language_lookup_primitive_type: Renamed from language_lookup_primitive_type_by_name.
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
ecd75fc8 3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c
SS
23#include "bfd.h"
24#include "symtab.h"
25#include "symfile.h"
26#include "objfiles.h"
27#include "gdbtypes.h"
28#include "expression.h"
29#include "language.h"
30#include "target.h"
31#include "value.h"
32#include "demangle.h"
33#include "complaints.h"
34#include "gdbcmd.h"
015a42b4 35#include "cp-abi.h"
ae5a43e0 36#include "hashtab.h"
8de20a37 37#include "cp-support.h"
ca092b61
DE
38#include "bcache.h"
39#include "dwarf2loc.h"
80180f79 40#include "gdbcore.h"
ac3aafc7 41
6403aeea
SW
42/* Initialize BADNESS constants. */
43
a9d5ef47 44const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 45
a9d5ef47
SW
46const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 48
a9d5ef47 49const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 50
a9d5ef47
SW
51const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 58const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
59const struct rank BASE_CONVERSION_BADNESS = {2,0};
60const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
da096638 61const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 62const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 63const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 64
8da61cc4 65/* Floatformat pairs. */
f9e9243a
UW
66const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
69};
8da61cc4
DJ
70const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
73};
74const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
77};
78const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
81};
82const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
84 &floatformat_i387_ext
85};
86const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
89};
90const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
93};
94const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
97};
98const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
101};
102const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_vax_f,
104 &floatformat_vax_f
105};
106const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_d,
108 &floatformat_vax_d
109};
b14d30e1 110const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
f5aee5ee
AM
111 &floatformat_ibm_long_double_big,
112 &floatformat_ibm_long_double_little
b14d30e1 113};
8da61cc4 114
2873700e
KS
115/* Should opaque types be resolved? */
116
117static int opaque_type_resolution = 1;
118
119/* A flag to enable printing of debugging information of C++
120 overloading. */
121
122unsigned int overload_debug = 0;
123
a451cb65
KS
124/* A flag to enable strict type checking. */
125
126static int strict_type_checking = 1;
127
2873700e 128/* A function to show whether opaque types are resolved. */
5212577a 129
920d2a44
AC
130static void
131show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
132 struct cmd_list_element *c,
133 const char *value)
920d2a44 134{
3e43a32a
MS
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
137 value);
138}
139
2873700e 140/* A function to show whether C++ overload debugging is enabled. */
5212577a 141
920d2a44
AC
142static void
143show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145{
7ba81444
MS
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
147 value);
920d2a44 148}
c906108c 149
a451cb65
KS
150/* A function to show the status of strict type checking. */
151
152static void
153show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155{
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
157}
158
5212577a 159\f
e9bb382b
UW
160/* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
c906108c
SS
163
164struct type *
fba45db2 165alloc_type (struct objfile *objfile)
c906108c 166{
52f0bd74 167 struct type *type;
c906108c 168
e9bb382b
UW
169 gdb_assert (objfile != NULL);
170
7ba81444 171 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
174 struct main_type);
175 OBJSTAT (objfile, n_types++);
c906108c 176
e9bb382b
UW
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
c906108c 179
7ba81444 180 /* Initialize the fields that might not be zero. */
c906108c
SS
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
c906108c 183 TYPE_VPTR_FIELDNO (type) = -1;
2fdde8f8 184 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 185
c16abbde 186 return type;
c906108c
SS
187}
188
e9bb382b
UW
189/* Allocate a new GDBARCH-associated type structure and fill it
190 with some defaults. Space for the type structure is allocated
191 on the heap. */
192
193struct type *
194alloc_type_arch (struct gdbarch *gdbarch)
195{
196 struct type *type;
197
198 gdb_assert (gdbarch != NULL);
199
200 /* Alloc the structure and start off with all fields zeroed. */
201
41bf6aca
TT
202 type = XCNEW (struct type);
203 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
e9bb382b
UW
204
205 TYPE_OBJFILE_OWNED (type) = 0;
206 TYPE_OWNER (type).gdbarch = gdbarch;
207
208 /* Initialize the fields that might not be zero. */
209
210 TYPE_CODE (type) = TYPE_CODE_UNDEF;
211 TYPE_VPTR_FIELDNO (type) = -1;
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215}
216
217/* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221struct type *
222alloc_type_copy (const struct type *type)
223{
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228}
229
230/* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233struct gdbarch *
234get_type_arch (const struct type *type)
235{
236 if (TYPE_OBJFILE_OWNED (type))
237 return get_objfile_arch (TYPE_OWNER (type).objfile);
238 else
239 return TYPE_OWNER (type).gdbarch;
240}
241
99ad9427
YQ
242/* See gdbtypes.h. */
243
244struct type *
245get_target_type (struct type *type)
246{
247 if (type != NULL)
248 {
249 type = TYPE_TARGET_TYPE (type);
250 if (type != NULL)
251 type = check_typedef (type);
252 }
253
254 return type;
255}
256
2fdde8f8
DJ
257/* Alloc a new type instance structure, fill it with some defaults,
258 and point it at OLDTYPE. Allocate the new type instance from the
259 same place as OLDTYPE. */
260
261static struct type *
262alloc_type_instance (struct type *oldtype)
263{
264 struct type *type;
265
266 /* Allocate the structure. */
267
e9bb382b 268 if (! TYPE_OBJFILE_OWNED (oldtype))
41bf6aca 269 type = XCNEW (struct type);
2fdde8f8 270 else
1deafd4e
PA
271 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
272 struct type);
273
2fdde8f8
DJ
274 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
275
276 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
277
c16abbde 278 return type;
2fdde8f8
DJ
279}
280
281/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 282 replacing it with something else. Preserve owner information. */
5212577a 283
2fdde8f8
DJ
284static void
285smash_type (struct type *type)
286{
e9bb382b
UW
287 int objfile_owned = TYPE_OBJFILE_OWNED (type);
288 union type_owner owner = TYPE_OWNER (type);
289
2fdde8f8
DJ
290 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
291
e9bb382b
UW
292 /* Restore owner information. */
293 TYPE_OBJFILE_OWNED (type) = objfile_owned;
294 TYPE_OWNER (type) = owner;
295
2fdde8f8
DJ
296 /* For now, delete the rings. */
297 TYPE_CHAIN (type) = type;
298
299 /* For now, leave the pointer/reference types alone. */
300}
301
c906108c
SS
302/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
303 to a pointer to memory where the pointer type should be stored.
304 If *TYPEPTR is zero, update it to point to the pointer type we return.
305 We allocate new memory if needed. */
306
307struct type *
fba45db2 308make_pointer_type (struct type *type, struct type **typeptr)
c906108c 309{
52f0bd74 310 struct type *ntype; /* New type */
053cb41b 311 struct type *chain;
c906108c
SS
312
313 ntype = TYPE_POINTER_TYPE (type);
314
c5aa993b 315 if (ntype)
c906108c 316 {
c5aa993b 317 if (typeptr == 0)
7ba81444
MS
318 return ntype; /* Don't care about alloc,
319 and have new type. */
c906108c 320 else if (*typeptr == 0)
c5aa993b 321 {
7ba81444 322 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 323 return ntype;
c5aa993b 324 }
c906108c
SS
325 }
326
327 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
328 {
e9bb382b 329 ntype = alloc_type_copy (type);
c906108c
SS
330 if (typeptr)
331 *typeptr = ntype;
332 }
7ba81444 333 else /* We have storage, but need to reset it. */
c906108c
SS
334 {
335 ntype = *typeptr;
053cb41b 336 chain = TYPE_CHAIN (ntype);
2fdde8f8 337 smash_type (ntype);
053cb41b 338 TYPE_CHAIN (ntype) = chain;
c906108c
SS
339 }
340
341 TYPE_TARGET_TYPE (ntype) = type;
342 TYPE_POINTER_TYPE (type) = ntype;
343
5212577a 344 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 345
50810684
UW
346 TYPE_LENGTH (ntype)
347 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
348 TYPE_CODE (ntype) = TYPE_CODE_PTR;
349
67b2adb2 350 /* Mark pointers as unsigned. The target converts between pointers
76e71323 351 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 352 gdbarch_address_to_pointer. */
876cecd0 353 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 354
053cb41b
JB
355 /* Update the length of all the other variants of this type. */
356 chain = TYPE_CHAIN (ntype);
357 while (chain != ntype)
358 {
359 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
360 chain = TYPE_CHAIN (chain);
361 }
362
c906108c
SS
363 return ntype;
364}
365
366/* Given a type TYPE, return a type of pointers to that type.
367 May need to construct such a type if this is the first use. */
368
369struct type *
fba45db2 370lookup_pointer_type (struct type *type)
c906108c 371{
c5aa993b 372 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
373}
374
7ba81444
MS
375/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
376 points to a pointer to memory where the reference type should be
377 stored. If *TYPEPTR is zero, update it to point to the reference
378 type we return. We allocate new memory if needed. */
c906108c
SS
379
380struct type *
fba45db2 381make_reference_type (struct type *type, struct type **typeptr)
c906108c 382{
52f0bd74 383 struct type *ntype; /* New type */
1e98b326 384 struct type *chain;
c906108c
SS
385
386 ntype = TYPE_REFERENCE_TYPE (type);
387
c5aa993b 388 if (ntype)
c906108c 389 {
c5aa993b 390 if (typeptr == 0)
7ba81444
MS
391 return ntype; /* Don't care about alloc,
392 and have new type. */
c906108c 393 else if (*typeptr == 0)
c5aa993b 394 {
7ba81444 395 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 396 return ntype;
c5aa993b 397 }
c906108c
SS
398 }
399
400 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
401 {
e9bb382b 402 ntype = alloc_type_copy (type);
c906108c
SS
403 if (typeptr)
404 *typeptr = ntype;
405 }
7ba81444 406 else /* We have storage, but need to reset it. */
c906108c
SS
407 {
408 ntype = *typeptr;
1e98b326 409 chain = TYPE_CHAIN (ntype);
2fdde8f8 410 smash_type (ntype);
1e98b326 411 TYPE_CHAIN (ntype) = chain;
c906108c
SS
412 }
413
414 TYPE_TARGET_TYPE (ntype) = type;
415 TYPE_REFERENCE_TYPE (type) = ntype;
416
7ba81444
MS
417 /* FIXME! Assume the machine has only one representation for
418 references, and that it matches the (only) representation for
419 pointers! */
c906108c 420
50810684
UW
421 TYPE_LENGTH (ntype) =
422 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c 423 TYPE_CODE (ntype) = TYPE_CODE_REF;
c5aa993b 424
c906108c
SS
425 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
426 TYPE_REFERENCE_TYPE (type) = ntype;
427
1e98b326
JB
428 /* Update the length of all the other variants of this type. */
429 chain = TYPE_CHAIN (ntype);
430 while (chain != ntype)
431 {
432 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
433 chain = TYPE_CHAIN (chain);
434 }
435
c906108c
SS
436 return ntype;
437}
438
7ba81444
MS
439/* Same as above, but caller doesn't care about memory allocation
440 details. */
c906108c
SS
441
442struct type *
fba45db2 443lookup_reference_type (struct type *type)
c906108c 444{
c5aa993b 445 return make_reference_type (type, (struct type **) 0);
c906108c
SS
446}
447
7ba81444
MS
448/* Lookup a function type that returns type TYPE. TYPEPTR, if
449 nonzero, points to a pointer to memory where the function type
450 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 451 function type we return. We allocate new memory if needed. */
c906108c
SS
452
453struct type *
0c8b41f1 454make_function_type (struct type *type, struct type **typeptr)
c906108c 455{
52f0bd74 456 struct type *ntype; /* New type */
c906108c
SS
457
458 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
459 {
e9bb382b 460 ntype = alloc_type_copy (type);
c906108c
SS
461 if (typeptr)
462 *typeptr = ntype;
463 }
7ba81444 464 else /* We have storage, but need to reset it. */
c906108c
SS
465 {
466 ntype = *typeptr;
2fdde8f8 467 smash_type (ntype);
c906108c
SS
468 }
469
470 TYPE_TARGET_TYPE (ntype) = type;
471
472 TYPE_LENGTH (ntype) = 1;
473 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 474
b6cdc2c1
JK
475 INIT_FUNC_SPECIFIC (ntype);
476
c906108c
SS
477 return ntype;
478}
479
c906108c
SS
480/* Given a type TYPE, return a type of functions that return that type.
481 May need to construct such a type if this is the first use. */
482
483struct type *
fba45db2 484lookup_function_type (struct type *type)
c906108c 485{
0c8b41f1 486 return make_function_type (type, (struct type **) 0);
c906108c
SS
487}
488
71918a86 489/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
490 function type. If the final type in PARAM_TYPES is NULL, make a
491 varargs function. */
71918a86
TT
492
493struct type *
494lookup_function_type_with_arguments (struct type *type,
495 int nparams,
496 struct type **param_types)
497{
498 struct type *fn = make_function_type (type, (struct type **) 0);
499 int i;
500
e314d629 501 if (nparams > 0)
a6fb9c08 502 {
e314d629
TT
503 if (param_types[nparams - 1] == NULL)
504 {
505 --nparams;
506 TYPE_VARARGS (fn) = 1;
507 }
508 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
509 == TYPE_CODE_VOID)
510 {
511 --nparams;
512 /* Caller should have ensured this. */
513 gdb_assert (nparams == 0);
514 TYPE_PROTOTYPED (fn) = 1;
515 }
a6fb9c08
TT
516 }
517
71918a86
TT
518 TYPE_NFIELDS (fn) = nparams;
519 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
520 for (i = 0; i < nparams; ++i)
521 TYPE_FIELD_TYPE (fn, i) = param_types[i];
522
523 return fn;
524}
525
47663de5
MS
526/* Identify address space identifier by name --
527 return the integer flag defined in gdbtypes.h. */
5212577a
DE
528
529int
50810684 530address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
47663de5 531{
8b2dbe47 532 int type_flags;
d8734c88 533
7ba81444 534 /* Check for known address space delimiters. */
47663de5 535 if (!strcmp (space_identifier, "code"))
876cecd0 536 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 537 else if (!strcmp (space_identifier, "data"))
876cecd0 538 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
539 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
540 && gdbarch_address_class_name_to_type_flags (gdbarch,
541 space_identifier,
542 &type_flags))
8b2dbe47 543 return type_flags;
47663de5 544 else
8a3fe4f8 545 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
546}
547
548/* Identify address space identifier by integer flag as defined in
7ba81444 549 gdbtypes.h -- return the string version of the adress space name. */
47663de5 550
321432c0 551const char *
50810684 552address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 553{
876cecd0 554 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 555 return "code";
876cecd0 556 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 557 return "data";
876cecd0 558 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
559 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
560 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
561 else
562 return NULL;
563}
564
2fdde8f8 565/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
566
567 If STORAGE is non-NULL, create the new type instance there.
568 STORAGE must be in the same obstack as TYPE. */
47663de5 569
b9362cc7 570static struct type *
2fdde8f8
DJ
571make_qualified_type (struct type *type, int new_flags,
572 struct type *storage)
47663de5
MS
573{
574 struct type *ntype;
575
576 ntype = type;
5f61c20e
JK
577 do
578 {
579 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
580 return ntype;
581 ntype = TYPE_CHAIN (ntype);
582 }
583 while (ntype != type);
47663de5 584
2fdde8f8
DJ
585 /* Create a new type instance. */
586 if (storage == NULL)
587 ntype = alloc_type_instance (type);
588 else
589 {
7ba81444
MS
590 /* If STORAGE was provided, it had better be in the same objfile
591 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
592 if one objfile is freed and the other kept, we'd have
593 dangling pointers. */
ad766c0a
JB
594 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
595
2fdde8f8
DJ
596 ntype = storage;
597 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
598 TYPE_CHAIN (ntype) = ntype;
599 }
47663de5
MS
600
601 /* Pointers or references to the original type are not relevant to
2fdde8f8 602 the new type. */
47663de5
MS
603 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
604 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 605
2fdde8f8
DJ
606 /* Chain the new qualified type to the old type. */
607 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
608 TYPE_CHAIN (type) = ntype;
609
610 /* Now set the instance flags and return the new type. */
611 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 612
ab5d3da6
KB
613 /* Set length of new type to that of the original type. */
614 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
615
47663de5
MS
616 return ntype;
617}
618
2fdde8f8
DJ
619/* Make an address-space-delimited variant of a type -- a type that
620 is identical to the one supplied except that it has an address
621 space attribute attached to it (such as "code" or "data").
622
7ba81444
MS
623 The space attributes "code" and "data" are for Harvard
624 architectures. The address space attributes are for architectures
625 which have alternately sized pointers or pointers with alternate
626 representations. */
2fdde8f8
DJ
627
628struct type *
629make_type_with_address_space (struct type *type, int space_flag)
630{
2fdde8f8 631 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
632 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
633 | TYPE_INSTANCE_FLAG_DATA_SPACE
634 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
635 | space_flag);
636
637 return make_qualified_type (type, new_flags, NULL);
638}
c906108c
SS
639
640/* Make a "c-v" variant of a type -- a type that is identical to the
641 one supplied except that it may have const or volatile attributes
642 CNST is a flag for setting the const attribute
643 VOLTL is a flag for setting the volatile attribute
644 TYPE is the base type whose variant we are creating.
c906108c 645
ad766c0a
JB
646 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
647 storage to hold the new qualified type; *TYPEPTR and TYPE must be
648 in the same objfile. Otherwise, allocate fresh memory for the new
649 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
650 new type we construct. */
5212577a 651
c906108c 652struct type *
7ba81444
MS
653make_cv_type (int cnst, int voltl,
654 struct type *type,
655 struct type **typeptr)
c906108c 656{
52f0bd74 657 struct type *ntype; /* New type */
c906108c 658
2fdde8f8 659 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
660 & ~(TYPE_INSTANCE_FLAG_CONST
661 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 662
c906108c 663 if (cnst)
876cecd0 664 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
665
666 if (voltl)
876cecd0 667 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 668
2fdde8f8 669 if (typeptr && *typeptr != NULL)
a02fd225 670 {
ad766c0a
JB
671 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
672 a C-V variant chain that threads across objfiles: if one
673 objfile gets freed, then the other has a broken C-V chain.
674
675 This code used to try to copy over the main type from TYPE to
676 *TYPEPTR if they were in different objfiles, but that's
677 wrong, too: TYPE may have a field list or member function
678 lists, which refer to types of their own, etc. etc. The
679 whole shebang would need to be copied over recursively; you
680 can't have inter-objfile pointers. The only thing to do is
681 to leave stub types as stub types, and look them up afresh by
682 name each time you encounter them. */
683 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
684 }
685
7ba81444
MS
686 ntype = make_qualified_type (type, new_flags,
687 typeptr ? *typeptr : NULL);
c906108c 688
2fdde8f8
DJ
689 if (typeptr != NULL)
690 *typeptr = ntype;
a02fd225 691
2fdde8f8 692 return ntype;
a02fd225 693}
c906108c 694
06d66ee9
TT
695/* Make a 'restrict'-qualified version of TYPE. */
696
697struct type *
698make_restrict_type (struct type *type)
699{
700 return make_qualified_type (type,
701 (TYPE_INSTANCE_FLAGS (type)
702 | TYPE_INSTANCE_FLAG_RESTRICT),
703 NULL);
704}
705
f1660027
TT
706/* Make a type without const, volatile, or restrict. */
707
708struct type *
709make_unqualified_type (struct type *type)
710{
711 return make_qualified_type (type,
712 (TYPE_INSTANCE_FLAGS (type)
713 & ~(TYPE_INSTANCE_FLAG_CONST
714 | TYPE_INSTANCE_FLAG_VOLATILE
715 | TYPE_INSTANCE_FLAG_RESTRICT)),
716 NULL);
717}
718
2fdde8f8
DJ
719/* Replace the contents of ntype with the type *type. This changes the
720 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
721 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 722
cda6c68a
JB
723 In order to build recursive types, it's inevitable that we'll need
724 to update types in place --- but this sort of indiscriminate
725 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
726 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
727 clear if more steps are needed. */
5212577a 728
dd6bda65
DJ
729void
730replace_type (struct type *ntype, struct type *type)
731{
ab5d3da6 732 struct type *chain;
dd6bda65 733
ad766c0a
JB
734 /* These two types had better be in the same objfile. Otherwise,
735 the assignment of one type's main type structure to the other
736 will produce a type with references to objects (names; field
737 lists; etc.) allocated on an objfile other than its own. */
738 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
739
2fdde8f8 740 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 741
7ba81444
MS
742 /* The type length is not a part of the main type. Update it for
743 each type on the variant chain. */
ab5d3da6 744 chain = ntype;
5f61c20e
JK
745 do
746 {
747 /* Assert that this element of the chain has no address-class bits
748 set in its flags. Such type variants might have type lengths
749 which are supposed to be different from the non-address-class
750 variants. This assertion shouldn't ever be triggered because
751 symbol readers which do construct address-class variants don't
752 call replace_type(). */
753 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
754
755 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
756 chain = TYPE_CHAIN (chain);
757 }
758 while (ntype != chain);
ab5d3da6 759
2fdde8f8
DJ
760 /* Assert that the two types have equivalent instance qualifiers.
761 This should be true for at least all of our debug readers. */
762 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
763}
764
c906108c
SS
765/* Implement direct support for MEMBER_TYPE in GNU C++.
766 May need to construct such a type if this is the first use.
767 The TYPE is the type of the member. The DOMAIN is the type
768 of the aggregate that the member belongs to. */
769
770struct type *
0d5de010 771lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 772{
52f0bd74 773 struct type *mtype;
c906108c 774
e9bb382b 775 mtype = alloc_type_copy (type);
0d5de010 776 smash_to_memberptr_type (mtype, domain, type);
c16abbde 777 return mtype;
c906108c
SS
778}
779
0d5de010
DJ
780/* Return a pointer-to-method type, for a method of type TO_TYPE. */
781
782struct type *
783lookup_methodptr_type (struct type *to_type)
784{
785 struct type *mtype;
786
e9bb382b 787 mtype = alloc_type_copy (to_type);
0b92b5bb 788 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
789 return mtype;
790}
791
7ba81444
MS
792/* Allocate a stub method whose return type is TYPE. This apparently
793 happens for speed of symbol reading, since parsing out the
794 arguments to the method is cpu-intensive, the way we are doing it.
795 So, we will fill in arguments later. This always returns a fresh
796 type. */
c906108c
SS
797
798struct type *
fba45db2 799allocate_stub_method (struct type *type)
c906108c
SS
800{
801 struct type *mtype;
802
e9bb382b
UW
803 mtype = alloc_type_copy (type);
804 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
805 TYPE_LENGTH (mtype) = 1;
806 TYPE_STUB (mtype) = 1;
c906108c
SS
807 TYPE_TARGET_TYPE (mtype) = type;
808 /* _DOMAIN_TYPE (mtype) = unknown yet */
c16abbde 809 return mtype;
c906108c
SS
810}
811
729efb13
SA
812/* Create a range type with a dynamic range from LOW_BOUND to
813 HIGH_BOUND, inclusive. See create_range_type for further details. */
c906108c
SS
814
815struct type *
729efb13
SA
816create_range_type (struct type *result_type, struct type *index_type,
817 const struct dynamic_prop *low_bound,
818 const struct dynamic_prop *high_bound)
c906108c
SS
819{
820 if (result_type == NULL)
e9bb382b 821 result_type = alloc_type_copy (index_type);
c906108c
SS
822 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
823 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 824 if (TYPE_STUB (index_type))
876cecd0 825 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
826 else
827 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
729efb13 828
43bbcdc2
PH
829 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
830 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
729efb13
SA
831 TYPE_RANGE_DATA (result_type)->low = *low_bound;
832 TYPE_RANGE_DATA (result_type)->high = *high_bound;
c906108c 833
729efb13 834 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
876cecd0 835 TYPE_UNSIGNED (result_type) = 1;
c906108c 836
45e44d27
JB
837 /* Ada allows the declaration of range types whose upper bound is
838 less than the lower bound, so checking the lower bound is not
839 enough. Make sure we do not mark a range type whose upper bound
840 is negative as unsigned. */
841 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
842 TYPE_UNSIGNED (result_type) = 0;
843
262452ec 844 return result_type;
c906108c
SS
845}
846
729efb13
SA
847/* Create a range type using either a blank type supplied in
848 RESULT_TYPE, or creating a new type, inheriting the objfile from
849 INDEX_TYPE.
850
851 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
852 to HIGH_BOUND, inclusive.
853
854 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
855 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
856
857struct type *
858create_static_range_type (struct type *result_type, struct type *index_type,
859 LONGEST low_bound, LONGEST high_bound)
860{
861 struct dynamic_prop low, high;
862
863 low.kind = PROP_CONST;
864 low.data.const_val = low_bound;
865
866 high.kind = PROP_CONST;
867 high.data.const_val = high_bound;
868
869 result_type = create_range_type (result_type, index_type, &low, &high);
870
871 return result_type;
872}
873
80180f79
SA
874/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
875 are static, otherwise returns 0. */
876
877static int
878has_static_range (const struct range_bounds *bounds)
879{
880 return (bounds->low.kind == PROP_CONST
881 && bounds->high.kind == PROP_CONST);
882}
883
884
7ba81444
MS
885/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
886 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
887 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
888
889int
fba45db2 890get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c
SS
891{
892 CHECK_TYPEDEF (type);
893 switch (TYPE_CODE (type))
894 {
895 case TYPE_CODE_RANGE:
896 *lowp = TYPE_LOW_BOUND (type);
897 *highp = TYPE_HIGH_BOUND (type);
898 return 1;
899 case TYPE_CODE_ENUM:
900 if (TYPE_NFIELDS (type) > 0)
901 {
902 /* The enums may not be sorted by value, so search all
0963b4bd 903 entries. */
c906108c
SS
904 int i;
905
14e75d8e 906 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
c906108c
SS
907 for (i = 0; i < TYPE_NFIELDS (type); i++)
908 {
14e75d8e
JK
909 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
910 *lowp = TYPE_FIELD_ENUMVAL (type, i);
911 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
912 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
913 }
914
7ba81444 915 /* Set unsigned indicator if warranted. */
c5aa993b 916 if (*lowp >= 0)
c906108c 917 {
876cecd0 918 TYPE_UNSIGNED (type) = 1;
c906108c
SS
919 }
920 }
921 else
922 {
923 *lowp = 0;
924 *highp = -1;
925 }
926 return 0;
927 case TYPE_CODE_BOOL:
928 *lowp = 0;
929 *highp = 1;
930 return 0;
931 case TYPE_CODE_INT:
c5aa993b 932 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
933 return -1;
934 if (!TYPE_UNSIGNED (type))
935 {
c5aa993b 936 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
937 *highp = -*lowp - 1;
938 return 0;
939 }
7ba81444 940 /* ... fall through for unsigned ints ... */
c906108c
SS
941 case TYPE_CODE_CHAR:
942 *lowp = 0;
943 /* This round-about calculation is to avoid shifting by
7b83ea04 944 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 945 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
946 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
947 *highp = (*highp - 1) | *highp;
948 return 0;
949 default:
950 return -1;
951 }
952}
953
dbc98a8b
KW
954/* Assuming TYPE is a simple, non-empty array type, compute its upper
955 and lower bound. Save the low bound into LOW_BOUND if not NULL.
956 Save the high bound into HIGH_BOUND if not NULL.
957
0963b4bd 958 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
959 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
960
961 We now simply use get_discrete_bounds call to get the values
962 of the low and high bounds.
963 get_discrete_bounds can return three values:
964 1, meaning that index is a range,
965 0, meaning that index is a discrete type,
966 or -1 for failure. */
967
968int
969get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
970{
971 struct type *index = TYPE_INDEX_TYPE (type);
972 LONGEST low = 0;
973 LONGEST high = 0;
974 int res;
975
976 if (index == NULL)
977 return 0;
978
979 res = get_discrete_bounds (index, &low, &high);
980 if (res == -1)
981 return 0;
982
983 /* Check if the array bounds are undefined. */
984 if (res == 1
985 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
986 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
987 return 0;
988
989 if (low_bound)
990 *low_bound = low;
991
992 if (high_bound)
993 *high_bound = high;
994
995 return 1;
996}
997
7ba81444
MS
998/* Create an array type using either a blank type supplied in
999 RESULT_TYPE, or creating a new type, inheriting the objfile from
1000 RANGE_TYPE.
c906108c
SS
1001
1002 Elements will be of type ELEMENT_TYPE, the indices will be of type
1003 RANGE_TYPE.
1004
dc53a7ad
JB
1005 If BIT_STRIDE is not zero, build a packed array type whose element
1006 size is BIT_STRIDE. Otherwise, ignore this parameter.
1007
7ba81444
MS
1008 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1009 sure it is TYPE_CODE_UNDEF before we bash it into an array
1010 type? */
c906108c
SS
1011
1012struct type *
dc53a7ad
JB
1013create_array_type_with_stride (struct type *result_type,
1014 struct type *element_type,
1015 struct type *range_type,
1016 unsigned int bit_stride)
c906108c 1017{
c906108c 1018 if (result_type == NULL)
e9bb382b
UW
1019 result_type = alloc_type_copy (range_type);
1020
c906108c
SS
1021 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1022 TYPE_TARGET_TYPE (result_type) = element_type;
80180f79
SA
1023 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1024 {
1025 LONGEST low_bound, high_bound;
1026
1027 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1028 low_bound = high_bound = 0;
1029 CHECK_TYPEDEF (element_type);
1030 /* Be careful when setting the array length. Ada arrays can be
1031 empty arrays with the high_bound being smaller than the low_bound.
1032 In such cases, the array length should be zero. */
1033 if (high_bound < low_bound)
1034 TYPE_LENGTH (result_type) = 0;
1035 else if (bit_stride > 0)
1036 TYPE_LENGTH (result_type) =
1037 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1038 else
1039 TYPE_LENGTH (result_type) =
1040 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1041 }
ab0d6e0d 1042 else
80180f79
SA
1043 {
1044 /* This type is dynamic and its length needs to be computed
1045 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1046 undefined by setting it to zero. Although we are not expected
1047 to trust TYPE_LENGTH in this case, setting the size to zero
1048 allows us to avoid allocating objects of random sizes in case
1049 we accidently do. */
1050 TYPE_LENGTH (result_type) = 0;
1051 }
1052
c906108c
SS
1053 TYPE_NFIELDS (result_type) = 1;
1054 TYPE_FIELDS (result_type) =
1deafd4e 1055 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 1056 TYPE_INDEX_TYPE (result_type) = range_type;
c906108c 1057 TYPE_VPTR_FIELDNO (result_type) = -1;
dc53a7ad
JB
1058 if (bit_stride > 0)
1059 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
c906108c 1060
0963b4bd 1061 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
c906108c 1062 if (TYPE_LENGTH (result_type) == 0)
876cecd0 1063 TYPE_TARGET_STUB (result_type) = 1;
c906108c 1064
c16abbde 1065 return result_type;
c906108c
SS
1066}
1067
dc53a7ad
JB
1068/* Same as create_array_type_with_stride but with no bit_stride
1069 (BIT_STRIDE = 0), thus building an unpacked array. */
1070
1071struct type *
1072create_array_type (struct type *result_type,
1073 struct type *element_type,
1074 struct type *range_type)
1075{
1076 return create_array_type_with_stride (result_type, element_type,
1077 range_type, 0);
1078}
1079
e3506a9f
UW
1080struct type *
1081lookup_array_range_type (struct type *element_type,
63375b74 1082 LONGEST low_bound, LONGEST high_bound)
e3506a9f 1083{
50810684 1084 struct gdbarch *gdbarch = get_type_arch (element_type);
e3506a9f
UW
1085 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1086 struct type *range_type
0c9c3474 1087 = create_static_range_type (NULL, index_type, low_bound, high_bound);
d8734c88 1088
e3506a9f
UW
1089 return create_array_type (NULL, element_type, range_type);
1090}
1091
7ba81444
MS
1092/* Create a string type using either a blank type supplied in
1093 RESULT_TYPE, or creating a new type. String types are similar
1094 enough to array of char types that we can use create_array_type to
1095 build the basic type and then bash it into a string type.
c906108c
SS
1096
1097 For fixed length strings, the range type contains 0 as the lower
1098 bound and the length of the string minus one as the upper bound.
1099
7ba81444
MS
1100 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1101 sure it is TYPE_CODE_UNDEF before we bash it into a string
1102 type? */
c906108c
SS
1103
1104struct type *
3b7538c0
UW
1105create_string_type (struct type *result_type,
1106 struct type *string_char_type,
7ba81444 1107 struct type *range_type)
c906108c
SS
1108{
1109 result_type = create_array_type (result_type,
f290d38e 1110 string_char_type,
c906108c
SS
1111 range_type);
1112 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 1113 return result_type;
c906108c
SS
1114}
1115
e3506a9f
UW
1116struct type *
1117lookup_string_range_type (struct type *string_char_type,
63375b74 1118 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1119{
1120 struct type *result_type;
d8734c88 1121
e3506a9f
UW
1122 result_type = lookup_array_range_type (string_char_type,
1123 low_bound, high_bound);
1124 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1125 return result_type;
1126}
1127
c906108c 1128struct type *
fba45db2 1129create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1130{
c906108c 1131 if (result_type == NULL)
e9bb382b
UW
1132 result_type = alloc_type_copy (domain_type);
1133
c906108c
SS
1134 TYPE_CODE (result_type) = TYPE_CODE_SET;
1135 TYPE_NFIELDS (result_type) = 1;
1deafd4e 1136 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 1137
74a9bb82 1138 if (!TYPE_STUB (domain_type))
c906108c 1139 {
f9780d5b 1140 LONGEST low_bound, high_bound, bit_length;
d8734c88 1141
c906108c
SS
1142 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1143 low_bound = high_bound = 0;
1144 bit_length = high_bound - low_bound + 1;
1145 TYPE_LENGTH (result_type)
1146 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1147 if (low_bound >= 0)
876cecd0 1148 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
1149 }
1150 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1151
c16abbde 1152 return result_type;
c906108c
SS
1153}
1154
ea37ba09
DJ
1155/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1156 and any array types nested inside it. */
1157
1158void
1159make_vector_type (struct type *array_type)
1160{
1161 struct type *inner_array, *elt_type;
1162 int flags;
1163
1164 /* Find the innermost array type, in case the array is
1165 multi-dimensional. */
1166 inner_array = array_type;
1167 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1168 inner_array = TYPE_TARGET_TYPE (inner_array);
1169
1170 elt_type = TYPE_TARGET_TYPE (inner_array);
1171 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1172 {
2844d6b5 1173 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1174 elt_type = make_qualified_type (elt_type, flags, NULL);
1175 TYPE_TARGET_TYPE (inner_array) = elt_type;
1176 }
1177
876cecd0 1178 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1179}
1180
794ac428 1181struct type *
ac3aafc7
EZ
1182init_vector_type (struct type *elt_type, int n)
1183{
1184 struct type *array_type;
d8734c88 1185
e3506a9f 1186 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1187 make_vector_type (array_type);
ac3aafc7
EZ
1188 return array_type;
1189}
1190
0d5de010
DJ
1191/* Smash TYPE to be a type of pointers to members of DOMAIN with type
1192 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1193 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1194 TYPE doesn't include the offset (that's the value of the MEMBER
1195 itself), but does include the structure type into which it points
1196 (for some reason).
c906108c 1197
7ba81444
MS
1198 When "smashing" the type, we preserve the objfile that the old type
1199 pointed to, since we aren't changing where the type is actually
c906108c
SS
1200 allocated. */
1201
1202void
0d5de010
DJ
1203smash_to_memberptr_type (struct type *type, struct type *domain,
1204 struct type *to_type)
c906108c 1205{
2fdde8f8 1206 smash_type (type);
c906108c
SS
1207 TYPE_TARGET_TYPE (type) = to_type;
1208 TYPE_DOMAIN_TYPE (type) = domain;
0d5de010
DJ
1209 /* Assume that a data member pointer is the same size as a normal
1210 pointer. */
50810684
UW
1211 TYPE_LENGTH (type)
1212 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
0d5de010 1213 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c
SS
1214}
1215
0b92b5bb
TT
1216/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1217
1218 When "smashing" the type, we preserve the objfile that the old type
1219 pointed to, since we aren't changing where the type is actually
1220 allocated. */
1221
1222void
1223smash_to_methodptr_type (struct type *type, struct type *to_type)
1224{
1225 smash_type (type);
1226 TYPE_TARGET_TYPE (type) = to_type;
1227 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1228 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1229 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1230}
1231
c906108c
SS
1232/* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1233 METHOD just means `function that gets an extra "this" argument'.
1234
7ba81444
MS
1235 When "smashing" the type, we preserve the objfile that the old type
1236 pointed to, since we aren't changing where the type is actually
c906108c
SS
1237 allocated. */
1238
1239void
fba45db2 1240smash_to_method_type (struct type *type, struct type *domain,
ad2f7632
DJ
1241 struct type *to_type, struct field *args,
1242 int nargs, int varargs)
c906108c 1243{
2fdde8f8 1244 smash_type (type);
c906108c
SS
1245 TYPE_TARGET_TYPE (type) = to_type;
1246 TYPE_DOMAIN_TYPE (type) = domain;
ad2f7632
DJ
1247 TYPE_FIELDS (type) = args;
1248 TYPE_NFIELDS (type) = nargs;
1249 if (varargs)
876cecd0 1250 TYPE_VARARGS (type) = 1;
c906108c
SS
1251 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1252 TYPE_CODE (type) = TYPE_CODE_METHOD;
1253}
1254
1255/* Return a typename for a struct/union/enum type without "struct ",
1256 "union ", or "enum ". If the type has a NULL name, return NULL. */
1257
0d5cff50 1258const char *
aa1ee363 1259type_name_no_tag (const struct type *type)
c906108c
SS
1260{
1261 if (TYPE_TAG_NAME (type) != NULL)
1262 return TYPE_TAG_NAME (type);
1263
7ba81444
MS
1264 /* Is there code which expects this to return the name if there is
1265 no tag name? My guess is that this is mainly used for C++ in
1266 cases where the two will always be the same. */
c906108c
SS
1267 return TYPE_NAME (type);
1268}
1269
d8228535
JK
1270/* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1271 Since GCC PR debug/47510 DWARF provides associated information to detect the
1272 anonymous class linkage name from its typedef.
1273
1274 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1275 apply it itself. */
1276
1277const char *
1278type_name_no_tag_or_error (struct type *type)
1279{
1280 struct type *saved_type = type;
1281 const char *name;
1282 struct objfile *objfile;
1283
1284 CHECK_TYPEDEF (type);
1285
1286 name = type_name_no_tag (type);
1287 if (name != NULL)
1288 return name;
1289
1290 name = type_name_no_tag (saved_type);
1291 objfile = TYPE_OBJFILE (saved_type);
1292 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
4262abfb
JK
1293 name ? name : "<anonymous>",
1294 objfile ? objfile_name (objfile) : "<arch>");
d8228535
JK
1295}
1296
7ba81444
MS
1297/* Lookup a typedef or primitive type named NAME, visible in lexical
1298 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1299 suitably defined. */
c906108c
SS
1300
1301struct type *
e6c014f2 1302lookup_typename (const struct language_defn *language,
ddd49eee 1303 struct gdbarch *gdbarch, const char *name,
34eaf542 1304 const struct block *block, int noerr)
c906108c 1305{
52f0bd74 1306 struct symbol *sym;
659c9f3a 1307 struct type *type;
c906108c 1308
774b6a14 1309 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
c51fe631
DE
1310 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1311 return SYMBOL_TYPE (sym);
1312
46b0da17 1313 type = language_lookup_primitive_type (language, gdbarch, name);
659c9f3a
DE
1314 if (type)
1315 return type;
c51fe631
DE
1316
1317 if (noerr)
1318 return NULL;
1319 error (_("No type named %s."), name);
c906108c
SS
1320}
1321
1322struct type *
e6c014f2 1323lookup_unsigned_typename (const struct language_defn *language,
0d5cff50 1324 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1325{
1326 char *uns = alloca (strlen (name) + 10);
1327
1328 strcpy (uns, "unsigned ");
1329 strcpy (uns + 9, name);
e6c014f2 1330 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
c906108c
SS
1331}
1332
1333struct type *
e6c014f2 1334lookup_signed_typename (const struct language_defn *language,
0d5cff50 1335 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1336{
1337 struct type *t;
1338 char *uns = alloca (strlen (name) + 8);
1339
1340 strcpy (uns, "signed ");
1341 strcpy (uns + 7, name);
e6c014f2 1342 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
7ba81444 1343 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1344 if (t != NULL)
1345 return t;
e6c014f2 1346 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
c906108c
SS
1347}
1348
1349/* Lookup a structure type named "struct NAME",
1350 visible in lexical block BLOCK. */
1351
1352struct type *
270140bd 1353lookup_struct (const char *name, const struct block *block)
c906108c 1354{
52f0bd74 1355 struct symbol *sym;
c906108c 1356
2570f2b7 1357 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1358
1359 if (sym == NULL)
1360 {
8a3fe4f8 1361 error (_("No struct type named %s."), name);
c906108c
SS
1362 }
1363 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1364 {
7ba81444
MS
1365 error (_("This context has class, union or enum %s, not a struct."),
1366 name);
c906108c
SS
1367 }
1368 return (SYMBOL_TYPE (sym));
1369}
1370
1371/* Lookup a union type named "union NAME",
1372 visible in lexical block BLOCK. */
1373
1374struct type *
270140bd 1375lookup_union (const char *name, const struct block *block)
c906108c 1376{
52f0bd74 1377 struct symbol *sym;
c5aa993b 1378 struct type *t;
c906108c 1379
2570f2b7 1380 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1381
1382 if (sym == NULL)
8a3fe4f8 1383 error (_("No union type named %s."), name);
c906108c 1384
c5aa993b 1385 t = SYMBOL_TYPE (sym);
c906108c
SS
1386
1387 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1388 return t;
c906108c 1389
7ba81444
MS
1390 /* If we get here, it's not a union. */
1391 error (_("This context has class, struct or enum %s, not a union."),
1392 name);
c906108c
SS
1393}
1394
c906108c
SS
1395/* Lookup an enum type named "enum NAME",
1396 visible in lexical block BLOCK. */
1397
1398struct type *
270140bd 1399lookup_enum (const char *name, const struct block *block)
c906108c 1400{
52f0bd74 1401 struct symbol *sym;
c906108c 1402
2570f2b7 1403 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1404 if (sym == NULL)
1405 {
8a3fe4f8 1406 error (_("No enum type named %s."), name);
c906108c
SS
1407 }
1408 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1409 {
7ba81444
MS
1410 error (_("This context has class, struct or union %s, not an enum."),
1411 name);
c906108c
SS
1412 }
1413 return (SYMBOL_TYPE (sym));
1414}
1415
1416/* Lookup a template type named "template NAME<TYPE>",
1417 visible in lexical block BLOCK. */
1418
1419struct type *
7ba81444 1420lookup_template_type (char *name, struct type *type,
270140bd 1421 const struct block *block)
c906108c
SS
1422{
1423 struct symbol *sym;
7ba81444
MS
1424 char *nam = (char *)
1425 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1426
c906108c
SS
1427 strcpy (nam, name);
1428 strcat (nam, "<");
0004e5a2 1429 strcat (nam, TYPE_NAME (type));
0963b4bd 1430 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1431
2570f2b7 1432 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
c906108c
SS
1433
1434 if (sym == NULL)
1435 {
8a3fe4f8 1436 error (_("No template type named %s."), name);
c906108c
SS
1437 }
1438 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1439 {
7ba81444
MS
1440 error (_("This context has class, union or enum %s, not a struct."),
1441 name);
c906108c
SS
1442 }
1443 return (SYMBOL_TYPE (sym));
1444}
1445
7ba81444
MS
1446/* Given a type TYPE, lookup the type of the component of type named
1447 NAME.
c906108c 1448
7ba81444
MS
1449 TYPE can be either a struct or union, or a pointer or reference to
1450 a struct or union. If it is a pointer or reference, its target
1451 type is automatically used. Thus '.' and '->' are interchangable,
1452 as specified for the definitions of the expression element types
1453 STRUCTOP_STRUCT and STRUCTOP_PTR.
c906108c
SS
1454
1455 If NOERR is nonzero, return zero if NAME is not suitably defined.
1456 If NAME is the name of a baseclass type, return that type. */
1457
1458struct type *
d7561cbb 1459lookup_struct_elt_type (struct type *type, const char *name, int noerr)
c906108c
SS
1460{
1461 int i;
c92817ce 1462 char *typename;
c906108c
SS
1463
1464 for (;;)
1465 {
1466 CHECK_TYPEDEF (type);
1467 if (TYPE_CODE (type) != TYPE_CODE_PTR
1468 && TYPE_CODE (type) != TYPE_CODE_REF)
1469 break;
1470 type = TYPE_TARGET_TYPE (type);
1471 }
1472
687d6395
MS
1473 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1474 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1475 {
c92817ce
TT
1476 typename = type_to_string (type);
1477 make_cleanup (xfree, typename);
1478 error (_("Type %s is not a structure or union type."), typename);
c906108c
SS
1479 }
1480
1481#if 0
7ba81444
MS
1482 /* FIXME: This change put in by Michael seems incorrect for the case
1483 where the structure tag name is the same as the member name.
0963b4bd 1484 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
7ba81444 1485 foo; } bell;" Disabled by fnf. */
c906108c
SS
1486 {
1487 char *typename;
1488
1489 typename = type_name_no_tag (type);
762f08a3 1490 if (typename != NULL && strcmp (typename, name) == 0)
c906108c
SS
1491 return type;
1492 }
1493#endif
1494
1495 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1496 {
0d5cff50 1497 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1498
db577aea 1499 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1500 {
1501 return TYPE_FIELD_TYPE (type, i);
1502 }
f5a010c0
PM
1503 else if (!t_field_name || *t_field_name == '\0')
1504 {
d8734c88
MS
1505 struct type *subtype
1506 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1507
f5a010c0
PM
1508 if (subtype != NULL)
1509 return subtype;
1510 }
c906108c
SS
1511 }
1512
1513 /* OK, it's not in this class. Recursively check the baseclasses. */
1514 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1515 {
1516 struct type *t;
1517
9733fc94 1518 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
c906108c
SS
1519 if (t != NULL)
1520 {
1521 return t;
1522 }
1523 }
1524
1525 if (noerr)
1526 {
1527 return NULL;
1528 }
c5aa993b 1529
c92817ce
TT
1530 typename = type_to_string (type);
1531 make_cleanup (xfree, typename);
1532 error (_("Type %s has no component named %s."), typename, name);
c906108c
SS
1533}
1534
ed3ef339
DE
1535/* Store in *MAX the largest number representable by unsigned integer type
1536 TYPE. */
1537
1538void
1539get_unsigned_type_max (struct type *type, ULONGEST *max)
1540{
1541 unsigned int n;
1542
1543 CHECK_TYPEDEF (type);
1544 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1545 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1546
1547 /* Written this way to avoid overflow. */
1548 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1549 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1550}
1551
1552/* Store in *MIN, *MAX the smallest and largest numbers representable by
1553 signed integer type TYPE. */
1554
1555void
1556get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1557{
1558 unsigned int n;
1559
1560 CHECK_TYPEDEF (type);
1561 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1562 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1563
1564 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1565 *min = -((ULONGEST) 1 << (n - 1));
1566 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1567}
1568
81fe8080
DE
1569/* Lookup the vptr basetype/fieldno values for TYPE.
1570 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1571 vptr_fieldno. Also, if found and basetype is from the same objfile,
1572 cache the results.
1573 If not found, return -1 and ignore BASETYPEP.
1574 Callers should be aware that in some cases (for example,
c906108c 1575 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1576 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1577 this function will not be able to find the
7ba81444 1578 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1579 vptr_basetype will remain NULL or incomplete. */
c906108c 1580
81fe8080
DE
1581int
1582get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c
SS
1583{
1584 CHECK_TYPEDEF (type);
1585
1586 if (TYPE_VPTR_FIELDNO (type) < 0)
1587 {
1588 int i;
1589
7ba81444
MS
1590 /* We must start at zero in case the first (and only) baseclass
1591 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1592 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1593 {
81fe8080
DE
1594 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1595 int fieldno;
1596 struct type *basetype;
1597
1598 fieldno = get_vptr_fieldno (baseclass, &basetype);
1599 if (fieldno >= 0)
c906108c 1600 {
81fe8080 1601 /* If the type comes from a different objfile we can't cache
0963b4bd 1602 it, it may have a different lifetime. PR 2384 */
5ef73790 1603 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080
DE
1604 {
1605 TYPE_VPTR_FIELDNO (type) = fieldno;
1606 TYPE_VPTR_BASETYPE (type) = basetype;
1607 }
1608 if (basetypep)
1609 *basetypep = basetype;
1610 return fieldno;
c906108c
SS
1611 }
1612 }
81fe8080
DE
1613
1614 /* Not found. */
1615 return -1;
1616 }
1617 else
1618 {
1619 if (basetypep)
1620 *basetypep = TYPE_VPTR_BASETYPE (type);
1621 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1622 }
1623}
1624
44e1a9eb
DJ
1625static void
1626stub_noname_complaint (void)
1627{
e2e0b3e5 1628 complaint (&symfile_complaints, _("stub type has NULL name"));
44e1a9eb
DJ
1629}
1630
d98b7a16 1631/* Worker for is_dynamic_type. */
80180f79 1632
d98b7a16
TT
1633static int
1634is_dynamic_type_internal (struct type *type, int top_level)
80180f79
SA
1635{
1636 type = check_typedef (type);
1637
d98b7a16
TT
1638 /* We only want to recognize references at the outermost level. */
1639 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
80180f79
SA
1640 type = check_typedef (TYPE_TARGET_TYPE (type));
1641
3cdcd0ce
JB
1642 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1643 dynamic, even if the type itself is statically defined.
1644 From a user's point of view, this may appear counter-intuitive;
1645 but it makes sense in this context, because the point is to determine
1646 whether any part of the type needs to be resolved before it can
1647 be exploited. */
1648 if (TYPE_DATA_LOCATION (type) != NULL
1649 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1650 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1651 return 1;
1652
80180f79
SA
1653 switch (TYPE_CODE (type))
1654 {
6f8a3220
JB
1655 case TYPE_CODE_RANGE:
1656 return !has_static_range (TYPE_RANGE_DATA (type));
6f8a3220 1657
80180f79
SA
1658 case TYPE_CODE_ARRAY:
1659 {
80180f79 1660 gdb_assert (TYPE_NFIELDS (type) == 1);
6f8a3220
JB
1661
1662 /* The array is dynamic if either the bounds are dynamic,
1663 or the elements it contains have a dynamic contents. */
d98b7a16 1664 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
80180f79 1665 return 1;
d98b7a16 1666 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
80180f79 1667 }
012370f6
TT
1668
1669 case TYPE_CODE_STRUCT:
1670 case TYPE_CODE_UNION:
1671 {
1672 int i;
1673
1674 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1675 if (!field_is_static (&TYPE_FIELD (type, i))
d98b7a16 1676 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
012370f6
TT
1677 return 1;
1678 }
1679 break;
80180f79 1680 }
92e2a17f
TT
1681
1682 return 0;
80180f79
SA
1683}
1684
d98b7a16
TT
1685/* See gdbtypes.h. */
1686
1687int
1688is_dynamic_type (struct type *type)
1689{
1690 return is_dynamic_type_internal (type, 1);
1691}
1692
1693static struct type *resolve_dynamic_type_internal (struct type *type,
1694 CORE_ADDR addr,
1695 int top_level);
1696
08412b07
JB
1697/* Given a dynamic range type (dyn_range_type) and address,
1698 return a static version of that type. */
d190df30 1699
80180f79 1700static struct type *
08412b07 1701resolve_dynamic_range (struct type *dyn_range_type, CORE_ADDR addr)
80180f79
SA
1702{
1703 CORE_ADDR value;
6f8a3220 1704 struct type *static_range_type;
80180f79
SA
1705 const struct dynamic_prop *prop;
1706 const struct dwarf2_locexpr_baton *baton;
1707 struct dynamic_prop low_bound, high_bound;
1708
6f8a3220 1709 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
80180f79 1710
6f8a3220 1711 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
08412b07 1712 if (dwarf2_evaluate_property (prop, addr, &value))
80180f79
SA
1713 {
1714 low_bound.kind = PROP_CONST;
1715 low_bound.data.const_val = value;
1716 }
1717 else
1718 {
1719 low_bound.kind = PROP_UNDEFINED;
1720 low_bound.data.const_val = 0;
1721 }
1722
6f8a3220 1723 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
08412b07 1724 if (dwarf2_evaluate_property (prop, addr, &value))
80180f79
SA
1725 {
1726 high_bound.kind = PROP_CONST;
1727 high_bound.data.const_val = value;
c451ebe5 1728
6f8a3220 1729 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
c451ebe5
SA
1730 high_bound.data.const_val
1731 = low_bound.data.const_val + high_bound.data.const_val - 1;
80180f79
SA
1732 }
1733 else
1734 {
1735 high_bound.kind = PROP_UNDEFINED;
1736 high_bound.data.const_val = 0;
1737 }
1738
6f8a3220
JB
1739 static_range_type = create_range_type (copy_type (dyn_range_type),
1740 TYPE_TARGET_TYPE (dyn_range_type),
1741 &low_bound, &high_bound);
1742 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1743 return static_range_type;
1744}
1745
1746/* Resolves dynamic bound values of an array type TYPE to static ones.
1747 ADDRESS might be needed to resolve the subrange bounds, it is the location
1748 of the associated array. */
1749
1750static struct type *
08412b07 1751resolve_dynamic_array (struct type *type, CORE_ADDR addr)
6f8a3220
JB
1752{
1753 CORE_ADDR value;
1754 struct type *elt_type;
1755 struct type *range_type;
1756 struct type *ary_dim;
1757
1758 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1759
1760 elt_type = type;
1761 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
08412b07 1762 range_type = resolve_dynamic_range (range_type, addr);
6f8a3220 1763
80180f79
SA
1764 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1765
1766 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
08412b07 1767 elt_type = resolve_dynamic_array (TYPE_TARGET_TYPE (type), addr);
80180f79
SA
1768 else
1769 elt_type = TYPE_TARGET_TYPE (type);
1770
80180f79
SA
1771 return create_array_type (copy_type (type),
1772 elt_type,
1773 range_type);
1774}
1775
012370f6
TT
1776/* Resolve dynamic bounds of members of the union TYPE to static
1777 bounds. */
1778
1779static struct type *
1780resolve_dynamic_union (struct type *type, CORE_ADDR addr)
1781{
1782 struct type *resolved_type;
1783 int i;
1784 unsigned int max_len = 0;
1785
1786 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1787
1788 resolved_type = copy_type (type);
1789 TYPE_FIELDS (resolved_type)
1790 = TYPE_ALLOC (resolved_type,
1791 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1792 memcpy (TYPE_FIELDS (resolved_type),
1793 TYPE_FIELDS (type),
1794 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1795 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1796 {
1797 struct type *t;
1798
1799 if (field_is_static (&TYPE_FIELD (type, i)))
1800 continue;
1801
d98b7a16
TT
1802 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1803 addr, 0);
012370f6
TT
1804 TYPE_FIELD_TYPE (resolved_type, i) = t;
1805 if (TYPE_LENGTH (t) > max_len)
1806 max_len = TYPE_LENGTH (t);
1807 }
1808
1809 TYPE_LENGTH (resolved_type) = max_len;
1810 return resolved_type;
1811}
1812
1813/* Resolve dynamic bounds of members of the struct TYPE to static
1814 bounds. */
1815
1816static struct type *
1817resolve_dynamic_struct (struct type *type, CORE_ADDR addr)
1818{
1819 struct type *resolved_type;
1820 int i;
6908c509 1821 unsigned resolved_type_bit_length = 0;
012370f6
TT
1822
1823 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
1824 gdb_assert (TYPE_NFIELDS (type) > 0);
1825
1826 resolved_type = copy_type (type);
1827 TYPE_FIELDS (resolved_type)
1828 = TYPE_ALLOC (resolved_type,
1829 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1830 memcpy (TYPE_FIELDS (resolved_type),
1831 TYPE_FIELDS (type),
1832 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1833 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1834 {
6908c509 1835 unsigned new_bit_length;
012370f6
TT
1836
1837 if (field_is_static (&TYPE_FIELD (type, i)))
1838 continue;
1839
6908c509
JB
1840 TYPE_FIELD_TYPE (resolved_type, i)
1841 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
d98b7a16 1842 addr, 0);
012370f6 1843
6908c509
JB
1844 /* As we know this field is not a static field, the field's
1845 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
1846 this is the case, but only trigger a simple error rather
1847 than an internal error if that fails. While failing
1848 that verification indicates a bug in our code, the error
1849 is not severe enough to suggest to the user he stops
1850 his debugging session because of it. */
1851 if (TYPE_FIELD_LOC_KIND (resolved_type, i) != FIELD_LOC_KIND_BITPOS)
1852 error (_("Cannot determine struct field location"
1853 " (invalid location kind)"));
1854 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
1855 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
1856 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
1857 else
1858 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
1859 * TARGET_CHAR_BIT);
1860
1861 /* Normally, we would use the position and size of the last field
1862 to determine the size of the enclosing structure. But GCC seems
1863 to be encoding the position of some fields incorrectly when
1864 the struct contains a dynamic field that is not placed last.
1865 So we compute the struct size based on the field that has
1866 the highest position + size - probably the best we can do. */
1867 if (new_bit_length > resolved_type_bit_length)
1868 resolved_type_bit_length = new_bit_length;
012370f6
TT
1869 }
1870
012370f6 1871 TYPE_LENGTH (resolved_type)
6908c509
JB
1872 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1873
012370f6
TT
1874 return resolved_type;
1875}
1876
d98b7a16 1877/* Worker for resolved_dynamic_type. */
80180f79 1878
d98b7a16
TT
1879static struct type *
1880resolve_dynamic_type_internal (struct type *type, CORE_ADDR addr,
1881 int top_level)
80180f79
SA
1882{
1883 struct type *real_type = check_typedef (type);
6f8a3220 1884 struct type *resolved_type = type;
3cdcd0ce
JB
1885 const struct dynamic_prop *prop;
1886 CORE_ADDR value;
80180f79 1887
d98b7a16 1888 if (!is_dynamic_type_internal (real_type, top_level))
80180f79
SA
1889 return type;
1890
5537b577 1891 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
6f8a3220 1892 {
cac9b138
JK
1893 resolved_type = copy_type (type);
1894 TYPE_TARGET_TYPE (resolved_type)
1895 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr,
1896 top_level);
5537b577
JK
1897 }
1898 else
1899 {
1900 /* Before trying to resolve TYPE, make sure it is not a stub. */
1901 type = real_type;
012370f6 1902
5537b577
JK
1903 switch (TYPE_CODE (type))
1904 {
1905 case TYPE_CODE_REF:
1906 {
1907 CORE_ADDR target_addr = read_memory_typed_address (addr, type);
1908
1909 resolved_type = copy_type (type);
1910 TYPE_TARGET_TYPE (resolved_type)
1911 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
1912 target_addr, top_level);
1913 break;
1914 }
1915
1916 case TYPE_CODE_ARRAY:
1917 resolved_type = resolve_dynamic_array (type, addr);
1918 break;
1919
1920 case TYPE_CODE_RANGE:
1921 resolved_type = resolve_dynamic_range (type, addr);
1922 break;
1923
1924 case TYPE_CODE_UNION:
1925 resolved_type = resolve_dynamic_union (type, addr);
1926 break;
1927
1928 case TYPE_CODE_STRUCT:
1929 resolved_type = resolve_dynamic_struct (type, addr);
1930 break;
1931 }
6f8a3220 1932 }
80180f79 1933
3cdcd0ce
JB
1934 /* Resolve data_location attribute. */
1935 prop = TYPE_DATA_LOCATION (resolved_type);
1936 if (dwarf2_evaluate_property (prop, addr, &value))
1937 {
1938 TYPE_DATA_LOCATION_ADDR (resolved_type) = value;
1939 TYPE_DATA_LOCATION_KIND (resolved_type) = PROP_CONST;
1940 }
1941 else
1942 TYPE_DATA_LOCATION (resolved_type) = NULL;
1943
80180f79
SA
1944 return resolved_type;
1945}
1946
d98b7a16
TT
1947/* See gdbtypes.h */
1948
1949struct type *
1950resolve_dynamic_type (struct type *type, CORE_ADDR addr)
1951{
1952 return resolve_dynamic_type_internal (type, addr, 1);
1953}
1954
92163a10
JK
1955/* Find the real type of TYPE. This function returns the real type,
1956 after removing all layers of typedefs, and completing opaque or stub
1957 types. Completion changes the TYPE argument, but stripping of
1958 typedefs does not.
1959
1960 Instance flags (e.g. const/volatile) are preserved as typedefs are
1961 stripped. If necessary a new qualified form of the underlying type
1962 is created.
1963
1964 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1965 not been computed and we're either in the middle of reading symbols, or
1966 there was no name for the typedef in the debug info.
1967
9bc118a5
DE
1968 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
1969 QUITs in the symbol reading code can also throw.
1970 Thus this function can throw an exception.
1971
92163a10
JK
1972 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1973 the target type.
c906108c
SS
1974
1975 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 1976 we can find a full definition in some other file. If so, copy this
7ba81444
MS
1977 definition, so we can use it in future. There used to be a comment
1978 (but not any code) that if we don't find a full definition, we'd
1979 set a flag so we don't spend time in the future checking the same
1980 type. That would be a mistake, though--we might load in more
92163a10 1981 symbols which contain a full definition for the type. */
c906108c
SS
1982
1983struct type *
a02fd225 1984check_typedef (struct type *type)
c906108c
SS
1985{
1986 struct type *orig_type = type;
92163a10
JK
1987 /* While we're removing typedefs, we don't want to lose qualifiers.
1988 E.g., const/volatile. */
1989 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 1990
423c0af8
MS
1991 gdb_assert (type);
1992
c906108c
SS
1993 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1994 {
1995 if (!TYPE_TARGET_TYPE (type))
1996 {
0d5cff50 1997 const char *name;
c906108c
SS
1998 struct symbol *sym;
1999
2000 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 2001 reading a symtab. Infinite recursion is one danger. */
c906108c 2002 if (currently_reading_symtab)
92163a10 2003 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2004
2005 name = type_name_no_tag (type);
7ba81444
MS
2006 /* FIXME: shouldn't we separately check the TYPE_NAME and
2007 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2008 VAR_DOMAIN as appropriate? (this code was written before
2009 TYPE_NAME and TYPE_TAG_NAME were separate). */
c906108c
SS
2010 if (name == NULL)
2011 {
23136709 2012 stub_noname_complaint ();
92163a10 2013 return make_qualified_type (type, instance_flags, NULL);
c906108c 2014 }
2570f2b7 2015 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c
SS
2016 if (sym)
2017 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 2018 else /* TYPE_CODE_UNDEF */
e9bb382b 2019 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
2020 }
2021 type = TYPE_TARGET_TYPE (type);
c906108c 2022
92163a10
JK
2023 /* Preserve the instance flags as we traverse down the typedef chain.
2024
2025 Handling address spaces/classes is nasty, what do we do if there's a
2026 conflict?
2027 E.g., what if an outer typedef marks the type as class_1 and an inner
2028 typedef marks the type as class_2?
2029 This is the wrong place to do such error checking. We leave it to
2030 the code that created the typedef in the first place to flag the
2031 error. We just pick the outer address space (akin to letting the
2032 outer cast in a chain of casting win), instead of assuming
2033 "it can't happen". */
2034 {
2035 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2036 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2037 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2038 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2039
2040 /* Treat code vs data spaces and address classes separately. */
2041 if ((instance_flags & ALL_SPACES) != 0)
2042 new_instance_flags &= ~ALL_SPACES;
2043 if ((instance_flags & ALL_CLASSES) != 0)
2044 new_instance_flags &= ~ALL_CLASSES;
2045
2046 instance_flags |= new_instance_flags;
2047 }
2048 }
a02fd225 2049
7ba81444
MS
2050 /* If this is a struct/class/union with no fields, then check
2051 whether a full definition exists somewhere else. This is for
2052 systems where a type definition with no fields is issued for such
2053 types, instead of identifying them as stub types in the first
2054 place. */
c5aa993b 2055
7ba81444
MS
2056 if (TYPE_IS_OPAQUE (type)
2057 && opaque_type_resolution
2058 && !currently_reading_symtab)
c906108c 2059 {
0d5cff50 2060 const char *name = type_name_no_tag (type);
c5aa993b 2061 struct type *newtype;
d8734c88 2062
c906108c
SS
2063 if (name == NULL)
2064 {
23136709 2065 stub_noname_complaint ();
92163a10 2066 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2067 }
2068 newtype = lookup_transparent_type (name);
ad766c0a 2069
c906108c 2070 if (newtype)
ad766c0a 2071 {
7ba81444
MS
2072 /* If the resolved type and the stub are in the same
2073 objfile, then replace the stub type with the real deal.
2074 But if they're in separate objfiles, leave the stub
2075 alone; we'll just look up the transparent type every time
2076 we call check_typedef. We can't create pointers between
2077 types allocated to different objfiles, since they may
2078 have different lifetimes. Trying to copy NEWTYPE over to
2079 TYPE's objfile is pointless, too, since you'll have to
2080 move over any other types NEWTYPE refers to, which could
2081 be an unbounded amount of stuff. */
ad766c0a 2082 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
2083 type = make_qualified_type (newtype,
2084 TYPE_INSTANCE_FLAGS (type),
2085 type);
ad766c0a
JB
2086 else
2087 type = newtype;
2088 }
c906108c 2089 }
7ba81444
MS
2090 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2091 types. */
74a9bb82 2092 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 2093 {
0d5cff50 2094 const char *name = type_name_no_tag (type);
c906108c 2095 /* FIXME: shouldn't we separately check the TYPE_NAME and the
176620f1 2096 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
7b83ea04
AC
2097 as appropriate? (this code was written before TYPE_NAME and
2098 TYPE_TAG_NAME were separate). */
c906108c 2099 struct symbol *sym;
d8734c88 2100
c906108c
SS
2101 if (name == NULL)
2102 {
23136709 2103 stub_noname_complaint ();
92163a10 2104 return make_qualified_type (type, instance_flags, NULL);
c906108c 2105 }
2570f2b7 2106 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c 2107 if (sym)
c26f2453
JB
2108 {
2109 /* Same as above for opaque types, we can replace the stub
92163a10 2110 with the complete type only if they are in the same
c26f2453
JB
2111 objfile. */
2112 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
2113 type = make_qualified_type (SYMBOL_TYPE (sym),
2114 TYPE_INSTANCE_FLAGS (type),
2115 type);
c26f2453
JB
2116 else
2117 type = SYMBOL_TYPE (sym);
2118 }
c906108c
SS
2119 }
2120
74a9bb82 2121 if (TYPE_TARGET_STUB (type))
c906108c
SS
2122 {
2123 struct type *range_type;
2124 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2125
74a9bb82 2126 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 2127 {
73e2eb35 2128 /* Nothing we can do. */
c5aa993b 2129 }
c906108c
SS
2130 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2131 {
2132 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 2133 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
2134 }
2135 }
92163a10
JK
2136
2137 type = make_qualified_type (type, instance_flags, NULL);
2138
7ba81444 2139 /* Cache TYPE_LENGTH for future use. */
c906108c 2140 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 2141
c906108c
SS
2142 return type;
2143}
2144
7ba81444 2145/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 2146 occurs, silently return a void type. */
c91ecb25 2147
b9362cc7 2148static struct type *
48319d1f 2149safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
2150{
2151 struct ui_file *saved_gdb_stderr;
34365054 2152 struct type *type = NULL; /* Initialize to keep gcc happy. */
8e7b59a5 2153 volatile struct gdb_exception except;
c91ecb25 2154
7ba81444 2155 /* Suppress error messages. */
c91ecb25
ND
2156 saved_gdb_stderr = gdb_stderr;
2157 gdb_stderr = ui_file_new ();
2158
7ba81444 2159 /* Call parse_and_eval_type() without fear of longjmp()s. */
8e7b59a5
KS
2160 TRY_CATCH (except, RETURN_MASK_ERROR)
2161 {
2162 type = parse_and_eval_type (p, length);
2163 }
2164
2165 if (except.reason < 0)
48319d1f 2166 type = builtin_type (gdbarch)->builtin_void;
c91ecb25 2167
7ba81444 2168 /* Stop suppressing error messages. */
c91ecb25
ND
2169 ui_file_delete (gdb_stderr);
2170 gdb_stderr = saved_gdb_stderr;
2171
2172 return type;
2173}
2174
c906108c
SS
2175/* Ugly hack to convert method stubs into method types.
2176
7ba81444
MS
2177 He ain't kiddin'. This demangles the name of the method into a
2178 string including argument types, parses out each argument type,
2179 generates a string casting a zero to that type, evaluates the
2180 string, and stuffs the resulting type into an argtype vector!!!
2181 Then it knows the type of the whole function (including argument
2182 types for overloading), which info used to be in the stab's but was
2183 removed to hack back the space required for them. */
c906108c 2184
de17c821 2185static void
fba45db2 2186check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 2187{
50810684 2188 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
2189 struct fn_field *f;
2190 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
8de20a37
TT
2191 char *demangled_name = gdb_demangle (mangled_name,
2192 DMGL_PARAMS | DMGL_ANSI);
c906108c
SS
2193 char *argtypetext, *p;
2194 int depth = 0, argcount = 1;
ad2f7632 2195 struct field *argtypes;
c906108c
SS
2196 struct type *mtype;
2197
2198 /* Make sure we got back a function string that we can use. */
2199 if (demangled_name)
2200 p = strchr (demangled_name, '(');
502dcf4e
AC
2201 else
2202 p = NULL;
c906108c
SS
2203
2204 if (demangled_name == NULL || p == NULL)
7ba81444
MS
2205 error (_("Internal: Cannot demangle mangled name `%s'."),
2206 mangled_name);
c906108c
SS
2207
2208 /* Now, read in the parameters that define this type. */
2209 p += 1;
2210 argtypetext = p;
2211 while (*p)
2212 {
070ad9f0 2213 if (*p == '(' || *p == '<')
c906108c
SS
2214 {
2215 depth += 1;
2216 }
070ad9f0 2217 else if (*p == ')' || *p == '>')
c906108c
SS
2218 {
2219 depth -= 1;
2220 }
2221 else if (*p == ',' && depth == 0)
2222 {
2223 argcount += 1;
2224 }
2225
2226 p += 1;
2227 }
2228
ad2f7632
DJ
2229 /* If we read one argument and it was ``void'', don't count it. */
2230 if (strncmp (argtypetext, "(void)", 6) == 0)
2231 argcount -= 1;
c906108c 2232
ad2f7632
DJ
2233 /* We need one extra slot, for the THIS pointer. */
2234
2235 argtypes = (struct field *)
2236 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 2237 p = argtypetext;
4a1970e4
DJ
2238
2239 /* Add THIS pointer for non-static methods. */
2240 f = TYPE_FN_FIELDLIST1 (type, method_id);
2241 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2242 argcount = 0;
2243 else
2244 {
ad2f7632 2245 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
2246 argcount = 1;
2247 }
c906108c 2248
0963b4bd 2249 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
2250 {
2251 depth = 0;
2252 while (*p)
2253 {
2254 if (depth <= 0 && (*p == ',' || *p == ')'))
2255 {
ad2f7632
DJ
2256 /* Avoid parsing of ellipsis, they will be handled below.
2257 Also avoid ``void'' as above. */
2258 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2259 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 2260 {
ad2f7632 2261 argtypes[argcount].type =
48319d1f 2262 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
2263 argcount += 1;
2264 }
2265 argtypetext = p + 1;
2266 }
2267
070ad9f0 2268 if (*p == '(' || *p == '<')
c906108c
SS
2269 {
2270 depth += 1;
2271 }
070ad9f0 2272 else if (*p == ')' || *p == '>')
c906108c
SS
2273 {
2274 depth -= 1;
2275 }
2276
2277 p += 1;
2278 }
2279 }
2280
c906108c
SS
2281 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2282
2283 /* Now update the old "stub" type into a real type. */
2284 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2285 TYPE_DOMAIN_TYPE (mtype) = type;
ad2f7632
DJ
2286 TYPE_FIELDS (mtype) = argtypes;
2287 TYPE_NFIELDS (mtype) = argcount;
876cecd0 2288 TYPE_STUB (mtype) = 0;
c906108c 2289 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632 2290 if (p[-2] == '.')
876cecd0 2291 TYPE_VARARGS (mtype) = 1;
ad2f7632
DJ
2292
2293 xfree (demangled_name);
c906108c
SS
2294}
2295
7ba81444
MS
2296/* This is the external interface to check_stub_method, above. This
2297 function unstubs all of the signatures for TYPE's METHOD_ID method
2298 name. After calling this function TYPE_FN_FIELD_STUB will be
2299 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2300 correct.
de17c821
DJ
2301
2302 This function unfortunately can not die until stabs do. */
2303
2304void
2305check_stub_method_group (struct type *type, int method_id)
2306{
2307 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2308 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
f710f4fc 2309 int j, found_stub = 0;
de17c821
DJ
2310
2311 for (j = 0; j < len; j++)
2312 if (TYPE_FN_FIELD_STUB (f, j))
2313 {
2314 found_stub = 1;
2315 check_stub_method (type, method_id, j);
2316 }
2317
7ba81444
MS
2318 /* GNU v3 methods with incorrect names were corrected when we read
2319 in type information, because it was cheaper to do it then. The
2320 only GNU v2 methods with incorrect method names are operators and
2321 destructors; destructors were also corrected when we read in type
2322 information.
de17c821
DJ
2323
2324 Therefore the only thing we need to handle here are v2 operator
2325 names. */
2326 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
2327 {
2328 int ret;
2329 char dem_opname[256];
2330
7ba81444
MS
2331 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2332 method_id),
de17c821
DJ
2333 dem_opname, DMGL_ANSI);
2334 if (!ret)
7ba81444
MS
2335 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2336 method_id),
de17c821
DJ
2337 dem_opname, 0);
2338 if (ret)
2339 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2340 }
2341}
2342
9655fd1a
JK
2343/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2344const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
2345
2346void
fba45db2 2347allocate_cplus_struct_type (struct type *type)
c906108c 2348{
b4ba55a1
JB
2349 if (HAVE_CPLUS_STRUCT (type))
2350 /* Structure was already allocated. Nothing more to do. */
2351 return;
2352
2353 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2354 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2355 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2356 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
c906108c
SS
2357}
2358
b4ba55a1
JB
2359const struct gnat_aux_type gnat_aux_default =
2360 { NULL };
2361
2362/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2363 and allocate the associated gnat-specific data. The gnat-specific
2364 data is also initialized to gnat_aux_default. */
5212577a 2365
b4ba55a1
JB
2366void
2367allocate_gnat_aux_type (struct type *type)
2368{
2369 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2370 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2371 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2372 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2373}
2374
c906108c
SS
2375/* Helper function to initialize the standard scalar types.
2376
86f62fd7
TT
2377 If NAME is non-NULL, then it is used to initialize the type name.
2378 Note that NAME is not copied; it is required to have a lifetime at
2379 least as long as OBJFILE. */
c906108c
SS
2380
2381struct type *
7ba81444 2382init_type (enum type_code code, int length, int flags,
748e18ae 2383 const char *name, struct objfile *objfile)
c906108c 2384{
52f0bd74 2385 struct type *type;
c906108c
SS
2386
2387 type = alloc_type (objfile);
2388 TYPE_CODE (type) = code;
2389 TYPE_LENGTH (type) = length;
876cecd0
TT
2390
2391 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2392 if (flags & TYPE_FLAG_UNSIGNED)
2393 TYPE_UNSIGNED (type) = 1;
2394 if (flags & TYPE_FLAG_NOSIGN)
2395 TYPE_NOSIGN (type) = 1;
2396 if (flags & TYPE_FLAG_STUB)
2397 TYPE_STUB (type) = 1;
2398 if (flags & TYPE_FLAG_TARGET_STUB)
2399 TYPE_TARGET_STUB (type) = 1;
2400 if (flags & TYPE_FLAG_STATIC)
2401 TYPE_STATIC (type) = 1;
2402 if (flags & TYPE_FLAG_PROTOTYPED)
2403 TYPE_PROTOTYPED (type) = 1;
2404 if (flags & TYPE_FLAG_INCOMPLETE)
2405 TYPE_INCOMPLETE (type) = 1;
2406 if (flags & TYPE_FLAG_VARARGS)
2407 TYPE_VARARGS (type) = 1;
2408 if (flags & TYPE_FLAG_VECTOR)
2409 TYPE_VECTOR (type) = 1;
2410 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2411 TYPE_STUB_SUPPORTED (type) = 1;
876cecd0
TT
2412 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2413 TYPE_FIXED_INSTANCE (type) = 1;
0875794a
JK
2414 if (flags & TYPE_FLAG_GNU_IFUNC)
2415 TYPE_GNU_IFUNC (type) = 1;
876cecd0 2416
86f62fd7 2417 TYPE_NAME (type) = name;
c906108c
SS
2418
2419 /* C++ fancies. */
2420
973ccf8b 2421 if (name && strcmp (name, "char") == 0)
876cecd0 2422 TYPE_NOSIGN (type) = 1;
973ccf8b 2423
b4ba55a1 2424 switch (code)
c906108c 2425 {
b4ba55a1
JB
2426 case TYPE_CODE_STRUCT:
2427 case TYPE_CODE_UNION:
2428 case TYPE_CODE_NAMESPACE:
2429 INIT_CPLUS_SPECIFIC (type);
2430 break;
2431 case TYPE_CODE_FLT:
2432 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2433 break;
2434 case TYPE_CODE_FUNC:
b6cdc2c1 2435 INIT_FUNC_SPECIFIC (type);
b4ba55a1 2436 break;
c906108c 2437 }
c16abbde 2438 return type;
c906108c 2439}
5212577a
DE
2440\f
2441/* Queries on types. */
c906108c 2442
c906108c 2443int
fba45db2 2444can_dereference (struct type *t)
c906108c 2445{
7ba81444
MS
2446 /* FIXME: Should we return true for references as well as
2447 pointers? */
c906108c
SS
2448 CHECK_TYPEDEF (t);
2449 return
2450 (t != NULL
2451 && TYPE_CODE (t) == TYPE_CODE_PTR
2452 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2453}
2454
adf40b2e 2455int
fba45db2 2456is_integral_type (struct type *t)
adf40b2e
JM
2457{
2458 CHECK_TYPEDEF (t);
2459 return
2460 ((t != NULL)
d4f3574e
SS
2461 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2462 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 2463 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
2464 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2465 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2466 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
2467}
2468
e09342b5
TJB
2469/* Return true if TYPE is scalar. */
2470
2471static int
2472is_scalar_type (struct type *type)
2473{
2474 CHECK_TYPEDEF (type);
2475
2476 switch (TYPE_CODE (type))
2477 {
2478 case TYPE_CODE_ARRAY:
2479 case TYPE_CODE_STRUCT:
2480 case TYPE_CODE_UNION:
2481 case TYPE_CODE_SET:
2482 case TYPE_CODE_STRING:
e09342b5
TJB
2483 return 0;
2484 default:
2485 return 1;
2486 }
2487}
2488
2489/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
2490 the memory layout of a scalar type. E.g., an array or struct with only
2491 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
2492
2493int
2494is_scalar_type_recursive (struct type *t)
2495{
2496 CHECK_TYPEDEF (t);
2497
2498 if (is_scalar_type (t))
2499 return 1;
2500 /* Are we dealing with an array or string of known dimensions? */
2501 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2502 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2503 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2504 {
2505 LONGEST low_bound, high_bound;
2506 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2507
2508 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2509
2510 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2511 }
2512 /* Are we dealing with a struct with one element? */
2513 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2514 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2515 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2516 {
2517 int i, n = TYPE_NFIELDS (t);
2518
2519 /* If all elements of the union are scalar, then the union is scalar. */
2520 for (i = 0; i < n; i++)
2521 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2522 return 0;
2523
2524 return 1;
2525 }
2526
2527 return 0;
2528}
2529
6c659fc2
SC
2530/* Return true is T is a class or a union. False otherwise. */
2531
2532int
2533class_or_union_p (const struct type *t)
2534{
2535 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
2536 || TYPE_CODE (t) == TYPE_CODE_UNION);
2537}
2538
4e8f195d
TT
2539/* A helper function which returns true if types A and B represent the
2540 "same" class type. This is true if the types have the same main
2541 type, or the same name. */
2542
2543int
2544class_types_same_p (const struct type *a, const struct type *b)
2545{
2546 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2547 || (TYPE_NAME (a) && TYPE_NAME (b)
2548 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2549}
2550
a9d5ef47
SW
2551/* If BASE is an ancestor of DCLASS return the distance between them.
2552 otherwise return -1;
2553 eg:
2554
2555 class A {};
2556 class B: public A {};
2557 class C: public B {};
2558 class D: C {};
2559
2560 distance_to_ancestor (A, A, 0) = 0
2561 distance_to_ancestor (A, B, 0) = 1
2562 distance_to_ancestor (A, C, 0) = 2
2563 distance_to_ancestor (A, D, 0) = 3
2564
2565 If PUBLIC is 1 then only public ancestors are considered,
2566 and the function returns the distance only if BASE is a public ancestor
2567 of DCLASS.
2568 Eg:
2569
0963b4bd 2570 distance_to_ancestor (A, D, 1) = -1. */
c906108c 2571
0526b37a 2572static int
a9d5ef47 2573distance_to_ancestor (struct type *base, struct type *dclass, int public)
c906108c
SS
2574{
2575 int i;
a9d5ef47 2576 int d;
c5aa993b 2577
c906108c
SS
2578 CHECK_TYPEDEF (base);
2579 CHECK_TYPEDEF (dclass);
2580
4e8f195d 2581 if (class_types_same_p (base, dclass))
a9d5ef47 2582 return 0;
c906108c
SS
2583
2584 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 2585 {
0526b37a
SW
2586 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2587 continue;
2588
a9d5ef47
SW
2589 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2590 if (d >= 0)
2591 return 1 + d;
4e8f195d 2592 }
c906108c 2593
a9d5ef47 2594 return -1;
c906108c 2595}
4e8f195d 2596
0526b37a
SW
2597/* Check whether BASE is an ancestor or base class or DCLASS
2598 Return 1 if so, and 0 if not.
2599 Note: If BASE and DCLASS are of the same type, this function
2600 will return 1. So for some class A, is_ancestor (A, A) will
2601 return 1. */
2602
2603int
2604is_ancestor (struct type *base, struct type *dclass)
2605{
a9d5ef47 2606 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
2607}
2608
4e8f195d
TT
2609/* Like is_ancestor, but only returns true when BASE is a public
2610 ancestor of DCLASS. */
2611
2612int
2613is_public_ancestor (struct type *base, struct type *dclass)
2614{
a9d5ef47 2615 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
2616}
2617
2618/* A helper function for is_unique_ancestor. */
2619
2620static int
2621is_unique_ancestor_worker (struct type *base, struct type *dclass,
2622 int *offset,
8af8e3bc
PA
2623 const gdb_byte *valaddr, int embedded_offset,
2624 CORE_ADDR address, struct value *val)
4e8f195d
TT
2625{
2626 int i, count = 0;
2627
2628 CHECK_TYPEDEF (base);
2629 CHECK_TYPEDEF (dclass);
2630
2631 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2632 {
8af8e3bc
PA
2633 struct type *iter;
2634 int this_offset;
4e8f195d 2635
8af8e3bc
PA
2636 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2637
2638 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2639 address, val);
4e8f195d
TT
2640
2641 if (class_types_same_p (base, iter))
2642 {
2643 /* If this is the first subclass, set *OFFSET and set count
2644 to 1. Otherwise, if this is at the same offset as
2645 previous instances, do nothing. Otherwise, increment
2646 count. */
2647 if (*offset == -1)
2648 {
2649 *offset = this_offset;
2650 count = 1;
2651 }
2652 else if (this_offset == *offset)
2653 {
2654 /* Nothing. */
2655 }
2656 else
2657 ++count;
2658 }
2659 else
2660 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
2661 valaddr,
2662 embedded_offset + this_offset,
2663 address, val);
4e8f195d
TT
2664 }
2665
2666 return count;
2667}
2668
2669/* Like is_ancestor, but only returns true if BASE is a unique base
2670 class of the type of VAL. */
2671
2672int
2673is_unique_ancestor (struct type *base, struct value *val)
2674{
2675 int offset = -1;
2676
2677 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
2678 value_contents_for_printing (val),
2679 value_embedded_offset (val),
2680 value_address (val), val) == 1;
4e8f195d
TT
2681}
2682
c906108c 2683\f
5212577a 2684/* Overload resolution. */
c906108c 2685
6403aeea
SW
2686/* Return the sum of the rank of A with the rank of B. */
2687
2688struct rank
2689sum_ranks (struct rank a, struct rank b)
2690{
2691 struct rank c;
2692 c.rank = a.rank + b.rank;
a9d5ef47 2693 c.subrank = a.subrank + b.subrank;
6403aeea
SW
2694 return c;
2695}
2696
2697/* Compare rank A and B and return:
2698 0 if a = b
2699 1 if a is better than b
2700 -1 if b is better than a. */
2701
2702int
2703compare_ranks (struct rank a, struct rank b)
2704{
2705 if (a.rank == b.rank)
a9d5ef47
SW
2706 {
2707 if (a.subrank == b.subrank)
2708 return 0;
2709 if (a.subrank < b.subrank)
2710 return 1;
2711 if (a.subrank > b.subrank)
2712 return -1;
2713 }
6403aeea
SW
2714
2715 if (a.rank < b.rank)
2716 return 1;
2717
0963b4bd 2718 /* a.rank > b.rank */
6403aeea
SW
2719 return -1;
2720}
c5aa993b 2721
0963b4bd 2722/* Functions for overload resolution begin here. */
c906108c
SS
2723
2724/* Compare two badness vectors A and B and return the result.
7ba81444
MS
2725 0 => A and B are identical
2726 1 => A and B are incomparable
2727 2 => A is better than B
2728 3 => A is worse than B */
c906108c
SS
2729
2730int
fba45db2 2731compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
2732{
2733 int i;
2734 int tmp;
c5aa993b
JM
2735 short found_pos = 0; /* any positives in c? */
2736 short found_neg = 0; /* any negatives in c? */
2737
2738 /* differing lengths => incomparable */
c906108c
SS
2739 if (a->length != b->length)
2740 return 1;
2741
c5aa993b
JM
2742 /* Subtract b from a */
2743 for (i = 0; i < a->length; i++)
c906108c 2744 {
6403aeea 2745 tmp = compare_ranks (b->rank[i], a->rank[i]);
c906108c 2746 if (tmp > 0)
c5aa993b 2747 found_pos = 1;
c906108c 2748 else if (tmp < 0)
c5aa993b 2749 found_neg = 1;
c906108c
SS
2750 }
2751
2752 if (found_pos)
2753 {
2754 if (found_neg)
c5aa993b 2755 return 1; /* incomparable */
c906108c 2756 else
c5aa993b 2757 return 3; /* A > B */
c906108c 2758 }
c5aa993b
JM
2759 else
2760 /* no positives */
c906108c
SS
2761 {
2762 if (found_neg)
c5aa993b 2763 return 2; /* A < B */
c906108c 2764 else
c5aa993b 2765 return 0; /* A == B */
c906108c
SS
2766 }
2767}
2768
7ba81444
MS
2769/* Rank a function by comparing its parameter types (PARMS, length
2770 NPARMS), to the types of an argument list (ARGS, length NARGS).
2771 Return a pointer to a badness vector. This has NARGS + 1
2772 entries. */
c906108c
SS
2773
2774struct badness_vector *
7ba81444 2775rank_function (struct type **parms, int nparms,
da096638 2776 struct value **args, int nargs)
c906108c
SS
2777{
2778 int i;
c5aa993b 2779 struct badness_vector *bv;
c906108c
SS
2780 int min_len = nparms < nargs ? nparms : nargs;
2781
2782 bv = xmalloc (sizeof (struct badness_vector));
0963b4bd 2783 bv->length = nargs + 1; /* add 1 for the length-match rank. */
c4e54771 2784 bv->rank = XNEWVEC (struct rank, nargs + 1);
c906108c
SS
2785
2786 /* First compare the lengths of the supplied lists.
7ba81444 2787 If there is a mismatch, set it to a high value. */
c5aa993b 2788
c906108c 2789 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
2790 arguments and ellipsis parameter lists, we should consider those
2791 and rank the length-match more finely. */
c906108c 2792
6403aeea
SW
2793 LENGTH_MATCH (bv) = (nargs != nparms)
2794 ? LENGTH_MISMATCH_BADNESS
2795 : EXACT_MATCH_BADNESS;
c906108c 2796
0963b4bd 2797 /* Now rank all the parameters of the candidate function. */
74cc24b0 2798 for (i = 1; i <= min_len; i++)
da096638
KS
2799 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2800 args[i - 1]);
c906108c 2801
0963b4bd 2802 /* If more arguments than parameters, add dummy entries. */
c5aa993b 2803 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
2804 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2805
2806 return bv;
2807}
2808
973ccf8b
DJ
2809/* Compare the names of two integer types, assuming that any sign
2810 qualifiers have been checked already. We do it this way because
2811 there may be an "int" in the name of one of the types. */
2812
2813static int
2814integer_types_same_name_p (const char *first, const char *second)
2815{
2816 int first_p, second_p;
2817
7ba81444
MS
2818 /* If both are shorts, return 1; if neither is a short, keep
2819 checking. */
973ccf8b
DJ
2820 first_p = (strstr (first, "short") != NULL);
2821 second_p = (strstr (second, "short") != NULL);
2822 if (first_p && second_p)
2823 return 1;
2824 if (first_p || second_p)
2825 return 0;
2826
2827 /* Likewise for long. */
2828 first_p = (strstr (first, "long") != NULL);
2829 second_p = (strstr (second, "long") != NULL);
2830 if (first_p && second_p)
2831 return 1;
2832 if (first_p || second_p)
2833 return 0;
2834
2835 /* Likewise for char. */
2836 first_p = (strstr (first, "char") != NULL);
2837 second_p = (strstr (second, "char") != NULL);
2838 if (first_p && second_p)
2839 return 1;
2840 if (first_p || second_p)
2841 return 0;
2842
2843 /* They must both be ints. */
2844 return 1;
2845}
2846
7062b0a0
SW
2847/* Compares type A to type B returns 1 if the represent the same type
2848 0 otherwise. */
2849
bd69fc68 2850int
7062b0a0
SW
2851types_equal (struct type *a, struct type *b)
2852{
2853 /* Identical type pointers. */
2854 /* However, this still doesn't catch all cases of same type for b
2855 and a. The reason is that builtin types are different from
2856 the same ones constructed from the object. */
2857 if (a == b)
2858 return 1;
2859
2860 /* Resolve typedefs */
2861 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2862 a = check_typedef (a);
2863 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2864 b = check_typedef (b);
2865
2866 /* If after resolving typedefs a and b are not of the same type
2867 code then they are not equal. */
2868 if (TYPE_CODE (a) != TYPE_CODE (b))
2869 return 0;
2870
2871 /* If a and b are both pointers types or both reference types then
2872 they are equal of the same type iff the objects they refer to are
2873 of the same type. */
2874 if (TYPE_CODE (a) == TYPE_CODE_PTR
2875 || TYPE_CODE (a) == TYPE_CODE_REF)
2876 return types_equal (TYPE_TARGET_TYPE (a),
2877 TYPE_TARGET_TYPE (b));
2878
0963b4bd 2879 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
2880 are exactly the same. This happens when we generate method
2881 stubs. The types won't point to the same address, but they
0963b4bd 2882 really are the same. */
7062b0a0
SW
2883
2884 if (TYPE_NAME (a) && TYPE_NAME (b)
2885 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2886 return 1;
2887
2888 /* Check if identical after resolving typedefs. */
2889 if (a == b)
2890 return 1;
2891
9ce98649
TT
2892 /* Two function types are equal if their argument and return types
2893 are equal. */
2894 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
2895 {
2896 int i;
2897
2898 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
2899 return 0;
2900
2901 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
2902 return 0;
2903
2904 for (i = 0; i < TYPE_NFIELDS (a); ++i)
2905 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
2906 return 0;
2907
2908 return 1;
2909 }
2910
7062b0a0
SW
2911 return 0;
2912}
ca092b61
DE
2913\f
2914/* Deep comparison of types. */
2915
2916/* An entry in the type-equality bcache. */
2917
2918typedef struct type_equality_entry
2919{
2920 struct type *type1, *type2;
2921} type_equality_entry_d;
2922
2923DEF_VEC_O (type_equality_entry_d);
2924
2925/* A helper function to compare two strings. Returns 1 if they are
2926 the same, 0 otherwise. Handles NULLs properly. */
2927
2928static int
2929compare_maybe_null_strings (const char *s, const char *t)
2930{
2931 if (s == NULL && t != NULL)
2932 return 0;
2933 else if (s != NULL && t == NULL)
2934 return 0;
2935 else if (s == NULL && t== NULL)
2936 return 1;
2937 return strcmp (s, t) == 0;
2938}
2939
2940/* A helper function for check_types_worklist that checks two types for
2941 "deep" equality. Returns non-zero if the types are considered the
2942 same, zero otherwise. */
2943
2944static int
2945check_types_equal (struct type *type1, struct type *type2,
2946 VEC (type_equality_entry_d) **worklist)
2947{
2948 CHECK_TYPEDEF (type1);
2949 CHECK_TYPEDEF (type2);
2950
2951 if (type1 == type2)
2952 return 1;
2953
2954 if (TYPE_CODE (type1) != TYPE_CODE (type2)
2955 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
2956 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
2957 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
2958 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
2959 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
2960 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
2961 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
2962 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
2963 return 0;
2964
2965 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
2966 TYPE_TAG_NAME (type2)))
2967 return 0;
2968 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
2969 return 0;
2970
2971 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
2972 {
2973 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
2974 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
2975 return 0;
2976 }
2977 else
2978 {
2979 int i;
2980
2981 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
2982 {
2983 const struct field *field1 = &TYPE_FIELD (type1, i);
2984 const struct field *field2 = &TYPE_FIELD (type2, i);
2985 struct type_equality_entry entry;
2986
2987 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
2988 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
2989 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
2990 return 0;
2991 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
2992 FIELD_NAME (*field2)))
2993 return 0;
2994 switch (FIELD_LOC_KIND (*field1))
2995 {
2996 case FIELD_LOC_KIND_BITPOS:
2997 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
2998 return 0;
2999 break;
3000 case FIELD_LOC_KIND_ENUMVAL:
3001 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3002 return 0;
3003 break;
3004 case FIELD_LOC_KIND_PHYSADDR:
3005 if (FIELD_STATIC_PHYSADDR (*field1)
3006 != FIELD_STATIC_PHYSADDR (*field2))
3007 return 0;
3008 break;
3009 case FIELD_LOC_KIND_PHYSNAME:
3010 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3011 FIELD_STATIC_PHYSNAME (*field2)))
3012 return 0;
3013 break;
3014 case FIELD_LOC_KIND_DWARF_BLOCK:
3015 {
3016 struct dwarf2_locexpr_baton *block1, *block2;
3017
3018 block1 = FIELD_DWARF_BLOCK (*field1);
3019 block2 = FIELD_DWARF_BLOCK (*field2);
3020 if (block1->per_cu != block2->per_cu
3021 || block1->size != block2->size
3022 || memcmp (block1->data, block2->data, block1->size) != 0)
3023 return 0;
3024 }
3025 break;
3026 default:
3027 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3028 "%d by check_types_equal"),
3029 FIELD_LOC_KIND (*field1));
3030 }
3031
3032 entry.type1 = FIELD_TYPE (*field1);
3033 entry.type2 = FIELD_TYPE (*field2);
3034 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3035 }
3036 }
3037
3038 if (TYPE_TARGET_TYPE (type1) != NULL)
3039 {
3040 struct type_equality_entry entry;
3041
3042 if (TYPE_TARGET_TYPE (type2) == NULL)
3043 return 0;
3044
3045 entry.type1 = TYPE_TARGET_TYPE (type1);
3046 entry.type2 = TYPE_TARGET_TYPE (type2);
3047 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3048 }
3049 else if (TYPE_TARGET_TYPE (type2) != NULL)
3050 return 0;
3051
3052 return 1;
3053}
3054
3055/* Check types on a worklist for equality. Returns zero if any pair
3056 is not equal, non-zero if they are all considered equal. */
3057
3058static int
3059check_types_worklist (VEC (type_equality_entry_d) **worklist,
3060 struct bcache *cache)
3061{
3062 while (!VEC_empty (type_equality_entry_d, *worklist))
3063 {
3064 struct type_equality_entry entry;
3065 int added;
3066
3067 entry = *VEC_last (type_equality_entry_d, *worklist);
3068 VEC_pop (type_equality_entry_d, *worklist);
3069
3070 /* If the type pair has already been visited, we know it is
3071 ok. */
3072 bcache_full (&entry, sizeof (entry), cache, &added);
3073 if (!added)
3074 continue;
3075
3076 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3077 return 0;
3078 }
7062b0a0 3079
ca092b61
DE
3080 return 1;
3081}
3082
3083/* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3084 "deep comparison". Otherwise return zero. */
3085
3086int
3087types_deeply_equal (struct type *type1, struct type *type2)
3088{
3089 volatile struct gdb_exception except;
3090 int result = 0;
3091 struct bcache *cache;
3092 VEC (type_equality_entry_d) *worklist = NULL;
3093 struct type_equality_entry entry;
3094
3095 gdb_assert (type1 != NULL && type2 != NULL);
3096
3097 /* Early exit for the simple case. */
3098 if (type1 == type2)
3099 return 1;
3100
3101 cache = bcache_xmalloc (NULL, NULL);
3102
3103 entry.type1 = type1;
3104 entry.type2 = type2;
3105 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3106
3107 TRY_CATCH (except, RETURN_MASK_ALL)
3108 {
3109 result = check_types_worklist (&worklist, cache);
3110 }
3111 /* check_types_worklist calls several nested helper functions,
3112 some of which can raise a GDB Exception, so we just check
3113 and rethrow here. If there is a GDB exception, a comparison
3114 is not capable (or trusted), so exit. */
3115 bcache_xfree (cache);
3116 VEC_free (type_equality_entry_d, worklist);
3117 /* Rethrow if there was a problem. */
3118 if (except.reason < 0)
3119 throw_exception (except);
3120
3121 return result;
3122}
3123\f
c906108c
SS
3124/* Compare one type (PARM) for compatibility with another (ARG).
3125 * PARM is intended to be the parameter type of a function; and
3126 * ARG is the supplied argument's type. This function tests if
3127 * the latter can be converted to the former.
da096638 3128 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
3129 *
3130 * Return 0 if they are identical types;
3131 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
3132 * PARM is to ARG. The higher the return value, the worse the match.
3133 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 3134
6403aeea 3135struct rank
da096638 3136rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 3137{
a9d5ef47 3138 struct rank rank = {0,0};
7062b0a0
SW
3139
3140 if (types_equal (parm, arg))
6403aeea 3141 return EXACT_MATCH_BADNESS;
c906108c
SS
3142
3143 /* Resolve typedefs */
3144 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3145 parm = check_typedef (parm);
3146 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3147 arg = check_typedef (arg);
3148
db577aea 3149 /* See through references, since we can almost make non-references
7ba81444 3150 references. */
db577aea 3151 if (TYPE_CODE (arg) == TYPE_CODE_REF)
da096638 3152 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
6403aeea 3153 REFERENCE_CONVERSION_BADNESS));
db577aea 3154 if (TYPE_CODE (parm) == TYPE_CODE_REF)
da096638 3155 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
6403aeea 3156 REFERENCE_CONVERSION_BADNESS));
5d161b24 3157 if (overload_debug)
7ba81444
MS
3158 /* Debugging only. */
3159 fprintf_filtered (gdb_stderr,
3160 "------ Arg is %s [%d], parm is %s [%d]\n",
3161 TYPE_NAME (arg), TYPE_CODE (arg),
3162 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 3163
0963b4bd 3164 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
3165
3166 switch (TYPE_CODE (parm))
3167 {
c5aa993b
JM
3168 case TYPE_CODE_PTR:
3169 switch (TYPE_CODE (arg))
3170 {
3171 case TYPE_CODE_PTR:
7062b0a0
SW
3172
3173 /* Allowed pointer conversions are:
3174 (a) pointer to void-pointer conversion. */
3175 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
c5aa993b 3176 return VOID_PTR_CONVERSION_BADNESS;
7062b0a0
SW
3177
3178 /* (b) pointer to ancestor-pointer conversion. */
a9d5ef47
SW
3179 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3180 TYPE_TARGET_TYPE (arg),
3181 0);
3182 if (rank.subrank >= 0)
3183 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
7062b0a0
SW
3184
3185 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3186 case TYPE_CODE_ARRAY:
7062b0a0
SW
3187 if (types_equal (TYPE_TARGET_TYPE (parm),
3188 TYPE_TARGET_TYPE (arg)))
6403aeea 3189 return EXACT_MATCH_BADNESS;
7062b0a0 3190 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3191 case TYPE_CODE_FUNC:
da096638 3192 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
c5aa993b 3193 case TYPE_CODE_INT:
a451cb65 3194 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
da096638 3195 {
a451cb65
KS
3196 if (value_as_long (value) == 0)
3197 {
3198 /* Null pointer conversion: allow it to be cast to a pointer.
3199 [4.10.1 of C++ standard draft n3290] */
3200 return NULL_POINTER_CONVERSION_BADNESS;
3201 }
3202 else
3203 {
3204 /* If type checking is disabled, allow the conversion. */
3205 if (!strict_type_checking)
3206 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3207 }
da096638
KS
3208 }
3209 /* fall through */
c5aa993b 3210 case TYPE_CODE_ENUM:
4f2aea11 3211 case TYPE_CODE_FLAGS:
c5aa993b
JM
3212 case TYPE_CODE_CHAR:
3213 case TYPE_CODE_RANGE:
3214 case TYPE_CODE_BOOL:
c5aa993b
JM
3215 default:
3216 return INCOMPATIBLE_TYPE_BADNESS;
3217 }
3218 case TYPE_CODE_ARRAY:
3219 switch (TYPE_CODE (arg))
3220 {
3221 case TYPE_CODE_PTR:
3222 case TYPE_CODE_ARRAY:
7ba81444 3223 return rank_one_type (TYPE_TARGET_TYPE (parm),
da096638 3224 TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3225 default:
3226 return INCOMPATIBLE_TYPE_BADNESS;
3227 }
3228 case TYPE_CODE_FUNC:
3229 switch (TYPE_CODE (arg))
3230 {
3231 case TYPE_CODE_PTR: /* funcptr -> func */
da096638 3232 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3233 default:
3234 return INCOMPATIBLE_TYPE_BADNESS;
3235 }
3236 case TYPE_CODE_INT:
3237 switch (TYPE_CODE (arg))
3238 {
3239 case TYPE_CODE_INT:
3240 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3241 {
3242 /* Deal with signed, unsigned, and plain chars and
7ba81444 3243 signed and unsigned ints. */
c5aa993b
JM
3244 if (TYPE_NOSIGN (parm))
3245 {
0963b4bd 3246 /* This case only for character types. */
7ba81444 3247 if (TYPE_NOSIGN (arg))
6403aeea 3248 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
7ba81444
MS
3249 else /* signed/unsigned char -> plain char */
3250 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3251 }
3252 else if (TYPE_UNSIGNED (parm))
3253 {
3254 if (TYPE_UNSIGNED (arg))
3255 {
7ba81444
MS
3256 /* unsigned int -> unsigned int, or
3257 unsigned long -> unsigned long */
3258 if (integer_types_same_name_p (TYPE_NAME (parm),
3259 TYPE_NAME (arg)))
6403aeea 3260 return EXACT_MATCH_BADNESS;
7ba81444
MS
3261 else if (integer_types_same_name_p (TYPE_NAME (arg),
3262 "int")
3263 && integer_types_same_name_p (TYPE_NAME (parm),
3264 "long"))
3e43a32a
MS
3265 /* unsigned int -> unsigned long */
3266 return INTEGER_PROMOTION_BADNESS;
c5aa993b 3267 else
3e43a32a
MS
3268 /* unsigned long -> unsigned int */
3269 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3270 }
3271 else
3272 {
7ba81444
MS
3273 if (integer_types_same_name_p (TYPE_NAME (arg),
3274 "long")
3275 && integer_types_same_name_p (TYPE_NAME (parm),
3276 "int"))
3e43a32a
MS
3277 /* signed long -> unsigned int */
3278 return INTEGER_CONVERSION_BADNESS;
c5aa993b 3279 else
3e43a32a
MS
3280 /* signed int/long -> unsigned int/long */
3281 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3282 }
3283 }
3284 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3285 {
7ba81444
MS
3286 if (integer_types_same_name_p (TYPE_NAME (parm),
3287 TYPE_NAME (arg)))
6403aeea 3288 return EXACT_MATCH_BADNESS;
7ba81444
MS
3289 else if (integer_types_same_name_p (TYPE_NAME (arg),
3290 "int")
3291 && integer_types_same_name_p (TYPE_NAME (parm),
3292 "long"))
c5aa993b
JM
3293 return INTEGER_PROMOTION_BADNESS;
3294 else
1c5cb38e 3295 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3296 }
3297 else
1c5cb38e 3298 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3299 }
3300 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3301 return INTEGER_PROMOTION_BADNESS;
3302 else
1c5cb38e 3303 return INTEGER_CONVERSION_BADNESS;
c5aa993b 3304 case TYPE_CODE_ENUM:
4f2aea11 3305 case TYPE_CODE_FLAGS:
c5aa993b
JM
3306 case TYPE_CODE_CHAR:
3307 case TYPE_CODE_RANGE:
3308 case TYPE_CODE_BOOL:
3d567982
TT
3309 if (TYPE_DECLARED_CLASS (arg))
3310 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b
JM
3311 return INTEGER_PROMOTION_BADNESS;
3312 case TYPE_CODE_FLT:
3313 return INT_FLOAT_CONVERSION_BADNESS;
3314 case TYPE_CODE_PTR:
3315 return NS_POINTER_CONVERSION_BADNESS;
3316 default:
3317 return INCOMPATIBLE_TYPE_BADNESS;
3318 }
3319 break;
3320 case TYPE_CODE_ENUM:
3321 switch (TYPE_CODE (arg))
3322 {
3323 case TYPE_CODE_INT:
3324 case TYPE_CODE_CHAR:
3325 case TYPE_CODE_RANGE:
3326 case TYPE_CODE_BOOL:
3327 case TYPE_CODE_ENUM:
3d567982
TT
3328 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3329 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 3330 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3331 case TYPE_CODE_FLT:
3332 return INT_FLOAT_CONVERSION_BADNESS;
3333 default:
3334 return INCOMPATIBLE_TYPE_BADNESS;
3335 }
3336 break;
3337 case TYPE_CODE_CHAR:
3338 switch (TYPE_CODE (arg))
3339 {
3340 case TYPE_CODE_RANGE:
3341 case TYPE_CODE_BOOL:
3342 case TYPE_CODE_ENUM:
3d567982
TT
3343 if (TYPE_DECLARED_CLASS (arg))
3344 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 3345 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3346 case TYPE_CODE_FLT:
3347 return INT_FLOAT_CONVERSION_BADNESS;
3348 case TYPE_CODE_INT:
3349 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
1c5cb38e 3350 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3351 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3352 return INTEGER_PROMOTION_BADNESS;
3353 /* >>> !! else fall through !! <<< */
3354 case TYPE_CODE_CHAR:
7ba81444
MS
3355 /* Deal with signed, unsigned, and plain chars for C++ and
3356 with int cases falling through from previous case. */
c5aa993b
JM
3357 if (TYPE_NOSIGN (parm))
3358 {
3359 if (TYPE_NOSIGN (arg))
6403aeea 3360 return EXACT_MATCH_BADNESS;
c5aa993b 3361 else
1c5cb38e 3362 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3363 }
3364 else if (TYPE_UNSIGNED (parm))
3365 {
3366 if (TYPE_UNSIGNED (arg))
6403aeea 3367 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3368 else
3369 return INTEGER_PROMOTION_BADNESS;
3370 }
3371 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
6403aeea 3372 return EXACT_MATCH_BADNESS;
c5aa993b 3373 else
1c5cb38e 3374 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3375 default:
3376 return INCOMPATIBLE_TYPE_BADNESS;
3377 }
3378 break;
3379 case TYPE_CODE_RANGE:
3380 switch (TYPE_CODE (arg))
3381 {
3382 case TYPE_CODE_INT:
3383 case TYPE_CODE_CHAR:
3384 case TYPE_CODE_RANGE:
3385 case TYPE_CODE_BOOL:
3386 case TYPE_CODE_ENUM:
1c5cb38e 3387 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3388 case TYPE_CODE_FLT:
3389 return INT_FLOAT_CONVERSION_BADNESS;
3390 default:
3391 return INCOMPATIBLE_TYPE_BADNESS;
3392 }
3393 break;
3394 case TYPE_CODE_BOOL:
3395 switch (TYPE_CODE (arg))
3396 {
5b4f6e25
KS
3397 /* n3290 draft, section 4.12.1 (conv.bool):
3398
3399 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3400 pointer to member type can be converted to a prvalue of type
3401 bool. A zero value, null pointer value, or null member pointer
3402 value is converted to false; any other value is converted to
3403 true. A prvalue of type std::nullptr_t can be converted to a
3404 prvalue of type bool; the resulting value is false." */
c5aa993b
JM
3405 case TYPE_CODE_INT:
3406 case TYPE_CODE_CHAR:
c5aa993b
JM
3407 case TYPE_CODE_ENUM:
3408 case TYPE_CODE_FLT:
5b4f6e25 3409 case TYPE_CODE_MEMBERPTR:
c5aa993b 3410 case TYPE_CODE_PTR:
5b4f6e25
KS
3411 return BOOL_CONVERSION_BADNESS;
3412 case TYPE_CODE_RANGE:
3413 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3414 case TYPE_CODE_BOOL:
6403aeea 3415 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3416 default:
3417 return INCOMPATIBLE_TYPE_BADNESS;
3418 }
3419 break;
3420 case TYPE_CODE_FLT:
3421 switch (TYPE_CODE (arg))
3422 {
3423 case TYPE_CODE_FLT:
3424 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3425 return FLOAT_PROMOTION_BADNESS;
3426 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
6403aeea 3427 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3428 else
3429 return FLOAT_CONVERSION_BADNESS;
3430 case TYPE_CODE_INT:
3431 case TYPE_CODE_BOOL:
3432 case TYPE_CODE_ENUM:
3433 case TYPE_CODE_RANGE:
3434 case TYPE_CODE_CHAR:
3435 return INT_FLOAT_CONVERSION_BADNESS;
3436 default:
3437 return INCOMPATIBLE_TYPE_BADNESS;
3438 }
3439 break;
3440 case TYPE_CODE_COMPLEX:
3441 switch (TYPE_CODE (arg))
7ba81444 3442 { /* Strictly not needed for C++, but... */
c5aa993b
JM
3443 case TYPE_CODE_FLT:
3444 return FLOAT_PROMOTION_BADNESS;
3445 case TYPE_CODE_COMPLEX:
6403aeea 3446 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3447 default:
3448 return INCOMPATIBLE_TYPE_BADNESS;
3449 }
3450 break;
3451 case TYPE_CODE_STRUCT:
c5aa993b
JM
3452 switch (TYPE_CODE (arg))
3453 {
3454 case TYPE_CODE_STRUCT:
3455 /* Check for derivation */
a9d5ef47
SW
3456 rank.subrank = distance_to_ancestor (parm, arg, 0);
3457 if (rank.subrank >= 0)
3458 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
c5aa993b
JM
3459 /* else fall through */
3460 default:
3461 return INCOMPATIBLE_TYPE_BADNESS;
3462 }
3463 break;
3464 case TYPE_CODE_UNION:
3465 switch (TYPE_CODE (arg))
3466 {
3467 case TYPE_CODE_UNION:
3468 default:
3469 return INCOMPATIBLE_TYPE_BADNESS;
3470 }
3471 break;
0d5de010 3472 case TYPE_CODE_MEMBERPTR:
c5aa993b
JM
3473 switch (TYPE_CODE (arg))
3474 {
3475 default:
3476 return INCOMPATIBLE_TYPE_BADNESS;
3477 }
3478 break;
3479 case TYPE_CODE_METHOD:
3480 switch (TYPE_CODE (arg))
3481 {
3482
3483 default:
3484 return INCOMPATIBLE_TYPE_BADNESS;
3485 }
3486 break;
3487 case TYPE_CODE_REF:
3488 switch (TYPE_CODE (arg))
3489 {
3490
3491 default:
3492 return INCOMPATIBLE_TYPE_BADNESS;
3493 }
3494
3495 break;
3496 case TYPE_CODE_SET:
3497 switch (TYPE_CODE (arg))
3498 {
3499 /* Not in C++ */
3500 case TYPE_CODE_SET:
7ba81444 3501 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
da096638 3502 TYPE_FIELD_TYPE (arg, 0), NULL);
c5aa993b
JM
3503 default:
3504 return INCOMPATIBLE_TYPE_BADNESS;
3505 }
3506 break;
3507 case TYPE_CODE_VOID:
3508 default:
3509 return INCOMPATIBLE_TYPE_BADNESS;
3510 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
3511}
3512
0963b4bd 3513/* End of functions for overload resolution. */
5212577a
DE
3514\f
3515/* Routines to pretty-print types. */
c906108c 3516
c906108c 3517static void
fba45db2 3518print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
3519{
3520 int bitno;
3521
3522 for (bitno = 0; bitno < nbits; bitno++)
3523 {
3524 if ((bitno % 8) == 0)
3525 {
3526 puts_filtered (" ");
3527 }
3528 if (B_TST (bits, bitno))
a3f17187 3529 printf_filtered (("1"));
c906108c 3530 else
a3f17187 3531 printf_filtered (("0"));
c906108c
SS
3532 }
3533}
3534
ad2f7632 3535/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
3536 include it since we may get into a infinitely recursive
3537 situation. */
c906108c
SS
3538
3539static void
4c9e8482 3540print_args (struct field *args, int nargs, int spaces)
c906108c
SS
3541{
3542 if (args != NULL)
3543 {
ad2f7632
DJ
3544 int i;
3545
3546 for (i = 0; i < nargs; i++)
4c9e8482
DE
3547 {
3548 printfi_filtered (spaces, "[%d] name '%s'\n", i,
3549 args[i].name != NULL ? args[i].name : "<NULL>");
3550 recursive_dump_type (args[i].type, spaces + 2);
3551 }
c906108c
SS
3552 }
3553}
3554
d6a843b5
JK
3555int
3556field_is_static (struct field *f)
3557{
3558 /* "static" fields are the fields whose location is not relative
3559 to the address of the enclosing struct. It would be nice to
3560 have a dedicated flag that would be set for static fields when
3561 the type is being created. But in practice, checking the field
254e6b9e 3562 loc_kind should give us an accurate answer. */
d6a843b5
JK
3563 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3564 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3565}
3566
c906108c 3567static void
fba45db2 3568dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
3569{
3570 int method_idx;
3571 int overload_idx;
3572 struct fn_field *f;
3573
3574 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 3575 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
3576 printf_filtered ("\n");
3577 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3578 {
3579 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3580 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3581 method_idx,
3582 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
3583 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3584 gdb_stdout);
a3f17187 3585 printf_filtered (_(") length %d\n"),
c906108c
SS
3586 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3587 for (overload_idx = 0;
3588 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3589 overload_idx++)
3590 {
3591 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3592 overload_idx,
3593 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
3594 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3595 gdb_stdout);
c906108c
SS
3596 printf_filtered (")\n");
3597 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
3598 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3599 gdb_stdout);
c906108c
SS
3600 printf_filtered ("\n");
3601
3602 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3603 spaces + 8 + 2);
3604
3605 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
3606 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3607 gdb_stdout);
c906108c 3608 printf_filtered ("\n");
4c9e8482
DE
3609 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
3610 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
3611 spaces + 8 + 2);
c906108c 3612 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
3613 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3614 gdb_stdout);
c906108c
SS
3615 printf_filtered ("\n");
3616
3617 printfi_filtered (spaces + 8, "is_const %d\n",
3618 TYPE_FN_FIELD_CONST (f, overload_idx));
3619 printfi_filtered (spaces + 8, "is_volatile %d\n",
3620 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3621 printfi_filtered (spaces + 8, "is_private %d\n",
3622 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3623 printfi_filtered (spaces + 8, "is_protected %d\n",
3624 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3625 printfi_filtered (spaces + 8, "is_stub %d\n",
3626 TYPE_FN_FIELD_STUB (f, overload_idx));
3627 printfi_filtered (spaces + 8, "voffset %u\n",
3628 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3629 }
3630 }
3631}
3632
3633static void
fba45db2 3634print_cplus_stuff (struct type *type, int spaces)
c906108c
SS
3635{
3636 printfi_filtered (spaces, "n_baseclasses %d\n",
3637 TYPE_N_BASECLASSES (type));
3638 printfi_filtered (spaces, "nfn_fields %d\n",
3639 TYPE_NFN_FIELDS (type));
c906108c
SS
3640 if (TYPE_N_BASECLASSES (type) > 0)
3641 {
3642 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3643 TYPE_N_BASECLASSES (type));
7ba81444
MS
3644 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3645 gdb_stdout);
c906108c
SS
3646 printf_filtered (")");
3647
3648 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3649 TYPE_N_BASECLASSES (type));
3650 puts_filtered ("\n");
3651 }
3652 if (TYPE_NFIELDS (type) > 0)
3653 {
3654 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3655 {
7ba81444
MS
3656 printfi_filtered (spaces,
3657 "private_field_bits (%d bits at *",
c906108c 3658 TYPE_NFIELDS (type));
7ba81444
MS
3659 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3660 gdb_stdout);
c906108c
SS
3661 printf_filtered (")");
3662 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3663 TYPE_NFIELDS (type));
3664 puts_filtered ("\n");
3665 }
3666 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3667 {
7ba81444
MS
3668 printfi_filtered (spaces,
3669 "protected_field_bits (%d bits at *",
c906108c 3670 TYPE_NFIELDS (type));
7ba81444
MS
3671 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3672 gdb_stdout);
c906108c
SS
3673 printf_filtered (")");
3674 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3675 TYPE_NFIELDS (type));
3676 puts_filtered ("\n");
3677 }
3678 }
3679 if (TYPE_NFN_FIELDS (type) > 0)
3680 {
3681 dump_fn_fieldlists (type, spaces);
3682 }
3683}
3684
b4ba55a1
JB
3685/* Print the contents of the TYPE's type_specific union, assuming that
3686 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3687
3688static void
3689print_gnat_stuff (struct type *type, int spaces)
3690{
3691 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3692
3693 recursive_dump_type (descriptive_type, spaces + 2);
3694}
3695
c906108c
SS
3696static struct obstack dont_print_type_obstack;
3697
3698void
fba45db2 3699recursive_dump_type (struct type *type, int spaces)
c906108c
SS
3700{
3701 int idx;
3702
3703 if (spaces == 0)
3704 obstack_begin (&dont_print_type_obstack, 0);
3705
3706 if (TYPE_NFIELDS (type) > 0
b4ba55a1 3707 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
3708 {
3709 struct type **first_dont_print
7ba81444 3710 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 3711
7ba81444
MS
3712 int i = (struct type **)
3713 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
3714
3715 while (--i >= 0)
3716 {
3717 if (type == first_dont_print[i])
3718 {
3719 printfi_filtered (spaces, "type node ");
d4f3574e 3720 gdb_print_host_address (type, gdb_stdout);
a3f17187 3721 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
3722 return;
3723 }
3724 }
3725
3726 obstack_ptr_grow (&dont_print_type_obstack, type);
3727 }
3728
3729 printfi_filtered (spaces, "type node ");
d4f3574e 3730 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
3731 printf_filtered ("\n");
3732 printfi_filtered (spaces, "name '%s' (",
3733 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 3734 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 3735 printf_filtered (")\n");
e9e79dd9
FF
3736 printfi_filtered (spaces, "tagname '%s' (",
3737 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3738 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3739 printf_filtered (")\n");
c906108c
SS
3740 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3741 switch (TYPE_CODE (type))
3742 {
c5aa993b
JM
3743 case TYPE_CODE_UNDEF:
3744 printf_filtered ("(TYPE_CODE_UNDEF)");
3745 break;
3746 case TYPE_CODE_PTR:
3747 printf_filtered ("(TYPE_CODE_PTR)");
3748 break;
3749 case TYPE_CODE_ARRAY:
3750 printf_filtered ("(TYPE_CODE_ARRAY)");
3751 break;
3752 case TYPE_CODE_STRUCT:
3753 printf_filtered ("(TYPE_CODE_STRUCT)");
3754 break;
3755 case TYPE_CODE_UNION:
3756 printf_filtered ("(TYPE_CODE_UNION)");
3757 break;
3758 case TYPE_CODE_ENUM:
3759 printf_filtered ("(TYPE_CODE_ENUM)");
3760 break;
4f2aea11
MK
3761 case TYPE_CODE_FLAGS:
3762 printf_filtered ("(TYPE_CODE_FLAGS)");
3763 break;
c5aa993b
JM
3764 case TYPE_CODE_FUNC:
3765 printf_filtered ("(TYPE_CODE_FUNC)");
3766 break;
3767 case TYPE_CODE_INT:
3768 printf_filtered ("(TYPE_CODE_INT)");
3769 break;
3770 case TYPE_CODE_FLT:
3771 printf_filtered ("(TYPE_CODE_FLT)");
3772 break;
3773 case TYPE_CODE_VOID:
3774 printf_filtered ("(TYPE_CODE_VOID)");
3775 break;
3776 case TYPE_CODE_SET:
3777 printf_filtered ("(TYPE_CODE_SET)");
3778 break;
3779 case TYPE_CODE_RANGE:
3780 printf_filtered ("(TYPE_CODE_RANGE)");
3781 break;
3782 case TYPE_CODE_STRING:
3783 printf_filtered ("(TYPE_CODE_STRING)");
3784 break;
3785 case TYPE_CODE_ERROR:
3786 printf_filtered ("(TYPE_CODE_ERROR)");
3787 break;
0d5de010
DJ
3788 case TYPE_CODE_MEMBERPTR:
3789 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3790 break;
3791 case TYPE_CODE_METHODPTR:
3792 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
3793 break;
3794 case TYPE_CODE_METHOD:
3795 printf_filtered ("(TYPE_CODE_METHOD)");
3796 break;
3797 case TYPE_CODE_REF:
3798 printf_filtered ("(TYPE_CODE_REF)");
3799 break;
3800 case TYPE_CODE_CHAR:
3801 printf_filtered ("(TYPE_CODE_CHAR)");
3802 break;
3803 case TYPE_CODE_BOOL:
3804 printf_filtered ("(TYPE_CODE_BOOL)");
3805 break;
e9e79dd9
FF
3806 case TYPE_CODE_COMPLEX:
3807 printf_filtered ("(TYPE_CODE_COMPLEX)");
3808 break;
c5aa993b
JM
3809 case TYPE_CODE_TYPEDEF:
3810 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3811 break;
5c4e30ca
DC
3812 case TYPE_CODE_NAMESPACE:
3813 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3814 break;
c5aa993b
JM
3815 default:
3816 printf_filtered ("(UNKNOWN TYPE CODE)");
3817 break;
c906108c
SS
3818 }
3819 puts_filtered ("\n");
3820 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9bb382b
UW
3821 if (TYPE_OBJFILE_OWNED (type))
3822 {
3823 printfi_filtered (spaces, "objfile ");
3824 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3825 }
3826 else
3827 {
3828 printfi_filtered (spaces, "gdbarch ");
3829 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3830 }
c906108c
SS
3831 printf_filtered ("\n");
3832 printfi_filtered (spaces, "target_type ");
d4f3574e 3833 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
3834 printf_filtered ("\n");
3835 if (TYPE_TARGET_TYPE (type) != NULL)
3836 {
3837 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3838 }
3839 printfi_filtered (spaces, "pointer_type ");
d4f3574e 3840 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
3841 printf_filtered ("\n");
3842 printfi_filtered (spaces, "reference_type ");
d4f3574e 3843 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 3844 printf_filtered ("\n");
2fdde8f8
DJ
3845 printfi_filtered (spaces, "type_chain ");
3846 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 3847 printf_filtered ("\n");
7ba81444
MS
3848 printfi_filtered (spaces, "instance_flags 0x%x",
3849 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
3850 if (TYPE_CONST (type))
3851 {
3852 puts_filtered (" TYPE_FLAG_CONST");
3853 }
3854 if (TYPE_VOLATILE (type))
3855 {
3856 puts_filtered (" TYPE_FLAG_VOLATILE");
3857 }
3858 if (TYPE_CODE_SPACE (type))
3859 {
3860 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3861 }
3862 if (TYPE_DATA_SPACE (type))
3863 {
3864 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3865 }
8b2dbe47
KB
3866 if (TYPE_ADDRESS_CLASS_1 (type))
3867 {
3868 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3869 }
3870 if (TYPE_ADDRESS_CLASS_2 (type))
3871 {
3872 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3873 }
06d66ee9
TT
3874 if (TYPE_RESTRICT (type))
3875 {
3876 puts_filtered (" TYPE_FLAG_RESTRICT");
3877 }
2fdde8f8 3878 puts_filtered ("\n");
876cecd0
TT
3879
3880 printfi_filtered (spaces, "flags");
762a036f 3881 if (TYPE_UNSIGNED (type))
c906108c
SS
3882 {
3883 puts_filtered (" TYPE_FLAG_UNSIGNED");
3884 }
762a036f
FF
3885 if (TYPE_NOSIGN (type))
3886 {
3887 puts_filtered (" TYPE_FLAG_NOSIGN");
3888 }
3889 if (TYPE_STUB (type))
c906108c
SS
3890 {
3891 puts_filtered (" TYPE_FLAG_STUB");
3892 }
762a036f
FF
3893 if (TYPE_TARGET_STUB (type))
3894 {
3895 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3896 }
3897 if (TYPE_STATIC (type))
3898 {
3899 puts_filtered (" TYPE_FLAG_STATIC");
3900 }
762a036f
FF
3901 if (TYPE_PROTOTYPED (type))
3902 {
3903 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3904 }
3905 if (TYPE_INCOMPLETE (type))
3906 {
3907 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3908 }
762a036f
FF
3909 if (TYPE_VARARGS (type))
3910 {
3911 puts_filtered (" TYPE_FLAG_VARARGS");
3912 }
f5f8a009
EZ
3913 /* This is used for things like AltiVec registers on ppc. Gcc emits
3914 an attribute for the array type, which tells whether or not we
3915 have a vector, instead of a regular array. */
3916 if (TYPE_VECTOR (type))
3917 {
3918 puts_filtered (" TYPE_FLAG_VECTOR");
3919 }
876cecd0
TT
3920 if (TYPE_FIXED_INSTANCE (type))
3921 {
3922 puts_filtered (" TYPE_FIXED_INSTANCE");
3923 }
3924 if (TYPE_STUB_SUPPORTED (type))
3925 {
3926 puts_filtered (" TYPE_STUB_SUPPORTED");
3927 }
3928 if (TYPE_NOTTEXT (type))
3929 {
3930 puts_filtered (" TYPE_NOTTEXT");
3931 }
c906108c
SS
3932 puts_filtered ("\n");
3933 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 3934 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
3935 puts_filtered ("\n");
3936 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3937 {
14e75d8e
JK
3938 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
3939 printfi_filtered (spaces + 2,
3940 "[%d] enumval %s type ",
3941 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
3942 else
3943 printfi_filtered (spaces + 2,
3944 "[%d] bitpos %d bitsize %d type ",
3945 idx, TYPE_FIELD_BITPOS (type, idx),
3946 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 3947 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
3948 printf_filtered (" name '%s' (",
3949 TYPE_FIELD_NAME (type, idx) != NULL
3950 ? TYPE_FIELD_NAME (type, idx)
3951 : "<NULL>");
d4f3574e 3952 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
3953 printf_filtered (")\n");
3954 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3955 {
3956 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3957 }
3958 }
43bbcdc2
PH
3959 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3960 {
3961 printfi_filtered (spaces, "low %s%s high %s%s\n",
3962 plongest (TYPE_LOW_BOUND (type)),
3963 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3964 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
3965 TYPE_HIGH_BOUND_UNDEFINED (type)
3966 ? " (undefined)" : "");
43bbcdc2 3967 }
c906108c 3968 printfi_filtered (spaces, "vptr_basetype ");
d4f3574e 3969 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
c906108c
SS
3970 puts_filtered ("\n");
3971 if (TYPE_VPTR_BASETYPE (type) != NULL)
3972 {
3973 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3974 }
7ba81444
MS
3975 printfi_filtered (spaces, "vptr_fieldno %d\n",
3976 TYPE_VPTR_FIELDNO (type));
c906108c 3977
b4ba55a1
JB
3978 switch (TYPE_SPECIFIC_FIELD (type))
3979 {
3980 case TYPE_SPECIFIC_CPLUS_STUFF:
3981 printfi_filtered (spaces, "cplus_stuff ");
3982 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3983 gdb_stdout);
3984 puts_filtered ("\n");
3985 print_cplus_stuff (type, spaces);
3986 break;
8da61cc4 3987
b4ba55a1
JB
3988 case TYPE_SPECIFIC_GNAT_STUFF:
3989 printfi_filtered (spaces, "gnat_stuff ");
3990 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3991 puts_filtered ("\n");
3992 print_gnat_stuff (type, spaces);
3993 break;
701c159d 3994
b4ba55a1
JB
3995 case TYPE_SPECIFIC_FLOATFORMAT:
3996 printfi_filtered (spaces, "floatformat ");
3997 if (TYPE_FLOATFORMAT (type) == NULL)
3998 puts_filtered ("(null)");
3999 else
4000 {
4001 puts_filtered ("{ ");
4002 if (TYPE_FLOATFORMAT (type)[0] == NULL
4003 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
4004 puts_filtered ("(null)");
4005 else
4006 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
4007
4008 puts_filtered (", ");
4009 if (TYPE_FLOATFORMAT (type)[1] == NULL
4010 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
4011 puts_filtered ("(null)");
4012 else
4013 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
4014
4015 puts_filtered (" }");
4016 }
4017 puts_filtered ("\n");
4018 break;
c906108c 4019
b6cdc2c1 4020 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
4021 printfi_filtered (spaces, "calling_convention %d\n",
4022 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 4023 /* tail_call_list is not printed. */
b4ba55a1 4024 break;
c906108c 4025 }
b4ba55a1 4026
c906108c
SS
4027 if (spaces == 0)
4028 obstack_free (&dont_print_type_obstack, NULL);
4029}
5212577a 4030\f
ae5a43e0
DJ
4031/* Trivial helpers for the libiberty hash table, for mapping one
4032 type to another. */
4033
4034struct type_pair
4035{
4036 struct type *old, *new;
4037};
4038
4039static hashval_t
4040type_pair_hash (const void *item)
4041{
4042 const struct type_pair *pair = item;
d8734c88 4043
ae5a43e0
DJ
4044 return htab_hash_pointer (pair->old);
4045}
4046
4047static int
4048type_pair_eq (const void *item_lhs, const void *item_rhs)
4049{
4050 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
d8734c88 4051
ae5a43e0
DJ
4052 return lhs->old == rhs->old;
4053}
4054
4055/* Allocate the hash table used by copy_type_recursive to walk
4056 types without duplicates. We use OBJFILE's obstack, because
4057 OBJFILE is about to be deleted. */
4058
4059htab_t
4060create_copied_types_hash (struct objfile *objfile)
4061{
4062 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4063 NULL, &objfile->objfile_obstack,
4064 hashtab_obstack_allocate,
4065 dummy_obstack_deallocate);
4066}
4067
7ba81444
MS
4068/* Recursively copy (deep copy) TYPE, if it is associated with
4069 OBJFILE. Return a new type allocated using malloc, a saved type if
4070 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
4071 not associated with OBJFILE. */
ae5a43e0
DJ
4072
4073struct type *
7ba81444
MS
4074copy_type_recursive (struct objfile *objfile,
4075 struct type *type,
ae5a43e0
DJ
4076 htab_t copied_types)
4077{
4078 struct type_pair *stored, pair;
4079 void **slot;
4080 struct type *new_type;
4081
e9bb382b 4082 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
4083 return type;
4084
7ba81444
MS
4085 /* This type shouldn't be pointing to any types in other objfiles;
4086 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
4087 gdb_assert (TYPE_OBJFILE (type) == objfile);
4088
4089 pair.old = type;
4090 slot = htab_find_slot (copied_types, &pair, INSERT);
4091 if (*slot != NULL)
4092 return ((struct type_pair *) *slot)->new;
4093
e9bb382b 4094 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
4095
4096 /* We must add the new type to the hash table immediately, in case
4097 we encounter this type again during a recursive call below. */
3e43a32a
MS
4098 stored
4099 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
ae5a43e0
DJ
4100 stored->old = type;
4101 stored->new = new_type;
4102 *slot = stored;
4103
876cecd0
TT
4104 /* Copy the common fields of types. For the main type, we simply
4105 copy the entire thing and then update specific fields as needed. */
4106 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
4107 TYPE_OBJFILE_OWNED (new_type) = 0;
4108 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 4109
ae5a43e0
DJ
4110 if (TYPE_NAME (type))
4111 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4112 if (TYPE_TAG_NAME (type))
4113 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
ae5a43e0
DJ
4114
4115 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4116 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4117
4118 /* Copy the fields. */
ae5a43e0
DJ
4119 if (TYPE_NFIELDS (type))
4120 {
4121 int i, nfields;
4122
4123 nfields = TYPE_NFIELDS (type);
fc270c35 4124 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
ae5a43e0
DJ
4125 for (i = 0; i < nfields; i++)
4126 {
7ba81444
MS
4127 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4128 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
4129 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4130 if (TYPE_FIELD_TYPE (type, i))
4131 TYPE_FIELD_TYPE (new_type, i)
4132 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4133 copied_types);
4134 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
4135 TYPE_FIELD_NAME (new_type, i) =
4136 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 4137 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 4138 {
d6a843b5
JK
4139 case FIELD_LOC_KIND_BITPOS:
4140 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4141 TYPE_FIELD_BITPOS (type, i));
4142 break;
14e75d8e
JK
4143 case FIELD_LOC_KIND_ENUMVAL:
4144 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4145 TYPE_FIELD_ENUMVAL (type, i));
4146 break;
d6a843b5
JK
4147 case FIELD_LOC_KIND_PHYSADDR:
4148 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4149 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4150 break;
4151 case FIELD_LOC_KIND_PHYSNAME:
4152 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4153 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4154 i)));
4155 break;
4156 default:
4157 internal_error (__FILE__, __LINE__,
4158 _("Unexpected type field location kind: %d"),
4159 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
4160 }
4161 }
4162 }
4163
0963b4bd 4164 /* For range types, copy the bounds information. */
43bbcdc2
PH
4165 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4166 {
4167 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
4168 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4169 }
4170
3cdcd0ce
JB
4171 /* Copy the data location information. */
4172 if (TYPE_DATA_LOCATION (type) != NULL)
4173 {
4174 TYPE_DATA_LOCATION (new_type)
4175 = TYPE_ALLOC (new_type, sizeof (struct dynamic_prop));
4176 memcpy (TYPE_DATA_LOCATION (new_type), TYPE_DATA_LOCATION (type),
4177 sizeof (struct dynamic_prop));
4178 }
4179
ae5a43e0
DJ
4180 /* Copy pointers to other types. */
4181 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
4182 TYPE_TARGET_TYPE (new_type) =
4183 copy_type_recursive (objfile,
4184 TYPE_TARGET_TYPE (type),
4185 copied_types);
ae5a43e0 4186 if (TYPE_VPTR_BASETYPE (type))
7ba81444
MS
4187 TYPE_VPTR_BASETYPE (new_type) =
4188 copy_type_recursive (objfile,
4189 TYPE_VPTR_BASETYPE (type),
4190 copied_types);
ae5a43e0
DJ
4191 /* Maybe copy the type_specific bits.
4192
4193 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4194 base classes and methods. There's no fundamental reason why we
4195 can't, but at the moment it is not needed. */
4196
4197 if (TYPE_CODE (type) == TYPE_CODE_FLT)
d5d6fca5 4198 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
ae5a43e0
DJ
4199 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4200 || TYPE_CODE (type) == TYPE_CODE_UNION
ae5a43e0
DJ
4201 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
4202 INIT_CPLUS_SPECIFIC (new_type);
4203
4204 return new_type;
4205}
4206
4af88198
JB
4207/* Make a copy of the given TYPE, except that the pointer & reference
4208 types are not preserved.
4209
4210 This function assumes that the given type has an associated objfile.
4211 This objfile is used to allocate the new type. */
4212
4213struct type *
4214copy_type (const struct type *type)
4215{
4216 struct type *new_type;
4217
e9bb382b 4218 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 4219
e9bb382b 4220 new_type = alloc_type_copy (type);
4af88198
JB
4221 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4222 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4223 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4224 sizeof (struct main_type));
3cdcd0ce
JB
4225 if (TYPE_DATA_LOCATION (type) != NULL)
4226 {
4227 TYPE_DATA_LOCATION (new_type)
4228 = TYPE_ALLOC (new_type, sizeof (struct dynamic_prop));
4229 memcpy (TYPE_DATA_LOCATION (new_type), TYPE_DATA_LOCATION (type),
4230 sizeof (struct dynamic_prop));
4231 }
4af88198
JB
4232
4233 return new_type;
4234}
5212577a 4235\f
e9bb382b
UW
4236/* Helper functions to initialize architecture-specific types. */
4237
4238/* Allocate a type structure associated with GDBARCH and set its
4239 CODE, LENGTH, and NAME fields. */
5212577a 4240
e9bb382b
UW
4241struct type *
4242arch_type (struct gdbarch *gdbarch,
4243 enum type_code code, int length, char *name)
4244{
4245 struct type *type;
4246
4247 type = alloc_type_arch (gdbarch);
4248 TYPE_CODE (type) = code;
4249 TYPE_LENGTH (type) = length;
4250
4251 if (name)
4252 TYPE_NAME (type) = xstrdup (name);
4253
4254 return type;
4255}
4256
4257/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4258 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4259 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4260
e9bb382b
UW
4261struct type *
4262arch_integer_type (struct gdbarch *gdbarch,
4263 int bit, int unsigned_p, char *name)
4264{
4265 struct type *t;
4266
4267 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4268 if (unsigned_p)
4269 TYPE_UNSIGNED (t) = 1;
4270 if (name && strcmp (name, "char") == 0)
4271 TYPE_NOSIGN (t) = 1;
4272
4273 return t;
4274}
4275
4276/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4277 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4278 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4279
e9bb382b
UW
4280struct type *
4281arch_character_type (struct gdbarch *gdbarch,
4282 int bit, int unsigned_p, char *name)
4283{
4284 struct type *t;
4285
4286 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4287 if (unsigned_p)
4288 TYPE_UNSIGNED (t) = 1;
4289
4290 return t;
4291}
4292
4293/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4294 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4295 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4296
e9bb382b
UW
4297struct type *
4298arch_boolean_type (struct gdbarch *gdbarch,
4299 int bit, int unsigned_p, char *name)
4300{
4301 struct type *t;
4302
4303 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4304 if (unsigned_p)
4305 TYPE_UNSIGNED (t) = 1;
4306
4307 return t;
4308}
4309
4310/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4311 BIT is the type size in bits; if BIT equals -1, the size is
4312 determined by the floatformat. NAME is the type name. Set the
4313 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 4314
27067745 4315struct type *
e9bb382b
UW
4316arch_float_type (struct gdbarch *gdbarch,
4317 int bit, char *name, const struct floatformat **floatformats)
8da61cc4
DJ
4318{
4319 struct type *t;
4320
4321 if (bit == -1)
4322 {
4323 gdb_assert (floatformats != NULL);
4324 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4325 bit = floatformats[0]->totalsize;
4326 }
4327 gdb_assert (bit >= 0);
4328
e9bb382b 4329 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
8da61cc4
DJ
4330 TYPE_FLOATFORMAT (t) = floatformats;
4331 return t;
4332}
4333
e9bb382b
UW
4334/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4335 NAME is the type name. TARGET_TYPE is the component float type. */
5212577a 4336
27067745 4337struct type *
e9bb382b
UW
4338arch_complex_type (struct gdbarch *gdbarch,
4339 char *name, struct type *target_type)
27067745
UW
4340{
4341 struct type *t;
d8734c88 4342
e9bb382b
UW
4343 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4344 2 * TYPE_LENGTH (target_type), name);
27067745
UW
4345 TYPE_TARGET_TYPE (t) = target_type;
4346 return t;
4347}
4348
e9bb382b 4349/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
eb90ce83 4350 NAME is the type name. LENGTH is the size of the flag word in bytes. */
5212577a 4351
e9bb382b
UW
4352struct type *
4353arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4354{
4355 int nfields = length * TARGET_CHAR_BIT;
4356 struct type *type;
4357
4358 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4359 TYPE_UNSIGNED (type) = 1;
4360 TYPE_NFIELDS (type) = nfields;
4361 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4362
4363 return type;
4364}
4365
4366/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4367 position BITPOS is called NAME. */
5212577a 4368
e9bb382b
UW
4369void
4370append_flags_type_flag (struct type *type, int bitpos, char *name)
4371{
4372 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4373 gdb_assert (bitpos < TYPE_NFIELDS (type));
4374 gdb_assert (bitpos >= 0);
4375
4376 if (name)
4377 {
4378 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
945b3a32 4379 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
e9bb382b
UW
4380 }
4381 else
4382 {
4383 /* Don't show this field to the user. */
945b3a32 4384 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
e9bb382b
UW
4385 }
4386}
4387
4388/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4389 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 4390
e9bb382b
UW
4391struct type *
4392arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4393{
4394 struct type *t;
d8734c88 4395
e9bb382b
UW
4396 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4397 t = arch_type (gdbarch, code, 0, NULL);
4398 TYPE_TAG_NAME (t) = name;
4399 INIT_CPLUS_SPECIFIC (t);
4400 return t;
4401}
4402
4403/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
4404 Do not set the field's position or adjust the type's length;
4405 the caller should do so. Return the new field. */
5212577a 4406
f5dff777
DJ
4407struct field *
4408append_composite_type_field_raw (struct type *t, char *name,
4409 struct type *field)
e9bb382b
UW
4410{
4411 struct field *f;
d8734c88 4412
e9bb382b
UW
4413 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4414 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4415 sizeof (struct field) * TYPE_NFIELDS (t));
4416 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4417 memset (f, 0, sizeof f[0]);
4418 FIELD_TYPE (f[0]) = field;
4419 FIELD_NAME (f[0]) = name;
f5dff777
DJ
4420 return f;
4421}
4422
4423/* Add new field with name NAME and type FIELD to composite type T.
4424 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 4425
f5dff777
DJ
4426void
4427append_composite_type_field_aligned (struct type *t, char *name,
4428 struct type *field, int alignment)
4429{
4430 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 4431
e9bb382b
UW
4432 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4433 {
4434 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4435 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4436 }
4437 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4438 {
4439 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4440 if (TYPE_NFIELDS (t) > 1)
4441 {
f41f5e61
PA
4442 SET_FIELD_BITPOS (f[0],
4443 (FIELD_BITPOS (f[-1])
4444 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4445 * TARGET_CHAR_BIT)));
e9bb382b
UW
4446
4447 if (alignment)
4448 {
86c3c1fc
AB
4449 int left;
4450
4451 alignment *= TARGET_CHAR_BIT;
4452 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 4453
e9bb382b
UW
4454 if (left)
4455 {
f41f5e61 4456 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 4457 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
4458 }
4459 }
4460 }
4461 }
4462}
4463
4464/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 4465
e9bb382b
UW
4466void
4467append_composite_type_field (struct type *t, char *name,
4468 struct type *field)
4469{
4470 append_composite_type_field_aligned (t, name, field, 0);
4471}
4472
000177f0
AC
4473static struct gdbarch_data *gdbtypes_data;
4474
4475const struct builtin_type *
4476builtin_type (struct gdbarch *gdbarch)
4477{
4478 return gdbarch_data (gdbarch, gdbtypes_data);
4479}
4480
4481static void *
4482gdbtypes_post_init (struct gdbarch *gdbarch)
4483{
4484 struct builtin_type *builtin_type
4485 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4486
46bf5051 4487 /* Basic types. */
e9bb382b
UW
4488 builtin_type->builtin_void
4489 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4490 builtin_type->builtin_char
4491 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4492 !gdbarch_char_signed (gdbarch), "char");
4493 builtin_type->builtin_signed_char
4494 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4495 0, "signed char");
4496 builtin_type->builtin_unsigned_char
4497 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4498 1, "unsigned char");
4499 builtin_type->builtin_short
4500 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4501 0, "short");
4502 builtin_type->builtin_unsigned_short
4503 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4504 1, "unsigned short");
4505 builtin_type->builtin_int
4506 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4507 0, "int");
4508 builtin_type->builtin_unsigned_int
4509 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4510 1, "unsigned int");
4511 builtin_type->builtin_long
4512 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4513 0, "long");
4514 builtin_type->builtin_unsigned_long
4515 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4516 1, "unsigned long");
4517 builtin_type->builtin_long_long
4518 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4519 0, "long long");
4520 builtin_type->builtin_unsigned_long_long
4521 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4522 1, "unsigned long long");
70bd8e24 4523 builtin_type->builtin_float
e9bb382b 4524 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 4525 "float", gdbarch_float_format (gdbarch));
70bd8e24 4526 builtin_type->builtin_double
e9bb382b 4527 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 4528 "double", gdbarch_double_format (gdbarch));
70bd8e24 4529 builtin_type->builtin_long_double
e9bb382b 4530 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 4531 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 4532 builtin_type->builtin_complex
e9bb382b
UW
4533 = arch_complex_type (gdbarch, "complex",
4534 builtin_type->builtin_float);
70bd8e24 4535 builtin_type->builtin_double_complex
e9bb382b
UW
4536 = arch_complex_type (gdbarch, "double complex",
4537 builtin_type->builtin_double);
4538 builtin_type->builtin_string
4539 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4540 builtin_type->builtin_bool
4541 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
000177f0 4542
7678ef8f
TJB
4543 /* The following three are about decimal floating point types, which
4544 are 32-bits, 64-bits and 128-bits respectively. */
4545 builtin_type->builtin_decfloat
e9bb382b 4546 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
7678ef8f 4547 builtin_type->builtin_decdouble
e9bb382b 4548 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
7678ef8f 4549 builtin_type->builtin_declong
e9bb382b 4550 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
7678ef8f 4551
69feb676 4552 /* "True" character types. */
e9bb382b
UW
4553 builtin_type->builtin_true_char
4554 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4555 builtin_type->builtin_true_unsigned_char
4556 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 4557
df4df182 4558 /* Fixed-size integer types. */
e9bb382b
UW
4559 builtin_type->builtin_int0
4560 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4561 builtin_type->builtin_int8
4562 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4563 builtin_type->builtin_uint8
4564 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4565 builtin_type->builtin_int16
4566 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4567 builtin_type->builtin_uint16
4568 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4569 builtin_type->builtin_int32
4570 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4571 builtin_type->builtin_uint32
4572 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4573 builtin_type->builtin_int64
4574 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4575 builtin_type->builtin_uint64
4576 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4577 builtin_type->builtin_int128
4578 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4579 builtin_type->builtin_uint128
4580 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
4581 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4582 TYPE_INSTANCE_FLAG_NOTTEXT;
4583 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4584 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 4585
9a22f0d0
PM
4586 /* Wide character types. */
4587 builtin_type->builtin_char16
4588 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4589 builtin_type->builtin_char32
4590 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4591
4592
46bf5051 4593 /* Default data/code pointer types. */
e9bb382b
UW
4594 builtin_type->builtin_data_ptr
4595 = lookup_pointer_type (builtin_type->builtin_void);
4596 builtin_type->builtin_func_ptr
4597 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
4598 builtin_type->builtin_func_func
4599 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 4600
78267919 4601 /* This type represents a GDB internal function. */
e9bb382b
UW
4602 builtin_type->internal_fn
4603 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4604 "<internal function>");
78267919 4605
e81e7f5e
SC
4606 /* This type represents an xmethod. */
4607 builtin_type->xmethod
4608 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
4609
46bf5051
UW
4610 return builtin_type;
4611}
4612
46bf5051
UW
4613/* This set of objfile-based types is intended to be used by symbol
4614 readers as basic types. */
4615
4616static const struct objfile_data *objfile_type_data;
4617
4618const struct objfile_type *
4619objfile_type (struct objfile *objfile)
4620{
4621 struct gdbarch *gdbarch;
4622 struct objfile_type *objfile_type
4623 = objfile_data (objfile, objfile_type_data);
4624
4625 if (objfile_type)
4626 return objfile_type;
4627
4628 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4629 1, struct objfile_type);
4630
4631 /* Use the objfile architecture to determine basic type properties. */
4632 gdbarch = get_objfile_arch (objfile);
4633
4634 /* Basic types. */
4635 objfile_type->builtin_void
4636 = init_type (TYPE_CODE_VOID, 1,
4637 0,
4638 "void", objfile);
4639
4640 objfile_type->builtin_char
4641 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4642 (TYPE_FLAG_NOSIGN
4643 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4644 "char", objfile);
4645 objfile_type->builtin_signed_char
4646 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4647 0,
4648 "signed char", objfile);
4649 objfile_type->builtin_unsigned_char
4650 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4651 TYPE_FLAG_UNSIGNED,
4652 "unsigned char", objfile);
4653 objfile_type->builtin_short
4654 = init_type (TYPE_CODE_INT,
4655 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4656 0, "short", objfile);
4657 objfile_type->builtin_unsigned_short
4658 = init_type (TYPE_CODE_INT,
4659 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4660 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4661 objfile_type->builtin_int
4662 = init_type (TYPE_CODE_INT,
4663 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4664 0, "int", objfile);
4665 objfile_type->builtin_unsigned_int
4666 = init_type (TYPE_CODE_INT,
4667 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4668 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4669 objfile_type->builtin_long
4670 = init_type (TYPE_CODE_INT,
4671 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4672 0, "long", objfile);
4673 objfile_type->builtin_unsigned_long
4674 = init_type (TYPE_CODE_INT,
4675 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4676 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4677 objfile_type->builtin_long_long
4678 = init_type (TYPE_CODE_INT,
4679 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4680 0, "long long", objfile);
4681 objfile_type->builtin_unsigned_long_long
4682 = init_type (TYPE_CODE_INT,
4683 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4684 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4685
4686 objfile_type->builtin_float
4687 = init_type (TYPE_CODE_FLT,
4688 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4689 0, "float", objfile);
4690 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4691 = gdbarch_float_format (gdbarch);
4692 objfile_type->builtin_double
4693 = init_type (TYPE_CODE_FLT,
4694 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4695 0, "double", objfile);
4696 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4697 = gdbarch_double_format (gdbarch);
4698 objfile_type->builtin_long_double
4699 = init_type (TYPE_CODE_FLT,
4700 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4701 0, "long double", objfile);
4702 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4703 = gdbarch_long_double_format (gdbarch);
4704
4705 /* This type represents a type that was unrecognized in symbol read-in. */
4706 objfile_type->builtin_error
4707 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4708
4709 /* The following set of types is used for symbols with no
4710 debug information. */
4711 objfile_type->nodebug_text_symbol
4712 = init_type (TYPE_CODE_FUNC, 1, 0,
4713 "<text variable, no debug info>", objfile);
4714 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4715 = objfile_type->builtin_int;
0875794a
JK
4716 objfile_type->nodebug_text_gnu_ifunc_symbol
4717 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4718 "<text gnu-indirect-function variable, no debug info>",
4719 objfile);
4720 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4721 = objfile_type->nodebug_text_symbol;
4722 objfile_type->nodebug_got_plt_symbol
4723 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4724 "<text from jump slot in .got.plt, no debug info>",
4725 objfile);
4726 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4727 = objfile_type->nodebug_text_symbol;
46bf5051
UW
4728 objfile_type->nodebug_data_symbol
4729 = init_type (TYPE_CODE_INT,
4730 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4731 "<data variable, no debug info>", objfile);
4732 objfile_type->nodebug_unknown_symbol
4733 = init_type (TYPE_CODE_INT, 1, 0,
4734 "<variable (not text or data), no debug info>", objfile);
4735 objfile_type->nodebug_tls_symbol
4736 = init_type (TYPE_CODE_INT,
4737 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4738 "<thread local variable, no debug info>", objfile);
000177f0
AC
4739
4740 /* NOTE: on some targets, addresses and pointers are not necessarily
0a7cfe2c 4741 the same.
000177f0
AC
4742
4743 The upshot is:
4744 - gdb's `struct type' always describes the target's
4745 representation.
4746 - gdb's `struct value' objects should always hold values in
4747 target form.
4748 - gdb's CORE_ADDR values are addresses in the unified virtual
4749 address space that the assembler and linker work with. Thus,
4750 since target_read_memory takes a CORE_ADDR as an argument, it
4751 can access any memory on the target, even if the processor has
4752 separate code and data address spaces.
4753
46bf5051
UW
4754 In this context, objfile_type->builtin_core_addr is a bit odd:
4755 it's a target type for a value the target will never see. It's
4756 only used to hold the values of (typeless) linker symbols, which
4757 are indeed in the unified virtual address space. */
000177f0 4758
46bf5051
UW
4759 objfile_type->builtin_core_addr
4760 = init_type (TYPE_CODE_INT,
4761 gdbarch_addr_bit (gdbarch) / 8,
4762 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
64c50499 4763
46bf5051
UW
4764 set_objfile_data (objfile, objfile_type_data, objfile_type);
4765 return objfile_type;
000177f0
AC
4766}
4767
5212577a 4768extern initialize_file_ftype _initialize_gdbtypes;
46bf5051 4769
c906108c 4770void
fba45db2 4771_initialize_gdbtypes (void)
c906108c 4772{
5674de60 4773 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
46bf5051 4774 objfile_type_data = register_objfile_data ();
5674de60 4775
ccce17b0
YQ
4776 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4777 _("Set debugging of C++ overloading."),
4778 _("Show debugging of C++ overloading."),
4779 _("When enabled, ranking of the "
4780 "functions is displayed."),
4781 NULL,
4782 show_overload_debug,
4783 &setdebuglist, &showdebuglist);
5674de60 4784
7ba81444 4785 /* Add user knob for controlling resolution of opaque types. */
5674de60 4786 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
4787 &opaque_type_resolution,
4788 _("Set resolution of opaque struct/class/union"
4789 " types (if set before loading symbols)."),
4790 _("Show resolution of opaque struct/class/union"
4791 " types (if set before loading symbols)."),
4792 NULL, NULL,
5674de60
UW
4793 show_opaque_type_resolution,
4794 &setlist, &showlist);
a451cb65
KS
4795
4796 /* Add an option to permit non-strict type checking. */
4797 add_setshow_boolean_cmd ("type", class_support,
4798 &strict_type_checking,
4799 _("Set strict type checking."),
4800 _("Show strict type checking."),
4801 NULL, NULL,
4802 show_strict_type_checking,
4803 &setchecklist, &showchecklist);
c906108c 4804}
This page took 1.488315 seconds and 4 git commands to generate.