gdb.base/commands.exp: Test loop_break and loop_continue in nested loops
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
61baf725 3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c
SS
23#include "bfd.h"
24#include "symtab.h"
25#include "symfile.h"
26#include "objfiles.h"
27#include "gdbtypes.h"
28#include "expression.h"
29#include "language.h"
30#include "target.h"
31#include "value.h"
32#include "demangle.h"
33#include "complaints.h"
34#include "gdbcmd.h"
015a42b4 35#include "cp-abi.h"
ae5a43e0 36#include "hashtab.h"
8de20a37 37#include "cp-support.h"
ca092b61
DE
38#include "bcache.h"
39#include "dwarf2loc.h"
80180f79 40#include "gdbcore.h"
ac3aafc7 41
6403aeea
SW
42/* Initialize BADNESS constants. */
43
a9d5ef47 44const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 45
a9d5ef47
SW
46const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 48
a9d5ef47 49const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 50
a9d5ef47
SW
51const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
e15c3eb4 54const struct rank CV_CONVERSION_BADNESS = {1, 0};
a9d5ef47
SW
55const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
56const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
57const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
58const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 59const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
60const struct rank BASE_CONVERSION_BADNESS = {2,0};
61const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
da096638 62const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 63const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 64const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 65
8da61cc4 66/* Floatformat pairs. */
f9e9243a
UW
67const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
68 &floatformat_ieee_half_big,
69 &floatformat_ieee_half_little
70};
8da61cc4
DJ
71const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
72 &floatformat_ieee_single_big,
73 &floatformat_ieee_single_little
74};
75const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
76 &floatformat_ieee_double_big,
77 &floatformat_ieee_double_little
78};
79const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
80 &floatformat_ieee_double_big,
81 &floatformat_ieee_double_littlebyte_bigword
82};
83const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
84 &floatformat_i387_ext,
85 &floatformat_i387_ext
86};
87const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
88 &floatformat_m68881_ext,
89 &floatformat_m68881_ext
90};
91const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
92 &floatformat_arm_ext_big,
93 &floatformat_arm_ext_littlebyte_bigword
94};
95const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
96 &floatformat_ia64_spill_big,
97 &floatformat_ia64_spill_little
98};
99const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
100 &floatformat_ia64_quad_big,
101 &floatformat_ia64_quad_little
102};
103const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
104 &floatformat_vax_f,
105 &floatformat_vax_f
106};
107const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
108 &floatformat_vax_d,
109 &floatformat_vax_d
110};
b14d30e1 111const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
f5aee5ee
AM
112 &floatformat_ibm_long_double_big,
113 &floatformat_ibm_long_double_little
b14d30e1 114};
8da61cc4 115
2873700e
KS
116/* Should opaque types be resolved? */
117
118static int opaque_type_resolution = 1;
119
120/* A flag to enable printing of debugging information of C++
121 overloading. */
122
123unsigned int overload_debug = 0;
124
a451cb65
KS
125/* A flag to enable strict type checking. */
126
127static int strict_type_checking = 1;
128
2873700e 129/* A function to show whether opaque types are resolved. */
5212577a 130
920d2a44
AC
131static void
132show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
133 struct cmd_list_element *c,
134 const char *value)
920d2a44 135{
3e43a32a
MS
136 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
137 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
138 value);
139}
140
2873700e 141/* A function to show whether C++ overload debugging is enabled. */
5212577a 142
920d2a44
AC
143static void
144show_overload_debug (struct ui_file *file, int from_tty,
145 struct cmd_list_element *c, const char *value)
146{
7ba81444
MS
147 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
148 value);
920d2a44 149}
c906108c 150
a451cb65
KS
151/* A function to show the status of strict type checking. */
152
153static void
154show_strict_type_checking (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156{
157 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
158}
159
5212577a 160\f
e9bb382b
UW
161/* Allocate a new OBJFILE-associated type structure and fill it
162 with some defaults. Space for the type structure is allocated
163 on the objfile's objfile_obstack. */
c906108c
SS
164
165struct type *
fba45db2 166alloc_type (struct objfile *objfile)
c906108c 167{
52f0bd74 168 struct type *type;
c906108c 169
e9bb382b
UW
170 gdb_assert (objfile != NULL);
171
7ba81444 172 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
173 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
174 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
175 struct main_type);
176 OBJSTAT (objfile, n_types++);
c906108c 177
e9bb382b
UW
178 TYPE_OBJFILE_OWNED (type) = 1;
179 TYPE_OWNER (type).objfile = objfile;
c906108c 180
7ba81444 181 /* Initialize the fields that might not be zero. */
c906108c
SS
182
183 TYPE_CODE (type) = TYPE_CODE_UNDEF;
2fdde8f8 184 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 185
c16abbde 186 return type;
c906108c
SS
187}
188
e9bb382b
UW
189/* Allocate a new GDBARCH-associated type structure and fill it
190 with some defaults. Space for the type structure is allocated
8f57eec2 191 on the obstack associated with GDBARCH. */
e9bb382b
UW
192
193struct type *
194alloc_type_arch (struct gdbarch *gdbarch)
195{
196 struct type *type;
197
198 gdb_assert (gdbarch != NULL);
199
200 /* Alloc the structure and start off with all fields zeroed. */
201
8f57eec2
PP
202 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
203 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
e9bb382b
UW
204
205 TYPE_OBJFILE_OWNED (type) = 0;
206 TYPE_OWNER (type).gdbarch = gdbarch;
207
208 /* Initialize the fields that might not be zero. */
209
210 TYPE_CODE (type) = TYPE_CODE_UNDEF;
e9bb382b
UW
211 TYPE_CHAIN (type) = type; /* Chain back to itself. */
212
213 return type;
214}
215
216/* If TYPE is objfile-associated, allocate a new type structure
217 associated with the same objfile. If TYPE is gdbarch-associated,
218 allocate a new type structure associated with the same gdbarch. */
219
220struct type *
221alloc_type_copy (const struct type *type)
222{
223 if (TYPE_OBJFILE_OWNED (type))
224 return alloc_type (TYPE_OWNER (type).objfile);
225 else
226 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
227}
228
229/* If TYPE is gdbarch-associated, return that architecture.
230 If TYPE is objfile-associated, return that objfile's architecture. */
231
232struct gdbarch *
233get_type_arch (const struct type *type)
234{
235 if (TYPE_OBJFILE_OWNED (type))
236 return get_objfile_arch (TYPE_OWNER (type).objfile);
237 else
238 return TYPE_OWNER (type).gdbarch;
239}
240
99ad9427
YQ
241/* See gdbtypes.h. */
242
243struct type *
244get_target_type (struct type *type)
245{
246 if (type != NULL)
247 {
248 type = TYPE_TARGET_TYPE (type);
249 if (type != NULL)
250 type = check_typedef (type);
251 }
252
253 return type;
254}
255
2e056931
SM
256/* See gdbtypes.h. */
257
258unsigned int
259type_length_units (struct type *type)
260{
261 struct gdbarch *arch = get_type_arch (type);
262 int unit_size = gdbarch_addressable_memory_unit_size (arch);
263
264 return TYPE_LENGTH (type) / unit_size;
265}
266
2fdde8f8
DJ
267/* Alloc a new type instance structure, fill it with some defaults,
268 and point it at OLDTYPE. Allocate the new type instance from the
269 same place as OLDTYPE. */
270
271static struct type *
272alloc_type_instance (struct type *oldtype)
273{
274 struct type *type;
275
276 /* Allocate the structure. */
277
e9bb382b 278 if (! TYPE_OBJFILE_OWNED (oldtype))
41bf6aca 279 type = XCNEW (struct type);
2fdde8f8 280 else
1deafd4e
PA
281 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
282 struct type);
283
2fdde8f8
DJ
284 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
285
286 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
287
c16abbde 288 return type;
2fdde8f8
DJ
289}
290
291/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 292 replacing it with something else. Preserve owner information. */
5212577a 293
2fdde8f8
DJ
294static void
295smash_type (struct type *type)
296{
e9bb382b
UW
297 int objfile_owned = TYPE_OBJFILE_OWNED (type);
298 union type_owner owner = TYPE_OWNER (type);
299
2fdde8f8
DJ
300 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
301
e9bb382b
UW
302 /* Restore owner information. */
303 TYPE_OBJFILE_OWNED (type) = objfile_owned;
304 TYPE_OWNER (type) = owner;
305
2fdde8f8
DJ
306 /* For now, delete the rings. */
307 TYPE_CHAIN (type) = type;
308
309 /* For now, leave the pointer/reference types alone. */
310}
311
c906108c
SS
312/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
313 to a pointer to memory where the pointer type should be stored.
314 If *TYPEPTR is zero, update it to point to the pointer type we return.
315 We allocate new memory if needed. */
316
317struct type *
fba45db2 318make_pointer_type (struct type *type, struct type **typeptr)
c906108c 319{
52f0bd74 320 struct type *ntype; /* New type */
053cb41b 321 struct type *chain;
c906108c
SS
322
323 ntype = TYPE_POINTER_TYPE (type);
324
c5aa993b 325 if (ntype)
c906108c 326 {
c5aa993b 327 if (typeptr == 0)
7ba81444
MS
328 return ntype; /* Don't care about alloc,
329 and have new type. */
c906108c 330 else if (*typeptr == 0)
c5aa993b 331 {
7ba81444 332 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 333 return ntype;
c5aa993b 334 }
c906108c
SS
335 }
336
337 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
338 {
e9bb382b 339 ntype = alloc_type_copy (type);
c906108c
SS
340 if (typeptr)
341 *typeptr = ntype;
342 }
7ba81444 343 else /* We have storage, but need to reset it. */
c906108c
SS
344 {
345 ntype = *typeptr;
053cb41b 346 chain = TYPE_CHAIN (ntype);
2fdde8f8 347 smash_type (ntype);
053cb41b 348 TYPE_CHAIN (ntype) = chain;
c906108c
SS
349 }
350
351 TYPE_TARGET_TYPE (ntype) = type;
352 TYPE_POINTER_TYPE (type) = ntype;
353
5212577a 354 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 355
50810684
UW
356 TYPE_LENGTH (ntype)
357 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
358 TYPE_CODE (ntype) = TYPE_CODE_PTR;
359
67b2adb2 360 /* Mark pointers as unsigned. The target converts between pointers
76e71323 361 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 362 gdbarch_address_to_pointer. */
876cecd0 363 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 364
053cb41b
JB
365 /* Update the length of all the other variants of this type. */
366 chain = TYPE_CHAIN (ntype);
367 while (chain != ntype)
368 {
369 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
370 chain = TYPE_CHAIN (chain);
371 }
372
c906108c
SS
373 return ntype;
374}
375
376/* Given a type TYPE, return a type of pointers to that type.
377 May need to construct such a type if this is the first use. */
378
379struct type *
fba45db2 380lookup_pointer_type (struct type *type)
c906108c 381{
c5aa993b 382 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
383}
384
7ba81444
MS
385/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
386 points to a pointer to memory where the reference type should be
387 stored. If *TYPEPTR is zero, update it to point to the reference
3b224330
AV
388 type we return. We allocate new memory if needed. REFCODE denotes
389 the kind of reference type to lookup (lvalue or rvalue reference). */
c906108c
SS
390
391struct type *
3b224330
AV
392make_reference_type (struct type *type, struct type **typeptr,
393 enum type_code refcode)
c906108c 394{
52f0bd74 395 struct type *ntype; /* New type */
3b224330 396 struct type **reftype;
1e98b326 397 struct type *chain;
c906108c 398
3b224330
AV
399 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
400
401 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
402 : TYPE_RVALUE_REFERENCE_TYPE (type));
c906108c 403
c5aa993b 404 if (ntype)
c906108c 405 {
c5aa993b 406 if (typeptr == 0)
7ba81444
MS
407 return ntype; /* Don't care about alloc,
408 and have new type. */
c906108c 409 else if (*typeptr == 0)
c5aa993b 410 {
7ba81444 411 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 412 return ntype;
c5aa993b 413 }
c906108c
SS
414 }
415
416 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
417 {
e9bb382b 418 ntype = alloc_type_copy (type);
c906108c
SS
419 if (typeptr)
420 *typeptr = ntype;
421 }
7ba81444 422 else /* We have storage, but need to reset it. */
c906108c
SS
423 {
424 ntype = *typeptr;
1e98b326 425 chain = TYPE_CHAIN (ntype);
2fdde8f8 426 smash_type (ntype);
1e98b326 427 TYPE_CHAIN (ntype) = chain;
c906108c
SS
428 }
429
430 TYPE_TARGET_TYPE (ntype) = type;
3b224330
AV
431 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
432 : &TYPE_RVALUE_REFERENCE_TYPE (type));
433
434 *reftype = ntype;
c906108c 435
7ba81444
MS
436 /* FIXME! Assume the machine has only one representation for
437 references, and that it matches the (only) representation for
438 pointers! */
c906108c 439
50810684
UW
440 TYPE_LENGTH (ntype) =
441 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
3b224330 442 TYPE_CODE (ntype) = refcode;
c5aa993b 443
3b224330 444 *reftype = ntype;
c906108c 445
1e98b326
JB
446 /* Update the length of all the other variants of this type. */
447 chain = TYPE_CHAIN (ntype);
448 while (chain != ntype)
449 {
450 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
451 chain = TYPE_CHAIN (chain);
452 }
453
c906108c
SS
454 return ntype;
455}
456
7ba81444
MS
457/* Same as above, but caller doesn't care about memory allocation
458 details. */
c906108c
SS
459
460struct type *
3b224330
AV
461lookup_reference_type (struct type *type, enum type_code refcode)
462{
463 return make_reference_type (type, (struct type **) 0, refcode);
464}
465
466/* Lookup the lvalue reference type for the type TYPE. */
467
468struct type *
469lookup_lvalue_reference_type (struct type *type)
470{
471 return lookup_reference_type (type, TYPE_CODE_REF);
472}
473
474/* Lookup the rvalue reference type for the type TYPE. */
475
476struct type *
477lookup_rvalue_reference_type (struct type *type)
c906108c 478{
3b224330 479 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
c906108c
SS
480}
481
7ba81444
MS
482/* Lookup a function type that returns type TYPE. TYPEPTR, if
483 nonzero, points to a pointer to memory where the function type
484 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 485 function type we return. We allocate new memory if needed. */
c906108c
SS
486
487struct type *
0c8b41f1 488make_function_type (struct type *type, struct type **typeptr)
c906108c 489{
52f0bd74 490 struct type *ntype; /* New type */
c906108c
SS
491
492 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
493 {
e9bb382b 494 ntype = alloc_type_copy (type);
c906108c
SS
495 if (typeptr)
496 *typeptr = ntype;
497 }
7ba81444 498 else /* We have storage, but need to reset it. */
c906108c
SS
499 {
500 ntype = *typeptr;
2fdde8f8 501 smash_type (ntype);
c906108c
SS
502 }
503
504 TYPE_TARGET_TYPE (ntype) = type;
505
506 TYPE_LENGTH (ntype) = 1;
507 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 508
b6cdc2c1
JK
509 INIT_FUNC_SPECIFIC (ntype);
510
c906108c
SS
511 return ntype;
512}
513
c906108c
SS
514/* Given a type TYPE, return a type of functions that return that type.
515 May need to construct such a type if this is the first use. */
516
517struct type *
fba45db2 518lookup_function_type (struct type *type)
c906108c 519{
0c8b41f1 520 return make_function_type (type, (struct type **) 0);
c906108c
SS
521}
522
71918a86 523/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
524 function type. If the final type in PARAM_TYPES is NULL, make a
525 varargs function. */
71918a86
TT
526
527struct type *
528lookup_function_type_with_arguments (struct type *type,
529 int nparams,
530 struct type **param_types)
531{
532 struct type *fn = make_function_type (type, (struct type **) 0);
533 int i;
534
e314d629 535 if (nparams > 0)
a6fb9c08 536 {
e314d629
TT
537 if (param_types[nparams - 1] == NULL)
538 {
539 --nparams;
540 TYPE_VARARGS (fn) = 1;
541 }
542 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
543 == TYPE_CODE_VOID)
544 {
545 --nparams;
546 /* Caller should have ensured this. */
547 gdb_assert (nparams == 0);
548 TYPE_PROTOTYPED (fn) = 1;
549 }
a6fb9c08
TT
550 }
551
71918a86 552 TYPE_NFIELDS (fn) = nparams;
224c3ddb
SM
553 TYPE_FIELDS (fn)
554 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
71918a86
TT
555 for (i = 0; i < nparams; ++i)
556 TYPE_FIELD_TYPE (fn, i) = param_types[i];
557
558 return fn;
559}
560
47663de5
MS
561/* Identify address space identifier by name --
562 return the integer flag defined in gdbtypes.h. */
5212577a
DE
563
564int
50810684 565address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
47663de5 566{
8b2dbe47 567 int type_flags;
d8734c88 568
7ba81444 569 /* Check for known address space delimiters. */
47663de5 570 if (!strcmp (space_identifier, "code"))
876cecd0 571 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 572 else if (!strcmp (space_identifier, "data"))
876cecd0 573 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
574 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
575 && gdbarch_address_class_name_to_type_flags (gdbarch,
576 space_identifier,
577 &type_flags))
8b2dbe47 578 return type_flags;
47663de5 579 else
8a3fe4f8 580 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
581}
582
583/* Identify address space identifier by integer flag as defined in
7ba81444 584 gdbtypes.h -- return the string version of the adress space name. */
47663de5 585
321432c0 586const char *
50810684 587address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 588{
876cecd0 589 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 590 return "code";
876cecd0 591 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 592 return "data";
876cecd0 593 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
594 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
595 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
596 else
597 return NULL;
598}
599
2fdde8f8 600/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
601
602 If STORAGE is non-NULL, create the new type instance there.
603 STORAGE must be in the same obstack as TYPE. */
47663de5 604
b9362cc7 605static struct type *
2fdde8f8
DJ
606make_qualified_type (struct type *type, int new_flags,
607 struct type *storage)
47663de5
MS
608{
609 struct type *ntype;
610
611 ntype = type;
5f61c20e
JK
612 do
613 {
614 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
615 return ntype;
616 ntype = TYPE_CHAIN (ntype);
617 }
618 while (ntype != type);
47663de5 619
2fdde8f8
DJ
620 /* Create a new type instance. */
621 if (storage == NULL)
622 ntype = alloc_type_instance (type);
623 else
624 {
7ba81444
MS
625 /* If STORAGE was provided, it had better be in the same objfile
626 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
627 if one objfile is freed and the other kept, we'd have
628 dangling pointers. */
ad766c0a
JB
629 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
630
2fdde8f8
DJ
631 ntype = storage;
632 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
633 TYPE_CHAIN (ntype) = ntype;
634 }
47663de5
MS
635
636 /* Pointers or references to the original type are not relevant to
2fdde8f8 637 the new type. */
47663de5
MS
638 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
639 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 640
2fdde8f8
DJ
641 /* Chain the new qualified type to the old type. */
642 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
643 TYPE_CHAIN (type) = ntype;
644
645 /* Now set the instance flags and return the new type. */
646 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 647
ab5d3da6
KB
648 /* Set length of new type to that of the original type. */
649 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
650
47663de5
MS
651 return ntype;
652}
653
2fdde8f8
DJ
654/* Make an address-space-delimited variant of a type -- a type that
655 is identical to the one supplied except that it has an address
656 space attribute attached to it (such as "code" or "data").
657
7ba81444
MS
658 The space attributes "code" and "data" are for Harvard
659 architectures. The address space attributes are for architectures
660 which have alternately sized pointers or pointers with alternate
661 representations. */
2fdde8f8
DJ
662
663struct type *
664make_type_with_address_space (struct type *type, int space_flag)
665{
2fdde8f8 666 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
667 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
668 | TYPE_INSTANCE_FLAG_DATA_SPACE
669 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
670 | space_flag);
671
672 return make_qualified_type (type, new_flags, NULL);
673}
c906108c
SS
674
675/* Make a "c-v" variant of a type -- a type that is identical to the
676 one supplied except that it may have const or volatile attributes
677 CNST is a flag for setting the const attribute
678 VOLTL is a flag for setting the volatile attribute
679 TYPE is the base type whose variant we are creating.
c906108c 680
ad766c0a
JB
681 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
682 storage to hold the new qualified type; *TYPEPTR and TYPE must be
683 in the same objfile. Otherwise, allocate fresh memory for the new
684 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
685 new type we construct. */
5212577a 686
c906108c 687struct type *
7ba81444
MS
688make_cv_type (int cnst, int voltl,
689 struct type *type,
690 struct type **typeptr)
c906108c 691{
52f0bd74 692 struct type *ntype; /* New type */
c906108c 693
2fdde8f8 694 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
695 & ~(TYPE_INSTANCE_FLAG_CONST
696 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 697
c906108c 698 if (cnst)
876cecd0 699 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
700
701 if (voltl)
876cecd0 702 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 703
2fdde8f8 704 if (typeptr && *typeptr != NULL)
a02fd225 705 {
ad766c0a
JB
706 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
707 a C-V variant chain that threads across objfiles: if one
708 objfile gets freed, then the other has a broken C-V chain.
709
710 This code used to try to copy over the main type from TYPE to
711 *TYPEPTR if they were in different objfiles, but that's
712 wrong, too: TYPE may have a field list or member function
713 lists, which refer to types of their own, etc. etc. The
714 whole shebang would need to be copied over recursively; you
715 can't have inter-objfile pointers. The only thing to do is
716 to leave stub types as stub types, and look them up afresh by
717 name each time you encounter them. */
718 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
719 }
720
7ba81444
MS
721 ntype = make_qualified_type (type, new_flags,
722 typeptr ? *typeptr : NULL);
c906108c 723
2fdde8f8
DJ
724 if (typeptr != NULL)
725 *typeptr = ntype;
a02fd225 726
2fdde8f8 727 return ntype;
a02fd225 728}
c906108c 729
06d66ee9
TT
730/* Make a 'restrict'-qualified version of TYPE. */
731
732struct type *
733make_restrict_type (struct type *type)
734{
735 return make_qualified_type (type,
736 (TYPE_INSTANCE_FLAGS (type)
737 | TYPE_INSTANCE_FLAG_RESTRICT),
738 NULL);
739}
740
f1660027
TT
741/* Make a type without const, volatile, or restrict. */
742
743struct type *
744make_unqualified_type (struct type *type)
745{
746 return make_qualified_type (type,
747 (TYPE_INSTANCE_FLAGS (type)
748 & ~(TYPE_INSTANCE_FLAG_CONST
749 | TYPE_INSTANCE_FLAG_VOLATILE
750 | TYPE_INSTANCE_FLAG_RESTRICT)),
751 NULL);
752}
753
a2c2acaf
MW
754/* Make a '_Atomic'-qualified version of TYPE. */
755
756struct type *
757make_atomic_type (struct type *type)
758{
759 return make_qualified_type (type,
760 (TYPE_INSTANCE_FLAGS (type)
761 | TYPE_INSTANCE_FLAG_ATOMIC),
762 NULL);
763}
764
2fdde8f8
DJ
765/* Replace the contents of ntype with the type *type. This changes the
766 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
767 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 768
cda6c68a
JB
769 In order to build recursive types, it's inevitable that we'll need
770 to update types in place --- but this sort of indiscriminate
771 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
772 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
773 clear if more steps are needed. */
5212577a 774
dd6bda65
DJ
775void
776replace_type (struct type *ntype, struct type *type)
777{
ab5d3da6 778 struct type *chain;
dd6bda65 779
ad766c0a
JB
780 /* These two types had better be in the same objfile. Otherwise,
781 the assignment of one type's main type structure to the other
782 will produce a type with references to objects (names; field
783 lists; etc.) allocated on an objfile other than its own. */
e46dd0f4 784 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
ad766c0a 785
2fdde8f8 786 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 787
7ba81444
MS
788 /* The type length is not a part of the main type. Update it for
789 each type on the variant chain. */
ab5d3da6 790 chain = ntype;
5f61c20e
JK
791 do
792 {
793 /* Assert that this element of the chain has no address-class bits
794 set in its flags. Such type variants might have type lengths
795 which are supposed to be different from the non-address-class
796 variants. This assertion shouldn't ever be triggered because
797 symbol readers which do construct address-class variants don't
798 call replace_type(). */
799 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
800
801 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
802 chain = TYPE_CHAIN (chain);
803 }
804 while (ntype != chain);
ab5d3da6 805
2fdde8f8
DJ
806 /* Assert that the two types have equivalent instance qualifiers.
807 This should be true for at least all of our debug readers. */
808 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
809}
810
c906108c
SS
811/* Implement direct support for MEMBER_TYPE in GNU C++.
812 May need to construct such a type if this is the first use.
813 The TYPE is the type of the member. The DOMAIN is the type
814 of the aggregate that the member belongs to. */
815
816struct type *
0d5de010 817lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 818{
52f0bd74 819 struct type *mtype;
c906108c 820
e9bb382b 821 mtype = alloc_type_copy (type);
0d5de010 822 smash_to_memberptr_type (mtype, domain, type);
c16abbde 823 return mtype;
c906108c
SS
824}
825
0d5de010
DJ
826/* Return a pointer-to-method type, for a method of type TO_TYPE. */
827
828struct type *
829lookup_methodptr_type (struct type *to_type)
830{
831 struct type *mtype;
832
e9bb382b 833 mtype = alloc_type_copy (to_type);
0b92b5bb 834 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
835 return mtype;
836}
837
7ba81444
MS
838/* Allocate a stub method whose return type is TYPE. This apparently
839 happens for speed of symbol reading, since parsing out the
840 arguments to the method is cpu-intensive, the way we are doing it.
841 So, we will fill in arguments later. This always returns a fresh
842 type. */
c906108c
SS
843
844struct type *
fba45db2 845allocate_stub_method (struct type *type)
c906108c
SS
846{
847 struct type *mtype;
848
e9bb382b
UW
849 mtype = alloc_type_copy (type);
850 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
851 TYPE_LENGTH (mtype) = 1;
852 TYPE_STUB (mtype) = 1;
c906108c 853 TYPE_TARGET_TYPE (mtype) = type;
4bfb94b8 854 /* TYPE_SELF_TYPE (mtype) = unknown yet */
c16abbde 855 return mtype;
c906108c
SS
856}
857
729efb13
SA
858/* Create a range type with a dynamic range from LOW_BOUND to
859 HIGH_BOUND, inclusive. See create_range_type for further details. */
c906108c
SS
860
861struct type *
729efb13
SA
862create_range_type (struct type *result_type, struct type *index_type,
863 const struct dynamic_prop *low_bound,
864 const struct dynamic_prop *high_bound)
c906108c
SS
865{
866 if (result_type == NULL)
e9bb382b 867 result_type = alloc_type_copy (index_type);
c906108c
SS
868 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
869 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 870 if (TYPE_STUB (index_type))
876cecd0 871 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
872 else
873 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
729efb13 874
43bbcdc2
PH
875 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
876 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
729efb13
SA
877 TYPE_RANGE_DATA (result_type)->low = *low_bound;
878 TYPE_RANGE_DATA (result_type)->high = *high_bound;
c906108c 879
729efb13 880 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
876cecd0 881 TYPE_UNSIGNED (result_type) = 1;
c906108c 882
45e44d27
JB
883 /* Ada allows the declaration of range types whose upper bound is
884 less than the lower bound, so checking the lower bound is not
885 enough. Make sure we do not mark a range type whose upper bound
886 is negative as unsigned. */
887 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
888 TYPE_UNSIGNED (result_type) = 0;
889
262452ec 890 return result_type;
c906108c
SS
891}
892
729efb13
SA
893/* Create a range type using either a blank type supplied in
894 RESULT_TYPE, or creating a new type, inheriting the objfile from
895 INDEX_TYPE.
896
897 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
898 to HIGH_BOUND, inclusive.
899
900 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
901 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
902
903struct type *
904create_static_range_type (struct type *result_type, struct type *index_type,
905 LONGEST low_bound, LONGEST high_bound)
906{
907 struct dynamic_prop low, high;
908
909 low.kind = PROP_CONST;
910 low.data.const_val = low_bound;
911
912 high.kind = PROP_CONST;
913 high.data.const_val = high_bound;
914
915 result_type = create_range_type (result_type, index_type, &low, &high);
916
917 return result_type;
918}
919
80180f79
SA
920/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
921 are static, otherwise returns 0. */
922
923static int
924has_static_range (const struct range_bounds *bounds)
925{
926 return (bounds->low.kind == PROP_CONST
927 && bounds->high.kind == PROP_CONST);
928}
929
930
7ba81444
MS
931/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
932 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
933 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
934
935int
fba45db2 936get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c 937{
f168693b 938 type = check_typedef (type);
c906108c
SS
939 switch (TYPE_CODE (type))
940 {
941 case TYPE_CODE_RANGE:
942 *lowp = TYPE_LOW_BOUND (type);
943 *highp = TYPE_HIGH_BOUND (type);
944 return 1;
945 case TYPE_CODE_ENUM:
946 if (TYPE_NFIELDS (type) > 0)
947 {
948 /* The enums may not be sorted by value, so search all
0963b4bd 949 entries. */
c906108c
SS
950 int i;
951
14e75d8e 952 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
c906108c
SS
953 for (i = 0; i < TYPE_NFIELDS (type); i++)
954 {
14e75d8e
JK
955 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
956 *lowp = TYPE_FIELD_ENUMVAL (type, i);
957 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
958 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
959 }
960
7ba81444 961 /* Set unsigned indicator if warranted. */
c5aa993b 962 if (*lowp >= 0)
c906108c 963 {
876cecd0 964 TYPE_UNSIGNED (type) = 1;
c906108c
SS
965 }
966 }
967 else
968 {
969 *lowp = 0;
970 *highp = -1;
971 }
972 return 0;
973 case TYPE_CODE_BOOL:
974 *lowp = 0;
975 *highp = 1;
976 return 0;
977 case TYPE_CODE_INT:
c5aa993b 978 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
979 return -1;
980 if (!TYPE_UNSIGNED (type))
981 {
c5aa993b 982 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
983 *highp = -*lowp - 1;
984 return 0;
985 }
7ba81444 986 /* ... fall through for unsigned ints ... */
c906108c
SS
987 case TYPE_CODE_CHAR:
988 *lowp = 0;
989 /* This round-about calculation is to avoid shifting by
7b83ea04 990 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 991 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
992 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
993 *highp = (*highp - 1) | *highp;
994 return 0;
995 default:
996 return -1;
997 }
998}
999
dbc98a8b
KW
1000/* Assuming TYPE is a simple, non-empty array type, compute its upper
1001 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1002 Save the high bound into HIGH_BOUND if not NULL.
1003
0963b4bd 1004 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
1005 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1006
1007 We now simply use get_discrete_bounds call to get the values
1008 of the low and high bounds.
1009 get_discrete_bounds can return three values:
1010 1, meaning that index is a range,
1011 0, meaning that index is a discrete type,
1012 or -1 for failure. */
1013
1014int
1015get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1016{
1017 struct type *index = TYPE_INDEX_TYPE (type);
1018 LONGEST low = 0;
1019 LONGEST high = 0;
1020 int res;
1021
1022 if (index == NULL)
1023 return 0;
1024
1025 res = get_discrete_bounds (index, &low, &high);
1026 if (res == -1)
1027 return 0;
1028
1029 /* Check if the array bounds are undefined. */
1030 if (res == 1
1031 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1032 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1033 return 0;
1034
1035 if (low_bound)
1036 *low_bound = low;
1037
1038 if (high_bound)
1039 *high_bound = high;
1040
1041 return 1;
1042}
1043
aa715135
JG
1044/* Assuming that TYPE is a discrete type and VAL is a valid integer
1045 representation of a value of this type, save the corresponding
1046 position number in POS.
1047
1048 Its differs from VAL only in the case of enumeration types. In
1049 this case, the position number of the value of the first listed
1050 enumeration literal is zero; the position number of the value of
1051 each subsequent enumeration literal is one more than that of its
1052 predecessor in the list.
1053
1054 Return 1 if the operation was successful. Return zero otherwise,
1055 in which case the value of POS is unmodified.
1056*/
1057
1058int
1059discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1060{
1061 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1062 {
1063 int i;
1064
1065 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1066 {
1067 if (val == TYPE_FIELD_ENUMVAL (type, i))
1068 {
1069 *pos = i;
1070 return 1;
1071 }
1072 }
1073 /* Invalid enumeration value. */
1074 return 0;
1075 }
1076 else
1077 {
1078 *pos = val;
1079 return 1;
1080 }
1081}
1082
7ba81444
MS
1083/* Create an array type using either a blank type supplied in
1084 RESULT_TYPE, or creating a new type, inheriting the objfile from
1085 RANGE_TYPE.
c906108c
SS
1086
1087 Elements will be of type ELEMENT_TYPE, the indices will be of type
1088 RANGE_TYPE.
1089
dc53a7ad
JB
1090 If BIT_STRIDE is not zero, build a packed array type whose element
1091 size is BIT_STRIDE. Otherwise, ignore this parameter.
1092
7ba81444
MS
1093 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1094 sure it is TYPE_CODE_UNDEF before we bash it into an array
1095 type? */
c906108c
SS
1096
1097struct type *
dc53a7ad
JB
1098create_array_type_with_stride (struct type *result_type,
1099 struct type *element_type,
1100 struct type *range_type,
1101 unsigned int bit_stride)
c906108c 1102{
c906108c 1103 if (result_type == NULL)
e9bb382b
UW
1104 result_type = alloc_type_copy (range_type);
1105
c906108c
SS
1106 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1107 TYPE_TARGET_TYPE (result_type) = element_type;
3f2f83dd 1108 if (has_static_range (TYPE_RANGE_DATA (range_type))
b4a7fcab
JB
1109 && (!type_not_associated (result_type)
1110 && !type_not_allocated (result_type)))
80180f79
SA
1111 {
1112 LONGEST low_bound, high_bound;
1113
1114 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1115 low_bound = high_bound = 0;
f168693b 1116 element_type = check_typedef (element_type);
80180f79
SA
1117 /* Be careful when setting the array length. Ada arrays can be
1118 empty arrays with the high_bound being smaller than the low_bound.
1119 In such cases, the array length should be zero. */
1120 if (high_bound < low_bound)
1121 TYPE_LENGTH (result_type) = 0;
1122 else if (bit_stride > 0)
1123 TYPE_LENGTH (result_type) =
1124 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1125 else
1126 TYPE_LENGTH (result_type) =
1127 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1128 }
ab0d6e0d 1129 else
80180f79
SA
1130 {
1131 /* This type is dynamic and its length needs to be computed
1132 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1133 undefined by setting it to zero. Although we are not expected
1134 to trust TYPE_LENGTH in this case, setting the size to zero
1135 allows us to avoid allocating objects of random sizes in case
1136 we accidently do. */
1137 TYPE_LENGTH (result_type) = 0;
1138 }
1139
c906108c
SS
1140 TYPE_NFIELDS (result_type) = 1;
1141 TYPE_FIELDS (result_type) =
1deafd4e 1142 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 1143 TYPE_INDEX_TYPE (result_type) = range_type;
dc53a7ad
JB
1144 if (bit_stride > 0)
1145 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
c906108c 1146
a9ff5f12 1147 /* TYPE_TARGET_STUB will take care of zero length arrays. */
c906108c 1148 if (TYPE_LENGTH (result_type) == 0)
876cecd0 1149 TYPE_TARGET_STUB (result_type) = 1;
c906108c 1150
c16abbde 1151 return result_type;
c906108c
SS
1152}
1153
dc53a7ad
JB
1154/* Same as create_array_type_with_stride but with no bit_stride
1155 (BIT_STRIDE = 0), thus building an unpacked array. */
1156
1157struct type *
1158create_array_type (struct type *result_type,
1159 struct type *element_type,
1160 struct type *range_type)
1161{
1162 return create_array_type_with_stride (result_type, element_type,
1163 range_type, 0);
1164}
1165
e3506a9f
UW
1166struct type *
1167lookup_array_range_type (struct type *element_type,
63375b74 1168 LONGEST low_bound, LONGEST high_bound)
e3506a9f 1169{
50810684 1170 struct gdbarch *gdbarch = get_type_arch (element_type);
e3506a9f
UW
1171 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1172 struct type *range_type
0c9c3474 1173 = create_static_range_type (NULL, index_type, low_bound, high_bound);
d8734c88 1174
e3506a9f
UW
1175 return create_array_type (NULL, element_type, range_type);
1176}
1177
7ba81444
MS
1178/* Create a string type using either a blank type supplied in
1179 RESULT_TYPE, or creating a new type. String types are similar
1180 enough to array of char types that we can use create_array_type to
1181 build the basic type and then bash it into a string type.
c906108c
SS
1182
1183 For fixed length strings, the range type contains 0 as the lower
1184 bound and the length of the string minus one as the upper bound.
1185
7ba81444
MS
1186 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1187 sure it is TYPE_CODE_UNDEF before we bash it into a string
1188 type? */
c906108c
SS
1189
1190struct type *
3b7538c0
UW
1191create_string_type (struct type *result_type,
1192 struct type *string_char_type,
7ba81444 1193 struct type *range_type)
c906108c
SS
1194{
1195 result_type = create_array_type (result_type,
f290d38e 1196 string_char_type,
c906108c
SS
1197 range_type);
1198 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 1199 return result_type;
c906108c
SS
1200}
1201
e3506a9f
UW
1202struct type *
1203lookup_string_range_type (struct type *string_char_type,
63375b74 1204 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1205{
1206 struct type *result_type;
d8734c88 1207
e3506a9f
UW
1208 result_type = lookup_array_range_type (string_char_type,
1209 low_bound, high_bound);
1210 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1211 return result_type;
1212}
1213
c906108c 1214struct type *
fba45db2 1215create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1216{
c906108c 1217 if (result_type == NULL)
e9bb382b
UW
1218 result_type = alloc_type_copy (domain_type);
1219
c906108c
SS
1220 TYPE_CODE (result_type) = TYPE_CODE_SET;
1221 TYPE_NFIELDS (result_type) = 1;
224c3ddb
SM
1222 TYPE_FIELDS (result_type)
1223 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 1224
74a9bb82 1225 if (!TYPE_STUB (domain_type))
c906108c 1226 {
f9780d5b 1227 LONGEST low_bound, high_bound, bit_length;
d8734c88 1228
c906108c
SS
1229 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1230 low_bound = high_bound = 0;
1231 bit_length = high_bound - low_bound + 1;
1232 TYPE_LENGTH (result_type)
1233 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1234 if (low_bound >= 0)
876cecd0 1235 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
1236 }
1237 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1238
c16abbde 1239 return result_type;
c906108c
SS
1240}
1241
ea37ba09
DJ
1242/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1243 and any array types nested inside it. */
1244
1245void
1246make_vector_type (struct type *array_type)
1247{
1248 struct type *inner_array, *elt_type;
1249 int flags;
1250
1251 /* Find the innermost array type, in case the array is
1252 multi-dimensional. */
1253 inner_array = array_type;
1254 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1255 inner_array = TYPE_TARGET_TYPE (inner_array);
1256
1257 elt_type = TYPE_TARGET_TYPE (inner_array);
1258 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1259 {
2844d6b5 1260 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1261 elt_type = make_qualified_type (elt_type, flags, NULL);
1262 TYPE_TARGET_TYPE (inner_array) = elt_type;
1263 }
1264
876cecd0 1265 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1266}
1267
794ac428 1268struct type *
ac3aafc7
EZ
1269init_vector_type (struct type *elt_type, int n)
1270{
1271 struct type *array_type;
d8734c88 1272
e3506a9f 1273 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1274 make_vector_type (array_type);
ac3aafc7
EZ
1275 return array_type;
1276}
1277
09e2d7c7
DE
1278/* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1279 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1280 confusing. "self" is a common enough replacement for "this".
1281 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1282 TYPE_CODE_METHOD. */
1283
1284struct type *
1285internal_type_self_type (struct type *type)
1286{
1287 switch (TYPE_CODE (type))
1288 {
1289 case TYPE_CODE_METHODPTR:
1290 case TYPE_CODE_MEMBERPTR:
eaaf76ab
DE
1291 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1292 return NULL;
09e2d7c7
DE
1293 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1294 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1295 case TYPE_CODE_METHOD:
eaaf76ab
DE
1296 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1297 return NULL;
09e2d7c7
DE
1298 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1299 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1300 default:
1301 gdb_assert_not_reached ("bad type");
1302 }
1303}
1304
1305/* Set the type of the class that TYPE belongs to.
1306 In c++ this is the class of "this".
1307 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1308 TYPE_CODE_METHOD. */
1309
1310void
1311set_type_self_type (struct type *type, struct type *self_type)
1312{
1313 switch (TYPE_CODE (type))
1314 {
1315 case TYPE_CODE_METHODPTR:
1316 case TYPE_CODE_MEMBERPTR:
1317 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1318 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1319 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1320 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1321 break;
1322 case TYPE_CODE_METHOD:
1323 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1324 INIT_FUNC_SPECIFIC (type);
1325 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1326 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1327 break;
1328 default:
1329 gdb_assert_not_reached ("bad type");
1330 }
1331}
1332
1333/* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
0d5de010
DJ
1334 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1335 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1336 TYPE doesn't include the offset (that's the value of the MEMBER
1337 itself), but does include the structure type into which it points
1338 (for some reason).
c906108c 1339
7ba81444
MS
1340 When "smashing" the type, we preserve the objfile that the old type
1341 pointed to, since we aren't changing where the type is actually
c906108c
SS
1342 allocated. */
1343
1344void
09e2d7c7 1345smash_to_memberptr_type (struct type *type, struct type *self_type,
0d5de010 1346 struct type *to_type)
c906108c 1347{
2fdde8f8 1348 smash_type (type);
09e2d7c7 1349 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c 1350 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1351 set_type_self_type (type, self_type);
0d5de010
DJ
1352 /* Assume that a data member pointer is the same size as a normal
1353 pointer. */
50810684
UW
1354 TYPE_LENGTH (type)
1355 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
c906108c
SS
1356}
1357
0b92b5bb
TT
1358/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1359
1360 When "smashing" the type, we preserve the objfile that the old type
1361 pointed to, since we aren't changing where the type is actually
1362 allocated. */
1363
1364void
1365smash_to_methodptr_type (struct type *type, struct type *to_type)
1366{
1367 smash_type (type);
09e2d7c7 1368 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
0b92b5bb 1369 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1370 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
0b92b5bb 1371 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
0b92b5bb
TT
1372}
1373
09e2d7c7 1374/* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
c906108c
SS
1375 METHOD just means `function that gets an extra "this" argument'.
1376
7ba81444
MS
1377 When "smashing" the type, we preserve the objfile that the old type
1378 pointed to, since we aren't changing where the type is actually
c906108c
SS
1379 allocated. */
1380
1381void
09e2d7c7 1382smash_to_method_type (struct type *type, struct type *self_type,
ad2f7632
DJ
1383 struct type *to_type, struct field *args,
1384 int nargs, int varargs)
c906108c 1385{
2fdde8f8 1386 smash_type (type);
09e2d7c7 1387 TYPE_CODE (type) = TYPE_CODE_METHOD;
c906108c 1388 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1389 set_type_self_type (type, self_type);
ad2f7632
DJ
1390 TYPE_FIELDS (type) = args;
1391 TYPE_NFIELDS (type) = nargs;
1392 if (varargs)
876cecd0 1393 TYPE_VARARGS (type) = 1;
c906108c 1394 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
c906108c
SS
1395}
1396
1397/* Return a typename for a struct/union/enum type without "struct ",
1398 "union ", or "enum ". If the type has a NULL name, return NULL. */
1399
0d5cff50 1400const char *
aa1ee363 1401type_name_no_tag (const struct type *type)
c906108c
SS
1402{
1403 if (TYPE_TAG_NAME (type) != NULL)
1404 return TYPE_TAG_NAME (type);
1405
7ba81444
MS
1406 /* Is there code which expects this to return the name if there is
1407 no tag name? My guess is that this is mainly used for C++ in
1408 cases where the two will always be the same. */
c906108c
SS
1409 return TYPE_NAME (type);
1410}
1411
d8228535
JK
1412/* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1413 Since GCC PR debug/47510 DWARF provides associated information to detect the
1414 anonymous class linkage name from its typedef.
1415
1416 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1417 apply it itself. */
1418
1419const char *
1420type_name_no_tag_or_error (struct type *type)
1421{
1422 struct type *saved_type = type;
1423 const char *name;
1424 struct objfile *objfile;
1425
f168693b 1426 type = check_typedef (type);
d8228535
JK
1427
1428 name = type_name_no_tag (type);
1429 if (name != NULL)
1430 return name;
1431
1432 name = type_name_no_tag (saved_type);
1433 objfile = TYPE_OBJFILE (saved_type);
1434 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
4262abfb
JK
1435 name ? name : "<anonymous>",
1436 objfile ? objfile_name (objfile) : "<arch>");
d8228535
JK
1437}
1438
7ba81444
MS
1439/* Lookup a typedef or primitive type named NAME, visible in lexical
1440 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1441 suitably defined. */
c906108c
SS
1442
1443struct type *
e6c014f2 1444lookup_typename (const struct language_defn *language,
ddd49eee 1445 struct gdbarch *gdbarch, const char *name,
34eaf542 1446 const struct block *block, int noerr)
c906108c 1447{
52f0bd74 1448 struct symbol *sym;
c906108c 1449
1994afbf 1450 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
d12307c1 1451 language->la_language, NULL).symbol;
c51fe631
DE
1452 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1453 return SYMBOL_TYPE (sym);
1454
c51fe631
DE
1455 if (noerr)
1456 return NULL;
1457 error (_("No type named %s."), name);
c906108c
SS
1458}
1459
1460struct type *
e6c014f2 1461lookup_unsigned_typename (const struct language_defn *language,
0d5cff50 1462 struct gdbarch *gdbarch, const char *name)
c906108c 1463{
224c3ddb 1464 char *uns = (char *) alloca (strlen (name) + 10);
c906108c
SS
1465
1466 strcpy (uns, "unsigned ");
1467 strcpy (uns + 9, name);
e6c014f2 1468 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
c906108c
SS
1469}
1470
1471struct type *
e6c014f2 1472lookup_signed_typename (const struct language_defn *language,
0d5cff50 1473 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1474{
1475 struct type *t;
224c3ddb 1476 char *uns = (char *) alloca (strlen (name) + 8);
c906108c
SS
1477
1478 strcpy (uns, "signed ");
1479 strcpy (uns + 7, name);
e6c014f2 1480 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
7ba81444 1481 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1482 if (t != NULL)
1483 return t;
e6c014f2 1484 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
c906108c
SS
1485}
1486
1487/* Lookup a structure type named "struct NAME",
1488 visible in lexical block BLOCK. */
1489
1490struct type *
270140bd 1491lookup_struct (const char *name, const struct block *block)
c906108c 1492{
52f0bd74 1493 struct symbol *sym;
c906108c 1494
d12307c1 1495 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1496
1497 if (sym == NULL)
1498 {
8a3fe4f8 1499 error (_("No struct type named %s."), name);
c906108c
SS
1500 }
1501 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1502 {
7ba81444
MS
1503 error (_("This context has class, union or enum %s, not a struct."),
1504 name);
c906108c
SS
1505 }
1506 return (SYMBOL_TYPE (sym));
1507}
1508
1509/* Lookup a union type named "union NAME",
1510 visible in lexical block BLOCK. */
1511
1512struct type *
270140bd 1513lookup_union (const char *name, const struct block *block)
c906108c 1514{
52f0bd74 1515 struct symbol *sym;
c5aa993b 1516 struct type *t;
c906108c 1517
d12307c1 1518 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1519
1520 if (sym == NULL)
8a3fe4f8 1521 error (_("No union type named %s."), name);
c906108c 1522
c5aa993b 1523 t = SYMBOL_TYPE (sym);
c906108c
SS
1524
1525 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1526 return t;
c906108c 1527
7ba81444
MS
1528 /* If we get here, it's not a union. */
1529 error (_("This context has class, struct or enum %s, not a union."),
1530 name);
c906108c
SS
1531}
1532
c906108c
SS
1533/* Lookup an enum type named "enum NAME",
1534 visible in lexical block BLOCK. */
1535
1536struct type *
270140bd 1537lookup_enum (const char *name, const struct block *block)
c906108c 1538{
52f0bd74 1539 struct symbol *sym;
c906108c 1540
d12307c1 1541 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1542 if (sym == NULL)
1543 {
8a3fe4f8 1544 error (_("No enum type named %s."), name);
c906108c
SS
1545 }
1546 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1547 {
7ba81444
MS
1548 error (_("This context has class, struct or union %s, not an enum."),
1549 name);
c906108c
SS
1550 }
1551 return (SYMBOL_TYPE (sym));
1552}
1553
1554/* Lookup a template type named "template NAME<TYPE>",
1555 visible in lexical block BLOCK. */
1556
1557struct type *
7ba81444 1558lookup_template_type (char *name, struct type *type,
270140bd 1559 const struct block *block)
c906108c
SS
1560{
1561 struct symbol *sym;
7ba81444
MS
1562 char *nam = (char *)
1563 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1564
c906108c
SS
1565 strcpy (nam, name);
1566 strcat (nam, "<");
0004e5a2 1567 strcat (nam, TYPE_NAME (type));
0963b4bd 1568 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1569
d12307c1 1570 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
c906108c
SS
1571
1572 if (sym == NULL)
1573 {
8a3fe4f8 1574 error (_("No template type named %s."), name);
c906108c
SS
1575 }
1576 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1577 {
7ba81444
MS
1578 error (_("This context has class, union or enum %s, not a struct."),
1579 name);
c906108c
SS
1580 }
1581 return (SYMBOL_TYPE (sym));
1582}
1583
7ba81444
MS
1584/* Given a type TYPE, lookup the type of the component of type named
1585 NAME.
c906108c 1586
7ba81444
MS
1587 TYPE can be either a struct or union, or a pointer or reference to
1588 a struct or union. If it is a pointer or reference, its target
1589 type is automatically used. Thus '.' and '->' are interchangable,
1590 as specified for the definitions of the expression element types
1591 STRUCTOP_STRUCT and STRUCTOP_PTR.
c906108c
SS
1592
1593 If NOERR is nonzero, return zero if NAME is not suitably defined.
1594 If NAME is the name of a baseclass type, return that type. */
1595
1596struct type *
d7561cbb 1597lookup_struct_elt_type (struct type *type, const char *name, int noerr)
c906108c
SS
1598{
1599 int i;
1600
1601 for (;;)
1602 {
f168693b 1603 type = check_typedef (type);
c906108c
SS
1604 if (TYPE_CODE (type) != TYPE_CODE_PTR
1605 && TYPE_CODE (type) != TYPE_CODE_REF)
1606 break;
1607 type = TYPE_TARGET_TYPE (type);
1608 }
1609
687d6395
MS
1610 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1611 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1612 {
2f408ecb
PA
1613 std::string type_name = type_to_string (type);
1614 error (_("Type %s is not a structure or union type."),
1615 type_name.c_str ());
c906108c
SS
1616 }
1617
1618#if 0
7ba81444
MS
1619 /* FIXME: This change put in by Michael seems incorrect for the case
1620 where the structure tag name is the same as the member name.
0963b4bd 1621 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
7ba81444 1622 foo; } bell;" Disabled by fnf. */
c906108c 1623 {
fe978cb0 1624 char *type_name;
c906108c 1625
fe978cb0
PA
1626 type_name = type_name_no_tag (type);
1627 if (type_name != NULL && strcmp (type_name, name) == 0)
c906108c
SS
1628 return type;
1629 }
1630#endif
1631
1632 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1633 {
0d5cff50 1634 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1635
db577aea 1636 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1637 {
1638 return TYPE_FIELD_TYPE (type, i);
1639 }
f5a010c0
PM
1640 else if (!t_field_name || *t_field_name == '\0')
1641 {
d8734c88
MS
1642 struct type *subtype
1643 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1644
f5a010c0
PM
1645 if (subtype != NULL)
1646 return subtype;
1647 }
c906108c
SS
1648 }
1649
1650 /* OK, it's not in this class. Recursively check the baseclasses. */
1651 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1652 {
1653 struct type *t;
1654
9733fc94 1655 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
c906108c
SS
1656 if (t != NULL)
1657 {
1658 return t;
1659 }
1660 }
1661
1662 if (noerr)
1663 {
1664 return NULL;
1665 }
c5aa993b 1666
2f408ecb
PA
1667 std::string type_name = type_to_string (type);
1668 error (_("Type %s has no component named %s."), type_name.c_str (), name);
c906108c
SS
1669}
1670
ed3ef339
DE
1671/* Store in *MAX the largest number representable by unsigned integer type
1672 TYPE. */
1673
1674void
1675get_unsigned_type_max (struct type *type, ULONGEST *max)
1676{
1677 unsigned int n;
1678
f168693b 1679 type = check_typedef (type);
ed3ef339
DE
1680 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1681 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1682
1683 /* Written this way to avoid overflow. */
1684 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1685 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1686}
1687
1688/* Store in *MIN, *MAX the smallest and largest numbers representable by
1689 signed integer type TYPE. */
1690
1691void
1692get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1693{
1694 unsigned int n;
1695
f168693b 1696 type = check_typedef (type);
ed3ef339
DE
1697 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1698 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1699
1700 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1701 *min = -((ULONGEST) 1 << (n - 1));
1702 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1703}
1704
ae6ae975
DE
1705/* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1706 cplus_stuff.vptr_fieldno.
1707
1708 cplus_stuff is initialized to cplus_struct_default which does not
1709 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1710 designated initializers). We cope with that here. */
1711
1712int
1713internal_type_vptr_fieldno (struct type *type)
1714{
f168693b 1715 type = check_typedef (type);
ae6ae975
DE
1716 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1717 || TYPE_CODE (type) == TYPE_CODE_UNION);
1718 if (!HAVE_CPLUS_STRUCT (type))
1719 return -1;
1720 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1721}
1722
1723/* Set the value of cplus_stuff.vptr_fieldno. */
1724
1725void
1726set_type_vptr_fieldno (struct type *type, int fieldno)
1727{
f168693b 1728 type = check_typedef (type);
ae6ae975
DE
1729 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1730 || TYPE_CODE (type) == TYPE_CODE_UNION);
1731 if (!HAVE_CPLUS_STRUCT (type))
1732 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1733 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1734}
1735
1736/* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1737 cplus_stuff.vptr_basetype. */
1738
1739struct type *
1740internal_type_vptr_basetype (struct type *type)
1741{
f168693b 1742 type = check_typedef (type);
ae6ae975
DE
1743 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1744 || TYPE_CODE (type) == TYPE_CODE_UNION);
1745 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1746 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1747}
1748
1749/* Set the value of cplus_stuff.vptr_basetype. */
1750
1751void
1752set_type_vptr_basetype (struct type *type, struct type *basetype)
1753{
f168693b 1754 type = check_typedef (type);
ae6ae975
DE
1755 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1756 || TYPE_CODE (type) == TYPE_CODE_UNION);
1757 if (!HAVE_CPLUS_STRUCT (type))
1758 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1759 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1760}
1761
81fe8080
DE
1762/* Lookup the vptr basetype/fieldno values for TYPE.
1763 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1764 vptr_fieldno. Also, if found and basetype is from the same objfile,
1765 cache the results.
1766 If not found, return -1 and ignore BASETYPEP.
1767 Callers should be aware that in some cases (for example,
c906108c 1768 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1769 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1770 this function will not be able to find the
7ba81444 1771 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1772 vptr_basetype will remain NULL or incomplete. */
c906108c 1773
81fe8080
DE
1774int
1775get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c 1776{
f168693b 1777 type = check_typedef (type);
c906108c
SS
1778
1779 if (TYPE_VPTR_FIELDNO (type) < 0)
1780 {
1781 int i;
1782
7ba81444
MS
1783 /* We must start at zero in case the first (and only) baseclass
1784 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1785 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1786 {
81fe8080
DE
1787 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1788 int fieldno;
1789 struct type *basetype;
1790
1791 fieldno = get_vptr_fieldno (baseclass, &basetype);
1792 if (fieldno >= 0)
c906108c 1793 {
81fe8080 1794 /* If the type comes from a different objfile we can't cache
0963b4bd 1795 it, it may have a different lifetime. PR 2384 */
5ef73790 1796 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080 1797 {
ae6ae975
DE
1798 set_type_vptr_fieldno (type, fieldno);
1799 set_type_vptr_basetype (type, basetype);
81fe8080
DE
1800 }
1801 if (basetypep)
1802 *basetypep = basetype;
1803 return fieldno;
c906108c
SS
1804 }
1805 }
81fe8080
DE
1806
1807 /* Not found. */
1808 return -1;
1809 }
1810 else
1811 {
1812 if (basetypep)
1813 *basetypep = TYPE_VPTR_BASETYPE (type);
1814 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1815 }
1816}
1817
44e1a9eb
DJ
1818static void
1819stub_noname_complaint (void)
1820{
e2e0b3e5 1821 complaint (&symfile_complaints, _("stub type has NULL name"));
44e1a9eb
DJ
1822}
1823
d98b7a16 1824/* Worker for is_dynamic_type. */
80180f79 1825
d98b7a16 1826static int
ee715b5a 1827is_dynamic_type_internal (struct type *type, int top_level)
80180f79
SA
1828{
1829 type = check_typedef (type);
1830
e771e4be
PMR
1831 /* We only want to recognize references at the outermost level. */
1832 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1833 type = check_typedef (TYPE_TARGET_TYPE (type));
1834
3cdcd0ce
JB
1835 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1836 dynamic, even if the type itself is statically defined.
1837 From a user's point of view, this may appear counter-intuitive;
1838 but it makes sense in this context, because the point is to determine
1839 whether any part of the type needs to be resolved before it can
1840 be exploited. */
1841 if (TYPE_DATA_LOCATION (type) != NULL
1842 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1843 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1844 return 1;
1845
3f2f83dd
KB
1846 if (TYPE_ASSOCIATED_PROP (type))
1847 return 1;
1848
1849 if (TYPE_ALLOCATED_PROP (type))
1850 return 1;
1851
80180f79
SA
1852 switch (TYPE_CODE (type))
1853 {
6f8a3220 1854 case TYPE_CODE_RANGE:
ddb87a81
JB
1855 {
1856 /* A range type is obviously dynamic if it has at least one
1857 dynamic bound. But also consider the range type to be
1858 dynamic when its subtype is dynamic, even if the bounds
1859 of the range type are static. It allows us to assume that
1860 the subtype of a static range type is also static. */
1861 return (!has_static_range (TYPE_RANGE_DATA (type))
ee715b5a 1862 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
ddb87a81 1863 }
6f8a3220 1864
80180f79
SA
1865 case TYPE_CODE_ARRAY:
1866 {
80180f79 1867 gdb_assert (TYPE_NFIELDS (type) == 1);
6f8a3220
JB
1868
1869 /* The array is dynamic if either the bounds are dynamic,
1870 or the elements it contains have a dynamic contents. */
ee715b5a 1871 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
80180f79 1872 return 1;
ee715b5a 1873 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
80180f79 1874 }
012370f6
TT
1875
1876 case TYPE_CODE_STRUCT:
1877 case TYPE_CODE_UNION:
1878 {
1879 int i;
1880
1881 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1882 if (!field_is_static (&TYPE_FIELD (type, i))
ee715b5a 1883 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
012370f6
TT
1884 return 1;
1885 }
1886 break;
80180f79 1887 }
92e2a17f
TT
1888
1889 return 0;
80180f79
SA
1890}
1891
d98b7a16
TT
1892/* See gdbtypes.h. */
1893
1894int
1895is_dynamic_type (struct type *type)
1896{
ee715b5a 1897 return is_dynamic_type_internal (type, 1);
d98b7a16
TT
1898}
1899
df25ebbd 1900static struct type *resolve_dynamic_type_internal
ee715b5a 1901 (struct type *type, struct property_addr_info *addr_stack, int top_level);
d98b7a16 1902
df25ebbd
JB
1903/* Given a dynamic range type (dyn_range_type) and a stack of
1904 struct property_addr_info elements, return a static version
1905 of that type. */
d190df30 1906
80180f79 1907static struct type *
df25ebbd
JB
1908resolve_dynamic_range (struct type *dyn_range_type,
1909 struct property_addr_info *addr_stack)
80180f79
SA
1910{
1911 CORE_ADDR value;
ddb87a81 1912 struct type *static_range_type, *static_target_type;
80180f79 1913 const struct dynamic_prop *prop;
80180f79
SA
1914 struct dynamic_prop low_bound, high_bound;
1915
6f8a3220 1916 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
80180f79 1917
6f8a3220 1918 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
63e43d3a 1919 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
1920 {
1921 low_bound.kind = PROP_CONST;
1922 low_bound.data.const_val = value;
1923 }
1924 else
1925 {
1926 low_bound.kind = PROP_UNDEFINED;
1927 low_bound.data.const_val = 0;
1928 }
1929
6f8a3220 1930 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
63e43d3a 1931 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
1932 {
1933 high_bound.kind = PROP_CONST;
1934 high_bound.data.const_val = value;
c451ebe5 1935
6f8a3220 1936 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
c451ebe5
SA
1937 high_bound.data.const_val
1938 = low_bound.data.const_val + high_bound.data.const_val - 1;
80180f79
SA
1939 }
1940 else
1941 {
1942 high_bound.kind = PROP_UNDEFINED;
1943 high_bound.data.const_val = 0;
1944 }
1945
ddb87a81
JB
1946 static_target_type
1947 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
ee715b5a 1948 addr_stack, 0);
6f8a3220 1949 static_range_type = create_range_type (copy_type (dyn_range_type),
ddb87a81 1950 static_target_type,
6f8a3220
JB
1951 &low_bound, &high_bound);
1952 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1953 return static_range_type;
1954}
1955
1956/* Resolves dynamic bound values of an array type TYPE to static ones.
df25ebbd
JB
1957 ADDR_STACK is a stack of struct property_addr_info to be used
1958 if needed during the dynamic resolution. */
6f8a3220
JB
1959
1960static struct type *
df25ebbd
JB
1961resolve_dynamic_array (struct type *type,
1962 struct property_addr_info *addr_stack)
6f8a3220
JB
1963{
1964 CORE_ADDR value;
1965 struct type *elt_type;
1966 struct type *range_type;
1967 struct type *ary_dim;
3f2f83dd 1968 struct dynamic_prop *prop;
6f8a3220
JB
1969
1970 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1971
3f2f83dd
KB
1972 type = copy_type (type);
1973
6f8a3220
JB
1974 elt_type = type;
1975 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
df25ebbd 1976 range_type = resolve_dynamic_range (range_type, addr_stack);
6f8a3220 1977
3f2f83dd
KB
1978 /* Resolve allocated/associated here before creating a new array type, which
1979 will update the length of the array accordingly. */
1980 prop = TYPE_ALLOCATED_PROP (type);
1981 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1982 {
1983 TYPE_DYN_PROP_ADDR (prop) = value;
1984 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
1985 }
1986 prop = TYPE_ASSOCIATED_PROP (type);
1987 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1988 {
1989 TYPE_DYN_PROP_ADDR (prop) = value;
1990 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
1991 }
1992
80180f79
SA
1993 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1994
1995 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
d0d84780 1996 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
80180f79
SA
1997 else
1998 elt_type = TYPE_TARGET_TYPE (type);
1999
3f2f83dd
KB
2000 return create_array_type_with_stride (type, elt_type, range_type,
2001 TYPE_FIELD_BITSIZE (type, 0));
80180f79
SA
2002}
2003
012370f6 2004/* Resolve dynamic bounds of members of the union TYPE to static
df25ebbd
JB
2005 bounds. ADDR_STACK is a stack of struct property_addr_info
2006 to be used if needed during the dynamic resolution. */
012370f6
TT
2007
2008static struct type *
df25ebbd
JB
2009resolve_dynamic_union (struct type *type,
2010 struct property_addr_info *addr_stack)
012370f6
TT
2011{
2012 struct type *resolved_type;
2013 int i;
2014 unsigned int max_len = 0;
2015
2016 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2017
2018 resolved_type = copy_type (type);
2019 TYPE_FIELDS (resolved_type)
224c3ddb
SM
2020 = (struct field *) TYPE_ALLOC (resolved_type,
2021 TYPE_NFIELDS (resolved_type)
2022 * sizeof (struct field));
012370f6
TT
2023 memcpy (TYPE_FIELDS (resolved_type),
2024 TYPE_FIELDS (type),
2025 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2026 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2027 {
2028 struct type *t;
2029
2030 if (field_is_static (&TYPE_FIELD (type, i)))
2031 continue;
2032
d98b7a16 2033 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2034 addr_stack, 0);
012370f6
TT
2035 TYPE_FIELD_TYPE (resolved_type, i) = t;
2036 if (TYPE_LENGTH (t) > max_len)
2037 max_len = TYPE_LENGTH (t);
2038 }
2039
2040 TYPE_LENGTH (resolved_type) = max_len;
2041 return resolved_type;
2042}
2043
2044/* Resolve dynamic bounds of members of the struct TYPE to static
df25ebbd
JB
2045 bounds. ADDR_STACK is a stack of struct property_addr_info to
2046 be used if needed during the dynamic resolution. */
012370f6
TT
2047
2048static struct type *
df25ebbd
JB
2049resolve_dynamic_struct (struct type *type,
2050 struct property_addr_info *addr_stack)
012370f6
TT
2051{
2052 struct type *resolved_type;
2053 int i;
6908c509 2054 unsigned resolved_type_bit_length = 0;
012370f6
TT
2055
2056 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2057 gdb_assert (TYPE_NFIELDS (type) > 0);
2058
2059 resolved_type = copy_type (type);
2060 TYPE_FIELDS (resolved_type)
224c3ddb
SM
2061 = (struct field *) TYPE_ALLOC (resolved_type,
2062 TYPE_NFIELDS (resolved_type)
2063 * sizeof (struct field));
012370f6
TT
2064 memcpy (TYPE_FIELDS (resolved_type),
2065 TYPE_FIELDS (type),
2066 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2067 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2068 {
6908c509 2069 unsigned new_bit_length;
df25ebbd 2070 struct property_addr_info pinfo;
012370f6
TT
2071
2072 if (field_is_static (&TYPE_FIELD (type, i)))
2073 continue;
2074
6908c509
JB
2075 /* As we know this field is not a static field, the field's
2076 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2077 this is the case, but only trigger a simple error rather
2078 than an internal error if that fails. While failing
2079 that verification indicates a bug in our code, the error
2080 is not severe enough to suggest to the user he stops
2081 his debugging session because of it. */
df25ebbd 2082 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
6908c509
JB
2083 error (_("Cannot determine struct field location"
2084 " (invalid location kind)"));
df25ebbd
JB
2085
2086 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
c3345124 2087 pinfo.valaddr = addr_stack->valaddr;
9920b434
BH
2088 pinfo.addr
2089 = (addr_stack->addr
2090 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
df25ebbd
JB
2091 pinfo.next = addr_stack;
2092
2093 TYPE_FIELD_TYPE (resolved_type, i)
2094 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2095 &pinfo, 0);
df25ebbd
JB
2096 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2097 == FIELD_LOC_KIND_BITPOS);
2098
6908c509
JB
2099 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2100 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2101 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2102 else
2103 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2104 * TARGET_CHAR_BIT);
2105
2106 /* Normally, we would use the position and size of the last field
2107 to determine the size of the enclosing structure. But GCC seems
2108 to be encoding the position of some fields incorrectly when
2109 the struct contains a dynamic field that is not placed last.
2110 So we compute the struct size based on the field that has
2111 the highest position + size - probably the best we can do. */
2112 if (new_bit_length > resolved_type_bit_length)
2113 resolved_type_bit_length = new_bit_length;
012370f6
TT
2114 }
2115
9920b434
BH
2116 /* The length of a type won't change for fortran, but it does for C and Ada.
2117 For fortran the size of dynamic fields might change over time but not the
2118 type length of the structure. If we adapt it, we run into problems
2119 when calculating the element offset for arrays of structs. */
2120 if (current_language->la_language != language_fortran)
2121 TYPE_LENGTH (resolved_type)
2122 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
6908c509 2123
9e195661
PMR
2124 /* The Ada language uses this field as a cache for static fixed types: reset
2125 it as RESOLVED_TYPE must have its own static fixed type. */
2126 TYPE_TARGET_TYPE (resolved_type) = NULL;
2127
012370f6
TT
2128 return resolved_type;
2129}
2130
d98b7a16 2131/* Worker for resolved_dynamic_type. */
80180f79 2132
d98b7a16 2133static struct type *
df25ebbd 2134resolve_dynamic_type_internal (struct type *type,
ee715b5a
PMR
2135 struct property_addr_info *addr_stack,
2136 int top_level)
80180f79
SA
2137{
2138 struct type *real_type = check_typedef (type);
6f8a3220 2139 struct type *resolved_type = type;
d9823cbb 2140 struct dynamic_prop *prop;
3cdcd0ce 2141 CORE_ADDR value;
80180f79 2142
ee715b5a 2143 if (!is_dynamic_type_internal (real_type, top_level))
80180f79
SA
2144 return type;
2145
5537b577 2146 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
6f8a3220 2147 {
cac9b138
JK
2148 resolved_type = copy_type (type);
2149 TYPE_TARGET_TYPE (resolved_type)
ee715b5a
PMR
2150 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2151 top_level);
5537b577
JK
2152 }
2153 else
2154 {
2155 /* Before trying to resolve TYPE, make sure it is not a stub. */
2156 type = real_type;
012370f6 2157
5537b577
JK
2158 switch (TYPE_CODE (type))
2159 {
e771e4be
PMR
2160 case TYPE_CODE_REF:
2161 {
2162 struct property_addr_info pinfo;
2163
2164 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
c3345124
JB
2165 pinfo.valaddr = NULL;
2166 if (addr_stack->valaddr != NULL)
2167 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2168 else
2169 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
e771e4be
PMR
2170 pinfo.next = addr_stack;
2171
2172 resolved_type = copy_type (type);
2173 TYPE_TARGET_TYPE (resolved_type)
2174 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2175 &pinfo, top_level);
2176 break;
2177 }
2178
5537b577 2179 case TYPE_CODE_ARRAY:
df25ebbd 2180 resolved_type = resolve_dynamic_array (type, addr_stack);
5537b577
JK
2181 break;
2182
2183 case TYPE_CODE_RANGE:
df25ebbd 2184 resolved_type = resolve_dynamic_range (type, addr_stack);
5537b577
JK
2185 break;
2186
2187 case TYPE_CODE_UNION:
df25ebbd 2188 resolved_type = resolve_dynamic_union (type, addr_stack);
5537b577
JK
2189 break;
2190
2191 case TYPE_CODE_STRUCT:
df25ebbd 2192 resolved_type = resolve_dynamic_struct (type, addr_stack);
5537b577
JK
2193 break;
2194 }
6f8a3220 2195 }
80180f79 2196
3cdcd0ce
JB
2197 /* Resolve data_location attribute. */
2198 prop = TYPE_DATA_LOCATION (resolved_type);
63e43d3a
PMR
2199 if (prop != NULL
2200 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
3cdcd0ce 2201 {
d9823cbb
KB
2202 TYPE_DYN_PROP_ADDR (prop) = value;
2203 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
3cdcd0ce 2204 }
3cdcd0ce 2205
80180f79
SA
2206 return resolved_type;
2207}
2208
d98b7a16
TT
2209/* See gdbtypes.h */
2210
2211struct type *
c3345124
JB
2212resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2213 CORE_ADDR addr)
d98b7a16 2214{
c3345124
JB
2215 struct property_addr_info pinfo
2216 = {check_typedef (type), valaddr, addr, NULL};
df25ebbd 2217
ee715b5a 2218 return resolve_dynamic_type_internal (type, &pinfo, 1);
d98b7a16
TT
2219}
2220
d9823cbb
KB
2221/* See gdbtypes.h */
2222
2223struct dynamic_prop *
2224get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2225{
2226 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2227
2228 while (node != NULL)
2229 {
2230 if (node->prop_kind == prop_kind)
283a9958 2231 return &node->prop;
d9823cbb
KB
2232 node = node->next;
2233 }
2234 return NULL;
2235}
2236
2237/* See gdbtypes.h */
2238
2239void
2240add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2241 struct type *type, struct objfile *objfile)
2242{
2243 struct dynamic_prop_list *temp;
2244
2245 gdb_assert (TYPE_OBJFILE_OWNED (type));
2246
224c3ddb 2247 temp = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop_list);
d9823cbb 2248 temp->prop_kind = prop_kind;
283a9958 2249 temp->prop = prop;
d9823cbb
KB
2250 temp->next = TYPE_DYN_PROP_LIST (type);
2251
2252 TYPE_DYN_PROP_LIST (type) = temp;
2253}
2254
9920b434
BH
2255/* Remove dynamic property from TYPE in case it exists. */
2256
2257void
2258remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2259 struct type *type)
2260{
2261 struct dynamic_prop_list *prev_node, *curr_node;
2262
2263 curr_node = TYPE_DYN_PROP_LIST (type);
2264 prev_node = NULL;
2265
2266 while (NULL != curr_node)
2267 {
2268 if (curr_node->prop_kind == prop_kind)
2269 {
2270 /* Update the linked list but don't free anything.
2271 The property was allocated on objstack and it is not known
2272 if we are on top of it. Nevertheless, everything is released
2273 when the complete objstack is freed. */
2274 if (NULL == prev_node)
2275 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2276 else
2277 prev_node->next = curr_node->next;
2278
2279 return;
2280 }
2281
2282 prev_node = curr_node;
2283 curr_node = curr_node->next;
2284 }
2285}
d9823cbb 2286
92163a10
JK
2287/* Find the real type of TYPE. This function returns the real type,
2288 after removing all layers of typedefs, and completing opaque or stub
2289 types. Completion changes the TYPE argument, but stripping of
2290 typedefs does not.
2291
2292 Instance flags (e.g. const/volatile) are preserved as typedefs are
2293 stripped. If necessary a new qualified form of the underlying type
2294 is created.
2295
2296 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2297 not been computed and we're either in the middle of reading symbols, or
2298 there was no name for the typedef in the debug info.
2299
9bc118a5
DE
2300 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2301 QUITs in the symbol reading code can also throw.
2302 Thus this function can throw an exception.
2303
92163a10
JK
2304 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2305 the target type.
c906108c
SS
2306
2307 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 2308 we can find a full definition in some other file. If so, copy this
7ba81444
MS
2309 definition, so we can use it in future. There used to be a comment
2310 (but not any code) that if we don't find a full definition, we'd
2311 set a flag so we don't spend time in the future checking the same
2312 type. That would be a mistake, though--we might load in more
92163a10 2313 symbols which contain a full definition for the type. */
c906108c
SS
2314
2315struct type *
a02fd225 2316check_typedef (struct type *type)
c906108c
SS
2317{
2318 struct type *orig_type = type;
92163a10
JK
2319 /* While we're removing typedefs, we don't want to lose qualifiers.
2320 E.g., const/volatile. */
2321 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 2322
423c0af8
MS
2323 gdb_assert (type);
2324
c906108c
SS
2325 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2326 {
2327 if (!TYPE_TARGET_TYPE (type))
2328 {
0d5cff50 2329 const char *name;
c906108c
SS
2330 struct symbol *sym;
2331
2332 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 2333 reading a symtab. Infinite recursion is one danger. */
c906108c 2334 if (currently_reading_symtab)
92163a10 2335 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2336
2337 name = type_name_no_tag (type);
7ba81444
MS
2338 /* FIXME: shouldn't we separately check the TYPE_NAME and
2339 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2340 VAR_DOMAIN as appropriate? (this code was written before
2341 TYPE_NAME and TYPE_TAG_NAME were separate). */
c906108c
SS
2342 if (name == NULL)
2343 {
23136709 2344 stub_noname_complaint ();
92163a10 2345 return make_qualified_type (type, instance_flags, NULL);
c906108c 2346 }
d12307c1 2347 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
2348 if (sym)
2349 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 2350 else /* TYPE_CODE_UNDEF */
e9bb382b 2351 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
2352 }
2353 type = TYPE_TARGET_TYPE (type);
c906108c 2354
92163a10
JK
2355 /* Preserve the instance flags as we traverse down the typedef chain.
2356
2357 Handling address spaces/classes is nasty, what do we do if there's a
2358 conflict?
2359 E.g., what if an outer typedef marks the type as class_1 and an inner
2360 typedef marks the type as class_2?
2361 This is the wrong place to do such error checking. We leave it to
2362 the code that created the typedef in the first place to flag the
2363 error. We just pick the outer address space (akin to letting the
2364 outer cast in a chain of casting win), instead of assuming
2365 "it can't happen". */
2366 {
2367 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2368 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2369 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2370 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2371
2372 /* Treat code vs data spaces and address classes separately. */
2373 if ((instance_flags & ALL_SPACES) != 0)
2374 new_instance_flags &= ~ALL_SPACES;
2375 if ((instance_flags & ALL_CLASSES) != 0)
2376 new_instance_flags &= ~ALL_CLASSES;
2377
2378 instance_flags |= new_instance_flags;
2379 }
2380 }
a02fd225 2381
7ba81444
MS
2382 /* If this is a struct/class/union with no fields, then check
2383 whether a full definition exists somewhere else. This is for
2384 systems where a type definition with no fields is issued for such
2385 types, instead of identifying them as stub types in the first
2386 place. */
c5aa993b 2387
7ba81444
MS
2388 if (TYPE_IS_OPAQUE (type)
2389 && opaque_type_resolution
2390 && !currently_reading_symtab)
c906108c 2391 {
0d5cff50 2392 const char *name = type_name_no_tag (type);
c5aa993b 2393 struct type *newtype;
d8734c88 2394
c906108c
SS
2395 if (name == NULL)
2396 {
23136709 2397 stub_noname_complaint ();
92163a10 2398 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2399 }
2400 newtype = lookup_transparent_type (name);
ad766c0a 2401
c906108c 2402 if (newtype)
ad766c0a 2403 {
7ba81444
MS
2404 /* If the resolved type and the stub are in the same
2405 objfile, then replace the stub type with the real deal.
2406 But if they're in separate objfiles, leave the stub
2407 alone; we'll just look up the transparent type every time
2408 we call check_typedef. We can't create pointers between
2409 types allocated to different objfiles, since they may
2410 have different lifetimes. Trying to copy NEWTYPE over to
2411 TYPE's objfile is pointless, too, since you'll have to
2412 move over any other types NEWTYPE refers to, which could
2413 be an unbounded amount of stuff. */
ad766c0a 2414 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
2415 type = make_qualified_type (newtype,
2416 TYPE_INSTANCE_FLAGS (type),
2417 type);
ad766c0a
JB
2418 else
2419 type = newtype;
2420 }
c906108c 2421 }
7ba81444
MS
2422 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2423 types. */
74a9bb82 2424 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 2425 {
0d5cff50 2426 const char *name = type_name_no_tag (type);
c906108c 2427 /* FIXME: shouldn't we separately check the TYPE_NAME and the
176620f1 2428 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
7b83ea04
AC
2429 as appropriate? (this code was written before TYPE_NAME and
2430 TYPE_TAG_NAME were separate). */
c906108c 2431 struct symbol *sym;
d8734c88 2432
c906108c
SS
2433 if (name == NULL)
2434 {
23136709 2435 stub_noname_complaint ();
92163a10 2436 return make_qualified_type (type, instance_flags, NULL);
c906108c 2437 }
d12307c1 2438 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c 2439 if (sym)
c26f2453
JB
2440 {
2441 /* Same as above for opaque types, we can replace the stub
92163a10 2442 with the complete type only if they are in the same
c26f2453
JB
2443 objfile. */
2444 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
2445 type = make_qualified_type (SYMBOL_TYPE (sym),
2446 TYPE_INSTANCE_FLAGS (type),
2447 type);
c26f2453
JB
2448 else
2449 type = SYMBOL_TYPE (sym);
2450 }
c906108c
SS
2451 }
2452
74a9bb82 2453 if (TYPE_TARGET_STUB (type))
c906108c 2454 {
c906108c
SS
2455 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2456
74a9bb82 2457 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 2458 {
73e2eb35 2459 /* Nothing we can do. */
c5aa993b 2460 }
c906108c
SS
2461 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2462 {
2463 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 2464 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
2465 }
2466 }
92163a10
JK
2467
2468 type = make_qualified_type (type, instance_flags, NULL);
2469
7ba81444 2470 /* Cache TYPE_LENGTH for future use. */
c906108c 2471 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 2472
c906108c
SS
2473 return type;
2474}
2475
7ba81444 2476/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 2477 occurs, silently return a void type. */
c91ecb25 2478
b9362cc7 2479static struct type *
48319d1f 2480safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
2481{
2482 struct ui_file *saved_gdb_stderr;
34365054 2483 struct type *type = NULL; /* Initialize to keep gcc happy. */
c91ecb25 2484
7ba81444 2485 /* Suppress error messages. */
c91ecb25 2486 saved_gdb_stderr = gdb_stderr;
d7e74731 2487 gdb_stderr = &null_stream;
c91ecb25 2488
7ba81444 2489 /* Call parse_and_eval_type() without fear of longjmp()s. */
492d29ea 2490 TRY
8e7b59a5
KS
2491 {
2492 type = parse_and_eval_type (p, length);
2493 }
492d29ea
PA
2494 CATCH (except, RETURN_MASK_ERROR)
2495 {
2496 type = builtin_type (gdbarch)->builtin_void;
2497 }
2498 END_CATCH
c91ecb25 2499
7ba81444 2500 /* Stop suppressing error messages. */
c91ecb25
ND
2501 gdb_stderr = saved_gdb_stderr;
2502
2503 return type;
2504}
2505
c906108c
SS
2506/* Ugly hack to convert method stubs into method types.
2507
7ba81444
MS
2508 He ain't kiddin'. This demangles the name of the method into a
2509 string including argument types, parses out each argument type,
2510 generates a string casting a zero to that type, evaluates the
2511 string, and stuffs the resulting type into an argtype vector!!!
2512 Then it knows the type of the whole function (including argument
2513 types for overloading), which info used to be in the stab's but was
2514 removed to hack back the space required for them. */
c906108c 2515
de17c821 2516static void
fba45db2 2517check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 2518{
50810684 2519 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
2520 struct fn_field *f;
2521 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
8de20a37
TT
2522 char *demangled_name = gdb_demangle (mangled_name,
2523 DMGL_PARAMS | DMGL_ANSI);
c906108c
SS
2524 char *argtypetext, *p;
2525 int depth = 0, argcount = 1;
ad2f7632 2526 struct field *argtypes;
c906108c
SS
2527 struct type *mtype;
2528
2529 /* Make sure we got back a function string that we can use. */
2530 if (demangled_name)
2531 p = strchr (demangled_name, '(');
502dcf4e
AC
2532 else
2533 p = NULL;
c906108c
SS
2534
2535 if (demangled_name == NULL || p == NULL)
7ba81444
MS
2536 error (_("Internal: Cannot demangle mangled name `%s'."),
2537 mangled_name);
c906108c
SS
2538
2539 /* Now, read in the parameters that define this type. */
2540 p += 1;
2541 argtypetext = p;
2542 while (*p)
2543 {
070ad9f0 2544 if (*p == '(' || *p == '<')
c906108c
SS
2545 {
2546 depth += 1;
2547 }
070ad9f0 2548 else if (*p == ')' || *p == '>')
c906108c
SS
2549 {
2550 depth -= 1;
2551 }
2552 else if (*p == ',' && depth == 0)
2553 {
2554 argcount += 1;
2555 }
2556
2557 p += 1;
2558 }
2559
ad2f7632 2560 /* If we read one argument and it was ``void'', don't count it. */
61012eef 2561 if (startswith (argtypetext, "(void)"))
ad2f7632 2562 argcount -= 1;
c906108c 2563
ad2f7632
DJ
2564 /* We need one extra slot, for the THIS pointer. */
2565
2566 argtypes = (struct field *)
2567 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 2568 p = argtypetext;
4a1970e4
DJ
2569
2570 /* Add THIS pointer for non-static methods. */
2571 f = TYPE_FN_FIELDLIST1 (type, method_id);
2572 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2573 argcount = 0;
2574 else
2575 {
ad2f7632 2576 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
2577 argcount = 1;
2578 }
c906108c 2579
0963b4bd 2580 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
2581 {
2582 depth = 0;
2583 while (*p)
2584 {
2585 if (depth <= 0 && (*p == ',' || *p == ')'))
2586 {
ad2f7632
DJ
2587 /* Avoid parsing of ellipsis, they will be handled below.
2588 Also avoid ``void'' as above. */
2589 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2590 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 2591 {
ad2f7632 2592 argtypes[argcount].type =
48319d1f 2593 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
2594 argcount += 1;
2595 }
2596 argtypetext = p + 1;
2597 }
2598
070ad9f0 2599 if (*p == '(' || *p == '<')
c906108c
SS
2600 {
2601 depth += 1;
2602 }
070ad9f0 2603 else if (*p == ')' || *p == '>')
c906108c
SS
2604 {
2605 depth -= 1;
2606 }
2607
2608 p += 1;
2609 }
2610 }
2611
c906108c
SS
2612 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2613
2614 /* Now update the old "stub" type into a real type. */
2615 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
09e2d7c7
DE
2616 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2617 We want a method (TYPE_CODE_METHOD). */
2618 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2619 argtypes, argcount, p[-2] == '.');
876cecd0 2620 TYPE_STUB (mtype) = 0;
c906108c 2621 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632
DJ
2622
2623 xfree (demangled_name);
c906108c
SS
2624}
2625
7ba81444
MS
2626/* This is the external interface to check_stub_method, above. This
2627 function unstubs all of the signatures for TYPE's METHOD_ID method
2628 name. After calling this function TYPE_FN_FIELD_STUB will be
2629 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2630 correct.
de17c821
DJ
2631
2632 This function unfortunately can not die until stabs do. */
2633
2634void
2635check_stub_method_group (struct type *type, int method_id)
2636{
2637 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2638 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
f710f4fc 2639 int j, found_stub = 0;
de17c821
DJ
2640
2641 for (j = 0; j < len; j++)
2642 if (TYPE_FN_FIELD_STUB (f, j))
2643 {
2644 found_stub = 1;
2645 check_stub_method (type, method_id, j);
2646 }
2647
7ba81444
MS
2648 /* GNU v3 methods with incorrect names were corrected when we read
2649 in type information, because it was cheaper to do it then. The
2650 only GNU v2 methods with incorrect method names are operators and
2651 destructors; destructors were also corrected when we read in type
2652 information.
de17c821
DJ
2653
2654 Therefore the only thing we need to handle here are v2 operator
2655 names. */
61012eef 2656 if (found_stub && !startswith (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z"))
de17c821
DJ
2657 {
2658 int ret;
2659 char dem_opname[256];
2660
7ba81444
MS
2661 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2662 method_id),
de17c821
DJ
2663 dem_opname, DMGL_ANSI);
2664 if (!ret)
7ba81444
MS
2665 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2666 method_id),
de17c821
DJ
2667 dem_opname, 0);
2668 if (ret)
2669 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2670 }
2671}
2672
9655fd1a
JK
2673/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2674const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
2675
2676void
fba45db2 2677allocate_cplus_struct_type (struct type *type)
c906108c 2678{
b4ba55a1
JB
2679 if (HAVE_CPLUS_STRUCT (type))
2680 /* Structure was already allocated. Nothing more to do. */
2681 return;
2682
2683 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2684 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2685 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2686 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
ae6ae975 2687 set_type_vptr_fieldno (type, -1);
c906108c
SS
2688}
2689
b4ba55a1
JB
2690const struct gnat_aux_type gnat_aux_default =
2691 { NULL };
2692
2693/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2694 and allocate the associated gnat-specific data. The gnat-specific
2695 data is also initialized to gnat_aux_default. */
5212577a 2696
b4ba55a1
JB
2697void
2698allocate_gnat_aux_type (struct type *type)
2699{
2700 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2701 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2702 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2703 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2704}
2705
ae438bc5
UW
2706/* Helper function to initialize a newly allocated type. Set type code
2707 to CODE and initialize the type-specific fields accordingly. */
2708
2709static void
2710set_type_code (struct type *type, enum type_code code)
2711{
2712 TYPE_CODE (type) = code;
2713
2714 switch (code)
2715 {
2716 case TYPE_CODE_STRUCT:
2717 case TYPE_CODE_UNION:
2718 case TYPE_CODE_NAMESPACE:
2719 INIT_CPLUS_SPECIFIC (type);
2720 break;
2721 case TYPE_CODE_FLT:
2722 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2723 break;
2724 case TYPE_CODE_FUNC:
2725 INIT_FUNC_SPECIFIC (type);
2726 break;
2727 }
2728}
2729
19f392bc
UW
2730/* Helper function to verify floating-point format and size.
2731 BIT is the type size in bits; if BIT equals -1, the size is
2732 determined by the floatformat. Returns size to be used. */
2733
2734static int
2735verify_floatformat (int bit, const struct floatformat **floatformats)
2736{
9b790ce7
UW
2737 gdb_assert (floatformats != NULL);
2738 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
2739
19f392bc 2740 if (bit == -1)
9b790ce7 2741 bit = floatformats[0]->totalsize;
19f392bc
UW
2742 gdb_assert (bit >= 0);
2743
9b790ce7
UW
2744 size_t len = bit / TARGET_CHAR_BIT;
2745 gdb_assert (len >= floatformat_totalsize_bytes (floatformats[0]));
2746 gdb_assert (len >= floatformat_totalsize_bytes (floatformats[1]));
19f392bc
UW
2747
2748 return bit;
2749}
2750
c906108c
SS
2751/* Helper function to initialize the standard scalar types.
2752
86f62fd7
TT
2753 If NAME is non-NULL, then it is used to initialize the type name.
2754 Note that NAME is not copied; it is required to have a lifetime at
2755 least as long as OBJFILE. */
c906108c
SS
2756
2757struct type *
19f392bc
UW
2758init_type (struct objfile *objfile, enum type_code code, int length,
2759 const char *name)
c906108c 2760{
52f0bd74 2761 struct type *type;
c906108c
SS
2762
2763 type = alloc_type (objfile);
ae438bc5 2764 set_type_code (type, code);
c906108c 2765 TYPE_LENGTH (type) = length;
86f62fd7 2766 TYPE_NAME (type) = name;
c906108c 2767
c16abbde 2768 return type;
c906108c 2769}
19f392bc
UW
2770
2771/* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2772 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2773 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2774
2775struct type *
2776init_integer_type (struct objfile *objfile,
2777 int bit, int unsigned_p, const char *name)
2778{
2779 struct type *t;
2780
2781 t = init_type (objfile, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
2782 if (unsigned_p)
2783 TYPE_UNSIGNED (t) = 1;
2784
2785 return t;
2786}
2787
2788/* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2789 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2790 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2791
2792struct type *
2793init_character_type (struct objfile *objfile,
2794 int bit, int unsigned_p, const char *name)
2795{
2796 struct type *t;
2797
2798 t = init_type (objfile, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
2799 if (unsigned_p)
2800 TYPE_UNSIGNED (t) = 1;
2801
2802 return t;
2803}
2804
2805/* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2806 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2807 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2808
2809struct type *
2810init_boolean_type (struct objfile *objfile,
2811 int bit, int unsigned_p, const char *name)
2812{
2813 struct type *t;
2814
2815 t = init_type (objfile, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
2816 if (unsigned_p)
2817 TYPE_UNSIGNED (t) = 1;
2818
2819 return t;
2820}
2821
2822/* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2823 BIT is the type size in bits; if BIT equals -1, the size is
2824 determined by the floatformat. NAME is the type name. Set the
2825 TYPE_FLOATFORMAT from FLOATFORMATS. */
2826
2827struct type *
2828init_float_type (struct objfile *objfile,
2829 int bit, const char *name,
2830 const struct floatformat **floatformats)
2831{
2832 struct type *t;
2833
2834 bit = verify_floatformat (bit, floatformats);
2835 t = init_type (objfile, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
2836 TYPE_FLOATFORMAT (t) = floatformats;
2837
2838 return t;
2839}
2840
2841/* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2842 BIT is the type size in bits. NAME is the type name. */
2843
2844struct type *
2845init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2846{
2847 struct type *t;
2848
2849 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit / TARGET_CHAR_BIT, name);
2850 return t;
2851}
2852
2853/* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2854 NAME is the type name. TARGET_TYPE is the component float type. */
2855
2856struct type *
2857init_complex_type (struct objfile *objfile,
2858 const char *name, struct type *target_type)
2859{
2860 struct type *t;
2861
2862 t = init_type (objfile, TYPE_CODE_COMPLEX,
2863 2 * TYPE_LENGTH (target_type), name);
2864 TYPE_TARGET_TYPE (t) = target_type;
2865 return t;
2866}
2867
2868/* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
2869 BIT is the pointer type size in bits. NAME is the type name.
2870 TARGET_TYPE is the pointer target type. Always sets the pointer type's
2871 TYPE_UNSIGNED flag. */
2872
2873struct type *
2874init_pointer_type (struct objfile *objfile,
2875 int bit, const char *name, struct type *target_type)
2876{
2877 struct type *t;
2878
2879 t = init_type (objfile, TYPE_CODE_PTR, bit / TARGET_CHAR_BIT, name);
2880 TYPE_TARGET_TYPE (t) = target_type;
2881 TYPE_UNSIGNED (t) = 1;
2882 return t;
2883}
2884
5212577a
DE
2885\f
2886/* Queries on types. */
c906108c 2887
c906108c 2888int
fba45db2 2889can_dereference (struct type *t)
c906108c 2890{
7ba81444
MS
2891 /* FIXME: Should we return true for references as well as
2892 pointers? */
f168693b 2893 t = check_typedef (t);
c906108c
SS
2894 return
2895 (t != NULL
2896 && TYPE_CODE (t) == TYPE_CODE_PTR
2897 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2898}
2899
adf40b2e 2900int
fba45db2 2901is_integral_type (struct type *t)
adf40b2e 2902{
f168693b 2903 t = check_typedef (t);
adf40b2e
JM
2904 return
2905 ((t != NULL)
d4f3574e
SS
2906 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2907 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 2908 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
2909 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2910 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2911 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
2912}
2913
e09342b5
TJB
2914/* Return true if TYPE is scalar. */
2915
220475ed 2916int
e09342b5
TJB
2917is_scalar_type (struct type *type)
2918{
f168693b 2919 type = check_typedef (type);
e09342b5
TJB
2920
2921 switch (TYPE_CODE (type))
2922 {
2923 case TYPE_CODE_ARRAY:
2924 case TYPE_CODE_STRUCT:
2925 case TYPE_CODE_UNION:
2926 case TYPE_CODE_SET:
2927 case TYPE_CODE_STRING:
e09342b5
TJB
2928 return 0;
2929 default:
2930 return 1;
2931 }
2932}
2933
2934/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
2935 the memory layout of a scalar type. E.g., an array or struct with only
2936 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
2937
2938int
2939is_scalar_type_recursive (struct type *t)
2940{
f168693b 2941 t = check_typedef (t);
e09342b5
TJB
2942
2943 if (is_scalar_type (t))
2944 return 1;
2945 /* Are we dealing with an array or string of known dimensions? */
2946 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2947 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2948 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2949 {
2950 LONGEST low_bound, high_bound;
2951 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2952
2953 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2954
2955 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2956 }
2957 /* Are we dealing with a struct with one element? */
2958 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2959 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2960 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2961 {
2962 int i, n = TYPE_NFIELDS (t);
2963
2964 /* If all elements of the union are scalar, then the union is scalar. */
2965 for (i = 0; i < n; i++)
2966 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2967 return 0;
2968
2969 return 1;
2970 }
2971
2972 return 0;
2973}
2974
6c659fc2
SC
2975/* Return true is T is a class or a union. False otherwise. */
2976
2977int
2978class_or_union_p (const struct type *t)
2979{
2980 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
2981 || TYPE_CODE (t) == TYPE_CODE_UNION);
2982}
2983
4e8f195d
TT
2984/* A helper function which returns true if types A and B represent the
2985 "same" class type. This is true if the types have the same main
2986 type, or the same name. */
2987
2988int
2989class_types_same_p (const struct type *a, const struct type *b)
2990{
2991 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2992 || (TYPE_NAME (a) && TYPE_NAME (b)
2993 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2994}
2995
a9d5ef47
SW
2996/* If BASE is an ancestor of DCLASS return the distance between them.
2997 otherwise return -1;
2998 eg:
2999
3000 class A {};
3001 class B: public A {};
3002 class C: public B {};
3003 class D: C {};
3004
3005 distance_to_ancestor (A, A, 0) = 0
3006 distance_to_ancestor (A, B, 0) = 1
3007 distance_to_ancestor (A, C, 0) = 2
3008 distance_to_ancestor (A, D, 0) = 3
3009
3010 If PUBLIC is 1 then only public ancestors are considered,
3011 and the function returns the distance only if BASE is a public ancestor
3012 of DCLASS.
3013 Eg:
3014
0963b4bd 3015 distance_to_ancestor (A, D, 1) = -1. */
c906108c 3016
0526b37a 3017static int
fe978cb0 3018distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
c906108c
SS
3019{
3020 int i;
a9d5ef47 3021 int d;
c5aa993b 3022
f168693b
SM
3023 base = check_typedef (base);
3024 dclass = check_typedef (dclass);
c906108c 3025
4e8f195d 3026 if (class_types_same_p (base, dclass))
a9d5ef47 3027 return 0;
c906108c
SS
3028
3029 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 3030 {
fe978cb0 3031 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
0526b37a
SW
3032 continue;
3033
fe978cb0 3034 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
a9d5ef47
SW
3035 if (d >= 0)
3036 return 1 + d;
4e8f195d 3037 }
c906108c 3038
a9d5ef47 3039 return -1;
c906108c 3040}
4e8f195d 3041
0526b37a
SW
3042/* Check whether BASE is an ancestor or base class or DCLASS
3043 Return 1 if so, and 0 if not.
3044 Note: If BASE and DCLASS are of the same type, this function
3045 will return 1. So for some class A, is_ancestor (A, A) will
3046 return 1. */
3047
3048int
3049is_ancestor (struct type *base, struct type *dclass)
3050{
a9d5ef47 3051 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
3052}
3053
4e8f195d
TT
3054/* Like is_ancestor, but only returns true when BASE is a public
3055 ancestor of DCLASS. */
3056
3057int
3058is_public_ancestor (struct type *base, struct type *dclass)
3059{
a9d5ef47 3060 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
3061}
3062
3063/* A helper function for is_unique_ancestor. */
3064
3065static int
3066is_unique_ancestor_worker (struct type *base, struct type *dclass,
3067 int *offset,
8af8e3bc
PA
3068 const gdb_byte *valaddr, int embedded_offset,
3069 CORE_ADDR address, struct value *val)
4e8f195d
TT
3070{
3071 int i, count = 0;
3072
f168693b
SM
3073 base = check_typedef (base);
3074 dclass = check_typedef (dclass);
4e8f195d
TT
3075
3076 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3077 {
8af8e3bc
PA
3078 struct type *iter;
3079 int this_offset;
4e8f195d 3080
8af8e3bc
PA
3081 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3082
3083 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3084 address, val);
4e8f195d
TT
3085
3086 if (class_types_same_p (base, iter))
3087 {
3088 /* If this is the first subclass, set *OFFSET and set count
3089 to 1. Otherwise, if this is at the same offset as
3090 previous instances, do nothing. Otherwise, increment
3091 count. */
3092 if (*offset == -1)
3093 {
3094 *offset = this_offset;
3095 count = 1;
3096 }
3097 else if (this_offset == *offset)
3098 {
3099 /* Nothing. */
3100 }
3101 else
3102 ++count;
3103 }
3104 else
3105 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
3106 valaddr,
3107 embedded_offset + this_offset,
3108 address, val);
4e8f195d
TT
3109 }
3110
3111 return count;
3112}
3113
3114/* Like is_ancestor, but only returns true if BASE is a unique base
3115 class of the type of VAL. */
3116
3117int
3118is_unique_ancestor (struct type *base, struct value *val)
3119{
3120 int offset = -1;
3121
3122 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
3123 value_contents_for_printing (val),
3124 value_embedded_offset (val),
3125 value_address (val), val) == 1;
4e8f195d
TT
3126}
3127
c906108c 3128\f
5212577a 3129/* Overload resolution. */
c906108c 3130
6403aeea
SW
3131/* Return the sum of the rank of A with the rank of B. */
3132
3133struct rank
3134sum_ranks (struct rank a, struct rank b)
3135{
3136 struct rank c;
3137 c.rank = a.rank + b.rank;
a9d5ef47 3138 c.subrank = a.subrank + b.subrank;
6403aeea
SW
3139 return c;
3140}
3141
3142/* Compare rank A and B and return:
3143 0 if a = b
3144 1 if a is better than b
3145 -1 if b is better than a. */
3146
3147int
3148compare_ranks (struct rank a, struct rank b)
3149{
3150 if (a.rank == b.rank)
a9d5ef47
SW
3151 {
3152 if (a.subrank == b.subrank)
3153 return 0;
3154 if (a.subrank < b.subrank)
3155 return 1;
3156 if (a.subrank > b.subrank)
3157 return -1;
3158 }
6403aeea
SW
3159
3160 if (a.rank < b.rank)
3161 return 1;
3162
0963b4bd 3163 /* a.rank > b.rank */
6403aeea
SW
3164 return -1;
3165}
c5aa993b 3166
0963b4bd 3167/* Functions for overload resolution begin here. */
c906108c
SS
3168
3169/* Compare two badness vectors A and B and return the result.
7ba81444
MS
3170 0 => A and B are identical
3171 1 => A and B are incomparable
3172 2 => A is better than B
3173 3 => A is worse than B */
c906108c
SS
3174
3175int
fba45db2 3176compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
3177{
3178 int i;
3179 int tmp;
c5aa993b
JM
3180 short found_pos = 0; /* any positives in c? */
3181 short found_neg = 0; /* any negatives in c? */
3182
3183 /* differing lengths => incomparable */
c906108c
SS
3184 if (a->length != b->length)
3185 return 1;
3186
c5aa993b
JM
3187 /* Subtract b from a */
3188 for (i = 0; i < a->length; i++)
c906108c 3189 {
6403aeea 3190 tmp = compare_ranks (b->rank[i], a->rank[i]);
c906108c 3191 if (tmp > 0)
c5aa993b 3192 found_pos = 1;
c906108c 3193 else if (tmp < 0)
c5aa993b 3194 found_neg = 1;
c906108c
SS
3195 }
3196
3197 if (found_pos)
3198 {
3199 if (found_neg)
c5aa993b 3200 return 1; /* incomparable */
c906108c 3201 else
c5aa993b 3202 return 3; /* A > B */
c906108c 3203 }
c5aa993b
JM
3204 else
3205 /* no positives */
c906108c
SS
3206 {
3207 if (found_neg)
c5aa993b 3208 return 2; /* A < B */
c906108c 3209 else
c5aa993b 3210 return 0; /* A == B */
c906108c
SS
3211 }
3212}
3213
7ba81444
MS
3214/* Rank a function by comparing its parameter types (PARMS, length
3215 NPARMS), to the types of an argument list (ARGS, length NARGS).
3216 Return a pointer to a badness vector. This has NARGS + 1
3217 entries. */
c906108c
SS
3218
3219struct badness_vector *
7ba81444 3220rank_function (struct type **parms, int nparms,
da096638 3221 struct value **args, int nargs)
c906108c
SS
3222{
3223 int i;
8d749320 3224 struct badness_vector *bv = XNEW (struct badness_vector);
c906108c
SS
3225 int min_len = nparms < nargs ? nparms : nargs;
3226
0963b4bd 3227 bv->length = nargs + 1; /* add 1 for the length-match rank. */
c4e54771 3228 bv->rank = XNEWVEC (struct rank, nargs + 1);
c906108c
SS
3229
3230 /* First compare the lengths of the supplied lists.
7ba81444 3231 If there is a mismatch, set it to a high value. */
c5aa993b 3232
c906108c 3233 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
3234 arguments and ellipsis parameter lists, we should consider those
3235 and rank the length-match more finely. */
c906108c 3236
6403aeea
SW
3237 LENGTH_MATCH (bv) = (nargs != nparms)
3238 ? LENGTH_MISMATCH_BADNESS
3239 : EXACT_MATCH_BADNESS;
c906108c 3240
0963b4bd 3241 /* Now rank all the parameters of the candidate function. */
74cc24b0 3242 for (i = 1; i <= min_len; i++)
da096638
KS
3243 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
3244 args[i - 1]);
c906108c 3245
0963b4bd 3246 /* If more arguments than parameters, add dummy entries. */
c5aa993b 3247 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
3248 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
3249
3250 return bv;
3251}
3252
973ccf8b
DJ
3253/* Compare the names of two integer types, assuming that any sign
3254 qualifiers have been checked already. We do it this way because
3255 there may be an "int" in the name of one of the types. */
3256
3257static int
3258integer_types_same_name_p (const char *first, const char *second)
3259{
3260 int first_p, second_p;
3261
7ba81444
MS
3262 /* If both are shorts, return 1; if neither is a short, keep
3263 checking. */
973ccf8b
DJ
3264 first_p = (strstr (first, "short") != NULL);
3265 second_p = (strstr (second, "short") != NULL);
3266 if (first_p && second_p)
3267 return 1;
3268 if (first_p || second_p)
3269 return 0;
3270
3271 /* Likewise for long. */
3272 first_p = (strstr (first, "long") != NULL);
3273 second_p = (strstr (second, "long") != NULL);
3274 if (first_p && second_p)
3275 return 1;
3276 if (first_p || second_p)
3277 return 0;
3278
3279 /* Likewise for char. */
3280 first_p = (strstr (first, "char") != NULL);
3281 second_p = (strstr (second, "char") != NULL);
3282 if (first_p && second_p)
3283 return 1;
3284 if (first_p || second_p)
3285 return 0;
3286
3287 /* They must both be ints. */
3288 return 1;
3289}
3290
7062b0a0
SW
3291/* Compares type A to type B returns 1 if the represent the same type
3292 0 otherwise. */
3293
bd69fc68 3294int
7062b0a0
SW
3295types_equal (struct type *a, struct type *b)
3296{
3297 /* Identical type pointers. */
3298 /* However, this still doesn't catch all cases of same type for b
3299 and a. The reason is that builtin types are different from
3300 the same ones constructed from the object. */
3301 if (a == b)
3302 return 1;
3303
3304 /* Resolve typedefs */
3305 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3306 a = check_typedef (a);
3307 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3308 b = check_typedef (b);
3309
3310 /* If after resolving typedefs a and b are not of the same type
3311 code then they are not equal. */
3312 if (TYPE_CODE (a) != TYPE_CODE (b))
3313 return 0;
3314
3315 /* If a and b are both pointers types or both reference types then
3316 they are equal of the same type iff the objects they refer to are
3317 of the same type. */
3318 if (TYPE_CODE (a) == TYPE_CODE_PTR
3319 || TYPE_CODE (a) == TYPE_CODE_REF)
3320 return types_equal (TYPE_TARGET_TYPE (a),
3321 TYPE_TARGET_TYPE (b));
3322
0963b4bd 3323 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
3324 are exactly the same. This happens when we generate method
3325 stubs. The types won't point to the same address, but they
0963b4bd 3326 really are the same. */
7062b0a0
SW
3327
3328 if (TYPE_NAME (a) && TYPE_NAME (b)
3329 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3330 return 1;
3331
3332 /* Check if identical after resolving typedefs. */
3333 if (a == b)
3334 return 1;
3335
9ce98649
TT
3336 /* Two function types are equal if their argument and return types
3337 are equal. */
3338 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3339 {
3340 int i;
3341
3342 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3343 return 0;
3344
3345 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3346 return 0;
3347
3348 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3349 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3350 return 0;
3351
3352 return 1;
3353 }
3354
7062b0a0
SW
3355 return 0;
3356}
ca092b61
DE
3357\f
3358/* Deep comparison of types. */
3359
3360/* An entry in the type-equality bcache. */
3361
3362typedef struct type_equality_entry
3363{
3364 struct type *type1, *type2;
3365} type_equality_entry_d;
3366
3367DEF_VEC_O (type_equality_entry_d);
3368
3369/* A helper function to compare two strings. Returns 1 if they are
3370 the same, 0 otherwise. Handles NULLs properly. */
3371
3372static int
3373compare_maybe_null_strings (const char *s, const char *t)
3374{
3375 if (s == NULL && t != NULL)
3376 return 0;
3377 else if (s != NULL && t == NULL)
3378 return 0;
3379 else if (s == NULL && t== NULL)
3380 return 1;
3381 return strcmp (s, t) == 0;
3382}
3383
3384/* A helper function for check_types_worklist that checks two types for
3385 "deep" equality. Returns non-zero if the types are considered the
3386 same, zero otherwise. */
3387
3388static int
3389check_types_equal (struct type *type1, struct type *type2,
3390 VEC (type_equality_entry_d) **worklist)
3391{
f168693b
SM
3392 type1 = check_typedef (type1);
3393 type2 = check_typedef (type2);
ca092b61
DE
3394
3395 if (type1 == type2)
3396 return 1;
3397
3398 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3399 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3400 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3401 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3402 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3403 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3404 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3405 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3406 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3407 return 0;
3408
3409 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3410 TYPE_TAG_NAME (type2)))
3411 return 0;
3412 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3413 return 0;
3414
3415 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3416 {
3417 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
3418 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
3419 return 0;
3420 }
3421 else
3422 {
3423 int i;
3424
3425 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3426 {
3427 const struct field *field1 = &TYPE_FIELD (type1, i);
3428 const struct field *field2 = &TYPE_FIELD (type2, i);
3429 struct type_equality_entry entry;
3430
3431 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3432 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3433 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3434 return 0;
3435 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3436 FIELD_NAME (*field2)))
3437 return 0;
3438 switch (FIELD_LOC_KIND (*field1))
3439 {
3440 case FIELD_LOC_KIND_BITPOS:
3441 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3442 return 0;
3443 break;
3444 case FIELD_LOC_KIND_ENUMVAL:
3445 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3446 return 0;
3447 break;
3448 case FIELD_LOC_KIND_PHYSADDR:
3449 if (FIELD_STATIC_PHYSADDR (*field1)
3450 != FIELD_STATIC_PHYSADDR (*field2))
3451 return 0;
3452 break;
3453 case FIELD_LOC_KIND_PHYSNAME:
3454 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3455 FIELD_STATIC_PHYSNAME (*field2)))
3456 return 0;
3457 break;
3458 case FIELD_LOC_KIND_DWARF_BLOCK:
3459 {
3460 struct dwarf2_locexpr_baton *block1, *block2;
3461
3462 block1 = FIELD_DWARF_BLOCK (*field1);
3463 block2 = FIELD_DWARF_BLOCK (*field2);
3464 if (block1->per_cu != block2->per_cu
3465 || block1->size != block2->size
3466 || memcmp (block1->data, block2->data, block1->size) != 0)
3467 return 0;
3468 }
3469 break;
3470 default:
3471 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3472 "%d by check_types_equal"),
3473 FIELD_LOC_KIND (*field1));
3474 }
3475
3476 entry.type1 = FIELD_TYPE (*field1);
3477 entry.type2 = FIELD_TYPE (*field2);
3478 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3479 }
3480 }
3481
3482 if (TYPE_TARGET_TYPE (type1) != NULL)
3483 {
3484 struct type_equality_entry entry;
3485
3486 if (TYPE_TARGET_TYPE (type2) == NULL)
3487 return 0;
3488
3489 entry.type1 = TYPE_TARGET_TYPE (type1);
3490 entry.type2 = TYPE_TARGET_TYPE (type2);
3491 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3492 }
3493 else if (TYPE_TARGET_TYPE (type2) != NULL)
3494 return 0;
3495
3496 return 1;
3497}
3498
3499/* Check types on a worklist for equality. Returns zero if any pair
3500 is not equal, non-zero if they are all considered equal. */
3501
3502static int
3503check_types_worklist (VEC (type_equality_entry_d) **worklist,
3504 struct bcache *cache)
3505{
3506 while (!VEC_empty (type_equality_entry_d, *worklist))
3507 {
3508 struct type_equality_entry entry;
3509 int added;
3510
3511 entry = *VEC_last (type_equality_entry_d, *worklist);
3512 VEC_pop (type_equality_entry_d, *worklist);
3513
3514 /* If the type pair has already been visited, we know it is
3515 ok. */
3516 bcache_full (&entry, sizeof (entry), cache, &added);
3517 if (!added)
3518 continue;
3519
3520 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3521 return 0;
3522 }
7062b0a0 3523
ca092b61
DE
3524 return 1;
3525}
3526
3527/* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3528 "deep comparison". Otherwise return zero. */
3529
3530int
3531types_deeply_equal (struct type *type1, struct type *type2)
3532{
6c63c96a 3533 struct gdb_exception except = exception_none;
ca092b61
DE
3534 int result = 0;
3535 struct bcache *cache;
3536 VEC (type_equality_entry_d) *worklist = NULL;
3537 struct type_equality_entry entry;
3538
3539 gdb_assert (type1 != NULL && type2 != NULL);
3540
3541 /* Early exit for the simple case. */
3542 if (type1 == type2)
3543 return 1;
3544
3545 cache = bcache_xmalloc (NULL, NULL);
3546
3547 entry.type1 = type1;
3548 entry.type2 = type2;
3549 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3550
6c63c96a
PA
3551 /* check_types_worklist calls several nested helper functions, some
3552 of which can raise a GDB exception, so we just check and rethrow
3553 here. If there is a GDB exception, a comparison is not capable
3554 (or trusted), so exit. */
492d29ea 3555 TRY
ca092b61
DE
3556 {
3557 result = check_types_worklist (&worklist, cache);
3558 }
6c63c96a 3559 CATCH (ex, RETURN_MASK_ALL)
492d29ea 3560 {
6c63c96a 3561 except = ex;
492d29ea
PA
3562 }
3563 END_CATCH
ca092b61 3564
6c63c96a
PA
3565 bcache_xfree (cache);
3566 VEC_free (type_equality_entry_d, worklist);
3567
3568 /* Rethrow if there was a problem. */
3569 if (except.reason < 0)
3570 throw_exception (except);
3571
ca092b61
DE
3572 return result;
3573}
3f2f83dd
KB
3574
3575/* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3576 Otherwise return one. */
3577
3578int
3579type_not_allocated (const struct type *type)
3580{
3581 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3582
3583 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3584 && !TYPE_DYN_PROP_ADDR (prop));
3585}
3586
3587/* Associated status of type TYPE. Return zero if type TYPE is associated.
3588 Otherwise return one. */
3589
3590int
3591type_not_associated (const struct type *type)
3592{
3593 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3594
3595 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3596 && !TYPE_DYN_PROP_ADDR (prop));
3597}
ca092b61 3598\f
c906108c
SS
3599/* Compare one type (PARM) for compatibility with another (ARG).
3600 * PARM is intended to be the parameter type of a function; and
3601 * ARG is the supplied argument's type. This function tests if
3602 * the latter can be converted to the former.
da096638 3603 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
3604 *
3605 * Return 0 if they are identical types;
3606 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
3607 * PARM is to ARG. The higher the return value, the worse the match.
3608 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 3609
6403aeea 3610struct rank
da096638 3611rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 3612{
a9d5ef47 3613 struct rank rank = {0,0};
7062b0a0 3614
c906108c
SS
3615 /* Resolve typedefs */
3616 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3617 parm = check_typedef (parm);
3618 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3619 arg = check_typedef (arg);
3620
e15c3eb4 3621 if (TYPE_IS_REFERENCE (parm) && value != NULL)
15c0a2a9 3622 {
e15c3eb4
KS
3623 if (VALUE_LVAL (value) == not_lval)
3624 {
3625 /* Rvalues should preferably bind to rvalue references or const
3626 lvalue references. */
3627 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
3628 rank.subrank = REFERENCE_CONVERSION_RVALUE;
3629 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
3630 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
3631 else
3632 return INCOMPATIBLE_TYPE_BADNESS;
3633 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
3634 }
3635 else
3636 {
3637 /* Lvalues should prefer lvalue overloads. */
3638 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
3639 {
3640 rank.subrank = REFERENCE_CONVERSION_RVALUE;
3641 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
3642 }
3643 }
15c0a2a9
AV
3644 }
3645
3646 if (types_equal (parm, arg))
15c0a2a9 3647 {
e15c3eb4
KS
3648 struct type *t1 = parm;
3649 struct type *t2 = arg;
15c0a2a9 3650
e15c3eb4
KS
3651 /* For pointers and references, compare target type. */
3652 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
3653 {
3654 t1 = TYPE_TARGET_TYPE (parm);
3655 t2 = TYPE_TARGET_TYPE (arg);
3656 }
15c0a2a9 3657
e15c3eb4
KS
3658 /* Make sure they are CV equal, too. */
3659 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3660 rank.subrank |= CV_CONVERSION_CONST;
3661 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3662 rank.subrank |= CV_CONVERSION_VOLATILE;
3663 if (rank.subrank != 0)
3664 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3665 return EXACT_MATCH_BADNESS;
15c0a2a9
AV
3666 }
3667
db577aea 3668 /* See through references, since we can almost make non-references
7ba81444 3669 references. */
aa006118
AV
3670
3671 if (TYPE_IS_REFERENCE (arg))
da096638 3672 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
6403aeea 3673 REFERENCE_CONVERSION_BADNESS));
aa006118 3674 if (TYPE_IS_REFERENCE (parm))
da096638 3675 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
6403aeea 3676 REFERENCE_CONVERSION_BADNESS));
5d161b24 3677 if (overload_debug)
7ba81444
MS
3678 /* Debugging only. */
3679 fprintf_filtered (gdb_stderr,
3680 "------ Arg is %s [%d], parm is %s [%d]\n",
3681 TYPE_NAME (arg), TYPE_CODE (arg),
3682 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 3683
0963b4bd 3684 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
3685
3686 switch (TYPE_CODE (parm))
3687 {
c5aa993b
JM
3688 case TYPE_CODE_PTR:
3689 switch (TYPE_CODE (arg))
3690 {
3691 case TYPE_CODE_PTR:
7062b0a0
SW
3692
3693 /* Allowed pointer conversions are:
3694 (a) pointer to void-pointer conversion. */
3695 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
c5aa993b 3696 return VOID_PTR_CONVERSION_BADNESS;
7062b0a0
SW
3697
3698 /* (b) pointer to ancestor-pointer conversion. */
a9d5ef47
SW
3699 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3700 TYPE_TARGET_TYPE (arg),
3701 0);
3702 if (rank.subrank >= 0)
3703 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
7062b0a0
SW
3704
3705 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3706 case TYPE_CODE_ARRAY:
e15c3eb4
KS
3707 {
3708 struct type *t1 = TYPE_TARGET_TYPE (parm);
3709 struct type *t2 = TYPE_TARGET_TYPE (arg);
3710
3711 if (types_equal (t1, t2))
3712 {
3713 /* Make sure they are CV equal. */
3714 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3715 rank.subrank |= CV_CONVERSION_CONST;
3716 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3717 rank.subrank |= CV_CONVERSION_VOLATILE;
3718 if (rank.subrank != 0)
3719 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3720 return EXACT_MATCH_BADNESS;
3721 }
3722 return INCOMPATIBLE_TYPE_BADNESS;
3723 }
c5aa993b 3724 case TYPE_CODE_FUNC:
da096638 3725 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
c5aa993b 3726 case TYPE_CODE_INT:
a451cb65 3727 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
da096638 3728 {
a451cb65
KS
3729 if (value_as_long (value) == 0)
3730 {
3731 /* Null pointer conversion: allow it to be cast to a pointer.
3732 [4.10.1 of C++ standard draft n3290] */
3733 return NULL_POINTER_CONVERSION_BADNESS;
3734 }
3735 else
3736 {
3737 /* If type checking is disabled, allow the conversion. */
3738 if (!strict_type_checking)
3739 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3740 }
da096638
KS
3741 }
3742 /* fall through */
c5aa993b 3743 case TYPE_CODE_ENUM:
4f2aea11 3744 case TYPE_CODE_FLAGS:
c5aa993b
JM
3745 case TYPE_CODE_CHAR:
3746 case TYPE_CODE_RANGE:
3747 case TYPE_CODE_BOOL:
c5aa993b
JM
3748 default:
3749 return INCOMPATIBLE_TYPE_BADNESS;
3750 }
3751 case TYPE_CODE_ARRAY:
3752 switch (TYPE_CODE (arg))
3753 {
3754 case TYPE_CODE_PTR:
3755 case TYPE_CODE_ARRAY:
7ba81444 3756 return rank_one_type (TYPE_TARGET_TYPE (parm),
da096638 3757 TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3758 default:
3759 return INCOMPATIBLE_TYPE_BADNESS;
3760 }
3761 case TYPE_CODE_FUNC:
3762 switch (TYPE_CODE (arg))
3763 {
3764 case TYPE_CODE_PTR: /* funcptr -> func */
da096638 3765 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3766 default:
3767 return INCOMPATIBLE_TYPE_BADNESS;
3768 }
3769 case TYPE_CODE_INT:
3770 switch (TYPE_CODE (arg))
3771 {
3772 case TYPE_CODE_INT:
3773 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3774 {
3775 /* Deal with signed, unsigned, and plain chars and
7ba81444 3776 signed and unsigned ints. */
c5aa993b
JM
3777 if (TYPE_NOSIGN (parm))
3778 {
0963b4bd 3779 /* This case only for character types. */
7ba81444 3780 if (TYPE_NOSIGN (arg))
6403aeea 3781 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
7ba81444
MS
3782 else /* signed/unsigned char -> plain char */
3783 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3784 }
3785 else if (TYPE_UNSIGNED (parm))
3786 {
3787 if (TYPE_UNSIGNED (arg))
3788 {
7ba81444
MS
3789 /* unsigned int -> unsigned int, or
3790 unsigned long -> unsigned long */
3791 if (integer_types_same_name_p (TYPE_NAME (parm),
3792 TYPE_NAME (arg)))
6403aeea 3793 return EXACT_MATCH_BADNESS;
7ba81444
MS
3794 else if (integer_types_same_name_p (TYPE_NAME (arg),
3795 "int")
3796 && integer_types_same_name_p (TYPE_NAME (parm),
3797 "long"))
3e43a32a
MS
3798 /* unsigned int -> unsigned long */
3799 return INTEGER_PROMOTION_BADNESS;
c5aa993b 3800 else
3e43a32a
MS
3801 /* unsigned long -> unsigned int */
3802 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3803 }
3804 else
3805 {
7ba81444
MS
3806 if (integer_types_same_name_p (TYPE_NAME (arg),
3807 "long")
3808 && integer_types_same_name_p (TYPE_NAME (parm),
3809 "int"))
3e43a32a
MS
3810 /* signed long -> unsigned int */
3811 return INTEGER_CONVERSION_BADNESS;
c5aa993b 3812 else
3e43a32a
MS
3813 /* signed int/long -> unsigned int/long */
3814 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3815 }
3816 }
3817 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3818 {
7ba81444
MS
3819 if (integer_types_same_name_p (TYPE_NAME (parm),
3820 TYPE_NAME (arg)))
6403aeea 3821 return EXACT_MATCH_BADNESS;
7ba81444
MS
3822 else if (integer_types_same_name_p (TYPE_NAME (arg),
3823 "int")
3824 && integer_types_same_name_p (TYPE_NAME (parm),
3825 "long"))
c5aa993b
JM
3826 return INTEGER_PROMOTION_BADNESS;
3827 else
1c5cb38e 3828 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3829 }
3830 else
1c5cb38e 3831 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3832 }
3833 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3834 return INTEGER_PROMOTION_BADNESS;
3835 else
1c5cb38e 3836 return INTEGER_CONVERSION_BADNESS;
c5aa993b 3837 case TYPE_CODE_ENUM:
4f2aea11 3838 case TYPE_CODE_FLAGS:
c5aa993b
JM
3839 case TYPE_CODE_CHAR:
3840 case TYPE_CODE_RANGE:
3841 case TYPE_CODE_BOOL:
3d567982
TT
3842 if (TYPE_DECLARED_CLASS (arg))
3843 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b
JM
3844 return INTEGER_PROMOTION_BADNESS;
3845 case TYPE_CODE_FLT:
3846 return INT_FLOAT_CONVERSION_BADNESS;
3847 case TYPE_CODE_PTR:
3848 return NS_POINTER_CONVERSION_BADNESS;
3849 default:
3850 return INCOMPATIBLE_TYPE_BADNESS;
3851 }
3852 break;
3853 case TYPE_CODE_ENUM:
3854 switch (TYPE_CODE (arg))
3855 {
3856 case TYPE_CODE_INT:
3857 case TYPE_CODE_CHAR:
3858 case TYPE_CODE_RANGE:
3859 case TYPE_CODE_BOOL:
3860 case TYPE_CODE_ENUM:
3d567982
TT
3861 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3862 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 3863 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3864 case TYPE_CODE_FLT:
3865 return INT_FLOAT_CONVERSION_BADNESS;
3866 default:
3867 return INCOMPATIBLE_TYPE_BADNESS;
3868 }
3869 break;
3870 case TYPE_CODE_CHAR:
3871 switch (TYPE_CODE (arg))
3872 {
3873 case TYPE_CODE_RANGE:
3874 case TYPE_CODE_BOOL:
3875 case TYPE_CODE_ENUM:
3d567982
TT
3876 if (TYPE_DECLARED_CLASS (arg))
3877 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 3878 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3879 case TYPE_CODE_FLT:
3880 return INT_FLOAT_CONVERSION_BADNESS;
3881 case TYPE_CODE_INT:
3882 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
1c5cb38e 3883 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3884 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3885 return INTEGER_PROMOTION_BADNESS;
3886 /* >>> !! else fall through !! <<< */
3887 case TYPE_CODE_CHAR:
7ba81444
MS
3888 /* Deal with signed, unsigned, and plain chars for C++ and
3889 with int cases falling through from previous case. */
c5aa993b
JM
3890 if (TYPE_NOSIGN (parm))
3891 {
3892 if (TYPE_NOSIGN (arg))
6403aeea 3893 return EXACT_MATCH_BADNESS;
c5aa993b 3894 else
1c5cb38e 3895 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3896 }
3897 else if (TYPE_UNSIGNED (parm))
3898 {
3899 if (TYPE_UNSIGNED (arg))
6403aeea 3900 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3901 else
3902 return INTEGER_PROMOTION_BADNESS;
3903 }
3904 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
6403aeea 3905 return EXACT_MATCH_BADNESS;
c5aa993b 3906 else
1c5cb38e 3907 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3908 default:
3909 return INCOMPATIBLE_TYPE_BADNESS;
3910 }
3911 break;
3912 case TYPE_CODE_RANGE:
3913 switch (TYPE_CODE (arg))
3914 {
3915 case TYPE_CODE_INT:
3916 case TYPE_CODE_CHAR:
3917 case TYPE_CODE_RANGE:
3918 case TYPE_CODE_BOOL:
3919 case TYPE_CODE_ENUM:
1c5cb38e 3920 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3921 case TYPE_CODE_FLT:
3922 return INT_FLOAT_CONVERSION_BADNESS;
3923 default:
3924 return INCOMPATIBLE_TYPE_BADNESS;
3925 }
3926 break;
3927 case TYPE_CODE_BOOL:
3928 switch (TYPE_CODE (arg))
3929 {
5b4f6e25
KS
3930 /* n3290 draft, section 4.12.1 (conv.bool):
3931
3932 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3933 pointer to member type can be converted to a prvalue of type
3934 bool. A zero value, null pointer value, or null member pointer
3935 value is converted to false; any other value is converted to
3936 true. A prvalue of type std::nullptr_t can be converted to a
3937 prvalue of type bool; the resulting value is false." */
c5aa993b
JM
3938 case TYPE_CODE_INT:
3939 case TYPE_CODE_CHAR:
c5aa993b
JM
3940 case TYPE_CODE_ENUM:
3941 case TYPE_CODE_FLT:
5b4f6e25 3942 case TYPE_CODE_MEMBERPTR:
c5aa993b 3943 case TYPE_CODE_PTR:
5b4f6e25
KS
3944 return BOOL_CONVERSION_BADNESS;
3945 case TYPE_CODE_RANGE:
3946 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3947 case TYPE_CODE_BOOL:
6403aeea 3948 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3949 default:
3950 return INCOMPATIBLE_TYPE_BADNESS;
3951 }
3952 break;
3953 case TYPE_CODE_FLT:
3954 switch (TYPE_CODE (arg))
3955 {
3956 case TYPE_CODE_FLT:
3957 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3958 return FLOAT_PROMOTION_BADNESS;
3959 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
6403aeea 3960 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3961 else
3962 return FLOAT_CONVERSION_BADNESS;
3963 case TYPE_CODE_INT:
3964 case TYPE_CODE_BOOL:
3965 case TYPE_CODE_ENUM:
3966 case TYPE_CODE_RANGE:
3967 case TYPE_CODE_CHAR:
3968 return INT_FLOAT_CONVERSION_BADNESS;
3969 default:
3970 return INCOMPATIBLE_TYPE_BADNESS;
3971 }
3972 break;
3973 case TYPE_CODE_COMPLEX:
3974 switch (TYPE_CODE (arg))
7ba81444 3975 { /* Strictly not needed for C++, but... */
c5aa993b
JM
3976 case TYPE_CODE_FLT:
3977 return FLOAT_PROMOTION_BADNESS;
3978 case TYPE_CODE_COMPLEX:
6403aeea 3979 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3980 default:
3981 return INCOMPATIBLE_TYPE_BADNESS;
3982 }
3983 break;
3984 case TYPE_CODE_STRUCT:
c5aa993b
JM
3985 switch (TYPE_CODE (arg))
3986 {
3987 case TYPE_CODE_STRUCT:
3988 /* Check for derivation */
a9d5ef47
SW
3989 rank.subrank = distance_to_ancestor (parm, arg, 0);
3990 if (rank.subrank >= 0)
3991 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
c5aa993b
JM
3992 /* else fall through */
3993 default:
3994 return INCOMPATIBLE_TYPE_BADNESS;
3995 }
3996 break;
3997 case TYPE_CODE_UNION:
3998 switch (TYPE_CODE (arg))
3999 {
4000 case TYPE_CODE_UNION:
4001 default:
4002 return INCOMPATIBLE_TYPE_BADNESS;
4003 }
4004 break;
0d5de010 4005 case TYPE_CODE_MEMBERPTR:
c5aa993b
JM
4006 switch (TYPE_CODE (arg))
4007 {
4008 default:
4009 return INCOMPATIBLE_TYPE_BADNESS;
4010 }
4011 break;
4012 case TYPE_CODE_METHOD:
4013 switch (TYPE_CODE (arg))
4014 {
4015
4016 default:
4017 return INCOMPATIBLE_TYPE_BADNESS;
4018 }
4019 break;
4020 case TYPE_CODE_REF:
4021 switch (TYPE_CODE (arg))
4022 {
4023
4024 default:
4025 return INCOMPATIBLE_TYPE_BADNESS;
4026 }
4027
4028 break;
4029 case TYPE_CODE_SET:
4030 switch (TYPE_CODE (arg))
4031 {
4032 /* Not in C++ */
4033 case TYPE_CODE_SET:
7ba81444 4034 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
da096638 4035 TYPE_FIELD_TYPE (arg, 0), NULL);
c5aa993b
JM
4036 default:
4037 return INCOMPATIBLE_TYPE_BADNESS;
4038 }
4039 break;
4040 case TYPE_CODE_VOID:
4041 default:
4042 return INCOMPATIBLE_TYPE_BADNESS;
4043 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
4044}
4045
0963b4bd 4046/* End of functions for overload resolution. */
5212577a
DE
4047\f
4048/* Routines to pretty-print types. */
c906108c 4049
c906108c 4050static void
fba45db2 4051print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
4052{
4053 int bitno;
4054
4055 for (bitno = 0; bitno < nbits; bitno++)
4056 {
4057 if ((bitno % 8) == 0)
4058 {
4059 puts_filtered (" ");
4060 }
4061 if (B_TST (bits, bitno))
a3f17187 4062 printf_filtered (("1"));
c906108c 4063 else
a3f17187 4064 printf_filtered (("0"));
c906108c
SS
4065 }
4066}
4067
ad2f7632 4068/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
4069 include it since we may get into a infinitely recursive
4070 situation. */
c906108c
SS
4071
4072static void
4c9e8482 4073print_args (struct field *args, int nargs, int spaces)
c906108c
SS
4074{
4075 if (args != NULL)
4076 {
ad2f7632
DJ
4077 int i;
4078
4079 for (i = 0; i < nargs; i++)
4c9e8482
DE
4080 {
4081 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4082 args[i].name != NULL ? args[i].name : "<NULL>");
4083 recursive_dump_type (args[i].type, spaces + 2);
4084 }
c906108c
SS
4085 }
4086}
4087
d6a843b5
JK
4088int
4089field_is_static (struct field *f)
4090{
4091 /* "static" fields are the fields whose location is not relative
4092 to the address of the enclosing struct. It would be nice to
4093 have a dedicated flag that would be set for static fields when
4094 the type is being created. But in practice, checking the field
254e6b9e 4095 loc_kind should give us an accurate answer. */
d6a843b5
JK
4096 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4097 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4098}
4099
c906108c 4100static void
fba45db2 4101dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
4102{
4103 int method_idx;
4104 int overload_idx;
4105 struct fn_field *f;
4106
4107 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 4108 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
4109 printf_filtered ("\n");
4110 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4111 {
4112 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4113 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4114 method_idx,
4115 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
4116 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4117 gdb_stdout);
a3f17187 4118 printf_filtered (_(") length %d\n"),
c906108c
SS
4119 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4120 for (overload_idx = 0;
4121 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4122 overload_idx++)
4123 {
4124 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4125 overload_idx,
4126 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
4127 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4128 gdb_stdout);
c906108c
SS
4129 printf_filtered (")\n");
4130 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
4131 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4132 gdb_stdout);
c906108c
SS
4133 printf_filtered ("\n");
4134
4135 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4136 spaces + 8 + 2);
4137
4138 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
4139 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4140 gdb_stdout);
c906108c 4141 printf_filtered ("\n");
4c9e8482
DE
4142 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4143 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4144 spaces + 8 + 2);
c906108c 4145 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
4146 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4147 gdb_stdout);
c906108c
SS
4148 printf_filtered ("\n");
4149
4150 printfi_filtered (spaces + 8, "is_const %d\n",
4151 TYPE_FN_FIELD_CONST (f, overload_idx));
4152 printfi_filtered (spaces + 8, "is_volatile %d\n",
4153 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4154 printfi_filtered (spaces + 8, "is_private %d\n",
4155 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4156 printfi_filtered (spaces + 8, "is_protected %d\n",
4157 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4158 printfi_filtered (spaces + 8, "is_stub %d\n",
4159 TYPE_FN_FIELD_STUB (f, overload_idx));
4160 printfi_filtered (spaces + 8, "voffset %u\n",
4161 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4162 }
4163 }
4164}
4165
4166static void
fba45db2 4167print_cplus_stuff (struct type *type, int spaces)
c906108c 4168{
ae6ae975
DE
4169 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4170 printfi_filtered (spaces, "vptr_basetype ");
4171 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4172 puts_filtered ("\n");
4173 if (TYPE_VPTR_BASETYPE (type) != NULL)
4174 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4175
c906108c
SS
4176 printfi_filtered (spaces, "n_baseclasses %d\n",
4177 TYPE_N_BASECLASSES (type));
4178 printfi_filtered (spaces, "nfn_fields %d\n",
4179 TYPE_NFN_FIELDS (type));
c906108c
SS
4180 if (TYPE_N_BASECLASSES (type) > 0)
4181 {
4182 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4183 TYPE_N_BASECLASSES (type));
7ba81444
MS
4184 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4185 gdb_stdout);
c906108c
SS
4186 printf_filtered (")");
4187
4188 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4189 TYPE_N_BASECLASSES (type));
4190 puts_filtered ("\n");
4191 }
4192 if (TYPE_NFIELDS (type) > 0)
4193 {
4194 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4195 {
7ba81444
MS
4196 printfi_filtered (spaces,
4197 "private_field_bits (%d bits at *",
c906108c 4198 TYPE_NFIELDS (type));
7ba81444
MS
4199 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4200 gdb_stdout);
c906108c
SS
4201 printf_filtered (")");
4202 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4203 TYPE_NFIELDS (type));
4204 puts_filtered ("\n");
4205 }
4206 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4207 {
7ba81444
MS
4208 printfi_filtered (spaces,
4209 "protected_field_bits (%d bits at *",
c906108c 4210 TYPE_NFIELDS (type));
7ba81444
MS
4211 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4212 gdb_stdout);
c906108c
SS
4213 printf_filtered (")");
4214 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4215 TYPE_NFIELDS (type));
4216 puts_filtered ("\n");
4217 }
4218 }
4219 if (TYPE_NFN_FIELDS (type) > 0)
4220 {
4221 dump_fn_fieldlists (type, spaces);
4222 }
4223}
4224
b4ba55a1
JB
4225/* Print the contents of the TYPE's type_specific union, assuming that
4226 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4227
4228static void
4229print_gnat_stuff (struct type *type, int spaces)
4230{
4231 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4232
8cd00c59
PMR
4233 if (descriptive_type == NULL)
4234 printfi_filtered (spaces + 2, "no descriptive type\n");
4235 else
4236 {
4237 printfi_filtered (spaces + 2, "descriptive type\n");
4238 recursive_dump_type (descriptive_type, spaces + 4);
4239 }
b4ba55a1
JB
4240}
4241
c906108c
SS
4242static struct obstack dont_print_type_obstack;
4243
4244void
fba45db2 4245recursive_dump_type (struct type *type, int spaces)
c906108c
SS
4246{
4247 int idx;
4248
4249 if (spaces == 0)
4250 obstack_begin (&dont_print_type_obstack, 0);
4251
4252 if (TYPE_NFIELDS (type) > 0
b4ba55a1 4253 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
4254 {
4255 struct type **first_dont_print
7ba81444 4256 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 4257
7ba81444
MS
4258 int i = (struct type **)
4259 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
4260
4261 while (--i >= 0)
4262 {
4263 if (type == first_dont_print[i])
4264 {
4265 printfi_filtered (spaces, "type node ");
d4f3574e 4266 gdb_print_host_address (type, gdb_stdout);
a3f17187 4267 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
4268 return;
4269 }
4270 }
4271
4272 obstack_ptr_grow (&dont_print_type_obstack, type);
4273 }
4274
4275 printfi_filtered (spaces, "type node ");
d4f3574e 4276 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
4277 printf_filtered ("\n");
4278 printfi_filtered (spaces, "name '%s' (",
4279 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 4280 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 4281 printf_filtered (")\n");
e9e79dd9
FF
4282 printfi_filtered (spaces, "tagname '%s' (",
4283 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
4284 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
4285 printf_filtered (")\n");
c906108c
SS
4286 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4287 switch (TYPE_CODE (type))
4288 {
c5aa993b
JM
4289 case TYPE_CODE_UNDEF:
4290 printf_filtered ("(TYPE_CODE_UNDEF)");
4291 break;
4292 case TYPE_CODE_PTR:
4293 printf_filtered ("(TYPE_CODE_PTR)");
4294 break;
4295 case TYPE_CODE_ARRAY:
4296 printf_filtered ("(TYPE_CODE_ARRAY)");
4297 break;
4298 case TYPE_CODE_STRUCT:
4299 printf_filtered ("(TYPE_CODE_STRUCT)");
4300 break;
4301 case TYPE_CODE_UNION:
4302 printf_filtered ("(TYPE_CODE_UNION)");
4303 break;
4304 case TYPE_CODE_ENUM:
4305 printf_filtered ("(TYPE_CODE_ENUM)");
4306 break;
4f2aea11
MK
4307 case TYPE_CODE_FLAGS:
4308 printf_filtered ("(TYPE_CODE_FLAGS)");
4309 break;
c5aa993b
JM
4310 case TYPE_CODE_FUNC:
4311 printf_filtered ("(TYPE_CODE_FUNC)");
4312 break;
4313 case TYPE_CODE_INT:
4314 printf_filtered ("(TYPE_CODE_INT)");
4315 break;
4316 case TYPE_CODE_FLT:
4317 printf_filtered ("(TYPE_CODE_FLT)");
4318 break;
4319 case TYPE_CODE_VOID:
4320 printf_filtered ("(TYPE_CODE_VOID)");
4321 break;
4322 case TYPE_CODE_SET:
4323 printf_filtered ("(TYPE_CODE_SET)");
4324 break;
4325 case TYPE_CODE_RANGE:
4326 printf_filtered ("(TYPE_CODE_RANGE)");
4327 break;
4328 case TYPE_CODE_STRING:
4329 printf_filtered ("(TYPE_CODE_STRING)");
4330 break;
4331 case TYPE_CODE_ERROR:
4332 printf_filtered ("(TYPE_CODE_ERROR)");
4333 break;
0d5de010
DJ
4334 case TYPE_CODE_MEMBERPTR:
4335 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4336 break;
4337 case TYPE_CODE_METHODPTR:
4338 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
4339 break;
4340 case TYPE_CODE_METHOD:
4341 printf_filtered ("(TYPE_CODE_METHOD)");
4342 break;
4343 case TYPE_CODE_REF:
4344 printf_filtered ("(TYPE_CODE_REF)");
4345 break;
4346 case TYPE_CODE_CHAR:
4347 printf_filtered ("(TYPE_CODE_CHAR)");
4348 break;
4349 case TYPE_CODE_BOOL:
4350 printf_filtered ("(TYPE_CODE_BOOL)");
4351 break;
e9e79dd9
FF
4352 case TYPE_CODE_COMPLEX:
4353 printf_filtered ("(TYPE_CODE_COMPLEX)");
4354 break;
c5aa993b
JM
4355 case TYPE_CODE_TYPEDEF:
4356 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4357 break;
5c4e30ca
DC
4358 case TYPE_CODE_NAMESPACE:
4359 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4360 break;
c5aa993b
JM
4361 default:
4362 printf_filtered ("(UNKNOWN TYPE CODE)");
4363 break;
c906108c
SS
4364 }
4365 puts_filtered ("\n");
4366 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9bb382b
UW
4367 if (TYPE_OBJFILE_OWNED (type))
4368 {
4369 printfi_filtered (spaces, "objfile ");
4370 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4371 }
4372 else
4373 {
4374 printfi_filtered (spaces, "gdbarch ");
4375 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4376 }
c906108c
SS
4377 printf_filtered ("\n");
4378 printfi_filtered (spaces, "target_type ");
d4f3574e 4379 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
4380 printf_filtered ("\n");
4381 if (TYPE_TARGET_TYPE (type) != NULL)
4382 {
4383 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4384 }
4385 printfi_filtered (spaces, "pointer_type ");
d4f3574e 4386 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
4387 printf_filtered ("\n");
4388 printfi_filtered (spaces, "reference_type ");
d4f3574e 4389 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 4390 printf_filtered ("\n");
2fdde8f8
DJ
4391 printfi_filtered (spaces, "type_chain ");
4392 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 4393 printf_filtered ("\n");
7ba81444
MS
4394 printfi_filtered (spaces, "instance_flags 0x%x",
4395 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
4396 if (TYPE_CONST (type))
4397 {
a9ff5f12 4398 puts_filtered (" TYPE_CONST");
2fdde8f8
DJ
4399 }
4400 if (TYPE_VOLATILE (type))
4401 {
a9ff5f12 4402 puts_filtered (" TYPE_VOLATILE");
2fdde8f8
DJ
4403 }
4404 if (TYPE_CODE_SPACE (type))
4405 {
a9ff5f12 4406 puts_filtered (" TYPE_CODE_SPACE");
2fdde8f8
DJ
4407 }
4408 if (TYPE_DATA_SPACE (type))
4409 {
a9ff5f12 4410 puts_filtered (" TYPE_DATA_SPACE");
2fdde8f8 4411 }
8b2dbe47
KB
4412 if (TYPE_ADDRESS_CLASS_1 (type))
4413 {
a9ff5f12 4414 puts_filtered (" TYPE_ADDRESS_CLASS_1");
8b2dbe47
KB
4415 }
4416 if (TYPE_ADDRESS_CLASS_2 (type))
4417 {
a9ff5f12 4418 puts_filtered (" TYPE_ADDRESS_CLASS_2");
8b2dbe47 4419 }
06d66ee9
TT
4420 if (TYPE_RESTRICT (type))
4421 {
a9ff5f12 4422 puts_filtered (" TYPE_RESTRICT");
06d66ee9 4423 }
a2c2acaf
MW
4424 if (TYPE_ATOMIC (type))
4425 {
a9ff5f12 4426 puts_filtered (" TYPE_ATOMIC");
a2c2acaf 4427 }
2fdde8f8 4428 puts_filtered ("\n");
876cecd0
TT
4429
4430 printfi_filtered (spaces, "flags");
762a036f 4431 if (TYPE_UNSIGNED (type))
c906108c 4432 {
a9ff5f12 4433 puts_filtered (" TYPE_UNSIGNED");
c906108c 4434 }
762a036f
FF
4435 if (TYPE_NOSIGN (type))
4436 {
a9ff5f12 4437 puts_filtered (" TYPE_NOSIGN");
762a036f
FF
4438 }
4439 if (TYPE_STUB (type))
c906108c 4440 {
a9ff5f12 4441 puts_filtered (" TYPE_STUB");
c906108c 4442 }
762a036f
FF
4443 if (TYPE_TARGET_STUB (type))
4444 {
a9ff5f12 4445 puts_filtered (" TYPE_TARGET_STUB");
762a036f 4446 }
762a036f
FF
4447 if (TYPE_PROTOTYPED (type))
4448 {
a9ff5f12 4449 puts_filtered (" TYPE_PROTOTYPED");
762a036f
FF
4450 }
4451 if (TYPE_INCOMPLETE (type))
4452 {
a9ff5f12 4453 puts_filtered (" TYPE_INCOMPLETE");
762a036f 4454 }
762a036f
FF
4455 if (TYPE_VARARGS (type))
4456 {
a9ff5f12 4457 puts_filtered (" TYPE_VARARGS");
762a036f 4458 }
f5f8a009
EZ
4459 /* This is used for things like AltiVec registers on ppc. Gcc emits
4460 an attribute for the array type, which tells whether or not we
4461 have a vector, instead of a regular array. */
4462 if (TYPE_VECTOR (type))
4463 {
a9ff5f12 4464 puts_filtered (" TYPE_VECTOR");
f5f8a009 4465 }
876cecd0
TT
4466 if (TYPE_FIXED_INSTANCE (type))
4467 {
4468 puts_filtered (" TYPE_FIXED_INSTANCE");
4469 }
4470 if (TYPE_STUB_SUPPORTED (type))
4471 {
4472 puts_filtered (" TYPE_STUB_SUPPORTED");
4473 }
4474 if (TYPE_NOTTEXT (type))
4475 {
4476 puts_filtered (" TYPE_NOTTEXT");
4477 }
c906108c
SS
4478 puts_filtered ("\n");
4479 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 4480 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
4481 puts_filtered ("\n");
4482 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4483 {
14e75d8e
JK
4484 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4485 printfi_filtered (spaces + 2,
4486 "[%d] enumval %s type ",
4487 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4488 else
4489 printfi_filtered (spaces + 2,
6b850546
DT
4490 "[%d] bitpos %s bitsize %d type ",
4491 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
14e75d8e 4492 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 4493 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
4494 printf_filtered (" name '%s' (",
4495 TYPE_FIELD_NAME (type, idx) != NULL
4496 ? TYPE_FIELD_NAME (type, idx)
4497 : "<NULL>");
d4f3574e 4498 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
4499 printf_filtered (")\n");
4500 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4501 {
4502 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4503 }
4504 }
43bbcdc2
PH
4505 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4506 {
4507 printfi_filtered (spaces, "low %s%s high %s%s\n",
4508 plongest (TYPE_LOW_BOUND (type)),
4509 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4510 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
4511 TYPE_HIGH_BOUND_UNDEFINED (type)
4512 ? " (undefined)" : "");
43bbcdc2 4513 }
c906108c 4514
b4ba55a1
JB
4515 switch (TYPE_SPECIFIC_FIELD (type))
4516 {
4517 case TYPE_SPECIFIC_CPLUS_STUFF:
4518 printfi_filtered (spaces, "cplus_stuff ");
4519 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4520 gdb_stdout);
4521 puts_filtered ("\n");
4522 print_cplus_stuff (type, spaces);
4523 break;
8da61cc4 4524
b4ba55a1
JB
4525 case TYPE_SPECIFIC_GNAT_STUFF:
4526 printfi_filtered (spaces, "gnat_stuff ");
4527 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4528 puts_filtered ("\n");
4529 print_gnat_stuff (type, spaces);
4530 break;
701c159d 4531
b4ba55a1
JB
4532 case TYPE_SPECIFIC_FLOATFORMAT:
4533 printfi_filtered (spaces, "floatformat ");
4534 if (TYPE_FLOATFORMAT (type) == NULL)
4535 puts_filtered ("(null)");
4536 else
4537 {
4538 puts_filtered ("{ ");
4539 if (TYPE_FLOATFORMAT (type)[0] == NULL
4540 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
4541 puts_filtered ("(null)");
4542 else
4543 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
4544
4545 puts_filtered (", ");
4546 if (TYPE_FLOATFORMAT (type)[1] == NULL
4547 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
4548 puts_filtered ("(null)");
4549 else
4550 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
4551
4552 puts_filtered (" }");
4553 }
4554 puts_filtered ("\n");
4555 break;
c906108c 4556
b6cdc2c1 4557 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
4558 printfi_filtered (spaces, "calling_convention %d\n",
4559 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 4560 /* tail_call_list is not printed. */
b4ba55a1 4561 break;
09e2d7c7
DE
4562
4563 case TYPE_SPECIFIC_SELF_TYPE:
4564 printfi_filtered (spaces, "self_type ");
4565 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4566 puts_filtered ("\n");
4567 break;
c906108c 4568 }
b4ba55a1 4569
c906108c
SS
4570 if (spaces == 0)
4571 obstack_free (&dont_print_type_obstack, NULL);
4572}
5212577a 4573\f
ae5a43e0
DJ
4574/* Trivial helpers for the libiberty hash table, for mapping one
4575 type to another. */
4576
4577struct type_pair
4578{
fe978cb0 4579 struct type *old, *newobj;
ae5a43e0
DJ
4580};
4581
4582static hashval_t
4583type_pair_hash (const void *item)
4584{
9a3c8263 4585 const struct type_pair *pair = (const struct type_pair *) item;
d8734c88 4586
ae5a43e0
DJ
4587 return htab_hash_pointer (pair->old);
4588}
4589
4590static int
4591type_pair_eq (const void *item_lhs, const void *item_rhs)
4592{
9a3c8263
SM
4593 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4594 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
d8734c88 4595
ae5a43e0
DJ
4596 return lhs->old == rhs->old;
4597}
4598
4599/* Allocate the hash table used by copy_type_recursive to walk
4600 types without duplicates. We use OBJFILE's obstack, because
4601 OBJFILE is about to be deleted. */
4602
4603htab_t
4604create_copied_types_hash (struct objfile *objfile)
4605{
4606 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4607 NULL, &objfile->objfile_obstack,
4608 hashtab_obstack_allocate,
4609 dummy_obstack_deallocate);
4610}
4611
d9823cbb
KB
4612/* Recursively copy (deep copy) a dynamic attribute list of a type. */
4613
4614static struct dynamic_prop_list *
4615copy_dynamic_prop_list (struct obstack *objfile_obstack,
4616 struct dynamic_prop_list *list)
4617{
4618 struct dynamic_prop_list *copy = list;
4619 struct dynamic_prop_list **node_ptr = &copy;
4620
4621 while (*node_ptr != NULL)
4622 {
4623 struct dynamic_prop_list *node_copy;
4624
224c3ddb
SM
4625 node_copy = ((struct dynamic_prop_list *)
4626 obstack_copy (objfile_obstack, *node_ptr,
4627 sizeof (struct dynamic_prop_list)));
283a9958 4628 node_copy->prop = (*node_ptr)->prop;
d9823cbb
KB
4629 *node_ptr = node_copy;
4630
4631 node_ptr = &node_copy->next;
4632 }
4633
4634 return copy;
4635}
4636
7ba81444 4637/* Recursively copy (deep copy) TYPE, if it is associated with
eed8b28a
PP
4638 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4639 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4640 it is not associated with OBJFILE. */
ae5a43e0
DJ
4641
4642struct type *
7ba81444
MS
4643copy_type_recursive (struct objfile *objfile,
4644 struct type *type,
ae5a43e0
DJ
4645 htab_t copied_types)
4646{
4647 struct type_pair *stored, pair;
4648 void **slot;
4649 struct type *new_type;
4650
e9bb382b 4651 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
4652 return type;
4653
7ba81444
MS
4654 /* This type shouldn't be pointing to any types in other objfiles;
4655 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
4656 gdb_assert (TYPE_OBJFILE (type) == objfile);
4657
4658 pair.old = type;
4659 slot = htab_find_slot (copied_types, &pair, INSERT);
4660 if (*slot != NULL)
fe978cb0 4661 return ((struct type_pair *) *slot)->newobj;
ae5a43e0 4662
e9bb382b 4663 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
4664
4665 /* We must add the new type to the hash table immediately, in case
4666 we encounter this type again during a recursive call below. */
8d749320 4667 stored = XOBNEW (&objfile->objfile_obstack, struct type_pair);
ae5a43e0 4668 stored->old = type;
fe978cb0 4669 stored->newobj = new_type;
ae5a43e0
DJ
4670 *slot = stored;
4671
876cecd0
TT
4672 /* Copy the common fields of types. For the main type, we simply
4673 copy the entire thing and then update specific fields as needed. */
4674 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
4675 TYPE_OBJFILE_OWNED (new_type) = 0;
4676 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 4677
ae5a43e0
DJ
4678 if (TYPE_NAME (type))
4679 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4680 if (TYPE_TAG_NAME (type))
4681 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
ae5a43e0
DJ
4682
4683 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4684 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4685
4686 /* Copy the fields. */
ae5a43e0
DJ
4687 if (TYPE_NFIELDS (type))
4688 {
4689 int i, nfields;
4690
4691 nfields = TYPE_NFIELDS (type);
fc270c35 4692 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
ae5a43e0
DJ
4693 for (i = 0; i < nfields; i++)
4694 {
7ba81444
MS
4695 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4696 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
4697 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4698 if (TYPE_FIELD_TYPE (type, i))
4699 TYPE_FIELD_TYPE (new_type, i)
4700 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4701 copied_types);
4702 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
4703 TYPE_FIELD_NAME (new_type, i) =
4704 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 4705 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 4706 {
d6a843b5
JK
4707 case FIELD_LOC_KIND_BITPOS:
4708 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4709 TYPE_FIELD_BITPOS (type, i));
4710 break;
14e75d8e
JK
4711 case FIELD_LOC_KIND_ENUMVAL:
4712 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4713 TYPE_FIELD_ENUMVAL (type, i));
4714 break;
d6a843b5
JK
4715 case FIELD_LOC_KIND_PHYSADDR:
4716 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4717 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4718 break;
4719 case FIELD_LOC_KIND_PHYSNAME:
4720 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4721 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4722 i)));
4723 break;
4724 default:
4725 internal_error (__FILE__, __LINE__,
4726 _("Unexpected type field location kind: %d"),
4727 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
4728 }
4729 }
4730 }
4731
0963b4bd 4732 /* For range types, copy the bounds information. */
43bbcdc2
PH
4733 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4734 {
8d749320 4735 TYPE_RANGE_DATA (new_type) = XNEW (struct range_bounds);
43bbcdc2
PH
4736 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4737 }
4738
d9823cbb
KB
4739 if (TYPE_DYN_PROP_LIST (type) != NULL)
4740 TYPE_DYN_PROP_LIST (new_type)
4741 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4742 TYPE_DYN_PROP_LIST (type));
4743
3cdcd0ce 4744
ae5a43e0
DJ
4745 /* Copy pointers to other types. */
4746 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
4747 TYPE_TARGET_TYPE (new_type) =
4748 copy_type_recursive (objfile,
4749 TYPE_TARGET_TYPE (type),
4750 copied_types);
f6b3afbf 4751
ae5a43e0
DJ
4752 /* Maybe copy the type_specific bits.
4753
4754 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4755 base classes and methods. There's no fundamental reason why we
4756 can't, but at the moment it is not needed. */
4757
f6b3afbf
DE
4758 switch (TYPE_SPECIFIC_FIELD (type))
4759 {
4760 case TYPE_SPECIFIC_NONE:
4761 break;
4762 case TYPE_SPECIFIC_FUNC:
4763 INIT_FUNC_SPECIFIC (new_type);
4764 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4765 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4766 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4767 break;
4768 case TYPE_SPECIFIC_FLOATFORMAT:
4769 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4770 break;
4771 case TYPE_SPECIFIC_CPLUS_STUFF:
4772 INIT_CPLUS_SPECIFIC (new_type);
4773 break;
4774 case TYPE_SPECIFIC_GNAT_STUFF:
4775 INIT_GNAT_SPECIFIC (new_type);
4776 break;
09e2d7c7
DE
4777 case TYPE_SPECIFIC_SELF_TYPE:
4778 set_type_self_type (new_type,
4779 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4780 copied_types));
4781 break;
f6b3afbf
DE
4782 default:
4783 gdb_assert_not_reached ("bad type_specific_kind");
4784 }
ae5a43e0
DJ
4785
4786 return new_type;
4787}
4788
4af88198
JB
4789/* Make a copy of the given TYPE, except that the pointer & reference
4790 types are not preserved.
4791
4792 This function assumes that the given type has an associated objfile.
4793 This objfile is used to allocate the new type. */
4794
4795struct type *
4796copy_type (const struct type *type)
4797{
4798 struct type *new_type;
4799
e9bb382b 4800 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 4801
e9bb382b 4802 new_type = alloc_type_copy (type);
4af88198
JB
4803 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4804 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4805 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4806 sizeof (struct main_type));
d9823cbb
KB
4807 if (TYPE_DYN_PROP_LIST (type) != NULL)
4808 TYPE_DYN_PROP_LIST (new_type)
4809 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
4810 TYPE_DYN_PROP_LIST (type));
4af88198
JB
4811
4812 return new_type;
4813}
5212577a 4814\f
e9bb382b
UW
4815/* Helper functions to initialize architecture-specific types. */
4816
4817/* Allocate a type structure associated with GDBARCH and set its
4818 CODE, LENGTH, and NAME fields. */
5212577a 4819
e9bb382b
UW
4820struct type *
4821arch_type (struct gdbarch *gdbarch,
695bfa52 4822 enum type_code code, int length, const char *name)
e9bb382b
UW
4823{
4824 struct type *type;
4825
4826 type = alloc_type_arch (gdbarch);
ae438bc5 4827 set_type_code (type, code);
e9bb382b
UW
4828 TYPE_LENGTH (type) = length;
4829
4830 if (name)
6c214e7c 4831 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
e9bb382b
UW
4832
4833 return type;
4834}
4835
4836/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4837 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4838 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4839
e9bb382b
UW
4840struct type *
4841arch_integer_type (struct gdbarch *gdbarch,
695bfa52 4842 int bit, int unsigned_p, const char *name)
e9bb382b
UW
4843{
4844 struct type *t;
4845
4846 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4847 if (unsigned_p)
4848 TYPE_UNSIGNED (t) = 1;
e9bb382b
UW
4849
4850 return t;
4851}
4852
4853/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4854 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4855 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4856
e9bb382b
UW
4857struct type *
4858arch_character_type (struct gdbarch *gdbarch,
695bfa52 4859 int bit, int unsigned_p, const char *name)
e9bb382b
UW
4860{
4861 struct type *t;
4862
4863 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4864 if (unsigned_p)
4865 TYPE_UNSIGNED (t) = 1;
4866
4867 return t;
4868}
4869
4870/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4871 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4872 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4873
e9bb382b
UW
4874struct type *
4875arch_boolean_type (struct gdbarch *gdbarch,
695bfa52 4876 int bit, int unsigned_p, const char *name)
e9bb382b
UW
4877{
4878 struct type *t;
4879
4880 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4881 if (unsigned_p)
4882 TYPE_UNSIGNED (t) = 1;
4883
4884 return t;
4885}
4886
4887/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4888 BIT is the type size in bits; if BIT equals -1, the size is
4889 determined by the floatformat. NAME is the type name. Set the
4890 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 4891
27067745 4892struct type *
e9bb382b 4893arch_float_type (struct gdbarch *gdbarch,
695bfa52
TT
4894 int bit, const char *name,
4895 const struct floatformat **floatformats)
8da61cc4
DJ
4896{
4897 struct type *t;
4898
19f392bc 4899 bit = verify_floatformat (bit, floatformats);
e9bb382b 4900 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
8da61cc4 4901 TYPE_FLOATFORMAT (t) = floatformats;
b79497cb 4902
8da61cc4
DJ
4903 return t;
4904}
4905
88dfca6c
UW
4906/* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
4907 BIT is the type size in bits. NAME is the type name. */
4908
4909struct type *
4910arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
4911{
4912 struct type *t;
4913
4914 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit / TARGET_CHAR_BIT, name);
4915 return t;
4916}
4917
e9bb382b
UW
4918/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4919 NAME is the type name. TARGET_TYPE is the component float type. */
5212577a 4920
27067745 4921struct type *
e9bb382b 4922arch_complex_type (struct gdbarch *gdbarch,
695bfa52 4923 const char *name, struct type *target_type)
27067745
UW
4924{
4925 struct type *t;
d8734c88 4926
e9bb382b
UW
4927 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4928 2 * TYPE_LENGTH (target_type), name);
27067745
UW
4929 TYPE_TARGET_TYPE (t) = target_type;
4930 return t;
4931}
4932
88dfca6c
UW
4933/* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
4934 BIT is the pointer type size in bits. NAME is the type name.
4935 TARGET_TYPE is the pointer target type. Always sets the pointer type's
4936 TYPE_UNSIGNED flag. */
4937
4938struct type *
4939arch_pointer_type (struct gdbarch *gdbarch,
4940 int bit, const char *name, struct type *target_type)
4941{
4942 struct type *t;
4943
4944 t = arch_type (gdbarch, TYPE_CODE_PTR, bit / TARGET_CHAR_BIT, name);
4945 TYPE_TARGET_TYPE (t) = target_type;
4946 TYPE_UNSIGNED (t) = 1;
4947 return t;
4948}
4949
e9bb382b 4950/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
eb90ce83 4951 NAME is the type name. LENGTH is the size of the flag word in bytes. */
5212577a 4952
e9bb382b 4953struct type *
695bfa52 4954arch_flags_type (struct gdbarch *gdbarch, const char *name, int length)
e9bb382b 4955{
81516450 4956 int max_nfields = length * TARGET_CHAR_BIT;
e9bb382b
UW
4957 struct type *type;
4958
4959 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4960 TYPE_UNSIGNED (type) = 1;
81516450
DE
4961 TYPE_NFIELDS (type) = 0;
4962 /* Pre-allocate enough space assuming every field is one bit. */
224c3ddb 4963 TYPE_FIELDS (type)
81516450 4964 = (struct field *) TYPE_ZALLOC (type, max_nfields * sizeof (struct field));
e9bb382b
UW
4965
4966 return type;
4967}
4968
4969/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
81516450
DE
4970 position BITPOS is called NAME. Pass NAME as "" for fields that
4971 should not be printed. */
4972
4973void
4974append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
695bfa52 4975 struct type *field_type, const char *name)
81516450
DE
4976{
4977 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
4978 int field_nr = TYPE_NFIELDS (type);
4979
4980 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4981 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
4982 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
4983 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
4984 gdb_assert (name != NULL);
4985
4986 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
4987 TYPE_FIELD_TYPE (type, field_nr) = field_type;
4988 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
4989 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
4990 ++TYPE_NFIELDS (type);
4991}
4992
4993/* Special version of append_flags_type_field to add a flag field.
4994 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
e9bb382b 4995 position BITPOS is called NAME. */
5212577a 4996
e9bb382b 4997void
695bfa52 4998append_flags_type_flag (struct type *type, int bitpos, const char *name)
e9bb382b 4999{
81516450 5000 struct gdbarch *gdbarch = get_type_arch (type);
e9bb382b 5001
81516450
DE
5002 append_flags_type_field (type, bitpos, 1,
5003 builtin_type (gdbarch)->builtin_bool,
5004 name);
e9bb382b
UW
5005}
5006
5007/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5008 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 5009
e9bb382b 5010struct type *
695bfa52
TT
5011arch_composite_type (struct gdbarch *gdbarch, const char *name,
5012 enum type_code code)
e9bb382b
UW
5013{
5014 struct type *t;
d8734c88 5015
e9bb382b
UW
5016 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5017 t = arch_type (gdbarch, code, 0, NULL);
5018 TYPE_TAG_NAME (t) = name;
5019 INIT_CPLUS_SPECIFIC (t);
5020 return t;
5021}
5022
5023/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
5024 Do not set the field's position or adjust the type's length;
5025 the caller should do so. Return the new field. */
5212577a 5026
f5dff777 5027struct field *
695bfa52 5028append_composite_type_field_raw (struct type *t, const char *name,
f5dff777 5029 struct type *field)
e9bb382b
UW
5030{
5031 struct field *f;
d8734c88 5032
e9bb382b 5033 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
224c3ddb
SM
5034 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5035 TYPE_NFIELDS (t));
e9bb382b
UW
5036 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5037 memset (f, 0, sizeof f[0]);
5038 FIELD_TYPE (f[0]) = field;
5039 FIELD_NAME (f[0]) = name;
f5dff777
DJ
5040 return f;
5041}
5042
5043/* Add new field with name NAME and type FIELD to composite type T.
5044 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 5045
f5dff777 5046void
695bfa52 5047append_composite_type_field_aligned (struct type *t, const char *name,
f5dff777
DJ
5048 struct type *field, int alignment)
5049{
5050 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 5051
e9bb382b
UW
5052 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5053 {
5054 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5055 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5056 }
5057 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5058 {
5059 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5060 if (TYPE_NFIELDS (t) > 1)
5061 {
f41f5e61
PA
5062 SET_FIELD_BITPOS (f[0],
5063 (FIELD_BITPOS (f[-1])
5064 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5065 * TARGET_CHAR_BIT)));
e9bb382b
UW
5066
5067 if (alignment)
5068 {
86c3c1fc
AB
5069 int left;
5070
5071 alignment *= TARGET_CHAR_BIT;
5072 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 5073
e9bb382b
UW
5074 if (left)
5075 {
f41f5e61 5076 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 5077 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
5078 }
5079 }
5080 }
5081 }
5082}
5083
5084/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 5085
e9bb382b 5086void
695bfa52 5087append_composite_type_field (struct type *t, const char *name,
e9bb382b
UW
5088 struct type *field)
5089{
5090 append_composite_type_field_aligned (t, name, field, 0);
5091}
5092
000177f0
AC
5093static struct gdbarch_data *gdbtypes_data;
5094
5095const struct builtin_type *
5096builtin_type (struct gdbarch *gdbarch)
5097{
9a3c8263 5098 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
000177f0
AC
5099}
5100
5101static void *
5102gdbtypes_post_init (struct gdbarch *gdbarch)
5103{
5104 struct builtin_type *builtin_type
5105 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5106
46bf5051 5107 /* Basic types. */
e9bb382b
UW
5108 builtin_type->builtin_void
5109 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
5110 builtin_type->builtin_char
5111 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5112 !gdbarch_char_signed (gdbarch), "char");
c413c448 5113 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
e9bb382b
UW
5114 builtin_type->builtin_signed_char
5115 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5116 0, "signed char");
5117 builtin_type->builtin_unsigned_char
5118 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5119 1, "unsigned char");
5120 builtin_type->builtin_short
5121 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5122 0, "short");
5123 builtin_type->builtin_unsigned_short
5124 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5125 1, "unsigned short");
5126 builtin_type->builtin_int
5127 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5128 0, "int");
5129 builtin_type->builtin_unsigned_int
5130 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5131 1, "unsigned int");
5132 builtin_type->builtin_long
5133 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5134 0, "long");
5135 builtin_type->builtin_unsigned_long
5136 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5137 1, "unsigned long");
5138 builtin_type->builtin_long_long
5139 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5140 0, "long long");
5141 builtin_type->builtin_unsigned_long_long
5142 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5143 1, "unsigned long long");
70bd8e24 5144 builtin_type->builtin_float
e9bb382b 5145 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 5146 "float", gdbarch_float_format (gdbarch));
70bd8e24 5147 builtin_type->builtin_double
e9bb382b 5148 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 5149 "double", gdbarch_double_format (gdbarch));
70bd8e24 5150 builtin_type->builtin_long_double
e9bb382b 5151 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 5152 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 5153 builtin_type->builtin_complex
e9bb382b
UW
5154 = arch_complex_type (gdbarch, "complex",
5155 builtin_type->builtin_float);
70bd8e24 5156 builtin_type->builtin_double_complex
e9bb382b
UW
5157 = arch_complex_type (gdbarch, "double complex",
5158 builtin_type->builtin_double);
5159 builtin_type->builtin_string
5160 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
5161 builtin_type->builtin_bool
5162 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
000177f0 5163
7678ef8f
TJB
5164 /* The following three are about decimal floating point types, which
5165 are 32-bits, 64-bits and 128-bits respectively. */
5166 builtin_type->builtin_decfloat
88dfca6c 5167 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
7678ef8f 5168 builtin_type->builtin_decdouble
88dfca6c 5169 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
7678ef8f 5170 builtin_type->builtin_declong
88dfca6c 5171 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
7678ef8f 5172
69feb676 5173 /* "True" character types. */
e9bb382b
UW
5174 builtin_type->builtin_true_char
5175 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5176 builtin_type->builtin_true_unsigned_char
5177 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 5178
df4df182 5179 /* Fixed-size integer types. */
e9bb382b
UW
5180 builtin_type->builtin_int0
5181 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5182 builtin_type->builtin_int8
5183 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5184 builtin_type->builtin_uint8
5185 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5186 builtin_type->builtin_int16
5187 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5188 builtin_type->builtin_uint16
5189 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5190 builtin_type->builtin_int32
5191 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5192 builtin_type->builtin_uint32
5193 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5194 builtin_type->builtin_int64
5195 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5196 builtin_type->builtin_uint64
5197 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5198 builtin_type->builtin_int128
5199 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5200 builtin_type->builtin_uint128
5201 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
5202 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5203 TYPE_INSTANCE_FLAG_NOTTEXT;
5204 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5205 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 5206
9a22f0d0
PM
5207 /* Wide character types. */
5208 builtin_type->builtin_char16
53e710ac 5209 = arch_integer_type (gdbarch, 16, 1, "char16_t");
9a22f0d0 5210 builtin_type->builtin_char32
53e710ac 5211 = arch_integer_type (gdbarch, 32, 1, "char32_t");
53375380
PA
5212 builtin_type->builtin_wchar
5213 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5214 !gdbarch_wchar_signed (gdbarch), "wchar_t");
9a22f0d0 5215
46bf5051 5216 /* Default data/code pointer types. */
e9bb382b
UW
5217 builtin_type->builtin_data_ptr
5218 = lookup_pointer_type (builtin_type->builtin_void);
5219 builtin_type->builtin_func_ptr
5220 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
5221 builtin_type->builtin_func_func
5222 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 5223
78267919 5224 /* This type represents a GDB internal function. */
e9bb382b
UW
5225 builtin_type->internal_fn
5226 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5227 "<internal function>");
78267919 5228
e81e7f5e
SC
5229 /* This type represents an xmethod. */
5230 builtin_type->xmethod
5231 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5232
46bf5051
UW
5233 return builtin_type;
5234}
5235
46bf5051
UW
5236/* This set of objfile-based types is intended to be used by symbol
5237 readers as basic types. */
5238
5239static const struct objfile_data *objfile_type_data;
5240
5241const struct objfile_type *
5242objfile_type (struct objfile *objfile)
5243{
5244 struct gdbarch *gdbarch;
5245 struct objfile_type *objfile_type
9a3c8263 5246 = (struct objfile_type *) objfile_data (objfile, objfile_type_data);
46bf5051
UW
5247
5248 if (objfile_type)
5249 return objfile_type;
5250
5251 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5252 1, struct objfile_type);
5253
5254 /* Use the objfile architecture to determine basic type properties. */
5255 gdbarch = get_objfile_arch (objfile);
5256
5257 /* Basic types. */
5258 objfile_type->builtin_void
19f392bc 5259 = init_type (objfile, TYPE_CODE_VOID, 1, "void");
46bf5051 5260 objfile_type->builtin_char
19f392bc
UW
5261 = init_integer_type (objfile, TARGET_CHAR_BIT,
5262 !gdbarch_char_signed (gdbarch), "char");
c413c448 5263 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
46bf5051 5264 objfile_type->builtin_signed_char
19f392bc
UW
5265 = init_integer_type (objfile, TARGET_CHAR_BIT,
5266 0, "signed char");
46bf5051 5267 objfile_type->builtin_unsigned_char
19f392bc
UW
5268 = init_integer_type (objfile, TARGET_CHAR_BIT,
5269 1, "unsigned char");
46bf5051 5270 objfile_type->builtin_short
19f392bc
UW
5271 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5272 0, "short");
46bf5051 5273 objfile_type->builtin_unsigned_short
19f392bc
UW
5274 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5275 1, "unsigned short");
46bf5051 5276 objfile_type->builtin_int
19f392bc
UW
5277 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5278 0, "int");
46bf5051 5279 objfile_type->builtin_unsigned_int
19f392bc
UW
5280 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5281 1, "unsigned int");
46bf5051 5282 objfile_type->builtin_long
19f392bc
UW
5283 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5284 0, "long");
46bf5051 5285 objfile_type->builtin_unsigned_long
19f392bc
UW
5286 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5287 1, "unsigned long");
46bf5051 5288 objfile_type->builtin_long_long
19f392bc
UW
5289 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5290 0, "long long");
46bf5051 5291 objfile_type->builtin_unsigned_long_long
19f392bc
UW
5292 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5293 1, "unsigned long long");
46bf5051 5294 objfile_type->builtin_float
19f392bc
UW
5295 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5296 "float", gdbarch_float_format (gdbarch));
46bf5051 5297 objfile_type->builtin_double
19f392bc
UW
5298 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5299 "double", gdbarch_double_format (gdbarch));
46bf5051 5300 objfile_type->builtin_long_double
19f392bc
UW
5301 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5302 "long double", gdbarch_long_double_format (gdbarch));
46bf5051
UW
5303
5304 /* This type represents a type that was unrecognized in symbol read-in. */
5305 objfile_type->builtin_error
19f392bc 5306 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
46bf5051
UW
5307
5308 /* The following set of types is used for symbols with no
5309 debug information. */
5310 objfile_type->nodebug_text_symbol
19f392bc
UW
5311 = init_type (objfile, TYPE_CODE_FUNC, 1,
5312 "<text variable, no debug info>");
46bf5051
UW
5313 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
5314 = objfile_type->builtin_int;
0875794a 5315 objfile_type->nodebug_text_gnu_ifunc_symbol
19f392bc
UW
5316 = init_type (objfile, TYPE_CODE_FUNC, 1,
5317 "<text gnu-indirect-function variable, no debug info>");
0875794a
JK
5318 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
5319 = objfile_type->nodebug_text_symbol;
19f392bc 5320 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
0875794a 5321 objfile_type->nodebug_got_plt_symbol
19f392bc
UW
5322 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5323 "<text from jump slot in .got.plt, no debug info>",
5324 objfile_type->nodebug_text_symbol);
46bf5051 5325 objfile_type->nodebug_data_symbol
19f392bc
UW
5326 = init_integer_type (objfile, gdbarch_int_bit (gdbarch), 0,
5327 "<data variable, no debug info>");
46bf5051 5328 objfile_type->nodebug_unknown_symbol
19f392bc
UW
5329 = init_integer_type (objfile, TARGET_CHAR_BIT, 0,
5330 "<variable (not text or data), no debug info>");
46bf5051 5331 objfile_type->nodebug_tls_symbol
19f392bc
UW
5332 = init_integer_type (objfile, gdbarch_int_bit (gdbarch), 0,
5333 "<thread local variable, no debug info>");
000177f0
AC
5334
5335 /* NOTE: on some targets, addresses and pointers are not necessarily
0a7cfe2c 5336 the same.
000177f0
AC
5337
5338 The upshot is:
5339 - gdb's `struct type' always describes the target's
5340 representation.
5341 - gdb's `struct value' objects should always hold values in
5342 target form.
5343 - gdb's CORE_ADDR values are addresses in the unified virtual
5344 address space that the assembler and linker work with. Thus,
5345 since target_read_memory takes a CORE_ADDR as an argument, it
5346 can access any memory on the target, even if the processor has
5347 separate code and data address spaces.
5348
46bf5051
UW
5349 In this context, objfile_type->builtin_core_addr is a bit odd:
5350 it's a target type for a value the target will never see. It's
5351 only used to hold the values of (typeless) linker symbols, which
5352 are indeed in the unified virtual address space. */
000177f0 5353
46bf5051 5354 objfile_type->builtin_core_addr
19f392bc
UW
5355 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5356 "__CORE_ADDR");
64c50499 5357
46bf5051
UW
5358 set_objfile_data (objfile, objfile_type_data, objfile_type);
5359 return objfile_type;
000177f0
AC
5360}
5361
5212577a 5362extern initialize_file_ftype _initialize_gdbtypes;
46bf5051 5363
c906108c 5364void
fba45db2 5365_initialize_gdbtypes (void)
c906108c 5366{
5674de60 5367 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
46bf5051 5368 objfile_type_data = register_objfile_data ();
5674de60 5369
ccce17b0
YQ
5370 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5371 _("Set debugging of C++ overloading."),
5372 _("Show debugging of C++ overloading."),
5373 _("When enabled, ranking of the "
5374 "functions is displayed."),
5375 NULL,
5376 show_overload_debug,
5377 &setdebuglist, &showdebuglist);
5674de60 5378
7ba81444 5379 /* Add user knob for controlling resolution of opaque types. */
5674de60 5380 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
5381 &opaque_type_resolution,
5382 _("Set resolution of opaque struct/class/union"
5383 " types (if set before loading symbols)."),
5384 _("Show resolution of opaque struct/class/union"
5385 " types (if set before loading symbols)."),
5386 NULL, NULL,
5674de60
UW
5387 show_opaque_type_resolution,
5388 &setlist, &showlist);
a451cb65
KS
5389
5390 /* Add an option to permit non-strict type checking. */
5391 add_setshow_boolean_cmd ("type", class_support,
5392 &strict_type_checking,
5393 _("Set strict type checking."),
5394 _("Show strict type checking."),
5395 NULL, NULL,
5396 show_strict_type_checking,
5397 &setchecklist, &showchecklist);
c906108c 5398}
This page took 2.306574 seconds and 4 git commands to generate.