Move declaration of lang_frame_mismatch_warn to header.
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
42a4f53d 3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c
SS
23#include "bfd.h"
24#include "symtab.h"
25#include "symfile.h"
26#include "objfiles.h"
27#include "gdbtypes.h"
28#include "expression.h"
29#include "language.h"
30#include "target.h"
31#include "value.h"
32#include "demangle.h"
33#include "complaints.h"
34#include "gdbcmd.h"
015a42b4 35#include "cp-abi.h"
ae5a43e0 36#include "hashtab.h"
8de20a37 37#include "cp-support.h"
ca092b61
DE
38#include "bcache.h"
39#include "dwarf2loc.h"
80180f79 40#include "gdbcore.h"
1841ee5d 41#include "floatformat.h"
ac3aafc7 42
6403aeea
SW
43/* Initialize BADNESS constants. */
44
a9d5ef47 45const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 46
a9d5ef47
SW
47const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
48const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 49
a9d5ef47 50const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 51
a9d5ef47
SW
52const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
53const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
54const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
e15c3eb4 55const struct rank CV_CONVERSION_BADNESS = {1, 0};
a9d5ef47
SW
56const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 60const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
61const struct rank BASE_CONVERSION_BADNESS = {2,0};
62const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
da096638 63const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 64const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 65const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 66
8da61cc4 67/* Floatformat pairs. */
f9e9243a
UW
68const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_half_big,
70 &floatformat_ieee_half_little
71};
8da61cc4
DJ
72const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_single_big,
74 &floatformat_ieee_single_little
75};
76const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_little
79};
80const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_littlebyte_bigword
83};
84const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_i387_ext,
86 &floatformat_i387_ext
87};
88const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_m68881_ext,
90 &floatformat_m68881_ext
91};
92const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_arm_ext_big,
94 &floatformat_arm_ext_littlebyte_bigword
95};
96const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_spill_big,
98 &floatformat_ia64_spill_little
99};
100const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_quad_big,
102 &floatformat_ia64_quad_little
103};
104const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_f,
106 &floatformat_vax_f
107};
108const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_d,
110 &floatformat_vax_d
111};
b14d30e1 112const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
f5aee5ee
AM
113 &floatformat_ibm_long_double_big,
114 &floatformat_ibm_long_double_little
b14d30e1 115};
8da61cc4 116
2873700e
KS
117/* Should opaque types be resolved? */
118
491144b5 119static bool opaque_type_resolution = true;
2873700e
KS
120
121/* A flag to enable printing of debugging information of C++
122 overloading. */
123
124unsigned int overload_debug = 0;
125
a451cb65
KS
126/* A flag to enable strict type checking. */
127
491144b5 128static bool strict_type_checking = true;
a451cb65 129
2873700e 130/* A function to show whether opaque types are resolved. */
5212577a 131
920d2a44
AC
132static void
133show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
134 struct cmd_list_element *c,
135 const char *value)
920d2a44 136{
3e43a32a
MS
137 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
138 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
139 value);
140}
141
2873700e 142/* A function to show whether C++ overload debugging is enabled. */
5212577a 143
920d2a44
AC
144static void
145show_overload_debug (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147{
7ba81444
MS
148 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
149 value);
920d2a44 150}
c906108c 151
a451cb65
KS
152/* A function to show the status of strict type checking. */
153
154static void
155show_strict_type_checking (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157{
158 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
159}
160
5212577a 161\f
e9bb382b
UW
162/* Allocate a new OBJFILE-associated type structure and fill it
163 with some defaults. Space for the type structure is allocated
164 on the objfile's objfile_obstack. */
c906108c
SS
165
166struct type *
fba45db2 167alloc_type (struct objfile *objfile)
c906108c 168{
52f0bd74 169 struct type *type;
c906108c 170
e9bb382b
UW
171 gdb_assert (objfile != NULL);
172
7ba81444 173 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
174 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
175 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
176 struct main_type);
177 OBJSTAT (objfile, n_types++);
c906108c 178
e9bb382b
UW
179 TYPE_OBJFILE_OWNED (type) = 1;
180 TYPE_OWNER (type).objfile = objfile;
c906108c 181
7ba81444 182 /* Initialize the fields that might not be zero. */
c906108c
SS
183
184 TYPE_CODE (type) = TYPE_CODE_UNDEF;
2fdde8f8 185 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 186
c16abbde 187 return type;
c906108c
SS
188}
189
e9bb382b
UW
190/* Allocate a new GDBARCH-associated type structure and fill it
191 with some defaults. Space for the type structure is allocated
8f57eec2 192 on the obstack associated with GDBARCH. */
e9bb382b
UW
193
194struct type *
195alloc_type_arch (struct gdbarch *gdbarch)
196{
197 struct type *type;
198
199 gdb_assert (gdbarch != NULL);
200
201 /* Alloc the structure and start off with all fields zeroed. */
202
8f57eec2
PP
203 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
204 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
e9bb382b
UW
205
206 TYPE_OBJFILE_OWNED (type) = 0;
207 TYPE_OWNER (type).gdbarch = gdbarch;
208
209 /* Initialize the fields that might not be zero. */
210
211 TYPE_CODE (type) = TYPE_CODE_UNDEF;
e9bb382b
UW
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215}
216
217/* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221struct type *
222alloc_type_copy (const struct type *type)
223{
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228}
229
230/* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233struct gdbarch *
234get_type_arch (const struct type *type)
235{
2fabdf33
AB
236 struct gdbarch *arch;
237
e9bb382b 238 if (TYPE_OBJFILE_OWNED (type))
2fabdf33 239 arch = get_objfile_arch (TYPE_OWNER (type).objfile);
e9bb382b 240 else
2fabdf33
AB
241 arch = TYPE_OWNER (type).gdbarch;
242
243 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
244 a gdbarch, however, this is very rare, and even then, in most cases
245 that get_type_arch is called, we assume that a non-NULL value is
246 returned. */
247 gdb_assert (arch != NULL);
248 return arch;
e9bb382b
UW
249}
250
99ad9427
YQ
251/* See gdbtypes.h. */
252
253struct type *
254get_target_type (struct type *type)
255{
256 if (type != NULL)
257 {
258 type = TYPE_TARGET_TYPE (type);
259 if (type != NULL)
260 type = check_typedef (type);
261 }
262
263 return type;
264}
265
2e056931
SM
266/* See gdbtypes.h. */
267
268unsigned int
269type_length_units (struct type *type)
270{
271 struct gdbarch *arch = get_type_arch (type);
272 int unit_size = gdbarch_addressable_memory_unit_size (arch);
273
274 return TYPE_LENGTH (type) / unit_size;
275}
276
2fdde8f8
DJ
277/* Alloc a new type instance structure, fill it with some defaults,
278 and point it at OLDTYPE. Allocate the new type instance from the
279 same place as OLDTYPE. */
280
281static struct type *
282alloc_type_instance (struct type *oldtype)
283{
284 struct type *type;
285
286 /* Allocate the structure. */
287
e9bb382b 288 if (! TYPE_OBJFILE_OWNED (oldtype))
2fabdf33 289 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
2fdde8f8 290 else
1deafd4e
PA
291 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
292 struct type);
293
2fdde8f8
DJ
294 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
295
296 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
297
c16abbde 298 return type;
2fdde8f8
DJ
299}
300
301/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 302 replacing it with something else. Preserve owner information. */
5212577a 303
2fdde8f8
DJ
304static void
305smash_type (struct type *type)
306{
e9bb382b
UW
307 int objfile_owned = TYPE_OBJFILE_OWNED (type);
308 union type_owner owner = TYPE_OWNER (type);
309
2fdde8f8
DJ
310 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
311
e9bb382b
UW
312 /* Restore owner information. */
313 TYPE_OBJFILE_OWNED (type) = objfile_owned;
314 TYPE_OWNER (type) = owner;
315
2fdde8f8
DJ
316 /* For now, delete the rings. */
317 TYPE_CHAIN (type) = type;
318
319 /* For now, leave the pointer/reference types alone. */
320}
321
c906108c
SS
322/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
323 to a pointer to memory where the pointer type should be stored.
324 If *TYPEPTR is zero, update it to point to the pointer type we return.
325 We allocate new memory if needed. */
326
327struct type *
fba45db2 328make_pointer_type (struct type *type, struct type **typeptr)
c906108c 329{
52f0bd74 330 struct type *ntype; /* New type */
053cb41b 331 struct type *chain;
c906108c
SS
332
333 ntype = TYPE_POINTER_TYPE (type);
334
c5aa993b 335 if (ntype)
c906108c 336 {
c5aa993b 337 if (typeptr == 0)
7ba81444
MS
338 return ntype; /* Don't care about alloc,
339 and have new type. */
c906108c 340 else if (*typeptr == 0)
c5aa993b 341 {
7ba81444 342 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 343 return ntype;
c5aa993b 344 }
c906108c
SS
345 }
346
347 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
348 {
e9bb382b 349 ntype = alloc_type_copy (type);
c906108c
SS
350 if (typeptr)
351 *typeptr = ntype;
352 }
7ba81444 353 else /* We have storage, but need to reset it. */
c906108c
SS
354 {
355 ntype = *typeptr;
053cb41b 356 chain = TYPE_CHAIN (ntype);
2fdde8f8 357 smash_type (ntype);
053cb41b 358 TYPE_CHAIN (ntype) = chain;
c906108c
SS
359 }
360
361 TYPE_TARGET_TYPE (ntype) = type;
362 TYPE_POINTER_TYPE (type) = ntype;
363
5212577a 364 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 365
50810684
UW
366 TYPE_LENGTH (ntype)
367 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
368 TYPE_CODE (ntype) = TYPE_CODE_PTR;
369
67b2adb2 370 /* Mark pointers as unsigned. The target converts between pointers
76e71323 371 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 372 gdbarch_address_to_pointer. */
876cecd0 373 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 374
053cb41b
JB
375 /* Update the length of all the other variants of this type. */
376 chain = TYPE_CHAIN (ntype);
377 while (chain != ntype)
378 {
379 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
380 chain = TYPE_CHAIN (chain);
381 }
382
c906108c
SS
383 return ntype;
384}
385
386/* Given a type TYPE, return a type of pointers to that type.
387 May need to construct such a type if this is the first use. */
388
389struct type *
fba45db2 390lookup_pointer_type (struct type *type)
c906108c 391{
c5aa993b 392 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
393}
394
7ba81444
MS
395/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
396 points to a pointer to memory where the reference type should be
397 stored. If *TYPEPTR is zero, update it to point to the reference
3b224330
AV
398 type we return. We allocate new memory if needed. REFCODE denotes
399 the kind of reference type to lookup (lvalue or rvalue reference). */
c906108c
SS
400
401struct type *
3b224330
AV
402make_reference_type (struct type *type, struct type **typeptr,
403 enum type_code refcode)
c906108c 404{
52f0bd74 405 struct type *ntype; /* New type */
3b224330 406 struct type **reftype;
1e98b326 407 struct type *chain;
c906108c 408
3b224330
AV
409 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
410
411 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
412 : TYPE_RVALUE_REFERENCE_TYPE (type));
c906108c 413
c5aa993b 414 if (ntype)
c906108c 415 {
c5aa993b 416 if (typeptr == 0)
7ba81444
MS
417 return ntype; /* Don't care about alloc,
418 and have new type. */
c906108c 419 else if (*typeptr == 0)
c5aa993b 420 {
7ba81444 421 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 422 return ntype;
c5aa993b 423 }
c906108c
SS
424 }
425
426 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
427 {
e9bb382b 428 ntype = alloc_type_copy (type);
c906108c
SS
429 if (typeptr)
430 *typeptr = ntype;
431 }
7ba81444 432 else /* We have storage, but need to reset it. */
c906108c
SS
433 {
434 ntype = *typeptr;
1e98b326 435 chain = TYPE_CHAIN (ntype);
2fdde8f8 436 smash_type (ntype);
1e98b326 437 TYPE_CHAIN (ntype) = chain;
c906108c
SS
438 }
439
440 TYPE_TARGET_TYPE (ntype) = type;
3b224330
AV
441 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
442 : &TYPE_RVALUE_REFERENCE_TYPE (type));
443
444 *reftype = ntype;
c906108c 445
7ba81444
MS
446 /* FIXME! Assume the machine has only one representation for
447 references, and that it matches the (only) representation for
448 pointers! */
c906108c 449
50810684
UW
450 TYPE_LENGTH (ntype) =
451 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
3b224330 452 TYPE_CODE (ntype) = refcode;
c5aa993b 453
3b224330 454 *reftype = ntype;
c906108c 455
1e98b326
JB
456 /* Update the length of all the other variants of this type. */
457 chain = TYPE_CHAIN (ntype);
458 while (chain != ntype)
459 {
460 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
461 chain = TYPE_CHAIN (chain);
462 }
463
c906108c
SS
464 return ntype;
465}
466
7ba81444
MS
467/* Same as above, but caller doesn't care about memory allocation
468 details. */
c906108c
SS
469
470struct type *
3b224330
AV
471lookup_reference_type (struct type *type, enum type_code refcode)
472{
473 return make_reference_type (type, (struct type **) 0, refcode);
474}
475
476/* Lookup the lvalue reference type for the type TYPE. */
477
478struct type *
479lookup_lvalue_reference_type (struct type *type)
480{
481 return lookup_reference_type (type, TYPE_CODE_REF);
482}
483
484/* Lookup the rvalue reference type for the type TYPE. */
485
486struct type *
487lookup_rvalue_reference_type (struct type *type)
c906108c 488{
3b224330 489 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
c906108c
SS
490}
491
7ba81444
MS
492/* Lookup a function type that returns type TYPE. TYPEPTR, if
493 nonzero, points to a pointer to memory where the function type
494 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 495 function type we return. We allocate new memory if needed. */
c906108c
SS
496
497struct type *
0c8b41f1 498make_function_type (struct type *type, struct type **typeptr)
c906108c 499{
52f0bd74 500 struct type *ntype; /* New type */
c906108c
SS
501
502 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
503 {
e9bb382b 504 ntype = alloc_type_copy (type);
c906108c
SS
505 if (typeptr)
506 *typeptr = ntype;
507 }
7ba81444 508 else /* We have storage, but need to reset it. */
c906108c
SS
509 {
510 ntype = *typeptr;
2fdde8f8 511 smash_type (ntype);
c906108c
SS
512 }
513
514 TYPE_TARGET_TYPE (ntype) = type;
515
516 TYPE_LENGTH (ntype) = 1;
517 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 518
b6cdc2c1
JK
519 INIT_FUNC_SPECIFIC (ntype);
520
c906108c
SS
521 return ntype;
522}
523
c906108c
SS
524/* Given a type TYPE, return a type of functions that return that type.
525 May need to construct such a type if this is the first use. */
526
527struct type *
fba45db2 528lookup_function_type (struct type *type)
c906108c 529{
0c8b41f1 530 return make_function_type (type, (struct type **) 0);
c906108c
SS
531}
532
71918a86 533/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
534 function type. If the final type in PARAM_TYPES is NULL, make a
535 varargs function. */
71918a86
TT
536
537struct type *
538lookup_function_type_with_arguments (struct type *type,
539 int nparams,
540 struct type **param_types)
541{
542 struct type *fn = make_function_type (type, (struct type **) 0);
543 int i;
544
e314d629 545 if (nparams > 0)
a6fb9c08 546 {
e314d629
TT
547 if (param_types[nparams - 1] == NULL)
548 {
549 --nparams;
550 TYPE_VARARGS (fn) = 1;
551 }
552 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
553 == TYPE_CODE_VOID)
554 {
555 --nparams;
556 /* Caller should have ensured this. */
557 gdb_assert (nparams == 0);
558 TYPE_PROTOTYPED (fn) = 1;
559 }
54990598
PA
560 else
561 TYPE_PROTOTYPED (fn) = 1;
a6fb9c08
TT
562 }
563
71918a86 564 TYPE_NFIELDS (fn) = nparams;
224c3ddb
SM
565 TYPE_FIELDS (fn)
566 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
71918a86
TT
567 for (i = 0; i < nparams; ++i)
568 TYPE_FIELD_TYPE (fn, i) = param_types[i];
569
570 return fn;
571}
572
47663de5
MS
573/* Identify address space identifier by name --
574 return the integer flag defined in gdbtypes.h. */
5212577a
DE
575
576int
61f4b350
TT
577address_space_name_to_int (struct gdbarch *gdbarch,
578 const char *space_identifier)
47663de5 579{
8b2dbe47 580 int type_flags;
d8734c88 581
7ba81444 582 /* Check for known address space delimiters. */
47663de5 583 if (!strcmp (space_identifier, "code"))
876cecd0 584 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 585 else if (!strcmp (space_identifier, "data"))
876cecd0 586 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
587 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
588 && gdbarch_address_class_name_to_type_flags (gdbarch,
589 space_identifier,
590 &type_flags))
8b2dbe47 591 return type_flags;
47663de5 592 else
8a3fe4f8 593 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
594}
595
596/* Identify address space identifier by integer flag as defined in
7ba81444 597 gdbtypes.h -- return the string version of the adress space name. */
47663de5 598
321432c0 599const char *
50810684 600address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 601{
876cecd0 602 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 603 return "code";
876cecd0 604 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 605 return "data";
876cecd0 606 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
607 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
608 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
609 else
610 return NULL;
611}
612
2fdde8f8 613/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
614
615 If STORAGE is non-NULL, create the new type instance there.
616 STORAGE must be in the same obstack as TYPE. */
47663de5 617
b9362cc7 618static struct type *
2fdde8f8
DJ
619make_qualified_type (struct type *type, int new_flags,
620 struct type *storage)
47663de5
MS
621{
622 struct type *ntype;
623
624 ntype = type;
5f61c20e
JK
625 do
626 {
627 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
628 return ntype;
629 ntype = TYPE_CHAIN (ntype);
630 }
631 while (ntype != type);
47663de5 632
2fdde8f8
DJ
633 /* Create a new type instance. */
634 if (storage == NULL)
635 ntype = alloc_type_instance (type);
636 else
637 {
7ba81444
MS
638 /* If STORAGE was provided, it had better be in the same objfile
639 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
640 if one objfile is freed and the other kept, we'd have
641 dangling pointers. */
ad766c0a
JB
642 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
643
2fdde8f8
DJ
644 ntype = storage;
645 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
646 TYPE_CHAIN (ntype) = ntype;
647 }
47663de5
MS
648
649 /* Pointers or references to the original type are not relevant to
2fdde8f8 650 the new type. */
47663de5
MS
651 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
652 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 653
2fdde8f8
DJ
654 /* Chain the new qualified type to the old type. */
655 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
656 TYPE_CHAIN (type) = ntype;
657
658 /* Now set the instance flags and return the new type. */
659 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 660
ab5d3da6
KB
661 /* Set length of new type to that of the original type. */
662 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
663
47663de5
MS
664 return ntype;
665}
666
2fdde8f8
DJ
667/* Make an address-space-delimited variant of a type -- a type that
668 is identical to the one supplied except that it has an address
669 space attribute attached to it (such as "code" or "data").
670
7ba81444
MS
671 The space attributes "code" and "data" are for Harvard
672 architectures. The address space attributes are for architectures
673 which have alternately sized pointers or pointers with alternate
674 representations. */
2fdde8f8
DJ
675
676struct type *
677make_type_with_address_space (struct type *type, int space_flag)
678{
2fdde8f8 679 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
680 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
681 | TYPE_INSTANCE_FLAG_DATA_SPACE
682 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
683 | space_flag);
684
685 return make_qualified_type (type, new_flags, NULL);
686}
c906108c
SS
687
688/* Make a "c-v" variant of a type -- a type that is identical to the
689 one supplied except that it may have const or volatile attributes
690 CNST is a flag for setting the const attribute
691 VOLTL is a flag for setting the volatile attribute
692 TYPE is the base type whose variant we are creating.
c906108c 693
ad766c0a
JB
694 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
695 storage to hold the new qualified type; *TYPEPTR and TYPE must be
696 in the same objfile. Otherwise, allocate fresh memory for the new
697 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
698 new type we construct. */
5212577a 699
c906108c 700struct type *
7ba81444
MS
701make_cv_type (int cnst, int voltl,
702 struct type *type,
703 struct type **typeptr)
c906108c 704{
52f0bd74 705 struct type *ntype; /* New type */
c906108c 706
2fdde8f8 707 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
708 & ~(TYPE_INSTANCE_FLAG_CONST
709 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 710
c906108c 711 if (cnst)
876cecd0 712 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
713
714 if (voltl)
876cecd0 715 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 716
2fdde8f8 717 if (typeptr && *typeptr != NULL)
a02fd225 718 {
ad766c0a
JB
719 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
720 a C-V variant chain that threads across objfiles: if one
721 objfile gets freed, then the other has a broken C-V chain.
722
723 This code used to try to copy over the main type from TYPE to
724 *TYPEPTR if they were in different objfiles, but that's
725 wrong, too: TYPE may have a field list or member function
726 lists, which refer to types of their own, etc. etc. The
727 whole shebang would need to be copied over recursively; you
728 can't have inter-objfile pointers. The only thing to do is
729 to leave stub types as stub types, and look them up afresh by
730 name each time you encounter them. */
731 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
732 }
733
7ba81444
MS
734 ntype = make_qualified_type (type, new_flags,
735 typeptr ? *typeptr : NULL);
c906108c 736
2fdde8f8
DJ
737 if (typeptr != NULL)
738 *typeptr = ntype;
a02fd225 739
2fdde8f8 740 return ntype;
a02fd225 741}
c906108c 742
06d66ee9
TT
743/* Make a 'restrict'-qualified version of TYPE. */
744
745struct type *
746make_restrict_type (struct type *type)
747{
748 return make_qualified_type (type,
749 (TYPE_INSTANCE_FLAGS (type)
750 | TYPE_INSTANCE_FLAG_RESTRICT),
751 NULL);
752}
753
f1660027
TT
754/* Make a type without const, volatile, or restrict. */
755
756struct type *
757make_unqualified_type (struct type *type)
758{
759 return make_qualified_type (type,
760 (TYPE_INSTANCE_FLAGS (type)
761 & ~(TYPE_INSTANCE_FLAG_CONST
762 | TYPE_INSTANCE_FLAG_VOLATILE
763 | TYPE_INSTANCE_FLAG_RESTRICT)),
764 NULL);
765}
766
a2c2acaf
MW
767/* Make a '_Atomic'-qualified version of TYPE. */
768
769struct type *
770make_atomic_type (struct type *type)
771{
772 return make_qualified_type (type,
773 (TYPE_INSTANCE_FLAGS (type)
774 | TYPE_INSTANCE_FLAG_ATOMIC),
775 NULL);
776}
777
2fdde8f8
DJ
778/* Replace the contents of ntype with the type *type. This changes the
779 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
780 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 781
cda6c68a
JB
782 In order to build recursive types, it's inevitable that we'll need
783 to update types in place --- but this sort of indiscriminate
784 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
785 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
786 clear if more steps are needed. */
5212577a 787
dd6bda65
DJ
788void
789replace_type (struct type *ntype, struct type *type)
790{
ab5d3da6 791 struct type *chain;
dd6bda65 792
ad766c0a
JB
793 /* These two types had better be in the same objfile. Otherwise,
794 the assignment of one type's main type structure to the other
795 will produce a type with references to objects (names; field
796 lists; etc.) allocated on an objfile other than its own. */
e46dd0f4 797 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
ad766c0a 798
2fdde8f8 799 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 800
7ba81444
MS
801 /* The type length is not a part of the main type. Update it for
802 each type on the variant chain. */
ab5d3da6 803 chain = ntype;
5f61c20e
JK
804 do
805 {
806 /* Assert that this element of the chain has no address-class bits
807 set in its flags. Such type variants might have type lengths
808 which are supposed to be different from the non-address-class
809 variants. This assertion shouldn't ever be triggered because
810 symbol readers which do construct address-class variants don't
811 call replace_type(). */
812 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
813
814 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
815 chain = TYPE_CHAIN (chain);
816 }
817 while (ntype != chain);
ab5d3da6 818
2fdde8f8
DJ
819 /* Assert that the two types have equivalent instance qualifiers.
820 This should be true for at least all of our debug readers. */
821 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
822}
823
c906108c
SS
824/* Implement direct support for MEMBER_TYPE in GNU C++.
825 May need to construct such a type if this is the first use.
826 The TYPE is the type of the member. The DOMAIN is the type
827 of the aggregate that the member belongs to. */
828
829struct type *
0d5de010 830lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 831{
52f0bd74 832 struct type *mtype;
c906108c 833
e9bb382b 834 mtype = alloc_type_copy (type);
0d5de010 835 smash_to_memberptr_type (mtype, domain, type);
c16abbde 836 return mtype;
c906108c
SS
837}
838
0d5de010
DJ
839/* Return a pointer-to-method type, for a method of type TO_TYPE. */
840
841struct type *
842lookup_methodptr_type (struct type *to_type)
843{
844 struct type *mtype;
845
e9bb382b 846 mtype = alloc_type_copy (to_type);
0b92b5bb 847 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
848 return mtype;
849}
850
7ba81444
MS
851/* Allocate a stub method whose return type is TYPE. This apparently
852 happens for speed of symbol reading, since parsing out the
853 arguments to the method is cpu-intensive, the way we are doing it.
854 So, we will fill in arguments later. This always returns a fresh
855 type. */
c906108c
SS
856
857struct type *
fba45db2 858allocate_stub_method (struct type *type)
c906108c
SS
859{
860 struct type *mtype;
861
e9bb382b
UW
862 mtype = alloc_type_copy (type);
863 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
864 TYPE_LENGTH (mtype) = 1;
865 TYPE_STUB (mtype) = 1;
c906108c 866 TYPE_TARGET_TYPE (mtype) = type;
4bfb94b8 867 /* TYPE_SELF_TYPE (mtype) = unknown yet */
c16abbde 868 return mtype;
c906108c
SS
869}
870
0f59d5fc
PA
871/* See gdbtypes.h. */
872
873bool
874operator== (const dynamic_prop &l, const dynamic_prop &r)
875{
876 if (l.kind != r.kind)
877 return false;
878
879 switch (l.kind)
880 {
881 case PROP_UNDEFINED:
882 return true;
883 case PROP_CONST:
884 return l.data.const_val == r.data.const_val;
885 case PROP_ADDR_OFFSET:
886 case PROP_LOCEXPR:
887 case PROP_LOCLIST:
888 return l.data.baton == r.data.baton;
889 }
890
891 gdb_assert_not_reached ("unhandled dynamic_prop kind");
892}
893
894/* See gdbtypes.h. */
895
896bool
897operator== (const range_bounds &l, const range_bounds &r)
898{
899#define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
900
901 return (FIELD_EQ (low)
902 && FIELD_EQ (high)
903 && FIELD_EQ (flag_upper_bound_is_count)
4e962e74
TT
904 && FIELD_EQ (flag_bound_evaluated)
905 && FIELD_EQ (bias));
0f59d5fc
PA
906
907#undef FIELD_EQ
908}
909
729efb13
SA
910/* Create a range type with a dynamic range from LOW_BOUND to
911 HIGH_BOUND, inclusive. See create_range_type for further details. */
c906108c
SS
912
913struct type *
729efb13
SA
914create_range_type (struct type *result_type, struct type *index_type,
915 const struct dynamic_prop *low_bound,
4e962e74
TT
916 const struct dynamic_prop *high_bound,
917 LONGEST bias)
c906108c 918{
b86352cf
AB
919 /* The INDEX_TYPE should be a type capable of holding the upper and lower
920 bounds, as such a zero sized, or void type makes no sense. */
921 gdb_assert (TYPE_CODE (index_type) != TYPE_CODE_VOID);
922 gdb_assert (TYPE_LENGTH (index_type) > 0);
923
c906108c 924 if (result_type == NULL)
e9bb382b 925 result_type = alloc_type_copy (index_type);
c906108c
SS
926 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
927 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 928 if (TYPE_STUB (index_type))
876cecd0 929 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
930 else
931 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
729efb13 932
43bbcdc2
PH
933 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
934 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
729efb13
SA
935 TYPE_RANGE_DATA (result_type)->low = *low_bound;
936 TYPE_RANGE_DATA (result_type)->high = *high_bound;
4e962e74 937 TYPE_RANGE_DATA (result_type)->bias = bias;
c906108c 938
729efb13 939 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
876cecd0 940 TYPE_UNSIGNED (result_type) = 1;
c906108c 941
45e44d27
JB
942 /* Ada allows the declaration of range types whose upper bound is
943 less than the lower bound, so checking the lower bound is not
944 enough. Make sure we do not mark a range type whose upper bound
945 is negative as unsigned. */
946 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
947 TYPE_UNSIGNED (result_type) = 0;
948
262452ec 949 return result_type;
c906108c
SS
950}
951
729efb13
SA
952/* Create a range type using either a blank type supplied in
953 RESULT_TYPE, or creating a new type, inheriting the objfile from
954 INDEX_TYPE.
955
956 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
957 to HIGH_BOUND, inclusive.
958
959 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
960 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
961
962struct type *
963create_static_range_type (struct type *result_type, struct type *index_type,
964 LONGEST low_bound, LONGEST high_bound)
965{
966 struct dynamic_prop low, high;
967
968 low.kind = PROP_CONST;
969 low.data.const_val = low_bound;
970
971 high.kind = PROP_CONST;
972 high.data.const_val = high_bound;
973
4e962e74 974 result_type = create_range_type (result_type, index_type, &low, &high, 0);
729efb13
SA
975
976 return result_type;
977}
978
80180f79
SA
979/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
980 are static, otherwise returns 0. */
981
982static int
983has_static_range (const struct range_bounds *bounds)
984{
985 return (bounds->low.kind == PROP_CONST
986 && bounds->high.kind == PROP_CONST);
987}
988
989
7ba81444
MS
990/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
991 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
992 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
993
994int
fba45db2 995get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c 996{
f168693b 997 type = check_typedef (type);
c906108c
SS
998 switch (TYPE_CODE (type))
999 {
1000 case TYPE_CODE_RANGE:
1001 *lowp = TYPE_LOW_BOUND (type);
1002 *highp = TYPE_HIGH_BOUND (type);
1003 return 1;
1004 case TYPE_CODE_ENUM:
1005 if (TYPE_NFIELDS (type) > 0)
1006 {
1007 /* The enums may not be sorted by value, so search all
0963b4bd 1008 entries. */
c906108c
SS
1009 int i;
1010
14e75d8e 1011 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
c906108c
SS
1012 for (i = 0; i < TYPE_NFIELDS (type); i++)
1013 {
14e75d8e
JK
1014 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1015 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1016 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1017 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
1018 }
1019
7ba81444 1020 /* Set unsigned indicator if warranted. */
c5aa993b 1021 if (*lowp >= 0)
c906108c 1022 {
876cecd0 1023 TYPE_UNSIGNED (type) = 1;
c906108c
SS
1024 }
1025 }
1026 else
1027 {
1028 *lowp = 0;
1029 *highp = -1;
1030 }
1031 return 0;
1032 case TYPE_CODE_BOOL:
1033 *lowp = 0;
1034 *highp = 1;
1035 return 0;
1036 case TYPE_CODE_INT:
c5aa993b 1037 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
1038 return -1;
1039 if (!TYPE_UNSIGNED (type))
1040 {
c5aa993b 1041 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
1042 *highp = -*lowp - 1;
1043 return 0;
1044 }
86a73007 1045 /* fall through */
c906108c
SS
1046 case TYPE_CODE_CHAR:
1047 *lowp = 0;
1048 /* This round-about calculation is to avoid shifting by
7b83ea04 1049 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 1050 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
1051 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1052 *highp = (*highp - 1) | *highp;
1053 return 0;
1054 default:
1055 return -1;
1056 }
1057}
1058
dbc98a8b
KW
1059/* Assuming TYPE is a simple, non-empty array type, compute its upper
1060 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1061 Save the high bound into HIGH_BOUND if not NULL.
1062
0963b4bd 1063 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
1064 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1065
1066 We now simply use get_discrete_bounds call to get the values
1067 of the low and high bounds.
1068 get_discrete_bounds can return three values:
1069 1, meaning that index is a range,
1070 0, meaning that index is a discrete type,
1071 or -1 for failure. */
1072
1073int
1074get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1075{
1076 struct type *index = TYPE_INDEX_TYPE (type);
1077 LONGEST low = 0;
1078 LONGEST high = 0;
1079 int res;
1080
1081 if (index == NULL)
1082 return 0;
1083
1084 res = get_discrete_bounds (index, &low, &high);
1085 if (res == -1)
1086 return 0;
1087
1088 /* Check if the array bounds are undefined. */
1089 if (res == 1
1090 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1091 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1092 return 0;
1093
1094 if (low_bound)
1095 *low_bound = low;
1096
1097 if (high_bound)
1098 *high_bound = high;
1099
1100 return 1;
1101}
1102
aa715135
JG
1103/* Assuming that TYPE is a discrete type and VAL is a valid integer
1104 representation of a value of this type, save the corresponding
1105 position number in POS.
1106
1107 Its differs from VAL only in the case of enumeration types. In
1108 this case, the position number of the value of the first listed
1109 enumeration literal is zero; the position number of the value of
1110 each subsequent enumeration literal is one more than that of its
1111 predecessor in the list.
1112
1113 Return 1 if the operation was successful. Return zero otherwise,
1114 in which case the value of POS is unmodified.
1115*/
1116
1117int
1118discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1119{
1120 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1121 {
1122 int i;
1123
1124 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1125 {
1126 if (val == TYPE_FIELD_ENUMVAL (type, i))
1127 {
1128 *pos = i;
1129 return 1;
1130 }
1131 }
1132 /* Invalid enumeration value. */
1133 return 0;
1134 }
1135 else
1136 {
1137 *pos = val;
1138 return 1;
1139 }
1140}
1141
7ba81444
MS
1142/* Create an array type using either a blank type supplied in
1143 RESULT_TYPE, or creating a new type, inheriting the objfile from
1144 RANGE_TYPE.
c906108c
SS
1145
1146 Elements will be of type ELEMENT_TYPE, the indices will be of type
1147 RANGE_TYPE.
1148
a405673c
JB
1149 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1150 This byte stride property is added to the resulting array type
1151 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1152 argument can only be used to create types that are objfile-owned
1153 (see add_dyn_prop), meaning that either this function must be called
1154 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1155
1156 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
dc53a7ad
JB
1157 If BIT_STRIDE is not zero, build a packed array type whose element
1158 size is BIT_STRIDE. Otherwise, ignore this parameter.
1159
7ba81444
MS
1160 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1161 sure it is TYPE_CODE_UNDEF before we bash it into an array
1162 type? */
c906108c
SS
1163
1164struct type *
dc53a7ad
JB
1165create_array_type_with_stride (struct type *result_type,
1166 struct type *element_type,
1167 struct type *range_type,
a405673c 1168 struct dynamic_prop *byte_stride_prop,
dc53a7ad 1169 unsigned int bit_stride)
c906108c 1170{
a405673c
JB
1171 if (byte_stride_prop != NULL
1172 && byte_stride_prop->kind == PROP_CONST)
1173 {
1174 /* The byte stride is actually not dynamic. Pretend we were
1175 called with bit_stride set instead of byte_stride_prop.
1176 This will give us the same result type, while avoiding
1177 the need to handle this as a special case. */
1178 bit_stride = byte_stride_prop->data.const_val * 8;
1179 byte_stride_prop = NULL;
1180 }
1181
c906108c 1182 if (result_type == NULL)
e9bb382b
UW
1183 result_type = alloc_type_copy (range_type);
1184
c906108c
SS
1185 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1186 TYPE_TARGET_TYPE (result_type) = element_type;
a405673c
JB
1187 if (byte_stride_prop == NULL
1188 && has_static_range (TYPE_RANGE_DATA (range_type))
b4a7fcab
JB
1189 && (!type_not_associated (result_type)
1190 && !type_not_allocated (result_type)))
80180f79
SA
1191 {
1192 LONGEST low_bound, high_bound;
1193
1194 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1195 low_bound = high_bound = 0;
f168693b 1196 element_type = check_typedef (element_type);
80180f79
SA
1197 /* Be careful when setting the array length. Ada arrays can be
1198 empty arrays with the high_bound being smaller than the low_bound.
1199 In such cases, the array length should be zero. */
1200 if (high_bound < low_bound)
1201 TYPE_LENGTH (result_type) = 0;
1202 else if (bit_stride > 0)
1203 TYPE_LENGTH (result_type) =
1204 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1205 else
1206 TYPE_LENGTH (result_type) =
1207 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1208 }
ab0d6e0d 1209 else
80180f79
SA
1210 {
1211 /* This type is dynamic and its length needs to be computed
1212 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1213 undefined by setting it to zero. Although we are not expected
1214 to trust TYPE_LENGTH in this case, setting the size to zero
1215 allows us to avoid allocating objects of random sizes in case
1216 we accidently do. */
1217 TYPE_LENGTH (result_type) = 0;
1218 }
1219
c906108c
SS
1220 TYPE_NFIELDS (result_type) = 1;
1221 TYPE_FIELDS (result_type) =
1deafd4e 1222 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 1223 TYPE_INDEX_TYPE (result_type) = range_type;
a405673c 1224 if (byte_stride_prop != NULL)
50a82047 1225 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
a405673c 1226 else if (bit_stride > 0)
dc53a7ad 1227 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
c906108c 1228
a9ff5f12 1229 /* TYPE_TARGET_STUB will take care of zero length arrays. */
c906108c 1230 if (TYPE_LENGTH (result_type) == 0)
876cecd0 1231 TYPE_TARGET_STUB (result_type) = 1;
c906108c 1232
c16abbde 1233 return result_type;
c906108c
SS
1234}
1235
dc53a7ad
JB
1236/* Same as create_array_type_with_stride but with no bit_stride
1237 (BIT_STRIDE = 0), thus building an unpacked array. */
1238
1239struct type *
1240create_array_type (struct type *result_type,
1241 struct type *element_type,
1242 struct type *range_type)
1243{
1244 return create_array_type_with_stride (result_type, element_type,
a405673c 1245 range_type, NULL, 0);
dc53a7ad
JB
1246}
1247
e3506a9f
UW
1248struct type *
1249lookup_array_range_type (struct type *element_type,
63375b74 1250 LONGEST low_bound, LONGEST high_bound)
e3506a9f 1251{
929b5ad4
JB
1252 struct type *index_type;
1253 struct type *range_type;
1254
1255 if (TYPE_OBJFILE_OWNED (element_type))
1256 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1257 else
1258 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1259 range_type = create_static_range_type (NULL, index_type,
1260 low_bound, high_bound);
d8734c88 1261
e3506a9f
UW
1262 return create_array_type (NULL, element_type, range_type);
1263}
1264
7ba81444
MS
1265/* Create a string type using either a blank type supplied in
1266 RESULT_TYPE, or creating a new type. String types are similar
1267 enough to array of char types that we can use create_array_type to
1268 build the basic type and then bash it into a string type.
c906108c
SS
1269
1270 For fixed length strings, the range type contains 0 as the lower
1271 bound and the length of the string minus one as the upper bound.
1272
7ba81444
MS
1273 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1274 sure it is TYPE_CODE_UNDEF before we bash it into a string
1275 type? */
c906108c
SS
1276
1277struct type *
3b7538c0
UW
1278create_string_type (struct type *result_type,
1279 struct type *string_char_type,
7ba81444 1280 struct type *range_type)
c906108c
SS
1281{
1282 result_type = create_array_type (result_type,
f290d38e 1283 string_char_type,
c906108c
SS
1284 range_type);
1285 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 1286 return result_type;
c906108c
SS
1287}
1288
e3506a9f
UW
1289struct type *
1290lookup_string_range_type (struct type *string_char_type,
63375b74 1291 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1292{
1293 struct type *result_type;
d8734c88 1294
e3506a9f
UW
1295 result_type = lookup_array_range_type (string_char_type,
1296 low_bound, high_bound);
1297 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1298 return result_type;
1299}
1300
c906108c 1301struct type *
fba45db2 1302create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1303{
c906108c 1304 if (result_type == NULL)
e9bb382b
UW
1305 result_type = alloc_type_copy (domain_type);
1306
c906108c
SS
1307 TYPE_CODE (result_type) = TYPE_CODE_SET;
1308 TYPE_NFIELDS (result_type) = 1;
224c3ddb
SM
1309 TYPE_FIELDS (result_type)
1310 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 1311
74a9bb82 1312 if (!TYPE_STUB (domain_type))
c906108c 1313 {
f9780d5b 1314 LONGEST low_bound, high_bound, bit_length;
d8734c88 1315
c906108c
SS
1316 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1317 low_bound = high_bound = 0;
1318 bit_length = high_bound - low_bound + 1;
1319 TYPE_LENGTH (result_type)
1320 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1321 if (low_bound >= 0)
876cecd0 1322 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
1323 }
1324 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1325
c16abbde 1326 return result_type;
c906108c
SS
1327}
1328
ea37ba09
DJ
1329/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1330 and any array types nested inside it. */
1331
1332void
1333make_vector_type (struct type *array_type)
1334{
1335 struct type *inner_array, *elt_type;
1336 int flags;
1337
1338 /* Find the innermost array type, in case the array is
1339 multi-dimensional. */
1340 inner_array = array_type;
1341 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1342 inner_array = TYPE_TARGET_TYPE (inner_array);
1343
1344 elt_type = TYPE_TARGET_TYPE (inner_array);
1345 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1346 {
2844d6b5 1347 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1348 elt_type = make_qualified_type (elt_type, flags, NULL);
1349 TYPE_TARGET_TYPE (inner_array) = elt_type;
1350 }
1351
876cecd0 1352 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1353}
1354
794ac428 1355struct type *
ac3aafc7
EZ
1356init_vector_type (struct type *elt_type, int n)
1357{
1358 struct type *array_type;
d8734c88 1359
e3506a9f 1360 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1361 make_vector_type (array_type);
ac3aafc7
EZ
1362 return array_type;
1363}
1364
09e2d7c7
DE
1365/* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1366 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1367 confusing. "self" is a common enough replacement for "this".
1368 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1369 TYPE_CODE_METHOD. */
1370
1371struct type *
1372internal_type_self_type (struct type *type)
1373{
1374 switch (TYPE_CODE (type))
1375 {
1376 case TYPE_CODE_METHODPTR:
1377 case TYPE_CODE_MEMBERPTR:
eaaf76ab
DE
1378 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1379 return NULL;
09e2d7c7
DE
1380 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1381 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1382 case TYPE_CODE_METHOD:
eaaf76ab
DE
1383 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1384 return NULL;
09e2d7c7
DE
1385 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1386 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1387 default:
1388 gdb_assert_not_reached ("bad type");
1389 }
1390}
1391
1392/* Set the type of the class that TYPE belongs to.
1393 In c++ this is the class of "this".
1394 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1395 TYPE_CODE_METHOD. */
1396
1397void
1398set_type_self_type (struct type *type, struct type *self_type)
1399{
1400 switch (TYPE_CODE (type))
1401 {
1402 case TYPE_CODE_METHODPTR:
1403 case TYPE_CODE_MEMBERPTR:
1404 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1405 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1406 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1407 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1408 break;
1409 case TYPE_CODE_METHOD:
1410 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1411 INIT_FUNC_SPECIFIC (type);
1412 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1413 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1414 break;
1415 default:
1416 gdb_assert_not_reached ("bad type");
1417 }
1418}
1419
1420/* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
0d5de010
DJ
1421 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1422 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1423 TYPE doesn't include the offset (that's the value of the MEMBER
1424 itself), but does include the structure type into which it points
1425 (for some reason).
c906108c 1426
7ba81444
MS
1427 When "smashing" the type, we preserve the objfile that the old type
1428 pointed to, since we aren't changing where the type is actually
c906108c
SS
1429 allocated. */
1430
1431void
09e2d7c7 1432smash_to_memberptr_type (struct type *type, struct type *self_type,
0d5de010 1433 struct type *to_type)
c906108c 1434{
2fdde8f8 1435 smash_type (type);
09e2d7c7 1436 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c 1437 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1438 set_type_self_type (type, self_type);
0d5de010
DJ
1439 /* Assume that a data member pointer is the same size as a normal
1440 pointer. */
50810684
UW
1441 TYPE_LENGTH (type)
1442 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
c906108c
SS
1443}
1444
0b92b5bb
TT
1445/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1446
1447 When "smashing" the type, we preserve the objfile that the old type
1448 pointed to, since we aren't changing where the type is actually
1449 allocated. */
1450
1451void
1452smash_to_methodptr_type (struct type *type, struct type *to_type)
1453{
1454 smash_type (type);
09e2d7c7 1455 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
0b92b5bb 1456 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1457 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
0b92b5bb 1458 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
0b92b5bb
TT
1459}
1460
09e2d7c7 1461/* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
c906108c
SS
1462 METHOD just means `function that gets an extra "this" argument'.
1463
7ba81444
MS
1464 When "smashing" the type, we preserve the objfile that the old type
1465 pointed to, since we aren't changing where the type is actually
c906108c
SS
1466 allocated. */
1467
1468void
09e2d7c7 1469smash_to_method_type (struct type *type, struct type *self_type,
ad2f7632
DJ
1470 struct type *to_type, struct field *args,
1471 int nargs, int varargs)
c906108c 1472{
2fdde8f8 1473 smash_type (type);
09e2d7c7 1474 TYPE_CODE (type) = TYPE_CODE_METHOD;
c906108c 1475 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1476 set_type_self_type (type, self_type);
ad2f7632
DJ
1477 TYPE_FIELDS (type) = args;
1478 TYPE_NFIELDS (type) = nargs;
1479 if (varargs)
876cecd0 1480 TYPE_VARARGS (type) = 1;
c906108c 1481 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
c906108c
SS
1482}
1483
a737d952 1484/* A wrapper of TYPE_NAME which calls error if the type is anonymous.
d8228535
JK
1485 Since GCC PR debug/47510 DWARF provides associated information to detect the
1486 anonymous class linkage name from its typedef.
1487
1488 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1489 apply it itself. */
1490
1491const char *
a737d952 1492type_name_or_error (struct type *type)
d8228535
JK
1493{
1494 struct type *saved_type = type;
1495 const char *name;
1496 struct objfile *objfile;
1497
f168693b 1498 type = check_typedef (type);
d8228535 1499
a737d952 1500 name = TYPE_NAME (type);
d8228535
JK
1501 if (name != NULL)
1502 return name;
1503
a737d952 1504 name = TYPE_NAME (saved_type);
d8228535
JK
1505 objfile = TYPE_OBJFILE (saved_type);
1506 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
4262abfb
JK
1507 name ? name : "<anonymous>",
1508 objfile ? objfile_name (objfile) : "<arch>");
d8228535
JK
1509}
1510
7ba81444
MS
1511/* Lookup a typedef or primitive type named NAME, visible in lexical
1512 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1513 suitably defined. */
c906108c
SS
1514
1515struct type *
e6c014f2 1516lookup_typename (const struct language_defn *language,
ddd49eee 1517 struct gdbarch *gdbarch, const char *name,
34eaf542 1518 const struct block *block, int noerr)
c906108c 1519{
52f0bd74 1520 struct symbol *sym;
c906108c 1521
1994afbf 1522 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
d12307c1 1523 language->la_language, NULL).symbol;
c51fe631
DE
1524 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1525 return SYMBOL_TYPE (sym);
1526
c51fe631
DE
1527 if (noerr)
1528 return NULL;
1529 error (_("No type named %s."), name);
c906108c
SS
1530}
1531
1532struct type *
e6c014f2 1533lookup_unsigned_typename (const struct language_defn *language,
0d5cff50 1534 struct gdbarch *gdbarch, const char *name)
c906108c 1535{
224c3ddb 1536 char *uns = (char *) alloca (strlen (name) + 10);
c906108c
SS
1537
1538 strcpy (uns, "unsigned ");
1539 strcpy (uns + 9, name);
582942f4 1540 return lookup_typename (language, gdbarch, uns, NULL, 0);
c906108c
SS
1541}
1542
1543struct type *
e6c014f2 1544lookup_signed_typename (const struct language_defn *language,
0d5cff50 1545 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1546{
1547 struct type *t;
224c3ddb 1548 char *uns = (char *) alloca (strlen (name) + 8);
c906108c
SS
1549
1550 strcpy (uns, "signed ");
1551 strcpy (uns + 7, name);
582942f4 1552 t = lookup_typename (language, gdbarch, uns, NULL, 1);
7ba81444 1553 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1554 if (t != NULL)
1555 return t;
582942f4 1556 return lookup_typename (language, gdbarch, name, NULL, 0);
c906108c
SS
1557}
1558
1559/* Lookup a structure type named "struct NAME",
1560 visible in lexical block BLOCK. */
1561
1562struct type *
270140bd 1563lookup_struct (const char *name, const struct block *block)
c906108c 1564{
52f0bd74 1565 struct symbol *sym;
c906108c 1566
d12307c1 1567 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1568
1569 if (sym == NULL)
1570 {
8a3fe4f8 1571 error (_("No struct type named %s."), name);
c906108c
SS
1572 }
1573 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1574 {
7ba81444
MS
1575 error (_("This context has class, union or enum %s, not a struct."),
1576 name);
c906108c
SS
1577 }
1578 return (SYMBOL_TYPE (sym));
1579}
1580
1581/* Lookup a union type named "union NAME",
1582 visible in lexical block BLOCK. */
1583
1584struct type *
270140bd 1585lookup_union (const char *name, const struct block *block)
c906108c 1586{
52f0bd74 1587 struct symbol *sym;
c5aa993b 1588 struct type *t;
c906108c 1589
d12307c1 1590 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1591
1592 if (sym == NULL)
8a3fe4f8 1593 error (_("No union type named %s."), name);
c906108c 1594
c5aa993b 1595 t = SYMBOL_TYPE (sym);
c906108c
SS
1596
1597 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1598 return t;
c906108c 1599
7ba81444
MS
1600 /* If we get here, it's not a union. */
1601 error (_("This context has class, struct or enum %s, not a union."),
1602 name);
c906108c
SS
1603}
1604
c906108c
SS
1605/* Lookup an enum type named "enum NAME",
1606 visible in lexical block BLOCK. */
1607
1608struct type *
270140bd 1609lookup_enum (const char *name, const struct block *block)
c906108c 1610{
52f0bd74 1611 struct symbol *sym;
c906108c 1612
d12307c1 1613 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1614 if (sym == NULL)
1615 {
8a3fe4f8 1616 error (_("No enum type named %s."), name);
c906108c
SS
1617 }
1618 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1619 {
7ba81444
MS
1620 error (_("This context has class, struct or union %s, not an enum."),
1621 name);
c906108c
SS
1622 }
1623 return (SYMBOL_TYPE (sym));
1624}
1625
1626/* Lookup a template type named "template NAME<TYPE>",
1627 visible in lexical block BLOCK. */
1628
1629struct type *
61f4b350 1630lookup_template_type (const char *name, struct type *type,
270140bd 1631 const struct block *block)
c906108c
SS
1632{
1633 struct symbol *sym;
7ba81444
MS
1634 char *nam = (char *)
1635 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1636
c906108c
SS
1637 strcpy (nam, name);
1638 strcat (nam, "<");
0004e5a2 1639 strcat (nam, TYPE_NAME (type));
0963b4bd 1640 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1641
d12307c1 1642 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
c906108c
SS
1643
1644 if (sym == NULL)
1645 {
8a3fe4f8 1646 error (_("No template type named %s."), name);
c906108c
SS
1647 }
1648 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1649 {
7ba81444
MS
1650 error (_("This context has class, union or enum %s, not a struct."),
1651 name);
c906108c
SS
1652 }
1653 return (SYMBOL_TYPE (sym));
1654}
1655
ef0bd204 1656/* See gdbtypes.h. */
c906108c 1657
ef0bd204
JB
1658struct_elt
1659lookup_struct_elt (struct type *type, const char *name, int noerr)
c906108c
SS
1660{
1661 int i;
1662
1663 for (;;)
1664 {
f168693b 1665 type = check_typedef (type);
c906108c
SS
1666 if (TYPE_CODE (type) != TYPE_CODE_PTR
1667 && TYPE_CODE (type) != TYPE_CODE_REF)
1668 break;
1669 type = TYPE_TARGET_TYPE (type);
1670 }
1671
687d6395
MS
1672 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1673 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1674 {
2f408ecb
PA
1675 std::string type_name = type_to_string (type);
1676 error (_("Type %s is not a structure or union type."),
1677 type_name.c_str ());
c906108c
SS
1678 }
1679
c906108c
SS
1680 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1681 {
0d5cff50 1682 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1683
db577aea 1684 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c 1685 {
ef0bd204 1686 return {&TYPE_FIELD (type, i), TYPE_FIELD_BITPOS (type, i)};
c906108c 1687 }
f5a010c0
PM
1688 else if (!t_field_name || *t_field_name == '\0')
1689 {
ef0bd204
JB
1690 struct_elt elt
1691 = lookup_struct_elt (TYPE_FIELD_TYPE (type, i), name, 1);
1692 if (elt.field != NULL)
1693 {
1694 elt.offset += TYPE_FIELD_BITPOS (type, i);
1695 return elt;
1696 }
f5a010c0 1697 }
c906108c
SS
1698 }
1699
1700 /* OK, it's not in this class. Recursively check the baseclasses. */
1701 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1702 {
ef0bd204
JB
1703 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1704 if (elt.field != NULL)
1705 return elt;
c906108c
SS
1706 }
1707
1708 if (noerr)
ef0bd204 1709 return {nullptr, 0};
c5aa993b 1710
2f408ecb
PA
1711 std::string type_name = type_to_string (type);
1712 error (_("Type %s has no component named %s."), type_name.c_str (), name);
c906108c
SS
1713}
1714
ef0bd204
JB
1715/* See gdbtypes.h. */
1716
1717struct type *
1718lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1719{
1720 struct_elt elt = lookup_struct_elt (type, name, noerr);
1721 if (elt.field != NULL)
1722 return FIELD_TYPE (*elt.field);
1723 else
1724 return NULL;
1725}
1726
ed3ef339
DE
1727/* Store in *MAX the largest number representable by unsigned integer type
1728 TYPE. */
1729
1730void
1731get_unsigned_type_max (struct type *type, ULONGEST *max)
1732{
1733 unsigned int n;
1734
f168693b 1735 type = check_typedef (type);
ed3ef339
DE
1736 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1737 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1738
1739 /* Written this way to avoid overflow. */
1740 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1741 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1742}
1743
1744/* Store in *MIN, *MAX the smallest and largest numbers representable by
1745 signed integer type TYPE. */
1746
1747void
1748get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1749{
1750 unsigned int n;
1751
f168693b 1752 type = check_typedef (type);
ed3ef339
DE
1753 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1754 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1755
1756 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1757 *min = -((ULONGEST) 1 << (n - 1));
1758 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1759}
1760
ae6ae975
DE
1761/* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1762 cplus_stuff.vptr_fieldno.
1763
1764 cplus_stuff is initialized to cplus_struct_default which does not
1765 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1766 designated initializers). We cope with that here. */
1767
1768int
1769internal_type_vptr_fieldno (struct type *type)
1770{
f168693b 1771 type = check_typedef (type);
ae6ae975
DE
1772 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1773 || TYPE_CODE (type) == TYPE_CODE_UNION);
1774 if (!HAVE_CPLUS_STRUCT (type))
1775 return -1;
1776 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1777}
1778
1779/* Set the value of cplus_stuff.vptr_fieldno. */
1780
1781void
1782set_type_vptr_fieldno (struct type *type, int fieldno)
1783{
f168693b 1784 type = check_typedef (type);
ae6ae975
DE
1785 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1786 || TYPE_CODE (type) == TYPE_CODE_UNION);
1787 if (!HAVE_CPLUS_STRUCT (type))
1788 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1789 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1790}
1791
1792/* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1793 cplus_stuff.vptr_basetype. */
1794
1795struct type *
1796internal_type_vptr_basetype (struct type *type)
1797{
f168693b 1798 type = check_typedef (type);
ae6ae975
DE
1799 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1800 || TYPE_CODE (type) == TYPE_CODE_UNION);
1801 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1802 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1803}
1804
1805/* Set the value of cplus_stuff.vptr_basetype. */
1806
1807void
1808set_type_vptr_basetype (struct type *type, struct type *basetype)
1809{
f168693b 1810 type = check_typedef (type);
ae6ae975
DE
1811 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1812 || TYPE_CODE (type) == TYPE_CODE_UNION);
1813 if (!HAVE_CPLUS_STRUCT (type))
1814 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1815 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1816}
1817
81fe8080
DE
1818/* Lookup the vptr basetype/fieldno values for TYPE.
1819 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1820 vptr_fieldno. Also, if found and basetype is from the same objfile,
1821 cache the results.
1822 If not found, return -1 and ignore BASETYPEP.
1823 Callers should be aware that in some cases (for example,
c906108c 1824 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1825 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1826 this function will not be able to find the
7ba81444 1827 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1828 vptr_basetype will remain NULL or incomplete. */
c906108c 1829
81fe8080
DE
1830int
1831get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c 1832{
f168693b 1833 type = check_typedef (type);
c906108c
SS
1834
1835 if (TYPE_VPTR_FIELDNO (type) < 0)
1836 {
1837 int i;
1838
7ba81444
MS
1839 /* We must start at zero in case the first (and only) baseclass
1840 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1841 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1842 {
81fe8080
DE
1843 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1844 int fieldno;
1845 struct type *basetype;
1846
1847 fieldno = get_vptr_fieldno (baseclass, &basetype);
1848 if (fieldno >= 0)
c906108c 1849 {
81fe8080 1850 /* If the type comes from a different objfile we can't cache
0963b4bd 1851 it, it may have a different lifetime. PR 2384 */
5ef73790 1852 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080 1853 {
ae6ae975
DE
1854 set_type_vptr_fieldno (type, fieldno);
1855 set_type_vptr_basetype (type, basetype);
81fe8080
DE
1856 }
1857 if (basetypep)
1858 *basetypep = basetype;
1859 return fieldno;
c906108c
SS
1860 }
1861 }
81fe8080
DE
1862
1863 /* Not found. */
1864 return -1;
1865 }
1866 else
1867 {
1868 if (basetypep)
1869 *basetypep = TYPE_VPTR_BASETYPE (type);
1870 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1871 }
1872}
1873
44e1a9eb
DJ
1874static void
1875stub_noname_complaint (void)
1876{
b98664d3 1877 complaint (_("stub type has NULL name"));
44e1a9eb
DJ
1878}
1879
a405673c
JB
1880/* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1881 attached to it, and that property has a non-constant value. */
1882
1883static int
1884array_type_has_dynamic_stride (struct type *type)
1885{
1886 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1887
1888 return (prop != NULL && prop->kind != PROP_CONST);
1889}
1890
d98b7a16 1891/* Worker for is_dynamic_type. */
80180f79 1892
d98b7a16 1893static int
ee715b5a 1894is_dynamic_type_internal (struct type *type, int top_level)
80180f79
SA
1895{
1896 type = check_typedef (type);
1897
e771e4be
PMR
1898 /* We only want to recognize references at the outermost level. */
1899 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1900 type = check_typedef (TYPE_TARGET_TYPE (type));
1901
3cdcd0ce
JB
1902 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1903 dynamic, even if the type itself is statically defined.
1904 From a user's point of view, this may appear counter-intuitive;
1905 but it makes sense in this context, because the point is to determine
1906 whether any part of the type needs to be resolved before it can
1907 be exploited. */
1908 if (TYPE_DATA_LOCATION (type) != NULL
1909 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1910 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1911 return 1;
1912
3f2f83dd
KB
1913 if (TYPE_ASSOCIATED_PROP (type))
1914 return 1;
1915
1916 if (TYPE_ALLOCATED_PROP (type))
1917 return 1;
1918
80180f79
SA
1919 switch (TYPE_CODE (type))
1920 {
6f8a3220 1921 case TYPE_CODE_RANGE:
ddb87a81
JB
1922 {
1923 /* A range type is obviously dynamic if it has at least one
1924 dynamic bound. But also consider the range type to be
1925 dynamic when its subtype is dynamic, even if the bounds
1926 of the range type are static. It allows us to assume that
1927 the subtype of a static range type is also static. */
1928 return (!has_static_range (TYPE_RANGE_DATA (type))
ee715b5a 1929 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
ddb87a81 1930 }
6f8a3220 1931
80180f79
SA
1932 case TYPE_CODE_ARRAY:
1933 {
80180f79 1934 gdb_assert (TYPE_NFIELDS (type) == 1);
6f8a3220 1935
a405673c 1936 /* The array is dynamic if either the bounds are dynamic... */
ee715b5a 1937 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
80180f79 1938 return 1;
a405673c
JB
1939 /* ... or the elements it contains have a dynamic contents... */
1940 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
1941 return 1;
1942 /* ... or if it has a dynamic stride... */
1943 if (array_type_has_dynamic_stride (type))
1944 return 1;
1945 return 0;
80180f79 1946 }
012370f6
TT
1947
1948 case TYPE_CODE_STRUCT:
1949 case TYPE_CODE_UNION:
1950 {
1951 int i;
1952
1953 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1954 if (!field_is_static (&TYPE_FIELD (type, i))
ee715b5a 1955 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
012370f6
TT
1956 return 1;
1957 }
1958 break;
80180f79 1959 }
92e2a17f
TT
1960
1961 return 0;
80180f79
SA
1962}
1963
d98b7a16
TT
1964/* See gdbtypes.h. */
1965
1966int
1967is_dynamic_type (struct type *type)
1968{
ee715b5a 1969 return is_dynamic_type_internal (type, 1);
d98b7a16
TT
1970}
1971
df25ebbd 1972static struct type *resolve_dynamic_type_internal
ee715b5a 1973 (struct type *type, struct property_addr_info *addr_stack, int top_level);
d98b7a16 1974
df25ebbd
JB
1975/* Given a dynamic range type (dyn_range_type) and a stack of
1976 struct property_addr_info elements, return a static version
1977 of that type. */
d190df30 1978
80180f79 1979static struct type *
df25ebbd
JB
1980resolve_dynamic_range (struct type *dyn_range_type,
1981 struct property_addr_info *addr_stack)
80180f79
SA
1982{
1983 CORE_ADDR value;
ddb87a81 1984 struct type *static_range_type, *static_target_type;
80180f79 1985 const struct dynamic_prop *prop;
80180f79
SA
1986 struct dynamic_prop low_bound, high_bound;
1987
6f8a3220 1988 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
80180f79 1989
6f8a3220 1990 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
63e43d3a 1991 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
1992 {
1993 low_bound.kind = PROP_CONST;
1994 low_bound.data.const_val = value;
1995 }
1996 else
1997 {
1998 low_bound.kind = PROP_UNDEFINED;
1999 low_bound.data.const_val = 0;
2000 }
2001
6f8a3220 2002 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
63e43d3a 2003 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
2004 {
2005 high_bound.kind = PROP_CONST;
2006 high_bound.data.const_val = value;
c451ebe5 2007
6f8a3220 2008 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
c451ebe5
SA
2009 high_bound.data.const_val
2010 = low_bound.data.const_val + high_bound.data.const_val - 1;
80180f79
SA
2011 }
2012 else
2013 {
2014 high_bound.kind = PROP_UNDEFINED;
2015 high_bound.data.const_val = 0;
2016 }
2017
ddb87a81
JB
2018 static_target_type
2019 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
ee715b5a 2020 addr_stack, 0);
4e962e74 2021 LONGEST bias = TYPE_RANGE_DATA (dyn_range_type)->bias;
6f8a3220 2022 static_range_type = create_range_type (copy_type (dyn_range_type),
ddb87a81 2023 static_target_type,
4e962e74 2024 &low_bound, &high_bound, bias);
6f8a3220
JB
2025 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2026 return static_range_type;
2027}
2028
2029/* Resolves dynamic bound values of an array type TYPE to static ones.
df25ebbd
JB
2030 ADDR_STACK is a stack of struct property_addr_info to be used
2031 if needed during the dynamic resolution. */
6f8a3220
JB
2032
2033static struct type *
df25ebbd
JB
2034resolve_dynamic_array (struct type *type,
2035 struct property_addr_info *addr_stack)
6f8a3220
JB
2036{
2037 CORE_ADDR value;
2038 struct type *elt_type;
2039 struct type *range_type;
2040 struct type *ary_dim;
3f2f83dd 2041 struct dynamic_prop *prop;
a405673c 2042 unsigned int bit_stride = 0;
6f8a3220
JB
2043
2044 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
2045
3f2f83dd
KB
2046 type = copy_type (type);
2047
6f8a3220
JB
2048 elt_type = type;
2049 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
df25ebbd 2050 range_type = resolve_dynamic_range (range_type, addr_stack);
6f8a3220 2051
3f2f83dd
KB
2052 /* Resolve allocated/associated here before creating a new array type, which
2053 will update the length of the array accordingly. */
2054 prop = TYPE_ALLOCATED_PROP (type);
2055 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2056 {
2057 TYPE_DYN_PROP_ADDR (prop) = value;
2058 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2059 }
2060 prop = TYPE_ASSOCIATED_PROP (type);
2061 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2062 {
2063 TYPE_DYN_PROP_ADDR (prop) = value;
2064 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2065 }
2066
80180f79
SA
2067 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2068
2069 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
d0d84780 2070 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
80180f79
SA
2071 else
2072 elt_type = TYPE_TARGET_TYPE (type);
2073
a405673c
JB
2074 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2075 if (prop != NULL)
2076 {
603490bf 2077 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
a405673c
JB
2078 {
2079 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2080 bit_stride = (unsigned int) (value * 8);
2081 }
2082 else
2083 {
2084 /* Could be a bug in our code, but it could also happen
2085 if the DWARF info is not correct. Issue a warning,
2086 and assume no byte/bit stride (leave bit_stride = 0). */
2087 warning (_("cannot determine array stride for type %s"),
2088 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2089 }
2090 }
2091 else
2092 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2093
2094 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2095 bit_stride);
80180f79
SA
2096}
2097
012370f6 2098/* Resolve dynamic bounds of members of the union TYPE to static
df25ebbd
JB
2099 bounds. ADDR_STACK is a stack of struct property_addr_info
2100 to be used if needed during the dynamic resolution. */
012370f6
TT
2101
2102static struct type *
df25ebbd
JB
2103resolve_dynamic_union (struct type *type,
2104 struct property_addr_info *addr_stack)
012370f6
TT
2105{
2106 struct type *resolved_type;
2107 int i;
2108 unsigned int max_len = 0;
2109
2110 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2111
2112 resolved_type = copy_type (type);
2113 TYPE_FIELDS (resolved_type)
224c3ddb
SM
2114 = (struct field *) TYPE_ALLOC (resolved_type,
2115 TYPE_NFIELDS (resolved_type)
2116 * sizeof (struct field));
012370f6
TT
2117 memcpy (TYPE_FIELDS (resolved_type),
2118 TYPE_FIELDS (type),
2119 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2120 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2121 {
2122 struct type *t;
2123
2124 if (field_is_static (&TYPE_FIELD (type, i)))
2125 continue;
2126
d98b7a16 2127 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2128 addr_stack, 0);
012370f6
TT
2129 TYPE_FIELD_TYPE (resolved_type, i) = t;
2130 if (TYPE_LENGTH (t) > max_len)
2131 max_len = TYPE_LENGTH (t);
2132 }
2133
2134 TYPE_LENGTH (resolved_type) = max_len;
2135 return resolved_type;
2136}
2137
2138/* Resolve dynamic bounds of members of the struct TYPE to static
df25ebbd
JB
2139 bounds. ADDR_STACK is a stack of struct property_addr_info to
2140 be used if needed during the dynamic resolution. */
012370f6
TT
2141
2142static struct type *
df25ebbd
JB
2143resolve_dynamic_struct (struct type *type,
2144 struct property_addr_info *addr_stack)
012370f6
TT
2145{
2146 struct type *resolved_type;
2147 int i;
6908c509 2148 unsigned resolved_type_bit_length = 0;
012370f6
TT
2149
2150 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2151 gdb_assert (TYPE_NFIELDS (type) > 0);
2152
2153 resolved_type = copy_type (type);
2154 TYPE_FIELDS (resolved_type)
224c3ddb
SM
2155 = (struct field *) TYPE_ALLOC (resolved_type,
2156 TYPE_NFIELDS (resolved_type)
2157 * sizeof (struct field));
012370f6
TT
2158 memcpy (TYPE_FIELDS (resolved_type),
2159 TYPE_FIELDS (type),
2160 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2161 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2162 {
6908c509 2163 unsigned new_bit_length;
df25ebbd 2164 struct property_addr_info pinfo;
012370f6
TT
2165
2166 if (field_is_static (&TYPE_FIELD (type, i)))
2167 continue;
2168
6908c509
JB
2169 /* As we know this field is not a static field, the field's
2170 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2171 this is the case, but only trigger a simple error rather
2172 than an internal error if that fails. While failing
2173 that verification indicates a bug in our code, the error
2174 is not severe enough to suggest to the user he stops
2175 his debugging session because of it. */
df25ebbd 2176 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
6908c509
JB
2177 error (_("Cannot determine struct field location"
2178 " (invalid location kind)"));
df25ebbd
JB
2179
2180 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
c3345124 2181 pinfo.valaddr = addr_stack->valaddr;
9920b434
BH
2182 pinfo.addr
2183 = (addr_stack->addr
2184 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
df25ebbd
JB
2185 pinfo.next = addr_stack;
2186
2187 TYPE_FIELD_TYPE (resolved_type, i)
2188 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2189 &pinfo, 0);
df25ebbd
JB
2190 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2191 == FIELD_LOC_KIND_BITPOS);
2192
6908c509
JB
2193 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2194 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2195 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2196 else
2197 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2198 * TARGET_CHAR_BIT);
2199
2200 /* Normally, we would use the position and size of the last field
2201 to determine the size of the enclosing structure. But GCC seems
2202 to be encoding the position of some fields incorrectly when
2203 the struct contains a dynamic field that is not placed last.
2204 So we compute the struct size based on the field that has
2205 the highest position + size - probably the best we can do. */
2206 if (new_bit_length > resolved_type_bit_length)
2207 resolved_type_bit_length = new_bit_length;
012370f6
TT
2208 }
2209
9920b434
BH
2210 /* The length of a type won't change for fortran, but it does for C and Ada.
2211 For fortran the size of dynamic fields might change over time but not the
2212 type length of the structure. If we adapt it, we run into problems
2213 when calculating the element offset for arrays of structs. */
2214 if (current_language->la_language != language_fortran)
2215 TYPE_LENGTH (resolved_type)
2216 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
6908c509 2217
9e195661
PMR
2218 /* The Ada language uses this field as a cache for static fixed types: reset
2219 it as RESOLVED_TYPE must have its own static fixed type. */
2220 TYPE_TARGET_TYPE (resolved_type) = NULL;
2221
012370f6
TT
2222 return resolved_type;
2223}
2224
d98b7a16 2225/* Worker for resolved_dynamic_type. */
80180f79 2226
d98b7a16 2227static struct type *
df25ebbd 2228resolve_dynamic_type_internal (struct type *type,
ee715b5a
PMR
2229 struct property_addr_info *addr_stack,
2230 int top_level)
80180f79
SA
2231{
2232 struct type *real_type = check_typedef (type);
6f8a3220 2233 struct type *resolved_type = type;
d9823cbb 2234 struct dynamic_prop *prop;
3cdcd0ce 2235 CORE_ADDR value;
80180f79 2236
ee715b5a 2237 if (!is_dynamic_type_internal (real_type, top_level))
80180f79
SA
2238 return type;
2239
5537b577 2240 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
6f8a3220 2241 {
cac9b138
JK
2242 resolved_type = copy_type (type);
2243 TYPE_TARGET_TYPE (resolved_type)
ee715b5a
PMR
2244 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2245 top_level);
5537b577
JK
2246 }
2247 else
2248 {
2249 /* Before trying to resolve TYPE, make sure it is not a stub. */
2250 type = real_type;
012370f6 2251
5537b577
JK
2252 switch (TYPE_CODE (type))
2253 {
e771e4be
PMR
2254 case TYPE_CODE_REF:
2255 {
2256 struct property_addr_info pinfo;
2257
2258 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
c3345124
JB
2259 pinfo.valaddr = NULL;
2260 if (addr_stack->valaddr != NULL)
2261 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2262 else
2263 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
e771e4be
PMR
2264 pinfo.next = addr_stack;
2265
2266 resolved_type = copy_type (type);
2267 TYPE_TARGET_TYPE (resolved_type)
2268 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2269 &pinfo, top_level);
2270 break;
2271 }
2272
5537b577 2273 case TYPE_CODE_ARRAY:
df25ebbd 2274 resolved_type = resolve_dynamic_array (type, addr_stack);
5537b577
JK
2275 break;
2276
2277 case TYPE_CODE_RANGE:
df25ebbd 2278 resolved_type = resolve_dynamic_range (type, addr_stack);
5537b577
JK
2279 break;
2280
2281 case TYPE_CODE_UNION:
df25ebbd 2282 resolved_type = resolve_dynamic_union (type, addr_stack);
5537b577
JK
2283 break;
2284
2285 case TYPE_CODE_STRUCT:
df25ebbd 2286 resolved_type = resolve_dynamic_struct (type, addr_stack);
5537b577
JK
2287 break;
2288 }
6f8a3220 2289 }
80180f79 2290
3cdcd0ce
JB
2291 /* Resolve data_location attribute. */
2292 prop = TYPE_DATA_LOCATION (resolved_type);
63e43d3a
PMR
2293 if (prop != NULL
2294 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
3cdcd0ce 2295 {
d9823cbb
KB
2296 TYPE_DYN_PROP_ADDR (prop) = value;
2297 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
3cdcd0ce 2298 }
3cdcd0ce 2299
80180f79
SA
2300 return resolved_type;
2301}
2302
d98b7a16
TT
2303/* See gdbtypes.h */
2304
2305struct type *
c3345124
JB
2306resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2307 CORE_ADDR addr)
d98b7a16 2308{
c3345124
JB
2309 struct property_addr_info pinfo
2310 = {check_typedef (type), valaddr, addr, NULL};
df25ebbd 2311
ee715b5a 2312 return resolve_dynamic_type_internal (type, &pinfo, 1);
d98b7a16
TT
2313}
2314
d9823cbb
KB
2315/* See gdbtypes.h */
2316
2317struct dynamic_prop *
2318get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2319{
2320 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2321
2322 while (node != NULL)
2323 {
2324 if (node->prop_kind == prop_kind)
283a9958 2325 return &node->prop;
d9823cbb
KB
2326 node = node->next;
2327 }
2328 return NULL;
2329}
2330
2331/* See gdbtypes.h */
2332
2333void
2334add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
50a82047 2335 struct type *type)
d9823cbb
KB
2336{
2337 struct dynamic_prop_list *temp;
2338
2339 gdb_assert (TYPE_OBJFILE_OWNED (type));
2340
50a82047
TT
2341 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2342 struct dynamic_prop_list);
d9823cbb 2343 temp->prop_kind = prop_kind;
283a9958 2344 temp->prop = prop;
d9823cbb
KB
2345 temp->next = TYPE_DYN_PROP_LIST (type);
2346
2347 TYPE_DYN_PROP_LIST (type) = temp;
2348}
2349
9920b434
BH
2350/* Remove dynamic property from TYPE in case it exists. */
2351
2352void
2353remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2354 struct type *type)
2355{
2356 struct dynamic_prop_list *prev_node, *curr_node;
2357
2358 curr_node = TYPE_DYN_PROP_LIST (type);
2359 prev_node = NULL;
2360
2361 while (NULL != curr_node)
2362 {
2363 if (curr_node->prop_kind == prop_kind)
2364 {
2365 /* Update the linked list but don't free anything.
2366 The property was allocated on objstack and it is not known
2367 if we are on top of it. Nevertheless, everything is released
2368 when the complete objstack is freed. */
2369 if (NULL == prev_node)
2370 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2371 else
2372 prev_node->next = curr_node->next;
2373
2374 return;
2375 }
2376
2377 prev_node = curr_node;
2378 curr_node = curr_node->next;
2379 }
2380}
d9823cbb 2381
92163a10
JK
2382/* Find the real type of TYPE. This function returns the real type,
2383 after removing all layers of typedefs, and completing opaque or stub
2384 types. Completion changes the TYPE argument, but stripping of
2385 typedefs does not.
2386
2387 Instance flags (e.g. const/volatile) are preserved as typedefs are
2388 stripped. If necessary a new qualified form of the underlying type
2389 is created.
2390
2391 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2392 not been computed and we're either in the middle of reading symbols, or
2393 there was no name for the typedef in the debug info.
2394
9bc118a5
DE
2395 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2396 QUITs in the symbol reading code can also throw.
2397 Thus this function can throw an exception.
2398
92163a10
JK
2399 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2400 the target type.
c906108c
SS
2401
2402 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 2403 we can find a full definition in some other file. If so, copy this
7ba81444
MS
2404 definition, so we can use it in future. There used to be a comment
2405 (but not any code) that if we don't find a full definition, we'd
2406 set a flag so we don't spend time in the future checking the same
2407 type. That would be a mistake, though--we might load in more
92163a10 2408 symbols which contain a full definition for the type. */
c906108c
SS
2409
2410struct type *
a02fd225 2411check_typedef (struct type *type)
c906108c
SS
2412{
2413 struct type *orig_type = type;
92163a10
JK
2414 /* While we're removing typedefs, we don't want to lose qualifiers.
2415 E.g., const/volatile. */
2416 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 2417
423c0af8
MS
2418 gdb_assert (type);
2419
c906108c
SS
2420 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2421 {
2422 if (!TYPE_TARGET_TYPE (type))
2423 {
0d5cff50 2424 const char *name;
c906108c
SS
2425 struct symbol *sym;
2426
2427 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 2428 reading a symtab. Infinite recursion is one danger. */
c906108c 2429 if (currently_reading_symtab)
92163a10 2430 return make_qualified_type (type, instance_flags, NULL);
c906108c 2431
a737d952 2432 name = TYPE_NAME (type);
e86ca25f
TT
2433 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2434 VAR_DOMAIN as appropriate? */
c906108c
SS
2435 if (name == NULL)
2436 {
23136709 2437 stub_noname_complaint ();
92163a10 2438 return make_qualified_type (type, instance_flags, NULL);
c906108c 2439 }
d12307c1 2440 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
2441 if (sym)
2442 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 2443 else /* TYPE_CODE_UNDEF */
e9bb382b 2444 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
2445 }
2446 type = TYPE_TARGET_TYPE (type);
c906108c 2447
92163a10
JK
2448 /* Preserve the instance flags as we traverse down the typedef chain.
2449
2450 Handling address spaces/classes is nasty, what do we do if there's a
2451 conflict?
2452 E.g., what if an outer typedef marks the type as class_1 and an inner
2453 typedef marks the type as class_2?
2454 This is the wrong place to do such error checking. We leave it to
2455 the code that created the typedef in the first place to flag the
2456 error. We just pick the outer address space (akin to letting the
2457 outer cast in a chain of casting win), instead of assuming
2458 "it can't happen". */
2459 {
2460 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2461 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2462 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2463 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2464
2465 /* Treat code vs data spaces and address classes separately. */
2466 if ((instance_flags & ALL_SPACES) != 0)
2467 new_instance_flags &= ~ALL_SPACES;
2468 if ((instance_flags & ALL_CLASSES) != 0)
2469 new_instance_flags &= ~ALL_CLASSES;
2470
2471 instance_flags |= new_instance_flags;
2472 }
2473 }
a02fd225 2474
7ba81444
MS
2475 /* If this is a struct/class/union with no fields, then check
2476 whether a full definition exists somewhere else. This is for
2477 systems where a type definition with no fields is issued for such
2478 types, instead of identifying them as stub types in the first
2479 place. */
c5aa993b 2480
7ba81444
MS
2481 if (TYPE_IS_OPAQUE (type)
2482 && opaque_type_resolution
2483 && !currently_reading_symtab)
c906108c 2484 {
a737d952 2485 const char *name = TYPE_NAME (type);
c5aa993b 2486 struct type *newtype;
d8734c88 2487
c906108c
SS
2488 if (name == NULL)
2489 {
23136709 2490 stub_noname_complaint ();
92163a10 2491 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2492 }
2493 newtype = lookup_transparent_type (name);
ad766c0a 2494
c906108c 2495 if (newtype)
ad766c0a 2496 {
7ba81444
MS
2497 /* If the resolved type and the stub are in the same
2498 objfile, then replace the stub type with the real deal.
2499 But if they're in separate objfiles, leave the stub
2500 alone; we'll just look up the transparent type every time
2501 we call check_typedef. We can't create pointers between
2502 types allocated to different objfiles, since they may
2503 have different lifetimes. Trying to copy NEWTYPE over to
2504 TYPE's objfile is pointless, too, since you'll have to
2505 move over any other types NEWTYPE refers to, which could
2506 be an unbounded amount of stuff. */
ad766c0a 2507 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
2508 type = make_qualified_type (newtype,
2509 TYPE_INSTANCE_FLAGS (type),
2510 type);
ad766c0a
JB
2511 else
2512 type = newtype;
2513 }
c906108c 2514 }
7ba81444
MS
2515 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2516 types. */
74a9bb82 2517 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 2518 {
a737d952 2519 const char *name = TYPE_NAME (type);
e86ca25f
TT
2520 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2521 as appropriate? */
c906108c 2522 struct symbol *sym;
d8734c88 2523
c906108c
SS
2524 if (name == NULL)
2525 {
23136709 2526 stub_noname_complaint ();
92163a10 2527 return make_qualified_type (type, instance_flags, NULL);
c906108c 2528 }
d12307c1 2529 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c 2530 if (sym)
c26f2453
JB
2531 {
2532 /* Same as above for opaque types, we can replace the stub
92163a10 2533 with the complete type only if they are in the same
c26f2453
JB
2534 objfile. */
2535 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
2536 type = make_qualified_type (SYMBOL_TYPE (sym),
2537 TYPE_INSTANCE_FLAGS (type),
2538 type);
c26f2453
JB
2539 else
2540 type = SYMBOL_TYPE (sym);
2541 }
c906108c
SS
2542 }
2543
74a9bb82 2544 if (TYPE_TARGET_STUB (type))
c906108c 2545 {
c906108c
SS
2546 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2547
74a9bb82 2548 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 2549 {
73e2eb35 2550 /* Nothing we can do. */
c5aa993b 2551 }
c906108c
SS
2552 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2553 {
2554 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 2555 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
2556 }
2557 }
92163a10
JK
2558
2559 type = make_qualified_type (type, instance_flags, NULL);
2560
7ba81444 2561 /* Cache TYPE_LENGTH for future use. */
c906108c 2562 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 2563
c906108c
SS
2564 return type;
2565}
2566
7ba81444 2567/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 2568 occurs, silently return a void type. */
c91ecb25 2569
b9362cc7 2570static struct type *
48319d1f 2571safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
2572{
2573 struct ui_file *saved_gdb_stderr;
34365054 2574 struct type *type = NULL; /* Initialize to keep gcc happy. */
c91ecb25 2575
7ba81444 2576 /* Suppress error messages. */
c91ecb25 2577 saved_gdb_stderr = gdb_stderr;
d7e74731 2578 gdb_stderr = &null_stream;
c91ecb25 2579
7ba81444 2580 /* Call parse_and_eval_type() without fear of longjmp()s. */
a70b8144 2581 try
8e7b59a5
KS
2582 {
2583 type = parse_and_eval_type (p, length);
2584 }
230d2906 2585 catch (const gdb_exception_error &except)
492d29ea
PA
2586 {
2587 type = builtin_type (gdbarch)->builtin_void;
2588 }
c91ecb25 2589
7ba81444 2590 /* Stop suppressing error messages. */
c91ecb25
ND
2591 gdb_stderr = saved_gdb_stderr;
2592
2593 return type;
2594}
2595
c906108c
SS
2596/* Ugly hack to convert method stubs into method types.
2597
7ba81444
MS
2598 He ain't kiddin'. This demangles the name of the method into a
2599 string including argument types, parses out each argument type,
2600 generates a string casting a zero to that type, evaluates the
2601 string, and stuffs the resulting type into an argtype vector!!!
2602 Then it knows the type of the whole function (including argument
2603 types for overloading), which info used to be in the stab's but was
2604 removed to hack back the space required for them. */
c906108c 2605
de17c821 2606static void
fba45db2 2607check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 2608{
50810684 2609 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
2610 struct fn_field *f;
2611 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
8de20a37
TT
2612 char *demangled_name = gdb_demangle (mangled_name,
2613 DMGL_PARAMS | DMGL_ANSI);
c906108c
SS
2614 char *argtypetext, *p;
2615 int depth = 0, argcount = 1;
ad2f7632 2616 struct field *argtypes;
c906108c
SS
2617 struct type *mtype;
2618
2619 /* Make sure we got back a function string that we can use. */
2620 if (demangled_name)
2621 p = strchr (demangled_name, '(');
502dcf4e
AC
2622 else
2623 p = NULL;
c906108c
SS
2624
2625 if (demangled_name == NULL || p == NULL)
7ba81444
MS
2626 error (_("Internal: Cannot demangle mangled name `%s'."),
2627 mangled_name);
c906108c
SS
2628
2629 /* Now, read in the parameters that define this type. */
2630 p += 1;
2631 argtypetext = p;
2632 while (*p)
2633 {
070ad9f0 2634 if (*p == '(' || *p == '<')
c906108c
SS
2635 {
2636 depth += 1;
2637 }
070ad9f0 2638 else if (*p == ')' || *p == '>')
c906108c
SS
2639 {
2640 depth -= 1;
2641 }
2642 else if (*p == ',' && depth == 0)
2643 {
2644 argcount += 1;
2645 }
2646
2647 p += 1;
2648 }
2649
ad2f7632 2650 /* If we read one argument and it was ``void'', don't count it. */
61012eef 2651 if (startswith (argtypetext, "(void)"))
ad2f7632 2652 argcount -= 1;
c906108c 2653
ad2f7632
DJ
2654 /* We need one extra slot, for the THIS pointer. */
2655
2656 argtypes = (struct field *)
2657 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 2658 p = argtypetext;
4a1970e4
DJ
2659
2660 /* Add THIS pointer for non-static methods. */
2661 f = TYPE_FN_FIELDLIST1 (type, method_id);
2662 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2663 argcount = 0;
2664 else
2665 {
ad2f7632 2666 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
2667 argcount = 1;
2668 }
c906108c 2669
0963b4bd 2670 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
2671 {
2672 depth = 0;
2673 while (*p)
2674 {
2675 if (depth <= 0 && (*p == ',' || *p == ')'))
2676 {
ad2f7632
DJ
2677 /* Avoid parsing of ellipsis, they will be handled below.
2678 Also avoid ``void'' as above. */
2679 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2680 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 2681 {
ad2f7632 2682 argtypes[argcount].type =
48319d1f 2683 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
2684 argcount += 1;
2685 }
2686 argtypetext = p + 1;
2687 }
2688
070ad9f0 2689 if (*p == '(' || *p == '<')
c906108c
SS
2690 {
2691 depth += 1;
2692 }
070ad9f0 2693 else if (*p == ')' || *p == '>')
c906108c
SS
2694 {
2695 depth -= 1;
2696 }
2697
2698 p += 1;
2699 }
2700 }
2701
c906108c
SS
2702 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2703
2704 /* Now update the old "stub" type into a real type. */
2705 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
09e2d7c7
DE
2706 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2707 We want a method (TYPE_CODE_METHOD). */
2708 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2709 argtypes, argcount, p[-2] == '.');
876cecd0 2710 TYPE_STUB (mtype) = 0;
c906108c 2711 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632
DJ
2712
2713 xfree (demangled_name);
c906108c
SS
2714}
2715
7ba81444
MS
2716/* This is the external interface to check_stub_method, above. This
2717 function unstubs all of the signatures for TYPE's METHOD_ID method
2718 name. After calling this function TYPE_FN_FIELD_STUB will be
2719 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2720 correct.
de17c821
DJ
2721
2722 This function unfortunately can not die until stabs do. */
2723
2724void
2725check_stub_method_group (struct type *type, int method_id)
2726{
2727 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2728 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
de17c821 2729
041be526
SM
2730 for (int j = 0; j < len; j++)
2731 {
2732 if (TYPE_FN_FIELD_STUB (f, j))
de17c821 2733 check_stub_method (type, method_id, j);
de17c821
DJ
2734 }
2735}
2736
9655fd1a
JK
2737/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2738const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
2739
2740void
fba45db2 2741allocate_cplus_struct_type (struct type *type)
c906108c 2742{
b4ba55a1
JB
2743 if (HAVE_CPLUS_STRUCT (type))
2744 /* Structure was already allocated. Nothing more to do. */
2745 return;
2746
2747 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2748 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2749 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2750 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
ae6ae975 2751 set_type_vptr_fieldno (type, -1);
c906108c
SS
2752}
2753
b4ba55a1
JB
2754const struct gnat_aux_type gnat_aux_default =
2755 { NULL };
2756
2757/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2758 and allocate the associated gnat-specific data. The gnat-specific
2759 data is also initialized to gnat_aux_default. */
5212577a 2760
b4ba55a1
JB
2761void
2762allocate_gnat_aux_type (struct type *type)
2763{
2764 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2765 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2766 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2767 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2768}
2769
ae438bc5
UW
2770/* Helper function to initialize a newly allocated type. Set type code
2771 to CODE and initialize the type-specific fields accordingly. */
2772
2773static void
2774set_type_code (struct type *type, enum type_code code)
2775{
2776 TYPE_CODE (type) = code;
2777
2778 switch (code)
2779 {
2780 case TYPE_CODE_STRUCT:
2781 case TYPE_CODE_UNION:
2782 case TYPE_CODE_NAMESPACE:
2783 INIT_CPLUS_SPECIFIC (type);
2784 break;
2785 case TYPE_CODE_FLT:
2786 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2787 break;
2788 case TYPE_CODE_FUNC:
2789 INIT_FUNC_SPECIFIC (type);
2790 break;
2791 }
2792}
2793
19f392bc
UW
2794/* Helper function to verify floating-point format and size.
2795 BIT is the type size in bits; if BIT equals -1, the size is
2796 determined by the floatformat. Returns size to be used. */
2797
2798static int
0db7851f 2799verify_floatformat (int bit, const struct floatformat *floatformat)
19f392bc 2800{
0db7851f 2801 gdb_assert (floatformat != NULL);
9b790ce7 2802
19f392bc 2803 if (bit == -1)
0db7851f 2804 bit = floatformat->totalsize;
19f392bc 2805
0db7851f
UW
2806 gdb_assert (bit >= 0);
2807 gdb_assert (bit >= floatformat->totalsize);
19f392bc
UW
2808
2809 return bit;
2810}
2811
0db7851f
UW
2812/* Return the floating-point format for a floating-point variable of
2813 type TYPE. */
2814
2815const struct floatformat *
2816floatformat_from_type (const struct type *type)
2817{
2818 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2819 gdb_assert (TYPE_FLOATFORMAT (type));
2820 return TYPE_FLOATFORMAT (type);
2821}
2822
c906108c
SS
2823/* Helper function to initialize the standard scalar types.
2824
86f62fd7
TT
2825 If NAME is non-NULL, then it is used to initialize the type name.
2826 Note that NAME is not copied; it is required to have a lifetime at
2827 least as long as OBJFILE. */
c906108c
SS
2828
2829struct type *
77b7c781 2830init_type (struct objfile *objfile, enum type_code code, int bit,
19f392bc 2831 const char *name)
c906108c 2832{
52f0bd74 2833 struct type *type;
c906108c
SS
2834
2835 type = alloc_type (objfile);
ae438bc5 2836 set_type_code (type, code);
77b7c781
UW
2837 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
2838 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
86f62fd7 2839 TYPE_NAME (type) = name;
c906108c 2840
c16abbde 2841 return type;
c906108c 2842}
19f392bc 2843
46a4882b
PA
2844/* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2845 to use with variables that have no debug info. NAME is the type
2846 name. */
2847
2848static struct type *
2849init_nodebug_var_type (struct objfile *objfile, const char *name)
2850{
2851 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2852}
2853
19f392bc
UW
2854/* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2855 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2856 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2857
2858struct type *
2859init_integer_type (struct objfile *objfile,
2860 int bit, int unsigned_p, const char *name)
2861{
2862 struct type *t;
2863
77b7c781 2864 t = init_type (objfile, TYPE_CODE_INT, bit, name);
19f392bc
UW
2865 if (unsigned_p)
2866 TYPE_UNSIGNED (t) = 1;
2867
2868 return t;
2869}
2870
2871/* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2872 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2873 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2874
2875struct type *
2876init_character_type (struct objfile *objfile,
2877 int bit, int unsigned_p, const char *name)
2878{
2879 struct type *t;
2880
77b7c781 2881 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
19f392bc
UW
2882 if (unsigned_p)
2883 TYPE_UNSIGNED (t) = 1;
2884
2885 return t;
2886}
2887
2888/* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2889 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2890 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2891
2892struct type *
2893init_boolean_type (struct objfile *objfile,
2894 int bit, int unsigned_p, const char *name)
2895{
2896 struct type *t;
2897
77b7c781 2898 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
19f392bc
UW
2899 if (unsigned_p)
2900 TYPE_UNSIGNED (t) = 1;
2901
2902 return t;
2903}
2904
2905/* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2906 BIT is the type size in bits; if BIT equals -1, the size is
2907 determined by the floatformat. NAME is the type name. Set the
2908 TYPE_FLOATFORMAT from FLOATFORMATS. */
2909
2910struct type *
2911init_float_type (struct objfile *objfile,
2912 int bit, const char *name,
2913 const struct floatformat **floatformats)
2914{
0db7851f
UW
2915 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2916 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
19f392bc
UW
2917 struct type *t;
2918
0db7851f 2919 bit = verify_floatformat (bit, fmt);
77b7c781 2920 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
0db7851f 2921 TYPE_FLOATFORMAT (t) = fmt;
19f392bc
UW
2922
2923 return t;
2924}
2925
2926/* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2927 BIT is the type size in bits. NAME is the type name. */
2928
2929struct type *
2930init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2931{
2932 struct type *t;
2933
77b7c781 2934 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
19f392bc
UW
2935 return t;
2936}
2937
2938/* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2939 NAME is the type name. TARGET_TYPE is the component float type. */
2940
2941struct type *
2942init_complex_type (struct objfile *objfile,
2943 const char *name, struct type *target_type)
2944{
2945 struct type *t;
2946
2947 t = init_type (objfile, TYPE_CODE_COMPLEX,
77b7c781 2948 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
19f392bc
UW
2949 TYPE_TARGET_TYPE (t) = target_type;
2950 return t;
2951}
2952
2953/* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
2954 BIT is the pointer type size in bits. NAME is the type name.
2955 TARGET_TYPE is the pointer target type. Always sets the pointer type's
2956 TYPE_UNSIGNED flag. */
2957
2958struct type *
2959init_pointer_type (struct objfile *objfile,
2960 int bit, const char *name, struct type *target_type)
2961{
2962 struct type *t;
2963
77b7c781 2964 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
19f392bc
UW
2965 TYPE_TARGET_TYPE (t) = target_type;
2966 TYPE_UNSIGNED (t) = 1;
2967 return t;
2968}
2969
2b4424c3
TT
2970/* See gdbtypes.h. */
2971
2972unsigned
2973type_raw_align (struct type *type)
2974{
2975 if (type->align_log2 != 0)
2976 return 1 << (type->align_log2 - 1);
2977 return 0;
2978}
2979
2980/* See gdbtypes.h. */
2981
2982unsigned
2983type_align (struct type *type)
2984{
5561fc30 2985 /* Check alignment provided in the debug information. */
2b4424c3
TT
2986 unsigned raw_align = type_raw_align (type);
2987 if (raw_align != 0)
2988 return raw_align;
2989
5561fc30
AB
2990 /* Allow the architecture to provide an alignment. */
2991 struct gdbarch *arch = get_type_arch (type);
2992 ULONGEST align = gdbarch_type_align (arch, type);
2993 if (align != 0)
2994 return align;
2995
2b4424c3
TT
2996 switch (TYPE_CODE (type))
2997 {
2998 case TYPE_CODE_PTR:
2999 case TYPE_CODE_FUNC:
3000 case TYPE_CODE_FLAGS:
3001 case TYPE_CODE_INT:
75ba10dc 3002 case TYPE_CODE_RANGE:
2b4424c3
TT
3003 case TYPE_CODE_FLT:
3004 case TYPE_CODE_ENUM:
3005 case TYPE_CODE_REF:
3006 case TYPE_CODE_RVALUE_REF:
3007 case TYPE_CODE_CHAR:
3008 case TYPE_CODE_BOOL:
3009 case TYPE_CODE_DECFLOAT:
70cd633e
AB
3010 case TYPE_CODE_METHODPTR:
3011 case TYPE_CODE_MEMBERPTR:
5561fc30 3012 align = type_length_units (check_typedef (type));
2b4424c3
TT
3013 break;
3014
3015 case TYPE_CODE_ARRAY:
3016 case TYPE_CODE_COMPLEX:
3017 case TYPE_CODE_TYPEDEF:
3018 align = type_align (TYPE_TARGET_TYPE (type));
3019 break;
3020
3021 case TYPE_CODE_STRUCT:
3022 case TYPE_CODE_UNION:
3023 {
41077b66 3024 int number_of_non_static_fields = 0;
2b4424c3
TT
3025 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3026 {
bf9a735e 3027 if (!field_is_static (&TYPE_FIELD (type, i)))
2b4424c3 3028 {
41077b66 3029 number_of_non_static_fields++;
bf9a735e
AB
3030 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3031 if (f_align == 0)
3032 {
3033 /* Don't pretend we know something we don't. */
3034 align = 0;
3035 break;
3036 }
3037 if (f_align > align)
3038 align = f_align;
2b4424c3 3039 }
2b4424c3 3040 }
41077b66
AB
3041 /* A struct with no fields, or with only static fields has an
3042 alignment of 1. */
3043 if (number_of_non_static_fields == 0)
3044 align = 1;
2b4424c3
TT
3045 }
3046 break;
3047
3048 case TYPE_CODE_SET:
2b4424c3
TT
3049 case TYPE_CODE_STRING:
3050 /* Not sure what to do here, and these can't appear in C or C++
3051 anyway. */
3052 break;
3053
2b4424c3
TT
3054 case TYPE_CODE_VOID:
3055 align = 1;
3056 break;
3057
3058 case TYPE_CODE_ERROR:
3059 case TYPE_CODE_METHOD:
3060 default:
3061 break;
3062 }
3063
3064 if ((align & (align - 1)) != 0)
3065 {
3066 /* Not a power of 2, so pass. */
3067 align = 0;
3068 }
3069
3070 return align;
3071}
3072
3073/* See gdbtypes.h. */
3074
3075bool
3076set_type_align (struct type *type, ULONGEST align)
3077{
3078 /* Must be a power of 2. Zero is ok. */
3079 gdb_assert ((align & (align - 1)) == 0);
3080
3081 unsigned result = 0;
3082 while (align != 0)
3083 {
3084 ++result;
3085 align >>= 1;
3086 }
3087
3088 if (result >= (1 << TYPE_ALIGN_BITS))
3089 return false;
3090
3091 type->align_log2 = result;
3092 return true;
3093}
3094
5212577a
DE
3095\f
3096/* Queries on types. */
c906108c 3097
c906108c 3098int
fba45db2 3099can_dereference (struct type *t)
c906108c 3100{
7ba81444
MS
3101 /* FIXME: Should we return true for references as well as
3102 pointers? */
f168693b 3103 t = check_typedef (t);
c906108c
SS
3104 return
3105 (t != NULL
3106 && TYPE_CODE (t) == TYPE_CODE_PTR
3107 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3108}
3109
adf40b2e 3110int
fba45db2 3111is_integral_type (struct type *t)
adf40b2e 3112{
f168693b 3113 t = check_typedef (t);
adf40b2e
JM
3114 return
3115 ((t != NULL)
d4f3574e
SS
3116 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3117 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 3118 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
3119 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3120 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3121 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
3122}
3123
70100014
UW
3124int
3125is_floating_type (struct type *t)
3126{
3127 t = check_typedef (t);
3128 return
3129 ((t != NULL)
3130 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3131 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3132}
3133
e09342b5
TJB
3134/* Return true if TYPE is scalar. */
3135
220475ed 3136int
e09342b5
TJB
3137is_scalar_type (struct type *type)
3138{
f168693b 3139 type = check_typedef (type);
e09342b5
TJB
3140
3141 switch (TYPE_CODE (type))
3142 {
3143 case TYPE_CODE_ARRAY:
3144 case TYPE_CODE_STRUCT:
3145 case TYPE_CODE_UNION:
3146 case TYPE_CODE_SET:
3147 case TYPE_CODE_STRING:
e09342b5
TJB
3148 return 0;
3149 default:
3150 return 1;
3151 }
3152}
3153
3154/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
3155 the memory layout of a scalar type. E.g., an array or struct with only
3156 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
3157
3158int
3159is_scalar_type_recursive (struct type *t)
3160{
f168693b 3161 t = check_typedef (t);
e09342b5
TJB
3162
3163 if (is_scalar_type (t))
3164 return 1;
3165 /* Are we dealing with an array or string of known dimensions? */
3166 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3167 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3168 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3169 {
3170 LONGEST low_bound, high_bound;
3171 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3172
3173 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3174
3175 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3176 }
3177 /* Are we dealing with a struct with one element? */
3178 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3179 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3180 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3181 {
3182 int i, n = TYPE_NFIELDS (t);
3183
3184 /* If all elements of the union are scalar, then the union is scalar. */
3185 for (i = 0; i < n; i++)
3186 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3187 return 0;
3188
3189 return 1;
3190 }
3191
3192 return 0;
3193}
3194
6c659fc2
SC
3195/* Return true is T is a class or a union. False otherwise. */
3196
3197int
3198class_or_union_p (const struct type *t)
3199{
3200 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3201 || TYPE_CODE (t) == TYPE_CODE_UNION);
3202}
3203
4e8f195d
TT
3204/* A helper function which returns true if types A and B represent the
3205 "same" class type. This is true if the types have the same main
3206 type, or the same name. */
3207
3208int
3209class_types_same_p (const struct type *a, const struct type *b)
3210{
3211 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3212 || (TYPE_NAME (a) && TYPE_NAME (b)
3213 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3214}
3215
a9d5ef47
SW
3216/* If BASE is an ancestor of DCLASS return the distance between them.
3217 otherwise return -1;
3218 eg:
3219
3220 class A {};
3221 class B: public A {};
3222 class C: public B {};
3223 class D: C {};
3224
3225 distance_to_ancestor (A, A, 0) = 0
3226 distance_to_ancestor (A, B, 0) = 1
3227 distance_to_ancestor (A, C, 0) = 2
3228 distance_to_ancestor (A, D, 0) = 3
3229
3230 If PUBLIC is 1 then only public ancestors are considered,
3231 and the function returns the distance only if BASE is a public ancestor
3232 of DCLASS.
3233 Eg:
3234
0963b4bd 3235 distance_to_ancestor (A, D, 1) = -1. */
c906108c 3236
0526b37a 3237static int
fe978cb0 3238distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
c906108c
SS
3239{
3240 int i;
a9d5ef47 3241 int d;
c5aa993b 3242
f168693b
SM
3243 base = check_typedef (base);
3244 dclass = check_typedef (dclass);
c906108c 3245
4e8f195d 3246 if (class_types_same_p (base, dclass))
a9d5ef47 3247 return 0;
c906108c
SS
3248
3249 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 3250 {
fe978cb0 3251 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
0526b37a
SW
3252 continue;
3253
fe978cb0 3254 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
a9d5ef47
SW
3255 if (d >= 0)
3256 return 1 + d;
4e8f195d 3257 }
c906108c 3258
a9d5ef47 3259 return -1;
c906108c 3260}
4e8f195d 3261
0526b37a
SW
3262/* Check whether BASE is an ancestor or base class or DCLASS
3263 Return 1 if so, and 0 if not.
3264 Note: If BASE and DCLASS are of the same type, this function
3265 will return 1. So for some class A, is_ancestor (A, A) will
3266 return 1. */
3267
3268int
3269is_ancestor (struct type *base, struct type *dclass)
3270{
a9d5ef47 3271 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
3272}
3273
4e8f195d
TT
3274/* Like is_ancestor, but only returns true when BASE is a public
3275 ancestor of DCLASS. */
3276
3277int
3278is_public_ancestor (struct type *base, struct type *dclass)
3279{
a9d5ef47 3280 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
3281}
3282
3283/* A helper function for is_unique_ancestor. */
3284
3285static int
3286is_unique_ancestor_worker (struct type *base, struct type *dclass,
3287 int *offset,
8af8e3bc
PA
3288 const gdb_byte *valaddr, int embedded_offset,
3289 CORE_ADDR address, struct value *val)
4e8f195d
TT
3290{
3291 int i, count = 0;
3292
f168693b
SM
3293 base = check_typedef (base);
3294 dclass = check_typedef (dclass);
4e8f195d
TT
3295
3296 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3297 {
8af8e3bc
PA
3298 struct type *iter;
3299 int this_offset;
4e8f195d 3300
8af8e3bc
PA
3301 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3302
3303 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3304 address, val);
4e8f195d
TT
3305
3306 if (class_types_same_p (base, iter))
3307 {
3308 /* If this is the first subclass, set *OFFSET and set count
3309 to 1. Otherwise, if this is at the same offset as
3310 previous instances, do nothing. Otherwise, increment
3311 count. */
3312 if (*offset == -1)
3313 {
3314 *offset = this_offset;
3315 count = 1;
3316 }
3317 else if (this_offset == *offset)
3318 {
3319 /* Nothing. */
3320 }
3321 else
3322 ++count;
3323 }
3324 else
3325 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
3326 valaddr,
3327 embedded_offset + this_offset,
3328 address, val);
4e8f195d
TT
3329 }
3330
3331 return count;
3332}
3333
3334/* Like is_ancestor, but only returns true if BASE is a unique base
3335 class of the type of VAL. */
3336
3337int
3338is_unique_ancestor (struct type *base, struct value *val)
3339{
3340 int offset = -1;
3341
3342 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
3343 value_contents_for_printing (val),
3344 value_embedded_offset (val),
3345 value_address (val), val) == 1;
4e8f195d
TT
3346}
3347
c906108c 3348\f
5212577a 3349/* Overload resolution. */
c906108c 3350
6403aeea
SW
3351/* Return the sum of the rank of A with the rank of B. */
3352
3353struct rank
3354sum_ranks (struct rank a, struct rank b)
3355{
3356 struct rank c;
3357 c.rank = a.rank + b.rank;
a9d5ef47 3358 c.subrank = a.subrank + b.subrank;
6403aeea
SW
3359 return c;
3360}
3361
3362/* Compare rank A and B and return:
3363 0 if a = b
3364 1 if a is better than b
3365 -1 if b is better than a. */
3366
3367int
3368compare_ranks (struct rank a, struct rank b)
3369{
3370 if (a.rank == b.rank)
a9d5ef47
SW
3371 {
3372 if (a.subrank == b.subrank)
3373 return 0;
3374 if (a.subrank < b.subrank)
3375 return 1;
3376 if (a.subrank > b.subrank)
3377 return -1;
3378 }
6403aeea
SW
3379
3380 if (a.rank < b.rank)
3381 return 1;
3382
0963b4bd 3383 /* a.rank > b.rank */
6403aeea
SW
3384 return -1;
3385}
c5aa993b 3386
0963b4bd 3387/* Functions for overload resolution begin here. */
c906108c
SS
3388
3389/* Compare two badness vectors A and B and return the result.
7ba81444
MS
3390 0 => A and B are identical
3391 1 => A and B are incomparable
3392 2 => A is better than B
3393 3 => A is worse than B */
c906108c
SS
3394
3395int
82ceee50 3396compare_badness (const badness_vector &a, const badness_vector &b)
c906108c
SS
3397{
3398 int i;
3399 int tmp;
c5aa993b
JM
3400 short found_pos = 0; /* any positives in c? */
3401 short found_neg = 0; /* any negatives in c? */
3402
82ceee50
PA
3403 /* differing sizes => incomparable */
3404 if (a.size () != b.size ())
c906108c
SS
3405 return 1;
3406
c5aa993b 3407 /* Subtract b from a */
82ceee50 3408 for (i = 0; i < a.size (); i++)
c906108c 3409 {
82ceee50 3410 tmp = compare_ranks (b[i], a[i]);
c906108c 3411 if (tmp > 0)
c5aa993b 3412 found_pos = 1;
c906108c 3413 else if (tmp < 0)
c5aa993b 3414 found_neg = 1;
c906108c
SS
3415 }
3416
3417 if (found_pos)
3418 {
3419 if (found_neg)
c5aa993b 3420 return 1; /* incomparable */
c906108c 3421 else
c5aa993b 3422 return 3; /* A > B */
c906108c 3423 }
c5aa993b
JM
3424 else
3425 /* no positives */
c906108c
SS
3426 {
3427 if (found_neg)
c5aa993b 3428 return 2; /* A < B */
c906108c 3429 else
c5aa993b 3430 return 0; /* A == B */
c906108c
SS
3431 }
3432}
3433
6b1747cd 3434/* Rank a function by comparing its parameter types (PARMS), to the
82ceee50
PA
3435 types of an argument list (ARGS). Return the badness vector. This
3436 has ARGS.size() + 1 entries. */
c906108c 3437
82ceee50 3438badness_vector
6b1747cd
PA
3439rank_function (gdb::array_view<type *> parms,
3440 gdb::array_view<value *> args)
c906108c 3441{
82ceee50
PA
3442 /* add 1 for the length-match rank. */
3443 badness_vector bv;
3444 bv.reserve (1 + args.size ());
c906108c
SS
3445
3446 /* First compare the lengths of the supplied lists.
7ba81444 3447 If there is a mismatch, set it to a high value. */
c5aa993b 3448
c906108c 3449 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
3450 arguments and ellipsis parameter lists, we should consider those
3451 and rank the length-match more finely. */
c906108c 3452
82ceee50
PA
3453 bv.push_back ((args.size () != parms.size ())
3454 ? LENGTH_MISMATCH_BADNESS
3455 : EXACT_MATCH_BADNESS);
c906108c 3456
0963b4bd 3457 /* Now rank all the parameters of the candidate function. */
82ceee50
PA
3458 size_t min_len = std::min (parms.size (), args.size ());
3459
3460 for (size_t i = 0; i < min_len; i++)
3461 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3462 args[i]));
c906108c 3463
0963b4bd 3464 /* If more arguments than parameters, add dummy entries. */
82ceee50
PA
3465 for (size_t i = min_len; i < args.size (); i++)
3466 bv.push_back (TOO_FEW_PARAMS_BADNESS);
c906108c
SS
3467
3468 return bv;
3469}
3470
973ccf8b
DJ
3471/* Compare the names of two integer types, assuming that any sign
3472 qualifiers have been checked already. We do it this way because
3473 there may be an "int" in the name of one of the types. */
3474
3475static int
3476integer_types_same_name_p (const char *first, const char *second)
3477{
3478 int first_p, second_p;
3479
7ba81444
MS
3480 /* If both are shorts, return 1; if neither is a short, keep
3481 checking. */
973ccf8b
DJ
3482 first_p = (strstr (first, "short") != NULL);
3483 second_p = (strstr (second, "short") != NULL);
3484 if (first_p && second_p)
3485 return 1;
3486 if (first_p || second_p)
3487 return 0;
3488
3489 /* Likewise for long. */
3490 first_p = (strstr (first, "long") != NULL);
3491 second_p = (strstr (second, "long") != NULL);
3492 if (first_p && second_p)
3493 return 1;
3494 if (first_p || second_p)
3495 return 0;
3496
3497 /* Likewise for char. */
3498 first_p = (strstr (first, "char") != NULL);
3499 second_p = (strstr (second, "char") != NULL);
3500 if (first_p && second_p)
3501 return 1;
3502 if (first_p || second_p)
3503 return 0;
3504
3505 /* They must both be ints. */
3506 return 1;
3507}
3508
894882e3
TT
3509/* Compares type A to type B. Returns true if they represent the same
3510 type, false otherwise. */
7062b0a0 3511
894882e3 3512bool
7062b0a0
SW
3513types_equal (struct type *a, struct type *b)
3514{
3515 /* Identical type pointers. */
3516 /* However, this still doesn't catch all cases of same type for b
3517 and a. The reason is that builtin types are different from
3518 the same ones constructed from the object. */
3519 if (a == b)
894882e3 3520 return true;
7062b0a0
SW
3521
3522 /* Resolve typedefs */
3523 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3524 a = check_typedef (a);
3525 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3526 b = check_typedef (b);
3527
3528 /* If after resolving typedefs a and b are not of the same type
3529 code then they are not equal. */
3530 if (TYPE_CODE (a) != TYPE_CODE (b))
894882e3 3531 return false;
7062b0a0
SW
3532
3533 /* If a and b are both pointers types or both reference types then
3534 they are equal of the same type iff the objects they refer to are
3535 of the same type. */
3536 if (TYPE_CODE (a) == TYPE_CODE_PTR
3537 || TYPE_CODE (a) == TYPE_CODE_REF)
3538 return types_equal (TYPE_TARGET_TYPE (a),
3539 TYPE_TARGET_TYPE (b));
3540
0963b4bd 3541 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
3542 are exactly the same. This happens when we generate method
3543 stubs. The types won't point to the same address, but they
0963b4bd 3544 really are the same. */
7062b0a0
SW
3545
3546 if (TYPE_NAME (a) && TYPE_NAME (b)
3547 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
894882e3 3548 return true;
7062b0a0
SW
3549
3550 /* Check if identical after resolving typedefs. */
3551 if (a == b)
894882e3 3552 return true;
7062b0a0 3553
9ce98649
TT
3554 /* Two function types are equal if their argument and return types
3555 are equal. */
3556 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3557 {
3558 int i;
3559
3560 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
894882e3 3561 return false;
9ce98649
TT
3562
3563 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
894882e3 3564 return false;
9ce98649
TT
3565
3566 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3567 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
894882e3 3568 return false;
9ce98649 3569
894882e3 3570 return true;
9ce98649
TT
3571 }
3572
894882e3 3573 return false;
7062b0a0 3574}
ca092b61
DE
3575\f
3576/* Deep comparison of types. */
3577
3578/* An entry in the type-equality bcache. */
3579
894882e3 3580struct type_equality_entry
ca092b61 3581{
894882e3
TT
3582 type_equality_entry (struct type *t1, struct type *t2)
3583 : type1 (t1),
3584 type2 (t2)
3585 {
3586 }
ca092b61 3587
894882e3
TT
3588 struct type *type1, *type2;
3589};
ca092b61 3590
894882e3
TT
3591/* A helper function to compare two strings. Returns true if they are
3592 the same, false otherwise. Handles NULLs properly. */
ca092b61 3593
894882e3 3594static bool
ca092b61
DE
3595compare_maybe_null_strings (const char *s, const char *t)
3596{
894882e3
TT
3597 if (s == NULL || t == NULL)
3598 return s == t;
ca092b61
DE
3599 return strcmp (s, t) == 0;
3600}
3601
3602/* A helper function for check_types_worklist that checks two types for
894882e3
TT
3603 "deep" equality. Returns true if the types are considered the
3604 same, false otherwise. */
ca092b61 3605
894882e3 3606static bool
ca092b61 3607check_types_equal (struct type *type1, struct type *type2,
894882e3 3608 std::vector<type_equality_entry> *worklist)
ca092b61 3609{
f168693b
SM
3610 type1 = check_typedef (type1);
3611 type2 = check_typedef (type2);
ca092b61
DE
3612
3613 if (type1 == type2)
894882e3 3614 return true;
ca092b61
DE
3615
3616 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3617 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3618 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3619 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3620 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3621 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3622 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3623 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3624 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
894882e3 3625 return false;
ca092b61 3626
e86ca25f 3627 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
894882e3 3628 return false;
ca092b61 3629 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
894882e3 3630 return false;
ca092b61
DE
3631
3632 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3633 {
0f59d5fc 3634 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
894882e3 3635 return false;
ca092b61
DE
3636 }
3637 else
3638 {
3639 int i;
3640
3641 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3642 {
3643 const struct field *field1 = &TYPE_FIELD (type1, i);
3644 const struct field *field2 = &TYPE_FIELD (type2, i);
ca092b61
DE
3645
3646 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3647 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3648 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
894882e3 3649 return false;
ca092b61
DE
3650 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3651 FIELD_NAME (*field2)))
894882e3 3652 return false;
ca092b61
DE
3653 switch (FIELD_LOC_KIND (*field1))
3654 {
3655 case FIELD_LOC_KIND_BITPOS:
3656 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
894882e3 3657 return false;
ca092b61
DE
3658 break;
3659 case FIELD_LOC_KIND_ENUMVAL:
3660 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
894882e3 3661 return false;
ca092b61
DE
3662 break;
3663 case FIELD_LOC_KIND_PHYSADDR:
3664 if (FIELD_STATIC_PHYSADDR (*field1)
3665 != FIELD_STATIC_PHYSADDR (*field2))
894882e3 3666 return false;
ca092b61
DE
3667 break;
3668 case FIELD_LOC_KIND_PHYSNAME:
3669 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3670 FIELD_STATIC_PHYSNAME (*field2)))
894882e3 3671 return false;
ca092b61
DE
3672 break;
3673 case FIELD_LOC_KIND_DWARF_BLOCK:
3674 {
3675 struct dwarf2_locexpr_baton *block1, *block2;
3676
3677 block1 = FIELD_DWARF_BLOCK (*field1);
3678 block2 = FIELD_DWARF_BLOCK (*field2);
3679 if (block1->per_cu != block2->per_cu
3680 || block1->size != block2->size
3681 || memcmp (block1->data, block2->data, block1->size) != 0)
894882e3 3682 return false;
ca092b61
DE
3683 }
3684 break;
3685 default:
3686 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3687 "%d by check_types_equal"),
3688 FIELD_LOC_KIND (*field1));
3689 }
3690
894882e3 3691 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
ca092b61
DE
3692 }
3693 }
3694
3695 if (TYPE_TARGET_TYPE (type1) != NULL)
3696 {
ca092b61 3697 if (TYPE_TARGET_TYPE (type2) == NULL)
894882e3 3698 return false;
ca092b61 3699
894882e3
TT
3700 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
3701 TYPE_TARGET_TYPE (type2));
ca092b61
DE
3702 }
3703 else if (TYPE_TARGET_TYPE (type2) != NULL)
894882e3 3704 return false;
ca092b61 3705
894882e3 3706 return true;
ca092b61
DE
3707}
3708
894882e3
TT
3709/* Check types on a worklist for equality. Returns false if any pair
3710 is not equal, true if they are all considered equal. */
ca092b61 3711
894882e3
TT
3712static bool
3713check_types_worklist (std::vector<type_equality_entry> *worklist,
ca092b61
DE
3714 struct bcache *cache)
3715{
894882e3 3716 while (!worklist->empty ())
ca092b61 3717 {
ca092b61
DE
3718 int added;
3719
894882e3
TT
3720 struct type_equality_entry entry = std::move (worklist->back ());
3721 worklist->pop_back ();
ca092b61
DE
3722
3723 /* If the type pair has already been visited, we know it is
3724 ok. */
25629dfd 3725 cache->insert (&entry, sizeof (entry), &added);
ca092b61
DE
3726 if (!added)
3727 continue;
3728
894882e3
TT
3729 if (!check_types_equal (entry.type1, entry.type2, worklist))
3730 return false;
ca092b61 3731 }
7062b0a0 3732
894882e3 3733 return true;
ca092b61
DE
3734}
3735
894882e3
TT
3736/* Return true if types TYPE1 and TYPE2 are equal, as determined by a
3737 "deep comparison". Otherwise return false. */
ca092b61 3738
894882e3 3739bool
ca092b61
DE
3740types_deeply_equal (struct type *type1, struct type *type2)
3741{
894882e3 3742 std::vector<type_equality_entry> worklist;
ca092b61
DE
3743
3744 gdb_assert (type1 != NULL && type2 != NULL);
3745
3746 /* Early exit for the simple case. */
3747 if (type1 == type2)
894882e3 3748 return true;
ca092b61 3749
25629dfd 3750 struct bcache cache (nullptr, nullptr);
894882e3 3751 worklist.emplace_back (type1, type2);
25629dfd 3752 return check_types_worklist (&worklist, &cache);
ca092b61 3753}
3f2f83dd
KB
3754
3755/* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3756 Otherwise return one. */
3757
3758int
3759type_not_allocated (const struct type *type)
3760{
3761 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3762
3763 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3764 && !TYPE_DYN_PROP_ADDR (prop));
3765}
3766
3767/* Associated status of type TYPE. Return zero if type TYPE is associated.
3768 Otherwise return one. */
3769
3770int
3771type_not_associated (const struct type *type)
3772{
3773 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3774
3775 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3776 && !TYPE_DYN_PROP_ADDR (prop));
3777}
9293fc63
SM
3778
3779/* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
3780
3781static struct rank
3782rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
3783{
3784 struct rank rank = {0,0};
3785
3786 switch (TYPE_CODE (arg))
3787 {
3788 case TYPE_CODE_PTR:
3789
3790 /* Allowed pointer conversions are:
3791 (a) pointer to void-pointer conversion. */
3792 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3793 return VOID_PTR_CONVERSION_BADNESS;
3794
3795 /* (b) pointer to ancestor-pointer conversion. */
3796 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3797 TYPE_TARGET_TYPE (arg),
3798 0);
3799 if (rank.subrank >= 0)
3800 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3801
3802 return INCOMPATIBLE_TYPE_BADNESS;
3803 case TYPE_CODE_ARRAY:
3804 {
3805 struct type *t1 = TYPE_TARGET_TYPE (parm);
3806 struct type *t2 = TYPE_TARGET_TYPE (arg);
3807
3808 if (types_equal (t1, t2))
3809 {
3810 /* Make sure they are CV equal. */
3811 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3812 rank.subrank |= CV_CONVERSION_CONST;
3813 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3814 rank.subrank |= CV_CONVERSION_VOLATILE;
3815 if (rank.subrank != 0)
3816 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3817 return EXACT_MATCH_BADNESS;
3818 }
3819 return INCOMPATIBLE_TYPE_BADNESS;
3820 }
3821 case TYPE_CODE_FUNC:
3822 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3823 case TYPE_CODE_INT:
3824 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3825 {
3826 if (value_as_long (value) == 0)
3827 {
3828 /* Null pointer conversion: allow it to be cast to a pointer.
3829 [4.10.1 of C++ standard draft n3290] */
3830 return NULL_POINTER_CONVERSION_BADNESS;
3831 }
3832 else
3833 {
3834 /* If type checking is disabled, allow the conversion. */
3835 if (!strict_type_checking)
3836 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3837 }
3838 }
3839 /* fall through */
3840 case TYPE_CODE_ENUM:
3841 case TYPE_CODE_FLAGS:
3842 case TYPE_CODE_CHAR:
3843 case TYPE_CODE_RANGE:
3844 case TYPE_CODE_BOOL:
3845 default:
3846 return INCOMPATIBLE_TYPE_BADNESS;
3847 }
3848}
3849
b9f4512f
SM
3850/* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
3851
3852static struct rank
3853rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
3854{
3855 switch (TYPE_CODE (arg))
3856 {
3857 case TYPE_CODE_PTR:
3858 case TYPE_CODE_ARRAY:
3859 return rank_one_type (TYPE_TARGET_TYPE (parm),
3860 TYPE_TARGET_TYPE (arg), NULL);
3861 default:
3862 return INCOMPATIBLE_TYPE_BADNESS;
3863 }
3864}
3865
f1f832d6
SM
3866/* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
3867
3868static struct rank
3869rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
3870{
3871 switch (TYPE_CODE (arg))
3872 {
3873 case TYPE_CODE_PTR: /* funcptr -> func */
3874 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3875 default:
3876 return INCOMPATIBLE_TYPE_BADNESS;
3877 }
3878}
3879
34910087
SM
3880/* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
3881
3882static struct rank
3883rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
3884{
3885 switch (TYPE_CODE (arg))
3886 {
3887 case TYPE_CODE_INT:
3888 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3889 {
3890 /* Deal with signed, unsigned, and plain chars and
3891 signed and unsigned ints. */
3892 if (TYPE_NOSIGN (parm))
3893 {
3894 /* This case only for character types. */
3895 if (TYPE_NOSIGN (arg))
3896 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3897 else /* signed/unsigned char -> plain char */
3898 return INTEGER_CONVERSION_BADNESS;
3899 }
3900 else if (TYPE_UNSIGNED (parm))
3901 {
3902 if (TYPE_UNSIGNED (arg))
3903 {
3904 /* unsigned int -> unsigned int, or
3905 unsigned long -> unsigned long */
3906 if (integer_types_same_name_p (TYPE_NAME (parm),
3907 TYPE_NAME (arg)))
3908 return EXACT_MATCH_BADNESS;
3909 else if (integer_types_same_name_p (TYPE_NAME (arg),
3910 "int")
3911 && integer_types_same_name_p (TYPE_NAME (parm),
3912 "long"))
3913 /* unsigned int -> unsigned long */
3914 return INTEGER_PROMOTION_BADNESS;
3915 else
3916 /* unsigned long -> unsigned int */
3917 return INTEGER_CONVERSION_BADNESS;
3918 }
3919 else
3920 {
3921 if (integer_types_same_name_p (TYPE_NAME (arg),
3922 "long")
3923 && integer_types_same_name_p (TYPE_NAME (parm),
3924 "int"))
3925 /* signed long -> unsigned int */
3926 return INTEGER_CONVERSION_BADNESS;
3927 else
3928 /* signed int/long -> unsigned int/long */
3929 return INTEGER_CONVERSION_BADNESS;
3930 }
3931 }
3932 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3933 {
3934 if (integer_types_same_name_p (TYPE_NAME (parm),
3935 TYPE_NAME (arg)))
3936 return EXACT_MATCH_BADNESS;
3937 else if (integer_types_same_name_p (TYPE_NAME (arg),
3938 "int")
3939 && integer_types_same_name_p (TYPE_NAME (parm),
3940 "long"))
3941 return INTEGER_PROMOTION_BADNESS;
3942 else
3943 return INTEGER_CONVERSION_BADNESS;
3944 }
3945 else
3946 return INTEGER_CONVERSION_BADNESS;
3947 }
3948 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3949 return INTEGER_PROMOTION_BADNESS;
3950 else
3951 return INTEGER_CONVERSION_BADNESS;
3952 case TYPE_CODE_ENUM:
3953 case TYPE_CODE_FLAGS:
3954 case TYPE_CODE_CHAR:
3955 case TYPE_CODE_RANGE:
3956 case TYPE_CODE_BOOL:
3957 if (TYPE_DECLARED_CLASS (arg))
3958 return INCOMPATIBLE_TYPE_BADNESS;
3959 return INTEGER_PROMOTION_BADNESS;
3960 case TYPE_CODE_FLT:
3961 return INT_FLOAT_CONVERSION_BADNESS;
3962 case TYPE_CODE_PTR:
3963 return NS_POINTER_CONVERSION_BADNESS;
3964 default:
3965 return INCOMPATIBLE_TYPE_BADNESS;
3966 }
3967}
3968
793cd1d2
SM
3969/* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
3970
3971static struct rank
3972rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
3973{
3974 switch (TYPE_CODE (arg))
3975 {
3976 case TYPE_CODE_INT:
3977 case TYPE_CODE_CHAR:
3978 case TYPE_CODE_RANGE:
3979 case TYPE_CODE_BOOL:
3980 case TYPE_CODE_ENUM:
3981 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3982 return INCOMPATIBLE_TYPE_BADNESS;
3983 return INTEGER_CONVERSION_BADNESS;
3984 case TYPE_CODE_FLT:
3985 return INT_FLOAT_CONVERSION_BADNESS;
3986 default:
3987 return INCOMPATIBLE_TYPE_BADNESS;
3988 }
3989}
3990
41ea4728
SM
3991/* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
3992
3993static struct rank
3994rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
3995{
3996 switch (TYPE_CODE (arg))
3997 {
3998 case TYPE_CODE_RANGE:
3999 case TYPE_CODE_BOOL:
4000 case TYPE_CODE_ENUM:
4001 if (TYPE_DECLARED_CLASS (arg))
4002 return INCOMPATIBLE_TYPE_BADNESS;
4003 return INTEGER_CONVERSION_BADNESS;
4004 case TYPE_CODE_FLT:
4005 return INT_FLOAT_CONVERSION_BADNESS;
4006 case TYPE_CODE_INT:
4007 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4008 return INTEGER_CONVERSION_BADNESS;
4009 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4010 return INTEGER_PROMOTION_BADNESS;
4011 /* fall through */
4012 case TYPE_CODE_CHAR:
4013 /* Deal with signed, unsigned, and plain chars for C++ and
4014 with int cases falling through from previous case. */
4015 if (TYPE_NOSIGN (parm))
4016 {
4017 if (TYPE_NOSIGN (arg))
4018 return EXACT_MATCH_BADNESS;
4019 else
4020 return INTEGER_CONVERSION_BADNESS;
4021 }
4022 else if (TYPE_UNSIGNED (parm))
4023 {
4024 if (TYPE_UNSIGNED (arg))
4025 return EXACT_MATCH_BADNESS;
4026 else
4027 return INTEGER_PROMOTION_BADNESS;
4028 }
4029 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4030 return EXACT_MATCH_BADNESS;
4031 else
4032 return INTEGER_CONVERSION_BADNESS;
4033 default:
4034 return INCOMPATIBLE_TYPE_BADNESS;
4035 }
4036}
4037
0dd322dc
SM
4038/* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4039
4040static struct rank
4041rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4042{
4043 switch (TYPE_CODE (arg))
4044 {
4045 case TYPE_CODE_INT:
4046 case TYPE_CODE_CHAR:
4047 case TYPE_CODE_RANGE:
4048 case TYPE_CODE_BOOL:
4049 case TYPE_CODE_ENUM:
4050 return INTEGER_CONVERSION_BADNESS;
4051 case TYPE_CODE_FLT:
4052 return INT_FLOAT_CONVERSION_BADNESS;
4053 default:
4054 return INCOMPATIBLE_TYPE_BADNESS;
4055 }
4056}
4057
2c509035
SM
4058/* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4059
4060static struct rank
4061rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4062{
4063 switch (TYPE_CODE (arg))
4064 {
4065 /* n3290 draft, section 4.12.1 (conv.bool):
4066
4067 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4068 pointer to member type can be converted to a prvalue of type
4069 bool. A zero value, null pointer value, or null member pointer
4070 value is converted to false; any other value is converted to
4071 true. A prvalue of type std::nullptr_t can be converted to a
4072 prvalue of type bool; the resulting value is false." */
4073 case TYPE_CODE_INT:
4074 case TYPE_CODE_CHAR:
4075 case TYPE_CODE_ENUM:
4076 case TYPE_CODE_FLT:
4077 case TYPE_CODE_MEMBERPTR:
4078 case TYPE_CODE_PTR:
4079 return BOOL_CONVERSION_BADNESS;
4080 case TYPE_CODE_RANGE:
4081 return INCOMPATIBLE_TYPE_BADNESS;
4082 case TYPE_CODE_BOOL:
4083 return EXACT_MATCH_BADNESS;
4084 default:
4085 return INCOMPATIBLE_TYPE_BADNESS;
4086 }
4087}
4088
7f17b20d
SM
4089/* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4090
4091static struct rank
4092rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4093{
4094 switch (TYPE_CODE (arg))
4095 {
4096 case TYPE_CODE_FLT:
4097 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4098 return FLOAT_PROMOTION_BADNESS;
4099 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4100 return EXACT_MATCH_BADNESS;
4101 else
4102 return FLOAT_CONVERSION_BADNESS;
4103 case TYPE_CODE_INT:
4104 case TYPE_CODE_BOOL:
4105 case TYPE_CODE_ENUM:
4106 case TYPE_CODE_RANGE:
4107 case TYPE_CODE_CHAR:
4108 return INT_FLOAT_CONVERSION_BADNESS;
4109 default:
4110 return INCOMPATIBLE_TYPE_BADNESS;
4111 }
4112}
4113
2598a94b
SM
4114/* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4115
4116static struct rank
4117rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4118{
4119 switch (TYPE_CODE (arg))
4120 { /* Strictly not needed for C++, but... */
4121 case TYPE_CODE_FLT:
4122 return FLOAT_PROMOTION_BADNESS;
4123 case TYPE_CODE_COMPLEX:
4124 return EXACT_MATCH_BADNESS;
4125 default:
4126 return INCOMPATIBLE_TYPE_BADNESS;
4127 }
4128}
4129
595f96a9
SM
4130/* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4131
4132static struct rank
4133rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4134{
4135 struct rank rank = {0, 0};
4136
4137 switch (TYPE_CODE (arg))
4138 {
4139 case TYPE_CODE_STRUCT:
4140 /* Check for derivation */
4141 rank.subrank = distance_to_ancestor (parm, arg, 0);
4142 if (rank.subrank >= 0)
4143 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4144 /* fall through */
4145 default:
4146 return INCOMPATIBLE_TYPE_BADNESS;
4147 }
4148}
4149
f09ce22d
SM
4150/* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4151
4152static struct rank
4153rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4154{
4155 switch (TYPE_CODE (arg))
4156 {
4157 /* Not in C++ */
4158 case TYPE_CODE_SET:
4159 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4160 TYPE_FIELD_TYPE (arg, 0), NULL);
4161 default:
4162 return INCOMPATIBLE_TYPE_BADNESS;
4163 }
4164}
4165
c906108c
SS
4166/* Compare one type (PARM) for compatibility with another (ARG).
4167 * PARM is intended to be the parameter type of a function; and
4168 * ARG is the supplied argument's type. This function tests if
4169 * the latter can be converted to the former.
da096638 4170 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
4171 *
4172 * Return 0 if they are identical types;
4173 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
4174 * PARM is to ARG. The higher the return value, the worse the match.
4175 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 4176
6403aeea 4177struct rank
da096638 4178rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 4179{
a9d5ef47 4180 struct rank rank = {0,0};
7062b0a0 4181
c906108c
SS
4182 /* Resolve typedefs */
4183 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
4184 parm = check_typedef (parm);
4185 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
4186 arg = check_typedef (arg);
4187
e15c3eb4 4188 if (TYPE_IS_REFERENCE (parm) && value != NULL)
15c0a2a9 4189 {
e15c3eb4
KS
4190 if (VALUE_LVAL (value) == not_lval)
4191 {
4192 /* Rvalues should preferably bind to rvalue references or const
4193 lvalue references. */
4194 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4195 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4196 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4197 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4198 else
4199 return INCOMPATIBLE_TYPE_BADNESS;
4200 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4201 }
4202 else
4203 {
4204 /* Lvalues should prefer lvalue overloads. */
4205 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4206 {
4207 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4208 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4209 }
4210 }
15c0a2a9
AV
4211 }
4212
4213 if (types_equal (parm, arg))
15c0a2a9 4214 {
e15c3eb4
KS
4215 struct type *t1 = parm;
4216 struct type *t2 = arg;
15c0a2a9 4217
e15c3eb4
KS
4218 /* For pointers and references, compare target type. */
4219 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4220 {
4221 t1 = TYPE_TARGET_TYPE (parm);
4222 t2 = TYPE_TARGET_TYPE (arg);
4223 }
15c0a2a9 4224
e15c3eb4
KS
4225 /* Make sure they are CV equal, too. */
4226 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4227 rank.subrank |= CV_CONVERSION_CONST;
4228 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4229 rank.subrank |= CV_CONVERSION_VOLATILE;
4230 if (rank.subrank != 0)
4231 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4232 return EXACT_MATCH_BADNESS;
15c0a2a9
AV
4233 }
4234
db577aea 4235 /* See through references, since we can almost make non-references
7ba81444 4236 references. */
aa006118
AV
4237
4238 if (TYPE_IS_REFERENCE (arg))
da096638 4239 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
6403aeea 4240 REFERENCE_CONVERSION_BADNESS));
aa006118 4241 if (TYPE_IS_REFERENCE (parm))
da096638 4242 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
6403aeea 4243 REFERENCE_CONVERSION_BADNESS));
5d161b24 4244 if (overload_debug)
7ba81444
MS
4245 /* Debugging only. */
4246 fprintf_filtered (gdb_stderr,
4247 "------ Arg is %s [%d], parm is %s [%d]\n",
4248 TYPE_NAME (arg), TYPE_CODE (arg),
4249 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 4250
0963b4bd 4251 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
4252
4253 switch (TYPE_CODE (parm))
4254 {
c5aa993b 4255 case TYPE_CODE_PTR:
9293fc63 4256 return rank_one_type_parm_ptr (parm, arg, value);
c5aa993b 4257 case TYPE_CODE_ARRAY:
b9f4512f 4258 return rank_one_type_parm_array (parm, arg, value);
c5aa993b 4259 case TYPE_CODE_FUNC:
f1f832d6 4260 return rank_one_type_parm_func (parm, arg, value);
c5aa993b 4261 case TYPE_CODE_INT:
34910087 4262 return rank_one_type_parm_int (parm, arg, value);
c5aa993b 4263 case TYPE_CODE_ENUM:
793cd1d2 4264 return rank_one_type_parm_enum (parm, arg, value);
c5aa993b 4265 case TYPE_CODE_CHAR:
41ea4728 4266 return rank_one_type_parm_char (parm, arg, value);
c5aa993b 4267 case TYPE_CODE_RANGE:
0dd322dc 4268 return rank_one_type_parm_range (parm, arg, value);
c5aa993b 4269 case TYPE_CODE_BOOL:
2c509035 4270 return rank_one_type_parm_bool (parm, arg, value);
c5aa993b 4271 case TYPE_CODE_FLT:
7f17b20d 4272 return rank_one_type_parm_float (parm, arg, value);
c5aa993b 4273 case TYPE_CODE_COMPLEX:
2598a94b 4274 return rank_one_type_parm_complex (parm, arg, value);
c5aa993b 4275 case TYPE_CODE_STRUCT:
595f96a9 4276 return rank_one_type_parm_struct (parm, arg, value);
c5aa993b 4277 case TYPE_CODE_SET:
f09ce22d 4278 return rank_one_type_parm_set (parm, arg, value);
c5aa993b
JM
4279 default:
4280 return INCOMPATIBLE_TYPE_BADNESS;
4281 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
4282}
4283
0963b4bd 4284/* End of functions for overload resolution. */
5212577a
DE
4285\f
4286/* Routines to pretty-print types. */
c906108c 4287
c906108c 4288static void
fba45db2 4289print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
4290{
4291 int bitno;
4292
4293 for (bitno = 0; bitno < nbits; bitno++)
4294 {
4295 if ((bitno % 8) == 0)
4296 {
4297 puts_filtered (" ");
4298 }
4299 if (B_TST (bits, bitno))
a3f17187 4300 printf_filtered (("1"));
c906108c 4301 else
a3f17187 4302 printf_filtered (("0"));
c906108c
SS
4303 }
4304}
4305
ad2f7632 4306/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
4307 include it since we may get into a infinitely recursive
4308 situation. */
c906108c
SS
4309
4310static void
4c9e8482 4311print_args (struct field *args, int nargs, int spaces)
c906108c
SS
4312{
4313 if (args != NULL)
4314 {
ad2f7632
DJ
4315 int i;
4316
4317 for (i = 0; i < nargs; i++)
4c9e8482
DE
4318 {
4319 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4320 args[i].name != NULL ? args[i].name : "<NULL>");
4321 recursive_dump_type (args[i].type, spaces + 2);
4322 }
c906108c
SS
4323 }
4324}
4325
d6a843b5
JK
4326int
4327field_is_static (struct field *f)
4328{
4329 /* "static" fields are the fields whose location is not relative
4330 to the address of the enclosing struct. It would be nice to
4331 have a dedicated flag that would be set for static fields when
4332 the type is being created. But in practice, checking the field
254e6b9e 4333 loc_kind should give us an accurate answer. */
d6a843b5
JK
4334 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4335 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4336}
4337
c906108c 4338static void
fba45db2 4339dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
4340{
4341 int method_idx;
4342 int overload_idx;
4343 struct fn_field *f;
4344
4345 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 4346 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
4347 printf_filtered ("\n");
4348 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4349 {
4350 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4351 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4352 method_idx,
4353 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
4354 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4355 gdb_stdout);
a3f17187 4356 printf_filtered (_(") length %d\n"),
c906108c
SS
4357 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4358 for (overload_idx = 0;
4359 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4360 overload_idx++)
4361 {
4362 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4363 overload_idx,
4364 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
4365 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4366 gdb_stdout);
c906108c
SS
4367 printf_filtered (")\n");
4368 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
4369 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4370 gdb_stdout);
c906108c
SS
4371 printf_filtered ("\n");
4372
4373 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4374 spaces + 8 + 2);
4375
4376 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
4377 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4378 gdb_stdout);
c906108c 4379 printf_filtered ("\n");
4c9e8482
DE
4380 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4381 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4382 spaces + 8 + 2);
c906108c 4383 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
4384 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4385 gdb_stdout);
c906108c
SS
4386 printf_filtered ("\n");
4387
4388 printfi_filtered (spaces + 8, "is_const %d\n",
4389 TYPE_FN_FIELD_CONST (f, overload_idx));
4390 printfi_filtered (spaces + 8, "is_volatile %d\n",
4391 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4392 printfi_filtered (spaces + 8, "is_private %d\n",
4393 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4394 printfi_filtered (spaces + 8, "is_protected %d\n",
4395 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4396 printfi_filtered (spaces + 8, "is_stub %d\n",
4397 TYPE_FN_FIELD_STUB (f, overload_idx));
4398 printfi_filtered (spaces + 8, "voffset %u\n",
4399 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4400 }
4401 }
4402}
4403
4404static void
fba45db2 4405print_cplus_stuff (struct type *type, int spaces)
c906108c 4406{
ae6ae975
DE
4407 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4408 printfi_filtered (spaces, "vptr_basetype ");
4409 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4410 puts_filtered ("\n");
4411 if (TYPE_VPTR_BASETYPE (type) != NULL)
4412 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4413
c906108c
SS
4414 printfi_filtered (spaces, "n_baseclasses %d\n",
4415 TYPE_N_BASECLASSES (type));
4416 printfi_filtered (spaces, "nfn_fields %d\n",
4417 TYPE_NFN_FIELDS (type));
c906108c
SS
4418 if (TYPE_N_BASECLASSES (type) > 0)
4419 {
4420 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4421 TYPE_N_BASECLASSES (type));
7ba81444
MS
4422 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4423 gdb_stdout);
c906108c
SS
4424 printf_filtered (")");
4425
4426 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4427 TYPE_N_BASECLASSES (type));
4428 puts_filtered ("\n");
4429 }
4430 if (TYPE_NFIELDS (type) > 0)
4431 {
4432 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4433 {
7ba81444
MS
4434 printfi_filtered (spaces,
4435 "private_field_bits (%d bits at *",
c906108c 4436 TYPE_NFIELDS (type));
7ba81444
MS
4437 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4438 gdb_stdout);
c906108c
SS
4439 printf_filtered (")");
4440 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4441 TYPE_NFIELDS (type));
4442 puts_filtered ("\n");
4443 }
4444 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4445 {
7ba81444
MS
4446 printfi_filtered (spaces,
4447 "protected_field_bits (%d bits at *",
c906108c 4448 TYPE_NFIELDS (type));
7ba81444
MS
4449 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4450 gdb_stdout);
c906108c
SS
4451 printf_filtered (")");
4452 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4453 TYPE_NFIELDS (type));
4454 puts_filtered ("\n");
4455 }
4456 }
4457 if (TYPE_NFN_FIELDS (type) > 0)
4458 {
4459 dump_fn_fieldlists (type, spaces);
4460 }
4461}
4462
b4ba55a1
JB
4463/* Print the contents of the TYPE's type_specific union, assuming that
4464 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4465
4466static void
4467print_gnat_stuff (struct type *type, int spaces)
4468{
4469 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4470
8cd00c59
PMR
4471 if (descriptive_type == NULL)
4472 printfi_filtered (spaces + 2, "no descriptive type\n");
4473 else
4474 {
4475 printfi_filtered (spaces + 2, "descriptive type\n");
4476 recursive_dump_type (descriptive_type, spaces + 4);
4477 }
b4ba55a1
JB
4478}
4479
c906108c
SS
4480static struct obstack dont_print_type_obstack;
4481
4482void
fba45db2 4483recursive_dump_type (struct type *type, int spaces)
c906108c
SS
4484{
4485 int idx;
4486
4487 if (spaces == 0)
4488 obstack_begin (&dont_print_type_obstack, 0);
4489
4490 if (TYPE_NFIELDS (type) > 0
b4ba55a1 4491 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
4492 {
4493 struct type **first_dont_print
7ba81444 4494 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 4495
7ba81444
MS
4496 int i = (struct type **)
4497 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
4498
4499 while (--i >= 0)
4500 {
4501 if (type == first_dont_print[i])
4502 {
4503 printfi_filtered (spaces, "type node ");
d4f3574e 4504 gdb_print_host_address (type, gdb_stdout);
a3f17187 4505 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
4506 return;
4507 }
4508 }
4509
4510 obstack_ptr_grow (&dont_print_type_obstack, type);
4511 }
4512
4513 printfi_filtered (spaces, "type node ");
d4f3574e 4514 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
4515 printf_filtered ("\n");
4516 printfi_filtered (spaces, "name '%s' (",
4517 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 4518 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 4519 printf_filtered (")\n");
c906108c
SS
4520 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4521 switch (TYPE_CODE (type))
4522 {
c5aa993b
JM
4523 case TYPE_CODE_UNDEF:
4524 printf_filtered ("(TYPE_CODE_UNDEF)");
4525 break;
4526 case TYPE_CODE_PTR:
4527 printf_filtered ("(TYPE_CODE_PTR)");
4528 break;
4529 case TYPE_CODE_ARRAY:
4530 printf_filtered ("(TYPE_CODE_ARRAY)");
4531 break;
4532 case TYPE_CODE_STRUCT:
4533 printf_filtered ("(TYPE_CODE_STRUCT)");
4534 break;
4535 case TYPE_CODE_UNION:
4536 printf_filtered ("(TYPE_CODE_UNION)");
4537 break;
4538 case TYPE_CODE_ENUM:
4539 printf_filtered ("(TYPE_CODE_ENUM)");
4540 break;
4f2aea11
MK
4541 case TYPE_CODE_FLAGS:
4542 printf_filtered ("(TYPE_CODE_FLAGS)");
4543 break;
c5aa993b
JM
4544 case TYPE_CODE_FUNC:
4545 printf_filtered ("(TYPE_CODE_FUNC)");
4546 break;
4547 case TYPE_CODE_INT:
4548 printf_filtered ("(TYPE_CODE_INT)");
4549 break;
4550 case TYPE_CODE_FLT:
4551 printf_filtered ("(TYPE_CODE_FLT)");
4552 break;
4553 case TYPE_CODE_VOID:
4554 printf_filtered ("(TYPE_CODE_VOID)");
4555 break;
4556 case TYPE_CODE_SET:
4557 printf_filtered ("(TYPE_CODE_SET)");
4558 break;
4559 case TYPE_CODE_RANGE:
4560 printf_filtered ("(TYPE_CODE_RANGE)");
4561 break;
4562 case TYPE_CODE_STRING:
4563 printf_filtered ("(TYPE_CODE_STRING)");
4564 break;
4565 case TYPE_CODE_ERROR:
4566 printf_filtered ("(TYPE_CODE_ERROR)");
4567 break;
0d5de010
DJ
4568 case TYPE_CODE_MEMBERPTR:
4569 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4570 break;
4571 case TYPE_CODE_METHODPTR:
4572 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
4573 break;
4574 case TYPE_CODE_METHOD:
4575 printf_filtered ("(TYPE_CODE_METHOD)");
4576 break;
4577 case TYPE_CODE_REF:
4578 printf_filtered ("(TYPE_CODE_REF)");
4579 break;
4580 case TYPE_CODE_CHAR:
4581 printf_filtered ("(TYPE_CODE_CHAR)");
4582 break;
4583 case TYPE_CODE_BOOL:
4584 printf_filtered ("(TYPE_CODE_BOOL)");
4585 break;
e9e79dd9
FF
4586 case TYPE_CODE_COMPLEX:
4587 printf_filtered ("(TYPE_CODE_COMPLEX)");
4588 break;
c5aa993b
JM
4589 case TYPE_CODE_TYPEDEF:
4590 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4591 break;
5c4e30ca
DC
4592 case TYPE_CODE_NAMESPACE:
4593 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4594 break;
c5aa993b
JM
4595 default:
4596 printf_filtered ("(UNKNOWN TYPE CODE)");
4597 break;
c906108c
SS
4598 }
4599 puts_filtered ("\n");
cc1defb1 4600 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
e9bb382b
UW
4601 if (TYPE_OBJFILE_OWNED (type))
4602 {
4603 printfi_filtered (spaces, "objfile ");
4604 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4605 }
4606 else
4607 {
4608 printfi_filtered (spaces, "gdbarch ");
4609 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4610 }
c906108c
SS
4611 printf_filtered ("\n");
4612 printfi_filtered (spaces, "target_type ");
d4f3574e 4613 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
4614 printf_filtered ("\n");
4615 if (TYPE_TARGET_TYPE (type) != NULL)
4616 {
4617 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4618 }
4619 printfi_filtered (spaces, "pointer_type ");
d4f3574e 4620 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
4621 printf_filtered ("\n");
4622 printfi_filtered (spaces, "reference_type ");
d4f3574e 4623 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 4624 printf_filtered ("\n");
2fdde8f8
DJ
4625 printfi_filtered (spaces, "type_chain ");
4626 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 4627 printf_filtered ("\n");
7ba81444
MS
4628 printfi_filtered (spaces, "instance_flags 0x%x",
4629 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
4630 if (TYPE_CONST (type))
4631 {
a9ff5f12 4632 puts_filtered (" TYPE_CONST");
2fdde8f8
DJ
4633 }
4634 if (TYPE_VOLATILE (type))
4635 {
a9ff5f12 4636 puts_filtered (" TYPE_VOLATILE");
2fdde8f8
DJ
4637 }
4638 if (TYPE_CODE_SPACE (type))
4639 {
a9ff5f12 4640 puts_filtered (" TYPE_CODE_SPACE");
2fdde8f8
DJ
4641 }
4642 if (TYPE_DATA_SPACE (type))
4643 {
a9ff5f12 4644 puts_filtered (" TYPE_DATA_SPACE");
2fdde8f8 4645 }
8b2dbe47
KB
4646 if (TYPE_ADDRESS_CLASS_1 (type))
4647 {
a9ff5f12 4648 puts_filtered (" TYPE_ADDRESS_CLASS_1");
8b2dbe47
KB
4649 }
4650 if (TYPE_ADDRESS_CLASS_2 (type))
4651 {
a9ff5f12 4652 puts_filtered (" TYPE_ADDRESS_CLASS_2");
8b2dbe47 4653 }
06d66ee9
TT
4654 if (TYPE_RESTRICT (type))
4655 {
a9ff5f12 4656 puts_filtered (" TYPE_RESTRICT");
06d66ee9 4657 }
a2c2acaf
MW
4658 if (TYPE_ATOMIC (type))
4659 {
a9ff5f12 4660 puts_filtered (" TYPE_ATOMIC");
a2c2acaf 4661 }
2fdde8f8 4662 puts_filtered ("\n");
876cecd0
TT
4663
4664 printfi_filtered (spaces, "flags");
762a036f 4665 if (TYPE_UNSIGNED (type))
c906108c 4666 {
a9ff5f12 4667 puts_filtered (" TYPE_UNSIGNED");
c906108c 4668 }
762a036f
FF
4669 if (TYPE_NOSIGN (type))
4670 {
a9ff5f12 4671 puts_filtered (" TYPE_NOSIGN");
762a036f
FF
4672 }
4673 if (TYPE_STUB (type))
c906108c 4674 {
a9ff5f12 4675 puts_filtered (" TYPE_STUB");
c906108c 4676 }
762a036f
FF
4677 if (TYPE_TARGET_STUB (type))
4678 {
a9ff5f12 4679 puts_filtered (" TYPE_TARGET_STUB");
762a036f 4680 }
762a036f
FF
4681 if (TYPE_PROTOTYPED (type))
4682 {
a9ff5f12 4683 puts_filtered (" TYPE_PROTOTYPED");
762a036f
FF
4684 }
4685 if (TYPE_INCOMPLETE (type))
4686 {
a9ff5f12 4687 puts_filtered (" TYPE_INCOMPLETE");
762a036f 4688 }
762a036f
FF
4689 if (TYPE_VARARGS (type))
4690 {
a9ff5f12 4691 puts_filtered (" TYPE_VARARGS");
762a036f 4692 }
f5f8a009
EZ
4693 /* This is used for things like AltiVec registers on ppc. Gcc emits
4694 an attribute for the array type, which tells whether or not we
4695 have a vector, instead of a regular array. */
4696 if (TYPE_VECTOR (type))
4697 {
a9ff5f12 4698 puts_filtered (" TYPE_VECTOR");
f5f8a009 4699 }
876cecd0
TT
4700 if (TYPE_FIXED_INSTANCE (type))
4701 {
4702 puts_filtered (" TYPE_FIXED_INSTANCE");
4703 }
4704 if (TYPE_STUB_SUPPORTED (type))
4705 {
4706 puts_filtered (" TYPE_STUB_SUPPORTED");
4707 }
4708 if (TYPE_NOTTEXT (type))
4709 {
4710 puts_filtered (" TYPE_NOTTEXT");
4711 }
c906108c
SS
4712 puts_filtered ("\n");
4713 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 4714 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
4715 puts_filtered ("\n");
4716 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4717 {
14e75d8e
JK
4718 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4719 printfi_filtered (spaces + 2,
4720 "[%d] enumval %s type ",
4721 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4722 else
4723 printfi_filtered (spaces + 2,
6b850546
DT
4724 "[%d] bitpos %s bitsize %d type ",
4725 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
14e75d8e 4726 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 4727 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
4728 printf_filtered (" name '%s' (",
4729 TYPE_FIELD_NAME (type, idx) != NULL
4730 ? TYPE_FIELD_NAME (type, idx)
4731 : "<NULL>");
d4f3574e 4732 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
4733 printf_filtered (")\n");
4734 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4735 {
4736 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4737 }
4738 }
43bbcdc2
PH
4739 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4740 {
4741 printfi_filtered (spaces, "low %s%s high %s%s\n",
4742 plongest (TYPE_LOW_BOUND (type)),
4743 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4744 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
4745 TYPE_HIGH_BOUND_UNDEFINED (type)
4746 ? " (undefined)" : "");
43bbcdc2 4747 }
c906108c 4748
b4ba55a1
JB
4749 switch (TYPE_SPECIFIC_FIELD (type))
4750 {
4751 case TYPE_SPECIFIC_CPLUS_STUFF:
4752 printfi_filtered (spaces, "cplus_stuff ");
4753 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4754 gdb_stdout);
4755 puts_filtered ("\n");
4756 print_cplus_stuff (type, spaces);
4757 break;
8da61cc4 4758
b4ba55a1
JB
4759 case TYPE_SPECIFIC_GNAT_STUFF:
4760 printfi_filtered (spaces, "gnat_stuff ");
4761 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4762 puts_filtered ("\n");
4763 print_gnat_stuff (type, spaces);
4764 break;
701c159d 4765
b4ba55a1
JB
4766 case TYPE_SPECIFIC_FLOATFORMAT:
4767 printfi_filtered (spaces, "floatformat ");
0db7851f
UW
4768 if (TYPE_FLOATFORMAT (type) == NULL
4769 || TYPE_FLOATFORMAT (type)->name == NULL)
b4ba55a1
JB
4770 puts_filtered ("(null)");
4771 else
0db7851f 4772 puts_filtered (TYPE_FLOATFORMAT (type)->name);
b4ba55a1
JB
4773 puts_filtered ("\n");
4774 break;
c906108c 4775
b6cdc2c1 4776 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
4777 printfi_filtered (spaces, "calling_convention %d\n",
4778 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 4779 /* tail_call_list is not printed. */
b4ba55a1 4780 break;
09e2d7c7
DE
4781
4782 case TYPE_SPECIFIC_SELF_TYPE:
4783 printfi_filtered (spaces, "self_type ");
4784 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4785 puts_filtered ("\n");
4786 break;
c906108c 4787 }
b4ba55a1 4788
c906108c
SS
4789 if (spaces == 0)
4790 obstack_free (&dont_print_type_obstack, NULL);
4791}
5212577a 4792\f
ae5a43e0
DJ
4793/* Trivial helpers for the libiberty hash table, for mapping one
4794 type to another. */
4795
fd90ace4 4796struct type_pair : public allocate_on_obstack
ae5a43e0 4797{
fd90ace4
YQ
4798 type_pair (struct type *old_, struct type *newobj_)
4799 : old (old_), newobj (newobj_)
4800 {}
4801
4802 struct type * const old, * const newobj;
ae5a43e0
DJ
4803};
4804
4805static hashval_t
4806type_pair_hash (const void *item)
4807{
9a3c8263 4808 const struct type_pair *pair = (const struct type_pair *) item;
d8734c88 4809
ae5a43e0
DJ
4810 return htab_hash_pointer (pair->old);
4811}
4812
4813static int
4814type_pair_eq (const void *item_lhs, const void *item_rhs)
4815{
9a3c8263
SM
4816 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4817 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
d8734c88 4818
ae5a43e0
DJ
4819 return lhs->old == rhs->old;
4820}
4821
4822/* Allocate the hash table used by copy_type_recursive to walk
4823 types without duplicates. We use OBJFILE's obstack, because
4824 OBJFILE is about to be deleted. */
4825
4826htab_t
4827create_copied_types_hash (struct objfile *objfile)
4828{
4829 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4830 NULL, &objfile->objfile_obstack,
4831 hashtab_obstack_allocate,
4832 dummy_obstack_deallocate);
4833}
4834
d9823cbb
KB
4835/* Recursively copy (deep copy) a dynamic attribute list of a type. */
4836
4837static struct dynamic_prop_list *
4838copy_dynamic_prop_list (struct obstack *objfile_obstack,
4839 struct dynamic_prop_list *list)
4840{
4841 struct dynamic_prop_list *copy = list;
4842 struct dynamic_prop_list **node_ptr = &copy;
4843
4844 while (*node_ptr != NULL)
4845 {
4846 struct dynamic_prop_list *node_copy;
4847
224c3ddb
SM
4848 node_copy = ((struct dynamic_prop_list *)
4849 obstack_copy (objfile_obstack, *node_ptr,
4850 sizeof (struct dynamic_prop_list)));
283a9958 4851 node_copy->prop = (*node_ptr)->prop;
d9823cbb
KB
4852 *node_ptr = node_copy;
4853
4854 node_ptr = &node_copy->next;
4855 }
4856
4857 return copy;
4858}
4859
7ba81444 4860/* Recursively copy (deep copy) TYPE, if it is associated with
eed8b28a
PP
4861 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4862 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4863 it is not associated with OBJFILE. */
ae5a43e0
DJ
4864
4865struct type *
7ba81444
MS
4866copy_type_recursive (struct objfile *objfile,
4867 struct type *type,
ae5a43e0
DJ
4868 htab_t copied_types)
4869{
ae5a43e0
DJ
4870 void **slot;
4871 struct type *new_type;
4872
e9bb382b 4873 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
4874 return type;
4875
7ba81444
MS
4876 /* This type shouldn't be pointing to any types in other objfiles;
4877 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
4878 gdb_assert (TYPE_OBJFILE (type) == objfile);
4879
fd90ace4
YQ
4880 struct type_pair pair (type, nullptr);
4881
ae5a43e0
DJ
4882 slot = htab_find_slot (copied_types, &pair, INSERT);
4883 if (*slot != NULL)
fe978cb0 4884 return ((struct type_pair *) *slot)->newobj;
ae5a43e0 4885
e9bb382b 4886 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
4887
4888 /* We must add the new type to the hash table immediately, in case
4889 we encounter this type again during a recursive call below. */
fd90ace4
YQ
4890 struct type_pair *stored
4891 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
4892
ae5a43e0
DJ
4893 *slot = stored;
4894
876cecd0
TT
4895 /* Copy the common fields of types. For the main type, we simply
4896 copy the entire thing and then update specific fields as needed. */
4897 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
4898 TYPE_OBJFILE_OWNED (new_type) = 0;
4899 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 4900
ae5a43e0
DJ
4901 if (TYPE_NAME (type))
4902 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
ae5a43e0
DJ
4903
4904 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4905 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4906
4907 /* Copy the fields. */
ae5a43e0
DJ
4908 if (TYPE_NFIELDS (type))
4909 {
4910 int i, nfields;
4911
4912 nfields = TYPE_NFIELDS (type);
2fabdf33
AB
4913 TYPE_FIELDS (new_type) = (struct field *)
4914 TYPE_ZALLOC (new_type, nfields * sizeof (struct field));
ae5a43e0
DJ
4915 for (i = 0; i < nfields; i++)
4916 {
7ba81444
MS
4917 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4918 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
4919 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4920 if (TYPE_FIELD_TYPE (type, i))
4921 TYPE_FIELD_TYPE (new_type, i)
4922 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4923 copied_types);
4924 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
4925 TYPE_FIELD_NAME (new_type, i) =
4926 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 4927 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 4928 {
d6a843b5
JK
4929 case FIELD_LOC_KIND_BITPOS:
4930 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4931 TYPE_FIELD_BITPOS (type, i));
4932 break;
14e75d8e
JK
4933 case FIELD_LOC_KIND_ENUMVAL:
4934 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4935 TYPE_FIELD_ENUMVAL (type, i));
4936 break;
d6a843b5
JK
4937 case FIELD_LOC_KIND_PHYSADDR:
4938 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4939 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4940 break;
4941 case FIELD_LOC_KIND_PHYSNAME:
4942 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4943 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4944 i)));
4945 break;
4946 default:
4947 internal_error (__FILE__, __LINE__,
4948 _("Unexpected type field location kind: %d"),
4949 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
4950 }
4951 }
4952 }
4953
0963b4bd 4954 /* For range types, copy the bounds information. */
43bbcdc2
PH
4955 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4956 {
2fabdf33
AB
4957 TYPE_RANGE_DATA (new_type) = (struct range_bounds *)
4958 TYPE_ALLOC (new_type, sizeof (struct range_bounds));
43bbcdc2
PH
4959 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4960 }
4961
d9823cbb
KB
4962 if (TYPE_DYN_PROP_LIST (type) != NULL)
4963 TYPE_DYN_PROP_LIST (new_type)
4964 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4965 TYPE_DYN_PROP_LIST (type));
4966
3cdcd0ce 4967
ae5a43e0
DJ
4968 /* Copy pointers to other types. */
4969 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
4970 TYPE_TARGET_TYPE (new_type) =
4971 copy_type_recursive (objfile,
4972 TYPE_TARGET_TYPE (type),
4973 copied_types);
f6b3afbf 4974
ae5a43e0
DJ
4975 /* Maybe copy the type_specific bits.
4976
4977 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4978 base classes and methods. There's no fundamental reason why we
4979 can't, but at the moment it is not needed. */
4980
f6b3afbf
DE
4981 switch (TYPE_SPECIFIC_FIELD (type))
4982 {
4983 case TYPE_SPECIFIC_NONE:
4984 break;
4985 case TYPE_SPECIFIC_FUNC:
4986 INIT_FUNC_SPECIFIC (new_type);
4987 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4988 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4989 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4990 break;
4991 case TYPE_SPECIFIC_FLOATFORMAT:
4992 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4993 break;
4994 case TYPE_SPECIFIC_CPLUS_STUFF:
4995 INIT_CPLUS_SPECIFIC (new_type);
4996 break;
4997 case TYPE_SPECIFIC_GNAT_STUFF:
4998 INIT_GNAT_SPECIFIC (new_type);
4999 break;
09e2d7c7
DE
5000 case TYPE_SPECIFIC_SELF_TYPE:
5001 set_type_self_type (new_type,
5002 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5003 copied_types));
5004 break;
f6b3afbf
DE
5005 default:
5006 gdb_assert_not_reached ("bad type_specific_kind");
5007 }
ae5a43e0
DJ
5008
5009 return new_type;
5010}
5011
4af88198
JB
5012/* Make a copy of the given TYPE, except that the pointer & reference
5013 types are not preserved.
5014
5015 This function assumes that the given type has an associated objfile.
5016 This objfile is used to allocate the new type. */
5017
5018struct type *
5019copy_type (const struct type *type)
5020{
5021 struct type *new_type;
5022
e9bb382b 5023 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 5024
e9bb382b 5025 new_type = alloc_type_copy (type);
4af88198
JB
5026 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5027 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5028 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5029 sizeof (struct main_type));
d9823cbb
KB
5030 if (TYPE_DYN_PROP_LIST (type) != NULL)
5031 TYPE_DYN_PROP_LIST (new_type)
5032 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5033 TYPE_DYN_PROP_LIST (type));
4af88198
JB
5034
5035 return new_type;
5036}
5212577a 5037\f
e9bb382b
UW
5038/* Helper functions to initialize architecture-specific types. */
5039
5040/* Allocate a type structure associated with GDBARCH and set its
5041 CODE, LENGTH, and NAME fields. */
5212577a 5042
e9bb382b
UW
5043struct type *
5044arch_type (struct gdbarch *gdbarch,
77b7c781 5045 enum type_code code, int bit, const char *name)
e9bb382b
UW
5046{
5047 struct type *type;
5048
5049 type = alloc_type_arch (gdbarch);
ae438bc5 5050 set_type_code (type, code);
77b7c781
UW
5051 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5052 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
e9bb382b
UW
5053
5054 if (name)
6c214e7c 5055 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
e9bb382b
UW
5056
5057 return type;
5058}
5059
5060/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5061 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5062 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5063
e9bb382b
UW
5064struct type *
5065arch_integer_type (struct gdbarch *gdbarch,
695bfa52 5066 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5067{
5068 struct type *t;
5069
77b7c781 5070 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
e9bb382b
UW
5071 if (unsigned_p)
5072 TYPE_UNSIGNED (t) = 1;
e9bb382b
UW
5073
5074 return t;
5075}
5076
5077/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5078 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5079 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5080
e9bb382b
UW
5081struct type *
5082arch_character_type (struct gdbarch *gdbarch,
695bfa52 5083 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5084{
5085 struct type *t;
5086
77b7c781 5087 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
e9bb382b
UW
5088 if (unsigned_p)
5089 TYPE_UNSIGNED (t) = 1;
5090
5091 return t;
5092}
5093
5094/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5095 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5096 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5097
e9bb382b
UW
5098struct type *
5099arch_boolean_type (struct gdbarch *gdbarch,
695bfa52 5100 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5101{
5102 struct type *t;
5103
77b7c781 5104 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
e9bb382b
UW
5105 if (unsigned_p)
5106 TYPE_UNSIGNED (t) = 1;
5107
5108 return t;
5109}
5110
5111/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5112 BIT is the type size in bits; if BIT equals -1, the size is
5113 determined by the floatformat. NAME is the type name. Set the
5114 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 5115
27067745 5116struct type *
e9bb382b 5117arch_float_type (struct gdbarch *gdbarch,
695bfa52
TT
5118 int bit, const char *name,
5119 const struct floatformat **floatformats)
8da61cc4 5120{
0db7851f 5121 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
8da61cc4
DJ
5122 struct type *t;
5123
0db7851f 5124 bit = verify_floatformat (bit, fmt);
77b7c781 5125 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
0db7851f 5126 TYPE_FLOATFORMAT (t) = fmt;
b79497cb 5127
8da61cc4
DJ
5128 return t;
5129}
5130
88dfca6c
UW
5131/* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5132 BIT is the type size in bits. NAME is the type name. */
5133
5134struct type *
5135arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5136{
5137 struct type *t;
5138
77b7c781 5139 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
88dfca6c
UW
5140 return t;
5141}
5142
e9bb382b
UW
5143/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
5144 NAME is the type name. TARGET_TYPE is the component float type. */
5212577a 5145
27067745 5146struct type *
e9bb382b 5147arch_complex_type (struct gdbarch *gdbarch,
695bfa52 5148 const char *name, struct type *target_type)
27067745
UW
5149{
5150 struct type *t;
d8734c88 5151
e9bb382b 5152 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
77b7c781 5153 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
27067745
UW
5154 TYPE_TARGET_TYPE (t) = target_type;
5155 return t;
5156}
5157
88dfca6c
UW
5158/* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5159 BIT is the pointer type size in bits. NAME is the type name.
5160 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5161 TYPE_UNSIGNED flag. */
5162
5163struct type *
5164arch_pointer_type (struct gdbarch *gdbarch,
5165 int bit, const char *name, struct type *target_type)
5166{
5167 struct type *t;
5168
77b7c781 5169 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
88dfca6c
UW
5170 TYPE_TARGET_TYPE (t) = target_type;
5171 TYPE_UNSIGNED (t) = 1;
5172 return t;
5173}
5174
e9bb382b 5175/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
77b7c781 5176 NAME is the type name. BIT is the size of the flag word in bits. */
5212577a 5177
e9bb382b 5178struct type *
77b7c781 5179arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
e9bb382b 5180{
e9bb382b
UW
5181 struct type *type;
5182
77b7c781 5183 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
e9bb382b 5184 TYPE_UNSIGNED (type) = 1;
81516450
DE
5185 TYPE_NFIELDS (type) = 0;
5186 /* Pre-allocate enough space assuming every field is one bit. */
224c3ddb 5187 TYPE_FIELDS (type)
77b7c781 5188 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
e9bb382b
UW
5189
5190 return type;
5191}
5192
5193/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
81516450
DE
5194 position BITPOS is called NAME. Pass NAME as "" for fields that
5195 should not be printed. */
5196
5197void
5198append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
695bfa52 5199 struct type *field_type, const char *name)
81516450
DE
5200{
5201 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5202 int field_nr = TYPE_NFIELDS (type);
5203
5204 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5205 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5206 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5207 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5208 gdb_assert (name != NULL);
5209
5210 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5211 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5212 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5213 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5214 ++TYPE_NFIELDS (type);
5215}
5216
5217/* Special version of append_flags_type_field to add a flag field.
5218 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
e9bb382b 5219 position BITPOS is called NAME. */
5212577a 5220
e9bb382b 5221void
695bfa52 5222append_flags_type_flag (struct type *type, int bitpos, const char *name)
e9bb382b 5223{
81516450 5224 struct gdbarch *gdbarch = get_type_arch (type);
e9bb382b 5225
81516450
DE
5226 append_flags_type_field (type, bitpos, 1,
5227 builtin_type (gdbarch)->builtin_bool,
5228 name);
e9bb382b
UW
5229}
5230
5231/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5232 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 5233
e9bb382b 5234struct type *
695bfa52
TT
5235arch_composite_type (struct gdbarch *gdbarch, const char *name,
5236 enum type_code code)
e9bb382b
UW
5237{
5238 struct type *t;
d8734c88 5239
e9bb382b
UW
5240 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5241 t = arch_type (gdbarch, code, 0, NULL);
e86ca25f 5242 TYPE_NAME (t) = name;
e9bb382b
UW
5243 INIT_CPLUS_SPECIFIC (t);
5244 return t;
5245}
5246
5247/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
5248 Do not set the field's position or adjust the type's length;
5249 the caller should do so. Return the new field. */
5212577a 5250
f5dff777 5251struct field *
695bfa52 5252append_composite_type_field_raw (struct type *t, const char *name,
f5dff777 5253 struct type *field)
e9bb382b
UW
5254{
5255 struct field *f;
d8734c88 5256
e9bb382b 5257 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
224c3ddb
SM
5258 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5259 TYPE_NFIELDS (t));
e9bb382b
UW
5260 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5261 memset (f, 0, sizeof f[0]);
5262 FIELD_TYPE (f[0]) = field;
5263 FIELD_NAME (f[0]) = name;
f5dff777
DJ
5264 return f;
5265}
5266
5267/* Add new field with name NAME and type FIELD to composite type T.
5268 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 5269
f5dff777 5270void
695bfa52 5271append_composite_type_field_aligned (struct type *t, const char *name,
f5dff777
DJ
5272 struct type *field, int alignment)
5273{
5274 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 5275
e9bb382b
UW
5276 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5277 {
5278 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5279 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5280 }
5281 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5282 {
5283 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5284 if (TYPE_NFIELDS (t) > 1)
5285 {
f41f5e61
PA
5286 SET_FIELD_BITPOS (f[0],
5287 (FIELD_BITPOS (f[-1])
5288 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5289 * TARGET_CHAR_BIT)));
e9bb382b
UW
5290
5291 if (alignment)
5292 {
86c3c1fc
AB
5293 int left;
5294
5295 alignment *= TARGET_CHAR_BIT;
5296 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 5297
e9bb382b
UW
5298 if (left)
5299 {
f41f5e61 5300 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 5301 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
5302 }
5303 }
5304 }
5305 }
5306}
5307
5308/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 5309
e9bb382b 5310void
695bfa52 5311append_composite_type_field (struct type *t, const char *name,
e9bb382b
UW
5312 struct type *field)
5313{
5314 append_composite_type_field_aligned (t, name, field, 0);
5315}
5316
000177f0
AC
5317static struct gdbarch_data *gdbtypes_data;
5318
5319const struct builtin_type *
5320builtin_type (struct gdbarch *gdbarch)
5321{
9a3c8263 5322 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
000177f0
AC
5323}
5324
5325static void *
5326gdbtypes_post_init (struct gdbarch *gdbarch)
5327{
5328 struct builtin_type *builtin_type
5329 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5330
46bf5051 5331 /* Basic types. */
e9bb382b 5332 builtin_type->builtin_void
77b7c781 5333 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
e9bb382b
UW
5334 builtin_type->builtin_char
5335 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5336 !gdbarch_char_signed (gdbarch), "char");
c413c448 5337 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
e9bb382b
UW
5338 builtin_type->builtin_signed_char
5339 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5340 0, "signed char");
5341 builtin_type->builtin_unsigned_char
5342 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5343 1, "unsigned char");
5344 builtin_type->builtin_short
5345 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5346 0, "short");
5347 builtin_type->builtin_unsigned_short
5348 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5349 1, "unsigned short");
5350 builtin_type->builtin_int
5351 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5352 0, "int");
5353 builtin_type->builtin_unsigned_int
5354 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5355 1, "unsigned int");
5356 builtin_type->builtin_long
5357 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5358 0, "long");
5359 builtin_type->builtin_unsigned_long
5360 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5361 1, "unsigned long");
5362 builtin_type->builtin_long_long
5363 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5364 0, "long long");
5365 builtin_type->builtin_unsigned_long_long
5366 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5367 1, "unsigned long long");
a6d0f249
AH
5368 builtin_type->builtin_half
5369 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5370 "half", gdbarch_half_format (gdbarch));
70bd8e24 5371 builtin_type->builtin_float
e9bb382b 5372 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 5373 "float", gdbarch_float_format (gdbarch));
70bd8e24 5374 builtin_type->builtin_double
e9bb382b 5375 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 5376 "double", gdbarch_double_format (gdbarch));
70bd8e24 5377 builtin_type->builtin_long_double
e9bb382b 5378 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 5379 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 5380 builtin_type->builtin_complex
e9bb382b
UW
5381 = arch_complex_type (gdbarch, "complex",
5382 builtin_type->builtin_float);
70bd8e24 5383 builtin_type->builtin_double_complex
e9bb382b
UW
5384 = arch_complex_type (gdbarch, "double complex",
5385 builtin_type->builtin_double);
5386 builtin_type->builtin_string
77b7c781 5387 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
e9bb382b 5388 builtin_type->builtin_bool
77b7c781 5389 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
000177f0 5390
7678ef8f
TJB
5391 /* The following three are about decimal floating point types, which
5392 are 32-bits, 64-bits and 128-bits respectively. */
5393 builtin_type->builtin_decfloat
88dfca6c 5394 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
7678ef8f 5395 builtin_type->builtin_decdouble
88dfca6c 5396 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
7678ef8f 5397 builtin_type->builtin_declong
88dfca6c 5398 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
7678ef8f 5399
69feb676 5400 /* "True" character types. */
e9bb382b
UW
5401 builtin_type->builtin_true_char
5402 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5403 builtin_type->builtin_true_unsigned_char
5404 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 5405
df4df182 5406 /* Fixed-size integer types. */
e9bb382b
UW
5407 builtin_type->builtin_int0
5408 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5409 builtin_type->builtin_int8
5410 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5411 builtin_type->builtin_uint8
5412 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5413 builtin_type->builtin_int16
5414 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5415 builtin_type->builtin_uint16
5416 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
d1908f2d
JD
5417 builtin_type->builtin_int24
5418 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5419 builtin_type->builtin_uint24
5420 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
e9bb382b
UW
5421 builtin_type->builtin_int32
5422 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5423 builtin_type->builtin_uint32
5424 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5425 builtin_type->builtin_int64
5426 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5427 builtin_type->builtin_uint64
5428 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5429 builtin_type->builtin_int128
5430 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5431 builtin_type->builtin_uint128
5432 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
5433 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5434 TYPE_INSTANCE_FLAG_NOTTEXT;
5435 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5436 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 5437
9a22f0d0
PM
5438 /* Wide character types. */
5439 builtin_type->builtin_char16
53e710ac 5440 = arch_integer_type (gdbarch, 16, 1, "char16_t");
9a22f0d0 5441 builtin_type->builtin_char32
53e710ac 5442 = arch_integer_type (gdbarch, 32, 1, "char32_t");
53375380
PA
5443 builtin_type->builtin_wchar
5444 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5445 !gdbarch_wchar_signed (gdbarch), "wchar_t");
9a22f0d0 5446
46bf5051 5447 /* Default data/code pointer types. */
e9bb382b
UW
5448 builtin_type->builtin_data_ptr
5449 = lookup_pointer_type (builtin_type->builtin_void);
5450 builtin_type->builtin_func_ptr
5451 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
5452 builtin_type->builtin_func_func
5453 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 5454
78267919 5455 /* This type represents a GDB internal function. */
e9bb382b
UW
5456 builtin_type->internal_fn
5457 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5458 "<internal function>");
78267919 5459
e81e7f5e
SC
5460 /* This type represents an xmethod. */
5461 builtin_type->xmethod
5462 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5463
46bf5051
UW
5464 return builtin_type;
5465}
5466
46bf5051
UW
5467/* This set of objfile-based types is intended to be used by symbol
5468 readers as basic types. */
5469
7a102139
TT
5470static const struct objfile_key<struct objfile_type,
5471 gdb::noop_deleter<struct objfile_type>>
5472 objfile_type_data;
46bf5051
UW
5473
5474const struct objfile_type *
5475objfile_type (struct objfile *objfile)
5476{
5477 struct gdbarch *gdbarch;
7a102139 5478 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
46bf5051
UW
5479
5480 if (objfile_type)
5481 return objfile_type;
5482
5483 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5484 1, struct objfile_type);
5485
5486 /* Use the objfile architecture to determine basic type properties. */
5487 gdbarch = get_objfile_arch (objfile);
5488
5489 /* Basic types. */
5490 objfile_type->builtin_void
77b7c781 5491 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
46bf5051 5492 objfile_type->builtin_char
19f392bc
UW
5493 = init_integer_type (objfile, TARGET_CHAR_BIT,
5494 !gdbarch_char_signed (gdbarch), "char");
c413c448 5495 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
46bf5051 5496 objfile_type->builtin_signed_char
19f392bc
UW
5497 = init_integer_type (objfile, TARGET_CHAR_BIT,
5498 0, "signed char");
46bf5051 5499 objfile_type->builtin_unsigned_char
19f392bc
UW
5500 = init_integer_type (objfile, TARGET_CHAR_BIT,
5501 1, "unsigned char");
46bf5051 5502 objfile_type->builtin_short
19f392bc
UW
5503 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5504 0, "short");
46bf5051 5505 objfile_type->builtin_unsigned_short
19f392bc
UW
5506 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5507 1, "unsigned short");
46bf5051 5508 objfile_type->builtin_int
19f392bc
UW
5509 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5510 0, "int");
46bf5051 5511 objfile_type->builtin_unsigned_int
19f392bc
UW
5512 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5513 1, "unsigned int");
46bf5051 5514 objfile_type->builtin_long
19f392bc
UW
5515 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5516 0, "long");
46bf5051 5517 objfile_type->builtin_unsigned_long
19f392bc
UW
5518 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5519 1, "unsigned long");
46bf5051 5520 objfile_type->builtin_long_long
19f392bc
UW
5521 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5522 0, "long long");
46bf5051 5523 objfile_type->builtin_unsigned_long_long
19f392bc
UW
5524 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5525 1, "unsigned long long");
46bf5051 5526 objfile_type->builtin_float
19f392bc
UW
5527 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5528 "float", gdbarch_float_format (gdbarch));
46bf5051 5529 objfile_type->builtin_double
19f392bc
UW
5530 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5531 "double", gdbarch_double_format (gdbarch));
46bf5051 5532 objfile_type->builtin_long_double
19f392bc
UW
5533 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5534 "long double", gdbarch_long_double_format (gdbarch));
46bf5051
UW
5535
5536 /* This type represents a type that was unrecognized in symbol read-in. */
5537 objfile_type->builtin_error
19f392bc 5538 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
46bf5051
UW
5539
5540 /* The following set of types is used for symbols with no
5541 debug information. */
5542 objfile_type->nodebug_text_symbol
77b7c781 5543 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5544 "<text variable, no debug info>");
0875794a 5545 objfile_type->nodebug_text_gnu_ifunc_symbol
77b7c781 5546 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5547 "<text gnu-indirect-function variable, no debug info>");
19f392bc 5548 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
0875794a 5549 objfile_type->nodebug_got_plt_symbol
19f392bc
UW
5550 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5551 "<text from jump slot in .got.plt, no debug info>",
5552 objfile_type->nodebug_text_symbol);
46bf5051 5553 objfile_type->nodebug_data_symbol
46a4882b 5554 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
46bf5051 5555 objfile_type->nodebug_unknown_symbol
46a4882b 5556 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
46bf5051 5557 objfile_type->nodebug_tls_symbol
46a4882b 5558 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
000177f0
AC
5559
5560 /* NOTE: on some targets, addresses and pointers are not necessarily
0a7cfe2c 5561 the same.
000177f0
AC
5562
5563 The upshot is:
5564 - gdb's `struct type' always describes the target's
5565 representation.
5566 - gdb's `struct value' objects should always hold values in
5567 target form.
5568 - gdb's CORE_ADDR values are addresses in the unified virtual
5569 address space that the assembler and linker work with. Thus,
5570 since target_read_memory takes a CORE_ADDR as an argument, it
5571 can access any memory on the target, even if the processor has
5572 separate code and data address spaces.
5573
46bf5051
UW
5574 In this context, objfile_type->builtin_core_addr is a bit odd:
5575 it's a target type for a value the target will never see. It's
5576 only used to hold the values of (typeless) linker symbols, which
5577 are indeed in the unified virtual address space. */
000177f0 5578
46bf5051 5579 objfile_type->builtin_core_addr
19f392bc
UW
5580 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5581 "__CORE_ADDR");
64c50499 5582
7a102139 5583 objfile_type_data.set (objfile, objfile_type);
46bf5051 5584 return objfile_type;
000177f0
AC
5585}
5586
c906108c 5587void
fba45db2 5588_initialize_gdbtypes (void)
c906108c 5589{
5674de60
UW
5590 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5591
ccce17b0
YQ
5592 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5593 _("Set debugging of C++ overloading."),
5594 _("Show debugging of C++ overloading."),
5595 _("When enabled, ranking of the "
5596 "functions is displayed."),
5597 NULL,
5598 show_overload_debug,
5599 &setdebuglist, &showdebuglist);
5674de60 5600
7ba81444 5601 /* Add user knob for controlling resolution of opaque types. */
5674de60 5602 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
5603 &opaque_type_resolution,
5604 _("Set resolution of opaque struct/class/union"
5605 " types (if set before loading symbols)."),
5606 _("Show resolution of opaque struct/class/union"
5607 " types (if set before loading symbols)."),
5608 NULL, NULL,
5674de60
UW
5609 show_opaque_type_resolution,
5610 &setlist, &showlist);
a451cb65
KS
5611
5612 /* Add an option to permit non-strict type checking. */
5613 add_setshow_boolean_cmd ("type", class_support,
5614 &strict_type_checking,
5615 _("Set strict type checking."),
5616 _("Show strict type checking."),
5617 NULL, NULL,
5618 show_strict_type_checking,
5619 &setchecklist, &showchecklist);
c906108c 5620}
This page took 2.599285 seconds and 4 git commands to generate.