Add --enable-build-with-cxx configure switch
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
32d0add0 3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c
SS
23#include "bfd.h"
24#include "symtab.h"
25#include "symfile.h"
26#include "objfiles.h"
27#include "gdbtypes.h"
28#include "expression.h"
29#include "language.h"
30#include "target.h"
31#include "value.h"
32#include "demangle.h"
33#include "complaints.h"
34#include "gdbcmd.h"
015a42b4 35#include "cp-abi.h"
ae5a43e0 36#include "hashtab.h"
8de20a37 37#include "cp-support.h"
ca092b61
DE
38#include "bcache.h"
39#include "dwarf2loc.h"
80180f79 40#include "gdbcore.h"
ac3aafc7 41
6403aeea
SW
42/* Initialize BADNESS constants. */
43
a9d5ef47 44const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 45
a9d5ef47
SW
46const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 48
a9d5ef47 49const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 50
a9d5ef47
SW
51const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 58const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
59const struct rank BASE_CONVERSION_BADNESS = {2,0};
60const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
da096638 61const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 62const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 63const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 64
8da61cc4 65/* Floatformat pairs. */
f9e9243a
UW
66const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
69};
8da61cc4
DJ
70const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
73};
74const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
77};
78const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
81};
82const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
84 &floatformat_i387_ext
85};
86const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
89};
90const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
93};
94const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
97};
98const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
101};
102const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_vax_f,
104 &floatformat_vax_f
105};
106const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_d,
108 &floatformat_vax_d
109};
b14d30e1 110const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
f5aee5ee
AM
111 &floatformat_ibm_long_double_big,
112 &floatformat_ibm_long_double_little
b14d30e1 113};
8da61cc4 114
2873700e
KS
115/* Should opaque types be resolved? */
116
117static int opaque_type_resolution = 1;
118
119/* A flag to enable printing of debugging information of C++
120 overloading. */
121
122unsigned int overload_debug = 0;
123
a451cb65
KS
124/* A flag to enable strict type checking. */
125
126static int strict_type_checking = 1;
127
2873700e 128/* A function to show whether opaque types are resolved. */
5212577a 129
920d2a44
AC
130static void
131show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
132 struct cmd_list_element *c,
133 const char *value)
920d2a44 134{
3e43a32a
MS
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
137 value);
138}
139
2873700e 140/* A function to show whether C++ overload debugging is enabled. */
5212577a 141
920d2a44
AC
142static void
143show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145{
7ba81444
MS
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
147 value);
920d2a44 148}
c906108c 149
a451cb65
KS
150/* A function to show the status of strict type checking. */
151
152static void
153show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155{
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
157}
158
5212577a 159\f
e9bb382b
UW
160/* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
c906108c
SS
163
164struct type *
fba45db2 165alloc_type (struct objfile *objfile)
c906108c 166{
52f0bd74 167 struct type *type;
c906108c 168
e9bb382b
UW
169 gdb_assert (objfile != NULL);
170
7ba81444 171 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
174 struct main_type);
175 OBJSTAT (objfile, n_types++);
c906108c 176
e9bb382b
UW
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
c906108c 179
7ba81444 180 /* Initialize the fields that might not be zero. */
c906108c
SS
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
2fdde8f8 183 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 184
c16abbde 185 return type;
c906108c
SS
186}
187
e9bb382b
UW
188/* Allocate a new GDBARCH-associated type structure and fill it
189 with some defaults. Space for the type structure is allocated
190 on the heap. */
191
192struct type *
193alloc_type_arch (struct gdbarch *gdbarch)
194{
195 struct type *type;
196
197 gdb_assert (gdbarch != NULL);
198
199 /* Alloc the structure and start off with all fields zeroed. */
200
41bf6aca
TT
201 type = XCNEW (struct type);
202 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
e9bb382b
UW
203
204 TYPE_OBJFILE_OWNED (type) = 0;
205 TYPE_OWNER (type).gdbarch = gdbarch;
206
207 /* Initialize the fields that might not be zero. */
208
209 TYPE_CODE (type) = TYPE_CODE_UNDEF;
e9bb382b
UW
210 TYPE_CHAIN (type) = type; /* Chain back to itself. */
211
212 return type;
213}
214
215/* If TYPE is objfile-associated, allocate a new type structure
216 associated with the same objfile. If TYPE is gdbarch-associated,
217 allocate a new type structure associated with the same gdbarch. */
218
219struct type *
220alloc_type_copy (const struct type *type)
221{
222 if (TYPE_OBJFILE_OWNED (type))
223 return alloc_type (TYPE_OWNER (type).objfile);
224 else
225 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
226}
227
228/* If TYPE is gdbarch-associated, return that architecture.
229 If TYPE is objfile-associated, return that objfile's architecture. */
230
231struct gdbarch *
232get_type_arch (const struct type *type)
233{
234 if (TYPE_OBJFILE_OWNED (type))
235 return get_objfile_arch (TYPE_OWNER (type).objfile);
236 else
237 return TYPE_OWNER (type).gdbarch;
238}
239
99ad9427
YQ
240/* See gdbtypes.h. */
241
242struct type *
243get_target_type (struct type *type)
244{
245 if (type != NULL)
246 {
247 type = TYPE_TARGET_TYPE (type);
248 if (type != NULL)
249 type = check_typedef (type);
250 }
251
252 return type;
253}
254
2fdde8f8
DJ
255/* Alloc a new type instance structure, fill it with some defaults,
256 and point it at OLDTYPE. Allocate the new type instance from the
257 same place as OLDTYPE. */
258
259static struct type *
260alloc_type_instance (struct type *oldtype)
261{
262 struct type *type;
263
264 /* Allocate the structure. */
265
e9bb382b 266 if (! TYPE_OBJFILE_OWNED (oldtype))
41bf6aca 267 type = XCNEW (struct type);
2fdde8f8 268 else
1deafd4e
PA
269 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
270 struct type);
271
2fdde8f8
DJ
272 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
273
274 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
275
c16abbde 276 return type;
2fdde8f8
DJ
277}
278
279/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 280 replacing it with something else. Preserve owner information. */
5212577a 281
2fdde8f8
DJ
282static void
283smash_type (struct type *type)
284{
e9bb382b
UW
285 int objfile_owned = TYPE_OBJFILE_OWNED (type);
286 union type_owner owner = TYPE_OWNER (type);
287
2fdde8f8
DJ
288 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
289
e9bb382b
UW
290 /* Restore owner information. */
291 TYPE_OBJFILE_OWNED (type) = objfile_owned;
292 TYPE_OWNER (type) = owner;
293
2fdde8f8
DJ
294 /* For now, delete the rings. */
295 TYPE_CHAIN (type) = type;
296
297 /* For now, leave the pointer/reference types alone. */
298}
299
c906108c
SS
300/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
301 to a pointer to memory where the pointer type should be stored.
302 If *TYPEPTR is zero, update it to point to the pointer type we return.
303 We allocate new memory if needed. */
304
305struct type *
fba45db2 306make_pointer_type (struct type *type, struct type **typeptr)
c906108c 307{
52f0bd74 308 struct type *ntype; /* New type */
053cb41b 309 struct type *chain;
c906108c
SS
310
311 ntype = TYPE_POINTER_TYPE (type);
312
c5aa993b 313 if (ntype)
c906108c 314 {
c5aa993b 315 if (typeptr == 0)
7ba81444
MS
316 return ntype; /* Don't care about alloc,
317 and have new type. */
c906108c 318 else if (*typeptr == 0)
c5aa993b 319 {
7ba81444 320 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 321 return ntype;
c5aa993b 322 }
c906108c
SS
323 }
324
325 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
326 {
e9bb382b 327 ntype = alloc_type_copy (type);
c906108c
SS
328 if (typeptr)
329 *typeptr = ntype;
330 }
7ba81444 331 else /* We have storage, but need to reset it. */
c906108c
SS
332 {
333 ntype = *typeptr;
053cb41b 334 chain = TYPE_CHAIN (ntype);
2fdde8f8 335 smash_type (ntype);
053cb41b 336 TYPE_CHAIN (ntype) = chain;
c906108c
SS
337 }
338
339 TYPE_TARGET_TYPE (ntype) = type;
340 TYPE_POINTER_TYPE (type) = ntype;
341
5212577a 342 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 343
50810684
UW
344 TYPE_LENGTH (ntype)
345 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
346 TYPE_CODE (ntype) = TYPE_CODE_PTR;
347
67b2adb2 348 /* Mark pointers as unsigned. The target converts between pointers
76e71323 349 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 350 gdbarch_address_to_pointer. */
876cecd0 351 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 352
053cb41b
JB
353 /* Update the length of all the other variants of this type. */
354 chain = TYPE_CHAIN (ntype);
355 while (chain != ntype)
356 {
357 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
358 chain = TYPE_CHAIN (chain);
359 }
360
c906108c
SS
361 return ntype;
362}
363
364/* Given a type TYPE, return a type of pointers to that type.
365 May need to construct such a type if this is the first use. */
366
367struct type *
fba45db2 368lookup_pointer_type (struct type *type)
c906108c 369{
c5aa993b 370 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
371}
372
7ba81444
MS
373/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
374 points to a pointer to memory where the reference type should be
375 stored. If *TYPEPTR is zero, update it to point to the reference
376 type we return. We allocate new memory if needed. */
c906108c
SS
377
378struct type *
fba45db2 379make_reference_type (struct type *type, struct type **typeptr)
c906108c 380{
52f0bd74 381 struct type *ntype; /* New type */
1e98b326 382 struct type *chain;
c906108c
SS
383
384 ntype = TYPE_REFERENCE_TYPE (type);
385
c5aa993b 386 if (ntype)
c906108c 387 {
c5aa993b 388 if (typeptr == 0)
7ba81444
MS
389 return ntype; /* Don't care about alloc,
390 and have new type. */
c906108c 391 else if (*typeptr == 0)
c5aa993b 392 {
7ba81444 393 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 394 return ntype;
c5aa993b 395 }
c906108c
SS
396 }
397
398 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
399 {
e9bb382b 400 ntype = alloc_type_copy (type);
c906108c
SS
401 if (typeptr)
402 *typeptr = ntype;
403 }
7ba81444 404 else /* We have storage, but need to reset it. */
c906108c
SS
405 {
406 ntype = *typeptr;
1e98b326 407 chain = TYPE_CHAIN (ntype);
2fdde8f8 408 smash_type (ntype);
1e98b326 409 TYPE_CHAIN (ntype) = chain;
c906108c
SS
410 }
411
412 TYPE_TARGET_TYPE (ntype) = type;
413 TYPE_REFERENCE_TYPE (type) = ntype;
414
7ba81444
MS
415 /* FIXME! Assume the machine has only one representation for
416 references, and that it matches the (only) representation for
417 pointers! */
c906108c 418
50810684
UW
419 TYPE_LENGTH (ntype) =
420 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c 421 TYPE_CODE (ntype) = TYPE_CODE_REF;
c5aa993b 422
c906108c
SS
423 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
424 TYPE_REFERENCE_TYPE (type) = ntype;
425
1e98b326
JB
426 /* Update the length of all the other variants of this type. */
427 chain = TYPE_CHAIN (ntype);
428 while (chain != ntype)
429 {
430 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
431 chain = TYPE_CHAIN (chain);
432 }
433
c906108c
SS
434 return ntype;
435}
436
7ba81444
MS
437/* Same as above, but caller doesn't care about memory allocation
438 details. */
c906108c
SS
439
440struct type *
fba45db2 441lookup_reference_type (struct type *type)
c906108c 442{
c5aa993b 443 return make_reference_type (type, (struct type **) 0);
c906108c
SS
444}
445
7ba81444
MS
446/* Lookup a function type that returns type TYPE. TYPEPTR, if
447 nonzero, points to a pointer to memory where the function type
448 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 449 function type we return. We allocate new memory if needed. */
c906108c
SS
450
451struct type *
0c8b41f1 452make_function_type (struct type *type, struct type **typeptr)
c906108c 453{
52f0bd74 454 struct type *ntype; /* New type */
c906108c
SS
455
456 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
457 {
e9bb382b 458 ntype = alloc_type_copy (type);
c906108c
SS
459 if (typeptr)
460 *typeptr = ntype;
461 }
7ba81444 462 else /* We have storage, but need to reset it. */
c906108c
SS
463 {
464 ntype = *typeptr;
2fdde8f8 465 smash_type (ntype);
c906108c
SS
466 }
467
468 TYPE_TARGET_TYPE (ntype) = type;
469
470 TYPE_LENGTH (ntype) = 1;
471 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 472
b6cdc2c1
JK
473 INIT_FUNC_SPECIFIC (ntype);
474
c906108c
SS
475 return ntype;
476}
477
c906108c
SS
478/* Given a type TYPE, return a type of functions that return that type.
479 May need to construct such a type if this is the first use. */
480
481struct type *
fba45db2 482lookup_function_type (struct type *type)
c906108c 483{
0c8b41f1 484 return make_function_type (type, (struct type **) 0);
c906108c
SS
485}
486
71918a86 487/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
488 function type. If the final type in PARAM_TYPES is NULL, make a
489 varargs function. */
71918a86
TT
490
491struct type *
492lookup_function_type_with_arguments (struct type *type,
493 int nparams,
494 struct type **param_types)
495{
496 struct type *fn = make_function_type (type, (struct type **) 0);
497 int i;
498
e314d629 499 if (nparams > 0)
a6fb9c08 500 {
e314d629
TT
501 if (param_types[nparams - 1] == NULL)
502 {
503 --nparams;
504 TYPE_VARARGS (fn) = 1;
505 }
506 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
507 == TYPE_CODE_VOID)
508 {
509 --nparams;
510 /* Caller should have ensured this. */
511 gdb_assert (nparams == 0);
512 TYPE_PROTOTYPED (fn) = 1;
513 }
a6fb9c08
TT
514 }
515
71918a86
TT
516 TYPE_NFIELDS (fn) = nparams;
517 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
518 for (i = 0; i < nparams; ++i)
519 TYPE_FIELD_TYPE (fn, i) = param_types[i];
520
521 return fn;
522}
523
47663de5
MS
524/* Identify address space identifier by name --
525 return the integer flag defined in gdbtypes.h. */
5212577a
DE
526
527int
50810684 528address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
47663de5 529{
8b2dbe47 530 int type_flags;
d8734c88 531
7ba81444 532 /* Check for known address space delimiters. */
47663de5 533 if (!strcmp (space_identifier, "code"))
876cecd0 534 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 535 else if (!strcmp (space_identifier, "data"))
876cecd0 536 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
537 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
538 && gdbarch_address_class_name_to_type_flags (gdbarch,
539 space_identifier,
540 &type_flags))
8b2dbe47 541 return type_flags;
47663de5 542 else
8a3fe4f8 543 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
544}
545
546/* Identify address space identifier by integer flag as defined in
7ba81444 547 gdbtypes.h -- return the string version of the adress space name. */
47663de5 548
321432c0 549const char *
50810684 550address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 551{
876cecd0 552 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 553 return "code";
876cecd0 554 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 555 return "data";
876cecd0 556 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
557 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
558 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
559 else
560 return NULL;
561}
562
2fdde8f8 563/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
564
565 If STORAGE is non-NULL, create the new type instance there.
566 STORAGE must be in the same obstack as TYPE. */
47663de5 567
b9362cc7 568static struct type *
2fdde8f8
DJ
569make_qualified_type (struct type *type, int new_flags,
570 struct type *storage)
47663de5
MS
571{
572 struct type *ntype;
573
574 ntype = type;
5f61c20e
JK
575 do
576 {
577 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
578 return ntype;
579 ntype = TYPE_CHAIN (ntype);
580 }
581 while (ntype != type);
47663de5 582
2fdde8f8
DJ
583 /* Create a new type instance. */
584 if (storage == NULL)
585 ntype = alloc_type_instance (type);
586 else
587 {
7ba81444
MS
588 /* If STORAGE was provided, it had better be in the same objfile
589 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
590 if one objfile is freed and the other kept, we'd have
591 dangling pointers. */
ad766c0a
JB
592 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
593
2fdde8f8
DJ
594 ntype = storage;
595 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
596 TYPE_CHAIN (ntype) = ntype;
597 }
47663de5
MS
598
599 /* Pointers or references to the original type are not relevant to
2fdde8f8 600 the new type. */
47663de5
MS
601 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
602 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 603
2fdde8f8
DJ
604 /* Chain the new qualified type to the old type. */
605 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
606 TYPE_CHAIN (type) = ntype;
607
608 /* Now set the instance flags and return the new type. */
609 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 610
ab5d3da6
KB
611 /* Set length of new type to that of the original type. */
612 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
613
47663de5
MS
614 return ntype;
615}
616
2fdde8f8
DJ
617/* Make an address-space-delimited variant of a type -- a type that
618 is identical to the one supplied except that it has an address
619 space attribute attached to it (such as "code" or "data").
620
7ba81444
MS
621 The space attributes "code" and "data" are for Harvard
622 architectures. The address space attributes are for architectures
623 which have alternately sized pointers or pointers with alternate
624 representations. */
2fdde8f8
DJ
625
626struct type *
627make_type_with_address_space (struct type *type, int space_flag)
628{
2fdde8f8 629 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
630 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
631 | TYPE_INSTANCE_FLAG_DATA_SPACE
632 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
633 | space_flag);
634
635 return make_qualified_type (type, new_flags, NULL);
636}
c906108c
SS
637
638/* Make a "c-v" variant of a type -- a type that is identical to the
639 one supplied except that it may have const or volatile attributes
640 CNST is a flag for setting the const attribute
641 VOLTL is a flag for setting the volatile attribute
642 TYPE is the base type whose variant we are creating.
c906108c 643
ad766c0a
JB
644 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
645 storage to hold the new qualified type; *TYPEPTR and TYPE must be
646 in the same objfile. Otherwise, allocate fresh memory for the new
647 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
648 new type we construct. */
5212577a 649
c906108c 650struct type *
7ba81444
MS
651make_cv_type (int cnst, int voltl,
652 struct type *type,
653 struct type **typeptr)
c906108c 654{
52f0bd74 655 struct type *ntype; /* New type */
c906108c 656
2fdde8f8 657 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
658 & ~(TYPE_INSTANCE_FLAG_CONST
659 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 660
c906108c 661 if (cnst)
876cecd0 662 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
663
664 if (voltl)
876cecd0 665 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 666
2fdde8f8 667 if (typeptr && *typeptr != NULL)
a02fd225 668 {
ad766c0a
JB
669 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
670 a C-V variant chain that threads across objfiles: if one
671 objfile gets freed, then the other has a broken C-V chain.
672
673 This code used to try to copy over the main type from TYPE to
674 *TYPEPTR if they were in different objfiles, but that's
675 wrong, too: TYPE may have a field list or member function
676 lists, which refer to types of their own, etc. etc. The
677 whole shebang would need to be copied over recursively; you
678 can't have inter-objfile pointers. The only thing to do is
679 to leave stub types as stub types, and look them up afresh by
680 name each time you encounter them. */
681 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
682 }
683
7ba81444
MS
684 ntype = make_qualified_type (type, new_flags,
685 typeptr ? *typeptr : NULL);
c906108c 686
2fdde8f8
DJ
687 if (typeptr != NULL)
688 *typeptr = ntype;
a02fd225 689
2fdde8f8 690 return ntype;
a02fd225 691}
c906108c 692
06d66ee9
TT
693/* Make a 'restrict'-qualified version of TYPE. */
694
695struct type *
696make_restrict_type (struct type *type)
697{
698 return make_qualified_type (type,
699 (TYPE_INSTANCE_FLAGS (type)
700 | TYPE_INSTANCE_FLAG_RESTRICT),
701 NULL);
702}
703
f1660027
TT
704/* Make a type without const, volatile, or restrict. */
705
706struct type *
707make_unqualified_type (struct type *type)
708{
709 return make_qualified_type (type,
710 (TYPE_INSTANCE_FLAGS (type)
711 & ~(TYPE_INSTANCE_FLAG_CONST
712 | TYPE_INSTANCE_FLAG_VOLATILE
713 | TYPE_INSTANCE_FLAG_RESTRICT)),
714 NULL);
715}
716
a2c2acaf
MW
717/* Make a '_Atomic'-qualified version of TYPE. */
718
719struct type *
720make_atomic_type (struct type *type)
721{
722 return make_qualified_type (type,
723 (TYPE_INSTANCE_FLAGS (type)
724 | TYPE_INSTANCE_FLAG_ATOMIC),
725 NULL);
726}
727
2fdde8f8
DJ
728/* Replace the contents of ntype with the type *type. This changes the
729 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
730 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 731
cda6c68a
JB
732 In order to build recursive types, it's inevitable that we'll need
733 to update types in place --- but this sort of indiscriminate
734 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
735 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
736 clear if more steps are needed. */
5212577a 737
dd6bda65
DJ
738void
739replace_type (struct type *ntype, struct type *type)
740{
ab5d3da6 741 struct type *chain;
dd6bda65 742
ad766c0a
JB
743 /* These two types had better be in the same objfile. Otherwise,
744 the assignment of one type's main type structure to the other
745 will produce a type with references to objects (names; field
746 lists; etc.) allocated on an objfile other than its own. */
747 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
748
2fdde8f8 749 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 750
7ba81444
MS
751 /* The type length is not a part of the main type. Update it for
752 each type on the variant chain. */
ab5d3da6 753 chain = ntype;
5f61c20e
JK
754 do
755 {
756 /* Assert that this element of the chain has no address-class bits
757 set in its flags. Such type variants might have type lengths
758 which are supposed to be different from the non-address-class
759 variants. This assertion shouldn't ever be triggered because
760 symbol readers which do construct address-class variants don't
761 call replace_type(). */
762 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
763
764 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
765 chain = TYPE_CHAIN (chain);
766 }
767 while (ntype != chain);
ab5d3da6 768
2fdde8f8
DJ
769 /* Assert that the two types have equivalent instance qualifiers.
770 This should be true for at least all of our debug readers. */
771 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
772}
773
c906108c
SS
774/* Implement direct support for MEMBER_TYPE in GNU C++.
775 May need to construct such a type if this is the first use.
776 The TYPE is the type of the member. The DOMAIN is the type
777 of the aggregate that the member belongs to. */
778
779struct type *
0d5de010 780lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 781{
52f0bd74 782 struct type *mtype;
c906108c 783
e9bb382b 784 mtype = alloc_type_copy (type);
0d5de010 785 smash_to_memberptr_type (mtype, domain, type);
c16abbde 786 return mtype;
c906108c
SS
787}
788
0d5de010
DJ
789/* Return a pointer-to-method type, for a method of type TO_TYPE. */
790
791struct type *
792lookup_methodptr_type (struct type *to_type)
793{
794 struct type *mtype;
795
e9bb382b 796 mtype = alloc_type_copy (to_type);
0b92b5bb 797 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
798 return mtype;
799}
800
7ba81444
MS
801/* Allocate a stub method whose return type is TYPE. This apparently
802 happens for speed of symbol reading, since parsing out the
803 arguments to the method is cpu-intensive, the way we are doing it.
804 So, we will fill in arguments later. This always returns a fresh
805 type. */
c906108c
SS
806
807struct type *
fba45db2 808allocate_stub_method (struct type *type)
c906108c
SS
809{
810 struct type *mtype;
811
e9bb382b
UW
812 mtype = alloc_type_copy (type);
813 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
814 TYPE_LENGTH (mtype) = 1;
815 TYPE_STUB (mtype) = 1;
c906108c 816 TYPE_TARGET_TYPE (mtype) = type;
4bfb94b8 817 /* TYPE_SELF_TYPE (mtype) = unknown yet */
c16abbde 818 return mtype;
c906108c
SS
819}
820
729efb13
SA
821/* Create a range type with a dynamic range from LOW_BOUND to
822 HIGH_BOUND, inclusive. See create_range_type for further details. */
c906108c
SS
823
824struct type *
729efb13
SA
825create_range_type (struct type *result_type, struct type *index_type,
826 const struct dynamic_prop *low_bound,
827 const struct dynamic_prop *high_bound)
c906108c
SS
828{
829 if (result_type == NULL)
e9bb382b 830 result_type = alloc_type_copy (index_type);
c906108c
SS
831 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
832 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 833 if (TYPE_STUB (index_type))
876cecd0 834 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
835 else
836 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
729efb13 837
43bbcdc2
PH
838 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
839 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
729efb13
SA
840 TYPE_RANGE_DATA (result_type)->low = *low_bound;
841 TYPE_RANGE_DATA (result_type)->high = *high_bound;
c906108c 842
729efb13 843 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
876cecd0 844 TYPE_UNSIGNED (result_type) = 1;
c906108c 845
45e44d27
JB
846 /* Ada allows the declaration of range types whose upper bound is
847 less than the lower bound, so checking the lower bound is not
848 enough. Make sure we do not mark a range type whose upper bound
849 is negative as unsigned. */
850 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
851 TYPE_UNSIGNED (result_type) = 0;
852
262452ec 853 return result_type;
c906108c
SS
854}
855
729efb13
SA
856/* Create a range type using either a blank type supplied in
857 RESULT_TYPE, or creating a new type, inheriting the objfile from
858 INDEX_TYPE.
859
860 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
861 to HIGH_BOUND, inclusive.
862
863 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
864 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
865
866struct type *
867create_static_range_type (struct type *result_type, struct type *index_type,
868 LONGEST low_bound, LONGEST high_bound)
869{
870 struct dynamic_prop low, high;
871
872 low.kind = PROP_CONST;
873 low.data.const_val = low_bound;
874
875 high.kind = PROP_CONST;
876 high.data.const_val = high_bound;
877
878 result_type = create_range_type (result_type, index_type, &low, &high);
879
880 return result_type;
881}
882
80180f79
SA
883/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
884 are static, otherwise returns 0. */
885
886static int
887has_static_range (const struct range_bounds *bounds)
888{
889 return (bounds->low.kind == PROP_CONST
890 && bounds->high.kind == PROP_CONST);
891}
892
893
7ba81444
MS
894/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
895 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
896 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
897
898int
fba45db2 899get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c
SS
900{
901 CHECK_TYPEDEF (type);
902 switch (TYPE_CODE (type))
903 {
904 case TYPE_CODE_RANGE:
905 *lowp = TYPE_LOW_BOUND (type);
906 *highp = TYPE_HIGH_BOUND (type);
907 return 1;
908 case TYPE_CODE_ENUM:
909 if (TYPE_NFIELDS (type) > 0)
910 {
911 /* The enums may not be sorted by value, so search all
0963b4bd 912 entries. */
c906108c
SS
913 int i;
914
14e75d8e 915 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
c906108c
SS
916 for (i = 0; i < TYPE_NFIELDS (type); i++)
917 {
14e75d8e
JK
918 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
919 *lowp = TYPE_FIELD_ENUMVAL (type, i);
920 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
921 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
922 }
923
7ba81444 924 /* Set unsigned indicator if warranted. */
c5aa993b 925 if (*lowp >= 0)
c906108c 926 {
876cecd0 927 TYPE_UNSIGNED (type) = 1;
c906108c
SS
928 }
929 }
930 else
931 {
932 *lowp = 0;
933 *highp = -1;
934 }
935 return 0;
936 case TYPE_CODE_BOOL:
937 *lowp = 0;
938 *highp = 1;
939 return 0;
940 case TYPE_CODE_INT:
c5aa993b 941 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
942 return -1;
943 if (!TYPE_UNSIGNED (type))
944 {
c5aa993b 945 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
946 *highp = -*lowp - 1;
947 return 0;
948 }
7ba81444 949 /* ... fall through for unsigned ints ... */
c906108c
SS
950 case TYPE_CODE_CHAR:
951 *lowp = 0;
952 /* This round-about calculation is to avoid shifting by
7b83ea04 953 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 954 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
955 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
956 *highp = (*highp - 1) | *highp;
957 return 0;
958 default:
959 return -1;
960 }
961}
962
dbc98a8b
KW
963/* Assuming TYPE is a simple, non-empty array type, compute its upper
964 and lower bound. Save the low bound into LOW_BOUND if not NULL.
965 Save the high bound into HIGH_BOUND if not NULL.
966
0963b4bd 967 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
968 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
969
970 We now simply use get_discrete_bounds call to get the values
971 of the low and high bounds.
972 get_discrete_bounds can return three values:
973 1, meaning that index is a range,
974 0, meaning that index is a discrete type,
975 or -1 for failure. */
976
977int
978get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
979{
980 struct type *index = TYPE_INDEX_TYPE (type);
981 LONGEST low = 0;
982 LONGEST high = 0;
983 int res;
984
985 if (index == NULL)
986 return 0;
987
988 res = get_discrete_bounds (index, &low, &high);
989 if (res == -1)
990 return 0;
991
992 /* Check if the array bounds are undefined. */
993 if (res == 1
994 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
995 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
996 return 0;
997
998 if (low_bound)
999 *low_bound = low;
1000
1001 if (high_bound)
1002 *high_bound = high;
1003
1004 return 1;
1005}
1006
7ba81444
MS
1007/* Create an array type using either a blank type supplied in
1008 RESULT_TYPE, or creating a new type, inheriting the objfile from
1009 RANGE_TYPE.
c906108c
SS
1010
1011 Elements will be of type ELEMENT_TYPE, the indices will be of type
1012 RANGE_TYPE.
1013
dc53a7ad
JB
1014 If BIT_STRIDE is not zero, build a packed array type whose element
1015 size is BIT_STRIDE. Otherwise, ignore this parameter.
1016
7ba81444
MS
1017 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1018 sure it is TYPE_CODE_UNDEF before we bash it into an array
1019 type? */
c906108c
SS
1020
1021struct type *
dc53a7ad
JB
1022create_array_type_with_stride (struct type *result_type,
1023 struct type *element_type,
1024 struct type *range_type,
1025 unsigned int bit_stride)
c906108c 1026{
c906108c 1027 if (result_type == NULL)
e9bb382b
UW
1028 result_type = alloc_type_copy (range_type);
1029
c906108c
SS
1030 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1031 TYPE_TARGET_TYPE (result_type) = element_type;
80180f79
SA
1032 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1033 {
1034 LONGEST low_bound, high_bound;
1035
1036 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1037 low_bound = high_bound = 0;
1038 CHECK_TYPEDEF (element_type);
1039 /* Be careful when setting the array length. Ada arrays can be
1040 empty arrays with the high_bound being smaller than the low_bound.
1041 In such cases, the array length should be zero. */
1042 if (high_bound < low_bound)
1043 TYPE_LENGTH (result_type) = 0;
1044 else if (bit_stride > 0)
1045 TYPE_LENGTH (result_type) =
1046 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1047 else
1048 TYPE_LENGTH (result_type) =
1049 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1050 }
ab0d6e0d 1051 else
80180f79
SA
1052 {
1053 /* This type is dynamic and its length needs to be computed
1054 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1055 undefined by setting it to zero. Although we are not expected
1056 to trust TYPE_LENGTH in this case, setting the size to zero
1057 allows us to avoid allocating objects of random sizes in case
1058 we accidently do. */
1059 TYPE_LENGTH (result_type) = 0;
1060 }
1061
c906108c
SS
1062 TYPE_NFIELDS (result_type) = 1;
1063 TYPE_FIELDS (result_type) =
1deafd4e 1064 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 1065 TYPE_INDEX_TYPE (result_type) = range_type;
dc53a7ad
JB
1066 if (bit_stride > 0)
1067 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
c906108c 1068
0963b4bd 1069 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
c906108c 1070 if (TYPE_LENGTH (result_type) == 0)
876cecd0 1071 TYPE_TARGET_STUB (result_type) = 1;
c906108c 1072
c16abbde 1073 return result_type;
c906108c
SS
1074}
1075
dc53a7ad
JB
1076/* Same as create_array_type_with_stride but with no bit_stride
1077 (BIT_STRIDE = 0), thus building an unpacked array. */
1078
1079struct type *
1080create_array_type (struct type *result_type,
1081 struct type *element_type,
1082 struct type *range_type)
1083{
1084 return create_array_type_with_stride (result_type, element_type,
1085 range_type, 0);
1086}
1087
e3506a9f
UW
1088struct type *
1089lookup_array_range_type (struct type *element_type,
63375b74 1090 LONGEST low_bound, LONGEST high_bound)
e3506a9f 1091{
50810684 1092 struct gdbarch *gdbarch = get_type_arch (element_type);
e3506a9f
UW
1093 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1094 struct type *range_type
0c9c3474 1095 = create_static_range_type (NULL, index_type, low_bound, high_bound);
d8734c88 1096
e3506a9f
UW
1097 return create_array_type (NULL, element_type, range_type);
1098}
1099
7ba81444
MS
1100/* Create a string type using either a blank type supplied in
1101 RESULT_TYPE, or creating a new type. String types are similar
1102 enough to array of char types that we can use create_array_type to
1103 build the basic type and then bash it into a string type.
c906108c
SS
1104
1105 For fixed length strings, the range type contains 0 as the lower
1106 bound and the length of the string minus one as the upper bound.
1107
7ba81444
MS
1108 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1109 sure it is TYPE_CODE_UNDEF before we bash it into a string
1110 type? */
c906108c
SS
1111
1112struct type *
3b7538c0
UW
1113create_string_type (struct type *result_type,
1114 struct type *string_char_type,
7ba81444 1115 struct type *range_type)
c906108c
SS
1116{
1117 result_type = create_array_type (result_type,
f290d38e 1118 string_char_type,
c906108c
SS
1119 range_type);
1120 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 1121 return result_type;
c906108c
SS
1122}
1123
e3506a9f
UW
1124struct type *
1125lookup_string_range_type (struct type *string_char_type,
63375b74 1126 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1127{
1128 struct type *result_type;
d8734c88 1129
e3506a9f
UW
1130 result_type = lookup_array_range_type (string_char_type,
1131 low_bound, high_bound);
1132 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1133 return result_type;
1134}
1135
c906108c 1136struct type *
fba45db2 1137create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1138{
c906108c 1139 if (result_type == NULL)
e9bb382b
UW
1140 result_type = alloc_type_copy (domain_type);
1141
c906108c
SS
1142 TYPE_CODE (result_type) = TYPE_CODE_SET;
1143 TYPE_NFIELDS (result_type) = 1;
1deafd4e 1144 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 1145
74a9bb82 1146 if (!TYPE_STUB (domain_type))
c906108c 1147 {
f9780d5b 1148 LONGEST low_bound, high_bound, bit_length;
d8734c88 1149
c906108c
SS
1150 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1151 low_bound = high_bound = 0;
1152 bit_length = high_bound - low_bound + 1;
1153 TYPE_LENGTH (result_type)
1154 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1155 if (low_bound >= 0)
876cecd0 1156 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
1157 }
1158 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1159
c16abbde 1160 return result_type;
c906108c
SS
1161}
1162
ea37ba09
DJ
1163/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1164 and any array types nested inside it. */
1165
1166void
1167make_vector_type (struct type *array_type)
1168{
1169 struct type *inner_array, *elt_type;
1170 int flags;
1171
1172 /* Find the innermost array type, in case the array is
1173 multi-dimensional. */
1174 inner_array = array_type;
1175 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1176 inner_array = TYPE_TARGET_TYPE (inner_array);
1177
1178 elt_type = TYPE_TARGET_TYPE (inner_array);
1179 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1180 {
2844d6b5 1181 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1182 elt_type = make_qualified_type (elt_type, flags, NULL);
1183 TYPE_TARGET_TYPE (inner_array) = elt_type;
1184 }
1185
876cecd0 1186 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1187}
1188
794ac428 1189struct type *
ac3aafc7
EZ
1190init_vector_type (struct type *elt_type, int n)
1191{
1192 struct type *array_type;
d8734c88 1193
e3506a9f 1194 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1195 make_vector_type (array_type);
ac3aafc7
EZ
1196 return array_type;
1197}
1198
09e2d7c7
DE
1199/* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1200 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1201 confusing. "self" is a common enough replacement for "this".
1202 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1203 TYPE_CODE_METHOD. */
1204
1205struct type *
1206internal_type_self_type (struct type *type)
1207{
1208 switch (TYPE_CODE (type))
1209 {
1210 case TYPE_CODE_METHODPTR:
1211 case TYPE_CODE_MEMBERPTR:
eaaf76ab
DE
1212 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1213 return NULL;
09e2d7c7
DE
1214 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1215 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1216 case TYPE_CODE_METHOD:
eaaf76ab
DE
1217 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1218 return NULL;
09e2d7c7
DE
1219 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1220 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1221 default:
1222 gdb_assert_not_reached ("bad type");
1223 }
1224}
1225
1226/* Set the type of the class that TYPE belongs to.
1227 In c++ this is the class of "this".
1228 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1229 TYPE_CODE_METHOD. */
1230
1231void
1232set_type_self_type (struct type *type, struct type *self_type)
1233{
1234 switch (TYPE_CODE (type))
1235 {
1236 case TYPE_CODE_METHODPTR:
1237 case TYPE_CODE_MEMBERPTR:
1238 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1239 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1240 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1241 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1242 break;
1243 case TYPE_CODE_METHOD:
1244 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1245 INIT_FUNC_SPECIFIC (type);
1246 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1247 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1248 break;
1249 default:
1250 gdb_assert_not_reached ("bad type");
1251 }
1252}
1253
1254/* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
0d5de010
DJ
1255 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1256 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1257 TYPE doesn't include the offset (that's the value of the MEMBER
1258 itself), but does include the structure type into which it points
1259 (for some reason).
c906108c 1260
7ba81444
MS
1261 When "smashing" the type, we preserve the objfile that the old type
1262 pointed to, since we aren't changing where the type is actually
c906108c
SS
1263 allocated. */
1264
1265void
09e2d7c7 1266smash_to_memberptr_type (struct type *type, struct type *self_type,
0d5de010 1267 struct type *to_type)
c906108c 1268{
2fdde8f8 1269 smash_type (type);
09e2d7c7 1270 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c 1271 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1272 set_type_self_type (type, self_type);
0d5de010
DJ
1273 /* Assume that a data member pointer is the same size as a normal
1274 pointer. */
50810684
UW
1275 TYPE_LENGTH (type)
1276 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
c906108c
SS
1277}
1278
0b92b5bb
TT
1279/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1280
1281 When "smashing" the type, we preserve the objfile that the old type
1282 pointed to, since we aren't changing where the type is actually
1283 allocated. */
1284
1285void
1286smash_to_methodptr_type (struct type *type, struct type *to_type)
1287{
1288 smash_type (type);
09e2d7c7 1289 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
0b92b5bb 1290 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1291 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
0b92b5bb 1292 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
0b92b5bb
TT
1293}
1294
09e2d7c7 1295/* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
c906108c
SS
1296 METHOD just means `function that gets an extra "this" argument'.
1297
7ba81444
MS
1298 When "smashing" the type, we preserve the objfile that the old type
1299 pointed to, since we aren't changing where the type is actually
c906108c
SS
1300 allocated. */
1301
1302void
09e2d7c7 1303smash_to_method_type (struct type *type, struct type *self_type,
ad2f7632
DJ
1304 struct type *to_type, struct field *args,
1305 int nargs, int varargs)
c906108c 1306{
2fdde8f8 1307 smash_type (type);
09e2d7c7 1308 TYPE_CODE (type) = TYPE_CODE_METHOD;
c906108c 1309 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1310 set_type_self_type (type, self_type);
ad2f7632
DJ
1311 TYPE_FIELDS (type) = args;
1312 TYPE_NFIELDS (type) = nargs;
1313 if (varargs)
876cecd0 1314 TYPE_VARARGS (type) = 1;
c906108c 1315 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
c906108c
SS
1316}
1317
1318/* Return a typename for a struct/union/enum type without "struct ",
1319 "union ", or "enum ". If the type has a NULL name, return NULL. */
1320
0d5cff50 1321const char *
aa1ee363 1322type_name_no_tag (const struct type *type)
c906108c
SS
1323{
1324 if (TYPE_TAG_NAME (type) != NULL)
1325 return TYPE_TAG_NAME (type);
1326
7ba81444
MS
1327 /* Is there code which expects this to return the name if there is
1328 no tag name? My guess is that this is mainly used for C++ in
1329 cases where the two will always be the same. */
c906108c
SS
1330 return TYPE_NAME (type);
1331}
1332
d8228535
JK
1333/* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1334 Since GCC PR debug/47510 DWARF provides associated information to detect the
1335 anonymous class linkage name from its typedef.
1336
1337 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1338 apply it itself. */
1339
1340const char *
1341type_name_no_tag_or_error (struct type *type)
1342{
1343 struct type *saved_type = type;
1344 const char *name;
1345 struct objfile *objfile;
1346
1347 CHECK_TYPEDEF (type);
1348
1349 name = type_name_no_tag (type);
1350 if (name != NULL)
1351 return name;
1352
1353 name = type_name_no_tag (saved_type);
1354 objfile = TYPE_OBJFILE (saved_type);
1355 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
4262abfb
JK
1356 name ? name : "<anonymous>",
1357 objfile ? objfile_name (objfile) : "<arch>");
d8228535
JK
1358}
1359
7ba81444
MS
1360/* Lookup a typedef or primitive type named NAME, visible in lexical
1361 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1362 suitably defined. */
c906108c
SS
1363
1364struct type *
e6c014f2 1365lookup_typename (const struct language_defn *language,
ddd49eee 1366 struct gdbarch *gdbarch, const char *name,
34eaf542 1367 const struct block *block, int noerr)
c906108c 1368{
52f0bd74 1369 struct symbol *sym;
659c9f3a 1370 struct type *type;
c906108c 1371
1994afbf
DE
1372 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1373 language->la_language, NULL);
c51fe631
DE
1374 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1375 return SYMBOL_TYPE (sym);
1376
c51fe631
DE
1377 if (noerr)
1378 return NULL;
1379 error (_("No type named %s."), name);
c906108c
SS
1380}
1381
1382struct type *
e6c014f2 1383lookup_unsigned_typename (const struct language_defn *language,
0d5cff50 1384 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1385{
1386 char *uns = alloca (strlen (name) + 10);
1387
1388 strcpy (uns, "unsigned ");
1389 strcpy (uns + 9, name);
e6c014f2 1390 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
c906108c
SS
1391}
1392
1393struct type *
e6c014f2 1394lookup_signed_typename (const struct language_defn *language,
0d5cff50 1395 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1396{
1397 struct type *t;
1398 char *uns = alloca (strlen (name) + 8);
1399
1400 strcpy (uns, "signed ");
1401 strcpy (uns + 7, name);
e6c014f2 1402 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
7ba81444 1403 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1404 if (t != NULL)
1405 return t;
e6c014f2 1406 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
c906108c
SS
1407}
1408
1409/* Lookup a structure type named "struct NAME",
1410 visible in lexical block BLOCK. */
1411
1412struct type *
270140bd 1413lookup_struct (const char *name, const struct block *block)
c906108c 1414{
52f0bd74 1415 struct symbol *sym;
c906108c 1416
2570f2b7 1417 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1418
1419 if (sym == NULL)
1420 {
8a3fe4f8 1421 error (_("No struct type named %s."), name);
c906108c
SS
1422 }
1423 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1424 {
7ba81444
MS
1425 error (_("This context has class, union or enum %s, not a struct."),
1426 name);
c906108c
SS
1427 }
1428 return (SYMBOL_TYPE (sym));
1429}
1430
1431/* Lookup a union type named "union NAME",
1432 visible in lexical block BLOCK. */
1433
1434struct type *
270140bd 1435lookup_union (const char *name, const struct block *block)
c906108c 1436{
52f0bd74 1437 struct symbol *sym;
c5aa993b 1438 struct type *t;
c906108c 1439
2570f2b7 1440 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1441
1442 if (sym == NULL)
8a3fe4f8 1443 error (_("No union type named %s."), name);
c906108c 1444
c5aa993b 1445 t = SYMBOL_TYPE (sym);
c906108c
SS
1446
1447 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1448 return t;
c906108c 1449
7ba81444
MS
1450 /* If we get here, it's not a union. */
1451 error (_("This context has class, struct or enum %s, not a union."),
1452 name);
c906108c
SS
1453}
1454
c906108c
SS
1455/* Lookup an enum type named "enum NAME",
1456 visible in lexical block BLOCK. */
1457
1458struct type *
270140bd 1459lookup_enum (const char *name, const struct block *block)
c906108c 1460{
52f0bd74 1461 struct symbol *sym;
c906108c 1462
2570f2b7 1463 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1464 if (sym == NULL)
1465 {
8a3fe4f8 1466 error (_("No enum type named %s."), name);
c906108c
SS
1467 }
1468 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1469 {
7ba81444
MS
1470 error (_("This context has class, struct or union %s, not an enum."),
1471 name);
c906108c
SS
1472 }
1473 return (SYMBOL_TYPE (sym));
1474}
1475
1476/* Lookup a template type named "template NAME<TYPE>",
1477 visible in lexical block BLOCK. */
1478
1479struct type *
7ba81444 1480lookup_template_type (char *name, struct type *type,
270140bd 1481 const struct block *block)
c906108c
SS
1482{
1483 struct symbol *sym;
7ba81444
MS
1484 char *nam = (char *)
1485 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1486
c906108c
SS
1487 strcpy (nam, name);
1488 strcat (nam, "<");
0004e5a2 1489 strcat (nam, TYPE_NAME (type));
0963b4bd 1490 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1491
2570f2b7 1492 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
c906108c
SS
1493
1494 if (sym == NULL)
1495 {
8a3fe4f8 1496 error (_("No template type named %s."), name);
c906108c
SS
1497 }
1498 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1499 {
7ba81444
MS
1500 error (_("This context has class, union or enum %s, not a struct."),
1501 name);
c906108c
SS
1502 }
1503 return (SYMBOL_TYPE (sym));
1504}
1505
7ba81444
MS
1506/* Given a type TYPE, lookup the type of the component of type named
1507 NAME.
c906108c 1508
7ba81444
MS
1509 TYPE can be either a struct or union, or a pointer or reference to
1510 a struct or union. If it is a pointer or reference, its target
1511 type is automatically used. Thus '.' and '->' are interchangable,
1512 as specified for the definitions of the expression element types
1513 STRUCTOP_STRUCT and STRUCTOP_PTR.
c906108c
SS
1514
1515 If NOERR is nonzero, return zero if NAME is not suitably defined.
1516 If NAME is the name of a baseclass type, return that type. */
1517
1518struct type *
d7561cbb 1519lookup_struct_elt_type (struct type *type, const char *name, int noerr)
c906108c
SS
1520{
1521 int i;
c92817ce 1522 char *typename;
c906108c
SS
1523
1524 for (;;)
1525 {
1526 CHECK_TYPEDEF (type);
1527 if (TYPE_CODE (type) != TYPE_CODE_PTR
1528 && TYPE_CODE (type) != TYPE_CODE_REF)
1529 break;
1530 type = TYPE_TARGET_TYPE (type);
1531 }
1532
687d6395
MS
1533 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1534 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1535 {
c92817ce
TT
1536 typename = type_to_string (type);
1537 make_cleanup (xfree, typename);
1538 error (_("Type %s is not a structure or union type."), typename);
c906108c
SS
1539 }
1540
1541#if 0
7ba81444
MS
1542 /* FIXME: This change put in by Michael seems incorrect for the case
1543 where the structure tag name is the same as the member name.
0963b4bd 1544 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
7ba81444 1545 foo; } bell;" Disabled by fnf. */
c906108c
SS
1546 {
1547 char *typename;
1548
1549 typename = type_name_no_tag (type);
762f08a3 1550 if (typename != NULL && strcmp (typename, name) == 0)
c906108c
SS
1551 return type;
1552 }
1553#endif
1554
1555 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1556 {
0d5cff50 1557 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1558
db577aea 1559 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1560 {
1561 return TYPE_FIELD_TYPE (type, i);
1562 }
f5a010c0
PM
1563 else if (!t_field_name || *t_field_name == '\0')
1564 {
d8734c88
MS
1565 struct type *subtype
1566 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1567
f5a010c0
PM
1568 if (subtype != NULL)
1569 return subtype;
1570 }
c906108c
SS
1571 }
1572
1573 /* OK, it's not in this class. Recursively check the baseclasses. */
1574 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1575 {
1576 struct type *t;
1577
9733fc94 1578 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
c906108c
SS
1579 if (t != NULL)
1580 {
1581 return t;
1582 }
1583 }
1584
1585 if (noerr)
1586 {
1587 return NULL;
1588 }
c5aa993b 1589
c92817ce
TT
1590 typename = type_to_string (type);
1591 make_cleanup (xfree, typename);
1592 error (_("Type %s has no component named %s."), typename, name);
c906108c
SS
1593}
1594
ed3ef339
DE
1595/* Store in *MAX the largest number representable by unsigned integer type
1596 TYPE. */
1597
1598void
1599get_unsigned_type_max (struct type *type, ULONGEST *max)
1600{
1601 unsigned int n;
1602
1603 CHECK_TYPEDEF (type);
1604 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1605 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1606
1607 /* Written this way to avoid overflow. */
1608 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1609 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1610}
1611
1612/* Store in *MIN, *MAX the smallest and largest numbers representable by
1613 signed integer type TYPE. */
1614
1615void
1616get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1617{
1618 unsigned int n;
1619
1620 CHECK_TYPEDEF (type);
1621 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1622 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1623
1624 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1625 *min = -((ULONGEST) 1 << (n - 1));
1626 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1627}
1628
ae6ae975
DE
1629/* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1630 cplus_stuff.vptr_fieldno.
1631
1632 cplus_stuff is initialized to cplus_struct_default which does not
1633 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1634 designated initializers). We cope with that here. */
1635
1636int
1637internal_type_vptr_fieldno (struct type *type)
1638{
0def5aaa 1639 CHECK_TYPEDEF (type);
ae6ae975
DE
1640 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1641 || TYPE_CODE (type) == TYPE_CODE_UNION);
1642 if (!HAVE_CPLUS_STRUCT (type))
1643 return -1;
1644 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1645}
1646
1647/* Set the value of cplus_stuff.vptr_fieldno. */
1648
1649void
1650set_type_vptr_fieldno (struct type *type, int fieldno)
1651{
0def5aaa 1652 CHECK_TYPEDEF (type);
ae6ae975
DE
1653 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1654 || TYPE_CODE (type) == TYPE_CODE_UNION);
1655 if (!HAVE_CPLUS_STRUCT (type))
1656 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1657 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1658}
1659
1660/* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1661 cplus_stuff.vptr_basetype. */
1662
1663struct type *
1664internal_type_vptr_basetype (struct type *type)
1665{
0def5aaa 1666 CHECK_TYPEDEF (type);
ae6ae975
DE
1667 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1668 || TYPE_CODE (type) == TYPE_CODE_UNION);
1669 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1670 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1671}
1672
1673/* Set the value of cplus_stuff.vptr_basetype. */
1674
1675void
1676set_type_vptr_basetype (struct type *type, struct type *basetype)
1677{
0def5aaa 1678 CHECK_TYPEDEF (type);
ae6ae975
DE
1679 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1680 || TYPE_CODE (type) == TYPE_CODE_UNION);
1681 if (!HAVE_CPLUS_STRUCT (type))
1682 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1683 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1684}
1685
81fe8080
DE
1686/* Lookup the vptr basetype/fieldno values for TYPE.
1687 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1688 vptr_fieldno. Also, if found and basetype is from the same objfile,
1689 cache the results.
1690 If not found, return -1 and ignore BASETYPEP.
1691 Callers should be aware that in some cases (for example,
c906108c 1692 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1693 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1694 this function will not be able to find the
7ba81444 1695 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1696 vptr_basetype will remain NULL or incomplete. */
c906108c 1697
81fe8080
DE
1698int
1699get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c
SS
1700{
1701 CHECK_TYPEDEF (type);
1702
1703 if (TYPE_VPTR_FIELDNO (type) < 0)
1704 {
1705 int i;
1706
7ba81444
MS
1707 /* We must start at zero in case the first (and only) baseclass
1708 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1709 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1710 {
81fe8080
DE
1711 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1712 int fieldno;
1713 struct type *basetype;
1714
1715 fieldno = get_vptr_fieldno (baseclass, &basetype);
1716 if (fieldno >= 0)
c906108c 1717 {
81fe8080 1718 /* If the type comes from a different objfile we can't cache
0963b4bd 1719 it, it may have a different lifetime. PR 2384 */
5ef73790 1720 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080 1721 {
ae6ae975
DE
1722 set_type_vptr_fieldno (type, fieldno);
1723 set_type_vptr_basetype (type, basetype);
81fe8080
DE
1724 }
1725 if (basetypep)
1726 *basetypep = basetype;
1727 return fieldno;
c906108c
SS
1728 }
1729 }
81fe8080
DE
1730
1731 /* Not found. */
1732 return -1;
1733 }
1734 else
1735 {
1736 if (basetypep)
1737 *basetypep = TYPE_VPTR_BASETYPE (type);
1738 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1739 }
1740}
1741
44e1a9eb
DJ
1742static void
1743stub_noname_complaint (void)
1744{
e2e0b3e5 1745 complaint (&symfile_complaints, _("stub type has NULL name"));
44e1a9eb
DJ
1746}
1747
d98b7a16 1748/* Worker for is_dynamic_type. */
80180f79 1749
d98b7a16
TT
1750static int
1751is_dynamic_type_internal (struct type *type, int top_level)
80180f79
SA
1752{
1753 type = check_typedef (type);
1754
d98b7a16
TT
1755 /* We only want to recognize references at the outermost level. */
1756 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
80180f79
SA
1757 type = check_typedef (TYPE_TARGET_TYPE (type));
1758
3cdcd0ce
JB
1759 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1760 dynamic, even if the type itself is statically defined.
1761 From a user's point of view, this may appear counter-intuitive;
1762 but it makes sense in this context, because the point is to determine
1763 whether any part of the type needs to be resolved before it can
1764 be exploited. */
1765 if (TYPE_DATA_LOCATION (type) != NULL
1766 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1767 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1768 return 1;
1769
80180f79
SA
1770 switch (TYPE_CODE (type))
1771 {
6f8a3220 1772 case TYPE_CODE_RANGE:
ddb87a81
JB
1773 {
1774 /* A range type is obviously dynamic if it has at least one
1775 dynamic bound. But also consider the range type to be
1776 dynamic when its subtype is dynamic, even if the bounds
1777 of the range type are static. It allows us to assume that
1778 the subtype of a static range type is also static. */
1779 return (!has_static_range (TYPE_RANGE_DATA (type))
1780 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1781 }
6f8a3220 1782
80180f79
SA
1783 case TYPE_CODE_ARRAY:
1784 {
80180f79 1785 gdb_assert (TYPE_NFIELDS (type) == 1);
6f8a3220
JB
1786
1787 /* The array is dynamic if either the bounds are dynamic,
1788 or the elements it contains have a dynamic contents. */
d98b7a16 1789 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
80180f79 1790 return 1;
d98b7a16 1791 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
80180f79 1792 }
012370f6
TT
1793
1794 case TYPE_CODE_STRUCT:
1795 case TYPE_CODE_UNION:
1796 {
1797 int i;
1798
1799 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1800 if (!field_is_static (&TYPE_FIELD (type, i))
d98b7a16 1801 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
012370f6
TT
1802 return 1;
1803 }
1804 break;
80180f79 1805 }
92e2a17f
TT
1806
1807 return 0;
80180f79
SA
1808}
1809
d98b7a16
TT
1810/* See gdbtypes.h. */
1811
1812int
1813is_dynamic_type (struct type *type)
1814{
1815 return is_dynamic_type_internal (type, 1);
1816}
1817
df25ebbd
JB
1818static struct type *resolve_dynamic_type_internal
1819 (struct type *type, struct property_addr_info *addr_stack, int top_level);
d98b7a16 1820
df25ebbd
JB
1821/* Given a dynamic range type (dyn_range_type) and a stack of
1822 struct property_addr_info elements, return a static version
1823 of that type. */
d190df30 1824
80180f79 1825static struct type *
df25ebbd
JB
1826resolve_dynamic_range (struct type *dyn_range_type,
1827 struct property_addr_info *addr_stack)
80180f79
SA
1828{
1829 CORE_ADDR value;
ddb87a81 1830 struct type *static_range_type, *static_target_type;
80180f79
SA
1831 const struct dynamic_prop *prop;
1832 const struct dwarf2_locexpr_baton *baton;
1833 struct dynamic_prop low_bound, high_bound;
1834
6f8a3220 1835 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
80180f79 1836
6f8a3220 1837 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
df25ebbd 1838 if (dwarf2_evaluate_property (prop, addr_stack, &value))
80180f79
SA
1839 {
1840 low_bound.kind = PROP_CONST;
1841 low_bound.data.const_val = value;
1842 }
1843 else
1844 {
1845 low_bound.kind = PROP_UNDEFINED;
1846 low_bound.data.const_val = 0;
1847 }
1848
6f8a3220 1849 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
df25ebbd 1850 if (dwarf2_evaluate_property (prop, addr_stack, &value))
80180f79
SA
1851 {
1852 high_bound.kind = PROP_CONST;
1853 high_bound.data.const_val = value;
c451ebe5 1854
6f8a3220 1855 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
c451ebe5
SA
1856 high_bound.data.const_val
1857 = low_bound.data.const_val + high_bound.data.const_val - 1;
80180f79
SA
1858 }
1859 else
1860 {
1861 high_bound.kind = PROP_UNDEFINED;
1862 high_bound.data.const_val = 0;
1863 }
1864
ddb87a81
JB
1865 static_target_type
1866 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
df25ebbd 1867 addr_stack, 0);
6f8a3220 1868 static_range_type = create_range_type (copy_type (dyn_range_type),
ddb87a81 1869 static_target_type,
6f8a3220
JB
1870 &low_bound, &high_bound);
1871 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1872 return static_range_type;
1873}
1874
1875/* Resolves dynamic bound values of an array type TYPE to static ones.
df25ebbd
JB
1876 ADDR_STACK is a stack of struct property_addr_info to be used
1877 if needed during the dynamic resolution. */
6f8a3220
JB
1878
1879static struct type *
df25ebbd
JB
1880resolve_dynamic_array (struct type *type,
1881 struct property_addr_info *addr_stack)
6f8a3220
JB
1882{
1883 CORE_ADDR value;
1884 struct type *elt_type;
1885 struct type *range_type;
1886 struct type *ary_dim;
1887
1888 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1889
1890 elt_type = type;
1891 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
df25ebbd 1892 range_type = resolve_dynamic_range (range_type, addr_stack);
6f8a3220 1893
80180f79
SA
1894 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1895
1896 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
df25ebbd 1897 elt_type = resolve_dynamic_array (TYPE_TARGET_TYPE (type), addr_stack);
80180f79
SA
1898 else
1899 elt_type = TYPE_TARGET_TYPE (type);
1900
80180f79
SA
1901 return create_array_type (copy_type (type),
1902 elt_type,
1903 range_type);
1904}
1905
012370f6 1906/* Resolve dynamic bounds of members of the union TYPE to static
df25ebbd
JB
1907 bounds. ADDR_STACK is a stack of struct property_addr_info
1908 to be used if needed during the dynamic resolution. */
012370f6
TT
1909
1910static struct type *
df25ebbd
JB
1911resolve_dynamic_union (struct type *type,
1912 struct property_addr_info *addr_stack)
012370f6
TT
1913{
1914 struct type *resolved_type;
1915 int i;
1916 unsigned int max_len = 0;
1917
1918 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1919
1920 resolved_type = copy_type (type);
1921 TYPE_FIELDS (resolved_type)
1922 = TYPE_ALLOC (resolved_type,
1923 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1924 memcpy (TYPE_FIELDS (resolved_type),
1925 TYPE_FIELDS (type),
1926 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1927 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1928 {
1929 struct type *t;
1930
1931 if (field_is_static (&TYPE_FIELD (type, i)))
1932 continue;
1933
d98b7a16 1934 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
df25ebbd 1935 addr_stack, 0);
012370f6
TT
1936 TYPE_FIELD_TYPE (resolved_type, i) = t;
1937 if (TYPE_LENGTH (t) > max_len)
1938 max_len = TYPE_LENGTH (t);
1939 }
1940
1941 TYPE_LENGTH (resolved_type) = max_len;
1942 return resolved_type;
1943}
1944
1945/* Resolve dynamic bounds of members of the struct TYPE to static
df25ebbd
JB
1946 bounds. ADDR_STACK is a stack of struct property_addr_info to
1947 be used if needed during the dynamic resolution. */
012370f6
TT
1948
1949static struct type *
df25ebbd
JB
1950resolve_dynamic_struct (struct type *type,
1951 struct property_addr_info *addr_stack)
012370f6
TT
1952{
1953 struct type *resolved_type;
1954 int i;
6908c509 1955 unsigned resolved_type_bit_length = 0;
012370f6
TT
1956
1957 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
1958 gdb_assert (TYPE_NFIELDS (type) > 0);
1959
1960 resolved_type = copy_type (type);
1961 TYPE_FIELDS (resolved_type)
1962 = TYPE_ALLOC (resolved_type,
1963 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1964 memcpy (TYPE_FIELDS (resolved_type),
1965 TYPE_FIELDS (type),
1966 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1967 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1968 {
6908c509 1969 unsigned new_bit_length;
df25ebbd 1970 struct property_addr_info pinfo;
012370f6
TT
1971
1972 if (field_is_static (&TYPE_FIELD (type, i)))
1973 continue;
1974
6908c509
JB
1975 /* As we know this field is not a static field, the field's
1976 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
1977 this is the case, but only trigger a simple error rather
1978 than an internal error if that fails. While failing
1979 that verification indicates a bug in our code, the error
1980 is not severe enough to suggest to the user he stops
1981 his debugging session because of it. */
df25ebbd 1982 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
6908c509
JB
1983 error (_("Cannot determine struct field location"
1984 " (invalid location kind)"));
df25ebbd
JB
1985
1986 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
1987 pinfo.addr = addr_stack->addr;
1988 pinfo.next = addr_stack;
1989
1990 TYPE_FIELD_TYPE (resolved_type, i)
1991 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1992 &pinfo, 0);
1993 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
1994 == FIELD_LOC_KIND_BITPOS);
1995
6908c509
JB
1996 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
1997 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
1998 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
1999 else
2000 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2001 * TARGET_CHAR_BIT);
2002
2003 /* Normally, we would use the position and size of the last field
2004 to determine the size of the enclosing structure. But GCC seems
2005 to be encoding the position of some fields incorrectly when
2006 the struct contains a dynamic field that is not placed last.
2007 So we compute the struct size based on the field that has
2008 the highest position + size - probably the best we can do. */
2009 if (new_bit_length > resolved_type_bit_length)
2010 resolved_type_bit_length = new_bit_length;
012370f6
TT
2011 }
2012
012370f6 2013 TYPE_LENGTH (resolved_type)
6908c509
JB
2014 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2015
012370f6
TT
2016 return resolved_type;
2017}
2018
d98b7a16 2019/* Worker for resolved_dynamic_type. */
80180f79 2020
d98b7a16 2021static struct type *
df25ebbd
JB
2022resolve_dynamic_type_internal (struct type *type,
2023 struct property_addr_info *addr_stack,
d98b7a16 2024 int top_level)
80180f79
SA
2025{
2026 struct type *real_type = check_typedef (type);
6f8a3220 2027 struct type *resolved_type = type;
3cdcd0ce
JB
2028 const struct dynamic_prop *prop;
2029 CORE_ADDR value;
80180f79 2030
d98b7a16 2031 if (!is_dynamic_type_internal (real_type, top_level))
80180f79
SA
2032 return type;
2033
5537b577 2034 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
6f8a3220 2035 {
cac9b138
JK
2036 resolved_type = copy_type (type);
2037 TYPE_TARGET_TYPE (resolved_type)
df25ebbd 2038 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
cac9b138 2039 top_level);
5537b577
JK
2040 }
2041 else
2042 {
2043 /* Before trying to resolve TYPE, make sure it is not a stub. */
2044 type = real_type;
012370f6 2045
5537b577
JK
2046 switch (TYPE_CODE (type))
2047 {
2048 case TYPE_CODE_REF:
2049 {
df25ebbd
JB
2050 struct property_addr_info pinfo;
2051
2052 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2053 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2054 pinfo.next = addr_stack;
5537b577
JK
2055
2056 resolved_type = copy_type (type);
2057 TYPE_TARGET_TYPE (resolved_type)
2058 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
df25ebbd 2059 &pinfo, top_level);
5537b577
JK
2060 break;
2061 }
2062
2063 case TYPE_CODE_ARRAY:
df25ebbd 2064 resolved_type = resolve_dynamic_array (type, addr_stack);
5537b577
JK
2065 break;
2066
2067 case TYPE_CODE_RANGE:
df25ebbd 2068 resolved_type = resolve_dynamic_range (type, addr_stack);
5537b577
JK
2069 break;
2070
2071 case TYPE_CODE_UNION:
df25ebbd 2072 resolved_type = resolve_dynamic_union (type, addr_stack);
5537b577
JK
2073 break;
2074
2075 case TYPE_CODE_STRUCT:
df25ebbd 2076 resolved_type = resolve_dynamic_struct (type, addr_stack);
5537b577
JK
2077 break;
2078 }
6f8a3220 2079 }
80180f79 2080
3cdcd0ce
JB
2081 /* Resolve data_location attribute. */
2082 prop = TYPE_DATA_LOCATION (resolved_type);
df25ebbd 2083 if (dwarf2_evaluate_property (prop, addr_stack, &value))
3cdcd0ce
JB
2084 {
2085 TYPE_DATA_LOCATION_ADDR (resolved_type) = value;
2086 TYPE_DATA_LOCATION_KIND (resolved_type) = PROP_CONST;
2087 }
2088 else
2089 TYPE_DATA_LOCATION (resolved_type) = NULL;
2090
80180f79
SA
2091 return resolved_type;
2092}
2093
d98b7a16
TT
2094/* See gdbtypes.h */
2095
2096struct type *
2097resolve_dynamic_type (struct type *type, CORE_ADDR addr)
2098{
df25ebbd
JB
2099 struct property_addr_info pinfo = {check_typedef (type), addr, NULL};
2100
2101 return resolve_dynamic_type_internal (type, &pinfo, 1);
d98b7a16
TT
2102}
2103
92163a10
JK
2104/* Find the real type of TYPE. This function returns the real type,
2105 after removing all layers of typedefs, and completing opaque or stub
2106 types. Completion changes the TYPE argument, but stripping of
2107 typedefs does not.
2108
2109 Instance flags (e.g. const/volatile) are preserved as typedefs are
2110 stripped. If necessary a new qualified form of the underlying type
2111 is created.
2112
2113 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2114 not been computed and we're either in the middle of reading symbols, or
2115 there was no name for the typedef in the debug info.
2116
9bc118a5
DE
2117 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2118 QUITs in the symbol reading code can also throw.
2119 Thus this function can throw an exception.
2120
92163a10
JK
2121 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2122 the target type.
c906108c
SS
2123
2124 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 2125 we can find a full definition in some other file. If so, copy this
7ba81444
MS
2126 definition, so we can use it in future. There used to be a comment
2127 (but not any code) that if we don't find a full definition, we'd
2128 set a flag so we don't spend time in the future checking the same
2129 type. That would be a mistake, though--we might load in more
92163a10 2130 symbols which contain a full definition for the type. */
c906108c
SS
2131
2132struct type *
a02fd225 2133check_typedef (struct type *type)
c906108c
SS
2134{
2135 struct type *orig_type = type;
92163a10
JK
2136 /* While we're removing typedefs, we don't want to lose qualifiers.
2137 E.g., const/volatile. */
2138 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 2139
423c0af8
MS
2140 gdb_assert (type);
2141
c906108c
SS
2142 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2143 {
2144 if (!TYPE_TARGET_TYPE (type))
2145 {
0d5cff50 2146 const char *name;
c906108c
SS
2147 struct symbol *sym;
2148
2149 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 2150 reading a symtab. Infinite recursion is one danger. */
c906108c 2151 if (currently_reading_symtab)
92163a10 2152 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2153
2154 name = type_name_no_tag (type);
7ba81444
MS
2155 /* FIXME: shouldn't we separately check the TYPE_NAME and
2156 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2157 VAR_DOMAIN as appropriate? (this code was written before
2158 TYPE_NAME and TYPE_TAG_NAME were separate). */
c906108c
SS
2159 if (name == NULL)
2160 {
23136709 2161 stub_noname_complaint ();
92163a10 2162 return make_qualified_type (type, instance_flags, NULL);
c906108c 2163 }
2570f2b7 2164 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c
SS
2165 if (sym)
2166 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 2167 else /* TYPE_CODE_UNDEF */
e9bb382b 2168 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
2169 }
2170 type = TYPE_TARGET_TYPE (type);
c906108c 2171
92163a10
JK
2172 /* Preserve the instance flags as we traverse down the typedef chain.
2173
2174 Handling address spaces/classes is nasty, what do we do if there's a
2175 conflict?
2176 E.g., what if an outer typedef marks the type as class_1 and an inner
2177 typedef marks the type as class_2?
2178 This is the wrong place to do such error checking. We leave it to
2179 the code that created the typedef in the first place to flag the
2180 error. We just pick the outer address space (akin to letting the
2181 outer cast in a chain of casting win), instead of assuming
2182 "it can't happen". */
2183 {
2184 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2185 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2186 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2187 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2188
2189 /* Treat code vs data spaces and address classes separately. */
2190 if ((instance_flags & ALL_SPACES) != 0)
2191 new_instance_flags &= ~ALL_SPACES;
2192 if ((instance_flags & ALL_CLASSES) != 0)
2193 new_instance_flags &= ~ALL_CLASSES;
2194
2195 instance_flags |= new_instance_flags;
2196 }
2197 }
a02fd225 2198
7ba81444
MS
2199 /* If this is a struct/class/union with no fields, then check
2200 whether a full definition exists somewhere else. This is for
2201 systems where a type definition with no fields is issued for such
2202 types, instead of identifying them as stub types in the first
2203 place. */
c5aa993b 2204
7ba81444
MS
2205 if (TYPE_IS_OPAQUE (type)
2206 && opaque_type_resolution
2207 && !currently_reading_symtab)
c906108c 2208 {
0d5cff50 2209 const char *name = type_name_no_tag (type);
c5aa993b 2210 struct type *newtype;
d8734c88 2211
c906108c
SS
2212 if (name == NULL)
2213 {
23136709 2214 stub_noname_complaint ();
92163a10 2215 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2216 }
2217 newtype = lookup_transparent_type (name);
ad766c0a 2218
c906108c 2219 if (newtype)
ad766c0a 2220 {
7ba81444
MS
2221 /* If the resolved type and the stub are in the same
2222 objfile, then replace the stub type with the real deal.
2223 But if they're in separate objfiles, leave the stub
2224 alone; we'll just look up the transparent type every time
2225 we call check_typedef. We can't create pointers between
2226 types allocated to different objfiles, since they may
2227 have different lifetimes. Trying to copy NEWTYPE over to
2228 TYPE's objfile is pointless, too, since you'll have to
2229 move over any other types NEWTYPE refers to, which could
2230 be an unbounded amount of stuff. */
ad766c0a 2231 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
2232 type = make_qualified_type (newtype,
2233 TYPE_INSTANCE_FLAGS (type),
2234 type);
ad766c0a
JB
2235 else
2236 type = newtype;
2237 }
c906108c 2238 }
7ba81444
MS
2239 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2240 types. */
74a9bb82 2241 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 2242 {
0d5cff50 2243 const char *name = type_name_no_tag (type);
c906108c 2244 /* FIXME: shouldn't we separately check the TYPE_NAME and the
176620f1 2245 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
7b83ea04
AC
2246 as appropriate? (this code was written before TYPE_NAME and
2247 TYPE_TAG_NAME were separate). */
c906108c 2248 struct symbol *sym;
d8734c88 2249
c906108c
SS
2250 if (name == NULL)
2251 {
23136709 2252 stub_noname_complaint ();
92163a10 2253 return make_qualified_type (type, instance_flags, NULL);
c906108c 2254 }
2570f2b7 2255 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c 2256 if (sym)
c26f2453
JB
2257 {
2258 /* Same as above for opaque types, we can replace the stub
92163a10 2259 with the complete type only if they are in the same
c26f2453
JB
2260 objfile. */
2261 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
2262 type = make_qualified_type (SYMBOL_TYPE (sym),
2263 TYPE_INSTANCE_FLAGS (type),
2264 type);
c26f2453
JB
2265 else
2266 type = SYMBOL_TYPE (sym);
2267 }
c906108c
SS
2268 }
2269
74a9bb82 2270 if (TYPE_TARGET_STUB (type))
c906108c
SS
2271 {
2272 struct type *range_type;
2273 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2274
74a9bb82 2275 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 2276 {
73e2eb35 2277 /* Nothing we can do. */
c5aa993b 2278 }
c906108c
SS
2279 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2280 {
2281 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 2282 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
2283 }
2284 }
92163a10
JK
2285
2286 type = make_qualified_type (type, instance_flags, NULL);
2287
7ba81444 2288 /* Cache TYPE_LENGTH for future use. */
c906108c 2289 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 2290
c906108c
SS
2291 return type;
2292}
2293
7ba81444 2294/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 2295 occurs, silently return a void type. */
c91ecb25 2296
b9362cc7 2297static struct type *
48319d1f 2298safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
2299{
2300 struct ui_file *saved_gdb_stderr;
34365054 2301 struct type *type = NULL; /* Initialize to keep gcc happy. */
8e7b59a5 2302 volatile struct gdb_exception except;
c91ecb25 2303
7ba81444 2304 /* Suppress error messages. */
c91ecb25
ND
2305 saved_gdb_stderr = gdb_stderr;
2306 gdb_stderr = ui_file_new ();
2307
7ba81444 2308 /* Call parse_and_eval_type() without fear of longjmp()s. */
8e7b59a5
KS
2309 TRY_CATCH (except, RETURN_MASK_ERROR)
2310 {
2311 type = parse_and_eval_type (p, length);
2312 }
2313
2314 if (except.reason < 0)
48319d1f 2315 type = builtin_type (gdbarch)->builtin_void;
c91ecb25 2316
7ba81444 2317 /* Stop suppressing error messages. */
c91ecb25
ND
2318 ui_file_delete (gdb_stderr);
2319 gdb_stderr = saved_gdb_stderr;
2320
2321 return type;
2322}
2323
c906108c
SS
2324/* Ugly hack to convert method stubs into method types.
2325
7ba81444
MS
2326 He ain't kiddin'. This demangles the name of the method into a
2327 string including argument types, parses out each argument type,
2328 generates a string casting a zero to that type, evaluates the
2329 string, and stuffs the resulting type into an argtype vector!!!
2330 Then it knows the type of the whole function (including argument
2331 types for overloading), which info used to be in the stab's but was
2332 removed to hack back the space required for them. */
c906108c 2333
de17c821 2334static void
fba45db2 2335check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 2336{
50810684 2337 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
2338 struct fn_field *f;
2339 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
8de20a37
TT
2340 char *demangled_name = gdb_demangle (mangled_name,
2341 DMGL_PARAMS | DMGL_ANSI);
c906108c
SS
2342 char *argtypetext, *p;
2343 int depth = 0, argcount = 1;
ad2f7632 2344 struct field *argtypes;
c906108c
SS
2345 struct type *mtype;
2346
2347 /* Make sure we got back a function string that we can use. */
2348 if (demangled_name)
2349 p = strchr (demangled_name, '(');
502dcf4e
AC
2350 else
2351 p = NULL;
c906108c
SS
2352
2353 if (demangled_name == NULL || p == NULL)
7ba81444
MS
2354 error (_("Internal: Cannot demangle mangled name `%s'."),
2355 mangled_name);
c906108c
SS
2356
2357 /* Now, read in the parameters that define this type. */
2358 p += 1;
2359 argtypetext = p;
2360 while (*p)
2361 {
070ad9f0 2362 if (*p == '(' || *p == '<')
c906108c
SS
2363 {
2364 depth += 1;
2365 }
070ad9f0 2366 else if (*p == ')' || *p == '>')
c906108c
SS
2367 {
2368 depth -= 1;
2369 }
2370 else if (*p == ',' && depth == 0)
2371 {
2372 argcount += 1;
2373 }
2374
2375 p += 1;
2376 }
2377
ad2f7632
DJ
2378 /* If we read one argument and it was ``void'', don't count it. */
2379 if (strncmp (argtypetext, "(void)", 6) == 0)
2380 argcount -= 1;
c906108c 2381
ad2f7632
DJ
2382 /* We need one extra slot, for the THIS pointer. */
2383
2384 argtypes = (struct field *)
2385 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 2386 p = argtypetext;
4a1970e4
DJ
2387
2388 /* Add THIS pointer for non-static methods. */
2389 f = TYPE_FN_FIELDLIST1 (type, method_id);
2390 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2391 argcount = 0;
2392 else
2393 {
ad2f7632 2394 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
2395 argcount = 1;
2396 }
c906108c 2397
0963b4bd 2398 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
2399 {
2400 depth = 0;
2401 while (*p)
2402 {
2403 if (depth <= 0 && (*p == ',' || *p == ')'))
2404 {
ad2f7632
DJ
2405 /* Avoid parsing of ellipsis, they will be handled below.
2406 Also avoid ``void'' as above. */
2407 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2408 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 2409 {
ad2f7632 2410 argtypes[argcount].type =
48319d1f 2411 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
2412 argcount += 1;
2413 }
2414 argtypetext = p + 1;
2415 }
2416
070ad9f0 2417 if (*p == '(' || *p == '<')
c906108c
SS
2418 {
2419 depth += 1;
2420 }
070ad9f0 2421 else if (*p == ')' || *p == '>')
c906108c
SS
2422 {
2423 depth -= 1;
2424 }
2425
2426 p += 1;
2427 }
2428 }
2429
c906108c
SS
2430 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2431
2432 /* Now update the old "stub" type into a real type. */
2433 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
09e2d7c7
DE
2434 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2435 We want a method (TYPE_CODE_METHOD). */
2436 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2437 argtypes, argcount, p[-2] == '.');
876cecd0 2438 TYPE_STUB (mtype) = 0;
c906108c 2439 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632
DJ
2440
2441 xfree (demangled_name);
c906108c
SS
2442}
2443
7ba81444
MS
2444/* This is the external interface to check_stub_method, above. This
2445 function unstubs all of the signatures for TYPE's METHOD_ID method
2446 name. After calling this function TYPE_FN_FIELD_STUB will be
2447 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2448 correct.
de17c821
DJ
2449
2450 This function unfortunately can not die until stabs do. */
2451
2452void
2453check_stub_method_group (struct type *type, int method_id)
2454{
2455 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2456 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
f710f4fc 2457 int j, found_stub = 0;
de17c821
DJ
2458
2459 for (j = 0; j < len; j++)
2460 if (TYPE_FN_FIELD_STUB (f, j))
2461 {
2462 found_stub = 1;
2463 check_stub_method (type, method_id, j);
2464 }
2465
7ba81444
MS
2466 /* GNU v3 methods with incorrect names were corrected when we read
2467 in type information, because it was cheaper to do it then. The
2468 only GNU v2 methods with incorrect method names are operators and
2469 destructors; destructors were also corrected when we read in type
2470 information.
de17c821
DJ
2471
2472 Therefore the only thing we need to handle here are v2 operator
2473 names. */
2474 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
2475 {
2476 int ret;
2477 char dem_opname[256];
2478
7ba81444
MS
2479 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2480 method_id),
de17c821
DJ
2481 dem_opname, DMGL_ANSI);
2482 if (!ret)
7ba81444
MS
2483 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2484 method_id),
de17c821
DJ
2485 dem_opname, 0);
2486 if (ret)
2487 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2488 }
2489}
2490
9655fd1a
JK
2491/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2492const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
2493
2494void
fba45db2 2495allocate_cplus_struct_type (struct type *type)
c906108c 2496{
b4ba55a1
JB
2497 if (HAVE_CPLUS_STRUCT (type))
2498 /* Structure was already allocated. Nothing more to do. */
2499 return;
2500
2501 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2502 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2503 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2504 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
ae6ae975 2505 set_type_vptr_fieldno (type, -1);
c906108c
SS
2506}
2507
b4ba55a1
JB
2508const struct gnat_aux_type gnat_aux_default =
2509 { NULL };
2510
2511/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2512 and allocate the associated gnat-specific data. The gnat-specific
2513 data is also initialized to gnat_aux_default. */
5212577a 2514
b4ba55a1
JB
2515void
2516allocate_gnat_aux_type (struct type *type)
2517{
2518 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2519 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2520 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2521 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2522}
2523
c906108c
SS
2524/* Helper function to initialize the standard scalar types.
2525
86f62fd7
TT
2526 If NAME is non-NULL, then it is used to initialize the type name.
2527 Note that NAME is not copied; it is required to have a lifetime at
2528 least as long as OBJFILE. */
c906108c
SS
2529
2530struct type *
7ba81444 2531init_type (enum type_code code, int length, int flags,
748e18ae 2532 const char *name, struct objfile *objfile)
c906108c 2533{
52f0bd74 2534 struct type *type;
c906108c
SS
2535
2536 type = alloc_type (objfile);
2537 TYPE_CODE (type) = code;
2538 TYPE_LENGTH (type) = length;
876cecd0
TT
2539
2540 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2541 if (flags & TYPE_FLAG_UNSIGNED)
2542 TYPE_UNSIGNED (type) = 1;
2543 if (flags & TYPE_FLAG_NOSIGN)
2544 TYPE_NOSIGN (type) = 1;
2545 if (flags & TYPE_FLAG_STUB)
2546 TYPE_STUB (type) = 1;
2547 if (flags & TYPE_FLAG_TARGET_STUB)
2548 TYPE_TARGET_STUB (type) = 1;
2549 if (flags & TYPE_FLAG_STATIC)
2550 TYPE_STATIC (type) = 1;
2551 if (flags & TYPE_FLAG_PROTOTYPED)
2552 TYPE_PROTOTYPED (type) = 1;
2553 if (flags & TYPE_FLAG_INCOMPLETE)
2554 TYPE_INCOMPLETE (type) = 1;
2555 if (flags & TYPE_FLAG_VARARGS)
2556 TYPE_VARARGS (type) = 1;
2557 if (flags & TYPE_FLAG_VECTOR)
2558 TYPE_VECTOR (type) = 1;
2559 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2560 TYPE_STUB_SUPPORTED (type) = 1;
876cecd0
TT
2561 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2562 TYPE_FIXED_INSTANCE (type) = 1;
0875794a
JK
2563 if (flags & TYPE_FLAG_GNU_IFUNC)
2564 TYPE_GNU_IFUNC (type) = 1;
876cecd0 2565
86f62fd7 2566 TYPE_NAME (type) = name;
c906108c
SS
2567
2568 /* C++ fancies. */
2569
973ccf8b 2570 if (name && strcmp (name, "char") == 0)
876cecd0 2571 TYPE_NOSIGN (type) = 1;
973ccf8b 2572
b4ba55a1 2573 switch (code)
c906108c 2574 {
b4ba55a1
JB
2575 case TYPE_CODE_STRUCT:
2576 case TYPE_CODE_UNION:
2577 case TYPE_CODE_NAMESPACE:
2578 INIT_CPLUS_SPECIFIC (type);
2579 break;
2580 case TYPE_CODE_FLT:
2581 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2582 break;
2583 case TYPE_CODE_FUNC:
b6cdc2c1 2584 INIT_FUNC_SPECIFIC (type);
b4ba55a1 2585 break;
c906108c 2586 }
c16abbde 2587 return type;
c906108c 2588}
5212577a
DE
2589\f
2590/* Queries on types. */
c906108c 2591
c906108c 2592int
fba45db2 2593can_dereference (struct type *t)
c906108c 2594{
7ba81444
MS
2595 /* FIXME: Should we return true for references as well as
2596 pointers? */
c906108c
SS
2597 CHECK_TYPEDEF (t);
2598 return
2599 (t != NULL
2600 && TYPE_CODE (t) == TYPE_CODE_PTR
2601 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2602}
2603
adf40b2e 2604int
fba45db2 2605is_integral_type (struct type *t)
adf40b2e
JM
2606{
2607 CHECK_TYPEDEF (t);
2608 return
2609 ((t != NULL)
d4f3574e
SS
2610 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2611 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 2612 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
2613 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2614 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2615 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
2616}
2617
e09342b5
TJB
2618/* Return true if TYPE is scalar. */
2619
2620static int
2621is_scalar_type (struct type *type)
2622{
2623 CHECK_TYPEDEF (type);
2624
2625 switch (TYPE_CODE (type))
2626 {
2627 case TYPE_CODE_ARRAY:
2628 case TYPE_CODE_STRUCT:
2629 case TYPE_CODE_UNION:
2630 case TYPE_CODE_SET:
2631 case TYPE_CODE_STRING:
e09342b5
TJB
2632 return 0;
2633 default:
2634 return 1;
2635 }
2636}
2637
2638/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
2639 the memory layout of a scalar type. E.g., an array or struct with only
2640 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
2641
2642int
2643is_scalar_type_recursive (struct type *t)
2644{
2645 CHECK_TYPEDEF (t);
2646
2647 if (is_scalar_type (t))
2648 return 1;
2649 /* Are we dealing with an array or string of known dimensions? */
2650 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2651 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2652 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2653 {
2654 LONGEST low_bound, high_bound;
2655 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2656
2657 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2658
2659 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2660 }
2661 /* Are we dealing with a struct with one element? */
2662 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2663 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2664 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2665 {
2666 int i, n = TYPE_NFIELDS (t);
2667
2668 /* If all elements of the union are scalar, then the union is scalar. */
2669 for (i = 0; i < n; i++)
2670 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2671 return 0;
2672
2673 return 1;
2674 }
2675
2676 return 0;
2677}
2678
6c659fc2
SC
2679/* Return true is T is a class or a union. False otherwise. */
2680
2681int
2682class_or_union_p (const struct type *t)
2683{
2684 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
2685 || TYPE_CODE (t) == TYPE_CODE_UNION);
2686}
2687
4e8f195d
TT
2688/* A helper function which returns true if types A and B represent the
2689 "same" class type. This is true if the types have the same main
2690 type, or the same name. */
2691
2692int
2693class_types_same_p (const struct type *a, const struct type *b)
2694{
2695 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2696 || (TYPE_NAME (a) && TYPE_NAME (b)
2697 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2698}
2699
a9d5ef47
SW
2700/* If BASE is an ancestor of DCLASS return the distance between them.
2701 otherwise return -1;
2702 eg:
2703
2704 class A {};
2705 class B: public A {};
2706 class C: public B {};
2707 class D: C {};
2708
2709 distance_to_ancestor (A, A, 0) = 0
2710 distance_to_ancestor (A, B, 0) = 1
2711 distance_to_ancestor (A, C, 0) = 2
2712 distance_to_ancestor (A, D, 0) = 3
2713
2714 If PUBLIC is 1 then only public ancestors are considered,
2715 and the function returns the distance only if BASE is a public ancestor
2716 of DCLASS.
2717 Eg:
2718
0963b4bd 2719 distance_to_ancestor (A, D, 1) = -1. */
c906108c 2720
0526b37a 2721static int
a9d5ef47 2722distance_to_ancestor (struct type *base, struct type *dclass, int public)
c906108c
SS
2723{
2724 int i;
a9d5ef47 2725 int d;
c5aa993b 2726
c906108c
SS
2727 CHECK_TYPEDEF (base);
2728 CHECK_TYPEDEF (dclass);
2729
4e8f195d 2730 if (class_types_same_p (base, dclass))
a9d5ef47 2731 return 0;
c906108c
SS
2732
2733 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 2734 {
0526b37a
SW
2735 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2736 continue;
2737
a9d5ef47
SW
2738 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2739 if (d >= 0)
2740 return 1 + d;
4e8f195d 2741 }
c906108c 2742
a9d5ef47 2743 return -1;
c906108c 2744}
4e8f195d 2745
0526b37a
SW
2746/* Check whether BASE is an ancestor or base class or DCLASS
2747 Return 1 if so, and 0 if not.
2748 Note: If BASE and DCLASS are of the same type, this function
2749 will return 1. So for some class A, is_ancestor (A, A) will
2750 return 1. */
2751
2752int
2753is_ancestor (struct type *base, struct type *dclass)
2754{
a9d5ef47 2755 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
2756}
2757
4e8f195d
TT
2758/* Like is_ancestor, but only returns true when BASE is a public
2759 ancestor of DCLASS. */
2760
2761int
2762is_public_ancestor (struct type *base, struct type *dclass)
2763{
a9d5ef47 2764 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
2765}
2766
2767/* A helper function for is_unique_ancestor. */
2768
2769static int
2770is_unique_ancestor_worker (struct type *base, struct type *dclass,
2771 int *offset,
8af8e3bc
PA
2772 const gdb_byte *valaddr, int embedded_offset,
2773 CORE_ADDR address, struct value *val)
4e8f195d
TT
2774{
2775 int i, count = 0;
2776
2777 CHECK_TYPEDEF (base);
2778 CHECK_TYPEDEF (dclass);
2779
2780 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2781 {
8af8e3bc
PA
2782 struct type *iter;
2783 int this_offset;
4e8f195d 2784
8af8e3bc
PA
2785 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2786
2787 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2788 address, val);
4e8f195d
TT
2789
2790 if (class_types_same_p (base, iter))
2791 {
2792 /* If this is the first subclass, set *OFFSET and set count
2793 to 1. Otherwise, if this is at the same offset as
2794 previous instances, do nothing. Otherwise, increment
2795 count. */
2796 if (*offset == -1)
2797 {
2798 *offset = this_offset;
2799 count = 1;
2800 }
2801 else if (this_offset == *offset)
2802 {
2803 /* Nothing. */
2804 }
2805 else
2806 ++count;
2807 }
2808 else
2809 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
2810 valaddr,
2811 embedded_offset + this_offset,
2812 address, val);
4e8f195d
TT
2813 }
2814
2815 return count;
2816}
2817
2818/* Like is_ancestor, but only returns true if BASE is a unique base
2819 class of the type of VAL. */
2820
2821int
2822is_unique_ancestor (struct type *base, struct value *val)
2823{
2824 int offset = -1;
2825
2826 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
2827 value_contents_for_printing (val),
2828 value_embedded_offset (val),
2829 value_address (val), val) == 1;
4e8f195d
TT
2830}
2831
c906108c 2832\f
5212577a 2833/* Overload resolution. */
c906108c 2834
6403aeea
SW
2835/* Return the sum of the rank of A with the rank of B. */
2836
2837struct rank
2838sum_ranks (struct rank a, struct rank b)
2839{
2840 struct rank c;
2841 c.rank = a.rank + b.rank;
a9d5ef47 2842 c.subrank = a.subrank + b.subrank;
6403aeea
SW
2843 return c;
2844}
2845
2846/* Compare rank A and B and return:
2847 0 if a = b
2848 1 if a is better than b
2849 -1 if b is better than a. */
2850
2851int
2852compare_ranks (struct rank a, struct rank b)
2853{
2854 if (a.rank == b.rank)
a9d5ef47
SW
2855 {
2856 if (a.subrank == b.subrank)
2857 return 0;
2858 if (a.subrank < b.subrank)
2859 return 1;
2860 if (a.subrank > b.subrank)
2861 return -1;
2862 }
6403aeea
SW
2863
2864 if (a.rank < b.rank)
2865 return 1;
2866
0963b4bd 2867 /* a.rank > b.rank */
6403aeea
SW
2868 return -1;
2869}
c5aa993b 2870
0963b4bd 2871/* Functions for overload resolution begin here. */
c906108c
SS
2872
2873/* Compare two badness vectors A and B and return the result.
7ba81444
MS
2874 0 => A and B are identical
2875 1 => A and B are incomparable
2876 2 => A is better than B
2877 3 => A is worse than B */
c906108c
SS
2878
2879int
fba45db2 2880compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
2881{
2882 int i;
2883 int tmp;
c5aa993b
JM
2884 short found_pos = 0; /* any positives in c? */
2885 short found_neg = 0; /* any negatives in c? */
2886
2887 /* differing lengths => incomparable */
c906108c
SS
2888 if (a->length != b->length)
2889 return 1;
2890
c5aa993b
JM
2891 /* Subtract b from a */
2892 for (i = 0; i < a->length; i++)
c906108c 2893 {
6403aeea 2894 tmp = compare_ranks (b->rank[i], a->rank[i]);
c906108c 2895 if (tmp > 0)
c5aa993b 2896 found_pos = 1;
c906108c 2897 else if (tmp < 0)
c5aa993b 2898 found_neg = 1;
c906108c
SS
2899 }
2900
2901 if (found_pos)
2902 {
2903 if (found_neg)
c5aa993b 2904 return 1; /* incomparable */
c906108c 2905 else
c5aa993b 2906 return 3; /* A > B */
c906108c 2907 }
c5aa993b
JM
2908 else
2909 /* no positives */
c906108c
SS
2910 {
2911 if (found_neg)
c5aa993b 2912 return 2; /* A < B */
c906108c 2913 else
c5aa993b 2914 return 0; /* A == B */
c906108c
SS
2915 }
2916}
2917
7ba81444
MS
2918/* Rank a function by comparing its parameter types (PARMS, length
2919 NPARMS), to the types of an argument list (ARGS, length NARGS).
2920 Return a pointer to a badness vector. This has NARGS + 1
2921 entries. */
c906108c
SS
2922
2923struct badness_vector *
7ba81444 2924rank_function (struct type **parms, int nparms,
da096638 2925 struct value **args, int nargs)
c906108c
SS
2926{
2927 int i;
c5aa993b 2928 struct badness_vector *bv;
c906108c
SS
2929 int min_len = nparms < nargs ? nparms : nargs;
2930
2931 bv = xmalloc (sizeof (struct badness_vector));
0963b4bd 2932 bv->length = nargs + 1; /* add 1 for the length-match rank. */
c4e54771 2933 bv->rank = XNEWVEC (struct rank, nargs + 1);
c906108c
SS
2934
2935 /* First compare the lengths of the supplied lists.
7ba81444 2936 If there is a mismatch, set it to a high value. */
c5aa993b 2937
c906108c 2938 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
2939 arguments and ellipsis parameter lists, we should consider those
2940 and rank the length-match more finely. */
c906108c 2941
6403aeea
SW
2942 LENGTH_MATCH (bv) = (nargs != nparms)
2943 ? LENGTH_MISMATCH_BADNESS
2944 : EXACT_MATCH_BADNESS;
c906108c 2945
0963b4bd 2946 /* Now rank all the parameters of the candidate function. */
74cc24b0 2947 for (i = 1; i <= min_len; i++)
da096638
KS
2948 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2949 args[i - 1]);
c906108c 2950
0963b4bd 2951 /* If more arguments than parameters, add dummy entries. */
c5aa993b 2952 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
2953 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2954
2955 return bv;
2956}
2957
973ccf8b
DJ
2958/* Compare the names of two integer types, assuming that any sign
2959 qualifiers have been checked already. We do it this way because
2960 there may be an "int" in the name of one of the types. */
2961
2962static int
2963integer_types_same_name_p (const char *first, const char *second)
2964{
2965 int first_p, second_p;
2966
7ba81444
MS
2967 /* If both are shorts, return 1; if neither is a short, keep
2968 checking. */
973ccf8b
DJ
2969 first_p = (strstr (first, "short") != NULL);
2970 second_p = (strstr (second, "short") != NULL);
2971 if (first_p && second_p)
2972 return 1;
2973 if (first_p || second_p)
2974 return 0;
2975
2976 /* Likewise for long. */
2977 first_p = (strstr (first, "long") != NULL);
2978 second_p = (strstr (second, "long") != NULL);
2979 if (first_p && second_p)
2980 return 1;
2981 if (first_p || second_p)
2982 return 0;
2983
2984 /* Likewise for char. */
2985 first_p = (strstr (first, "char") != NULL);
2986 second_p = (strstr (second, "char") != NULL);
2987 if (first_p && second_p)
2988 return 1;
2989 if (first_p || second_p)
2990 return 0;
2991
2992 /* They must both be ints. */
2993 return 1;
2994}
2995
7062b0a0
SW
2996/* Compares type A to type B returns 1 if the represent the same type
2997 0 otherwise. */
2998
bd69fc68 2999int
7062b0a0
SW
3000types_equal (struct type *a, struct type *b)
3001{
3002 /* Identical type pointers. */
3003 /* However, this still doesn't catch all cases of same type for b
3004 and a. The reason is that builtin types are different from
3005 the same ones constructed from the object. */
3006 if (a == b)
3007 return 1;
3008
3009 /* Resolve typedefs */
3010 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3011 a = check_typedef (a);
3012 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3013 b = check_typedef (b);
3014
3015 /* If after resolving typedefs a and b are not of the same type
3016 code then they are not equal. */
3017 if (TYPE_CODE (a) != TYPE_CODE (b))
3018 return 0;
3019
3020 /* If a and b are both pointers types or both reference types then
3021 they are equal of the same type iff the objects they refer to are
3022 of the same type. */
3023 if (TYPE_CODE (a) == TYPE_CODE_PTR
3024 || TYPE_CODE (a) == TYPE_CODE_REF)
3025 return types_equal (TYPE_TARGET_TYPE (a),
3026 TYPE_TARGET_TYPE (b));
3027
0963b4bd 3028 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
3029 are exactly the same. This happens when we generate method
3030 stubs. The types won't point to the same address, but they
0963b4bd 3031 really are the same. */
7062b0a0
SW
3032
3033 if (TYPE_NAME (a) && TYPE_NAME (b)
3034 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3035 return 1;
3036
3037 /* Check if identical after resolving typedefs. */
3038 if (a == b)
3039 return 1;
3040
9ce98649
TT
3041 /* Two function types are equal if their argument and return types
3042 are equal. */
3043 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3044 {
3045 int i;
3046
3047 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3048 return 0;
3049
3050 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3051 return 0;
3052
3053 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3054 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3055 return 0;
3056
3057 return 1;
3058 }
3059
7062b0a0
SW
3060 return 0;
3061}
ca092b61
DE
3062\f
3063/* Deep comparison of types. */
3064
3065/* An entry in the type-equality bcache. */
3066
3067typedef struct type_equality_entry
3068{
3069 struct type *type1, *type2;
3070} type_equality_entry_d;
3071
3072DEF_VEC_O (type_equality_entry_d);
3073
3074/* A helper function to compare two strings. Returns 1 if they are
3075 the same, 0 otherwise. Handles NULLs properly. */
3076
3077static int
3078compare_maybe_null_strings (const char *s, const char *t)
3079{
3080 if (s == NULL && t != NULL)
3081 return 0;
3082 else if (s != NULL && t == NULL)
3083 return 0;
3084 else if (s == NULL && t== NULL)
3085 return 1;
3086 return strcmp (s, t) == 0;
3087}
3088
3089/* A helper function for check_types_worklist that checks two types for
3090 "deep" equality. Returns non-zero if the types are considered the
3091 same, zero otherwise. */
3092
3093static int
3094check_types_equal (struct type *type1, struct type *type2,
3095 VEC (type_equality_entry_d) **worklist)
3096{
3097 CHECK_TYPEDEF (type1);
3098 CHECK_TYPEDEF (type2);
3099
3100 if (type1 == type2)
3101 return 1;
3102
3103 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3104 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3105 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3106 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3107 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3108 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3109 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3110 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3111 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3112 return 0;
3113
3114 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3115 TYPE_TAG_NAME (type2)))
3116 return 0;
3117 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3118 return 0;
3119
3120 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3121 {
3122 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
3123 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
3124 return 0;
3125 }
3126 else
3127 {
3128 int i;
3129
3130 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3131 {
3132 const struct field *field1 = &TYPE_FIELD (type1, i);
3133 const struct field *field2 = &TYPE_FIELD (type2, i);
3134 struct type_equality_entry entry;
3135
3136 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3137 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3138 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3139 return 0;
3140 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3141 FIELD_NAME (*field2)))
3142 return 0;
3143 switch (FIELD_LOC_KIND (*field1))
3144 {
3145 case FIELD_LOC_KIND_BITPOS:
3146 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3147 return 0;
3148 break;
3149 case FIELD_LOC_KIND_ENUMVAL:
3150 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3151 return 0;
3152 break;
3153 case FIELD_LOC_KIND_PHYSADDR:
3154 if (FIELD_STATIC_PHYSADDR (*field1)
3155 != FIELD_STATIC_PHYSADDR (*field2))
3156 return 0;
3157 break;
3158 case FIELD_LOC_KIND_PHYSNAME:
3159 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3160 FIELD_STATIC_PHYSNAME (*field2)))
3161 return 0;
3162 break;
3163 case FIELD_LOC_KIND_DWARF_BLOCK:
3164 {
3165 struct dwarf2_locexpr_baton *block1, *block2;
3166
3167 block1 = FIELD_DWARF_BLOCK (*field1);
3168 block2 = FIELD_DWARF_BLOCK (*field2);
3169 if (block1->per_cu != block2->per_cu
3170 || block1->size != block2->size
3171 || memcmp (block1->data, block2->data, block1->size) != 0)
3172 return 0;
3173 }
3174 break;
3175 default:
3176 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3177 "%d by check_types_equal"),
3178 FIELD_LOC_KIND (*field1));
3179 }
3180
3181 entry.type1 = FIELD_TYPE (*field1);
3182 entry.type2 = FIELD_TYPE (*field2);
3183 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3184 }
3185 }
3186
3187 if (TYPE_TARGET_TYPE (type1) != NULL)
3188 {
3189 struct type_equality_entry entry;
3190
3191 if (TYPE_TARGET_TYPE (type2) == NULL)
3192 return 0;
3193
3194 entry.type1 = TYPE_TARGET_TYPE (type1);
3195 entry.type2 = TYPE_TARGET_TYPE (type2);
3196 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3197 }
3198 else if (TYPE_TARGET_TYPE (type2) != NULL)
3199 return 0;
3200
3201 return 1;
3202}
3203
3204/* Check types on a worklist for equality. Returns zero if any pair
3205 is not equal, non-zero if they are all considered equal. */
3206
3207static int
3208check_types_worklist (VEC (type_equality_entry_d) **worklist,
3209 struct bcache *cache)
3210{
3211 while (!VEC_empty (type_equality_entry_d, *worklist))
3212 {
3213 struct type_equality_entry entry;
3214 int added;
3215
3216 entry = *VEC_last (type_equality_entry_d, *worklist);
3217 VEC_pop (type_equality_entry_d, *worklist);
3218
3219 /* If the type pair has already been visited, we know it is
3220 ok. */
3221 bcache_full (&entry, sizeof (entry), cache, &added);
3222 if (!added)
3223 continue;
3224
3225 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3226 return 0;
3227 }
7062b0a0 3228
ca092b61
DE
3229 return 1;
3230}
3231
3232/* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3233 "deep comparison". Otherwise return zero. */
3234
3235int
3236types_deeply_equal (struct type *type1, struct type *type2)
3237{
3238 volatile struct gdb_exception except;
3239 int result = 0;
3240 struct bcache *cache;
3241 VEC (type_equality_entry_d) *worklist = NULL;
3242 struct type_equality_entry entry;
3243
3244 gdb_assert (type1 != NULL && type2 != NULL);
3245
3246 /* Early exit for the simple case. */
3247 if (type1 == type2)
3248 return 1;
3249
3250 cache = bcache_xmalloc (NULL, NULL);
3251
3252 entry.type1 = type1;
3253 entry.type2 = type2;
3254 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3255
3256 TRY_CATCH (except, RETURN_MASK_ALL)
3257 {
3258 result = check_types_worklist (&worklist, cache);
3259 }
3260 /* check_types_worklist calls several nested helper functions,
3261 some of which can raise a GDB Exception, so we just check
3262 and rethrow here. If there is a GDB exception, a comparison
3263 is not capable (or trusted), so exit. */
3264 bcache_xfree (cache);
3265 VEC_free (type_equality_entry_d, worklist);
3266 /* Rethrow if there was a problem. */
3267 if (except.reason < 0)
3268 throw_exception (except);
3269
3270 return result;
3271}
3272\f
c906108c
SS
3273/* Compare one type (PARM) for compatibility with another (ARG).
3274 * PARM is intended to be the parameter type of a function; and
3275 * ARG is the supplied argument's type. This function tests if
3276 * the latter can be converted to the former.
da096638 3277 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
3278 *
3279 * Return 0 if they are identical types;
3280 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
3281 * PARM is to ARG. The higher the return value, the worse the match.
3282 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 3283
6403aeea 3284struct rank
da096638 3285rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 3286{
a9d5ef47 3287 struct rank rank = {0,0};
7062b0a0
SW
3288
3289 if (types_equal (parm, arg))
6403aeea 3290 return EXACT_MATCH_BADNESS;
c906108c
SS
3291
3292 /* Resolve typedefs */
3293 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3294 parm = check_typedef (parm);
3295 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3296 arg = check_typedef (arg);
3297
db577aea 3298 /* See through references, since we can almost make non-references
7ba81444 3299 references. */
db577aea 3300 if (TYPE_CODE (arg) == TYPE_CODE_REF)
da096638 3301 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
6403aeea 3302 REFERENCE_CONVERSION_BADNESS));
db577aea 3303 if (TYPE_CODE (parm) == TYPE_CODE_REF)
da096638 3304 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
6403aeea 3305 REFERENCE_CONVERSION_BADNESS));
5d161b24 3306 if (overload_debug)
7ba81444
MS
3307 /* Debugging only. */
3308 fprintf_filtered (gdb_stderr,
3309 "------ Arg is %s [%d], parm is %s [%d]\n",
3310 TYPE_NAME (arg), TYPE_CODE (arg),
3311 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 3312
0963b4bd 3313 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
3314
3315 switch (TYPE_CODE (parm))
3316 {
c5aa993b
JM
3317 case TYPE_CODE_PTR:
3318 switch (TYPE_CODE (arg))
3319 {
3320 case TYPE_CODE_PTR:
7062b0a0
SW
3321
3322 /* Allowed pointer conversions are:
3323 (a) pointer to void-pointer conversion. */
3324 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
c5aa993b 3325 return VOID_PTR_CONVERSION_BADNESS;
7062b0a0
SW
3326
3327 /* (b) pointer to ancestor-pointer conversion. */
a9d5ef47
SW
3328 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3329 TYPE_TARGET_TYPE (arg),
3330 0);
3331 if (rank.subrank >= 0)
3332 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
7062b0a0
SW
3333
3334 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3335 case TYPE_CODE_ARRAY:
7062b0a0
SW
3336 if (types_equal (TYPE_TARGET_TYPE (parm),
3337 TYPE_TARGET_TYPE (arg)))
6403aeea 3338 return EXACT_MATCH_BADNESS;
7062b0a0 3339 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3340 case TYPE_CODE_FUNC:
da096638 3341 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
c5aa993b 3342 case TYPE_CODE_INT:
a451cb65 3343 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
da096638 3344 {
a451cb65
KS
3345 if (value_as_long (value) == 0)
3346 {
3347 /* Null pointer conversion: allow it to be cast to a pointer.
3348 [4.10.1 of C++ standard draft n3290] */
3349 return NULL_POINTER_CONVERSION_BADNESS;
3350 }
3351 else
3352 {
3353 /* If type checking is disabled, allow the conversion. */
3354 if (!strict_type_checking)
3355 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3356 }
da096638
KS
3357 }
3358 /* fall through */
c5aa993b 3359 case TYPE_CODE_ENUM:
4f2aea11 3360 case TYPE_CODE_FLAGS:
c5aa993b
JM
3361 case TYPE_CODE_CHAR:
3362 case TYPE_CODE_RANGE:
3363 case TYPE_CODE_BOOL:
c5aa993b
JM
3364 default:
3365 return INCOMPATIBLE_TYPE_BADNESS;
3366 }
3367 case TYPE_CODE_ARRAY:
3368 switch (TYPE_CODE (arg))
3369 {
3370 case TYPE_CODE_PTR:
3371 case TYPE_CODE_ARRAY:
7ba81444 3372 return rank_one_type (TYPE_TARGET_TYPE (parm),
da096638 3373 TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3374 default:
3375 return INCOMPATIBLE_TYPE_BADNESS;
3376 }
3377 case TYPE_CODE_FUNC:
3378 switch (TYPE_CODE (arg))
3379 {
3380 case TYPE_CODE_PTR: /* funcptr -> func */
da096638 3381 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3382 default:
3383 return INCOMPATIBLE_TYPE_BADNESS;
3384 }
3385 case TYPE_CODE_INT:
3386 switch (TYPE_CODE (arg))
3387 {
3388 case TYPE_CODE_INT:
3389 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3390 {
3391 /* Deal with signed, unsigned, and plain chars and
7ba81444 3392 signed and unsigned ints. */
c5aa993b
JM
3393 if (TYPE_NOSIGN (parm))
3394 {
0963b4bd 3395 /* This case only for character types. */
7ba81444 3396 if (TYPE_NOSIGN (arg))
6403aeea 3397 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
7ba81444
MS
3398 else /* signed/unsigned char -> plain char */
3399 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3400 }
3401 else if (TYPE_UNSIGNED (parm))
3402 {
3403 if (TYPE_UNSIGNED (arg))
3404 {
7ba81444
MS
3405 /* unsigned int -> unsigned int, or
3406 unsigned long -> unsigned long */
3407 if (integer_types_same_name_p (TYPE_NAME (parm),
3408 TYPE_NAME (arg)))
6403aeea 3409 return EXACT_MATCH_BADNESS;
7ba81444
MS
3410 else if (integer_types_same_name_p (TYPE_NAME (arg),
3411 "int")
3412 && integer_types_same_name_p (TYPE_NAME (parm),
3413 "long"))
3e43a32a
MS
3414 /* unsigned int -> unsigned long */
3415 return INTEGER_PROMOTION_BADNESS;
c5aa993b 3416 else
3e43a32a
MS
3417 /* unsigned long -> unsigned int */
3418 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3419 }
3420 else
3421 {
7ba81444
MS
3422 if (integer_types_same_name_p (TYPE_NAME (arg),
3423 "long")
3424 && integer_types_same_name_p (TYPE_NAME (parm),
3425 "int"))
3e43a32a
MS
3426 /* signed long -> unsigned int */
3427 return INTEGER_CONVERSION_BADNESS;
c5aa993b 3428 else
3e43a32a
MS
3429 /* signed int/long -> unsigned int/long */
3430 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3431 }
3432 }
3433 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3434 {
7ba81444
MS
3435 if (integer_types_same_name_p (TYPE_NAME (parm),
3436 TYPE_NAME (arg)))
6403aeea 3437 return EXACT_MATCH_BADNESS;
7ba81444
MS
3438 else if (integer_types_same_name_p (TYPE_NAME (arg),
3439 "int")
3440 && integer_types_same_name_p (TYPE_NAME (parm),
3441 "long"))
c5aa993b
JM
3442 return INTEGER_PROMOTION_BADNESS;
3443 else
1c5cb38e 3444 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3445 }
3446 else
1c5cb38e 3447 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3448 }
3449 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3450 return INTEGER_PROMOTION_BADNESS;
3451 else
1c5cb38e 3452 return INTEGER_CONVERSION_BADNESS;
c5aa993b 3453 case TYPE_CODE_ENUM:
4f2aea11 3454 case TYPE_CODE_FLAGS:
c5aa993b
JM
3455 case TYPE_CODE_CHAR:
3456 case TYPE_CODE_RANGE:
3457 case TYPE_CODE_BOOL:
3d567982
TT
3458 if (TYPE_DECLARED_CLASS (arg))
3459 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b
JM
3460 return INTEGER_PROMOTION_BADNESS;
3461 case TYPE_CODE_FLT:
3462 return INT_FLOAT_CONVERSION_BADNESS;
3463 case TYPE_CODE_PTR:
3464 return NS_POINTER_CONVERSION_BADNESS;
3465 default:
3466 return INCOMPATIBLE_TYPE_BADNESS;
3467 }
3468 break;
3469 case TYPE_CODE_ENUM:
3470 switch (TYPE_CODE (arg))
3471 {
3472 case TYPE_CODE_INT:
3473 case TYPE_CODE_CHAR:
3474 case TYPE_CODE_RANGE:
3475 case TYPE_CODE_BOOL:
3476 case TYPE_CODE_ENUM:
3d567982
TT
3477 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3478 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 3479 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3480 case TYPE_CODE_FLT:
3481 return INT_FLOAT_CONVERSION_BADNESS;
3482 default:
3483 return INCOMPATIBLE_TYPE_BADNESS;
3484 }
3485 break;
3486 case TYPE_CODE_CHAR:
3487 switch (TYPE_CODE (arg))
3488 {
3489 case TYPE_CODE_RANGE:
3490 case TYPE_CODE_BOOL:
3491 case TYPE_CODE_ENUM:
3d567982
TT
3492 if (TYPE_DECLARED_CLASS (arg))
3493 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 3494 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3495 case TYPE_CODE_FLT:
3496 return INT_FLOAT_CONVERSION_BADNESS;
3497 case TYPE_CODE_INT:
3498 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
1c5cb38e 3499 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3500 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3501 return INTEGER_PROMOTION_BADNESS;
3502 /* >>> !! else fall through !! <<< */
3503 case TYPE_CODE_CHAR:
7ba81444
MS
3504 /* Deal with signed, unsigned, and plain chars for C++ and
3505 with int cases falling through from previous case. */
c5aa993b
JM
3506 if (TYPE_NOSIGN (parm))
3507 {
3508 if (TYPE_NOSIGN (arg))
6403aeea 3509 return EXACT_MATCH_BADNESS;
c5aa993b 3510 else
1c5cb38e 3511 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3512 }
3513 else if (TYPE_UNSIGNED (parm))
3514 {
3515 if (TYPE_UNSIGNED (arg))
6403aeea 3516 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3517 else
3518 return INTEGER_PROMOTION_BADNESS;
3519 }
3520 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
6403aeea 3521 return EXACT_MATCH_BADNESS;
c5aa993b 3522 else
1c5cb38e 3523 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3524 default:
3525 return INCOMPATIBLE_TYPE_BADNESS;
3526 }
3527 break;
3528 case TYPE_CODE_RANGE:
3529 switch (TYPE_CODE (arg))
3530 {
3531 case TYPE_CODE_INT:
3532 case TYPE_CODE_CHAR:
3533 case TYPE_CODE_RANGE:
3534 case TYPE_CODE_BOOL:
3535 case TYPE_CODE_ENUM:
1c5cb38e 3536 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3537 case TYPE_CODE_FLT:
3538 return INT_FLOAT_CONVERSION_BADNESS;
3539 default:
3540 return INCOMPATIBLE_TYPE_BADNESS;
3541 }
3542 break;
3543 case TYPE_CODE_BOOL:
3544 switch (TYPE_CODE (arg))
3545 {
5b4f6e25
KS
3546 /* n3290 draft, section 4.12.1 (conv.bool):
3547
3548 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3549 pointer to member type can be converted to a prvalue of type
3550 bool. A zero value, null pointer value, or null member pointer
3551 value is converted to false; any other value is converted to
3552 true. A prvalue of type std::nullptr_t can be converted to a
3553 prvalue of type bool; the resulting value is false." */
c5aa993b
JM
3554 case TYPE_CODE_INT:
3555 case TYPE_CODE_CHAR:
c5aa993b
JM
3556 case TYPE_CODE_ENUM:
3557 case TYPE_CODE_FLT:
5b4f6e25 3558 case TYPE_CODE_MEMBERPTR:
c5aa993b 3559 case TYPE_CODE_PTR:
5b4f6e25
KS
3560 return BOOL_CONVERSION_BADNESS;
3561 case TYPE_CODE_RANGE:
3562 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3563 case TYPE_CODE_BOOL:
6403aeea 3564 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3565 default:
3566 return INCOMPATIBLE_TYPE_BADNESS;
3567 }
3568 break;
3569 case TYPE_CODE_FLT:
3570 switch (TYPE_CODE (arg))
3571 {
3572 case TYPE_CODE_FLT:
3573 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3574 return FLOAT_PROMOTION_BADNESS;
3575 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
6403aeea 3576 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3577 else
3578 return FLOAT_CONVERSION_BADNESS;
3579 case TYPE_CODE_INT:
3580 case TYPE_CODE_BOOL:
3581 case TYPE_CODE_ENUM:
3582 case TYPE_CODE_RANGE:
3583 case TYPE_CODE_CHAR:
3584 return INT_FLOAT_CONVERSION_BADNESS;
3585 default:
3586 return INCOMPATIBLE_TYPE_BADNESS;
3587 }
3588 break;
3589 case TYPE_CODE_COMPLEX:
3590 switch (TYPE_CODE (arg))
7ba81444 3591 { /* Strictly not needed for C++, but... */
c5aa993b
JM
3592 case TYPE_CODE_FLT:
3593 return FLOAT_PROMOTION_BADNESS;
3594 case TYPE_CODE_COMPLEX:
6403aeea 3595 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3596 default:
3597 return INCOMPATIBLE_TYPE_BADNESS;
3598 }
3599 break;
3600 case TYPE_CODE_STRUCT:
c5aa993b
JM
3601 switch (TYPE_CODE (arg))
3602 {
3603 case TYPE_CODE_STRUCT:
3604 /* Check for derivation */
a9d5ef47
SW
3605 rank.subrank = distance_to_ancestor (parm, arg, 0);
3606 if (rank.subrank >= 0)
3607 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
c5aa993b
JM
3608 /* else fall through */
3609 default:
3610 return INCOMPATIBLE_TYPE_BADNESS;
3611 }
3612 break;
3613 case TYPE_CODE_UNION:
3614 switch (TYPE_CODE (arg))
3615 {
3616 case TYPE_CODE_UNION:
3617 default:
3618 return INCOMPATIBLE_TYPE_BADNESS;
3619 }
3620 break;
0d5de010 3621 case TYPE_CODE_MEMBERPTR:
c5aa993b
JM
3622 switch (TYPE_CODE (arg))
3623 {
3624 default:
3625 return INCOMPATIBLE_TYPE_BADNESS;
3626 }
3627 break;
3628 case TYPE_CODE_METHOD:
3629 switch (TYPE_CODE (arg))
3630 {
3631
3632 default:
3633 return INCOMPATIBLE_TYPE_BADNESS;
3634 }
3635 break;
3636 case TYPE_CODE_REF:
3637 switch (TYPE_CODE (arg))
3638 {
3639
3640 default:
3641 return INCOMPATIBLE_TYPE_BADNESS;
3642 }
3643
3644 break;
3645 case TYPE_CODE_SET:
3646 switch (TYPE_CODE (arg))
3647 {
3648 /* Not in C++ */
3649 case TYPE_CODE_SET:
7ba81444 3650 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
da096638 3651 TYPE_FIELD_TYPE (arg, 0), NULL);
c5aa993b
JM
3652 default:
3653 return INCOMPATIBLE_TYPE_BADNESS;
3654 }
3655 break;
3656 case TYPE_CODE_VOID:
3657 default:
3658 return INCOMPATIBLE_TYPE_BADNESS;
3659 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
3660}
3661
0963b4bd 3662/* End of functions for overload resolution. */
5212577a
DE
3663\f
3664/* Routines to pretty-print types. */
c906108c 3665
c906108c 3666static void
fba45db2 3667print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
3668{
3669 int bitno;
3670
3671 for (bitno = 0; bitno < nbits; bitno++)
3672 {
3673 if ((bitno % 8) == 0)
3674 {
3675 puts_filtered (" ");
3676 }
3677 if (B_TST (bits, bitno))
a3f17187 3678 printf_filtered (("1"));
c906108c 3679 else
a3f17187 3680 printf_filtered (("0"));
c906108c
SS
3681 }
3682}
3683
ad2f7632 3684/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
3685 include it since we may get into a infinitely recursive
3686 situation. */
c906108c
SS
3687
3688static void
4c9e8482 3689print_args (struct field *args, int nargs, int spaces)
c906108c
SS
3690{
3691 if (args != NULL)
3692 {
ad2f7632
DJ
3693 int i;
3694
3695 for (i = 0; i < nargs; i++)
4c9e8482
DE
3696 {
3697 printfi_filtered (spaces, "[%d] name '%s'\n", i,
3698 args[i].name != NULL ? args[i].name : "<NULL>");
3699 recursive_dump_type (args[i].type, spaces + 2);
3700 }
c906108c
SS
3701 }
3702}
3703
d6a843b5
JK
3704int
3705field_is_static (struct field *f)
3706{
3707 /* "static" fields are the fields whose location is not relative
3708 to the address of the enclosing struct. It would be nice to
3709 have a dedicated flag that would be set for static fields when
3710 the type is being created. But in practice, checking the field
254e6b9e 3711 loc_kind should give us an accurate answer. */
d6a843b5
JK
3712 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3713 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3714}
3715
c906108c 3716static void
fba45db2 3717dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
3718{
3719 int method_idx;
3720 int overload_idx;
3721 struct fn_field *f;
3722
3723 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 3724 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
3725 printf_filtered ("\n");
3726 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3727 {
3728 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3729 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3730 method_idx,
3731 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
3732 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3733 gdb_stdout);
a3f17187 3734 printf_filtered (_(") length %d\n"),
c906108c
SS
3735 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3736 for (overload_idx = 0;
3737 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3738 overload_idx++)
3739 {
3740 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3741 overload_idx,
3742 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
3743 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3744 gdb_stdout);
c906108c
SS
3745 printf_filtered (")\n");
3746 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
3747 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3748 gdb_stdout);
c906108c
SS
3749 printf_filtered ("\n");
3750
3751 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3752 spaces + 8 + 2);
3753
3754 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
3755 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3756 gdb_stdout);
c906108c 3757 printf_filtered ("\n");
4c9e8482
DE
3758 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
3759 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
3760 spaces + 8 + 2);
c906108c 3761 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
3762 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3763 gdb_stdout);
c906108c
SS
3764 printf_filtered ("\n");
3765
3766 printfi_filtered (spaces + 8, "is_const %d\n",
3767 TYPE_FN_FIELD_CONST (f, overload_idx));
3768 printfi_filtered (spaces + 8, "is_volatile %d\n",
3769 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3770 printfi_filtered (spaces + 8, "is_private %d\n",
3771 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3772 printfi_filtered (spaces + 8, "is_protected %d\n",
3773 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3774 printfi_filtered (spaces + 8, "is_stub %d\n",
3775 TYPE_FN_FIELD_STUB (f, overload_idx));
3776 printfi_filtered (spaces + 8, "voffset %u\n",
3777 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3778 }
3779 }
3780}
3781
3782static void
fba45db2 3783print_cplus_stuff (struct type *type, int spaces)
c906108c 3784{
ae6ae975
DE
3785 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
3786 printfi_filtered (spaces, "vptr_basetype ");
3787 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3788 puts_filtered ("\n");
3789 if (TYPE_VPTR_BASETYPE (type) != NULL)
3790 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3791
c906108c
SS
3792 printfi_filtered (spaces, "n_baseclasses %d\n",
3793 TYPE_N_BASECLASSES (type));
3794 printfi_filtered (spaces, "nfn_fields %d\n",
3795 TYPE_NFN_FIELDS (type));
c906108c
SS
3796 if (TYPE_N_BASECLASSES (type) > 0)
3797 {
3798 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3799 TYPE_N_BASECLASSES (type));
7ba81444
MS
3800 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3801 gdb_stdout);
c906108c
SS
3802 printf_filtered (")");
3803
3804 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3805 TYPE_N_BASECLASSES (type));
3806 puts_filtered ("\n");
3807 }
3808 if (TYPE_NFIELDS (type) > 0)
3809 {
3810 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3811 {
7ba81444
MS
3812 printfi_filtered (spaces,
3813 "private_field_bits (%d bits at *",
c906108c 3814 TYPE_NFIELDS (type));
7ba81444
MS
3815 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3816 gdb_stdout);
c906108c
SS
3817 printf_filtered (")");
3818 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3819 TYPE_NFIELDS (type));
3820 puts_filtered ("\n");
3821 }
3822 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3823 {
7ba81444
MS
3824 printfi_filtered (spaces,
3825 "protected_field_bits (%d bits at *",
c906108c 3826 TYPE_NFIELDS (type));
7ba81444
MS
3827 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3828 gdb_stdout);
c906108c
SS
3829 printf_filtered (")");
3830 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3831 TYPE_NFIELDS (type));
3832 puts_filtered ("\n");
3833 }
3834 }
3835 if (TYPE_NFN_FIELDS (type) > 0)
3836 {
3837 dump_fn_fieldlists (type, spaces);
3838 }
3839}
3840
b4ba55a1
JB
3841/* Print the contents of the TYPE's type_specific union, assuming that
3842 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3843
3844static void
3845print_gnat_stuff (struct type *type, int spaces)
3846{
3847 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3848
3849 recursive_dump_type (descriptive_type, spaces + 2);
3850}
3851
c906108c
SS
3852static struct obstack dont_print_type_obstack;
3853
3854void
fba45db2 3855recursive_dump_type (struct type *type, int spaces)
c906108c
SS
3856{
3857 int idx;
3858
3859 if (spaces == 0)
3860 obstack_begin (&dont_print_type_obstack, 0);
3861
3862 if (TYPE_NFIELDS (type) > 0
b4ba55a1 3863 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
3864 {
3865 struct type **first_dont_print
7ba81444 3866 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 3867
7ba81444
MS
3868 int i = (struct type **)
3869 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
3870
3871 while (--i >= 0)
3872 {
3873 if (type == first_dont_print[i])
3874 {
3875 printfi_filtered (spaces, "type node ");
d4f3574e 3876 gdb_print_host_address (type, gdb_stdout);
a3f17187 3877 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
3878 return;
3879 }
3880 }
3881
3882 obstack_ptr_grow (&dont_print_type_obstack, type);
3883 }
3884
3885 printfi_filtered (spaces, "type node ");
d4f3574e 3886 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
3887 printf_filtered ("\n");
3888 printfi_filtered (spaces, "name '%s' (",
3889 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 3890 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 3891 printf_filtered (")\n");
e9e79dd9
FF
3892 printfi_filtered (spaces, "tagname '%s' (",
3893 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3894 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3895 printf_filtered (")\n");
c906108c
SS
3896 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3897 switch (TYPE_CODE (type))
3898 {
c5aa993b
JM
3899 case TYPE_CODE_UNDEF:
3900 printf_filtered ("(TYPE_CODE_UNDEF)");
3901 break;
3902 case TYPE_CODE_PTR:
3903 printf_filtered ("(TYPE_CODE_PTR)");
3904 break;
3905 case TYPE_CODE_ARRAY:
3906 printf_filtered ("(TYPE_CODE_ARRAY)");
3907 break;
3908 case TYPE_CODE_STRUCT:
3909 printf_filtered ("(TYPE_CODE_STRUCT)");
3910 break;
3911 case TYPE_CODE_UNION:
3912 printf_filtered ("(TYPE_CODE_UNION)");
3913 break;
3914 case TYPE_CODE_ENUM:
3915 printf_filtered ("(TYPE_CODE_ENUM)");
3916 break;
4f2aea11
MK
3917 case TYPE_CODE_FLAGS:
3918 printf_filtered ("(TYPE_CODE_FLAGS)");
3919 break;
c5aa993b
JM
3920 case TYPE_CODE_FUNC:
3921 printf_filtered ("(TYPE_CODE_FUNC)");
3922 break;
3923 case TYPE_CODE_INT:
3924 printf_filtered ("(TYPE_CODE_INT)");
3925 break;
3926 case TYPE_CODE_FLT:
3927 printf_filtered ("(TYPE_CODE_FLT)");
3928 break;
3929 case TYPE_CODE_VOID:
3930 printf_filtered ("(TYPE_CODE_VOID)");
3931 break;
3932 case TYPE_CODE_SET:
3933 printf_filtered ("(TYPE_CODE_SET)");
3934 break;
3935 case TYPE_CODE_RANGE:
3936 printf_filtered ("(TYPE_CODE_RANGE)");
3937 break;
3938 case TYPE_CODE_STRING:
3939 printf_filtered ("(TYPE_CODE_STRING)");
3940 break;
3941 case TYPE_CODE_ERROR:
3942 printf_filtered ("(TYPE_CODE_ERROR)");
3943 break;
0d5de010
DJ
3944 case TYPE_CODE_MEMBERPTR:
3945 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3946 break;
3947 case TYPE_CODE_METHODPTR:
3948 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
3949 break;
3950 case TYPE_CODE_METHOD:
3951 printf_filtered ("(TYPE_CODE_METHOD)");
3952 break;
3953 case TYPE_CODE_REF:
3954 printf_filtered ("(TYPE_CODE_REF)");
3955 break;
3956 case TYPE_CODE_CHAR:
3957 printf_filtered ("(TYPE_CODE_CHAR)");
3958 break;
3959 case TYPE_CODE_BOOL:
3960 printf_filtered ("(TYPE_CODE_BOOL)");
3961 break;
e9e79dd9
FF
3962 case TYPE_CODE_COMPLEX:
3963 printf_filtered ("(TYPE_CODE_COMPLEX)");
3964 break;
c5aa993b
JM
3965 case TYPE_CODE_TYPEDEF:
3966 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3967 break;
5c4e30ca
DC
3968 case TYPE_CODE_NAMESPACE:
3969 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3970 break;
c5aa993b
JM
3971 default:
3972 printf_filtered ("(UNKNOWN TYPE CODE)");
3973 break;
c906108c
SS
3974 }
3975 puts_filtered ("\n");
3976 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9bb382b
UW
3977 if (TYPE_OBJFILE_OWNED (type))
3978 {
3979 printfi_filtered (spaces, "objfile ");
3980 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3981 }
3982 else
3983 {
3984 printfi_filtered (spaces, "gdbarch ");
3985 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3986 }
c906108c
SS
3987 printf_filtered ("\n");
3988 printfi_filtered (spaces, "target_type ");
d4f3574e 3989 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
3990 printf_filtered ("\n");
3991 if (TYPE_TARGET_TYPE (type) != NULL)
3992 {
3993 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3994 }
3995 printfi_filtered (spaces, "pointer_type ");
d4f3574e 3996 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
3997 printf_filtered ("\n");
3998 printfi_filtered (spaces, "reference_type ");
d4f3574e 3999 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 4000 printf_filtered ("\n");
2fdde8f8
DJ
4001 printfi_filtered (spaces, "type_chain ");
4002 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 4003 printf_filtered ("\n");
7ba81444
MS
4004 printfi_filtered (spaces, "instance_flags 0x%x",
4005 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
4006 if (TYPE_CONST (type))
4007 {
4008 puts_filtered (" TYPE_FLAG_CONST");
4009 }
4010 if (TYPE_VOLATILE (type))
4011 {
4012 puts_filtered (" TYPE_FLAG_VOLATILE");
4013 }
4014 if (TYPE_CODE_SPACE (type))
4015 {
4016 puts_filtered (" TYPE_FLAG_CODE_SPACE");
4017 }
4018 if (TYPE_DATA_SPACE (type))
4019 {
4020 puts_filtered (" TYPE_FLAG_DATA_SPACE");
4021 }
8b2dbe47
KB
4022 if (TYPE_ADDRESS_CLASS_1 (type))
4023 {
4024 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
4025 }
4026 if (TYPE_ADDRESS_CLASS_2 (type))
4027 {
4028 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
4029 }
06d66ee9
TT
4030 if (TYPE_RESTRICT (type))
4031 {
4032 puts_filtered (" TYPE_FLAG_RESTRICT");
4033 }
a2c2acaf
MW
4034 if (TYPE_ATOMIC (type))
4035 {
4036 puts_filtered (" TYPE_FLAG_ATOMIC");
4037 }
2fdde8f8 4038 puts_filtered ("\n");
876cecd0
TT
4039
4040 printfi_filtered (spaces, "flags");
762a036f 4041 if (TYPE_UNSIGNED (type))
c906108c
SS
4042 {
4043 puts_filtered (" TYPE_FLAG_UNSIGNED");
4044 }
762a036f
FF
4045 if (TYPE_NOSIGN (type))
4046 {
4047 puts_filtered (" TYPE_FLAG_NOSIGN");
4048 }
4049 if (TYPE_STUB (type))
c906108c
SS
4050 {
4051 puts_filtered (" TYPE_FLAG_STUB");
4052 }
762a036f
FF
4053 if (TYPE_TARGET_STUB (type))
4054 {
4055 puts_filtered (" TYPE_FLAG_TARGET_STUB");
4056 }
4057 if (TYPE_STATIC (type))
4058 {
4059 puts_filtered (" TYPE_FLAG_STATIC");
4060 }
762a036f
FF
4061 if (TYPE_PROTOTYPED (type))
4062 {
4063 puts_filtered (" TYPE_FLAG_PROTOTYPED");
4064 }
4065 if (TYPE_INCOMPLETE (type))
4066 {
4067 puts_filtered (" TYPE_FLAG_INCOMPLETE");
4068 }
762a036f
FF
4069 if (TYPE_VARARGS (type))
4070 {
4071 puts_filtered (" TYPE_FLAG_VARARGS");
4072 }
f5f8a009
EZ
4073 /* This is used for things like AltiVec registers on ppc. Gcc emits
4074 an attribute for the array type, which tells whether or not we
4075 have a vector, instead of a regular array. */
4076 if (TYPE_VECTOR (type))
4077 {
4078 puts_filtered (" TYPE_FLAG_VECTOR");
4079 }
876cecd0
TT
4080 if (TYPE_FIXED_INSTANCE (type))
4081 {
4082 puts_filtered (" TYPE_FIXED_INSTANCE");
4083 }
4084 if (TYPE_STUB_SUPPORTED (type))
4085 {
4086 puts_filtered (" TYPE_STUB_SUPPORTED");
4087 }
4088 if (TYPE_NOTTEXT (type))
4089 {
4090 puts_filtered (" TYPE_NOTTEXT");
4091 }
c906108c
SS
4092 puts_filtered ("\n");
4093 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 4094 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
4095 puts_filtered ("\n");
4096 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4097 {
14e75d8e
JK
4098 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4099 printfi_filtered (spaces + 2,
4100 "[%d] enumval %s type ",
4101 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4102 else
4103 printfi_filtered (spaces + 2,
4104 "[%d] bitpos %d bitsize %d type ",
4105 idx, TYPE_FIELD_BITPOS (type, idx),
4106 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 4107 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
4108 printf_filtered (" name '%s' (",
4109 TYPE_FIELD_NAME (type, idx) != NULL
4110 ? TYPE_FIELD_NAME (type, idx)
4111 : "<NULL>");
d4f3574e 4112 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
4113 printf_filtered (")\n");
4114 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4115 {
4116 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4117 }
4118 }
43bbcdc2
PH
4119 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4120 {
4121 printfi_filtered (spaces, "low %s%s high %s%s\n",
4122 plongest (TYPE_LOW_BOUND (type)),
4123 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4124 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
4125 TYPE_HIGH_BOUND_UNDEFINED (type)
4126 ? " (undefined)" : "");
43bbcdc2 4127 }
c906108c 4128
b4ba55a1
JB
4129 switch (TYPE_SPECIFIC_FIELD (type))
4130 {
4131 case TYPE_SPECIFIC_CPLUS_STUFF:
4132 printfi_filtered (spaces, "cplus_stuff ");
4133 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4134 gdb_stdout);
4135 puts_filtered ("\n");
4136 print_cplus_stuff (type, spaces);
4137 break;
8da61cc4 4138
b4ba55a1
JB
4139 case TYPE_SPECIFIC_GNAT_STUFF:
4140 printfi_filtered (spaces, "gnat_stuff ");
4141 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4142 puts_filtered ("\n");
4143 print_gnat_stuff (type, spaces);
4144 break;
701c159d 4145
b4ba55a1
JB
4146 case TYPE_SPECIFIC_FLOATFORMAT:
4147 printfi_filtered (spaces, "floatformat ");
4148 if (TYPE_FLOATFORMAT (type) == NULL)
4149 puts_filtered ("(null)");
4150 else
4151 {
4152 puts_filtered ("{ ");
4153 if (TYPE_FLOATFORMAT (type)[0] == NULL
4154 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
4155 puts_filtered ("(null)");
4156 else
4157 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
4158
4159 puts_filtered (", ");
4160 if (TYPE_FLOATFORMAT (type)[1] == NULL
4161 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
4162 puts_filtered ("(null)");
4163 else
4164 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
4165
4166 puts_filtered (" }");
4167 }
4168 puts_filtered ("\n");
4169 break;
c906108c 4170
b6cdc2c1 4171 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
4172 printfi_filtered (spaces, "calling_convention %d\n",
4173 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 4174 /* tail_call_list is not printed. */
b4ba55a1 4175 break;
09e2d7c7
DE
4176
4177 case TYPE_SPECIFIC_SELF_TYPE:
4178 printfi_filtered (spaces, "self_type ");
4179 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4180 puts_filtered ("\n");
4181 break;
c906108c 4182 }
b4ba55a1 4183
c906108c
SS
4184 if (spaces == 0)
4185 obstack_free (&dont_print_type_obstack, NULL);
4186}
5212577a 4187\f
ae5a43e0
DJ
4188/* Trivial helpers for the libiberty hash table, for mapping one
4189 type to another. */
4190
4191struct type_pair
4192{
4193 struct type *old, *new;
4194};
4195
4196static hashval_t
4197type_pair_hash (const void *item)
4198{
4199 const struct type_pair *pair = item;
d8734c88 4200
ae5a43e0
DJ
4201 return htab_hash_pointer (pair->old);
4202}
4203
4204static int
4205type_pair_eq (const void *item_lhs, const void *item_rhs)
4206{
4207 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
d8734c88 4208
ae5a43e0
DJ
4209 return lhs->old == rhs->old;
4210}
4211
4212/* Allocate the hash table used by copy_type_recursive to walk
4213 types without duplicates. We use OBJFILE's obstack, because
4214 OBJFILE is about to be deleted. */
4215
4216htab_t
4217create_copied_types_hash (struct objfile *objfile)
4218{
4219 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4220 NULL, &objfile->objfile_obstack,
4221 hashtab_obstack_allocate,
4222 dummy_obstack_deallocate);
4223}
4224
7ba81444
MS
4225/* Recursively copy (deep copy) TYPE, if it is associated with
4226 OBJFILE. Return a new type allocated using malloc, a saved type if
4227 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
4228 not associated with OBJFILE. */
ae5a43e0
DJ
4229
4230struct type *
7ba81444
MS
4231copy_type_recursive (struct objfile *objfile,
4232 struct type *type,
ae5a43e0
DJ
4233 htab_t copied_types)
4234{
4235 struct type_pair *stored, pair;
4236 void **slot;
4237 struct type *new_type;
4238
e9bb382b 4239 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
4240 return type;
4241
7ba81444
MS
4242 /* This type shouldn't be pointing to any types in other objfiles;
4243 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
4244 gdb_assert (TYPE_OBJFILE (type) == objfile);
4245
4246 pair.old = type;
4247 slot = htab_find_slot (copied_types, &pair, INSERT);
4248 if (*slot != NULL)
4249 return ((struct type_pair *) *slot)->new;
4250
e9bb382b 4251 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
4252
4253 /* We must add the new type to the hash table immediately, in case
4254 we encounter this type again during a recursive call below. */
3e43a32a
MS
4255 stored
4256 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
ae5a43e0
DJ
4257 stored->old = type;
4258 stored->new = new_type;
4259 *slot = stored;
4260
876cecd0
TT
4261 /* Copy the common fields of types. For the main type, we simply
4262 copy the entire thing and then update specific fields as needed. */
4263 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
4264 TYPE_OBJFILE_OWNED (new_type) = 0;
4265 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 4266
ae5a43e0
DJ
4267 if (TYPE_NAME (type))
4268 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4269 if (TYPE_TAG_NAME (type))
4270 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
ae5a43e0
DJ
4271
4272 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4273 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4274
4275 /* Copy the fields. */
ae5a43e0
DJ
4276 if (TYPE_NFIELDS (type))
4277 {
4278 int i, nfields;
4279
4280 nfields = TYPE_NFIELDS (type);
fc270c35 4281 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
ae5a43e0
DJ
4282 for (i = 0; i < nfields; i++)
4283 {
7ba81444
MS
4284 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4285 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
4286 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4287 if (TYPE_FIELD_TYPE (type, i))
4288 TYPE_FIELD_TYPE (new_type, i)
4289 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4290 copied_types);
4291 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
4292 TYPE_FIELD_NAME (new_type, i) =
4293 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 4294 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 4295 {
d6a843b5
JK
4296 case FIELD_LOC_KIND_BITPOS:
4297 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4298 TYPE_FIELD_BITPOS (type, i));
4299 break;
14e75d8e
JK
4300 case FIELD_LOC_KIND_ENUMVAL:
4301 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4302 TYPE_FIELD_ENUMVAL (type, i));
4303 break;
d6a843b5
JK
4304 case FIELD_LOC_KIND_PHYSADDR:
4305 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4306 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4307 break;
4308 case FIELD_LOC_KIND_PHYSNAME:
4309 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4310 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4311 i)));
4312 break;
4313 default:
4314 internal_error (__FILE__, __LINE__,
4315 _("Unexpected type field location kind: %d"),
4316 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
4317 }
4318 }
4319 }
4320
0963b4bd 4321 /* For range types, copy the bounds information. */
43bbcdc2
PH
4322 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4323 {
4324 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
4325 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4326 }
4327
3cdcd0ce
JB
4328 /* Copy the data location information. */
4329 if (TYPE_DATA_LOCATION (type) != NULL)
4330 {
4331 TYPE_DATA_LOCATION (new_type)
4332 = TYPE_ALLOC (new_type, sizeof (struct dynamic_prop));
4333 memcpy (TYPE_DATA_LOCATION (new_type), TYPE_DATA_LOCATION (type),
4334 sizeof (struct dynamic_prop));
4335 }
4336
ae5a43e0
DJ
4337 /* Copy pointers to other types. */
4338 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
4339 TYPE_TARGET_TYPE (new_type) =
4340 copy_type_recursive (objfile,
4341 TYPE_TARGET_TYPE (type),
4342 copied_types);
f6b3afbf 4343
ae5a43e0
DJ
4344 /* Maybe copy the type_specific bits.
4345
4346 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4347 base classes and methods. There's no fundamental reason why we
4348 can't, but at the moment it is not needed. */
4349
f6b3afbf
DE
4350 switch (TYPE_SPECIFIC_FIELD (type))
4351 {
4352 case TYPE_SPECIFIC_NONE:
4353 break;
4354 case TYPE_SPECIFIC_FUNC:
4355 INIT_FUNC_SPECIFIC (new_type);
4356 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4357 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4358 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4359 break;
4360 case TYPE_SPECIFIC_FLOATFORMAT:
4361 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4362 break;
4363 case TYPE_SPECIFIC_CPLUS_STUFF:
4364 INIT_CPLUS_SPECIFIC (new_type);
4365 break;
4366 case TYPE_SPECIFIC_GNAT_STUFF:
4367 INIT_GNAT_SPECIFIC (new_type);
4368 break;
09e2d7c7
DE
4369 case TYPE_SPECIFIC_SELF_TYPE:
4370 set_type_self_type (new_type,
4371 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4372 copied_types));
4373 break;
f6b3afbf
DE
4374 default:
4375 gdb_assert_not_reached ("bad type_specific_kind");
4376 }
ae5a43e0
DJ
4377
4378 return new_type;
4379}
4380
4af88198
JB
4381/* Make a copy of the given TYPE, except that the pointer & reference
4382 types are not preserved.
4383
4384 This function assumes that the given type has an associated objfile.
4385 This objfile is used to allocate the new type. */
4386
4387struct type *
4388copy_type (const struct type *type)
4389{
4390 struct type *new_type;
4391
e9bb382b 4392 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 4393
e9bb382b 4394 new_type = alloc_type_copy (type);
4af88198
JB
4395 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4396 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4397 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4398 sizeof (struct main_type));
3cdcd0ce
JB
4399 if (TYPE_DATA_LOCATION (type) != NULL)
4400 {
4401 TYPE_DATA_LOCATION (new_type)
4402 = TYPE_ALLOC (new_type, sizeof (struct dynamic_prop));
4403 memcpy (TYPE_DATA_LOCATION (new_type), TYPE_DATA_LOCATION (type),
4404 sizeof (struct dynamic_prop));
4405 }
4af88198
JB
4406
4407 return new_type;
4408}
5212577a 4409\f
e9bb382b
UW
4410/* Helper functions to initialize architecture-specific types. */
4411
4412/* Allocate a type structure associated with GDBARCH and set its
4413 CODE, LENGTH, and NAME fields. */
5212577a 4414
e9bb382b
UW
4415struct type *
4416arch_type (struct gdbarch *gdbarch,
4417 enum type_code code, int length, char *name)
4418{
4419 struct type *type;
4420
4421 type = alloc_type_arch (gdbarch);
4422 TYPE_CODE (type) = code;
4423 TYPE_LENGTH (type) = length;
4424
4425 if (name)
4426 TYPE_NAME (type) = xstrdup (name);
4427
4428 return type;
4429}
4430
4431/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4432 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4433 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4434
e9bb382b
UW
4435struct type *
4436arch_integer_type (struct gdbarch *gdbarch,
4437 int bit, int unsigned_p, char *name)
4438{
4439 struct type *t;
4440
4441 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4442 if (unsigned_p)
4443 TYPE_UNSIGNED (t) = 1;
4444 if (name && strcmp (name, "char") == 0)
4445 TYPE_NOSIGN (t) = 1;
4446
4447 return t;
4448}
4449
4450/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4451 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4452 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4453
e9bb382b
UW
4454struct type *
4455arch_character_type (struct gdbarch *gdbarch,
4456 int bit, int unsigned_p, char *name)
4457{
4458 struct type *t;
4459
4460 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4461 if (unsigned_p)
4462 TYPE_UNSIGNED (t) = 1;
4463
4464 return t;
4465}
4466
4467/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4468 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4469 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4470
e9bb382b
UW
4471struct type *
4472arch_boolean_type (struct gdbarch *gdbarch,
4473 int bit, int unsigned_p, char *name)
4474{
4475 struct type *t;
4476
4477 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4478 if (unsigned_p)
4479 TYPE_UNSIGNED (t) = 1;
4480
4481 return t;
4482}
4483
4484/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4485 BIT is the type size in bits; if BIT equals -1, the size is
4486 determined by the floatformat. NAME is the type name. Set the
4487 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 4488
27067745 4489struct type *
e9bb382b
UW
4490arch_float_type (struct gdbarch *gdbarch,
4491 int bit, char *name, const struct floatformat **floatformats)
8da61cc4
DJ
4492{
4493 struct type *t;
4494
4495 if (bit == -1)
4496 {
4497 gdb_assert (floatformats != NULL);
4498 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4499 bit = floatformats[0]->totalsize;
4500 }
4501 gdb_assert (bit >= 0);
4502
e9bb382b 4503 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
8da61cc4
DJ
4504 TYPE_FLOATFORMAT (t) = floatformats;
4505 return t;
4506}
4507
e9bb382b
UW
4508/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4509 NAME is the type name. TARGET_TYPE is the component float type. */
5212577a 4510
27067745 4511struct type *
e9bb382b
UW
4512arch_complex_type (struct gdbarch *gdbarch,
4513 char *name, struct type *target_type)
27067745
UW
4514{
4515 struct type *t;
d8734c88 4516
e9bb382b
UW
4517 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4518 2 * TYPE_LENGTH (target_type), name);
27067745
UW
4519 TYPE_TARGET_TYPE (t) = target_type;
4520 return t;
4521}
4522
e9bb382b 4523/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
eb90ce83 4524 NAME is the type name. LENGTH is the size of the flag word in bytes. */
5212577a 4525
e9bb382b
UW
4526struct type *
4527arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4528{
4529 int nfields = length * TARGET_CHAR_BIT;
4530 struct type *type;
4531
4532 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4533 TYPE_UNSIGNED (type) = 1;
4534 TYPE_NFIELDS (type) = nfields;
4535 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4536
4537 return type;
4538}
4539
4540/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4541 position BITPOS is called NAME. */
5212577a 4542
e9bb382b
UW
4543void
4544append_flags_type_flag (struct type *type, int bitpos, char *name)
4545{
4546 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4547 gdb_assert (bitpos < TYPE_NFIELDS (type));
4548 gdb_assert (bitpos >= 0);
4549
4550 if (name)
4551 {
4552 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
945b3a32 4553 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
e9bb382b
UW
4554 }
4555 else
4556 {
4557 /* Don't show this field to the user. */
945b3a32 4558 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
e9bb382b
UW
4559 }
4560}
4561
4562/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4563 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 4564
e9bb382b
UW
4565struct type *
4566arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4567{
4568 struct type *t;
d8734c88 4569
e9bb382b
UW
4570 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4571 t = arch_type (gdbarch, code, 0, NULL);
4572 TYPE_TAG_NAME (t) = name;
4573 INIT_CPLUS_SPECIFIC (t);
4574 return t;
4575}
4576
4577/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
4578 Do not set the field's position or adjust the type's length;
4579 the caller should do so. Return the new field. */
5212577a 4580
f5dff777
DJ
4581struct field *
4582append_composite_type_field_raw (struct type *t, char *name,
4583 struct type *field)
e9bb382b
UW
4584{
4585 struct field *f;
d8734c88 4586
e9bb382b
UW
4587 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4588 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4589 sizeof (struct field) * TYPE_NFIELDS (t));
4590 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4591 memset (f, 0, sizeof f[0]);
4592 FIELD_TYPE (f[0]) = field;
4593 FIELD_NAME (f[0]) = name;
f5dff777
DJ
4594 return f;
4595}
4596
4597/* Add new field with name NAME and type FIELD to composite type T.
4598 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 4599
f5dff777
DJ
4600void
4601append_composite_type_field_aligned (struct type *t, char *name,
4602 struct type *field, int alignment)
4603{
4604 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 4605
e9bb382b
UW
4606 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4607 {
4608 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4609 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4610 }
4611 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4612 {
4613 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4614 if (TYPE_NFIELDS (t) > 1)
4615 {
f41f5e61
PA
4616 SET_FIELD_BITPOS (f[0],
4617 (FIELD_BITPOS (f[-1])
4618 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4619 * TARGET_CHAR_BIT)));
e9bb382b
UW
4620
4621 if (alignment)
4622 {
86c3c1fc
AB
4623 int left;
4624
4625 alignment *= TARGET_CHAR_BIT;
4626 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 4627
e9bb382b
UW
4628 if (left)
4629 {
f41f5e61 4630 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 4631 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
4632 }
4633 }
4634 }
4635 }
4636}
4637
4638/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 4639
e9bb382b
UW
4640void
4641append_composite_type_field (struct type *t, char *name,
4642 struct type *field)
4643{
4644 append_composite_type_field_aligned (t, name, field, 0);
4645}
4646
000177f0
AC
4647static struct gdbarch_data *gdbtypes_data;
4648
4649const struct builtin_type *
4650builtin_type (struct gdbarch *gdbarch)
4651{
4652 return gdbarch_data (gdbarch, gdbtypes_data);
4653}
4654
4655static void *
4656gdbtypes_post_init (struct gdbarch *gdbarch)
4657{
4658 struct builtin_type *builtin_type
4659 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4660
46bf5051 4661 /* Basic types. */
e9bb382b
UW
4662 builtin_type->builtin_void
4663 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4664 builtin_type->builtin_char
4665 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4666 !gdbarch_char_signed (gdbarch), "char");
4667 builtin_type->builtin_signed_char
4668 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4669 0, "signed char");
4670 builtin_type->builtin_unsigned_char
4671 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4672 1, "unsigned char");
4673 builtin_type->builtin_short
4674 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4675 0, "short");
4676 builtin_type->builtin_unsigned_short
4677 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4678 1, "unsigned short");
4679 builtin_type->builtin_int
4680 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4681 0, "int");
4682 builtin_type->builtin_unsigned_int
4683 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4684 1, "unsigned int");
4685 builtin_type->builtin_long
4686 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4687 0, "long");
4688 builtin_type->builtin_unsigned_long
4689 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4690 1, "unsigned long");
4691 builtin_type->builtin_long_long
4692 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4693 0, "long long");
4694 builtin_type->builtin_unsigned_long_long
4695 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4696 1, "unsigned long long");
70bd8e24 4697 builtin_type->builtin_float
e9bb382b 4698 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 4699 "float", gdbarch_float_format (gdbarch));
70bd8e24 4700 builtin_type->builtin_double
e9bb382b 4701 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 4702 "double", gdbarch_double_format (gdbarch));
70bd8e24 4703 builtin_type->builtin_long_double
e9bb382b 4704 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 4705 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 4706 builtin_type->builtin_complex
e9bb382b
UW
4707 = arch_complex_type (gdbarch, "complex",
4708 builtin_type->builtin_float);
70bd8e24 4709 builtin_type->builtin_double_complex
e9bb382b
UW
4710 = arch_complex_type (gdbarch, "double complex",
4711 builtin_type->builtin_double);
4712 builtin_type->builtin_string
4713 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4714 builtin_type->builtin_bool
4715 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
000177f0 4716
7678ef8f
TJB
4717 /* The following three are about decimal floating point types, which
4718 are 32-bits, 64-bits and 128-bits respectively. */
4719 builtin_type->builtin_decfloat
e9bb382b 4720 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
7678ef8f 4721 builtin_type->builtin_decdouble
e9bb382b 4722 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
7678ef8f 4723 builtin_type->builtin_declong
e9bb382b 4724 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
7678ef8f 4725
69feb676 4726 /* "True" character types. */
e9bb382b
UW
4727 builtin_type->builtin_true_char
4728 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4729 builtin_type->builtin_true_unsigned_char
4730 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 4731
df4df182 4732 /* Fixed-size integer types. */
e9bb382b
UW
4733 builtin_type->builtin_int0
4734 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4735 builtin_type->builtin_int8
4736 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4737 builtin_type->builtin_uint8
4738 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4739 builtin_type->builtin_int16
4740 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4741 builtin_type->builtin_uint16
4742 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4743 builtin_type->builtin_int32
4744 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4745 builtin_type->builtin_uint32
4746 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4747 builtin_type->builtin_int64
4748 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4749 builtin_type->builtin_uint64
4750 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4751 builtin_type->builtin_int128
4752 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4753 builtin_type->builtin_uint128
4754 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
4755 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4756 TYPE_INSTANCE_FLAG_NOTTEXT;
4757 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4758 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 4759
9a22f0d0
PM
4760 /* Wide character types. */
4761 builtin_type->builtin_char16
4762 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4763 builtin_type->builtin_char32
4764 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4765
4766
46bf5051 4767 /* Default data/code pointer types. */
e9bb382b
UW
4768 builtin_type->builtin_data_ptr
4769 = lookup_pointer_type (builtin_type->builtin_void);
4770 builtin_type->builtin_func_ptr
4771 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
4772 builtin_type->builtin_func_func
4773 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 4774
78267919 4775 /* This type represents a GDB internal function. */
e9bb382b
UW
4776 builtin_type->internal_fn
4777 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4778 "<internal function>");
78267919 4779
e81e7f5e
SC
4780 /* This type represents an xmethod. */
4781 builtin_type->xmethod
4782 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
4783
46bf5051
UW
4784 return builtin_type;
4785}
4786
46bf5051
UW
4787/* This set of objfile-based types is intended to be used by symbol
4788 readers as basic types. */
4789
4790static const struct objfile_data *objfile_type_data;
4791
4792const struct objfile_type *
4793objfile_type (struct objfile *objfile)
4794{
4795 struct gdbarch *gdbarch;
4796 struct objfile_type *objfile_type
4797 = objfile_data (objfile, objfile_type_data);
4798
4799 if (objfile_type)
4800 return objfile_type;
4801
4802 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4803 1, struct objfile_type);
4804
4805 /* Use the objfile architecture to determine basic type properties. */
4806 gdbarch = get_objfile_arch (objfile);
4807
4808 /* Basic types. */
4809 objfile_type->builtin_void
4810 = init_type (TYPE_CODE_VOID, 1,
4811 0,
4812 "void", objfile);
4813
4814 objfile_type->builtin_char
4815 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4816 (TYPE_FLAG_NOSIGN
4817 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4818 "char", objfile);
4819 objfile_type->builtin_signed_char
4820 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4821 0,
4822 "signed char", objfile);
4823 objfile_type->builtin_unsigned_char
4824 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4825 TYPE_FLAG_UNSIGNED,
4826 "unsigned char", objfile);
4827 objfile_type->builtin_short
4828 = init_type (TYPE_CODE_INT,
4829 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4830 0, "short", objfile);
4831 objfile_type->builtin_unsigned_short
4832 = init_type (TYPE_CODE_INT,
4833 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4834 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4835 objfile_type->builtin_int
4836 = init_type (TYPE_CODE_INT,
4837 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4838 0, "int", objfile);
4839 objfile_type->builtin_unsigned_int
4840 = init_type (TYPE_CODE_INT,
4841 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4842 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4843 objfile_type->builtin_long
4844 = init_type (TYPE_CODE_INT,
4845 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4846 0, "long", objfile);
4847 objfile_type->builtin_unsigned_long
4848 = init_type (TYPE_CODE_INT,
4849 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4850 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4851 objfile_type->builtin_long_long
4852 = init_type (TYPE_CODE_INT,
4853 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4854 0, "long long", objfile);
4855 objfile_type->builtin_unsigned_long_long
4856 = init_type (TYPE_CODE_INT,
4857 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4858 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4859
4860 objfile_type->builtin_float
4861 = init_type (TYPE_CODE_FLT,
4862 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4863 0, "float", objfile);
4864 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4865 = gdbarch_float_format (gdbarch);
4866 objfile_type->builtin_double
4867 = init_type (TYPE_CODE_FLT,
4868 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4869 0, "double", objfile);
4870 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4871 = gdbarch_double_format (gdbarch);
4872 objfile_type->builtin_long_double
4873 = init_type (TYPE_CODE_FLT,
4874 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4875 0, "long double", objfile);
4876 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4877 = gdbarch_long_double_format (gdbarch);
4878
4879 /* This type represents a type that was unrecognized in symbol read-in. */
4880 objfile_type->builtin_error
4881 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4882
4883 /* The following set of types is used for symbols with no
4884 debug information. */
4885 objfile_type->nodebug_text_symbol
4886 = init_type (TYPE_CODE_FUNC, 1, 0,
4887 "<text variable, no debug info>", objfile);
4888 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4889 = objfile_type->builtin_int;
0875794a
JK
4890 objfile_type->nodebug_text_gnu_ifunc_symbol
4891 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4892 "<text gnu-indirect-function variable, no debug info>",
4893 objfile);
4894 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4895 = objfile_type->nodebug_text_symbol;
4896 objfile_type->nodebug_got_plt_symbol
4897 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4898 "<text from jump slot in .got.plt, no debug info>",
4899 objfile);
4900 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4901 = objfile_type->nodebug_text_symbol;
46bf5051
UW
4902 objfile_type->nodebug_data_symbol
4903 = init_type (TYPE_CODE_INT,
4904 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4905 "<data variable, no debug info>", objfile);
4906 objfile_type->nodebug_unknown_symbol
4907 = init_type (TYPE_CODE_INT, 1, 0,
4908 "<variable (not text or data), no debug info>", objfile);
4909 objfile_type->nodebug_tls_symbol
4910 = init_type (TYPE_CODE_INT,
4911 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4912 "<thread local variable, no debug info>", objfile);
000177f0
AC
4913
4914 /* NOTE: on some targets, addresses and pointers are not necessarily
0a7cfe2c 4915 the same.
000177f0
AC
4916
4917 The upshot is:
4918 - gdb's `struct type' always describes the target's
4919 representation.
4920 - gdb's `struct value' objects should always hold values in
4921 target form.
4922 - gdb's CORE_ADDR values are addresses in the unified virtual
4923 address space that the assembler and linker work with. Thus,
4924 since target_read_memory takes a CORE_ADDR as an argument, it
4925 can access any memory on the target, even if the processor has
4926 separate code and data address spaces.
4927
46bf5051
UW
4928 In this context, objfile_type->builtin_core_addr is a bit odd:
4929 it's a target type for a value the target will never see. It's
4930 only used to hold the values of (typeless) linker symbols, which
4931 are indeed in the unified virtual address space. */
000177f0 4932
46bf5051
UW
4933 objfile_type->builtin_core_addr
4934 = init_type (TYPE_CODE_INT,
4935 gdbarch_addr_bit (gdbarch) / 8,
4936 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
64c50499 4937
46bf5051
UW
4938 set_objfile_data (objfile, objfile_type_data, objfile_type);
4939 return objfile_type;
000177f0
AC
4940}
4941
5212577a 4942extern initialize_file_ftype _initialize_gdbtypes;
46bf5051 4943
c906108c 4944void
fba45db2 4945_initialize_gdbtypes (void)
c906108c 4946{
5674de60 4947 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
46bf5051 4948 objfile_type_data = register_objfile_data ();
5674de60 4949
ccce17b0
YQ
4950 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4951 _("Set debugging of C++ overloading."),
4952 _("Show debugging of C++ overloading."),
4953 _("When enabled, ranking of the "
4954 "functions is displayed."),
4955 NULL,
4956 show_overload_debug,
4957 &setdebuglist, &showdebuglist);
5674de60 4958
7ba81444 4959 /* Add user knob for controlling resolution of opaque types. */
5674de60 4960 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
4961 &opaque_type_resolution,
4962 _("Set resolution of opaque struct/class/union"
4963 " types (if set before loading symbols)."),
4964 _("Show resolution of opaque struct/class/union"
4965 " types (if set before loading symbols)."),
4966 NULL, NULL,
5674de60
UW
4967 show_opaque_type_resolution,
4968 &setlist, &showlist);
a451cb65
KS
4969
4970 /* Add an option to permit non-strict type checking. */
4971 add_setshow_boolean_cmd ("type", class_support,
4972 &strict_type_checking,
4973 _("Set strict type checking."),
4974 _("Show strict type checking."),
4975 NULL, NULL,
4976 show_strict_type_checking,
4977 &setchecklist, &showchecklist);
c906108c 4978}
This page took 1.883628 seconds and 4 git commands to generate.