check_typedef (type), valaddr, addr, NULL};
df25ebbd 2320
ee715b5a 2321 return resolve_dynamic_type_internal (type, &pinfo, 1);
d98b7a16
TT
2322}
2323
d9823cbb
KB
2324/* See gdbtypes.h */
2325
2326struct dynamic_prop *
2327get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2328{
2329 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2330
2331 while (node != NULL)
2332 {
2333 if (node->prop_kind == prop_kind)
283a9958 2334 return &node->prop;
d9823cbb
KB
2335 node = node->next;
2336 }
2337 return NULL;
2338}
2339
2340/* See gdbtypes.h */
2341
2342void
2343add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
50a82047 2344 struct type *type)
d9823cbb
KB
2345{
2346 struct dynamic_prop_list *temp;
2347
2348 gdb_assert (TYPE_OBJFILE_OWNED (type));
2349
50a82047
TT
2350 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2351 struct dynamic_prop_list);
d9823cbb 2352 temp->prop_kind = prop_kind;
283a9958 2353 temp->prop = prop;
d9823cbb
KB
2354 temp->next = TYPE_DYN_PROP_LIST (type);
2355
2356 TYPE_DYN_PROP_LIST (type) = temp;
2357}
2358
9920b434
BH
2359/* Remove dynamic property from TYPE in case it exists. */
2360
2361void
2362remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2363 struct type *type)
2364{
2365 struct dynamic_prop_list *prev_node, *curr_node;
2366
2367 curr_node = TYPE_DYN_PROP_LIST (type);
2368 prev_node = NULL;
2369
2370 while (NULL != curr_node)
2371 {
2372 if (curr_node->prop_kind == prop_kind)
2373 {
2374 /* Update the linked list but don't free anything.
2375 The property was allocated on objstack and it is not known
2376 if we are on top of it. Nevertheless, everything is released
2377 when the complete objstack is freed. */
2378 if (NULL == prev_node)
2379 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2380 else
2381 prev_node->next = curr_node->next;
2382
2383 return;
2384 }
2385
2386 prev_node = curr_node;
2387 curr_node = curr_node->next;
2388 }
2389}
d9823cbb 2390
92163a10
JK
2391/* Find the real type of TYPE. This function returns the real type,
2392 after removing all layers of typedefs, and completing opaque or stub
2393 types. Completion changes the TYPE argument, but stripping of
2394 typedefs does not.
2395
2396 Instance flags (e.g. const/volatile) are preserved as typedefs are
2397 stripped. If necessary a new qualified form of the underlying type
2398 is created.
2399
2400 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2401 not been computed and we're either in the middle of reading symbols, or
2402 there was no name for the typedef in the debug info.
2403
9bc118a5
DE
2404 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2405 QUITs in the symbol reading code can also throw.
2406 Thus this function can throw an exception.
2407
92163a10
JK
2408 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2409 the target type.
c906108c
SS
2410
2411 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 2412 we can find a full definition in some other file. If so, copy this
7ba81444
MS
2413 definition, so we can use it in future. There used to be a comment
2414 (but not any code) that if we don't find a full definition, we'd
2415 set a flag so we don't spend time in the future checking the same
2416 type. That would be a mistake, though--we might load in more
92163a10 2417 symbols which contain a full definition for the type. */
c906108c
SS
2418
2419struct type *
a02fd225 2420check_typedef (struct type *type)
c906108c
SS
2421{
2422 struct type *orig_type = type;
92163a10
JK
2423 /* While we're removing typedefs, we don't want to lose qualifiers.
2424 E.g., const/volatile. */
2425 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 2426
423c0af8
MS
2427 gdb_assert (type);
2428
c906108c
SS
2429 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2430 {
2431 if (!TYPE_TARGET_TYPE (type))
2432 {
0d5cff50 2433 const char *name;
c906108c
SS
2434 struct symbol *sym;
2435
2436 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 2437 reading a symtab. Infinite recursion is one danger. */
c906108c 2438 if (currently_reading_symtab)
92163a10 2439 return make_qualified_type (type, instance_flags, NULL);
c906108c 2440
a737d952 2441 name = TYPE_NAME (type);
e86ca25f
TT
2442 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2443 VAR_DOMAIN as appropriate? */
c906108c
SS
2444 if (name == NULL)
2445 {
23136709 2446 stub_noname_complaint ();
92163a10 2447 return make_qualified_type (type, instance_flags, NULL);
c906108c 2448 }
d12307c1 2449 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
2450 if (sym)
2451 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 2452 else /* TYPE_CODE_UNDEF */
e9bb382b 2453 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
2454 }
2455 type = TYPE_TARGET_TYPE (type);
c906108c 2456
92163a10
JK
2457 /* Preserve the instance flags as we traverse down the typedef chain.
2458
2459 Handling address spaces/classes is nasty, what do we do if there's a
2460 conflict?
2461 E.g., what if an outer typedef marks the type as class_1 and an inner
2462 typedef marks the type as class_2?
2463 This is the wrong place to do such error checking. We leave it to
2464 the code that created the typedef in the first place to flag the
2465 error. We just pick the outer address space (akin to letting the
2466 outer cast in a chain of casting win), instead of assuming
2467 "it can't happen". */
2468 {
2469 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2470 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2471 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2472 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2473
2474 /* Treat code vs data spaces and address classes separately. */
2475 if ((instance_flags & ALL_SPACES) != 0)
2476 new_instance_flags &= ~ALL_SPACES;
2477 if ((instance_flags & ALL_CLASSES) != 0)
2478 new_instance_flags &= ~ALL_CLASSES;
2479
2480 instance_flags |= new_instance_flags;
2481 }
2482 }
a02fd225 2483
7ba81444
MS
2484 /* If this is a struct/class/union with no fields, then check
2485 whether a full definition exists somewhere else. This is for
2486 systems where a type definition with no fields is issued for such
2487 types, instead of identifying them as stub types in the first
2488 place. */
c5aa993b 2489
7ba81444
MS
2490 if (TYPE_IS_OPAQUE (type)
2491 && opaque_type_resolution
2492 && !currently_reading_symtab)
c906108c 2493 {
a737d952 2494 const char *name = TYPE_NAME (type);
c5aa993b 2495 struct type *newtype;
d8734c88 2496
c906108c
SS
2497 if (name == NULL)
2498 {
23136709 2499 stub_noname_complaint ();
92163a10 2500 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2501 }
2502 newtype = lookup_transparent_type (name);
ad766c0a 2503
c906108c 2504 if (newtype)
ad766c0a 2505 {
7ba81444
MS
2506 /* If the resolved type and the stub are in the same
2507 objfile, then replace the stub type with the real deal.
2508 But if they're in separate objfiles, leave the stub
2509 alone; we'll just look up the transparent type every time
2510 we call check_typedef. We can't create pointers between
2511 types allocated to different objfiles, since they may
2512 have different lifetimes. Trying to copy NEWTYPE over to
2513 TYPE's objfile is pointless, too, since you'll have to
2514 move over any other types NEWTYPE refers to, which could
2515 be an unbounded amount of stuff. */
ad766c0a 2516 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
2517 type = make_qualified_type (newtype,
2518 TYPE_INSTANCE_FLAGS (type),
2519 type);
ad766c0a
JB
2520 else
2521 type = newtype;
2522 }
c906108c 2523 }
7ba81444
MS
2524 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2525 types. */
74a9bb82 2526 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 2527 {
a737d952 2528 const char *name = TYPE_NAME (type);
e86ca25f
TT
2529 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2530 as appropriate? */
c906108c 2531 struct symbol *sym;
d8734c88 2532
c906108c
SS
2533 if (name == NULL)
2534 {
23136709 2535 stub_noname_complaint ();
92163a10 2536 return make_qualified_type (type, instance_flags, NULL);
c906108c 2537 }
d12307c1 2538 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c 2539 if (sym)
c26f2453
JB
2540 {
2541 /* Same as above for opaque types, we can replace the stub
92163a10 2542 with the complete type only if they are in the same
c26f2453
JB
2543 objfile. */
2544 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
2545 type = make_qualified_type (SYMBOL_TYPE (sym),
2546 TYPE_INSTANCE_FLAGS (type),
2547 type);
c26f2453
JB
2548 else
2549 type = SYMBOL_TYPE (sym);
2550 }
c906108c
SS
2551 }
2552
74a9bb82 2553 if (TYPE_TARGET_STUB (type))
c906108c 2554 {
c906108c
SS
2555 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2556
74a9bb82 2557 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 2558 {
73e2eb35 2559 /* Nothing we can do. */
c5aa993b 2560 }
c906108c
SS
2561 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2562 {
2563 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 2564 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
2565 }
2566 }
92163a10
JK
2567
2568 type = make_qualified_type (type, instance_flags, NULL);
2569
7ba81444 2570 /* Cache TYPE_LENGTH for future use. */
c906108c 2571 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 2572
c906108c
SS
2573 return type;
2574}
2575
7ba81444 2576/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 2577 occurs, silently return a void type. */
c91ecb25 2578
b9362cc7 2579static struct type *
48319d1f 2580safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
2581{
2582 struct ui_file *saved_gdb_stderr;
34365054 2583 struct type *type = NULL; /* Initialize to keep gcc happy. */
c91ecb25 2584
7ba81444 2585 /* Suppress error messages. */
c91ecb25 2586 saved_gdb_stderr = gdb_stderr;
d7e74731 2587 gdb_stderr = &null_stream;
c91ecb25 2588
7ba81444 2589 /* Call parse_and_eval_type() without fear of longjmp()s. */
492d29ea 2590 TRY
8e7b59a5
KS
2591 {
2592 type = parse_and_eval_type (p, length);
2593 }
492d29ea
PA
2594 CATCH (except, RETURN_MASK_ERROR)
2595 {
2596 type = builtin_type (gdbarch)->builtin_void;
2597 }
2598 END_CATCH
c91ecb25 2599
7ba81444 2600 /* Stop suppressing error messages. */
c91ecb25
ND
2601 gdb_stderr = saved_gdb_stderr;
2602
2603 return type;
2604}
2605
c906108c
SS
2606/* Ugly hack to convert method stubs into method types.
2607
7ba81444
MS
2608 He ain't kiddin'. This demangles the name of the method into a
2609 string including argument types, parses out each argument type,
2610 generates a string casting a zero to that type, evaluates the
2611 string, and stuffs the resulting type into an argtype vector!!!
2612 Then it knows the type of the whole function (including argument
2613 types for overloading), which info used to be in the stab's but was
2614 removed to hack back the space required for them. */
c906108c 2615
de17c821 2616static void
fba45db2 2617check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 2618{
50810684 2619 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
2620 struct fn_field *f;
2621 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
8de20a37
TT
2622 char *demangled_name = gdb_demangle (mangled_name,
2623 DMGL_PARAMS | DMGL_ANSI);
c906108c
SS
2624 char *argtypetext, *p;
2625 int depth = 0, argcount = 1;
ad2f7632 2626 struct field *argtypes;
c906108c
SS
2627 struct type *mtype;
2628
2629 /* Make sure we got back a function string that we can use. */
2630 if (demangled_name)
2631 p = strchr (demangled_name, '(');
502dcf4e
AC
2632 else
2633 p = NULL;
c906108c
SS
2634
2635 if (demangled_name == NULL || p == NULL)
7ba81444
MS
2636 error (_("Internal: Cannot demangle mangled name `%s'."),
2637 mangled_name);
c906108c
SS
2638
2639 /* Now, read in the parameters that define this type. */
2640 p += 1;
2641 argtypetext = p;
2642 while (*p)
2643 {
070ad9f0 2644 if (*p == '(' || *p == '<')
c906108c
SS
2645 {
2646 depth += 1;
2647 }
070ad9f0 2648 else if (*p == ')' || *p == '>')
c906108c
SS
2649 {
2650 depth -= 1;
2651 }
2652 else if (*p == ',' && depth == 0)
2653 {
2654 argcount += 1;
2655 }
2656
2657 p += 1;
2658 }
2659
ad2f7632 2660 /* If we read one argument and it was ``void'', don't count it. */
61012eef 2661 if (startswith (argtypetext, "(void)"))
ad2f7632 2662 argcount -= 1;
c906108c 2663
ad2f7632
DJ
2664 /* We need one extra slot, for the THIS pointer. */
2665
2666 argtypes = (struct field *)
2667 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 2668 p = argtypetext;
4a1970e4
DJ
2669
2670 /* Add THIS pointer for non-static methods. */
2671 f = TYPE_FN_FIELDLIST1 (type, method_id);
2672 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2673 argcount = 0;
2674 else
2675 {
ad2f7632 2676 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
2677 argcount = 1;
2678 }
c906108c 2679
0963b4bd 2680 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
2681 {
2682 depth = 0;
2683 while (*p)
2684 {
2685 if (depth <= 0 && (*p == ',' || *p == ')'))
2686 {
ad2f7632
DJ
2687 /* Avoid parsing of ellipsis, they will be handled below.
2688 Also avoid ``void'' as above. */
2689 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2690 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 2691 {
ad2f7632 2692 argtypes[argcount].type =
48319d1f 2693 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
2694 argcount += 1;
2695 }
2696 argtypetext = p + 1;
2697 }
2698
070ad9f0 2699 if (*p == '(' || *p == '<')
c906108c
SS
2700 {
2701 depth += 1;
2702 }
070ad9f0 2703 else if (*p == ')' || *p == '>')
c906108c
SS
2704 {
2705 depth -= 1;
2706 }
2707
2708 p += 1;
2709 }
2710 }
2711
c906108c
SS
2712 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2713
2714 /* Now update the old "stub" type into a real type. */
2715 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
09e2d7c7
DE
2716 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2717 We want a method (TYPE_CODE_METHOD). */
2718 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2719 argtypes, argcount, p[-2] == '.');
876cecd0 2720 TYPE_STUB (mtype) = 0;
c906108c 2721 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632
DJ
2722
2723 xfree (demangled_name);
c906108c
SS
2724}
2725
7ba81444
MS
2726/* This is the external interface to check_stub_method, above. This
2727 function unstubs all of the signatures for TYPE's METHOD_ID method
2728 name. After calling this function TYPE_FN_FIELD_STUB will be
2729 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2730 correct.
de17c821
DJ
2731
2732 This function unfortunately can not die until stabs do. */
2733
2734void
2735check_stub_method_group (struct type *type, int method_id)
2736{
2737 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2738 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
de17c821 2739
041be526
SM
2740 for (int j = 0; j < len; j++)
2741 {
2742 if (TYPE_FN_FIELD_STUB (f, j))
de17c821 2743 check_stub_method (type, method_id, j);
de17c821
DJ
2744 }
2745}
2746
9655fd1a
JK
2747/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2748const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
2749
2750void
fba45db2 2751allocate_cplus_struct_type (struct type *type)
c906108c 2752{
b4ba55a1
JB
2753 if (HAVE_CPLUS_STRUCT (type))
2754 /* Structure was already allocated. Nothing more to do. */
2755 return;
2756
2757 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2758 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2759 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2760 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
ae6ae975 2761 set_type_vptr_fieldno (type, -1);
c906108c
SS
2762}
2763
b4ba55a1
JB
2764const struct gnat_aux_type gnat_aux_default =
2765 { NULL };
2766
2767/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2768 and allocate the associated gnat-specific data. The gnat-specific
2769 data is also initialized to gnat_aux_default. */
5212577a 2770
b4ba55a1
JB
2771void
2772allocate_gnat_aux_type (struct type *type)
2773{
2774 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2775 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2776 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2777 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2778}
2779
ae438bc5
UW
2780/* Helper function to initialize a newly allocated type. Set type code
2781 to CODE and initialize the type-specific fields accordingly. */
2782
2783static void
2784set_type_code (struct type *type, enum type_code code)
2785{
2786 TYPE_CODE (type) = code;
2787
2788 switch (code)
2789 {
2790 case TYPE_CODE_STRUCT:
2791 case TYPE_CODE_UNION:
2792 case TYPE_CODE_NAMESPACE:
2793 INIT_CPLUS_SPECIFIC (type);
2794 break;
2795 case TYPE_CODE_FLT:
2796 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2797 break;
2798 case TYPE_CODE_FUNC:
2799 INIT_FUNC_SPECIFIC (type);
2800 break;
2801 }
2802}
2803
19f392bc
UW
2804/* Helper function to verify floating-point format and size.
2805 BIT is the type size in bits; if BIT equals -1, the size is
2806 determined by the floatformat. Returns size to be used. */
2807
2808static int
0db7851f 2809verify_floatformat (int bit, const struct floatformat *floatformat)
19f392bc 2810{
0db7851f 2811 gdb_assert (floatformat != NULL);
9b790ce7 2812
19f392bc 2813 if (bit == -1)
0db7851f 2814 bit = floatformat->totalsize;
19f392bc 2815
0db7851f
UW
2816 gdb_assert (bit >= 0);
2817 gdb_assert (bit >= floatformat->totalsize);
19f392bc
UW
2818
2819 return bit;
2820}
2821
0db7851f
UW
2822/* Return the floating-point format for a floating-point variable of
2823 type TYPE. */
2824
2825const struct floatformat *
2826floatformat_from_type (const struct type *type)
2827{
2828 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2829 gdb_assert (TYPE_FLOATFORMAT (type));
2830 return TYPE_FLOATFORMAT (type);
2831}
2832
c906108c
SS
2833/* Helper function to initialize the standard scalar types.
2834
86f62fd7
TT
2835 If NAME is non-NULL, then it is used to initialize the type name.
2836 Note that NAME is not copied; it is required to have a lifetime at
2837 least as long as OBJFILE. */
c906108c
SS
2838
2839struct type *
77b7c781 2840init_type (struct objfile *objfile, enum type_code code, int bit,
19f392bc 2841 const char *name)
c906108c 2842{
52f0bd74 2843 struct type *type;
c906108c
SS
2844
2845 type = alloc_type (objfile);
ae438bc5 2846 set_type_code (type, code);
77b7c781
UW
2847 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
2848 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
86f62fd7 2849 TYPE_NAME (type) = name;
c906108c 2850
c16abbde 2851 return type;
c906108c 2852}
19f392bc 2853
46a4882b
PA
2854/* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2855 to use with variables that have no debug info. NAME is the type
2856 name. */
2857
2858static struct type *
2859init_nodebug_var_type (struct objfile *objfile, const char *name)
2860{
2861 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2862}
2863
19f392bc
UW
2864/* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2865 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2866 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2867
2868struct type *
2869init_integer_type (struct objfile *objfile,
2870 int bit, int unsigned_p, const char *name)
2871{
2872 struct type *t;
2873
77b7c781 2874 t = init_type (objfile, TYPE_CODE_INT, bit, name);
19f392bc
UW
2875 if (unsigned_p)
2876 TYPE_UNSIGNED (t) = 1;
2877
2878 return t;
2879}
2880
2881/* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2882 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2883 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2884
2885struct type *
2886init_character_type (struct objfile *objfile,
2887 int bit, int unsigned_p, const char *name)
2888{
2889 struct type *t;
2890
77b7c781 2891 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
19f392bc
UW
2892 if (unsigned_p)
2893 TYPE_UNSIGNED (t) = 1;
2894
2895 return t;
2896}
2897
2898/* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2899 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2900 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2901
2902struct type *
2903init_boolean_type (struct objfile *objfile,
2904 int bit, int unsigned_p, const char *name)
2905{
2906 struct type *t;
2907
77b7c781 2908 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
19f392bc
UW
2909 if (unsigned_p)
2910 TYPE_UNSIGNED (t) = 1;
2911
2912 return t;
2913}
2914
2915/* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2916 BIT is the type size in bits; if BIT equals -1, the size is
2917 determined by the floatformat. NAME is the type name. Set the
2918 TYPE_FLOATFORMAT from FLOATFORMATS. */
2919
2920struct type *
2921init_float_type (struct objfile *objfile,
2922 int bit, const char *name,
2923 const struct floatformat **floatformats)
2924{
0db7851f
UW
2925 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2926 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
19f392bc
UW
2927 struct type *t;
2928
0db7851f 2929 bit = verify_floatformat (bit, fmt);
77b7c781 2930 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
0db7851f 2931 TYPE_FLOATFORMAT (t) = fmt;
19f392bc
UW
2932
2933 return t;
2934}
2935
2936/* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2937 BIT is the type size in bits. NAME is the type name. */
2938
2939struct type *
2940init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2941{
2942 struct type *t;
2943
77b7c781 2944 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
19f392bc
UW
2945 return t;
2946}
2947
2948/* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2949 NAME is the type name. TARGET_TYPE is the component float type. */
2950
2951struct type *
2952init_complex_type (struct objfile *objfile,
2953 const char *name, struct type *target_type)
2954{
2955 struct type *t;
2956
2957 t = init_type (objfile, TYPE_CODE_COMPLEX,
77b7c781 2958 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
19f392bc
UW
2959 TYPE_TARGET_TYPE (t) = target_type;
2960 return t;
2961}
2962
2963/* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
2964 BIT is the pointer type size in bits. NAME is the type name.
2965 TARGET_TYPE is the pointer target type. Always sets the pointer type's
2966 TYPE_UNSIGNED flag. */
2967
2968struct type *
2969init_pointer_type (struct objfile *objfile,
2970 int bit, const char *name, struct type *target_type)
2971{
2972 struct type *t;
2973
77b7c781 2974 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
19f392bc
UW
2975 TYPE_TARGET_TYPE (t) = target_type;
2976 TYPE_UNSIGNED (t) = 1;
2977 return t;
2978}
2979
2b4424c3
TT
2980/* See gdbtypes.h. */
2981
2982unsigned
2983type_raw_align (struct type *type)
2984{
2985 if (type->align_log2 != 0)
2986 return 1 << (type->align_log2 - 1);
2987 return 0;
2988}
2989
2990/* See gdbtypes.h. */
2991
2992unsigned
2993type_align (struct type *type)
2994{
5561fc30 2995 /* Check alignment provided in the debug information. */
2b4424c3
TT
2996 unsigned raw_align = type_raw_align (type);
2997 if (raw_align != 0)
2998 return raw_align;
2999
5561fc30
AB
3000 /* Allow the architecture to provide an alignment. */
3001 struct gdbarch *arch = get_type_arch (type);
3002 ULONGEST align = gdbarch_type_align (arch, type);
3003 if (align != 0)
3004 return align;
3005
2b4424c3
TT
3006 switch (TYPE_CODE (type))
3007 {
3008 case TYPE_CODE_PTR:
3009 case TYPE_CODE_FUNC:
3010 case TYPE_CODE_FLAGS:
3011 case TYPE_CODE_INT:
75ba10dc 3012 case TYPE_CODE_RANGE:
2b4424c3
TT
3013 case TYPE_CODE_FLT:
3014 case TYPE_CODE_ENUM:
3015 case TYPE_CODE_REF:
3016 case TYPE_CODE_RVALUE_REF:
3017 case TYPE_CODE_CHAR:
3018 case TYPE_CODE_BOOL:
3019 case TYPE_CODE_DECFLOAT:
70cd633e
AB
3020 case TYPE_CODE_METHODPTR:
3021 case TYPE_CODE_MEMBERPTR:
5561fc30 3022 align = type_length_units (check_typedef (type));
2b4424c3
TT
3023 break;
3024
3025 case TYPE_CODE_ARRAY:
3026 case TYPE_CODE_COMPLEX:
3027 case TYPE_CODE_TYPEDEF:
3028 align = type_align (TYPE_TARGET_TYPE (type));
3029 break;
3030
3031 case TYPE_CODE_STRUCT:
3032 case TYPE_CODE_UNION:
3033 {
3034 if (TYPE_NFIELDS (type) == 0)
3035 {
3036 /* An empty struct has alignment 1. */
3037 align = 1;
3038 break;
3039 }
3040 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3041 {
bf9a735e 3042 if (!field_is_static (&TYPE_FIELD (type, i)))
2b4424c3 3043 {
bf9a735e
AB
3044 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3045 if (f_align == 0)
3046 {
3047 /* Don't pretend we know something we don't. */
3048 align = 0;
3049 break;
3050 }
3051 if (f_align > align)
3052 align = f_align;
2b4424c3 3053 }
2b4424c3
TT
3054 }
3055 }
3056 break;
3057
3058 case TYPE_CODE_SET:
2b4424c3
TT
3059 case TYPE_CODE_STRING:
3060 /* Not sure what to do here, and these can't appear in C or C++
3061 anyway. */
3062 break;
3063
2b4424c3
TT
3064 case TYPE_CODE_VOID:
3065 align = 1;
3066 break;
3067
3068 case TYPE_CODE_ERROR:
3069 case TYPE_CODE_METHOD:
3070 default:
3071 break;
3072 }
3073
3074 if ((align & (align - 1)) != 0)
3075 {
3076 /* Not a power of 2, so pass. */
3077 align = 0;
3078 }
3079
3080 return align;
3081}
3082
3083/* See gdbtypes.h. */
3084
3085bool
3086set_type_align (struct type *type, ULONGEST align)
3087{
3088 /* Must be a power of 2. Zero is ok. */
3089 gdb_assert ((align & (align - 1)) == 0);
3090
3091 unsigned result = 0;
3092 while (align != 0)
3093 {
3094 ++result;
3095 align >>= 1;
3096 }
3097
3098 if (result >= (1 << TYPE_ALIGN_BITS))
3099 return false;
3100
3101 type->align_log2 = result;
3102 return true;
3103}
3104
5212577a
DE
3105\f
3106/* Queries on types. */
c906108c 3107
c906108c 3108int
fba45db2 3109can_dereference (struct type *t)
c906108c 3110{
7ba81444
MS
3111 /* FIXME: Should we return true for references as well as
3112 pointers? */
f168693b 3113 t = check_typedef (t);
c906108c
SS
3114 return
3115 (t != NULL
3116 && TYPE_CODE (t) == TYPE_CODE_PTR
3117 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3118}
3119
adf40b2e 3120int
fba45db2 3121is_integral_type (struct type *t)
adf40b2e 3122{
f168693b 3123 t = check_typedef (t);
adf40b2e
JM
3124 return
3125 ((t != NULL)
d4f3574e
SS
3126 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3127 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 3128 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
3129 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3130 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3131 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
3132}
3133
70100014
UW
3134int
3135is_floating_type (struct type *t)
3136{
3137 t = check_typedef (t);
3138 return
3139 ((t != NULL)
3140 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3141 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3142}
3143
e09342b5
TJB
3144/* Return true if TYPE is scalar. */
3145
220475ed 3146int
e09342b5
TJB
3147is_scalar_type (struct type *type)
3148{
f168693b 3149 type = check_typedef (type);
e09342b5
TJB
3150
3151 switch (TYPE_CODE (type))
3152 {
3153 case TYPE_CODE_ARRAY:
3154 case TYPE_CODE_STRUCT:
3155 case TYPE_CODE_UNION:
3156 case TYPE_CODE_SET:
3157 case TYPE_CODE_STRING:
e09342b5
TJB
3158 return 0;
3159 default:
3160 return 1;
3161 }
3162}
3163
3164/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
3165 the memory layout of a scalar type. E.g., an array or struct with only
3166 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
3167
3168int
3169is_scalar_type_recursive (struct type *t)
3170{
f168693b 3171 t = check_typedef (t);
e09342b5
TJB
3172
3173 if (is_scalar_type (t))
3174 return 1;
3175 /* Are we dealing with an array or string of known dimensions? */
3176 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3177 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3178 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3179 {
3180 LONGEST low_bound, high_bound;
3181 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3182
3183 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3184
3185 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3186 }
3187 /* Are we dealing with a struct with one element? */
3188 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3189 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3190 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3191 {
3192 int i, n = TYPE_NFIELDS (t);
3193
3194 /* If all elements of the union are scalar, then the union is scalar. */
3195 for (i = 0; i < n; i++)
3196 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3197 return 0;
3198
3199 return 1;
3200 }
3201
3202 return 0;
3203}
3204
6c659fc2
SC
3205/* Return true is T is a class or a union. False otherwise. */
3206
3207int
3208class_or_union_p (const struct type *t)
3209{
3210 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3211 || TYPE_CODE (t) == TYPE_CODE_UNION);
3212}
3213
4e8f195d
TT
3214/* A helper function which returns true if types A and B represent the
3215 "same" class type. This is true if the types have the same main
3216 type, or the same name. */
3217
3218int
3219class_types_same_p (const struct type *a, const struct type *b)
3220{
3221 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3222 || (TYPE_NAME (a) && TYPE_NAME (b)
3223 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3224}
3225
a9d5ef47
SW
3226/* If BASE is an ancestor of DCLASS return the distance between them.
3227 otherwise return -1;
3228 eg:
3229
3230 class A {};
3231 class B: public A {};
3232 class C: public B {};
3233 class D: C {};
3234
3235 distance_to_ancestor (A, A, 0) = 0
3236 distance_to_ancestor (A, B, 0) = 1
3237 distance_to_ancestor (A, C, 0) = 2
3238 distance_to_ancestor (A, D, 0) = 3
3239
3240 If PUBLIC is 1 then only public ancestors are considered,
3241 and the function returns the distance only if BASE is a public ancestor
3242 of DCLASS.
3243 Eg:
3244
0963b4bd 3245 distance_to_ancestor (A, D, 1) = -1. */
c906108c 3246
0526b37a 3247static int
fe978cb0 3248distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
c906108c
SS
3249{
3250 int i;
a9d5ef47 3251 int d;
c5aa993b 3252
f168693b
SM
3253 base = check_typedef (base);
3254 dclass = check_typedef (dclass);
c906108c 3255
4e8f195d 3256 if (class_types_same_p (base, dclass))
a9d5ef47 3257 return 0;
c906108c
SS
3258
3259 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 3260 {
fe978cb0 3261 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
0526b37a
SW
3262 continue;
3263
fe978cb0 3264 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
a9d5ef47
SW
3265 if (d >= 0)
3266 return 1 + d;
4e8f195d 3267 }
c906108c 3268
a9d5ef47 3269 return -1;
c906108c 3270}
4e8f195d 3271
0526b37a
SW
3272/* Check whether BASE is an ancestor or base class or DCLASS
3273 Return 1 if so, and 0 if not.
3274 Note: If BASE and DCLASS are of the same type, this function
3275 will return 1. So for some class A, is_ancestor (A, A) will
3276 return 1. */
3277
3278int
3279is_ancestor (struct type *base, struct type *dclass)
3280{
a9d5ef47 3281 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
3282}
3283
4e8f195d
TT
3284/* Like is_ancestor, but only returns true when BASE is a public
3285 ancestor of DCLASS. */
3286
3287int
3288is_public_ancestor (struct type *base, struct type *dclass)
3289{
a9d5ef47 3290 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
3291}
3292
3293/* A helper function for is_unique_ancestor. */
3294
3295static int
3296is_unique_ancestor_worker (struct type *base, struct type *dclass,
3297 int *offset,
8af8e3bc
PA
3298 const gdb_byte *valaddr, int embedded_offset,
3299 CORE_ADDR address, struct value *val)
4e8f195d
TT
3300{
3301 int i, count = 0;
3302
f168693b
SM
3303 base = check_typedef (base);
3304 dclass = check_typedef (dclass);
4e8f195d
TT
3305
3306 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3307 {
8af8e3bc
PA
3308 struct type *iter;
3309 int this_offset;
4e8f195d 3310
8af8e3bc
PA
3311 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3312
3313 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3314 address, val);
4e8f195d
TT
3315
3316 if (class_types_same_p (base, iter))
3317 {
3318 /* If this is the first subclass, set *OFFSET and set count
3319 to 1. Otherwise, if this is at the same offset as
3320 previous instances, do nothing. Otherwise, increment
3321 count. */
3322 if (*offset == -1)
3323 {
3324 *offset = this_offset;
3325 count = 1;
3326 }
3327 else if (this_offset == *offset)
3328 {
3329 /* Nothing. */
3330 }
3331 else
3332 ++count;
3333 }
3334 else
3335 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
3336 valaddr,
3337 embedded_offset + this_offset,
3338 address, val);
4e8f195d
TT
3339 }
3340
3341 return count;
3342}
3343
3344/* Like is_ancestor, but only returns true if BASE is a unique base
3345 class of the type of VAL. */
3346
3347int
3348is_unique_ancestor (struct type *base, struct value *val)
3349{
3350 int offset = -1;
3351
3352 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
3353 value_contents_for_printing (val),
3354 value_embedded_offset (val),
3355 value_address (val), val) == 1;
4e8f195d
TT
3356}
3357
c906108c 3358\f
5212577a 3359/* Overload resolution. */
c906108c 3360
6403aeea
SW
3361/* Return the sum of the rank of A with the rank of B. */
3362
3363struct rank
3364sum_ranks (struct rank a, struct rank b)
3365{
3366 struct rank c;
3367 c.rank = a.rank + b.rank;
a9d5ef47 3368 c.subrank = a.subrank + b.subrank;
6403aeea
SW
3369 return c;
3370}
3371
3372/* Compare rank A and B and return:
3373 0 if a = b
3374 1 if a is better than b
3375 -1 if b is better than a. */
3376
3377int
3378compare_ranks (struct rank a, struct rank b)
3379{
3380 if (a.rank == b.rank)
a9d5ef47
SW
3381 {
3382 if (a.subrank == b.subrank)
3383 return 0;
3384 if (a.subrank < b.subrank)
3385 return 1;
3386 if (a.subrank > b.subrank)
3387 return -1;
3388 }
6403aeea
SW
3389
3390 if (a.rank < b.rank)
3391 return 1;
3392
0963b4bd 3393 /* a.rank > b.rank */
6403aeea
SW
3394 return -1;
3395}
c5aa993b 3396
0963b4bd 3397/* Functions for overload resolution begin here. */
c906108c
SS
3398
3399/* Compare two badness vectors A and B and return the result.
7ba81444
MS
3400 0 => A and B are identical
3401 1 => A and B are incomparable
3402 2 => A is better than B
3403 3 => A is worse than B */
c906108c
SS
3404
3405int
82ceee50 3406compare_badness (const badness_vector &a, const badness_vector &b)
c906108c
SS
3407{
3408 int i;
3409 int tmp;
c5aa993b
JM
3410 short found_pos = 0; /* any positives in c? */
3411 short found_neg = 0; /* any negatives in c? */
3412
82ceee50
PA
3413 /* differing sizes => incomparable */
3414 if (a.size () != b.size ())
c906108c
SS
3415 return 1;
3416
c5aa993b 3417 /* Subtract b from a */
82ceee50 3418 for (i = 0; i < a.size (); i++)
c906108c 3419 {
82ceee50 3420 tmp = compare_ranks (b[i], a[i]);
c906108c 3421 if (tmp > 0)
c5aa993b 3422 found_pos = 1;
c906108c 3423 else if (tmp < 0)
c5aa993b 3424 found_neg = 1;
c906108c
SS
3425 }
3426
3427 if (found_pos)
3428 {
3429 if (found_neg)
c5aa993b 3430 return 1; /* incomparable */
c906108c 3431 else
c5aa993b 3432 return 3; /* A > B */
c906108c 3433 }
c5aa993b
JM
3434 else
3435 /* no positives */
c906108c
SS
3436 {
3437 if (found_neg)
c5aa993b 3438 return 2; /* A < B */
c906108c 3439 else
c5aa993b 3440 return 0; /* A == B */
c906108c
SS
3441 }
3442}
3443
6b1747cd 3444/* Rank a function by comparing its parameter types (PARMS), to the
82ceee50
PA
3445 types of an argument list (ARGS). Return the badness vector. This
3446 has ARGS.size() + 1 entries. */
c906108c 3447
82ceee50 3448badness_vector
6b1747cd
PA
3449rank_function (gdb::array_view<type *> parms,
3450 gdb::array_view<value *> args)
c906108c 3451{
82ceee50
PA
3452 /* add 1 for the length-match rank. */
3453 badness_vector bv;
3454 bv.reserve (1 + args.size ());
c906108c
SS
3455
3456 /* First compare the lengths of the supplied lists.
7ba81444 3457 If there is a mismatch, set it to a high value. */
c5aa993b 3458
c906108c 3459 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
3460 arguments and ellipsis parameter lists, we should consider those
3461 and rank the length-match more finely. */
c906108c 3462
82ceee50
PA
3463 bv.push_back ((args.size () != parms.size ())
3464 ? LENGTH_MISMATCH_BADNESS
3465 : EXACT_MATCH_BADNESS);
c906108c 3466
0963b4bd 3467 /* Now rank all the parameters of the candidate function. */
82ceee50
PA
3468 size_t min_len = std::min (parms.size (), args.size ());
3469
3470 for (size_t i = 0; i < min_len; i++)
3471 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3472 args[i]));
c906108c 3473
0963b4bd 3474 /* If more arguments than parameters, add dummy entries. */
82ceee50
PA
3475 for (size_t i = min_len; i < args.size (); i++)
3476 bv.push_back (TOO_FEW_PARAMS_BADNESS);
c906108c
SS
3477
3478 return bv;
3479}
3480
973ccf8b
DJ
3481/* Compare the names of two integer types, assuming that any sign
3482 qualifiers have been checked already. We do it this way because
3483 there may be an "int" in the name of one of the types. */
3484
3485static int
3486integer_types_same_name_p (const char *first, const char *second)
3487{
3488 int first_p, second_p;
3489
7ba81444
MS
3490 /* If both are shorts, return 1; if neither is a short, keep
3491 checking. */
973ccf8b
DJ
3492 first_p = (strstr (first, "short") != NULL);
3493 second_p = (strstr (second, "short") != NULL);
3494 if (first_p && second_p)
3495 return 1;
3496 if (first_p || second_p)
3497 return 0;
3498
3499 /* Likewise for long. */
3500 first_p = (strstr (first, "long") != NULL);
3501 second_p = (strstr (second, "long") != NULL);
3502 if (first_p && second_p)
3503 return 1;
3504 if (first_p || second_p)
3505 return 0;
3506
3507 /* Likewise for char. */
3508 first_p = (strstr (first, "char") != NULL);
3509 second_p = (strstr (second, "char") != NULL);
3510 if (first_p && second_p)
3511 return 1;
3512 if (first_p || second_p)
3513 return 0;
3514
3515 /* They must both be ints. */
3516 return 1;
3517}
3518
894882e3
TT
3519/* Compares type A to type B. Returns true if they represent the same
3520 type, false otherwise. */
7062b0a0 3521
894882e3 3522bool
7062b0a0
SW
3523types_equal (struct type *a, struct type *b)
3524{
3525 /* Identical type pointers. */
3526 /* However, this still doesn't catch all cases of same type for b
3527 and a. The reason is that builtin types are different from
3528 the same ones constructed from the object. */
3529 if (a == b)
894882e3 3530 return true;
7062b0a0
SW
3531
3532 /* Resolve typedefs */
3533 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3534 a = check_typedef (a);
3535 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3536 b = check_typedef (b);
3537
3538 /* If after resolving typedefs a and b are not of the same type
3539 code then they are not equal. */
3540 if (TYPE_CODE (a) != TYPE_CODE (b))
894882e3 3541 return false;
7062b0a0
SW
3542
3543 /* If a and b are both pointers types or both reference types then
3544 they are equal of the same type iff the objects they refer to are
3545 of the same type. */
3546 if (TYPE_CODE (a) == TYPE_CODE_PTR
3547 || TYPE_CODE (a) == TYPE_CODE_REF)
3548 return types_equal (TYPE_TARGET_TYPE (a),
3549 TYPE_TARGET_TYPE (b));
3550
0963b4bd 3551 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
3552 are exactly the same. This happens when we generate method
3553 stubs. The types won't point to the same address, but they
0963b4bd 3554 really are the same. */
7062b0a0
SW
3555
3556 if (TYPE_NAME (a) && TYPE_NAME (b)
3557 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
894882e3 3558 return true;
7062b0a0
SW
3559
3560 /* Check if identical after resolving typedefs. */
3561 if (a == b)
894882e3 3562 return true;
7062b0a0 3563
9ce98649
TT
3564 /* Two function types are equal if their argument and return types
3565 are equal. */
3566 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3567 {
3568 int i;
3569
3570 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
894882e3 3571 return false;
9ce98649
TT
3572
3573 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
894882e3 3574 return false;
9ce98649
TT
3575
3576 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3577 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
894882e3 3578 return false;
9ce98649 3579
894882e3 3580 return true;
9ce98649
TT
3581 }
3582
894882e3 3583 return false;
7062b0a0 3584}
ca092b61
DE
3585\f
3586/* Deep comparison of types. */
3587
3588/* An entry in the type-equality bcache. */
3589
894882e3 3590struct type_equality_entry
ca092b61 3591{
894882e3
TT
3592 type_equality_entry (struct type *t1, struct type *t2)
3593 : type1 (t1),
3594 type2 (t2)
3595 {
3596 }
ca092b61 3597
894882e3
TT
3598 struct type *type1, *type2;
3599};
ca092b61 3600
894882e3
TT
3601/* A helper function to compare two strings. Returns true if they are
3602 the same, false otherwise. Handles NULLs properly. */
ca092b61 3603
894882e3 3604static bool
ca092b61
DE
3605compare_maybe_null_strings (const char *s, const char *t)
3606{
894882e3
TT
3607 if (s == NULL || t == NULL)
3608 return s == t;
ca092b61
DE
3609 return strcmp (s, t) == 0;
3610}
3611
3612/* A helper function for check_types_worklist that checks two types for
894882e3
TT
3613 "deep" equality. Returns true if the types are considered the
3614 same, false otherwise. */
ca092b61 3615
894882e3 3616static bool
ca092b61 3617check_types_equal (struct type *type1, struct type *type2,
894882e3 3618 std::vector<type_equality_entry> *worklist)
ca092b61 3619{
f168693b
SM
3620 type1 = check_typedef (type1);
3621 type2 = check_typedef (type2);
ca092b61
DE
3622
3623 if (type1 == type2)
894882e3 3624 return true;
ca092b61
DE
3625
3626 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3627 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3628 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3629 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3630 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3631 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3632 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3633 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3634 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
894882e3 3635 return false;
ca092b61 3636
e86ca25f 3637 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
894882e3 3638 return false;
ca092b61 3639 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
894882e3 3640 return false;
ca092b61
DE
3641
3642 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3643 {
0f59d5fc 3644 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
894882e3 3645 return false;
ca092b61
DE
3646 }
3647 else
3648 {
3649 int i;
3650
3651 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3652 {
3653 const struct field *field1 = &TYPE_FIELD (type1, i);
3654 const struct field *field2 = &TYPE_FIELD (type2, i);
ca092b61
DE
3655
3656 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3657 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3658 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
894882e3 3659 return false;
ca092b61
DE
3660 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3661 FIELD_NAME (*field2)))
894882e3 3662 return false;
ca092b61
DE
3663 switch (FIELD_LOC_KIND (*field1))
3664 {
3665 case FIELD_LOC_KIND_BITPOS:
3666 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
894882e3 3667 return false;
ca092b61
DE
3668 break;
3669 case FIELD_LOC_KIND_ENUMVAL:
3670 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
894882e3 3671 return false;
ca092b61
DE
3672 break;
3673 case FIELD_LOC_KIND_PHYSADDR:
3674 if (FIELD_STATIC_PHYSADDR (*field1)
3675 != FIELD_STATIC_PHYSADDR (*field2))
894882e3 3676 return false;
ca092b61
DE
3677 break;
3678 case FIELD_LOC_KIND_PHYSNAME:
3679 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3680 FIELD_STATIC_PHYSNAME (*field2)))
894882e3 3681 return false;
ca092b61
DE
3682 break;
3683 case FIELD_LOC_KIND_DWARF_BLOCK:
3684 {
3685 struct dwarf2_locexpr_baton *block1, *block2;
3686
3687 block1 = FIELD_DWARF_BLOCK (*field1);
3688 block2 = FIELD_DWARF_BLOCK (*field2);
3689 if (block1->per_cu != block2->per_cu
3690 || block1->size != block2->size
3691 || memcmp (block1->data, block2->data, block1->size) != 0)
894882e3 3692 return false;
ca092b61
DE
3693 }
3694 break;
3695 default:
3696 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3697 "%d by check_types_equal"),
3698 FIELD_LOC_KIND (*field1));
3699 }
3700
894882e3 3701 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
ca092b61
DE
3702 }
3703 }
3704
3705 if (TYPE_TARGET_TYPE (type1) != NULL)
3706 {
ca092b61 3707 if (TYPE_TARGET_TYPE (type2) == NULL)
894882e3 3708 return false;
ca092b61 3709
894882e3
TT
3710 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
3711 TYPE_TARGET_TYPE (type2));
ca092b61
DE
3712 }
3713 else if (TYPE_TARGET_TYPE (type2) != NULL)
894882e3 3714 return false;
ca092b61 3715
894882e3 3716 return true;
ca092b61
DE
3717}
3718
894882e3
TT
3719/* Check types on a worklist for equality. Returns false if any pair
3720 is not equal, true if they are all considered equal. */
ca092b61 3721
894882e3
TT
3722static bool
3723check_types_worklist (std::vector<type_equality_entry> *worklist,
ca092b61
DE
3724 struct bcache *cache)
3725{
894882e3 3726 while (!worklist->empty ())
ca092b61 3727 {
ca092b61
DE
3728 int added;
3729
894882e3
TT
3730 struct type_equality_entry entry = std::move (worklist->back ());
3731 worklist->pop_back ();
ca092b61
DE
3732
3733 /* If the type pair has already been visited, we know it is
3734 ok. */
25629dfd 3735 cache->insert (&entry, sizeof (entry), &added);
ca092b61
DE
3736 if (!added)
3737 continue;
3738
894882e3
TT
3739 if (!check_types_equal (entry.type1, entry.type2, worklist))
3740 return false;
ca092b61 3741 }
7062b0a0 3742
894882e3 3743 return true;
ca092b61
DE
3744}
3745
894882e3
TT
3746/* Return true if types TYPE1 and TYPE2 are equal, as determined by a
3747 "deep comparison". Otherwise return false. */
ca092b61 3748
894882e3 3749bool
ca092b61
DE
3750types_deeply_equal (struct type *type1, struct type *type2)
3751{
894882e3 3752 std::vector<type_equality_entry> worklist;
ca092b61
DE
3753
3754 gdb_assert (type1 != NULL && type2 != NULL);
3755
3756 /* Early exit for the simple case. */
3757 if (type1 == type2)
894882e3 3758 return true;
ca092b61 3759
25629dfd 3760 struct bcache cache (nullptr, nullptr);
894882e3 3761 worklist.emplace_back (type1, type2);
25629dfd 3762 return check_types_worklist (&worklist, &cache);
ca092b61 3763}
3f2f83dd
KB
3764
3765/* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3766 Otherwise return one. */
3767
3768int
3769type_not_allocated (const struct type *type)
3770{
3771 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3772
3773 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3774 && !TYPE_DYN_PROP_ADDR (prop));
3775}
3776
3777/* Associated status of type TYPE. Return zero if type TYPE is associated.
3778 Otherwise return one. */
3779
3780int
3781type_not_associated (const struct type *type)
3782{
3783 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3784
3785 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3786 && !TYPE_DYN_PROP_ADDR (prop));
3787}
9293fc63
SM
3788
3789/* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
3790
3791static struct rank
3792rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
3793{
3794 struct rank rank = {0,0};
3795
3796 switch (TYPE_CODE (arg))
3797 {
3798 case TYPE_CODE_PTR:
3799
3800 /* Allowed pointer conversions are:
3801 (a) pointer to void-pointer conversion. */
3802 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3803 return VOID_PTR_CONVERSION_BADNESS;
3804
3805 /* (b) pointer to ancestor-pointer conversion. */
3806 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3807 TYPE_TARGET_TYPE (arg),
3808 0);
3809 if (rank.subrank >= 0)
3810 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3811
3812 return INCOMPATIBLE_TYPE_BADNESS;
3813 case TYPE_CODE_ARRAY:
3814 {
3815 struct type *t1 = TYPE_TARGET_TYPE (parm);
3816 struct type *t2 = TYPE_TARGET_TYPE (arg);
3817
3818 if (types_equal (t1, t2))
3819 {
3820 /* Make sure they are CV equal. */
3821 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3822 rank.subrank |= CV_CONVERSION_CONST;
3823 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3824 rank.subrank |= CV_CONVERSION_VOLATILE;
3825 if (rank.subrank != 0)
3826 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3827 return EXACT_MATCH_BADNESS;
3828 }
3829 return INCOMPATIBLE_TYPE_BADNESS;
3830 }
3831 case TYPE_CODE_FUNC:
3832 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3833 case TYPE_CODE_INT:
3834 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3835 {
3836 if (value_as_long (value) == 0)
3837 {
3838 /* Null pointer conversion: allow it to be cast to a pointer.
3839 [4.10.1 of C++ standard draft n3290] */
3840 return NULL_POINTER_CONVERSION_BADNESS;
3841 }
3842 else
3843 {
3844 /* If type checking is disabled, allow the conversion. */
3845 if (!strict_type_checking)
3846 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3847 }
3848 }
3849 /* fall through */
3850 case TYPE_CODE_ENUM:
3851 case TYPE_CODE_FLAGS:
3852 case TYPE_CODE_CHAR:
3853 case TYPE_CODE_RANGE:
3854 case TYPE_CODE_BOOL:
3855 default:
3856 return INCOMPATIBLE_TYPE_BADNESS;
3857 }
3858}
3859
b9f4512f
SM
3860/* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
3861
3862static struct rank
3863rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
3864{
3865 switch (TYPE_CODE (arg))
3866 {
3867 case TYPE_CODE_PTR:
3868 case TYPE_CODE_ARRAY:
3869 return rank_one_type (TYPE_TARGET_TYPE (parm),
3870 TYPE_TARGET_TYPE (arg), NULL);
3871 default:
3872 return INCOMPATIBLE_TYPE_BADNESS;
3873 }
3874}
3875
f1f832d6
SM
3876/* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
3877
3878static struct rank
3879rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
3880{
3881 switch (TYPE_CODE (arg))
3882 {
3883 case TYPE_CODE_PTR: /* funcptr -> func */
3884 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3885 default:
3886 return INCOMPATIBLE_TYPE_BADNESS;
3887 }
3888}
3889
34910087
SM
3890/* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
3891
3892static struct rank
3893rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
3894{
3895 switch (TYPE_CODE (arg))
3896 {
3897 case TYPE_CODE_INT:
3898 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3899 {
3900 /* Deal with signed, unsigned, and plain chars and
3901 signed and unsigned ints. */
3902 if (TYPE_NOSIGN (parm))
3903 {
3904 /* This case only for character types. */
3905 if (TYPE_NOSIGN (arg))
3906 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3907 else /* signed/unsigned char -> plain char */
3908 return INTEGER_CONVERSION_BADNESS;
3909 }
3910 else if (TYPE_UNSIGNED (parm))
3911 {
3912 if (TYPE_UNSIGNED (arg))
3913 {
3914 /* unsigned int -> unsigned int, or
3915 unsigned long -> unsigned long */
3916 if (integer_types_same_name_p (TYPE_NAME (parm),
3917 TYPE_NAME (arg)))
3918 return EXACT_MATCH_BADNESS;
3919 else if (integer_types_same_name_p (TYPE_NAME (arg),
3920 "int")
3921 && integer_types_same_name_p (TYPE_NAME (parm),
3922 "long"))
3923 /* unsigned int -> unsigned long */
3924 return INTEGER_PROMOTION_BADNESS;
3925 else
3926 /* unsigned long -> unsigned int */
3927 return INTEGER_CONVERSION_BADNESS;
3928 }
3929 else
3930 {
3931 if (integer_types_same_name_p (TYPE_NAME (arg),
3932 "long")
3933 && integer_types_same_name_p (TYPE_NAME (parm),
3934 "int"))
3935 /* signed long -> unsigned int */
3936 return INTEGER_CONVERSION_BADNESS;
3937 else
3938 /* signed int/long -> unsigned int/long */
3939 return INTEGER_CONVERSION_BADNESS;
3940 }
3941 }
3942 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3943 {
3944 if (integer_types_same_name_p (TYPE_NAME (parm),
3945 TYPE_NAME (arg)))
3946 return EXACT_MATCH_BADNESS;
3947 else if (integer_types_same_name_p (TYPE_NAME (arg),
3948 "int")
3949 && integer_types_same_name_p (TYPE_NAME (parm),
3950 "long"))
3951 return INTEGER_PROMOTION_BADNESS;
3952 else
3953 return INTEGER_CONVERSION_BADNESS;
3954 }
3955 else
3956 return INTEGER_CONVERSION_BADNESS;
3957 }
3958 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3959 return INTEGER_PROMOTION_BADNESS;
3960 else
3961 return INTEGER_CONVERSION_BADNESS;
3962 case TYPE_CODE_ENUM:
3963 case TYPE_CODE_FLAGS:
3964 case TYPE_CODE_CHAR:
3965 case TYPE_CODE_RANGE:
3966 case TYPE_CODE_BOOL:
3967 if (TYPE_DECLARED_CLASS (arg))
3968 return INCOMPATIBLE_TYPE_BADNESS;
3969 return INTEGER_PROMOTION_BADNESS;
3970 case TYPE_CODE_FLT:
3971 return INT_FLOAT_CONVERSION_BADNESS;
3972 case TYPE_CODE_PTR:
3973 return NS_POINTER_CONVERSION_BADNESS;
3974 default:
3975 return INCOMPATIBLE_TYPE_BADNESS;
3976 }
3977}
3978
793cd1d2
SM
3979/* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
3980
3981static struct rank
3982rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
3983{
3984 switch (TYPE_CODE (arg))
3985 {
3986 case TYPE_CODE_INT:
3987 case TYPE_CODE_CHAR:
3988 case TYPE_CODE_RANGE:
3989 case TYPE_CODE_BOOL:
3990 case TYPE_CODE_ENUM:
3991 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3992 return INCOMPATIBLE_TYPE_BADNESS;
3993 return INTEGER_CONVERSION_BADNESS;
3994 case TYPE_CODE_FLT:
3995 return INT_FLOAT_CONVERSION_BADNESS;
3996 default:
3997 return INCOMPATIBLE_TYPE_BADNESS;
3998 }
3999}
4000
41ea4728
SM
4001/* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
4002
4003static struct rank
4004rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
4005{
4006 switch (TYPE_CODE (arg))
4007 {
4008 case TYPE_CODE_RANGE:
4009 case TYPE_CODE_BOOL:
4010 case TYPE_CODE_ENUM:
4011 if (TYPE_DECLARED_CLASS (arg))
4012 return INCOMPATIBLE_TYPE_BADNESS;
4013 return INTEGER_CONVERSION_BADNESS;
4014 case TYPE_CODE_FLT:
4015 return INT_FLOAT_CONVERSION_BADNESS;
4016 case TYPE_CODE_INT:
4017 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4018 return INTEGER_CONVERSION_BADNESS;
4019 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4020 return INTEGER_PROMOTION_BADNESS;
4021 /* fall through */
4022 case TYPE_CODE_CHAR:
4023 /* Deal with signed, unsigned, and plain chars for C++ and
4024 with int cases falling through from previous case. */
4025 if (TYPE_NOSIGN (parm))
4026 {
4027 if (TYPE_NOSIGN (arg))
4028 return EXACT_MATCH_BADNESS;
4029 else
4030 return INTEGER_CONVERSION_BADNESS;
4031 }
4032 else if (TYPE_UNSIGNED (parm))
4033 {
4034 if (TYPE_UNSIGNED (arg))
4035 return EXACT_MATCH_BADNESS;
4036 else
4037 return INTEGER_PROMOTION_BADNESS;
4038 }
4039 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4040 return EXACT_MATCH_BADNESS;
4041 else
4042 return INTEGER_CONVERSION_BADNESS;
4043 default:
4044 return INCOMPATIBLE_TYPE_BADNESS;
4045 }
4046}
4047
0dd322dc
SM
4048/* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4049
4050static struct rank
4051rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4052{
4053 switch (TYPE_CODE (arg))
4054 {
4055 case TYPE_CODE_INT:
4056 case TYPE_CODE_CHAR:
4057 case TYPE_CODE_RANGE:
4058 case TYPE_CODE_BOOL:
4059 case TYPE_CODE_ENUM:
4060 return INTEGER_CONVERSION_BADNESS;
4061 case TYPE_CODE_FLT:
4062 return INT_FLOAT_CONVERSION_BADNESS;
4063 default:
4064 return INCOMPATIBLE_TYPE_BADNESS;
4065 }
4066}
4067
2c509035
SM
4068/* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4069
4070static struct rank
4071rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4072{
4073 switch (TYPE_CODE (arg))
4074 {
4075 /* n3290 draft, section 4.12.1 (conv.bool):
4076
4077 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4078 pointer to member type can be converted to a prvalue of type
4079 bool. A zero value, null pointer value, or null member pointer
4080 value is converted to false; any other value is converted to
4081 true. A prvalue of type std::nullptr_t can be converted to a
4082 prvalue of type bool; the resulting value is false." */
4083 case TYPE_CODE_INT:
4084 case TYPE_CODE_CHAR:
4085 case TYPE_CODE_ENUM:
4086 case TYPE_CODE_FLT:
4087 case TYPE_CODE_MEMBERPTR:
4088 case TYPE_CODE_PTR:
4089 return BOOL_CONVERSION_BADNESS;
4090 case TYPE_CODE_RANGE:
4091 return INCOMPATIBLE_TYPE_BADNESS;
4092 case TYPE_CODE_BOOL:
4093 return EXACT_MATCH_BADNESS;
4094 default:
4095 return INCOMPATIBLE_TYPE_BADNESS;
4096 }
4097}
4098
c906108c
SS
4099/* Compare one type (PARM) for compatibility with another (ARG).
4100 * PARM is intended to be the parameter type of a function; and
4101 * ARG is the supplied argument's type. This function tests if
4102 * the latter can be converted to the former.
da096638 4103 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
4104 *
4105 * Return 0 if they are identical types;
4106 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
4107 * PARM is to ARG. The higher the return value, the worse the match.
4108 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 4109
6403aeea 4110struct rank
da096638 4111rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 4112{
a9d5ef47 4113 struct rank rank = {0,0};
7062b0a0 4114
c906108c
SS
4115 /* Resolve typedefs */
4116 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
4117 parm = check_typedef (parm);
4118 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
4119 arg = check_typedef (arg);
4120
e15c3eb4 4121 if (TYPE_IS_REFERENCE (parm) && value != NULL)
15c0a2a9 4122 {
e15c3eb4
KS
4123 if (VALUE_LVAL (value) == not_lval)
4124 {
4125 /* Rvalues should preferably bind to rvalue references or const
4126 lvalue references. */
4127 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4128 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4129 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4130 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4131 else
4132 return INCOMPATIBLE_TYPE_BADNESS;
4133 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4134 }
4135 else
4136 {
4137 /* Lvalues should prefer lvalue overloads. */
4138 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4139 {
4140 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4141 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4142 }
4143 }
15c0a2a9
AV
4144 }
4145
4146 if (types_equal (parm, arg))
15c0a2a9 4147 {
e15c3eb4
KS
4148 struct type *t1 = parm;
4149 struct type *t2 = arg;
15c0a2a9 4150
e15c3eb4
KS
4151 /* For pointers and references, compare target type. */
4152 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4153 {
4154 t1 = TYPE_TARGET_TYPE (parm);
4155 t2 = TYPE_TARGET_TYPE (arg);
4156 }
15c0a2a9 4157
e15c3eb4
KS
4158 /* Make sure they are CV equal, too. */
4159 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4160 rank.subrank |= CV_CONVERSION_CONST;
4161 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4162 rank.subrank |= CV_CONVERSION_VOLATILE;
4163 if (rank.subrank != 0)
4164 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4165 return EXACT_MATCH_BADNESS;
15c0a2a9
AV
4166 }
4167
db577aea 4168 /* See through references, since we can almost make non-references
7ba81444 4169 references. */
aa006118
AV
4170
4171 if (TYPE_IS_REFERENCE (arg))
da096638 4172 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
6403aeea 4173 REFERENCE_CONVERSION_BADNESS));
aa006118 4174 if (TYPE_IS_REFERENCE (parm))
da096638 4175 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
6403aeea 4176 REFERENCE_CONVERSION_BADNESS));
5d161b24 4177 if (overload_debug)
7ba81444
MS
4178 /* Debugging only. */
4179 fprintf_filtered (gdb_stderr,
4180 "------ Arg is %s [%d], parm is %s [%d]\n",
4181 TYPE_NAME (arg), TYPE_CODE (arg),
4182 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 4183
0963b4bd 4184 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
4185
4186 switch (TYPE_CODE (parm))
4187 {
c5aa993b 4188 case TYPE_CODE_PTR:
9293fc63 4189 return rank_one_type_parm_ptr (parm, arg, value);
c5aa993b 4190 case TYPE_CODE_ARRAY:
b9f4512f 4191 return rank_one_type_parm_array (parm, arg, value);
c5aa993b 4192 case TYPE_CODE_FUNC:
f1f832d6 4193 return rank_one_type_parm_func (parm, arg, value);
c5aa993b 4194 case TYPE_CODE_INT:
34910087 4195 return rank_one_type_parm_int (parm, arg, value);
c5aa993b 4196 case TYPE_CODE_ENUM:
793cd1d2 4197 return rank_one_type_parm_enum (parm, arg, value);
c5aa993b 4198 case TYPE_CODE_CHAR:
41ea4728 4199 return rank_one_type_parm_char (parm, arg, value);
c5aa993b 4200 case TYPE_CODE_RANGE:
0dd322dc 4201 return rank_one_type_parm_range (parm, arg, value);
c5aa993b 4202 case TYPE_CODE_BOOL:
2c509035 4203 return rank_one_type_parm_bool (parm, arg, value);
c5aa993b
JM
4204 case TYPE_CODE_FLT:
4205 switch (TYPE_CODE (arg))
4206 {
4207 case TYPE_CODE_FLT:
4208 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4209 return FLOAT_PROMOTION_BADNESS;
4210 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
6403aeea 4211 return EXACT_MATCH_BADNESS;
c5aa993b
JM
4212 else
4213 return FLOAT_CONVERSION_BADNESS;
4214 case TYPE_CODE_INT:
4215 case TYPE_CODE_BOOL:
4216 case TYPE_CODE_ENUM:
4217 case TYPE_CODE_RANGE:
4218 case TYPE_CODE_CHAR:
4219 return INT_FLOAT_CONVERSION_BADNESS;
4220 default:
4221 return INCOMPATIBLE_TYPE_BADNESS;
4222 }
4223 break;
4224 case TYPE_CODE_COMPLEX:
4225 switch (TYPE_CODE (arg))
7ba81444 4226 { /* Strictly not needed for C++, but... */
c5aa993b
JM
4227 case TYPE_CODE_FLT:
4228 return FLOAT_PROMOTION_BADNESS;
4229 case TYPE_CODE_COMPLEX:
6403aeea 4230 return EXACT_MATCH_BADNESS;
c5aa993b
JM
4231 default:
4232 return INCOMPATIBLE_TYPE_BADNESS;
4233 }
4234 break;
4235 case TYPE_CODE_STRUCT:
c5aa993b
JM
4236 switch (TYPE_CODE (arg))
4237 {
4238 case TYPE_CODE_STRUCT:
4239 /* Check for derivation */
a9d5ef47
SW
4240 rank.subrank = distance_to_ancestor (parm, arg, 0);
4241 if (rank.subrank >= 0)
4242 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
86a73007 4243 /* fall through */
c5aa993b
JM
4244 default:
4245 return INCOMPATIBLE_TYPE_BADNESS;
4246 }
4247 break;
4248 case TYPE_CODE_UNION:
4249 switch (TYPE_CODE (arg))
4250 {
4251 case TYPE_CODE_UNION:
4252 default:
4253 return INCOMPATIBLE_TYPE_BADNESS;
4254 }
4255 break;
0d5de010 4256 case TYPE_CODE_MEMBERPTR:
c5aa993b
JM
4257 switch (TYPE_CODE (arg))
4258 {
4259 default:
4260 return INCOMPATIBLE_TYPE_BADNESS;
4261 }
4262 break;
4263 case TYPE_CODE_METHOD:
4264 switch (TYPE_CODE (arg))
4265 {
4266
4267 default:
4268 return INCOMPATIBLE_TYPE_BADNESS;
4269 }
4270 break;
4271 case TYPE_CODE_REF:
4272 switch (TYPE_CODE (arg))
4273 {
4274
4275 default:
4276 return INCOMPATIBLE_TYPE_BADNESS;
4277 }
4278
4279 break;
4280 case TYPE_CODE_SET:
4281 switch (TYPE_CODE (arg))
4282 {
4283 /* Not in C++ */
4284 case TYPE_CODE_SET:
7ba81444 4285 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
da096638 4286 TYPE_FIELD_TYPE (arg, 0), NULL);
c5aa993b
JM
4287 default:
4288 return INCOMPATIBLE_TYPE_BADNESS;
4289 }
4290 break;
4291 case TYPE_CODE_VOID:
4292 default:
4293 return INCOMPATIBLE_TYPE_BADNESS;
4294 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
4295}
4296
0963b4bd 4297/* End of functions for overload resolution. */
5212577a
DE
4298\f
4299/* Routines to pretty-print types. */
c906108c 4300
c906108c 4301static void
fba45db2 4302print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
4303{
4304 int bitno;
4305
4306 for (bitno = 0; bitno < nbits; bitno++)
4307 {
4308 if ((bitno % 8) == 0)
4309 {
4310 puts_filtered (" ");
4311 }
4312 if (B_TST (bits, bitno))
a3f17187 4313 printf_filtered (("1"));
c906108c 4314 else
a3f17187 4315 printf_filtered (("0"));
c906108c
SS
4316 }
4317}
4318
ad2f7632 4319/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
4320 include it since we may get into a infinitely recursive
4321 situation. */
c906108c
SS
4322
4323static void
4c9e8482 4324print_args (struct field *args, int nargs, int spaces)
c906108c
SS
4325{
4326 if (args != NULL)
4327 {
ad2f7632
DJ
4328 int i;
4329
4330 for (i = 0; i < nargs; i++)
4c9e8482
DE
4331 {
4332 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4333 args[i].name != NULL ? args[i].name : "<NULL>");
4334 recursive_dump_type (args[i].type, spaces + 2);
4335 }
c906108c
SS
4336 }
4337}
4338
d6a843b5
JK
4339int
4340field_is_static (struct field *f)
4341{
4342 /* "static" fields are the fields whose location is not relative
4343 to the address of the enclosing struct. It would be nice to
4344 have a dedicated flag that would be set for static fields when
4345 the type is being created. But in practice, checking the field
254e6b9e 4346 loc_kind should give us an accurate answer. */
d6a843b5
JK
4347 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4348 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4349}
4350
c906108c 4351static void
fba45db2 4352dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
4353{
4354 int method_idx;
4355 int overload_idx;
4356 struct fn_field *f;
4357
4358 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 4359 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
4360 printf_filtered ("\n");
4361 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4362 {
4363 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4364 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4365 method_idx,
4366 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
4367 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4368 gdb_stdout);
a3f17187 4369 printf_filtered (_(") length %d\n"),
c906108c
SS
4370 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4371 for (overload_idx = 0;
4372 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4373 overload_idx++)
4374 {
4375 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4376 overload_idx,
4377 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
4378 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4379 gdb_stdout);
c906108c
SS
4380 printf_filtered (")\n");
4381 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
4382 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4383 gdb_stdout);
c906108c
SS
4384 printf_filtered ("\n");
4385
4386 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4387 spaces + 8 + 2);
4388
4389 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
4390 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4391 gdb_stdout);
c906108c 4392 printf_filtered ("\n");
4c9e8482
DE
4393 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4394 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4395 spaces + 8 + 2);
c906108c 4396 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
4397 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4398 gdb_stdout);
c906108c
SS
4399 printf_filtered ("\n");
4400
4401 printfi_filtered (spaces + 8, "is_const %d\n",
4402 TYPE_FN_FIELD_CONST (f, overload_idx));
4403 printfi_filtered (spaces + 8, "is_volatile %d\n",
4404 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4405 printfi_filtered (spaces + 8, "is_private %d\n",
4406 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4407 printfi_filtered (spaces + 8, "is_protected %d\n",
4408 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4409 printfi_filtered (spaces + 8, "is_stub %d\n",
4410 TYPE_FN_FIELD_STUB (f, overload_idx));
4411 printfi_filtered (spaces + 8, "voffset %u\n",
4412 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4413 }
4414 }
4415}
4416
4417static void
fba45db2 4418print_cplus_stuff (struct type *type, int spaces)
c906108c 4419{
ae6ae975
DE
4420 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4421 printfi_filtered (spaces, "vptr_basetype ");
4422 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4423 puts_filtered ("\n");
4424 if (TYPE_VPTR_BASETYPE (type) != NULL)
4425 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4426
c906108c
SS
4427 printfi_filtered (spaces, "n_baseclasses %d\n",
4428 TYPE_N_BASECLASSES (type));
4429 printfi_filtered (spaces, "nfn_fields %d\n",
4430 TYPE_NFN_FIELDS (type));
c906108c
SS
4431 if (TYPE_N_BASECLASSES (type) > 0)
4432 {
4433 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4434 TYPE_N_BASECLASSES (type));
7ba81444
MS
4435 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4436 gdb_stdout);
c906108c
SS
4437 printf_filtered (")");
4438
4439 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4440 TYPE_N_BASECLASSES (type));
4441 puts_filtered ("\n");
4442 }
4443 if (TYPE_NFIELDS (type) > 0)
4444 {
4445 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4446 {
7ba81444
MS
4447 printfi_filtered (spaces,
4448 "private_field_bits (%d bits at *",
c906108c 4449 TYPE_NFIELDS (type));
7ba81444
MS
4450 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4451 gdb_stdout);
c906108c
SS
4452 printf_filtered (")");
4453 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4454 TYPE_NFIELDS (type));
4455 puts_filtered ("\n");
4456 }
4457 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4458 {
7ba81444
MS
4459 printfi_filtered (spaces,
4460 "protected_field_bits (%d bits at *",
c906108c 4461 TYPE_NFIELDS (type));
7ba81444
MS
4462 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4463 gdb_stdout);
c906108c
SS
4464 printf_filtered (")");
4465 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4466 TYPE_NFIELDS (type));
4467 puts_filtered ("\n");
4468 }
4469 }
4470 if (TYPE_NFN_FIELDS (type) > 0)
4471 {
4472 dump_fn_fieldlists (type, spaces);
4473 }
4474}
4475
b4ba55a1
JB
4476/* Print the contents of the TYPE's type_specific union, assuming that
4477 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4478
4479static void
4480print_gnat_stuff (struct type *type, int spaces)
4481{
4482 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4483
8cd00c59
PMR
4484 if (descriptive_type == NULL)
4485 printfi_filtered (spaces + 2, "no descriptive type\n");
4486 else
4487 {
4488 printfi_filtered (spaces + 2, "descriptive type\n");
4489 recursive_dump_type (descriptive_type, spaces + 4);
4490 }
b4ba55a1
JB
4491}
4492
c906108c
SS
4493static struct obstack dont_print_type_obstack;
4494
4495void
fba45db2 4496recursive_dump_type (struct type *type, int spaces)
c906108c
SS
4497{
4498 int idx;
4499
4500 if (spaces == 0)
4501 obstack_begin (&dont_print_type_obstack, 0);
4502
4503 if (TYPE_NFIELDS (type) > 0
b4ba55a1 4504 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
4505 {
4506 struct type **first_dont_print
7ba81444 4507 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 4508
7ba81444
MS
4509 int i = (struct type **)
4510 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
4511
4512 while (--i >= 0)
4513 {
4514 if (type == first_dont_print[i])
4515 {
4516 printfi_filtered (spaces, "type node ");
d4f3574e 4517 gdb_print_host_address (type, gdb_stdout);
a3f17187 4518 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
4519 return;
4520 }
4521 }
4522
4523 obstack_ptr_grow (&dont_print_type_obstack, type);
4524 }
4525
4526 printfi_filtered (spaces, "type node ");
d4f3574e 4527 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
4528 printf_filtered ("\n");
4529 printfi_filtered (spaces, "name '%s' (",
4530 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 4531 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 4532 printf_filtered (")\n");
c906108c
SS
4533 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4534 switch (TYPE_CODE (type))
4535 {
c5aa993b
JM
4536 case TYPE_CODE_UNDEF:
4537 printf_filtered ("(TYPE_CODE_UNDEF)");
4538 break;
4539 case TYPE_CODE_PTR:
4540 printf_filtered ("(TYPE_CODE_PTR)");
4541 break;
4542 case TYPE_CODE_ARRAY:
4543 printf_filtered ("(TYPE_CODE_ARRAY)");
4544 break;
4545 case TYPE_CODE_STRUCT:
4546 printf_filtered ("(TYPE_CODE_STRUCT)");
4547 break;
4548 case TYPE_CODE_UNION:
4549 printf_filtered ("(TYPE_CODE_UNION)");
4550 break;
4551 case TYPE_CODE_ENUM:
4552 printf_filtered ("(TYPE_CODE_ENUM)");
4553 break;
4f2aea11
MK
4554 case TYPE_CODE_FLAGS:
4555 printf_filtered ("(TYPE_CODE_FLAGS)");
4556 break;
c5aa993b
JM
4557 case TYPE_CODE_FUNC:
4558 printf_filtered ("(TYPE_CODE_FUNC)");
4559 break;
4560 case TYPE_CODE_INT:
4561 printf_filtered ("(TYPE_CODE_INT)");
4562 break;
4563 case TYPE_CODE_FLT:
4564 printf_filtered ("(TYPE_CODE_FLT)");
4565 break;
4566 case TYPE_CODE_VOID:
4567 printf_filtered ("(TYPE_CODE_VOID)");
4568 break;
4569 case TYPE_CODE_SET:
4570 printf_filtered ("(TYPE_CODE_SET)");
4571 break;
4572 case TYPE_CODE_RANGE:
4573 printf_filtered ("(TYPE_CODE_RANGE)");
4574 break;
4575 case TYPE_CODE_STRING:
4576 printf_filtered ("(TYPE_CODE_STRING)");
4577 break;
4578 case TYPE_CODE_ERROR:
4579 printf_filtered ("(TYPE_CODE_ERROR)");
4580 break;
0d5de010
DJ
4581 case TYPE_CODE_MEMBERPTR:
4582 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4583 break;
4584 case TYPE_CODE_METHODPTR:
4585 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
4586 break;
4587 case TYPE_CODE_METHOD:
4588 printf_filtered ("(TYPE_CODE_METHOD)");
4589 break;
4590 case TYPE_CODE_REF:
4591 printf_filtered ("(TYPE_CODE_REF)");
4592 break;
4593 case TYPE_CODE_CHAR:
4594 printf_filtered ("(TYPE_CODE_CHAR)");
4595 break;
4596 case TYPE_CODE_BOOL:
4597 printf_filtered ("(TYPE_CODE_BOOL)");
4598 break;
e9e79dd9
FF
4599 case TYPE_CODE_COMPLEX:
4600 printf_filtered ("(TYPE_CODE_COMPLEX)");
4601 break;
c5aa993b
JM
4602 case TYPE_CODE_TYPEDEF:
4603 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4604 break;
5c4e30ca
DC
4605 case TYPE_CODE_NAMESPACE:
4606 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4607 break;
c5aa993b
JM
4608 default:
4609 printf_filtered ("(UNKNOWN TYPE CODE)");
4610 break;
c906108c
SS
4611 }
4612 puts_filtered ("\n");
4613 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9bb382b
UW
4614 if (TYPE_OBJFILE_OWNED (type))
4615 {
4616 printfi_filtered (spaces, "objfile ");
4617 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4618 }
4619 else
4620 {
4621 printfi_filtered (spaces, "gdbarch ");
4622 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4623 }
c906108c
SS
4624 printf_filtered ("\n");
4625 printfi_filtered (spaces, "target_type ");
d4f3574e 4626 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
4627 printf_filtered ("\n");
4628 if (TYPE_TARGET_TYPE (type) != NULL)
4629 {
4630 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4631 }
4632 printfi_filtered (spaces, "pointer_type ");
d4f3574e 4633 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
4634 printf_filtered ("\n");
4635 printfi_filtered (spaces, "reference_type ");
d4f3574e 4636 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 4637 printf_filtered ("\n");
2fdde8f8
DJ
4638 printfi_filtered (spaces, "type_chain ");
4639 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 4640 printf_filtered ("\n");
7ba81444
MS
4641 printfi_filtered (spaces, "instance_flags 0x%x",
4642 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
4643 if (TYPE_CONST (type))
4644 {
a9ff5f12 4645 puts_filtered (" TYPE_CONST");
2fdde8f8
DJ
4646 }
4647 if (TYPE_VOLATILE (type))
4648 {
a9ff5f12 4649 puts_filtered (" TYPE_VOLATILE");
2fdde8f8
DJ
4650 }
4651 if (TYPE_CODE_SPACE (type))
4652 {
a9ff5f12 4653 puts_filtered (" TYPE_CODE_SPACE");
2fdde8f8
DJ
4654 }
4655 if (TYPE_DATA_SPACE (type))
4656 {
a9ff5f12 4657 puts_filtered (" TYPE_DATA_SPACE");
2fdde8f8 4658 }
8b2dbe47
KB
4659 if (TYPE_ADDRESS_CLASS_1 (type))
4660 {
a9ff5f12 4661 puts_filtered (" TYPE_ADDRESS_CLASS_1");
8b2dbe47
KB
4662 }
4663 if (TYPE_ADDRESS_CLASS_2 (type))
4664 {
a9ff5f12 4665 puts_filtered (" TYPE_ADDRESS_CLASS_2");
8b2dbe47 4666 }
06d66ee9
TT
4667 if (TYPE_RESTRICT (type))
4668 {
a9ff5f12 4669 puts_filtered (" TYPE_RESTRICT");
06d66ee9 4670 }
a2c2acaf
MW
4671 if (TYPE_ATOMIC (type))
4672 {
a9ff5f12 4673 puts_filtered (" TYPE_ATOMIC");
a2c2acaf 4674 }
2fdde8f8 4675 puts_filtered ("\n");
876cecd0
TT
4676
4677 printfi_filtered (spaces, "flags");
762a036f 4678 if (TYPE_UNSIGNED (type))
c906108c 4679 {
a9ff5f12 4680 puts_filtered (" TYPE_UNSIGNED");
c906108c 4681 }
762a036f
FF
4682 if (TYPE_NOSIGN (type))
4683 {
a9ff5f12 4684 puts_filtered (" TYPE_NOSIGN");
762a036f
FF
4685 }
4686 if (TYPE_STUB (type))
c906108c 4687 {
a9ff5f12 4688 puts_filtered (" TYPE_STUB");
c906108c 4689 }
762a036f
FF
4690 if (TYPE_TARGET_STUB (type))
4691 {
a9ff5f12 4692 puts_filtered (" TYPE_TARGET_STUB");
762a036f 4693 }
762a036f
FF
4694 if (TYPE_PROTOTYPED (type))
4695 {
a9ff5f12 4696 puts_filtered (" TYPE_PROTOTYPED");
762a036f
FF
4697 }
4698 if (TYPE_INCOMPLETE (type))
4699 {
a9ff5f12 4700 puts_filtered (" TYPE_INCOMPLETE");
762a036f 4701 }
762a036f
FF
4702 if (TYPE_VARARGS (type))
4703 {
a9ff5f12 4704 puts_filtered (" TYPE_VARARGS");
762a036f 4705 }
f5f8a009
EZ
4706 /* This is used for things like AltiVec registers on ppc. Gcc emits
4707 an attribute for the array type, which tells whether or not we
4708 have a vector, instead of a regular array. */
4709 if (TYPE_VECTOR (type))
4710 {
a9ff5f12 4711 puts_filtered (" TYPE_VECTOR");
f5f8a009 4712 }
876cecd0
TT
4713 if (TYPE_FIXED_INSTANCE (type))
4714 {
4715 puts_filtered (" TYPE_FIXED_INSTANCE");
4716 }
4717 if (TYPE_STUB_SUPPORTED (type))
4718 {
4719 puts_filtered (" TYPE_STUB_SUPPORTED");
4720 }
4721 if (TYPE_NOTTEXT (type))
4722 {
4723 puts_filtered (" TYPE_NOTTEXT");
4724 }
c906108c
SS
4725 puts_filtered ("\n");
4726 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 4727 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
4728 puts_filtered ("\n");
4729 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4730 {
14e75d8e
JK
4731 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4732 printfi_filtered (spaces + 2,
4733 "[%d] enumval %s type ",
4734 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4735 else
4736 printfi_filtered (spaces + 2,
6b850546
DT
4737 "[%d] bitpos %s bitsize %d type ",
4738 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
14e75d8e 4739 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 4740 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
4741 printf_filtered (" name '%s' (",
4742 TYPE_FIELD_NAME (type, idx) != NULL
4743 ? TYPE_FIELD_NAME (type, idx)
4744 : "<NULL>");
d4f3574e 4745 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
4746 printf_filtered (")\n");
4747 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4748 {
4749 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4750 }
4751 }
43bbcdc2
PH
4752 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4753 {
4754 printfi_filtered (spaces, "low %s%s high %s%s\n",
4755 plongest (TYPE_LOW_BOUND (type)),
4756 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4757 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
4758 TYPE_HIGH_BOUND_UNDEFINED (type)
4759 ? " (undefined)" : "");
43bbcdc2 4760 }
c906108c 4761
b4ba55a1
JB
4762 switch (TYPE_SPECIFIC_FIELD (type))
4763 {
4764 case TYPE_SPECIFIC_CPLUS_STUFF:
4765 printfi_filtered (spaces, "cplus_stuff ");
4766 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4767 gdb_stdout);
4768 puts_filtered ("\n");
4769 print_cplus_stuff (type, spaces);
4770 break;
8da61cc4 4771
b4ba55a1
JB
4772 case TYPE_SPECIFIC_GNAT_STUFF:
4773 printfi_filtered (spaces, "gnat_stuff ");
4774 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4775 puts_filtered ("\n");
4776 print_gnat_stuff (type, spaces);
4777 break;
701c159d 4778
b4ba55a1
JB
4779 case TYPE_SPECIFIC_FLOATFORMAT:
4780 printfi_filtered (spaces, "floatformat ");
0db7851f
UW
4781 if (TYPE_FLOATFORMAT (type) == NULL
4782 || TYPE_FLOATFORMAT (type)->name == NULL)
b4ba55a1
JB
4783 puts_filtered ("(null)");
4784 else
0db7851f 4785 puts_filtered (TYPE_FLOATFORMAT (type)->name);
b4ba55a1
JB
4786 puts_filtered ("\n");
4787 break;
c906108c 4788
b6cdc2c1 4789 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
4790 printfi_filtered (spaces, "calling_convention %d\n",
4791 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 4792 /* tail_call_list is not printed. */
b4ba55a1 4793 break;
09e2d7c7
DE
4794
4795 case TYPE_SPECIFIC_SELF_TYPE:
4796 printfi_filtered (spaces, "self_type ");
4797 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4798 puts_filtered ("\n");
4799 break;
c906108c 4800 }
b4ba55a1 4801
c906108c
SS
4802 if (spaces == 0)
4803 obstack_free (&dont_print_type_obstack, NULL);
4804}
5212577a 4805\f
ae5a43e0
DJ
4806/* Trivial helpers for the libiberty hash table, for mapping one
4807 type to another. */
4808
fd90ace4 4809struct type_pair : public allocate_on_obstack
ae5a43e0 4810{
fd90ace4
YQ
4811 type_pair (struct type *old_, struct type *newobj_)
4812 : old (old_), newobj (newobj_)
4813 {}
4814
4815 struct type * const old, * const newobj;
ae5a43e0
DJ
4816};
4817
4818static hashval_t
4819type_pair_hash (const void *item)
4820{
9a3c8263 4821 const struct type_pair *pair = (const struct type_pair *) item;
d8734c88 4822
ae5a43e0
DJ
4823 return htab_hash_pointer (pair->old);
4824}
4825
4826static int
4827type_pair_eq (const void *item_lhs, const void *item_rhs)
4828{
9a3c8263
SM
4829 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4830 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
d8734c88 4831
ae5a43e0
DJ
4832 return lhs->old == rhs->old;
4833}
4834
4835/* Allocate the hash table used by copy_type_recursive to walk
4836 types without duplicates. We use OBJFILE's obstack, because
4837 OBJFILE is about to be deleted. */
4838
4839htab_t
4840create_copied_types_hash (struct objfile *objfile)
4841{
4842 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4843 NULL, &objfile->objfile_obstack,
4844 hashtab_obstack_allocate,
4845 dummy_obstack_deallocate);
4846}
4847
d9823cbb
KB
4848/* Recursively copy (deep copy) a dynamic attribute list of a type. */
4849
4850static struct dynamic_prop_list *
4851copy_dynamic_prop_list (struct obstack *objfile_obstack,
4852 struct dynamic_prop_list *list)
4853{
4854 struct dynamic_prop_list *copy = list;
4855 struct dynamic_prop_list **node_ptr = &copy;
4856
4857 while (*node_ptr != NULL)
4858 {
4859 struct dynamic_prop_list *node_copy;
4860
224c3ddb
SM
4861 node_copy = ((struct dynamic_prop_list *)
4862 obstack_copy (objfile_obstack, *node_ptr,
4863 sizeof (struct dynamic_prop_list)));
283a9958 4864 node_copy->prop = (*node_ptr)->prop;
d9823cbb
KB
4865 *node_ptr = node_copy;
4866
4867 node_ptr = &node_copy->next;
4868 }
4869
4870 return copy;
4871}
4872
7ba81444 4873/* Recursively copy (deep copy) TYPE, if it is associated with
eed8b28a
PP
4874 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4875 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4876 it is not associated with OBJFILE. */
ae5a43e0
DJ
4877
4878struct type *
7ba81444
MS
4879copy_type_recursive (struct objfile *objfile,
4880 struct type *type,
ae5a43e0
DJ
4881 htab_t copied_types)
4882{
ae5a43e0
DJ
4883 void **slot;
4884 struct type *new_type;
4885
e9bb382b 4886 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
4887 return type;
4888
7ba81444
MS
4889 /* This type shouldn't be pointing to any types in other objfiles;
4890 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
4891 gdb_assert (TYPE_OBJFILE (type) == objfile);
4892
fd90ace4
YQ
4893 struct type_pair pair (type, nullptr);
4894
ae5a43e0
DJ
4895 slot = htab_find_slot (copied_types, &pair, INSERT);
4896 if (*slot != NULL)
fe978cb0 4897 return ((struct type_pair *) *slot)->newobj;
ae5a43e0 4898
e9bb382b 4899 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
4900
4901 /* We must add the new type to the hash table immediately, in case
4902 we encounter this type again during a recursive call below. */
fd90ace4
YQ
4903 struct type_pair *stored
4904 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
4905
ae5a43e0
DJ
4906 *slot = stored;
4907
876cecd0
TT
4908 /* Copy the common fields of types. For the main type, we simply
4909 copy the entire thing and then update specific fields as needed. */
4910 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
4911 TYPE_OBJFILE_OWNED (new_type) = 0;
4912 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 4913
ae5a43e0
DJ
4914 if (TYPE_NAME (type))
4915 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
ae5a43e0
DJ
4916
4917 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4918 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4919
4920 /* Copy the fields. */
ae5a43e0
DJ
4921 if (TYPE_NFIELDS (type))
4922 {
4923 int i, nfields;
4924
4925 nfields = TYPE_NFIELDS (type);
2fabdf33
AB
4926 TYPE_FIELDS (new_type) = (struct field *)
4927 TYPE_ZALLOC (new_type, nfields * sizeof (struct field));
ae5a43e0
DJ
4928 for (i = 0; i < nfields; i++)
4929 {
7ba81444
MS
4930 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4931 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
4932 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4933 if (TYPE_FIELD_TYPE (type, i))
4934 TYPE_FIELD_TYPE (new_type, i)
4935 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4936 copied_types);
4937 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
4938 TYPE_FIELD_NAME (new_type, i) =
4939 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 4940 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 4941 {
d6a843b5
JK
4942 case FIELD_LOC_KIND_BITPOS:
4943 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4944 TYPE_FIELD_BITPOS (type, i));
4945 break;
14e75d8e
JK
4946 case FIELD_LOC_KIND_ENUMVAL:
4947 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4948 TYPE_FIELD_ENUMVAL (type, i));
4949 break;
d6a843b5
JK
4950 case FIELD_LOC_KIND_PHYSADDR:
4951 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4952 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4953 break;
4954 case FIELD_LOC_KIND_PHYSNAME:
4955 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4956 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4957 i)));
4958 break;
4959 default:
4960 internal_error (__FILE__, __LINE__,
4961 _("Unexpected type field location kind: %d"),
4962 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
4963 }
4964 }
4965 }
4966
0963b4bd 4967 /* For range types, copy the bounds information. */
43bbcdc2
PH
4968 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4969 {
2fabdf33
AB
4970 TYPE_RANGE_DATA (new_type) = (struct range_bounds *)
4971 TYPE_ALLOC (new_type, sizeof (struct range_bounds));
43bbcdc2
PH
4972 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4973 }
4974
d9823cbb
KB
4975 if (TYPE_DYN_PROP_LIST (type) != NULL)
4976 TYPE_DYN_PROP_LIST (new_type)
4977 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4978 TYPE_DYN_PROP_LIST (type));
4979
3cdcd0ce 4980
ae5a43e0
DJ
4981 /* Copy pointers to other types. */
4982 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
4983 TYPE_TARGET_TYPE (new_type) =
4984 copy_type_recursive (objfile,
4985 TYPE_TARGET_TYPE (type),
4986 copied_types);
f6b3afbf 4987
ae5a43e0
DJ
4988 /* Maybe copy the type_specific bits.
4989
4990 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4991 base classes and methods. There's no fundamental reason why we
4992 can't, but at the moment it is not needed. */
4993
f6b3afbf
DE
4994 switch (TYPE_SPECIFIC_FIELD (type))
4995 {
4996 case TYPE_SPECIFIC_NONE:
4997 break;
4998 case TYPE_SPECIFIC_FUNC:
4999 INIT_FUNC_SPECIFIC (new_type);
5000 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
5001 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
5002 TYPE_TAIL_CALL_LIST (new_type) = NULL;
5003 break;
5004 case TYPE_SPECIFIC_FLOATFORMAT:
5005 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
5006 break;
5007 case TYPE_SPECIFIC_CPLUS_STUFF:
5008 INIT_CPLUS_SPECIFIC (new_type);
5009 break;
5010 case TYPE_SPECIFIC_GNAT_STUFF:
5011 INIT_GNAT_SPECIFIC (new_type);
5012 break;
09e2d7c7
DE
5013 case TYPE_SPECIFIC_SELF_TYPE:
5014 set_type_self_type (new_type,
5015 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5016 copied_types));
5017 break;
f6b3afbf
DE
5018 default:
5019 gdb_assert_not_reached ("bad type_specific_kind");
5020 }
ae5a43e0
DJ
5021
5022 return new_type;
5023}
5024
4af88198
JB
5025/* Make a copy of the given TYPE, except that the pointer & reference
5026 types are not preserved.
5027
5028 This function assumes that the given type has an associated objfile.
5029 This objfile is used to allocate the new type. */
5030
5031struct type *
5032copy_type (const struct type *type)
5033{
5034 struct type *new_type;
5035
e9bb382b 5036 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 5037
e9bb382b 5038 new_type = alloc_type_copy (type);
4af88198
JB
5039 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5040 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5041 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5042 sizeof (struct main_type));
d9823cbb
KB
5043 if (TYPE_DYN_PROP_LIST (type) != NULL)
5044 TYPE_DYN_PROP_LIST (new_type)
5045 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5046 TYPE_DYN_PROP_LIST (type));
4af88198
JB
5047
5048 return new_type;
5049}
5212577a 5050\f
e9bb382b
UW
5051/* Helper functions to initialize architecture-specific types. */
5052
5053/* Allocate a type structure associated with GDBARCH and set its
5054 CODE, LENGTH, and NAME fields. */
5212577a 5055
e9bb382b
UW
5056struct type *
5057arch_type (struct gdbarch *gdbarch,
77b7c781 5058 enum type_code code, int bit, const char *name)
e9bb382b
UW
5059{
5060 struct type *type;
5061
5062 type = alloc_type_arch (gdbarch);
ae438bc5 5063 set_type_code (type, code);
77b7c781
UW
5064 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5065 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
e9bb382b
UW
5066
5067 if (name)
6c214e7c 5068 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
e9bb382b
UW
5069
5070 return type;
5071}
5072
5073/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5074 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5075 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5076
e9bb382b
UW
5077struct type *
5078arch_integer_type (struct gdbarch *gdbarch,
695bfa52 5079 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5080{
5081 struct type *t;
5082
77b7c781 5083 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
e9bb382b
UW
5084 if (unsigned_p)
5085 TYPE_UNSIGNED (t) = 1;
e9bb382b
UW
5086
5087 return t;
5088}
5089
5090/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5091 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5092 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5093
e9bb382b
UW
5094struct type *
5095arch_character_type (struct gdbarch *gdbarch,
695bfa52 5096 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5097{
5098 struct type *t;
5099
77b7c781 5100 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
e9bb382b
UW
5101 if (unsigned_p)
5102 TYPE_UNSIGNED (t) = 1;
5103
5104 return t;
5105}
5106
5107/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5108 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5109 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5110
e9bb382b
UW
5111struct type *
5112arch_boolean_type (struct gdbarch *gdbarch,
695bfa52 5113 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5114{
5115 struct type *t;
5116
77b7c781 5117 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
e9bb382b
UW
5118 if (unsigned_p)
5119 TYPE_UNSIGNED (t) = 1;
5120
5121 return t;
5122}
5123
5124/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5125 BIT is the type size in bits; if BIT equals -1, the size is
5126 determined by the floatformat. NAME is the type name. Set the
5127 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 5128
27067745 5129struct type *
e9bb382b 5130arch_float_type (struct gdbarch *gdbarch,
695bfa52
TT
5131 int bit, const char *name,
5132 const struct floatformat **floatformats)
8da61cc4 5133{
0db7851f 5134 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
8da61cc4
DJ
5135 struct type *t;
5136
0db7851f 5137 bit = verify_floatformat (bit, fmt);
77b7c781 5138 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
0db7851f 5139 TYPE_FLOATFORMAT (t) = fmt;
b79497cb 5140
8da61cc4
DJ
5141 return t;
5142}
5143
88dfca6c
UW
5144/* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5145 BIT is the type size in bits. NAME is the type name. */
5146
5147struct type *
5148arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5149{
5150 struct type *t;
5151
77b7c781 5152 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
88dfca6c
UW
5153 return t;
5154}
5155
e9bb382b
UW
5156/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
5157 NAME is the type name. TARGET_TYPE is the component float type. */
5212577a 5158
27067745 5159struct type *
e9bb382b 5160arch_complex_type (struct gdbarch *gdbarch,
695bfa52 5161 const char *name, struct type *target_type)
27067745
UW
5162{
5163 struct type *t;
d8734c88 5164
e9bb382b 5165 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
77b7c781 5166 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
27067745
UW
5167 TYPE_TARGET_TYPE (t) = target_type;
5168 return t;
5169}
5170
88dfca6c
UW
5171/* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5172 BIT is the pointer type size in bits. NAME is the type name.
5173 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5174 TYPE_UNSIGNED flag. */
5175
5176struct type *
5177arch_pointer_type (struct gdbarch *gdbarch,
5178 int bit, const char *name, struct type *target_type)
5179{
5180 struct type *t;
5181
77b7c781 5182 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
88dfca6c
UW
5183 TYPE_TARGET_TYPE (t) = target_type;
5184 TYPE_UNSIGNED (t) = 1;
5185 return t;
5186}
5187
e9bb382b 5188/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
77b7c781 5189 NAME is the type name. BIT is the size of the flag word in bits. */
5212577a 5190
e9bb382b 5191struct type *
77b7c781 5192arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
e9bb382b 5193{
e9bb382b
UW
5194 struct type *type;
5195
77b7c781 5196 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
e9bb382b 5197 TYPE_UNSIGNED (type) = 1;
81516450
DE
5198 TYPE_NFIELDS (type) = 0;
5199 /* Pre-allocate enough space assuming every field is one bit. */
224c3ddb 5200 TYPE_FIELDS (type)
77b7c781 5201 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
e9bb382b
UW
5202
5203 return type;
5204}
5205
5206/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
81516450
DE
5207 position BITPOS is called NAME. Pass NAME as "" for fields that
5208 should not be printed. */
5209
5210void
5211append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
695bfa52 5212 struct type *field_type, const char *name)
81516450
DE
5213{
5214 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5215 int field_nr = TYPE_NFIELDS (type);
5216
5217 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5218 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5219 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5220 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5221 gdb_assert (name != NULL);
5222
5223 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5224 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5225 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5226 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5227 ++TYPE_NFIELDS (type);
5228}
5229
5230/* Special version of append_flags_type_field to add a flag field.
5231 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
e9bb382b 5232 position BITPOS is called NAME. */
5212577a 5233
e9bb382b 5234void
695bfa52 5235append_flags_type_flag (struct type *type, int bitpos, const char *name)
e9bb382b 5236{
81516450 5237 struct gdbarch *gdbarch = get_type_arch (type);
e9bb382b 5238
81516450
DE
5239 append_flags_type_field (type, bitpos, 1,
5240 builtin_type (gdbarch)->builtin_bool,
5241 name);
e9bb382b
UW
5242}
5243
5244/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5245 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 5246
e9bb382b 5247struct type *
695bfa52
TT
5248arch_composite_type (struct gdbarch *gdbarch, const char *name,
5249 enum type_code code)
e9bb382b
UW
5250{
5251 struct type *t;
d8734c88 5252
e9bb382b
UW
5253 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5254 t = arch_type (gdbarch, code, 0, NULL);
e86ca25f 5255 TYPE_NAME (t) = name;
e9bb382b
UW
5256 INIT_CPLUS_SPECIFIC (t);
5257 return t;
5258}
5259
5260/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
5261 Do not set the field's position or adjust the type's length;
5262 the caller should do so. Return the new field. */
5212577a 5263
f5dff777 5264struct field *
695bfa52 5265append_composite_type_field_raw (struct type *t, const char *name,
f5dff777 5266 struct type *field)
e9bb382b
UW
5267{
5268 struct field *f;
d8734c88 5269
e9bb382b 5270 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
224c3ddb
SM
5271 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5272 TYPE_NFIELDS (t));
e9bb382b
UW
5273 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5274 memset (f, 0, sizeof f[0]);
5275 FIELD_TYPE (f[0]) = field;
5276 FIELD_NAME (f[0]) = name;
f5dff777
DJ
5277 return f;
5278}
5279
5280/* Add new field with name NAME and type FIELD to composite type T.
5281 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 5282
f5dff777 5283void
695bfa52 5284append_composite_type_field_aligned (struct type *t, const char *name,
f5dff777
DJ
5285 struct type *field, int alignment)
5286{
5287 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 5288
e9bb382b
UW
5289 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5290 {
5291 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5292 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5293 }
5294 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5295 {
5296 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5297 if (TYPE_NFIELDS (t) > 1)
5298 {
f41f5e61
PA
5299 SET_FIELD_BITPOS (f[0],
5300 (FIELD_BITPOS (f[-1])
5301 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5302 * TARGET_CHAR_BIT)));
e9bb382b
UW
5303
5304 if (alignment)
5305 {
86c3c1fc
AB
5306 int left;
5307
5308 alignment *= TARGET_CHAR_BIT;
5309 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 5310
e9bb382b
UW
5311 if (left)
5312 {
f41f5e61 5313 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 5314 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
5315 }
5316 }
5317 }
5318 }
5319}
5320
5321/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 5322
e9bb382b 5323void
695bfa52 5324append_composite_type_field (struct type *t, const char *name,
e9bb382b
UW
5325 struct type *field)
5326{
5327 append_composite_type_field_aligned (t, name, field, 0);
5328}
5329
000177f0
AC
5330static struct gdbarch_data *gdbtypes_data;
5331
5332const struct builtin_type *
5333builtin_type (struct gdbarch *gdbarch)
5334{
9a3c8263 5335 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
000177f0
AC
5336}
5337
5338static void *
5339gdbtypes_post_init (struct gdbarch *gdbarch)
5340{
5341 struct builtin_type *builtin_type
5342 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5343
46bf5051 5344 /* Basic types. */
e9bb382b 5345 builtin_type->builtin_void
77b7c781 5346 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
e9bb382b
UW
5347 builtin_type->builtin_char
5348 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5349 !gdbarch_char_signed (gdbarch), "char");
c413c448 5350 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
e9bb382b
UW
5351 builtin_type->builtin_signed_char
5352 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5353 0, "signed char");
5354 builtin_type->builtin_unsigned_char
5355 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5356 1, "unsigned char");
5357 builtin_type->builtin_short
5358 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5359 0, "short");
5360 builtin_type->builtin_unsigned_short
5361 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5362 1, "unsigned short");
5363 builtin_type->builtin_int
5364 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5365 0, "int");
5366 builtin_type->builtin_unsigned_int
5367 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5368 1, "unsigned int");
5369 builtin_type->builtin_long
5370 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5371 0, "long");
5372 builtin_type->builtin_unsigned_long
5373 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5374 1, "unsigned long");
5375 builtin_type->builtin_long_long
5376 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5377 0, "long long");
5378 builtin_type->builtin_unsigned_long_long
5379 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5380 1, "unsigned long long");
70bd8e24 5381 builtin_type->builtin_float
e9bb382b 5382 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 5383 "float", gdbarch_float_format (gdbarch));
70bd8e24 5384 builtin_type->builtin_double
e9bb382b 5385 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 5386 "double", gdbarch_double_format (gdbarch));
70bd8e24 5387 builtin_type->builtin_long_double
e9bb382b 5388 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 5389 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 5390 builtin_type->builtin_complex
e9bb382b
UW
5391 = arch_complex_type (gdbarch, "complex",
5392 builtin_type->builtin_float);
70bd8e24 5393 builtin_type->builtin_double_complex
e9bb382b
UW
5394 = arch_complex_type (gdbarch, "double complex",
5395 builtin_type->builtin_double);
5396 builtin_type->builtin_string
77b7c781 5397 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
e9bb382b 5398 builtin_type->builtin_bool
77b7c781 5399 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
000177f0 5400
7678ef8f
TJB
5401 /* The following three are about decimal floating point types, which
5402 are 32-bits, 64-bits and 128-bits respectively. */
5403 builtin_type->builtin_decfloat
88dfca6c 5404 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
7678ef8f 5405 builtin_type->builtin_decdouble
88dfca6c 5406 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
7678ef8f 5407 builtin_type->builtin_declong
88dfca6c 5408 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
7678ef8f 5409
69feb676 5410 /* "True" character types. */
e9bb382b
UW
5411 builtin_type->builtin_true_char
5412 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5413 builtin_type->builtin_true_unsigned_char
5414 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 5415
df4df182 5416 /* Fixed-size integer types. */
e9bb382b
UW
5417 builtin_type->builtin_int0
5418 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5419 builtin_type->builtin_int8
5420 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5421 builtin_type->builtin_uint8
5422 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5423 builtin_type->builtin_int16
5424 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5425 builtin_type->builtin_uint16
5426 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
d1908f2d
JD
5427 builtin_type->builtin_int24
5428 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5429 builtin_type->builtin_uint24
5430 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
e9bb382b
UW
5431 builtin_type->builtin_int32
5432 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5433 builtin_type->builtin_uint32
5434 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5435 builtin_type->builtin_int64
5436 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5437 builtin_type->builtin_uint64
5438 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5439 builtin_type->builtin_int128
5440 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5441 builtin_type->builtin_uint128
5442 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
5443 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5444 TYPE_INSTANCE_FLAG_NOTTEXT;
5445 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5446 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 5447
9a22f0d0
PM
5448 /* Wide character types. */
5449 builtin_type->builtin_char16
53e710ac 5450 = arch_integer_type (gdbarch, 16, 1, "char16_t");
9a22f0d0 5451 builtin_type->builtin_char32
53e710ac 5452 = arch_integer_type (gdbarch, 32, 1, "char32_t");
53375380
PA
5453 builtin_type->builtin_wchar
5454 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5455 !gdbarch_wchar_signed (gdbarch), "wchar_t");
9a22f0d0 5456
46bf5051 5457 /* Default data/code pointer types. */
e9bb382b
UW
5458 builtin_type->builtin_data_ptr
5459 = lookup_pointer_type (builtin_type->builtin_void);
5460 builtin_type->builtin_func_ptr
5461 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
5462 builtin_type->builtin_func_func
5463 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 5464
78267919 5465 /* This type represents a GDB internal function. */
e9bb382b
UW
5466 builtin_type->internal_fn
5467 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5468 "<internal function>");
78267919 5469
e81e7f5e
SC
5470 /* This type represents an xmethod. */
5471 builtin_type->xmethod
5472 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5473
46bf5051
UW
5474 return builtin_type;
5475}
5476
46bf5051
UW
5477/* This set of objfile-based types is intended to be used by symbol
5478 readers as basic types. */
5479
5480static const struct objfile_data *objfile_type_data;
5481
5482const struct objfile_type *
5483objfile_type (struct objfile *objfile)
5484{
5485 struct gdbarch *gdbarch;
5486 struct objfile_type *objfile_type
9a3c8263 5487 = (struct objfile_type *) objfile_data (objfile, objfile_type_data);
46bf5051
UW
5488
5489 if (objfile_type)
5490 return objfile_type;
5491
5492 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5493 1, struct objfile_type);
5494
5495 /* Use the objfile architecture to determine basic type properties. */
5496 gdbarch = get_objfile_arch (objfile);
5497
5498 /* Basic types. */
5499 objfile_type->builtin_void
77b7c781 5500 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
46bf5051 5501 objfile_type->builtin_char
19f392bc
UW
5502 = init_integer_type (objfile, TARGET_CHAR_BIT,
5503 !gdbarch_char_signed (gdbarch), "char");
c413c448 5504 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
46bf5051 5505 objfile_type->builtin_signed_char
19f392bc
UW
5506 = init_integer_type (objfile, TARGET_CHAR_BIT,
5507 0, "signed char");
46bf5051 5508 objfile_type->builtin_unsigned_char
19f392bc
UW
5509 = init_integer_type (objfile, TARGET_CHAR_BIT,
5510 1, "unsigned char");
46bf5051 5511 objfile_type->builtin_short
19f392bc
UW
5512 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5513 0, "short");
46bf5051 5514 objfile_type->builtin_unsigned_short
19f392bc
UW
5515 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5516 1, "unsigned short");
46bf5051 5517 objfile_type->builtin_int
19f392bc
UW
5518 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5519 0, "int");
46bf5051 5520 objfile_type->builtin_unsigned_int
19f392bc
UW
5521 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5522 1, "unsigned int");
46bf5051 5523 objfile_type->builtin_long
19f392bc
UW
5524 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5525 0, "long");
46bf5051 5526 objfile_type->builtin_unsigned_long
19f392bc
UW
5527 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5528 1, "unsigned long");
46bf5051 5529 objfile_type->builtin_long_long
19f392bc
UW
5530 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5531 0, "long long");
46bf5051 5532 objfile_type->builtin_unsigned_long_long
19f392bc
UW
5533 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5534 1, "unsigned long long");
46bf5051 5535 objfile_type->builtin_float
19f392bc
UW
5536 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5537 "float", gdbarch_float_format (gdbarch));
46bf5051 5538 objfile_type->builtin_double
19f392bc
UW
5539 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5540 "double", gdbarch_double_format (gdbarch));
46bf5051 5541 objfile_type->builtin_long_double
19f392bc
UW
5542 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5543 "long double", gdbarch_long_double_format (gdbarch));
46bf5051
UW
5544
5545 /* This type represents a type that was unrecognized in symbol read-in. */
5546 objfile_type->builtin_error
19f392bc 5547 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
46bf5051
UW
5548
5549 /* The following set of types is used for symbols with no
5550 debug information. */
5551 objfile_type->nodebug_text_symbol
77b7c781 5552 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5553 "<text variable, no debug info>");
0875794a 5554 objfile_type->nodebug_text_gnu_ifunc_symbol
77b7c781 5555 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5556 "<text gnu-indirect-function variable, no debug info>");
19f392bc 5557 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
0875794a 5558 objfile_type->nodebug_got_plt_symbol
19f392bc
UW
5559 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5560 "<text from jump slot in .got.plt, no debug info>",
5561 objfile_type->nodebug_text_symbol);
46bf5051 5562 objfile_type->nodebug_data_symbol
46a4882b 5563 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
46bf5051 5564 objfile_type->nodebug_unknown_symbol
46a4882b 5565 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
46bf5051 5566 objfile_type->nodebug_tls_symbol
46a4882b 5567 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
000177f0
AC
5568
5569 /* NOTE: on some targets, addresses and pointers are not necessarily
0a7cfe2c 5570 the same.
000177f0
AC
5571
5572 The upshot is:
5573 - gdb's `struct type' always describes the target's
5574 representation.
5575 - gdb's `struct value' objects should always hold values in
5576 target form.
5577 - gdb's CORE_ADDR values are addresses in the unified virtual
5578 address space that the assembler and linker work with. Thus,
5579 since target_read_memory takes a CORE_ADDR as an argument, it
5580 can access any memory on the target, even if the processor has
5581 separate code and data address spaces.
5582
46bf5051
UW
5583 In this context, objfile_type->builtin_core_addr is a bit odd:
5584 it's a target type for a value the target will never see. It's
5585 only used to hold the values of (typeless) linker symbols, which
5586 are indeed in the unified virtual address space. */
000177f0 5587
46bf5051 5588 objfile_type->builtin_core_addr
19f392bc
UW
5589 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5590 "__CORE_ADDR");
64c50499 5591
46bf5051
UW
5592 set_objfile_data (objfile, objfile_type_data, objfile_type);
5593 return objfile_type;
000177f0
AC
5594}
5595
c906108c 5596void
fba45db2 5597_initialize_gdbtypes (void)
c906108c 5598{
5674de60 5599 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
46bf5051 5600 objfile_type_data = register_objfile_data ();
5674de60 5601
ccce17b0
YQ
5602 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5603 _("Set debugging of C++ overloading."),
5604 _("Show debugging of C++ overloading."),
5605 _("When enabled, ranking of the "
5606 "functions is displayed."),
5607 NULL,
5608 show_overload_debug,
5609 &setdebuglist, &showdebuglist);
5674de60 5610
7ba81444 5611 /* Add user knob for controlling resolution of opaque types. */
5674de60 5612 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
5613 &opaque_type_resolution,
5614 _("Set resolution of opaque struct/class/union"
5615 " types (if set before loading symbols)."),
5616 _("Show resolution of opaque struct/class/union"
5617 " types (if set before loading symbols)."),
5618 NULL, NULL,
5674de60
UW
5619 show_opaque_type_resolution,
5620 &setlist, &showlist);
a451cb65
KS
5621
5622 /* Add an option to permit non-strict type checking. */
5623 add_setshow_boolean_cmd ("type", class_support,
5624 &strict_type_checking,
5625 _("Set strict type checking."),
5626 _("Show strict type checking."),
5627 NULL, NULL,
5628 show_strict_type_checking,
5629 &setchecklist, &showchecklist);
c906108c 5630}
This page took 1.904597 seconds and 4 git commands to generate.