Unnecessary XA type handling in ada_varobj_describe_simple_array_child
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
ecd75fc8 3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
0e9f083f 23#include <string.h>
c906108c
SS
24#include "bfd.h"
25#include "symtab.h"
26#include "symfile.h"
27#include "objfiles.h"
28#include "gdbtypes.h"
29#include "expression.h"
30#include "language.h"
31#include "target.h"
32#include "value.h"
33#include "demangle.h"
34#include "complaints.h"
35#include "gdbcmd.h"
015a42b4 36#include "cp-abi.h"
a02fd225 37#include "gdb_assert.h"
ae5a43e0 38#include "hashtab.h"
8e7b59a5 39#include "exceptions.h"
8de20a37 40#include "cp-support.h"
ca092b61
DE
41#include "bcache.h"
42#include "dwarf2loc.h"
80180f79 43#include "gdbcore.h"
ac3aafc7 44
6403aeea
SW
45/* Initialize BADNESS constants. */
46
a9d5ef47 47const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 48
a9d5ef47
SW
49const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
50const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 51
a9d5ef47 52const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 53
a9d5ef47
SW
54const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
55const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
56const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
57const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
58const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
59const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
60const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 61const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
62const struct rank BASE_CONVERSION_BADNESS = {2,0};
63const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
da096638 64const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 65const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 66const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 67
8da61cc4 68/* Floatformat pairs. */
f9e9243a
UW
69const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
70 &floatformat_ieee_half_big,
71 &floatformat_ieee_half_little
72};
8da61cc4
DJ
73const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
74 &floatformat_ieee_single_big,
75 &floatformat_ieee_single_little
76};
77const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
78 &floatformat_ieee_double_big,
79 &floatformat_ieee_double_little
80};
81const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
82 &floatformat_ieee_double_big,
83 &floatformat_ieee_double_littlebyte_bigword
84};
85const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
86 &floatformat_i387_ext,
87 &floatformat_i387_ext
88};
89const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
90 &floatformat_m68881_ext,
91 &floatformat_m68881_ext
92};
93const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
94 &floatformat_arm_ext_big,
95 &floatformat_arm_ext_littlebyte_bigword
96};
97const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
98 &floatformat_ia64_spill_big,
99 &floatformat_ia64_spill_little
100};
101const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
102 &floatformat_ia64_quad_big,
103 &floatformat_ia64_quad_little
104};
105const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
106 &floatformat_vax_f,
107 &floatformat_vax_f
108};
109const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
110 &floatformat_vax_d,
111 &floatformat_vax_d
112};
b14d30e1 113const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
f5aee5ee
AM
114 &floatformat_ibm_long_double_big,
115 &floatformat_ibm_long_double_little
b14d30e1 116};
8da61cc4 117
2873700e
KS
118/* Should opaque types be resolved? */
119
120static int opaque_type_resolution = 1;
121
122/* A flag to enable printing of debugging information of C++
123 overloading. */
124
125unsigned int overload_debug = 0;
126
a451cb65
KS
127/* A flag to enable strict type checking. */
128
129static int strict_type_checking = 1;
130
2873700e 131/* A function to show whether opaque types are resolved. */
5212577a 132
920d2a44
AC
133static void
134show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
135 struct cmd_list_element *c,
136 const char *value)
920d2a44 137{
3e43a32a
MS
138 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
139 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
140 value);
141}
142
2873700e 143/* A function to show whether C++ overload debugging is enabled. */
5212577a 144
920d2a44
AC
145static void
146show_overload_debug (struct ui_file *file, int from_tty,
147 struct cmd_list_element *c, const char *value)
148{
7ba81444
MS
149 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
150 value);
920d2a44 151}
c906108c 152
a451cb65
KS
153/* A function to show the status of strict type checking. */
154
155static void
156show_strict_type_checking (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158{
159 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
160}
161
5212577a 162\f
e9bb382b
UW
163/* Allocate a new OBJFILE-associated type structure and fill it
164 with some defaults. Space for the type structure is allocated
165 on the objfile's objfile_obstack. */
c906108c
SS
166
167struct type *
fba45db2 168alloc_type (struct objfile *objfile)
c906108c 169{
52f0bd74 170 struct type *type;
c906108c 171
e9bb382b
UW
172 gdb_assert (objfile != NULL);
173
7ba81444 174 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
175 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
176 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
177 struct main_type);
178 OBJSTAT (objfile, n_types++);
c906108c 179
e9bb382b
UW
180 TYPE_OBJFILE_OWNED (type) = 1;
181 TYPE_OWNER (type).objfile = objfile;
c906108c 182
7ba81444 183 /* Initialize the fields that might not be zero. */
c906108c
SS
184
185 TYPE_CODE (type) = TYPE_CODE_UNDEF;
c906108c 186 TYPE_VPTR_FIELDNO (type) = -1;
2fdde8f8 187 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 188
c16abbde 189 return type;
c906108c
SS
190}
191
e9bb382b
UW
192/* Allocate a new GDBARCH-associated type structure and fill it
193 with some defaults. Space for the type structure is allocated
194 on the heap. */
195
196struct type *
197alloc_type_arch (struct gdbarch *gdbarch)
198{
199 struct type *type;
200
201 gdb_assert (gdbarch != NULL);
202
203 /* Alloc the structure and start off with all fields zeroed. */
204
41bf6aca
TT
205 type = XCNEW (struct type);
206 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
e9bb382b
UW
207
208 TYPE_OBJFILE_OWNED (type) = 0;
209 TYPE_OWNER (type).gdbarch = gdbarch;
210
211 /* Initialize the fields that might not be zero. */
212
213 TYPE_CODE (type) = TYPE_CODE_UNDEF;
214 TYPE_VPTR_FIELDNO (type) = -1;
215 TYPE_CHAIN (type) = type; /* Chain back to itself. */
216
217 return type;
218}
219
220/* If TYPE is objfile-associated, allocate a new type structure
221 associated with the same objfile. If TYPE is gdbarch-associated,
222 allocate a new type structure associated with the same gdbarch. */
223
224struct type *
225alloc_type_copy (const struct type *type)
226{
227 if (TYPE_OBJFILE_OWNED (type))
228 return alloc_type (TYPE_OWNER (type).objfile);
229 else
230 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
231}
232
233/* If TYPE is gdbarch-associated, return that architecture.
234 If TYPE is objfile-associated, return that objfile's architecture. */
235
236struct gdbarch *
237get_type_arch (const struct type *type)
238{
239 if (TYPE_OBJFILE_OWNED (type))
240 return get_objfile_arch (TYPE_OWNER (type).objfile);
241 else
242 return TYPE_OWNER (type).gdbarch;
243}
244
99ad9427
YQ
245/* See gdbtypes.h. */
246
247struct type *
248get_target_type (struct type *type)
249{
250 if (type != NULL)
251 {
252 type = TYPE_TARGET_TYPE (type);
253 if (type != NULL)
254 type = check_typedef (type);
255 }
256
257 return type;
258}
259
2fdde8f8
DJ
260/* Alloc a new type instance structure, fill it with some defaults,
261 and point it at OLDTYPE. Allocate the new type instance from the
262 same place as OLDTYPE. */
263
264static struct type *
265alloc_type_instance (struct type *oldtype)
266{
267 struct type *type;
268
269 /* Allocate the structure. */
270
e9bb382b 271 if (! TYPE_OBJFILE_OWNED (oldtype))
41bf6aca 272 type = XCNEW (struct type);
2fdde8f8 273 else
1deafd4e
PA
274 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
275 struct type);
276
2fdde8f8
DJ
277 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
278
279 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
280
c16abbde 281 return type;
2fdde8f8
DJ
282}
283
284/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 285 replacing it with something else. Preserve owner information. */
5212577a 286
2fdde8f8
DJ
287static void
288smash_type (struct type *type)
289{
e9bb382b
UW
290 int objfile_owned = TYPE_OBJFILE_OWNED (type);
291 union type_owner owner = TYPE_OWNER (type);
292
2fdde8f8
DJ
293 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
294
e9bb382b
UW
295 /* Restore owner information. */
296 TYPE_OBJFILE_OWNED (type) = objfile_owned;
297 TYPE_OWNER (type) = owner;
298
2fdde8f8
DJ
299 /* For now, delete the rings. */
300 TYPE_CHAIN (type) = type;
301
302 /* For now, leave the pointer/reference types alone. */
303}
304
c906108c
SS
305/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
306 to a pointer to memory where the pointer type should be stored.
307 If *TYPEPTR is zero, update it to point to the pointer type we return.
308 We allocate new memory if needed. */
309
310struct type *
fba45db2 311make_pointer_type (struct type *type, struct type **typeptr)
c906108c 312{
52f0bd74 313 struct type *ntype; /* New type */
053cb41b 314 struct type *chain;
c906108c
SS
315
316 ntype = TYPE_POINTER_TYPE (type);
317
c5aa993b 318 if (ntype)
c906108c 319 {
c5aa993b 320 if (typeptr == 0)
7ba81444
MS
321 return ntype; /* Don't care about alloc,
322 and have new type. */
c906108c 323 else if (*typeptr == 0)
c5aa993b 324 {
7ba81444 325 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 326 return ntype;
c5aa993b 327 }
c906108c
SS
328 }
329
330 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
331 {
e9bb382b 332 ntype = alloc_type_copy (type);
c906108c
SS
333 if (typeptr)
334 *typeptr = ntype;
335 }
7ba81444 336 else /* We have storage, but need to reset it. */
c906108c
SS
337 {
338 ntype = *typeptr;
053cb41b 339 chain = TYPE_CHAIN (ntype);
2fdde8f8 340 smash_type (ntype);
053cb41b 341 TYPE_CHAIN (ntype) = chain;
c906108c
SS
342 }
343
344 TYPE_TARGET_TYPE (ntype) = type;
345 TYPE_POINTER_TYPE (type) = ntype;
346
5212577a 347 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 348
50810684
UW
349 TYPE_LENGTH (ntype)
350 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
351 TYPE_CODE (ntype) = TYPE_CODE_PTR;
352
67b2adb2 353 /* Mark pointers as unsigned. The target converts between pointers
76e71323 354 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 355 gdbarch_address_to_pointer. */
876cecd0 356 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 357
053cb41b
JB
358 /* Update the length of all the other variants of this type. */
359 chain = TYPE_CHAIN (ntype);
360 while (chain != ntype)
361 {
362 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
363 chain = TYPE_CHAIN (chain);
364 }
365
c906108c
SS
366 return ntype;
367}
368
369/* Given a type TYPE, return a type of pointers to that type.
370 May need to construct such a type if this is the first use. */
371
372struct type *
fba45db2 373lookup_pointer_type (struct type *type)
c906108c 374{
c5aa993b 375 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
376}
377
7ba81444
MS
378/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
379 points to a pointer to memory where the reference type should be
380 stored. If *TYPEPTR is zero, update it to point to the reference
381 type we return. We allocate new memory if needed. */
c906108c
SS
382
383struct type *
fba45db2 384make_reference_type (struct type *type, struct type **typeptr)
c906108c 385{
52f0bd74 386 struct type *ntype; /* New type */
1e98b326 387 struct type *chain;
c906108c
SS
388
389 ntype = TYPE_REFERENCE_TYPE (type);
390
c5aa993b 391 if (ntype)
c906108c 392 {
c5aa993b 393 if (typeptr == 0)
7ba81444
MS
394 return ntype; /* Don't care about alloc,
395 and have new type. */
c906108c 396 else if (*typeptr == 0)
c5aa993b 397 {
7ba81444 398 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 399 return ntype;
c5aa993b 400 }
c906108c
SS
401 }
402
403 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
404 {
e9bb382b 405 ntype = alloc_type_copy (type);
c906108c
SS
406 if (typeptr)
407 *typeptr = ntype;
408 }
7ba81444 409 else /* We have storage, but need to reset it. */
c906108c
SS
410 {
411 ntype = *typeptr;
1e98b326 412 chain = TYPE_CHAIN (ntype);
2fdde8f8 413 smash_type (ntype);
1e98b326 414 TYPE_CHAIN (ntype) = chain;
c906108c
SS
415 }
416
417 TYPE_TARGET_TYPE (ntype) = type;
418 TYPE_REFERENCE_TYPE (type) = ntype;
419
7ba81444
MS
420 /* FIXME! Assume the machine has only one representation for
421 references, and that it matches the (only) representation for
422 pointers! */
c906108c 423
50810684
UW
424 TYPE_LENGTH (ntype) =
425 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c 426 TYPE_CODE (ntype) = TYPE_CODE_REF;
c5aa993b 427
c906108c
SS
428 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
429 TYPE_REFERENCE_TYPE (type) = ntype;
430
1e98b326
JB
431 /* Update the length of all the other variants of this type. */
432 chain = TYPE_CHAIN (ntype);
433 while (chain != ntype)
434 {
435 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
436 chain = TYPE_CHAIN (chain);
437 }
438
c906108c
SS
439 return ntype;
440}
441
7ba81444
MS
442/* Same as above, but caller doesn't care about memory allocation
443 details. */
c906108c
SS
444
445struct type *
fba45db2 446lookup_reference_type (struct type *type)
c906108c 447{
c5aa993b 448 return make_reference_type (type, (struct type **) 0);
c906108c
SS
449}
450
7ba81444
MS
451/* Lookup a function type that returns type TYPE. TYPEPTR, if
452 nonzero, points to a pointer to memory where the function type
453 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 454 function type we return. We allocate new memory if needed. */
c906108c
SS
455
456struct type *
0c8b41f1 457make_function_type (struct type *type, struct type **typeptr)
c906108c 458{
52f0bd74 459 struct type *ntype; /* New type */
c906108c
SS
460
461 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
462 {
e9bb382b 463 ntype = alloc_type_copy (type);
c906108c
SS
464 if (typeptr)
465 *typeptr = ntype;
466 }
7ba81444 467 else /* We have storage, but need to reset it. */
c906108c
SS
468 {
469 ntype = *typeptr;
2fdde8f8 470 smash_type (ntype);
c906108c
SS
471 }
472
473 TYPE_TARGET_TYPE (ntype) = type;
474
475 TYPE_LENGTH (ntype) = 1;
476 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 477
b6cdc2c1
JK
478 INIT_FUNC_SPECIFIC (ntype);
479
c906108c
SS
480 return ntype;
481}
482
c906108c
SS
483/* Given a type TYPE, return a type of functions that return that type.
484 May need to construct such a type if this is the first use. */
485
486struct type *
fba45db2 487lookup_function_type (struct type *type)
c906108c 488{
0c8b41f1 489 return make_function_type (type, (struct type **) 0);
c906108c
SS
490}
491
71918a86 492/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
493 function type. If the final type in PARAM_TYPES is NULL, make a
494 varargs function. */
71918a86
TT
495
496struct type *
497lookup_function_type_with_arguments (struct type *type,
498 int nparams,
499 struct type **param_types)
500{
501 struct type *fn = make_function_type (type, (struct type **) 0);
502 int i;
503
e314d629 504 if (nparams > 0)
a6fb9c08 505 {
e314d629
TT
506 if (param_types[nparams - 1] == NULL)
507 {
508 --nparams;
509 TYPE_VARARGS (fn) = 1;
510 }
511 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
512 == TYPE_CODE_VOID)
513 {
514 --nparams;
515 /* Caller should have ensured this. */
516 gdb_assert (nparams == 0);
517 TYPE_PROTOTYPED (fn) = 1;
518 }
a6fb9c08
TT
519 }
520
71918a86
TT
521 TYPE_NFIELDS (fn) = nparams;
522 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
523 for (i = 0; i < nparams; ++i)
524 TYPE_FIELD_TYPE (fn, i) = param_types[i];
525
526 return fn;
527}
528
47663de5
MS
529/* Identify address space identifier by name --
530 return the integer flag defined in gdbtypes.h. */
5212577a
DE
531
532int
50810684 533address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
47663de5 534{
8b2dbe47 535 int type_flags;
d8734c88 536
7ba81444 537 /* Check for known address space delimiters. */
47663de5 538 if (!strcmp (space_identifier, "code"))
876cecd0 539 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 540 else if (!strcmp (space_identifier, "data"))
876cecd0 541 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
542 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
543 && gdbarch_address_class_name_to_type_flags (gdbarch,
544 space_identifier,
545 &type_flags))
8b2dbe47 546 return type_flags;
47663de5 547 else
8a3fe4f8 548 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
549}
550
551/* Identify address space identifier by integer flag as defined in
7ba81444 552 gdbtypes.h -- return the string version of the adress space name. */
47663de5 553
321432c0 554const char *
50810684 555address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 556{
876cecd0 557 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 558 return "code";
876cecd0 559 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 560 return "data";
876cecd0 561 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
562 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
563 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
564 else
565 return NULL;
566}
567
2fdde8f8 568/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
569
570 If STORAGE is non-NULL, create the new type instance there.
571 STORAGE must be in the same obstack as TYPE. */
47663de5 572
b9362cc7 573static struct type *
2fdde8f8
DJ
574make_qualified_type (struct type *type, int new_flags,
575 struct type *storage)
47663de5
MS
576{
577 struct type *ntype;
578
579 ntype = type;
5f61c20e
JK
580 do
581 {
582 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
583 return ntype;
584 ntype = TYPE_CHAIN (ntype);
585 }
586 while (ntype != type);
47663de5 587
2fdde8f8
DJ
588 /* Create a new type instance. */
589 if (storage == NULL)
590 ntype = alloc_type_instance (type);
591 else
592 {
7ba81444
MS
593 /* If STORAGE was provided, it had better be in the same objfile
594 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
595 if one objfile is freed and the other kept, we'd have
596 dangling pointers. */
ad766c0a
JB
597 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
598
2fdde8f8
DJ
599 ntype = storage;
600 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
601 TYPE_CHAIN (ntype) = ntype;
602 }
47663de5
MS
603
604 /* Pointers or references to the original type are not relevant to
2fdde8f8 605 the new type. */
47663de5
MS
606 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
607 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 608
2fdde8f8
DJ
609 /* Chain the new qualified type to the old type. */
610 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
611 TYPE_CHAIN (type) = ntype;
612
613 /* Now set the instance flags and return the new type. */
614 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 615
ab5d3da6
KB
616 /* Set length of new type to that of the original type. */
617 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
618
47663de5
MS
619 return ntype;
620}
621
2fdde8f8
DJ
622/* Make an address-space-delimited variant of a type -- a type that
623 is identical to the one supplied except that it has an address
624 space attribute attached to it (such as "code" or "data").
625
7ba81444
MS
626 The space attributes "code" and "data" are for Harvard
627 architectures. The address space attributes are for architectures
628 which have alternately sized pointers or pointers with alternate
629 representations. */
2fdde8f8
DJ
630
631struct type *
632make_type_with_address_space (struct type *type, int space_flag)
633{
2fdde8f8 634 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
635 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
636 | TYPE_INSTANCE_FLAG_DATA_SPACE
637 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
638 | space_flag);
639
640 return make_qualified_type (type, new_flags, NULL);
641}
c906108c
SS
642
643/* Make a "c-v" variant of a type -- a type that is identical to the
644 one supplied except that it may have const or volatile attributes
645 CNST is a flag for setting the const attribute
646 VOLTL is a flag for setting the volatile attribute
647 TYPE is the base type whose variant we are creating.
c906108c 648
ad766c0a
JB
649 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
650 storage to hold the new qualified type; *TYPEPTR and TYPE must be
651 in the same objfile. Otherwise, allocate fresh memory for the new
652 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
653 new type we construct. */
5212577a 654
c906108c 655struct type *
7ba81444
MS
656make_cv_type (int cnst, int voltl,
657 struct type *type,
658 struct type **typeptr)
c906108c 659{
52f0bd74 660 struct type *ntype; /* New type */
c906108c 661
2fdde8f8 662 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
663 & ~(TYPE_INSTANCE_FLAG_CONST
664 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 665
c906108c 666 if (cnst)
876cecd0 667 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
668
669 if (voltl)
876cecd0 670 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 671
2fdde8f8 672 if (typeptr && *typeptr != NULL)
a02fd225 673 {
ad766c0a
JB
674 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
675 a C-V variant chain that threads across objfiles: if one
676 objfile gets freed, then the other has a broken C-V chain.
677
678 This code used to try to copy over the main type from TYPE to
679 *TYPEPTR if they were in different objfiles, but that's
680 wrong, too: TYPE may have a field list or member function
681 lists, which refer to types of their own, etc. etc. The
682 whole shebang would need to be copied over recursively; you
683 can't have inter-objfile pointers. The only thing to do is
684 to leave stub types as stub types, and look them up afresh by
685 name each time you encounter them. */
686 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
687 }
688
7ba81444
MS
689 ntype = make_qualified_type (type, new_flags,
690 typeptr ? *typeptr : NULL);
c906108c 691
2fdde8f8
DJ
692 if (typeptr != NULL)
693 *typeptr = ntype;
a02fd225 694
2fdde8f8 695 return ntype;
a02fd225 696}
c906108c 697
06d66ee9
TT
698/* Make a 'restrict'-qualified version of TYPE. */
699
700struct type *
701make_restrict_type (struct type *type)
702{
703 return make_qualified_type (type,
704 (TYPE_INSTANCE_FLAGS (type)
705 | TYPE_INSTANCE_FLAG_RESTRICT),
706 NULL);
707}
708
2fdde8f8
DJ
709/* Replace the contents of ntype with the type *type. This changes the
710 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
711 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 712
cda6c68a
JB
713 In order to build recursive types, it's inevitable that we'll need
714 to update types in place --- but this sort of indiscriminate
715 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
716 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
717 clear if more steps are needed. */
5212577a 718
dd6bda65
DJ
719void
720replace_type (struct type *ntype, struct type *type)
721{
ab5d3da6 722 struct type *chain;
dd6bda65 723
ad766c0a
JB
724 /* These two types had better be in the same objfile. Otherwise,
725 the assignment of one type's main type structure to the other
726 will produce a type with references to objects (names; field
727 lists; etc.) allocated on an objfile other than its own. */
728 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
729
2fdde8f8 730 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 731
7ba81444
MS
732 /* The type length is not a part of the main type. Update it for
733 each type on the variant chain. */
ab5d3da6 734 chain = ntype;
5f61c20e
JK
735 do
736 {
737 /* Assert that this element of the chain has no address-class bits
738 set in its flags. Such type variants might have type lengths
739 which are supposed to be different from the non-address-class
740 variants. This assertion shouldn't ever be triggered because
741 symbol readers which do construct address-class variants don't
742 call replace_type(). */
743 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
744
745 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
746 chain = TYPE_CHAIN (chain);
747 }
748 while (ntype != chain);
ab5d3da6 749
2fdde8f8
DJ
750 /* Assert that the two types have equivalent instance qualifiers.
751 This should be true for at least all of our debug readers. */
752 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
753}
754
c906108c
SS
755/* Implement direct support for MEMBER_TYPE in GNU C++.
756 May need to construct such a type if this is the first use.
757 The TYPE is the type of the member. The DOMAIN is the type
758 of the aggregate that the member belongs to. */
759
760struct type *
0d5de010 761lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 762{
52f0bd74 763 struct type *mtype;
c906108c 764
e9bb382b 765 mtype = alloc_type_copy (type);
0d5de010 766 smash_to_memberptr_type (mtype, domain, type);
c16abbde 767 return mtype;
c906108c
SS
768}
769
0d5de010
DJ
770/* Return a pointer-to-method type, for a method of type TO_TYPE. */
771
772struct type *
773lookup_methodptr_type (struct type *to_type)
774{
775 struct type *mtype;
776
e9bb382b 777 mtype = alloc_type_copy (to_type);
0b92b5bb 778 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
779 return mtype;
780}
781
7ba81444
MS
782/* Allocate a stub method whose return type is TYPE. This apparently
783 happens for speed of symbol reading, since parsing out the
784 arguments to the method is cpu-intensive, the way we are doing it.
785 So, we will fill in arguments later. This always returns a fresh
786 type. */
c906108c
SS
787
788struct type *
fba45db2 789allocate_stub_method (struct type *type)
c906108c
SS
790{
791 struct type *mtype;
792
e9bb382b
UW
793 mtype = alloc_type_copy (type);
794 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
795 TYPE_LENGTH (mtype) = 1;
796 TYPE_STUB (mtype) = 1;
c906108c
SS
797 TYPE_TARGET_TYPE (mtype) = type;
798 /* _DOMAIN_TYPE (mtype) = unknown yet */
c16abbde 799 return mtype;
c906108c
SS
800}
801
729efb13
SA
802/* Create a range type with a dynamic range from LOW_BOUND to
803 HIGH_BOUND, inclusive. See create_range_type for further details. */
c906108c
SS
804
805struct type *
729efb13
SA
806create_range_type (struct type *result_type, struct type *index_type,
807 const struct dynamic_prop *low_bound,
808 const struct dynamic_prop *high_bound)
c906108c
SS
809{
810 if (result_type == NULL)
e9bb382b 811 result_type = alloc_type_copy (index_type);
c906108c
SS
812 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
813 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 814 if (TYPE_STUB (index_type))
876cecd0 815 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
816 else
817 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
729efb13 818
43bbcdc2
PH
819 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
820 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
729efb13
SA
821 TYPE_RANGE_DATA (result_type)->low = *low_bound;
822 TYPE_RANGE_DATA (result_type)->high = *high_bound;
c906108c 823
729efb13 824 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
876cecd0 825 TYPE_UNSIGNED (result_type) = 1;
c906108c 826
262452ec 827 return result_type;
c906108c
SS
828}
829
729efb13
SA
830/* Create a range type using either a blank type supplied in
831 RESULT_TYPE, or creating a new type, inheriting the objfile from
832 INDEX_TYPE.
833
834 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
835 to HIGH_BOUND, inclusive.
836
837 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
838 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
839
840struct type *
841create_static_range_type (struct type *result_type, struct type *index_type,
842 LONGEST low_bound, LONGEST high_bound)
843{
844 struct dynamic_prop low, high;
845
846 low.kind = PROP_CONST;
847 low.data.const_val = low_bound;
848
849 high.kind = PROP_CONST;
850 high.data.const_val = high_bound;
851
852 result_type = create_range_type (result_type, index_type, &low, &high);
853
854 return result_type;
855}
856
80180f79
SA
857/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
858 are static, otherwise returns 0. */
859
860static int
861has_static_range (const struct range_bounds *bounds)
862{
863 return (bounds->low.kind == PROP_CONST
864 && bounds->high.kind == PROP_CONST);
865}
866
867
7ba81444
MS
868/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
869 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
870 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
871
872int
fba45db2 873get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c
SS
874{
875 CHECK_TYPEDEF (type);
876 switch (TYPE_CODE (type))
877 {
878 case TYPE_CODE_RANGE:
879 *lowp = TYPE_LOW_BOUND (type);
880 *highp = TYPE_HIGH_BOUND (type);
881 return 1;
882 case TYPE_CODE_ENUM:
883 if (TYPE_NFIELDS (type) > 0)
884 {
885 /* The enums may not be sorted by value, so search all
0963b4bd 886 entries. */
c906108c
SS
887 int i;
888
14e75d8e 889 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
c906108c
SS
890 for (i = 0; i < TYPE_NFIELDS (type); i++)
891 {
14e75d8e
JK
892 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
893 *lowp = TYPE_FIELD_ENUMVAL (type, i);
894 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
895 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
896 }
897
7ba81444 898 /* Set unsigned indicator if warranted. */
c5aa993b 899 if (*lowp >= 0)
c906108c 900 {
876cecd0 901 TYPE_UNSIGNED (type) = 1;
c906108c
SS
902 }
903 }
904 else
905 {
906 *lowp = 0;
907 *highp = -1;
908 }
909 return 0;
910 case TYPE_CODE_BOOL:
911 *lowp = 0;
912 *highp = 1;
913 return 0;
914 case TYPE_CODE_INT:
c5aa993b 915 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
916 return -1;
917 if (!TYPE_UNSIGNED (type))
918 {
c5aa993b 919 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
920 *highp = -*lowp - 1;
921 return 0;
922 }
7ba81444 923 /* ... fall through for unsigned ints ... */
c906108c
SS
924 case TYPE_CODE_CHAR:
925 *lowp = 0;
926 /* This round-about calculation is to avoid shifting by
7b83ea04 927 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 928 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
929 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
930 *highp = (*highp - 1) | *highp;
931 return 0;
932 default:
933 return -1;
934 }
935}
936
dbc98a8b
KW
937/* Assuming TYPE is a simple, non-empty array type, compute its upper
938 and lower bound. Save the low bound into LOW_BOUND if not NULL.
939 Save the high bound into HIGH_BOUND if not NULL.
940
0963b4bd 941 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
942 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
943
944 We now simply use get_discrete_bounds call to get the values
945 of the low and high bounds.
946 get_discrete_bounds can return three values:
947 1, meaning that index is a range,
948 0, meaning that index is a discrete type,
949 or -1 for failure. */
950
951int
952get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
953{
954 struct type *index = TYPE_INDEX_TYPE (type);
955 LONGEST low = 0;
956 LONGEST high = 0;
957 int res;
958
959 if (index == NULL)
960 return 0;
961
962 res = get_discrete_bounds (index, &low, &high);
963 if (res == -1)
964 return 0;
965
966 /* Check if the array bounds are undefined. */
967 if (res == 1
968 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
969 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
970 return 0;
971
972 if (low_bound)
973 *low_bound = low;
974
975 if (high_bound)
976 *high_bound = high;
977
978 return 1;
979}
980
7ba81444
MS
981/* Create an array type using either a blank type supplied in
982 RESULT_TYPE, or creating a new type, inheriting the objfile from
983 RANGE_TYPE.
c906108c
SS
984
985 Elements will be of type ELEMENT_TYPE, the indices will be of type
986 RANGE_TYPE.
987
dc53a7ad
JB
988 If BIT_STRIDE is not zero, build a packed array type whose element
989 size is BIT_STRIDE. Otherwise, ignore this parameter.
990
7ba81444
MS
991 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
992 sure it is TYPE_CODE_UNDEF before we bash it into an array
993 type? */
c906108c
SS
994
995struct type *
dc53a7ad
JB
996create_array_type_with_stride (struct type *result_type,
997 struct type *element_type,
998 struct type *range_type,
999 unsigned int bit_stride)
c906108c 1000{
c906108c 1001 if (result_type == NULL)
e9bb382b
UW
1002 result_type = alloc_type_copy (range_type);
1003
c906108c
SS
1004 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1005 TYPE_TARGET_TYPE (result_type) = element_type;
80180f79
SA
1006 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1007 {
1008 LONGEST low_bound, high_bound;
1009
1010 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1011 low_bound = high_bound = 0;
1012 CHECK_TYPEDEF (element_type);
1013 /* Be careful when setting the array length. Ada arrays can be
1014 empty arrays with the high_bound being smaller than the low_bound.
1015 In such cases, the array length should be zero. */
1016 if (high_bound < low_bound)
1017 TYPE_LENGTH (result_type) = 0;
1018 else if (bit_stride > 0)
1019 TYPE_LENGTH (result_type) =
1020 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1021 else
1022 TYPE_LENGTH (result_type) =
1023 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1024 }
ab0d6e0d 1025 else
80180f79
SA
1026 {
1027 /* This type is dynamic and its length needs to be computed
1028 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1029 undefined by setting it to zero. Although we are not expected
1030 to trust TYPE_LENGTH in this case, setting the size to zero
1031 allows us to avoid allocating objects of random sizes in case
1032 we accidently do. */
1033 TYPE_LENGTH (result_type) = 0;
1034 }
1035
c906108c
SS
1036 TYPE_NFIELDS (result_type) = 1;
1037 TYPE_FIELDS (result_type) =
1deafd4e 1038 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 1039 TYPE_INDEX_TYPE (result_type) = range_type;
c906108c 1040 TYPE_VPTR_FIELDNO (result_type) = -1;
dc53a7ad
JB
1041 if (bit_stride > 0)
1042 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
c906108c 1043
0963b4bd 1044 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
c906108c 1045 if (TYPE_LENGTH (result_type) == 0)
876cecd0 1046 TYPE_TARGET_STUB (result_type) = 1;
c906108c 1047
c16abbde 1048 return result_type;
c906108c
SS
1049}
1050
dc53a7ad
JB
1051/* Same as create_array_type_with_stride but with no bit_stride
1052 (BIT_STRIDE = 0), thus building an unpacked array. */
1053
1054struct type *
1055create_array_type (struct type *result_type,
1056 struct type *element_type,
1057 struct type *range_type)
1058{
1059 return create_array_type_with_stride (result_type, element_type,
1060 range_type, 0);
1061}
1062
e3506a9f
UW
1063struct type *
1064lookup_array_range_type (struct type *element_type,
63375b74 1065 LONGEST low_bound, LONGEST high_bound)
e3506a9f 1066{
50810684 1067 struct gdbarch *gdbarch = get_type_arch (element_type);
e3506a9f
UW
1068 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1069 struct type *range_type
0c9c3474 1070 = create_static_range_type (NULL, index_type, low_bound, high_bound);
d8734c88 1071
e3506a9f
UW
1072 return create_array_type (NULL, element_type, range_type);
1073}
1074
7ba81444
MS
1075/* Create a string type using either a blank type supplied in
1076 RESULT_TYPE, or creating a new type. String types are similar
1077 enough to array of char types that we can use create_array_type to
1078 build the basic type and then bash it into a string type.
c906108c
SS
1079
1080 For fixed length strings, the range type contains 0 as the lower
1081 bound and the length of the string minus one as the upper bound.
1082
7ba81444
MS
1083 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1084 sure it is TYPE_CODE_UNDEF before we bash it into a string
1085 type? */
c906108c
SS
1086
1087struct type *
3b7538c0
UW
1088create_string_type (struct type *result_type,
1089 struct type *string_char_type,
7ba81444 1090 struct type *range_type)
c906108c
SS
1091{
1092 result_type = create_array_type (result_type,
f290d38e 1093 string_char_type,
c906108c
SS
1094 range_type);
1095 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 1096 return result_type;
c906108c
SS
1097}
1098
e3506a9f
UW
1099struct type *
1100lookup_string_range_type (struct type *string_char_type,
63375b74 1101 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1102{
1103 struct type *result_type;
d8734c88 1104
e3506a9f
UW
1105 result_type = lookup_array_range_type (string_char_type,
1106 low_bound, high_bound);
1107 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1108 return result_type;
1109}
1110
c906108c 1111struct type *
fba45db2 1112create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1113{
c906108c 1114 if (result_type == NULL)
e9bb382b
UW
1115 result_type = alloc_type_copy (domain_type);
1116
c906108c
SS
1117 TYPE_CODE (result_type) = TYPE_CODE_SET;
1118 TYPE_NFIELDS (result_type) = 1;
1deafd4e 1119 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 1120
74a9bb82 1121 if (!TYPE_STUB (domain_type))
c906108c 1122 {
f9780d5b 1123 LONGEST low_bound, high_bound, bit_length;
d8734c88 1124
c906108c
SS
1125 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1126 low_bound = high_bound = 0;
1127 bit_length = high_bound - low_bound + 1;
1128 TYPE_LENGTH (result_type)
1129 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1130 if (low_bound >= 0)
876cecd0 1131 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
1132 }
1133 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1134
c16abbde 1135 return result_type;
c906108c
SS
1136}
1137
ea37ba09
DJ
1138/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1139 and any array types nested inside it. */
1140
1141void
1142make_vector_type (struct type *array_type)
1143{
1144 struct type *inner_array, *elt_type;
1145 int flags;
1146
1147 /* Find the innermost array type, in case the array is
1148 multi-dimensional. */
1149 inner_array = array_type;
1150 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1151 inner_array = TYPE_TARGET_TYPE (inner_array);
1152
1153 elt_type = TYPE_TARGET_TYPE (inner_array);
1154 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1155 {
2844d6b5 1156 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1157 elt_type = make_qualified_type (elt_type, flags, NULL);
1158 TYPE_TARGET_TYPE (inner_array) = elt_type;
1159 }
1160
876cecd0 1161 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1162}
1163
794ac428 1164struct type *
ac3aafc7
EZ
1165init_vector_type (struct type *elt_type, int n)
1166{
1167 struct type *array_type;
d8734c88 1168
e3506a9f 1169 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1170 make_vector_type (array_type);
ac3aafc7
EZ
1171 return array_type;
1172}
1173
0d5de010
DJ
1174/* Smash TYPE to be a type of pointers to members of DOMAIN with type
1175 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1176 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1177 TYPE doesn't include the offset (that's the value of the MEMBER
1178 itself), but does include the structure type into which it points
1179 (for some reason).
c906108c 1180
7ba81444
MS
1181 When "smashing" the type, we preserve the objfile that the old type
1182 pointed to, since we aren't changing where the type is actually
c906108c
SS
1183 allocated. */
1184
1185void
0d5de010
DJ
1186smash_to_memberptr_type (struct type *type, struct type *domain,
1187 struct type *to_type)
c906108c 1188{
2fdde8f8 1189 smash_type (type);
c906108c
SS
1190 TYPE_TARGET_TYPE (type) = to_type;
1191 TYPE_DOMAIN_TYPE (type) = domain;
0d5de010
DJ
1192 /* Assume that a data member pointer is the same size as a normal
1193 pointer. */
50810684
UW
1194 TYPE_LENGTH (type)
1195 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
0d5de010 1196 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c
SS
1197}
1198
0b92b5bb
TT
1199/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1200
1201 When "smashing" the type, we preserve the objfile that the old type
1202 pointed to, since we aren't changing where the type is actually
1203 allocated. */
1204
1205void
1206smash_to_methodptr_type (struct type *type, struct type *to_type)
1207{
1208 smash_type (type);
1209 TYPE_TARGET_TYPE (type) = to_type;
1210 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1211 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1212 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1213}
1214
c906108c
SS
1215/* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1216 METHOD just means `function that gets an extra "this" argument'.
1217
7ba81444
MS
1218 When "smashing" the type, we preserve the objfile that the old type
1219 pointed to, since we aren't changing where the type is actually
c906108c
SS
1220 allocated. */
1221
1222void
fba45db2 1223smash_to_method_type (struct type *type, struct type *domain,
ad2f7632
DJ
1224 struct type *to_type, struct field *args,
1225 int nargs, int varargs)
c906108c 1226{
2fdde8f8 1227 smash_type (type);
c906108c
SS
1228 TYPE_TARGET_TYPE (type) = to_type;
1229 TYPE_DOMAIN_TYPE (type) = domain;
ad2f7632
DJ
1230 TYPE_FIELDS (type) = args;
1231 TYPE_NFIELDS (type) = nargs;
1232 if (varargs)
876cecd0 1233 TYPE_VARARGS (type) = 1;
c906108c
SS
1234 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1235 TYPE_CODE (type) = TYPE_CODE_METHOD;
1236}
1237
1238/* Return a typename for a struct/union/enum type without "struct ",
1239 "union ", or "enum ". If the type has a NULL name, return NULL. */
1240
0d5cff50 1241const char *
aa1ee363 1242type_name_no_tag (const struct type *type)
c906108c
SS
1243{
1244 if (TYPE_TAG_NAME (type) != NULL)
1245 return TYPE_TAG_NAME (type);
1246
7ba81444
MS
1247 /* Is there code which expects this to return the name if there is
1248 no tag name? My guess is that this is mainly used for C++ in
1249 cases where the two will always be the same. */
c906108c
SS
1250 return TYPE_NAME (type);
1251}
1252
d8228535
JK
1253/* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1254 Since GCC PR debug/47510 DWARF provides associated information to detect the
1255 anonymous class linkage name from its typedef.
1256
1257 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1258 apply it itself. */
1259
1260const char *
1261type_name_no_tag_or_error (struct type *type)
1262{
1263 struct type *saved_type = type;
1264 const char *name;
1265 struct objfile *objfile;
1266
1267 CHECK_TYPEDEF (type);
1268
1269 name = type_name_no_tag (type);
1270 if (name != NULL)
1271 return name;
1272
1273 name = type_name_no_tag (saved_type);
1274 objfile = TYPE_OBJFILE (saved_type);
1275 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
4262abfb
JK
1276 name ? name : "<anonymous>",
1277 objfile ? objfile_name (objfile) : "<arch>");
d8228535
JK
1278}
1279
7ba81444
MS
1280/* Lookup a typedef or primitive type named NAME, visible in lexical
1281 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1282 suitably defined. */
c906108c
SS
1283
1284struct type *
e6c014f2 1285lookup_typename (const struct language_defn *language,
ddd49eee 1286 struct gdbarch *gdbarch, const char *name,
34eaf542 1287 const struct block *block, int noerr)
c906108c 1288{
52f0bd74 1289 struct symbol *sym;
659c9f3a 1290 struct type *type;
c906108c 1291
774b6a14 1292 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
c51fe631
DE
1293 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1294 return SYMBOL_TYPE (sym);
1295
659c9f3a
DE
1296 type = language_lookup_primitive_type_by_name (language, gdbarch, name);
1297 if (type)
1298 return type;
c51fe631
DE
1299
1300 if (noerr)
1301 return NULL;
1302 error (_("No type named %s."), name);
c906108c
SS
1303}
1304
1305struct type *
e6c014f2 1306lookup_unsigned_typename (const struct language_defn *language,
0d5cff50 1307 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1308{
1309 char *uns = alloca (strlen (name) + 10);
1310
1311 strcpy (uns, "unsigned ");
1312 strcpy (uns + 9, name);
e6c014f2 1313 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
c906108c
SS
1314}
1315
1316struct type *
e6c014f2 1317lookup_signed_typename (const struct language_defn *language,
0d5cff50 1318 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1319{
1320 struct type *t;
1321 char *uns = alloca (strlen (name) + 8);
1322
1323 strcpy (uns, "signed ");
1324 strcpy (uns + 7, name);
e6c014f2 1325 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
7ba81444 1326 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1327 if (t != NULL)
1328 return t;
e6c014f2 1329 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
c906108c
SS
1330}
1331
1332/* Lookup a structure type named "struct NAME",
1333 visible in lexical block BLOCK. */
1334
1335struct type *
270140bd 1336lookup_struct (const char *name, const struct block *block)
c906108c 1337{
52f0bd74 1338 struct symbol *sym;
c906108c 1339
2570f2b7 1340 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1341
1342 if (sym == NULL)
1343 {
8a3fe4f8 1344 error (_("No struct type named %s."), name);
c906108c
SS
1345 }
1346 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1347 {
7ba81444
MS
1348 error (_("This context has class, union or enum %s, not a struct."),
1349 name);
c906108c
SS
1350 }
1351 return (SYMBOL_TYPE (sym));
1352}
1353
1354/* Lookup a union type named "union NAME",
1355 visible in lexical block BLOCK. */
1356
1357struct type *
270140bd 1358lookup_union (const char *name, const struct block *block)
c906108c 1359{
52f0bd74 1360 struct symbol *sym;
c5aa993b 1361 struct type *t;
c906108c 1362
2570f2b7 1363 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1364
1365 if (sym == NULL)
8a3fe4f8 1366 error (_("No union type named %s."), name);
c906108c 1367
c5aa993b 1368 t = SYMBOL_TYPE (sym);
c906108c
SS
1369
1370 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1371 return t;
c906108c 1372
7ba81444
MS
1373 /* If we get here, it's not a union. */
1374 error (_("This context has class, struct or enum %s, not a union."),
1375 name);
c906108c
SS
1376}
1377
c906108c
SS
1378/* Lookup an enum type named "enum NAME",
1379 visible in lexical block BLOCK. */
1380
1381struct type *
270140bd 1382lookup_enum (const char *name, const struct block *block)
c906108c 1383{
52f0bd74 1384 struct symbol *sym;
c906108c 1385
2570f2b7 1386 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1387 if (sym == NULL)
1388 {
8a3fe4f8 1389 error (_("No enum type named %s."), name);
c906108c
SS
1390 }
1391 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1392 {
7ba81444
MS
1393 error (_("This context has class, struct or union %s, not an enum."),
1394 name);
c906108c
SS
1395 }
1396 return (SYMBOL_TYPE (sym));
1397}
1398
1399/* Lookup a template type named "template NAME<TYPE>",
1400 visible in lexical block BLOCK. */
1401
1402struct type *
7ba81444 1403lookup_template_type (char *name, struct type *type,
270140bd 1404 const struct block *block)
c906108c
SS
1405{
1406 struct symbol *sym;
7ba81444
MS
1407 char *nam = (char *)
1408 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1409
c906108c
SS
1410 strcpy (nam, name);
1411 strcat (nam, "<");
0004e5a2 1412 strcat (nam, TYPE_NAME (type));
0963b4bd 1413 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1414
2570f2b7 1415 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
c906108c
SS
1416
1417 if (sym == NULL)
1418 {
8a3fe4f8 1419 error (_("No template type named %s."), name);
c906108c
SS
1420 }
1421 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1422 {
7ba81444
MS
1423 error (_("This context has class, union or enum %s, not a struct."),
1424 name);
c906108c
SS
1425 }
1426 return (SYMBOL_TYPE (sym));
1427}
1428
7ba81444
MS
1429/* Given a type TYPE, lookup the type of the component of type named
1430 NAME.
c906108c 1431
7ba81444
MS
1432 TYPE can be either a struct or union, or a pointer or reference to
1433 a struct or union. If it is a pointer or reference, its target
1434 type is automatically used. Thus '.' and '->' are interchangable,
1435 as specified for the definitions of the expression element types
1436 STRUCTOP_STRUCT and STRUCTOP_PTR.
c906108c
SS
1437
1438 If NOERR is nonzero, return zero if NAME is not suitably defined.
1439 If NAME is the name of a baseclass type, return that type. */
1440
1441struct type *
d7561cbb 1442lookup_struct_elt_type (struct type *type, const char *name, int noerr)
c906108c
SS
1443{
1444 int i;
c92817ce 1445 char *typename;
c906108c
SS
1446
1447 for (;;)
1448 {
1449 CHECK_TYPEDEF (type);
1450 if (TYPE_CODE (type) != TYPE_CODE_PTR
1451 && TYPE_CODE (type) != TYPE_CODE_REF)
1452 break;
1453 type = TYPE_TARGET_TYPE (type);
1454 }
1455
687d6395
MS
1456 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1457 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1458 {
c92817ce
TT
1459 typename = type_to_string (type);
1460 make_cleanup (xfree, typename);
1461 error (_("Type %s is not a structure or union type."), typename);
c906108c
SS
1462 }
1463
1464#if 0
7ba81444
MS
1465 /* FIXME: This change put in by Michael seems incorrect for the case
1466 where the structure tag name is the same as the member name.
0963b4bd 1467 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
7ba81444 1468 foo; } bell;" Disabled by fnf. */
c906108c
SS
1469 {
1470 char *typename;
1471
1472 typename = type_name_no_tag (type);
762f08a3 1473 if (typename != NULL && strcmp (typename, name) == 0)
c906108c
SS
1474 return type;
1475 }
1476#endif
1477
1478 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1479 {
0d5cff50 1480 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1481
db577aea 1482 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1483 {
1484 return TYPE_FIELD_TYPE (type, i);
1485 }
f5a010c0
PM
1486 else if (!t_field_name || *t_field_name == '\0')
1487 {
d8734c88
MS
1488 struct type *subtype
1489 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1490
f5a010c0
PM
1491 if (subtype != NULL)
1492 return subtype;
1493 }
c906108c
SS
1494 }
1495
1496 /* OK, it's not in this class. Recursively check the baseclasses. */
1497 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1498 {
1499 struct type *t;
1500
9733fc94 1501 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
c906108c
SS
1502 if (t != NULL)
1503 {
1504 return t;
1505 }
1506 }
1507
1508 if (noerr)
1509 {
1510 return NULL;
1511 }
c5aa993b 1512
c92817ce
TT
1513 typename = type_to_string (type);
1514 make_cleanup (xfree, typename);
1515 error (_("Type %s has no component named %s."), typename, name);
c906108c
SS
1516}
1517
ed3ef339
DE
1518/* Store in *MAX the largest number representable by unsigned integer type
1519 TYPE. */
1520
1521void
1522get_unsigned_type_max (struct type *type, ULONGEST *max)
1523{
1524 unsigned int n;
1525
1526 CHECK_TYPEDEF (type);
1527 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1528 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1529
1530 /* Written this way to avoid overflow. */
1531 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1532 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1533}
1534
1535/* Store in *MIN, *MAX the smallest and largest numbers representable by
1536 signed integer type TYPE. */
1537
1538void
1539get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1540{
1541 unsigned int n;
1542
1543 CHECK_TYPEDEF (type);
1544 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1545 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1546
1547 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1548 *min = -((ULONGEST) 1 << (n - 1));
1549 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1550}
1551
81fe8080
DE
1552/* Lookup the vptr basetype/fieldno values for TYPE.
1553 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1554 vptr_fieldno. Also, if found and basetype is from the same objfile,
1555 cache the results.
1556 If not found, return -1 and ignore BASETYPEP.
1557 Callers should be aware that in some cases (for example,
c906108c 1558 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1559 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1560 this function will not be able to find the
7ba81444 1561 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1562 vptr_basetype will remain NULL or incomplete. */
c906108c 1563
81fe8080
DE
1564int
1565get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c
SS
1566{
1567 CHECK_TYPEDEF (type);
1568
1569 if (TYPE_VPTR_FIELDNO (type) < 0)
1570 {
1571 int i;
1572
7ba81444
MS
1573 /* We must start at zero in case the first (and only) baseclass
1574 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1575 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1576 {
81fe8080
DE
1577 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1578 int fieldno;
1579 struct type *basetype;
1580
1581 fieldno = get_vptr_fieldno (baseclass, &basetype);
1582 if (fieldno >= 0)
c906108c 1583 {
81fe8080 1584 /* If the type comes from a different objfile we can't cache
0963b4bd 1585 it, it may have a different lifetime. PR 2384 */
5ef73790 1586 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080
DE
1587 {
1588 TYPE_VPTR_FIELDNO (type) = fieldno;
1589 TYPE_VPTR_BASETYPE (type) = basetype;
1590 }
1591 if (basetypep)
1592 *basetypep = basetype;
1593 return fieldno;
c906108c
SS
1594 }
1595 }
81fe8080
DE
1596
1597 /* Not found. */
1598 return -1;
1599 }
1600 else
1601 {
1602 if (basetypep)
1603 *basetypep = TYPE_VPTR_BASETYPE (type);
1604 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1605 }
1606}
1607
44e1a9eb
DJ
1608static void
1609stub_noname_complaint (void)
1610{
e2e0b3e5 1611 complaint (&symfile_complaints, _("stub type has NULL name"));
44e1a9eb
DJ
1612}
1613
80180f79
SA
1614/* See gdbtypes.h. */
1615
1616int
1617is_dynamic_type (struct type *type)
1618{
1619 type = check_typedef (type);
1620
1621 if (TYPE_CODE (type) == TYPE_CODE_REF)
1622 type = check_typedef (TYPE_TARGET_TYPE (type));
1623
1624 switch (TYPE_CODE (type))
1625 {
1626 case TYPE_CODE_ARRAY:
1627 {
1628 const struct type *range_type;
1629
1630 gdb_assert (TYPE_NFIELDS (type) == 1);
1631 range_type = TYPE_INDEX_TYPE (type);
1632 if (!has_static_range (TYPE_RANGE_DATA (range_type)))
1633 return 1;
1634 else
1635 return is_dynamic_type (TYPE_TARGET_TYPE (type));
1636 break;
1637 }
1638 default:
1639 return 0;
1640 break;
1641 }
1642}
1643
1644/* Resolves dynamic bound values of an array type TYPE to static ones.
1645 ADDRESS might be needed to resolve the subrange bounds, it is the location
1646 of the associated array. */
1647
1648static struct type *
1649resolve_dynamic_bounds (struct type *type, CORE_ADDR addr)
1650{
1651 CORE_ADDR value;
1652 struct type *elt_type;
1653 struct type *range_type;
1654 struct type *ary_dim;
1655 const struct dynamic_prop *prop;
1656 const struct dwarf2_locexpr_baton *baton;
1657 struct dynamic_prop low_bound, high_bound;
1658
1659 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1660 {
1661 struct type *copy = copy_type (type);
1662
1663 TYPE_TARGET_TYPE (copy)
1664 = resolve_dynamic_bounds (TYPE_TARGET_TYPE (type), addr);
1665
1666 return copy;
1667 }
1668
1669 if (TYPE_CODE (type) == TYPE_CODE_REF)
1670 {
1671 struct type *copy = copy_type (type);
1672 CORE_ADDR target_addr = read_memory_typed_address (addr, type);
1673
1674 TYPE_TARGET_TYPE (copy)
1675 = resolve_dynamic_bounds (TYPE_TARGET_TYPE (type), target_addr);
1676 return copy;
1677 }
1678
1679 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1680
1681 elt_type = type;
1682 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1683
1684 prop = &TYPE_RANGE_DATA (range_type)->low;
1685 if (dwarf2_evaluate_property (prop, addr, &value))
1686 {
1687 low_bound.kind = PROP_CONST;
1688 low_bound.data.const_val = value;
1689 }
1690 else
1691 {
1692 low_bound.kind = PROP_UNDEFINED;
1693 low_bound.data.const_val = 0;
1694 }
1695
1696 prop = &TYPE_RANGE_DATA (range_type)->high;
1697 if (dwarf2_evaluate_property (prop, addr, &value))
1698 {
1699 high_bound.kind = PROP_CONST;
1700 high_bound.data.const_val = value;
c451ebe5
SA
1701
1702 if (TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count)
1703 high_bound.data.const_val
1704 = low_bound.data.const_val + high_bound.data.const_val - 1;
80180f79
SA
1705 }
1706 else
1707 {
1708 high_bound.kind = PROP_UNDEFINED;
1709 high_bound.data.const_val = 0;
1710 }
1711
1712 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1713
1714 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1715 elt_type = resolve_dynamic_bounds (TYPE_TARGET_TYPE (type), addr);
1716 else
1717 elt_type = TYPE_TARGET_TYPE (type);
1718
1719 range_type = create_range_type (NULL,
1720 TYPE_TARGET_TYPE (range_type),
1721 &low_bound, &high_bound);
5ecaaa66 1722 TYPE_RANGE_DATA (range_type)->flag_bound_evaluated = 1;
80180f79
SA
1723 return create_array_type (copy_type (type),
1724 elt_type,
1725 range_type);
1726}
1727
1728/* See gdbtypes.h */
1729
1730struct type *
1731resolve_dynamic_type (struct type *type, CORE_ADDR addr)
1732{
1733 struct type *real_type = check_typedef (type);
1734 struct type *resolved_type;
1735
1736 if (!is_dynamic_type (real_type))
1737 return type;
1738
1739 resolved_type = resolve_dynamic_bounds (type, addr);
1740
1741 return resolved_type;
1742}
1743
92163a10
JK
1744/* Find the real type of TYPE. This function returns the real type,
1745 after removing all layers of typedefs, and completing opaque or stub
1746 types. Completion changes the TYPE argument, but stripping of
1747 typedefs does not.
1748
1749 Instance flags (e.g. const/volatile) are preserved as typedefs are
1750 stripped. If necessary a new qualified form of the underlying type
1751 is created.
1752
1753 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1754 not been computed and we're either in the middle of reading symbols, or
1755 there was no name for the typedef in the debug info.
1756
9bc118a5
DE
1757 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
1758 QUITs in the symbol reading code can also throw.
1759 Thus this function can throw an exception.
1760
92163a10
JK
1761 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1762 the target type.
c906108c
SS
1763
1764 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 1765 we can find a full definition in some other file. If so, copy this
7ba81444
MS
1766 definition, so we can use it in future. There used to be a comment
1767 (but not any code) that if we don't find a full definition, we'd
1768 set a flag so we don't spend time in the future checking the same
1769 type. That would be a mistake, though--we might load in more
92163a10 1770 symbols which contain a full definition for the type. */
c906108c
SS
1771
1772struct type *
a02fd225 1773check_typedef (struct type *type)
c906108c
SS
1774{
1775 struct type *orig_type = type;
92163a10
JK
1776 /* While we're removing typedefs, we don't want to lose qualifiers.
1777 E.g., const/volatile. */
1778 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 1779
423c0af8
MS
1780 gdb_assert (type);
1781
c906108c
SS
1782 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1783 {
1784 if (!TYPE_TARGET_TYPE (type))
1785 {
0d5cff50 1786 const char *name;
c906108c
SS
1787 struct symbol *sym;
1788
1789 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 1790 reading a symtab. Infinite recursion is one danger. */
c906108c 1791 if (currently_reading_symtab)
92163a10 1792 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
1793
1794 name = type_name_no_tag (type);
7ba81444
MS
1795 /* FIXME: shouldn't we separately check the TYPE_NAME and
1796 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1797 VAR_DOMAIN as appropriate? (this code was written before
1798 TYPE_NAME and TYPE_TAG_NAME were separate). */
c906108c
SS
1799 if (name == NULL)
1800 {
23136709 1801 stub_noname_complaint ();
92163a10 1802 return make_qualified_type (type, instance_flags, NULL);
c906108c 1803 }
2570f2b7 1804 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c
SS
1805 if (sym)
1806 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 1807 else /* TYPE_CODE_UNDEF */
e9bb382b 1808 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
1809 }
1810 type = TYPE_TARGET_TYPE (type);
c906108c 1811
92163a10
JK
1812 /* Preserve the instance flags as we traverse down the typedef chain.
1813
1814 Handling address spaces/classes is nasty, what do we do if there's a
1815 conflict?
1816 E.g., what if an outer typedef marks the type as class_1 and an inner
1817 typedef marks the type as class_2?
1818 This is the wrong place to do such error checking. We leave it to
1819 the code that created the typedef in the first place to flag the
1820 error. We just pick the outer address space (akin to letting the
1821 outer cast in a chain of casting win), instead of assuming
1822 "it can't happen". */
1823 {
1824 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1825 | TYPE_INSTANCE_FLAG_DATA_SPACE);
1826 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1827 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1828
1829 /* Treat code vs data spaces and address classes separately. */
1830 if ((instance_flags & ALL_SPACES) != 0)
1831 new_instance_flags &= ~ALL_SPACES;
1832 if ((instance_flags & ALL_CLASSES) != 0)
1833 new_instance_flags &= ~ALL_CLASSES;
1834
1835 instance_flags |= new_instance_flags;
1836 }
1837 }
a02fd225 1838
7ba81444
MS
1839 /* If this is a struct/class/union with no fields, then check
1840 whether a full definition exists somewhere else. This is for
1841 systems where a type definition with no fields is issued for such
1842 types, instead of identifying them as stub types in the first
1843 place. */
c5aa993b 1844
7ba81444
MS
1845 if (TYPE_IS_OPAQUE (type)
1846 && opaque_type_resolution
1847 && !currently_reading_symtab)
c906108c 1848 {
0d5cff50 1849 const char *name = type_name_no_tag (type);
c5aa993b 1850 struct type *newtype;
d8734c88 1851
c906108c
SS
1852 if (name == NULL)
1853 {
23136709 1854 stub_noname_complaint ();
92163a10 1855 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
1856 }
1857 newtype = lookup_transparent_type (name);
ad766c0a 1858
c906108c 1859 if (newtype)
ad766c0a 1860 {
7ba81444
MS
1861 /* If the resolved type and the stub are in the same
1862 objfile, then replace the stub type with the real deal.
1863 But if they're in separate objfiles, leave the stub
1864 alone; we'll just look up the transparent type every time
1865 we call check_typedef. We can't create pointers between
1866 types allocated to different objfiles, since they may
1867 have different lifetimes. Trying to copy NEWTYPE over to
1868 TYPE's objfile is pointless, too, since you'll have to
1869 move over any other types NEWTYPE refers to, which could
1870 be an unbounded amount of stuff. */
ad766c0a 1871 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
1872 type = make_qualified_type (newtype,
1873 TYPE_INSTANCE_FLAGS (type),
1874 type);
ad766c0a
JB
1875 else
1876 type = newtype;
1877 }
c906108c 1878 }
7ba81444
MS
1879 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1880 types. */
74a9bb82 1881 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 1882 {
0d5cff50 1883 const char *name = type_name_no_tag (type);
c906108c 1884 /* FIXME: shouldn't we separately check the TYPE_NAME and the
176620f1 1885 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
7b83ea04
AC
1886 as appropriate? (this code was written before TYPE_NAME and
1887 TYPE_TAG_NAME were separate). */
c906108c 1888 struct symbol *sym;
d8734c88 1889
c906108c
SS
1890 if (name == NULL)
1891 {
23136709 1892 stub_noname_complaint ();
92163a10 1893 return make_qualified_type (type, instance_flags, NULL);
c906108c 1894 }
2570f2b7 1895 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c 1896 if (sym)
c26f2453
JB
1897 {
1898 /* Same as above for opaque types, we can replace the stub
92163a10 1899 with the complete type only if they are in the same
c26f2453
JB
1900 objfile. */
1901 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
1902 type = make_qualified_type (SYMBOL_TYPE (sym),
1903 TYPE_INSTANCE_FLAGS (type),
1904 type);
c26f2453
JB
1905 else
1906 type = SYMBOL_TYPE (sym);
1907 }
c906108c
SS
1908 }
1909
74a9bb82 1910 if (TYPE_TARGET_STUB (type))
c906108c
SS
1911 {
1912 struct type *range_type;
1913 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1914
74a9bb82 1915 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 1916 {
73e2eb35 1917 /* Nothing we can do. */
c5aa993b 1918 }
c906108c
SS
1919 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1920 {
1921 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 1922 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
1923 }
1924 }
92163a10
JK
1925
1926 type = make_qualified_type (type, instance_flags, NULL);
1927
7ba81444 1928 /* Cache TYPE_LENGTH for future use. */
c906108c 1929 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 1930
c906108c
SS
1931 return type;
1932}
1933
7ba81444 1934/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 1935 occurs, silently return a void type. */
c91ecb25 1936
b9362cc7 1937static struct type *
48319d1f 1938safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
1939{
1940 struct ui_file *saved_gdb_stderr;
34365054 1941 struct type *type = NULL; /* Initialize to keep gcc happy. */
8e7b59a5 1942 volatile struct gdb_exception except;
c91ecb25 1943
7ba81444 1944 /* Suppress error messages. */
c91ecb25
ND
1945 saved_gdb_stderr = gdb_stderr;
1946 gdb_stderr = ui_file_new ();
1947
7ba81444 1948 /* Call parse_and_eval_type() without fear of longjmp()s. */
8e7b59a5
KS
1949 TRY_CATCH (except, RETURN_MASK_ERROR)
1950 {
1951 type = parse_and_eval_type (p, length);
1952 }
1953
1954 if (except.reason < 0)
48319d1f 1955 type = builtin_type (gdbarch)->builtin_void;
c91ecb25 1956
7ba81444 1957 /* Stop suppressing error messages. */
c91ecb25
ND
1958 ui_file_delete (gdb_stderr);
1959 gdb_stderr = saved_gdb_stderr;
1960
1961 return type;
1962}
1963
c906108c
SS
1964/* Ugly hack to convert method stubs into method types.
1965
7ba81444
MS
1966 He ain't kiddin'. This demangles the name of the method into a
1967 string including argument types, parses out each argument type,
1968 generates a string casting a zero to that type, evaluates the
1969 string, and stuffs the resulting type into an argtype vector!!!
1970 Then it knows the type of the whole function (including argument
1971 types for overloading), which info used to be in the stab's but was
1972 removed to hack back the space required for them. */
c906108c 1973
de17c821 1974static void
fba45db2 1975check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 1976{
50810684 1977 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
1978 struct fn_field *f;
1979 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
8de20a37
TT
1980 char *demangled_name = gdb_demangle (mangled_name,
1981 DMGL_PARAMS | DMGL_ANSI);
c906108c
SS
1982 char *argtypetext, *p;
1983 int depth = 0, argcount = 1;
ad2f7632 1984 struct field *argtypes;
c906108c
SS
1985 struct type *mtype;
1986
1987 /* Make sure we got back a function string that we can use. */
1988 if (demangled_name)
1989 p = strchr (demangled_name, '(');
502dcf4e
AC
1990 else
1991 p = NULL;
c906108c
SS
1992
1993 if (demangled_name == NULL || p == NULL)
7ba81444
MS
1994 error (_("Internal: Cannot demangle mangled name `%s'."),
1995 mangled_name);
c906108c
SS
1996
1997 /* Now, read in the parameters that define this type. */
1998 p += 1;
1999 argtypetext = p;
2000 while (*p)
2001 {
070ad9f0 2002 if (*p == '(' || *p == '<')
c906108c
SS
2003 {
2004 depth += 1;
2005 }
070ad9f0 2006 else if (*p == ')' || *p == '>')
c906108c
SS
2007 {
2008 depth -= 1;
2009 }
2010 else if (*p == ',' && depth == 0)
2011 {
2012 argcount += 1;
2013 }
2014
2015 p += 1;
2016 }
2017
ad2f7632
DJ
2018 /* If we read one argument and it was ``void'', don't count it. */
2019 if (strncmp (argtypetext, "(void)", 6) == 0)
2020 argcount -= 1;
c906108c 2021
ad2f7632
DJ
2022 /* We need one extra slot, for the THIS pointer. */
2023
2024 argtypes = (struct field *)
2025 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 2026 p = argtypetext;
4a1970e4
DJ
2027
2028 /* Add THIS pointer for non-static methods. */
2029 f = TYPE_FN_FIELDLIST1 (type, method_id);
2030 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2031 argcount = 0;
2032 else
2033 {
ad2f7632 2034 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
2035 argcount = 1;
2036 }
c906108c 2037
0963b4bd 2038 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
2039 {
2040 depth = 0;
2041 while (*p)
2042 {
2043 if (depth <= 0 && (*p == ',' || *p == ')'))
2044 {
ad2f7632
DJ
2045 /* Avoid parsing of ellipsis, they will be handled below.
2046 Also avoid ``void'' as above. */
2047 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2048 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 2049 {
ad2f7632 2050 argtypes[argcount].type =
48319d1f 2051 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
2052 argcount += 1;
2053 }
2054 argtypetext = p + 1;
2055 }
2056
070ad9f0 2057 if (*p == '(' || *p == '<')
c906108c
SS
2058 {
2059 depth += 1;
2060 }
070ad9f0 2061 else if (*p == ')' || *p == '>')
c906108c
SS
2062 {
2063 depth -= 1;
2064 }
2065
2066 p += 1;
2067 }
2068 }
2069
c906108c
SS
2070 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2071
2072 /* Now update the old "stub" type into a real type. */
2073 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2074 TYPE_DOMAIN_TYPE (mtype) = type;
ad2f7632
DJ
2075 TYPE_FIELDS (mtype) = argtypes;
2076 TYPE_NFIELDS (mtype) = argcount;
876cecd0 2077 TYPE_STUB (mtype) = 0;
c906108c 2078 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632 2079 if (p[-2] == '.')
876cecd0 2080 TYPE_VARARGS (mtype) = 1;
ad2f7632
DJ
2081
2082 xfree (demangled_name);
c906108c
SS
2083}
2084
7ba81444
MS
2085/* This is the external interface to check_stub_method, above. This
2086 function unstubs all of the signatures for TYPE's METHOD_ID method
2087 name. After calling this function TYPE_FN_FIELD_STUB will be
2088 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2089 correct.
de17c821
DJ
2090
2091 This function unfortunately can not die until stabs do. */
2092
2093void
2094check_stub_method_group (struct type *type, int method_id)
2095{
2096 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2097 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
f710f4fc 2098 int j, found_stub = 0;
de17c821
DJ
2099
2100 for (j = 0; j < len; j++)
2101 if (TYPE_FN_FIELD_STUB (f, j))
2102 {
2103 found_stub = 1;
2104 check_stub_method (type, method_id, j);
2105 }
2106
7ba81444
MS
2107 /* GNU v3 methods with incorrect names were corrected when we read
2108 in type information, because it was cheaper to do it then. The
2109 only GNU v2 methods with incorrect method names are operators and
2110 destructors; destructors were also corrected when we read in type
2111 information.
de17c821
DJ
2112
2113 Therefore the only thing we need to handle here are v2 operator
2114 names. */
2115 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
2116 {
2117 int ret;
2118 char dem_opname[256];
2119
7ba81444
MS
2120 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2121 method_id),
de17c821
DJ
2122 dem_opname, DMGL_ANSI);
2123 if (!ret)
7ba81444
MS
2124 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2125 method_id),
de17c821
DJ
2126 dem_opname, 0);
2127 if (ret)
2128 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2129 }
2130}
2131
9655fd1a
JK
2132/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2133const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
2134
2135void
fba45db2 2136allocate_cplus_struct_type (struct type *type)
c906108c 2137{
b4ba55a1
JB
2138 if (HAVE_CPLUS_STRUCT (type))
2139 /* Structure was already allocated. Nothing more to do. */
2140 return;
2141
2142 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2143 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2144 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2145 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
c906108c
SS
2146}
2147
b4ba55a1
JB
2148const struct gnat_aux_type gnat_aux_default =
2149 { NULL };
2150
2151/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2152 and allocate the associated gnat-specific data. The gnat-specific
2153 data is also initialized to gnat_aux_default. */
5212577a 2154
b4ba55a1
JB
2155void
2156allocate_gnat_aux_type (struct type *type)
2157{
2158 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2159 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2160 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2161 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2162}
2163
c906108c
SS
2164/* Helper function to initialize the standard scalar types.
2165
86f62fd7
TT
2166 If NAME is non-NULL, then it is used to initialize the type name.
2167 Note that NAME is not copied; it is required to have a lifetime at
2168 least as long as OBJFILE. */
c906108c
SS
2169
2170struct type *
7ba81444 2171init_type (enum type_code code, int length, int flags,
748e18ae 2172 const char *name, struct objfile *objfile)
c906108c 2173{
52f0bd74 2174 struct type *type;
c906108c
SS
2175
2176 type = alloc_type (objfile);
2177 TYPE_CODE (type) = code;
2178 TYPE_LENGTH (type) = length;
876cecd0
TT
2179
2180 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2181 if (flags & TYPE_FLAG_UNSIGNED)
2182 TYPE_UNSIGNED (type) = 1;
2183 if (flags & TYPE_FLAG_NOSIGN)
2184 TYPE_NOSIGN (type) = 1;
2185 if (flags & TYPE_FLAG_STUB)
2186 TYPE_STUB (type) = 1;
2187 if (flags & TYPE_FLAG_TARGET_STUB)
2188 TYPE_TARGET_STUB (type) = 1;
2189 if (flags & TYPE_FLAG_STATIC)
2190 TYPE_STATIC (type) = 1;
2191 if (flags & TYPE_FLAG_PROTOTYPED)
2192 TYPE_PROTOTYPED (type) = 1;
2193 if (flags & TYPE_FLAG_INCOMPLETE)
2194 TYPE_INCOMPLETE (type) = 1;
2195 if (flags & TYPE_FLAG_VARARGS)
2196 TYPE_VARARGS (type) = 1;
2197 if (flags & TYPE_FLAG_VECTOR)
2198 TYPE_VECTOR (type) = 1;
2199 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2200 TYPE_STUB_SUPPORTED (type) = 1;
876cecd0
TT
2201 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2202 TYPE_FIXED_INSTANCE (type) = 1;
0875794a
JK
2203 if (flags & TYPE_FLAG_GNU_IFUNC)
2204 TYPE_GNU_IFUNC (type) = 1;
876cecd0 2205
86f62fd7 2206 TYPE_NAME (type) = name;
c906108c
SS
2207
2208 /* C++ fancies. */
2209
973ccf8b 2210 if (name && strcmp (name, "char") == 0)
876cecd0 2211 TYPE_NOSIGN (type) = 1;
973ccf8b 2212
b4ba55a1 2213 switch (code)
c906108c 2214 {
b4ba55a1
JB
2215 case TYPE_CODE_STRUCT:
2216 case TYPE_CODE_UNION:
2217 case TYPE_CODE_NAMESPACE:
2218 INIT_CPLUS_SPECIFIC (type);
2219 break;
2220 case TYPE_CODE_FLT:
2221 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2222 break;
2223 case TYPE_CODE_FUNC:
b6cdc2c1 2224 INIT_FUNC_SPECIFIC (type);
b4ba55a1 2225 break;
c906108c 2226 }
c16abbde 2227 return type;
c906108c 2228}
5212577a
DE
2229\f
2230/* Queries on types. */
c906108c 2231
c906108c 2232int
fba45db2 2233can_dereference (struct type *t)
c906108c 2234{
7ba81444
MS
2235 /* FIXME: Should we return true for references as well as
2236 pointers? */
c906108c
SS
2237 CHECK_TYPEDEF (t);
2238 return
2239 (t != NULL
2240 && TYPE_CODE (t) == TYPE_CODE_PTR
2241 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2242}
2243
adf40b2e 2244int
fba45db2 2245is_integral_type (struct type *t)
adf40b2e
JM
2246{
2247 CHECK_TYPEDEF (t);
2248 return
2249 ((t != NULL)
d4f3574e
SS
2250 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2251 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 2252 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
2253 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2254 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2255 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
2256}
2257
e09342b5
TJB
2258/* Return true if TYPE is scalar. */
2259
2260static int
2261is_scalar_type (struct type *type)
2262{
2263 CHECK_TYPEDEF (type);
2264
2265 switch (TYPE_CODE (type))
2266 {
2267 case TYPE_CODE_ARRAY:
2268 case TYPE_CODE_STRUCT:
2269 case TYPE_CODE_UNION:
2270 case TYPE_CODE_SET:
2271 case TYPE_CODE_STRING:
e09342b5
TJB
2272 return 0;
2273 default:
2274 return 1;
2275 }
2276}
2277
2278/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
2279 the memory layout of a scalar type. E.g., an array or struct with only
2280 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
2281
2282int
2283is_scalar_type_recursive (struct type *t)
2284{
2285 CHECK_TYPEDEF (t);
2286
2287 if (is_scalar_type (t))
2288 return 1;
2289 /* Are we dealing with an array or string of known dimensions? */
2290 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2291 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2292 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2293 {
2294 LONGEST low_bound, high_bound;
2295 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2296
2297 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2298
2299 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2300 }
2301 /* Are we dealing with a struct with one element? */
2302 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2303 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2304 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2305 {
2306 int i, n = TYPE_NFIELDS (t);
2307
2308 /* If all elements of the union are scalar, then the union is scalar. */
2309 for (i = 0; i < n; i++)
2310 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2311 return 0;
2312
2313 return 1;
2314 }
2315
2316 return 0;
2317}
2318
4e8f195d
TT
2319/* A helper function which returns true if types A and B represent the
2320 "same" class type. This is true if the types have the same main
2321 type, or the same name. */
2322
2323int
2324class_types_same_p (const struct type *a, const struct type *b)
2325{
2326 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2327 || (TYPE_NAME (a) && TYPE_NAME (b)
2328 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2329}
2330
a9d5ef47
SW
2331/* If BASE is an ancestor of DCLASS return the distance between them.
2332 otherwise return -1;
2333 eg:
2334
2335 class A {};
2336 class B: public A {};
2337 class C: public B {};
2338 class D: C {};
2339
2340 distance_to_ancestor (A, A, 0) = 0
2341 distance_to_ancestor (A, B, 0) = 1
2342 distance_to_ancestor (A, C, 0) = 2
2343 distance_to_ancestor (A, D, 0) = 3
2344
2345 If PUBLIC is 1 then only public ancestors are considered,
2346 and the function returns the distance only if BASE is a public ancestor
2347 of DCLASS.
2348 Eg:
2349
0963b4bd 2350 distance_to_ancestor (A, D, 1) = -1. */
c906108c 2351
0526b37a 2352static int
a9d5ef47 2353distance_to_ancestor (struct type *base, struct type *dclass, int public)
c906108c
SS
2354{
2355 int i;
a9d5ef47 2356 int d;
c5aa993b 2357
c906108c
SS
2358 CHECK_TYPEDEF (base);
2359 CHECK_TYPEDEF (dclass);
2360
4e8f195d 2361 if (class_types_same_p (base, dclass))
a9d5ef47 2362 return 0;
c906108c
SS
2363
2364 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 2365 {
0526b37a
SW
2366 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2367 continue;
2368
a9d5ef47
SW
2369 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2370 if (d >= 0)
2371 return 1 + d;
4e8f195d 2372 }
c906108c 2373
a9d5ef47 2374 return -1;
c906108c 2375}
4e8f195d 2376
0526b37a
SW
2377/* Check whether BASE is an ancestor or base class or DCLASS
2378 Return 1 if so, and 0 if not.
2379 Note: If BASE and DCLASS are of the same type, this function
2380 will return 1. So for some class A, is_ancestor (A, A) will
2381 return 1. */
2382
2383int
2384is_ancestor (struct type *base, struct type *dclass)
2385{
a9d5ef47 2386 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
2387}
2388
4e8f195d
TT
2389/* Like is_ancestor, but only returns true when BASE is a public
2390 ancestor of DCLASS. */
2391
2392int
2393is_public_ancestor (struct type *base, struct type *dclass)
2394{
a9d5ef47 2395 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
2396}
2397
2398/* A helper function for is_unique_ancestor. */
2399
2400static int
2401is_unique_ancestor_worker (struct type *base, struct type *dclass,
2402 int *offset,
8af8e3bc
PA
2403 const gdb_byte *valaddr, int embedded_offset,
2404 CORE_ADDR address, struct value *val)
4e8f195d
TT
2405{
2406 int i, count = 0;
2407
2408 CHECK_TYPEDEF (base);
2409 CHECK_TYPEDEF (dclass);
2410
2411 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2412 {
8af8e3bc
PA
2413 struct type *iter;
2414 int this_offset;
4e8f195d 2415
8af8e3bc
PA
2416 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2417
2418 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2419 address, val);
4e8f195d
TT
2420
2421 if (class_types_same_p (base, iter))
2422 {
2423 /* If this is the first subclass, set *OFFSET and set count
2424 to 1. Otherwise, if this is at the same offset as
2425 previous instances, do nothing. Otherwise, increment
2426 count. */
2427 if (*offset == -1)
2428 {
2429 *offset = this_offset;
2430 count = 1;
2431 }
2432 else if (this_offset == *offset)
2433 {
2434 /* Nothing. */
2435 }
2436 else
2437 ++count;
2438 }
2439 else
2440 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
2441 valaddr,
2442 embedded_offset + this_offset,
2443 address, val);
4e8f195d
TT
2444 }
2445
2446 return count;
2447}
2448
2449/* Like is_ancestor, but only returns true if BASE is a unique base
2450 class of the type of VAL. */
2451
2452int
2453is_unique_ancestor (struct type *base, struct value *val)
2454{
2455 int offset = -1;
2456
2457 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
2458 value_contents_for_printing (val),
2459 value_embedded_offset (val),
2460 value_address (val), val) == 1;
4e8f195d
TT
2461}
2462
c906108c 2463\f
5212577a 2464/* Overload resolution. */
c906108c 2465
6403aeea
SW
2466/* Return the sum of the rank of A with the rank of B. */
2467
2468struct rank
2469sum_ranks (struct rank a, struct rank b)
2470{
2471 struct rank c;
2472 c.rank = a.rank + b.rank;
a9d5ef47 2473 c.subrank = a.subrank + b.subrank;
6403aeea
SW
2474 return c;
2475}
2476
2477/* Compare rank A and B and return:
2478 0 if a = b
2479 1 if a is better than b
2480 -1 if b is better than a. */
2481
2482int
2483compare_ranks (struct rank a, struct rank b)
2484{
2485 if (a.rank == b.rank)
a9d5ef47
SW
2486 {
2487 if (a.subrank == b.subrank)
2488 return 0;
2489 if (a.subrank < b.subrank)
2490 return 1;
2491 if (a.subrank > b.subrank)
2492 return -1;
2493 }
6403aeea
SW
2494
2495 if (a.rank < b.rank)
2496 return 1;
2497
0963b4bd 2498 /* a.rank > b.rank */
6403aeea
SW
2499 return -1;
2500}
c5aa993b 2501
0963b4bd 2502/* Functions for overload resolution begin here. */
c906108c
SS
2503
2504/* Compare two badness vectors A and B and return the result.
7ba81444
MS
2505 0 => A and B are identical
2506 1 => A and B are incomparable
2507 2 => A is better than B
2508 3 => A is worse than B */
c906108c
SS
2509
2510int
fba45db2 2511compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
2512{
2513 int i;
2514 int tmp;
c5aa993b
JM
2515 short found_pos = 0; /* any positives in c? */
2516 short found_neg = 0; /* any negatives in c? */
2517
2518 /* differing lengths => incomparable */
c906108c
SS
2519 if (a->length != b->length)
2520 return 1;
2521
c5aa993b
JM
2522 /* Subtract b from a */
2523 for (i = 0; i < a->length; i++)
c906108c 2524 {
6403aeea 2525 tmp = compare_ranks (b->rank[i], a->rank[i]);
c906108c 2526 if (tmp > 0)
c5aa993b 2527 found_pos = 1;
c906108c 2528 else if (tmp < 0)
c5aa993b 2529 found_neg = 1;
c906108c
SS
2530 }
2531
2532 if (found_pos)
2533 {
2534 if (found_neg)
c5aa993b 2535 return 1; /* incomparable */
c906108c 2536 else
c5aa993b 2537 return 3; /* A > B */
c906108c 2538 }
c5aa993b
JM
2539 else
2540 /* no positives */
c906108c
SS
2541 {
2542 if (found_neg)
c5aa993b 2543 return 2; /* A < B */
c906108c 2544 else
c5aa993b 2545 return 0; /* A == B */
c906108c
SS
2546 }
2547}
2548
7ba81444
MS
2549/* Rank a function by comparing its parameter types (PARMS, length
2550 NPARMS), to the types of an argument list (ARGS, length NARGS).
2551 Return a pointer to a badness vector. This has NARGS + 1
2552 entries. */
c906108c
SS
2553
2554struct badness_vector *
7ba81444 2555rank_function (struct type **parms, int nparms,
da096638 2556 struct value **args, int nargs)
c906108c
SS
2557{
2558 int i;
c5aa993b 2559 struct badness_vector *bv;
c906108c
SS
2560 int min_len = nparms < nargs ? nparms : nargs;
2561
2562 bv = xmalloc (sizeof (struct badness_vector));
0963b4bd 2563 bv->length = nargs + 1; /* add 1 for the length-match rank. */
c906108c
SS
2564 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2565
2566 /* First compare the lengths of the supplied lists.
7ba81444 2567 If there is a mismatch, set it to a high value. */
c5aa993b 2568
c906108c 2569 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
2570 arguments and ellipsis parameter lists, we should consider those
2571 and rank the length-match more finely. */
c906108c 2572
6403aeea
SW
2573 LENGTH_MATCH (bv) = (nargs != nparms)
2574 ? LENGTH_MISMATCH_BADNESS
2575 : EXACT_MATCH_BADNESS;
c906108c 2576
0963b4bd 2577 /* Now rank all the parameters of the candidate function. */
74cc24b0 2578 for (i = 1; i <= min_len; i++)
da096638
KS
2579 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2580 args[i - 1]);
c906108c 2581
0963b4bd 2582 /* If more arguments than parameters, add dummy entries. */
c5aa993b 2583 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
2584 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2585
2586 return bv;
2587}
2588
973ccf8b
DJ
2589/* Compare the names of two integer types, assuming that any sign
2590 qualifiers have been checked already. We do it this way because
2591 there may be an "int" in the name of one of the types. */
2592
2593static int
2594integer_types_same_name_p (const char *first, const char *second)
2595{
2596 int first_p, second_p;
2597
7ba81444
MS
2598 /* If both are shorts, return 1; if neither is a short, keep
2599 checking. */
973ccf8b
DJ
2600 first_p = (strstr (first, "short") != NULL);
2601 second_p = (strstr (second, "short") != NULL);
2602 if (first_p && second_p)
2603 return 1;
2604 if (first_p || second_p)
2605 return 0;
2606
2607 /* Likewise for long. */
2608 first_p = (strstr (first, "long") != NULL);
2609 second_p = (strstr (second, "long") != NULL);
2610 if (first_p && second_p)
2611 return 1;
2612 if (first_p || second_p)
2613 return 0;
2614
2615 /* Likewise for char. */
2616 first_p = (strstr (first, "char") != NULL);
2617 second_p = (strstr (second, "char") != NULL);
2618 if (first_p && second_p)
2619 return 1;
2620 if (first_p || second_p)
2621 return 0;
2622
2623 /* They must both be ints. */
2624 return 1;
2625}
2626
7062b0a0
SW
2627/* Compares type A to type B returns 1 if the represent the same type
2628 0 otherwise. */
2629
bd69fc68 2630int
7062b0a0
SW
2631types_equal (struct type *a, struct type *b)
2632{
2633 /* Identical type pointers. */
2634 /* However, this still doesn't catch all cases of same type for b
2635 and a. The reason is that builtin types are different from
2636 the same ones constructed from the object. */
2637 if (a == b)
2638 return 1;
2639
2640 /* Resolve typedefs */
2641 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2642 a = check_typedef (a);
2643 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2644 b = check_typedef (b);
2645
2646 /* If after resolving typedefs a and b are not of the same type
2647 code then they are not equal. */
2648 if (TYPE_CODE (a) != TYPE_CODE (b))
2649 return 0;
2650
2651 /* If a and b are both pointers types or both reference types then
2652 they are equal of the same type iff the objects they refer to are
2653 of the same type. */
2654 if (TYPE_CODE (a) == TYPE_CODE_PTR
2655 || TYPE_CODE (a) == TYPE_CODE_REF)
2656 return types_equal (TYPE_TARGET_TYPE (a),
2657 TYPE_TARGET_TYPE (b));
2658
0963b4bd 2659 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
2660 are exactly the same. This happens when we generate method
2661 stubs. The types won't point to the same address, but they
0963b4bd 2662 really are the same. */
7062b0a0
SW
2663
2664 if (TYPE_NAME (a) && TYPE_NAME (b)
2665 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2666 return 1;
2667
2668 /* Check if identical after resolving typedefs. */
2669 if (a == b)
2670 return 1;
2671
9ce98649
TT
2672 /* Two function types are equal if their argument and return types
2673 are equal. */
2674 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
2675 {
2676 int i;
2677
2678 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
2679 return 0;
2680
2681 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
2682 return 0;
2683
2684 for (i = 0; i < TYPE_NFIELDS (a); ++i)
2685 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
2686 return 0;
2687
2688 return 1;
2689 }
2690
7062b0a0
SW
2691 return 0;
2692}
ca092b61
DE
2693\f
2694/* Deep comparison of types. */
2695
2696/* An entry in the type-equality bcache. */
2697
2698typedef struct type_equality_entry
2699{
2700 struct type *type1, *type2;
2701} type_equality_entry_d;
2702
2703DEF_VEC_O (type_equality_entry_d);
2704
2705/* A helper function to compare two strings. Returns 1 if they are
2706 the same, 0 otherwise. Handles NULLs properly. */
2707
2708static int
2709compare_maybe_null_strings (const char *s, const char *t)
2710{
2711 if (s == NULL && t != NULL)
2712 return 0;
2713 else if (s != NULL && t == NULL)
2714 return 0;
2715 else if (s == NULL && t== NULL)
2716 return 1;
2717 return strcmp (s, t) == 0;
2718}
2719
2720/* A helper function for check_types_worklist that checks two types for
2721 "deep" equality. Returns non-zero if the types are considered the
2722 same, zero otherwise. */
2723
2724static int
2725check_types_equal (struct type *type1, struct type *type2,
2726 VEC (type_equality_entry_d) **worklist)
2727{
2728 CHECK_TYPEDEF (type1);
2729 CHECK_TYPEDEF (type2);
2730
2731 if (type1 == type2)
2732 return 1;
2733
2734 if (TYPE_CODE (type1) != TYPE_CODE (type2)
2735 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
2736 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
2737 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
2738 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
2739 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
2740 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
2741 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
2742 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
2743 return 0;
2744
2745 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
2746 TYPE_TAG_NAME (type2)))
2747 return 0;
2748 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
2749 return 0;
2750
2751 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
2752 {
2753 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
2754 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
2755 return 0;
2756 }
2757 else
2758 {
2759 int i;
2760
2761 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
2762 {
2763 const struct field *field1 = &TYPE_FIELD (type1, i);
2764 const struct field *field2 = &TYPE_FIELD (type2, i);
2765 struct type_equality_entry entry;
2766
2767 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
2768 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
2769 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
2770 return 0;
2771 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
2772 FIELD_NAME (*field2)))
2773 return 0;
2774 switch (FIELD_LOC_KIND (*field1))
2775 {
2776 case FIELD_LOC_KIND_BITPOS:
2777 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
2778 return 0;
2779 break;
2780 case FIELD_LOC_KIND_ENUMVAL:
2781 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
2782 return 0;
2783 break;
2784 case FIELD_LOC_KIND_PHYSADDR:
2785 if (FIELD_STATIC_PHYSADDR (*field1)
2786 != FIELD_STATIC_PHYSADDR (*field2))
2787 return 0;
2788 break;
2789 case FIELD_LOC_KIND_PHYSNAME:
2790 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
2791 FIELD_STATIC_PHYSNAME (*field2)))
2792 return 0;
2793 break;
2794 case FIELD_LOC_KIND_DWARF_BLOCK:
2795 {
2796 struct dwarf2_locexpr_baton *block1, *block2;
2797
2798 block1 = FIELD_DWARF_BLOCK (*field1);
2799 block2 = FIELD_DWARF_BLOCK (*field2);
2800 if (block1->per_cu != block2->per_cu
2801 || block1->size != block2->size
2802 || memcmp (block1->data, block2->data, block1->size) != 0)
2803 return 0;
2804 }
2805 break;
2806 default:
2807 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
2808 "%d by check_types_equal"),
2809 FIELD_LOC_KIND (*field1));
2810 }
2811
2812 entry.type1 = FIELD_TYPE (*field1);
2813 entry.type2 = FIELD_TYPE (*field2);
2814 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
2815 }
2816 }
2817
2818 if (TYPE_TARGET_TYPE (type1) != NULL)
2819 {
2820 struct type_equality_entry entry;
2821
2822 if (TYPE_TARGET_TYPE (type2) == NULL)
2823 return 0;
2824
2825 entry.type1 = TYPE_TARGET_TYPE (type1);
2826 entry.type2 = TYPE_TARGET_TYPE (type2);
2827 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
2828 }
2829 else if (TYPE_TARGET_TYPE (type2) != NULL)
2830 return 0;
2831
2832 return 1;
2833}
2834
2835/* Check types on a worklist for equality. Returns zero if any pair
2836 is not equal, non-zero if they are all considered equal. */
2837
2838static int
2839check_types_worklist (VEC (type_equality_entry_d) **worklist,
2840 struct bcache *cache)
2841{
2842 while (!VEC_empty (type_equality_entry_d, *worklist))
2843 {
2844 struct type_equality_entry entry;
2845 int added;
2846
2847 entry = *VEC_last (type_equality_entry_d, *worklist);
2848 VEC_pop (type_equality_entry_d, *worklist);
2849
2850 /* If the type pair has already been visited, we know it is
2851 ok. */
2852 bcache_full (&entry, sizeof (entry), cache, &added);
2853 if (!added)
2854 continue;
2855
2856 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
2857 return 0;
2858 }
7062b0a0 2859
ca092b61
DE
2860 return 1;
2861}
2862
2863/* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
2864 "deep comparison". Otherwise return zero. */
2865
2866int
2867types_deeply_equal (struct type *type1, struct type *type2)
2868{
2869 volatile struct gdb_exception except;
2870 int result = 0;
2871 struct bcache *cache;
2872 VEC (type_equality_entry_d) *worklist = NULL;
2873 struct type_equality_entry entry;
2874
2875 gdb_assert (type1 != NULL && type2 != NULL);
2876
2877 /* Early exit for the simple case. */
2878 if (type1 == type2)
2879 return 1;
2880
2881 cache = bcache_xmalloc (NULL, NULL);
2882
2883 entry.type1 = type1;
2884 entry.type2 = type2;
2885 VEC_safe_push (type_equality_entry_d, worklist, &entry);
2886
2887 TRY_CATCH (except, RETURN_MASK_ALL)
2888 {
2889 result = check_types_worklist (&worklist, cache);
2890 }
2891 /* check_types_worklist calls several nested helper functions,
2892 some of which can raise a GDB Exception, so we just check
2893 and rethrow here. If there is a GDB exception, a comparison
2894 is not capable (or trusted), so exit. */
2895 bcache_xfree (cache);
2896 VEC_free (type_equality_entry_d, worklist);
2897 /* Rethrow if there was a problem. */
2898 if (except.reason < 0)
2899 throw_exception (except);
2900
2901 return result;
2902}
2903\f
c906108c
SS
2904/* Compare one type (PARM) for compatibility with another (ARG).
2905 * PARM is intended to be the parameter type of a function; and
2906 * ARG is the supplied argument's type. This function tests if
2907 * the latter can be converted to the former.
da096638 2908 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
2909 *
2910 * Return 0 if they are identical types;
2911 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
2912 * PARM is to ARG. The higher the return value, the worse the match.
2913 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 2914
6403aeea 2915struct rank
da096638 2916rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 2917{
a9d5ef47 2918 struct rank rank = {0,0};
7062b0a0
SW
2919
2920 if (types_equal (parm, arg))
6403aeea 2921 return EXACT_MATCH_BADNESS;
c906108c
SS
2922
2923 /* Resolve typedefs */
2924 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2925 parm = check_typedef (parm);
2926 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2927 arg = check_typedef (arg);
2928
db577aea 2929 /* See through references, since we can almost make non-references
7ba81444 2930 references. */
db577aea 2931 if (TYPE_CODE (arg) == TYPE_CODE_REF)
da096638 2932 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
6403aeea 2933 REFERENCE_CONVERSION_BADNESS));
db577aea 2934 if (TYPE_CODE (parm) == TYPE_CODE_REF)
da096638 2935 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
6403aeea 2936 REFERENCE_CONVERSION_BADNESS));
5d161b24 2937 if (overload_debug)
7ba81444
MS
2938 /* Debugging only. */
2939 fprintf_filtered (gdb_stderr,
2940 "------ Arg is %s [%d], parm is %s [%d]\n",
2941 TYPE_NAME (arg), TYPE_CODE (arg),
2942 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 2943
0963b4bd 2944 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
2945
2946 switch (TYPE_CODE (parm))
2947 {
c5aa993b
JM
2948 case TYPE_CODE_PTR:
2949 switch (TYPE_CODE (arg))
2950 {
2951 case TYPE_CODE_PTR:
7062b0a0
SW
2952
2953 /* Allowed pointer conversions are:
2954 (a) pointer to void-pointer conversion. */
2955 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
c5aa993b 2956 return VOID_PTR_CONVERSION_BADNESS;
7062b0a0
SW
2957
2958 /* (b) pointer to ancestor-pointer conversion. */
a9d5ef47
SW
2959 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
2960 TYPE_TARGET_TYPE (arg),
2961 0);
2962 if (rank.subrank >= 0)
2963 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
7062b0a0
SW
2964
2965 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 2966 case TYPE_CODE_ARRAY:
7062b0a0
SW
2967 if (types_equal (TYPE_TARGET_TYPE (parm),
2968 TYPE_TARGET_TYPE (arg)))
6403aeea 2969 return EXACT_MATCH_BADNESS;
7062b0a0 2970 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 2971 case TYPE_CODE_FUNC:
da096638 2972 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
c5aa993b 2973 case TYPE_CODE_INT:
a451cb65 2974 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
da096638 2975 {
a451cb65
KS
2976 if (value_as_long (value) == 0)
2977 {
2978 /* Null pointer conversion: allow it to be cast to a pointer.
2979 [4.10.1 of C++ standard draft n3290] */
2980 return NULL_POINTER_CONVERSION_BADNESS;
2981 }
2982 else
2983 {
2984 /* If type checking is disabled, allow the conversion. */
2985 if (!strict_type_checking)
2986 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
2987 }
da096638
KS
2988 }
2989 /* fall through */
c5aa993b 2990 case TYPE_CODE_ENUM:
4f2aea11 2991 case TYPE_CODE_FLAGS:
c5aa993b
JM
2992 case TYPE_CODE_CHAR:
2993 case TYPE_CODE_RANGE:
2994 case TYPE_CODE_BOOL:
c5aa993b
JM
2995 default:
2996 return INCOMPATIBLE_TYPE_BADNESS;
2997 }
2998 case TYPE_CODE_ARRAY:
2999 switch (TYPE_CODE (arg))
3000 {
3001 case TYPE_CODE_PTR:
3002 case TYPE_CODE_ARRAY:
7ba81444 3003 return rank_one_type (TYPE_TARGET_TYPE (parm),
da096638 3004 TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3005 default:
3006 return INCOMPATIBLE_TYPE_BADNESS;
3007 }
3008 case TYPE_CODE_FUNC:
3009 switch (TYPE_CODE (arg))
3010 {
3011 case TYPE_CODE_PTR: /* funcptr -> func */
da096638 3012 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3013 default:
3014 return INCOMPATIBLE_TYPE_BADNESS;
3015 }
3016 case TYPE_CODE_INT:
3017 switch (TYPE_CODE (arg))
3018 {
3019 case TYPE_CODE_INT:
3020 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3021 {
3022 /* Deal with signed, unsigned, and plain chars and
7ba81444 3023 signed and unsigned ints. */
c5aa993b
JM
3024 if (TYPE_NOSIGN (parm))
3025 {
0963b4bd 3026 /* This case only for character types. */
7ba81444 3027 if (TYPE_NOSIGN (arg))
6403aeea 3028 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
7ba81444
MS
3029 else /* signed/unsigned char -> plain char */
3030 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3031 }
3032 else if (TYPE_UNSIGNED (parm))
3033 {
3034 if (TYPE_UNSIGNED (arg))
3035 {
7ba81444
MS
3036 /* unsigned int -> unsigned int, or
3037 unsigned long -> unsigned long */
3038 if (integer_types_same_name_p (TYPE_NAME (parm),
3039 TYPE_NAME (arg)))
6403aeea 3040 return EXACT_MATCH_BADNESS;
7ba81444
MS
3041 else if (integer_types_same_name_p (TYPE_NAME (arg),
3042 "int")
3043 && integer_types_same_name_p (TYPE_NAME (parm),
3044 "long"))
3e43a32a
MS
3045 /* unsigned int -> unsigned long */
3046 return INTEGER_PROMOTION_BADNESS;
c5aa993b 3047 else
3e43a32a
MS
3048 /* unsigned long -> unsigned int */
3049 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3050 }
3051 else
3052 {
7ba81444
MS
3053 if (integer_types_same_name_p (TYPE_NAME (arg),
3054 "long")
3055 && integer_types_same_name_p (TYPE_NAME (parm),
3056 "int"))
3e43a32a
MS
3057 /* signed long -> unsigned int */
3058 return INTEGER_CONVERSION_BADNESS;
c5aa993b 3059 else
3e43a32a
MS
3060 /* signed int/long -> unsigned int/long */
3061 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3062 }
3063 }
3064 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3065 {
7ba81444
MS
3066 if (integer_types_same_name_p (TYPE_NAME (parm),
3067 TYPE_NAME (arg)))
6403aeea 3068 return EXACT_MATCH_BADNESS;
7ba81444
MS
3069 else if (integer_types_same_name_p (TYPE_NAME (arg),
3070 "int")
3071 && integer_types_same_name_p (TYPE_NAME (parm),
3072 "long"))
c5aa993b
JM
3073 return INTEGER_PROMOTION_BADNESS;
3074 else
1c5cb38e 3075 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3076 }
3077 else
1c5cb38e 3078 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3079 }
3080 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3081 return INTEGER_PROMOTION_BADNESS;
3082 else
1c5cb38e 3083 return INTEGER_CONVERSION_BADNESS;
c5aa993b 3084 case TYPE_CODE_ENUM:
4f2aea11 3085 case TYPE_CODE_FLAGS:
c5aa993b
JM
3086 case TYPE_CODE_CHAR:
3087 case TYPE_CODE_RANGE:
3088 case TYPE_CODE_BOOL:
3d567982
TT
3089 if (TYPE_DECLARED_CLASS (arg))
3090 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b
JM
3091 return INTEGER_PROMOTION_BADNESS;
3092 case TYPE_CODE_FLT:
3093 return INT_FLOAT_CONVERSION_BADNESS;
3094 case TYPE_CODE_PTR:
3095 return NS_POINTER_CONVERSION_BADNESS;
3096 default:
3097 return INCOMPATIBLE_TYPE_BADNESS;
3098 }
3099 break;
3100 case TYPE_CODE_ENUM:
3101 switch (TYPE_CODE (arg))
3102 {
3103 case TYPE_CODE_INT:
3104 case TYPE_CODE_CHAR:
3105 case TYPE_CODE_RANGE:
3106 case TYPE_CODE_BOOL:
3107 case TYPE_CODE_ENUM:
3d567982
TT
3108 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3109 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 3110 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3111 case TYPE_CODE_FLT:
3112 return INT_FLOAT_CONVERSION_BADNESS;
3113 default:
3114 return INCOMPATIBLE_TYPE_BADNESS;
3115 }
3116 break;
3117 case TYPE_CODE_CHAR:
3118 switch (TYPE_CODE (arg))
3119 {
3120 case TYPE_CODE_RANGE:
3121 case TYPE_CODE_BOOL:
3122 case TYPE_CODE_ENUM:
3d567982
TT
3123 if (TYPE_DECLARED_CLASS (arg))
3124 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 3125 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3126 case TYPE_CODE_FLT:
3127 return INT_FLOAT_CONVERSION_BADNESS;
3128 case TYPE_CODE_INT:
3129 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
1c5cb38e 3130 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3131 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3132 return INTEGER_PROMOTION_BADNESS;
3133 /* >>> !! else fall through !! <<< */
3134 case TYPE_CODE_CHAR:
7ba81444
MS
3135 /* Deal with signed, unsigned, and plain chars for C++ and
3136 with int cases falling through from previous case. */
c5aa993b
JM
3137 if (TYPE_NOSIGN (parm))
3138 {
3139 if (TYPE_NOSIGN (arg))
6403aeea 3140 return EXACT_MATCH_BADNESS;
c5aa993b 3141 else
1c5cb38e 3142 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3143 }
3144 else if (TYPE_UNSIGNED (parm))
3145 {
3146 if (TYPE_UNSIGNED (arg))
6403aeea 3147 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3148 else
3149 return INTEGER_PROMOTION_BADNESS;
3150 }
3151 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
6403aeea 3152 return EXACT_MATCH_BADNESS;
c5aa993b 3153 else
1c5cb38e 3154 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3155 default:
3156 return INCOMPATIBLE_TYPE_BADNESS;
3157 }
3158 break;
3159 case TYPE_CODE_RANGE:
3160 switch (TYPE_CODE (arg))
3161 {
3162 case TYPE_CODE_INT:
3163 case TYPE_CODE_CHAR:
3164 case TYPE_CODE_RANGE:
3165 case TYPE_CODE_BOOL:
3166 case TYPE_CODE_ENUM:
1c5cb38e 3167 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3168 case TYPE_CODE_FLT:
3169 return INT_FLOAT_CONVERSION_BADNESS;
3170 default:
3171 return INCOMPATIBLE_TYPE_BADNESS;
3172 }
3173 break;
3174 case TYPE_CODE_BOOL:
3175 switch (TYPE_CODE (arg))
3176 {
5b4f6e25
KS
3177 /* n3290 draft, section 4.12.1 (conv.bool):
3178
3179 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3180 pointer to member type can be converted to a prvalue of type
3181 bool. A zero value, null pointer value, or null member pointer
3182 value is converted to false; any other value is converted to
3183 true. A prvalue of type std::nullptr_t can be converted to a
3184 prvalue of type bool; the resulting value is false." */
c5aa993b
JM
3185 case TYPE_CODE_INT:
3186 case TYPE_CODE_CHAR:
c5aa993b
JM
3187 case TYPE_CODE_ENUM:
3188 case TYPE_CODE_FLT:
5b4f6e25 3189 case TYPE_CODE_MEMBERPTR:
c5aa993b 3190 case TYPE_CODE_PTR:
5b4f6e25
KS
3191 return BOOL_CONVERSION_BADNESS;
3192 case TYPE_CODE_RANGE:
3193 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3194 case TYPE_CODE_BOOL:
6403aeea 3195 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3196 default:
3197 return INCOMPATIBLE_TYPE_BADNESS;
3198 }
3199 break;
3200 case TYPE_CODE_FLT:
3201 switch (TYPE_CODE (arg))
3202 {
3203 case TYPE_CODE_FLT:
3204 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3205 return FLOAT_PROMOTION_BADNESS;
3206 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
6403aeea 3207 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3208 else
3209 return FLOAT_CONVERSION_BADNESS;
3210 case TYPE_CODE_INT:
3211 case TYPE_CODE_BOOL:
3212 case TYPE_CODE_ENUM:
3213 case TYPE_CODE_RANGE:
3214 case TYPE_CODE_CHAR:
3215 return INT_FLOAT_CONVERSION_BADNESS;
3216 default:
3217 return INCOMPATIBLE_TYPE_BADNESS;
3218 }
3219 break;
3220 case TYPE_CODE_COMPLEX:
3221 switch (TYPE_CODE (arg))
7ba81444 3222 { /* Strictly not needed for C++, but... */
c5aa993b
JM
3223 case TYPE_CODE_FLT:
3224 return FLOAT_PROMOTION_BADNESS;
3225 case TYPE_CODE_COMPLEX:
6403aeea 3226 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3227 default:
3228 return INCOMPATIBLE_TYPE_BADNESS;
3229 }
3230 break;
3231 case TYPE_CODE_STRUCT:
0963b4bd 3232 /* currently same as TYPE_CODE_CLASS. */
c5aa993b
JM
3233 switch (TYPE_CODE (arg))
3234 {
3235 case TYPE_CODE_STRUCT:
3236 /* Check for derivation */
a9d5ef47
SW
3237 rank.subrank = distance_to_ancestor (parm, arg, 0);
3238 if (rank.subrank >= 0)
3239 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
c5aa993b
JM
3240 /* else fall through */
3241 default:
3242 return INCOMPATIBLE_TYPE_BADNESS;
3243 }
3244 break;
3245 case TYPE_CODE_UNION:
3246 switch (TYPE_CODE (arg))
3247 {
3248 case TYPE_CODE_UNION:
3249 default:
3250 return INCOMPATIBLE_TYPE_BADNESS;
3251 }
3252 break;
0d5de010 3253 case TYPE_CODE_MEMBERPTR:
c5aa993b
JM
3254 switch (TYPE_CODE (arg))
3255 {
3256 default:
3257 return INCOMPATIBLE_TYPE_BADNESS;
3258 }
3259 break;
3260 case TYPE_CODE_METHOD:
3261 switch (TYPE_CODE (arg))
3262 {
3263
3264 default:
3265 return INCOMPATIBLE_TYPE_BADNESS;
3266 }
3267 break;
3268 case TYPE_CODE_REF:
3269 switch (TYPE_CODE (arg))
3270 {
3271
3272 default:
3273 return INCOMPATIBLE_TYPE_BADNESS;
3274 }
3275
3276 break;
3277 case TYPE_CODE_SET:
3278 switch (TYPE_CODE (arg))
3279 {
3280 /* Not in C++ */
3281 case TYPE_CODE_SET:
7ba81444 3282 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
da096638 3283 TYPE_FIELD_TYPE (arg, 0), NULL);
c5aa993b
JM
3284 default:
3285 return INCOMPATIBLE_TYPE_BADNESS;
3286 }
3287 break;
3288 case TYPE_CODE_VOID:
3289 default:
3290 return INCOMPATIBLE_TYPE_BADNESS;
3291 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
3292}
3293
0963b4bd 3294/* End of functions for overload resolution. */
5212577a
DE
3295\f
3296/* Routines to pretty-print types. */
c906108c 3297
c906108c 3298static void
fba45db2 3299print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
3300{
3301 int bitno;
3302
3303 for (bitno = 0; bitno < nbits; bitno++)
3304 {
3305 if ((bitno % 8) == 0)
3306 {
3307 puts_filtered (" ");
3308 }
3309 if (B_TST (bits, bitno))
a3f17187 3310 printf_filtered (("1"));
c906108c 3311 else
a3f17187 3312 printf_filtered (("0"));
c906108c
SS
3313 }
3314}
3315
ad2f7632 3316/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
3317 include it since we may get into a infinitely recursive
3318 situation. */
c906108c
SS
3319
3320static void
ad2f7632 3321print_arg_types (struct field *args, int nargs, int spaces)
c906108c
SS
3322{
3323 if (args != NULL)
3324 {
ad2f7632
DJ
3325 int i;
3326
3327 for (i = 0; i < nargs; i++)
3328 recursive_dump_type (args[i].type, spaces + 2);
c906108c
SS
3329 }
3330}
3331
d6a843b5
JK
3332int
3333field_is_static (struct field *f)
3334{
3335 /* "static" fields are the fields whose location is not relative
3336 to the address of the enclosing struct. It would be nice to
3337 have a dedicated flag that would be set for static fields when
3338 the type is being created. But in practice, checking the field
254e6b9e 3339 loc_kind should give us an accurate answer. */
d6a843b5
JK
3340 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3341 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3342}
3343
c906108c 3344static void
fba45db2 3345dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
3346{
3347 int method_idx;
3348 int overload_idx;
3349 struct fn_field *f;
3350
3351 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 3352 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
3353 printf_filtered ("\n");
3354 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3355 {
3356 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3357 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3358 method_idx,
3359 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
3360 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3361 gdb_stdout);
a3f17187 3362 printf_filtered (_(") length %d\n"),
c906108c
SS
3363 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3364 for (overload_idx = 0;
3365 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3366 overload_idx++)
3367 {
3368 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3369 overload_idx,
3370 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
3371 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3372 gdb_stdout);
c906108c
SS
3373 printf_filtered (")\n");
3374 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
3375 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3376 gdb_stdout);
c906108c
SS
3377 printf_filtered ("\n");
3378
3379 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3380 spaces + 8 + 2);
3381
3382 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
3383 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3384 gdb_stdout);
c906108c
SS
3385 printf_filtered ("\n");
3386
ad2f7632 3387 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
7ba81444
MS
3388 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
3389 overload_idx)),
ad2f7632 3390 spaces);
c906108c 3391 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
3392 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3393 gdb_stdout);
c906108c
SS
3394 printf_filtered ("\n");
3395
3396 printfi_filtered (spaces + 8, "is_const %d\n",
3397 TYPE_FN_FIELD_CONST (f, overload_idx));
3398 printfi_filtered (spaces + 8, "is_volatile %d\n",
3399 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3400 printfi_filtered (spaces + 8, "is_private %d\n",
3401 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3402 printfi_filtered (spaces + 8, "is_protected %d\n",
3403 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3404 printfi_filtered (spaces + 8, "is_stub %d\n",
3405 TYPE_FN_FIELD_STUB (f, overload_idx));
3406 printfi_filtered (spaces + 8, "voffset %u\n",
3407 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3408 }
3409 }
3410}
3411
3412static void
fba45db2 3413print_cplus_stuff (struct type *type, int spaces)
c906108c
SS
3414{
3415 printfi_filtered (spaces, "n_baseclasses %d\n",
3416 TYPE_N_BASECLASSES (type));
3417 printfi_filtered (spaces, "nfn_fields %d\n",
3418 TYPE_NFN_FIELDS (type));
c906108c
SS
3419 if (TYPE_N_BASECLASSES (type) > 0)
3420 {
3421 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3422 TYPE_N_BASECLASSES (type));
7ba81444
MS
3423 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3424 gdb_stdout);
c906108c
SS
3425 printf_filtered (")");
3426
3427 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3428 TYPE_N_BASECLASSES (type));
3429 puts_filtered ("\n");
3430 }
3431 if (TYPE_NFIELDS (type) > 0)
3432 {
3433 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3434 {
7ba81444
MS
3435 printfi_filtered (spaces,
3436 "private_field_bits (%d bits at *",
c906108c 3437 TYPE_NFIELDS (type));
7ba81444
MS
3438 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3439 gdb_stdout);
c906108c
SS
3440 printf_filtered (")");
3441 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3442 TYPE_NFIELDS (type));
3443 puts_filtered ("\n");
3444 }
3445 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3446 {
7ba81444
MS
3447 printfi_filtered (spaces,
3448 "protected_field_bits (%d bits at *",
c906108c 3449 TYPE_NFIELDS (type));
7ba81444
MS
3450 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3451 gdb_stdout);
c906108c
SS
3452 printf_filtered (")");
3453 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3454 TYPE_NFIELDS (type));
3455 puts_filtered ("\n");
3456 }
3457 }
3458 if (TYPE_NFN_FIELDS (type) > 0)
3459 {
3460 dump_fn_fieldlists (type, spaces);
3461 }
3462}
3463
b4ba55a1
JB
3464/* Print the contents of the TYPE's type_specific union, assuming that
3465 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3466
3467static void
3468print_gnat_stuff (struct type *type, int spaces)
3469{
3470 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3471
3472 recursive_dump_type (descriptive_type, spaces + 2);
3473}
3474
c906108c
SS
3475static struct obstack dont_print_type_obstack;
3476
3477void
fba45db2 3478recursive_dump_type (struct type *type, int spaces)
c906108c
SS
3479{
3480 int idx;
3481
3482 if (spaces == 0)
3483 obstack_begin (&dont_print_type_obstack, 0);
3484
3485 if (TYPE_NFIELDS (type) > 0
b4ba55a1 3486 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
3487 {
3488 struct type **first_dont_print
7ba81444 3489 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 3490
7ba81444
MS
3491 int i = (struct type **)
3492 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
3493
3494 while (--i >= 0)
3495 {
3496 if (type == first_dont_print[i])
3497 {
3498 printfi_filtered (spaces, "type node ");
d4f3574e 3499 gdb_print_host_address (type, gdb_stdout);
a3f17187 3500 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
3501 return;
3502 }
3503 }
3504
3505 obstack_ptr_grow (&dont_print_type_obstack, type);
3506 }
3507
3508 printfi_filtered (spaces, "type node ");
d4f3574e 3509 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
3510 printf_filtered ("\n");
3511 printfi_filtered (spaces, "name '%s' (",
3512 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 3513 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 3514 printf_filtered (")\n");
e9e79dd9
FF
3515 printfi_filtered (spaces, "tagname '%s' (",
3516 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3517 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3518 printf_filtered (")\n");
c906108c
SS
3519 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3520 switch (TYPE_CODE (type))
3521 {
c5aa993b
JM
3522 case TYPE_CODE_UNDEF:
3523 printf_filtered ("(TYPE_CODE_UNDEF)");
3524 break;
3525 case TYPE_CODE_PTR:
3526 printf_filtered ("(TYPE_CODE_PTR)");
3527 break;
3528 case TYPE_CODE_ARRAY:
3529 printf_filtered ("(TYPE_CODE_ARRAY)");
3530 break;
3531 case TYPE_CODE_STRUCT:
3532 printf_filtered ("(TYPE_CODE_STRUCT)");
3533 break;
3534 case TYPE_CODE_UNION:
3535 printf_filtered ("(TYPE_CODE_UNION)");
3536 break;
3537 case TYPE_CODE_ENUM:
3538 printf_filtered ("(TYPE_CODE_ENUM)");
3539 break;
4f2aea11
MK
3540 case TYPE_CODE_FLAGS:
3541 printf_filtered ("(TYPE_CODE_FLAGS)");
3542 break;
c5aa993b
JM
3543 case TYPE_CODE_FUNC:
3544 printf_filtered ("(TYPE_CODE_FUNC)");
3545 break;
3546 case TYPE_CODE_INT:
3547 printf_filtered ("(TYPE_CODE_INT)");
3548 break;
3549 case TYPE_CODE_FLT:
3550 printf_filtered ("(TYPE_CODE_FLT)");
3551 break;
3552 case TYPE_CODE_VOID:
3553 printf_filtered ("(TYPE_CODE_VOID)");
3554 break;
3555 case TYPE_CODE_SET:
3556 printf_filtered ("(TYPE_CODE_SET)");
3557 break;
3558 case TYPE_CODE_RANGE:
3559 printf_filtered ("(TYPE_CODE_RANGE)");
3560 break;
3561 case TYPE_CODE_STRING:
3562 printf_filtered ("(TYPE_CODE_STRING)");
3563 break;
3564 case TYPE_CODE_ERROR:
3565 printf_filtered ("(TYPE_CODE_ERROR)");
3566 break;
0d5de010
DJ
3567 case TYPE_CODE_MEMBERPTR:
3568 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3569 break;
3570 case TYPE_CODE_METHODPTR:
3571 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
3572 break;
3573 case TYPE_CODE_METHOD:
3574 printf_filtered ("(TYPE_CODE_METHOD)");
3575 break;
3576 case TYPE_CODE_REF:
3577 printf_filtered ("(TYPE_CODE_REF)");
3578 break;
3579 case TYPE_CODE_CHAR:
3580 printf_filtered ("(TYPE_CODE_CHAR)");
3581 break;
3582 case TYPE_CODE_BOOL:
3583 printf_filtered ("(TYPE_CODE_BOOL)");
3584 break;
e9e79dd9
FF
3585 case TYPE_CODE_COMPLEX:
3586 printf_filtered ("(TYPE_CODE_COMPLEX)");
3587 break;
c5aa993b
JM
3588 case TYPE_CODE_TYPEDEF:
3589 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3590 break;
5c4e30ca
DC
3591 case TYPE_CODE_NAMESPACE:
3592 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3593 break;
c5aa993b
JM
3594 default:
3595 printf_filtered ("(UNKNOWN TYPE CODE)");
3596 break;
c906108c
SS
3597 }
3598 puts_filtered ("\n");
3599 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9bb382b
UW
3600 if (TYPE_OBJFILE_OWNED (type))
3601 {
3602 printfi_filtered (spaces, "objfile ");
3603 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3604 }
3605 else
3606 {
3607 printfi_filtered (spaces, "gdbarch ");
3608 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3609 }
c906108c
SS
3610 printf_filtered ("\n");
3611 printfi_filtered (spaces, "target_type ");
d4f3574e 3612 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
3613 printf_filtered ("\n");
3614 if (TYPE_TARGET_TYPE (type) != NULL)
3615 {
3616 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3617 }
3618 printfi_filtered (spaces, "pointer_type ");
d4f3574e 3619 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
3620 printf_filtered ("\n");
3621 printfi_filtered (spaces, "reference_type ");
d4f3574e 3622 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 3623 printf_filtered ("\n");
2fdde8f8
DJ
3624 printfi_filtered (spaces, "type_chain ");
3625 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 3626 printf_filtered ("\n");
7ba81444
MS
3627 printfi_filtered (spaces, "instance_flags 0x%x",
3628 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
3629 if (TYPE_CONST (type))
3630 {
3631 puts_filtered (" TYPE_FLAG_CONST");
3632 }
3633 if (TYPE_VOLATILE (type))
3634 {
3635 puts_filtered (" TYPE_FLAG_VOLATILE");
3636 }
3637 if (TYPE_CODE_SPACE (type))
3638 {
3639 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3640 }
3641 if (TYPE_DATA_SPACE (type))
3642 {
3643 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3644 }
8b2dbe47
KB
3645 if (TYPE_ADDRESS_CLASS_1 (type))
3646 {
3647 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3648 }
3649 if (TYPE_ADDRESS_CLASS_2 (type))
3650 {
3651 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3652 }
06d66ee9
TT
3653 if (TYPE_RESTRICT (type))
3654 {
3655 puts_filtered (" TYPE_FLAG_RESTRICT");
3656 }
2fdde8f8 3657 puts_filtered ("\n");
876cecd0
TT
3658
3659 printfi_filtered (spaces, "flags");
762a036f 3660 if (TYPE_UNSIGNED (type))
c906108c
SS
3661 {
3662 puts_filtered (" TYPE_FLAG_UNSIGNED");
3663 }
762a036f
FF
3664 if (TYPE_NOSIGN (type))
3665 {
3666 puts_filtered (" TYPE_FLAG_NOSIGN");
3667 }
3668 if (TYPE_STUB (type))
c906108c
SS
3669 {
3670 puts_filtered (" TYPE_FLAG_STUB");
3671 }
762a036f
FF
3672 if (TYPE_TARGET_STUB (type))
3673 {
3674 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3675 }
3676 if (TYPE_STATIC (type))
3677 {
3678 puts_filtered (" TYPE_FLAG_STATIC");
3679 }
762a036f
FF
3680 if (TYPE_PROTOTYPED (type))
3681 {
3682 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3683 }
3684 if (TYPE_INCOMPLETE (type))
3685 {
3686 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3687 }
762a036f
FF
3688 if (TYPE_VARARGS (type))
3689 {
3690 puts_filtered (" TYPE_FLAG_VARARGS");
3691 }
f5f8a009
EZ
3692 /* This is used for things like AltiVec registers on ppc. Gcc emits
3693 an attribute for the array type, which tells whether or not we
3694 have a vector, instead of a regular array. */
3695 if (TYPE_VECTOR (type))
3696 {
3697 puts_filtered (" TYPE_FLAG_VECTOR");
3698 }
876cecd0
TT
3699 if (TYPE_FIXED_INSTANCE (type))
3700 {
3701 puts_filtered (" TYPE_FIXED_INSTANCE");
3702 }
3703 if (TYPE_STUB_SUPPORTED (type))
3704 {
3705 puts_filtered (" TYPE_STUB_SUPPORTED");
3706 }
3707 if (TYPE_NOTTEXT (type))
3708 {
3709 puts_filtered (" TYPE_NOTTEXT");
3710 }
c906108c
SS
3711 puts_filtered ("\n");
3712 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 3713 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
3714 puts_filtered ("\n");
3715 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3716 {
14e75d8e
JK
3717 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
3718 printfi_filtered (spaces + 2,
3719 "[%d] enumval %s type ",
3720 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
3721 else
3722 printfi_filtered (spaces + 2,
3723 "[%d] bitpos %d bitsize %d type ",
3724 idx, TYPE_FIELD_BITPOS (type, idx),
3725 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 3726 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
3727 printf_filtered (" name '%s' (",
3728 TYPE_FIELD_NAME (type, idx) != NULL
3729 ? TYPE_FIELD_NAME (type, idx)
3730 : "<NULL>");
d4f3574e 3731 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
3732 printf_filtered (")\n");
3733 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3734 {
3735 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3736 }
3737 }
43bbcdc2
PH
3738 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3739 {
3740 printfi_filtered (spaces, "low %s%s high %s%s\n",
3741 plongest (TYPE_LOW_BOUND (type)),
3742 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3743 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
3744 TYPE_HIGH_BOUND_UNDEFINED (type)
3745 ? " (undefined)" : "");
43bbcdc2 3746 }
c906108c 3747 printfi_filtered (spaces, "vptr_basetype ");
d4f3574e 3748 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
c906108c
SS
3749 puts_filtered ("\n");
3750 if (TYPE_VPTR_BASETYPE (type) != NULL)
3751 {
3752 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3753 }
7ba81444
MS
3754 printfi_filtered (spaces, "vptr_fieldno %d\n",
3755 TYPE_VPTR_FIELDNO (type));
c906108c 3756
b4ba55a1
JB
3757 switch (TYPE_SPECIFIC_FIELD (type))
3758 {
3759 case TYPE_SPECIFIC_CPLUS_STUFF:
3760 printfi_filtered (spaces, "cplus_stuff ");
3761 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3762 gdb_stdout);
3763 puts_filtered ("\n");
3764 print_cplus_stuff (type, spaces);
3765 break;
8da61cc4 3766
b4ba55a1
JB
3767 case TYPE_SPECIFIC_GNAT_STUFF:
3768 printfi_filtered (spaces, "gnat_stuff ");
3769 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3770 puts_filtered ("\n");
3771 print_gnat_stuff (type, spaces);
3772 break;
701c159d 3773
b4ba55a1
JB
3774 case TYPE_SPECIFIC_FLOATFORMAT:
3775 printfi_filtered (spaces, "floatformat ");
3776 if (TYPE_FLOATFORMAT (type) == NULL)
3777 puts_filtered ("(null)");
3778 else
3779 {
3780 puts_filtered ("{ ");
3781 if (TYPE_FLOATFORMAT (type)[0] == NULL
3782 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3783 puts_filtered ("(null)");
3784 else
3785 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3786
3787 puts_filtered (", ");
3788 if (TYPE_FLOATFORMAT (type)[1] == NULL
3789 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3790 puts_filtered ("(null)");
3791 else
3792 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3793
3794 puts_filtered (" }");
3795 }
3796 puts_filtered ("\n");
3797 break;
c906108c 3798
b6cdc2c1 3799 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
3800 printfi_filtered (spaces, "calling_convention %d\n",
3801 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 3802 /* tail_call_list is not printed. */
b4ba55a1 3803 break;
c906108c 3804 }
b4ba55a1 3805
c906108c
SS
3806 if (spaces == 0)
3807 obstack_free (&dont_print_type_obstack, NULL);
3808}
5212577a 3809\f
ae5a43e0
DJ
3810/* Trivial helpers for the libiberty hash table, for mapping one
3811 type to another. */
3812
3813struct type_pair
3814{
3815 struct type *old, *new;
3816};
3817
3818static hashval_t
3819type_pair_hash (const void *item)
3820{
3821 const struct type_pair *pair = item;
d8734c88 3822
ae5a43e0
DJ
3823 return htab_hash_pointer (pair->old);
3824}
3825
3826static int
3827type_pair_eq (const void *item_lhs, const void *item_rhs)
3828{
3829 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
d8734c88 3830
ae5a43e0
DJ
3831 return lhs->old == rhs->old;
3832}
3833
3834/* Allocate the hash table used by copy_type_recursive to walk
3835 types without duplicates. We use OBJFILE's obstack, because
3836 OBJFILE is about to be deleted. */
3837
3838htab_t
3839create_copied_types_hash (struct objfile *objfile)
3840{
3841 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3842 NULL, &objfile->objfile_obstack,
3843 hashtab_obstack_allocate,
3844 dummy_obstack_deallocate);
3845}
3846
7ba81444
MS
3847/* Recursively copy (deep copy) TYPE, if it is associated with
3848 OBJFILE. Return a new type allocated using malloc, a saved type if
3849 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3850 not associated with OBJFILE. */
ae5a43e0
DJ
3851
3852struct type *
7ba81444
MS
3853copy_type_recursive (struct objfile *objfile,
3854 struct type *type,
ae5a43e0
DJ
3855 htab_t copied_types)
3856{
3857 struct type_pair *stored, pair;
3858 void **slot;
3859 struct type *new_type;
3860
e9bb382b 3861 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
3862 return type;
3863
7ba81444
MS
3864 /* This type shouldn't be pointing to any types in other objfiles;
3865 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
3866 gdb_assert (TYPE_OBJFILE (type) == objfile);
3867
3868 pair.old = type;
3869 slot = htab_find_slot (copied_types, &pair, INSERT);
3870 if (*slot != NULL)
3871 return ((struct type_pair *) *slot)->new;
3872
e9bb382b 3873 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
3874
3875 /* We must add the new type to the hash table immediately, in case
3876 we encounter this type again during a recursive call below. */
3e43a32a
MS
3877 stored
3878 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
ae5a43e0
DJ
3879 stored->old = type;
3880 stored->new = new_type;
3881 *slot = stored;
3882
876cecd0
TT
3883 /* Copy the common fields of types. For the main type, we simply
3884 copy the entire thing and then update specific fields as needed. */
3885 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
3886 TYPE_OBJFILE_OWNED (new_type) = 0;
3887 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 3888
ae5a43e0
DJ
3889 if (TYPE_NAME (type))
3890 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3891 if (TYPE_TAG_NAME (type))
3892 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
ae5a43e0
DJ
3893
3894 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3895 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3896
3897 /* Copy the fields. */
ae5a43e0
DJ
3898 if (TYPE_NFIELDS (type))
3899 {
3900 int i, nfields;
3901
3902 nfields = TYPE_NFIELDS (type);
fc270c35 3903 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
ae5a43e0
DJ
3904 for (i = 0; i < nfields; i++)
3905 {
7ba81444
MS
3906 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3907 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
3908 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3909 if (TYPE_FIELD_TYPE (type, i))
3910 TYPE_FIELD_TYPE (new_type, i)
3911 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3912 copied_types);
3913 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
3914 TYPE_FIELD_NAME (new_type, i) =
3915 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 3916 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 3917 {
d6a843b5
JK
3918 case FIELD_LOC_KIND_BITPOS:
3919 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3920 TYPE_FIELD_BITPOS (type, i));
3921 break;
14e75d8e
JK
3922 case FIELD_LOC_KIND_ENUMVAL:
3923 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
3924 TYPE_FIELD_ENUMVAL (type, i));
3925 break;
d6a843b5
JK
3926 case FIELD_LOC_KIND_PHYSADDR:
3927 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3928 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3929 break;
3930 case FIELD_LOC_KIND_PHYSNAME:
3931 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3932 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3933 i)));
3934 break;
3935 default:
3936 internal_error (__FILE__, __LINE__,
3937 _("Unexpected type field location kind: %d"),
3938 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
3939 }
3940 }
3941 }
3942
0963b4bd 3943 /* For range types, copy the bounds information. */
43bbcdc2
PH
3944 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3945 {
3946 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3947 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3948 }
3949
ae5a43e0
DJ
3950 /* Copy pointers to other types. */
3951 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
3952 TYPE_TARGET_TYPE (new_type) =
3953 copy_type_recursive (objfile,
3954 TYPE_TARGET_TYPE (type),
3955 copied_types);
ae5a43e0 3956 if (TYPE_VPTR_BASETYPE (type))
7ba81444
MS
3957 TYPE_VPTR_BASETYPE (new_type) =
3958 copy_type_recursive (objfile,
3959 TYPE_VPTR_BASETYPE (type),
3960 copied_types);
ae5a43e0
DJ
3961 /* Maybe copy the type_specific bits.
3962
3963 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3964 base classes and methods. There's no fundamental reason why we
3965 can't, but at the moment it is not needed. */
3966
3967 if (TYPE_CODE (type) == TYPE_CODE_FLT)
d5d6fca5 3968 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
ae5a43e0
DJ
3969 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3970 || TYPE_CODE (type) == TYPE_CODE_UNION
ae5a43e0
DJ
3971 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3972 INIT_CPLUS_SPECIFIC (new_type);
3973
3974 return new_type;
3975}
3976
4af88198
JB
3977/* Make a copy of the given TYPE, except that the pointer & reference
3978 types are not preserved.
3979
3980 This function assumes that the given type has an associated objfile.
3981 This objfile is used to allocate the new type. */
3982
3983struct type *
3984copy_type (const struct type *type)
3985{
3986 struct type *new_type;
3987
e9bb382b 3988 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 3989
e9bb382b 3990 new_type = alloc_type_copy (type);
4af88198
JB
3991 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3992 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3993 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3994 sizeof (struct main_type));
3995
3996 return new_type;
3997}
5212577a 3998\f
e9bb382b
UW
3999/* Helper functions to initialize architecture-specific types. */
4000
4001/* Allocate a type structure associated with GDBARCH and set its
4002 CODE, LENGTH, and NAME fields. */
5212577a 4003
e9bb382b
UW
4004struct type *
4005arch_type (struct gdbarch *gdbarch,
4006 enum type_code code, int length, char *name)
4007{
4008 struct type *type;
4009
4010 type = alloc_type_arch (gdbarch);
4011 TYPE_CODE (type) = code;
4012 TYPE_LENGTH (type) = length;
4013
4014 if (name)
4015 TYPE_NAME (type) = xstrdup (name);
4016
4017 return type;
4018}
4019
4020/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4021 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4022 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4023
e9bb382b
UW
4024struct type *
4025arch_integer_type (struct gdbarch *gdbarch,
4026 int bit, int unsigned_p, char *name)
4027{
4028 struct type *t;
4029
4030 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4031 if (unsigned_p)
4032 TYPE_UNSIGNED (t) = 1;
4033 if (name && strcmp (name, "char") == 0)
4034 TYPE_NOSIGN (t) = 1;
4035
4036 return t;
4037}
4038
4039/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4040 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4041 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4042
e9bb382b
UW
4043struct type *
4044arch_character_type (struct gdbarch *gdbarch,
4045 int bit, int unsigned_p, char *name)
4046{
4047 struct type *t;
4048
4049 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4050 if (unsigned_p)
4051 TYPE_UNSIGNED (t) = 1;
4052
4053 return t;
4054}
4055
4056/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4057 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4058 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4059
e9bb382b
UW
4060struct type *
4061arch_boolean_type (struct gdbarch *gdbarch,
4062 int bit, int unsigned_p, char *name)
4063{
4064 struct type *t;
4065
4066 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4067 if (unsigned_p)
4068 TYPE_UNSIGNED (t) = 1;
4069
4070 return t;
4071}
4072
4073/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4074 BIT is the type size in bits; if BIT equals -1, the size is
4075 determined by the floatformat. NAME is the type name. Set the
4076 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 4077
27067745 4078struct type *
e9bb382b
UW
4079arch_float_type (struct gdbarch *gdbarch,
4080 int bit, char *name, const struct floatformat **floatformats)
8da61cc4
DJ
4081{
4082 struct type *t;
4083
4084 if (bit == -1)
4085 {
4086 gdb_assert (floatformats != NULL);
4087 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4088 bit = floatformats[0]->totalsize;
4089 }
4090 gdb_assert (bit >= 0);
4091
e9bb382b 4092 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
8da61cc4
DJ
4093 TYPE_FLOATFORMAT (t) = floatformats;
4094 return t;
4095}
4096
e9bb382b
UW
4097/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4098 NAME is the type name. TARGET_TYPE is the component float type. */
5212577a 4099
27067745 4100struct type *
e9bb382b
UW
4101arch_complex_type (struct gdbarch *gdbarch,
4102 char *name, struct type *target_type)
27067745
UW
4103{
4104 struct type *t;
d8734c88 4105
e9bb382b
UW
4106 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4107 2 * TYPE_LENGTH (target_type), name);
27067745
UW
4108 TYPE_TARGET_TYPE (t) = target_type;
4109 return t;
4110}
4111
e9bb382b 4112/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
eb90ce83 4113 NAME is the type name. LENGTH is the size of the flag word in bytes. */
5212577a 4114
e9bb382b
UW
4115struct type *
4116arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4117{
4118 int nfields = length * TARGET_CHAR_BIT;
4119 struct type *type;
4120
4121 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4122 TYPE_UNSIGNED (type) = 1;
4123 TYPE_NFIELDS (type) = nfields;
4124 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4125
4126 return type;
4127}
4128
4129/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4130 position BITPOS is called NAME. */
5212577a 4131
e9bb382b
UW
4132void
4133append_flags_type_flag (struct type *type, int bitpos, char *name)
4134{
4135 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4136 gdb_assert (bitpos < TYPE_NFIELDS (type));
4137 gdb_assert (bitpos >= 0);
4138
4139 if (name)
4140 {
4141 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
945b3a32 4142 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
e9bb382b
UW
4143 }
4144 else
4145 {
4146 /* Don't show this field to the user. */
945b3a32 4147 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
e9bb382b
UW
4148 }
4149}
4150
4151/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4152 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 4153
e9bb382b
UW
4154struct type *
4155arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4156{
4157 struct type *t;
d8734c88 4158
e9bb382b
UW
4159 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4160 t = arch_type (gdbarch, code, 0, NULL);
4161 TYPE_TAG_NAME (t) = name;
4162 INIT_CPLUS_SPECIFIC (t);
4163 return t;
4164}
4165
4166/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
4167 Do not set the field's position or adjust the type's length;
4168 the caller should do so. Return the new field. */
5212577a 4169
f5dff777
DJ
4170struct field *
4171append_composite_type_field_raw (struct type *t, char *name,
4172 struct type *field)
e9bb382b
UW
4173{
4174 struct field *f;
d8734c88 4175
e9bb382b
UW
4176 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4177 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4178 sizeof (struct field) * TYPE_NFIELDS (t));
4179 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4180 memset (f, 0, sizeof f[0]);
4181 FIELD_TYPE (f[0]) = field;
4182 FIELD_NAME (f[0]) = name;
f5dff777
DJ
4183 return f;
4184}
4185
4186/* Add new field with name NAME and type FIELD to composite type T.
4187 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 4188
f5dff777
DJ
4189void
4190append_composite_type_field_aligned (struct type *t, char *name,
4191 struct type *field, int alignment)
4192{
4193 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 4194
e9bb382b
UW
4195 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4196 {
4197 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4198 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4199 }
4200 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4201 {
4202 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4203 if (TYPE_NFIELDS (t) > 1)
4204 {
f41f5e61
PA
4205 SET_FIELD_BITPOS (f[0],
4206 (FIELD_BITPOS (f[-1])
4207 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4208 * TARGET_CHAR_BIT)));
e9bb382b
UW
4209
4210 if (alignment)
4211 {
86c3c1fc
AB
4212 int left;
4213
4214 alignment *= TARGET_CHAR_BIT;
4215 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 4216
e9bb382b
UW
4217 if (left)
4218 {
f41f5e61 4219 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 4220 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
4221 }
4222 }
4223 }
4224 }
4225}
4226
4227/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 4228
e9bb382b
UW
4229void
4230append_composite_type_field (struct type *t, char *name,
4231 struct type *field)
4232{
4233 append_composite_type_field_aligned (t, name, field, 0);
4234}
4235
000177f0
AC
4236static struct gdbarch_data *gdbtypes_data;
4237
4238const struct builtin_type *
4239builtin_type (struct gdbarch *gdbarch)
4240{
4241 return gdbarch_data (gdbarch, gdbtypes_data);
4242}
4243
4244static void *
4245gdbtypes_post_init (struct gdbarch *gdbarch)
4246{
4247 struct builtin_type *builtin_type
4248 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4249
46bf5051 4250 /* Basic types. */
e9bb382b
UW
4251 builtin_type->builtin_void
4252 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4253 builtin_type->builtin_char
4254 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4255 !gdbarch_char_signed (gdbarch), "char");
4256 builtin_type->builtin_signed_char
4257 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4258 0, "signed char");
4259 builtin_type->builtin_unsigned_char
4260 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4261 1, "unsigned char");
4262 builtin_type->builtin_short
4263 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4264 0, "short");
4265 builtin_type->builtin_unsigned_short
4266 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4267 1, "unsigned short");
4268 builtin_type->builtin_int
4269 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4270 0, "int");
4271 builtin_type->builtin_unsigned_int
4272 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4273 1, "unsigned int");
4274 builtin_type->builtin_long
4275 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4276 0, "long");
4277 builtin_type->builtin_unsigned_long
4278 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4279 1, "unsigned long");
4280 builtin_type->builtin_long_long
4281 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4282 0, "long long");
4283 builtin_type->builtin_unsigned_long_long
4284 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4285 1, "unsigned long long");
70bd8e24 4286 builtin_type->builtin_float
e9bb382b 4287 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 4288 "float", gdbarch_float_format (gdbarch));
70bd8e24 4289 builtin_type->builtin_double
e9bb382b 4290 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 4291 "double", gdbarch_double_format (gdbarch));
70bd8e24 4292 builtin_type->builtin_long_double
e9bb382b 4293 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 4294 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 4295 builtin_type->builtin_complex
e9bb382b
UW
4296 = arch_complex_type (gdbarch, "complex",
4297 builtin_type->builtin_float);
70bd8e24 4298 builtin_type->builtin_double_complex
e9bb382b
UW
4299 = arch_complex_type (gdbarch, "double complex",
4300 builtin_type->builtin_double);
4301 builtin_type->builtin_string
4302 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4303 builtin_type->builtin_bool
4304 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
000177f0 4305
7678ef8f
TJB
4306 /* The following three are about decimal floating point types, which
4307 are 32-bits, 64-bits and 128-bits respectively. */
4308 builtin_type->builtin_decfloat
e9bb382b 4309 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
7678ef8f 4310 builtin_type->builtin_decdouble
e9bb382b 4311 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
7678ef8f 4312 builtin_type->builtin_declong
e9bb382b 4313 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
7678ef8f 4314
69feb676 4315 /* "True" character types. */
e9bb382b
UW
4316 builtin_type->builtin_true_char
4317 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4318 builtin_type->builtin_true_unsigned_char
4319 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 4320
df4df182 4321 /* Fixed-size integer types. */
e9bb382b
UW
4322 builtin_type->builtin_int0
4323 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4324 builtin_type->builtin_int8
4325 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4326 builtin_type->builtin_uint8
4327 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4328 builtin_type->builtin_int16
4329 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4330 builtin_type->builtin_uint16
4331 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4332 builtin_type->builtin_int32
4333 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4334 builtin_type->builtin_uint32
4335 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4336 builtin_type->builtin_int64
4337 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4338 builtin_type->builtin_uint64
4339 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4340 builtin_type->builtin_int128
4341 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4342 builtin_type->builtin_uint128
4343 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
4344 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4345 TYPE_INSTANCE_FLAG_NOTTEXT;
4346 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4347 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 4348
9a22f0d0
PM
4349 /* Wide character types. */
4350 builtin_type->builtin_char16
4351 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4352 builtin_type->builtin_char32
4353 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4354
4355
46bf5051 4356 /* Default data/code pointer types. */
e9bb382b
UW
4357 builtin_type->builtin_data_ptr
4358 = lookup_pointer_type (builtin_type->builtin_void);
4359 builtin_type->builtin_func_ptr
4360 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
4361 builtin_type->builtin_func_func
4362 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 4363
78267919 4364 /* This type represents a GDB internal function. */
e9bb382b
UW
4365 builtin_type->internal_fn
4366 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4367 "<internal function>");
78267919 4368
46bf5051
UW
4369 return builtin_type;
4370}
4371
46bf5051
UW
4372/* This set of objfile-based types is intended to be used by symbol
4373 readers as basic types. */
4374
4375static const struct objfile_data *objfile_type_data;
4376
4377const struct objfile_type *
4378objfile_type (struct objfile *objfile)
4379{
4380 struct gdbarch *gdbarch;
4381 struct objfile_type *objfile_type
4382 = objfile_data (objfile, objfile_type_data);
4383
4384 if (objfile_type)
4385 return objfile_type;
4386
4387 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4388 1, struct objfile_type);
4389
4390 /* Use the objfile architecture to determine basic type properties. */
4391 gdbarch = get_objfile_arch (objfile);
4392
4393 /* Basic types. */
4394 objfile_type->builtin_void
4395 = init_type (TYPE_CODE_VOID, 1,
4396 0,
4397 "void", objfile);
4398
4399 objfile_type->builtin_char
4400 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4401 (TYPE_FLAG_NOSIGN
4402 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4403 "char", objfile);
4404 objfile_type->builtin_signed_char
4405 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4406 0,
4407 "signed char", objfile);
4408 objfile_type->builtin_unsigned_char
4409 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4410 TYPE_FLAG_UNSIGNED,
4411 "unsigned char", objfile);
4412 objfile_type->builtin_short
4413 = init_type (TYPE_CODE_INT,
4414 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4415 0, "short", objfile);
4416 objfile_type->builtin_unsigned_short
4417 = init_type (TYPE_CODE_INT,
4418 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4419 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4420 objfile_type->builtin_int
4421 = init_type (TYPE_CODE_INT,
4422 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4423 0, "int", objfile);
4424 objfile_type->builtin_unsigned_int
4425 = init_type (TYPE_CODE_INT,
4426 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4427 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4428 objfile_type->builtin_long
4429 = init_type (TYPE_CODE_INT,
4430 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4431 0, "long", objfile);
4432 objfile_type->builtin_unsigned_long
4433 = init_type (TYPE_CODE_INT,
4434 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4435 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4436 objfile_type->builtin_long_long
4437 = init_type (TYPE_CODE_INT,
4438 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4439 0, "long long", objfile);
4440 objfile_type->builtin_unsigned_long_long
4441 = init_type (TYPE_CODE_INT,
4442 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4443 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4444
4445 objfile_type->builtin_float
4446 = init_type (TYPE_CODE_FLT,
4447 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4448 0, "float", objfile);
4449 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4450 = gdbarch_float_format (gdbarch);
4451 objfile_type->builtin_double
4452 = init_type (TYPE_CODE_FLT,
4453 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4454 0, "double", objfile);
4455 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4456 = gdbarch_double_format (gdbarch);
4457 objfile_type->builtin_long_double
4458 = init_type (TYPE_CODE_FLT,
4459 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4460 0, "long double", objfile);
4461 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4462 = gdbarch_long_double_format (gdbarch);
4463
4464 /* This type represents a type that was unrecognized in symbol read-in. */
4465 objfile_type->builtin_error
4466 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4467
4468 /* The following set of types is used for symbols with no
4469 debug information. */
4470 objfile_type->nodebug_text_symbol
4471 = init_type (TYPE_CODE_FUNC, 1, 0,
4472 "<text variable, no debug info>", objfile);
4473 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4474 = objfile_type->builtin_int;
0875794a
JK
4475 objfile_type->nodebug_text_gnu_ifunc_symbol
4476 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4477 "<text gnu-indirect-function variable, no debug info>",
4478 objfile);
4479 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4480 = objfile_type->nodebug_text_symbol;
4481 objfile_type->nodebug_got_plt_symbol
4482 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4483 "<text from jump slot in .got.plt, no debug info>",
4484 objfile);
4485 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4486 = objfile_type->nodebug_text_symbol;
46bf5051
UW
4487 objfile_type->nodebug_data_symbol
4488 = init_type (TYPE_CODE_INT,
4489 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4490 "<data variable, no debug info>", objfile);
4491 objfile_type->nodebug_unknown_symbol
4492 = init_type (TYPE_CODE_INT, 1, 0,
4493 "<variable (not text or data), no debug info>", objfile);
4494 objfile_type->nodebug_tls_symbol
4495 = init_type (TYPE_CODE_INT,
4496 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4497 "<thread local variable, no debug info>", objfile);
000177f0
AC
4498
4499 /* NOTE: on some targets, addresses and pointers are not necessarily
0a7cfe2c 4500 the same.
000177f0
AC
4501
4502 The upshot is:
4503 - gdb's `struct type' always describes the target's
4504 representation.
4505 - gdb's `struct value' objects should always hold values in
4506 target form.
4507 - gdb's CORE_ADDR values are addresses in the unified virtual
4508 address space that the assembler and linker work with. Thus,
4509 since target_read_memory takes a CORE_ADDR as an argument, it
4510 can access any memory on the target, even if the processor has
4511 separate code and data address spaces.
4512
46bf5051
UW
4513 In this context, objfile_type->builtin_core_addr is a bit odd:
4514 it's a target type for a value the target will never see. It's
4515 only used to hold the values of (typeless) linker symbols, which
4516 are indeed in the unified virtual address space. */
000177f0 4517
46bf5051
UW
4518 objfile_type->builtin_core_addr
4519 = init_type (TYPE_CODE_INT,
4520 gdbarch_addr_bit (gdbarch) / 8,
4521 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
64c50499 4522
46bf5051
UW
4523 set_objfile_data (objfile, objfile_type_data, objfile_type);
4524 return objfile_type;
000177f0
AC
4525}
4526
5212577a 4527extern initialize_file_ftype _initialize_gdbtypes;
46bf5051 4528
c906108c 4529void
fba45db2 4530_initialize_gdbtypes (void)
c906108c 4531{
5674de60 4532 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
46bf5051 4533 objfile_type_data = register_objfile_data ();
5674de60 4534
ccce17b0
YQ
4535 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4536 _("Set debugging of C++ overloading."),
4537 _("Show debugging of C++ overloading."),
4538 _("When enabled, ranking of the "
4539 "functions is displayed."),
4540 NULL,
4541 show_overload_debug,
4542 &setdebuglist, &showdebuglist);
5674de60 4543
7ba81444 4544 /* Add user knob for controlling resolution of opaque types. */
5674de60 4545 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
4546 &opaque_type_resolution,
4547 _("Set resolution of opaque struct/class/union"
4548 " types (if set before loading symbols)."),
4549 _("Show resolution of opaque struct/class/union"
4550 " types (if set before loading symbols)."),
4551 NULL, NULL,
5674de60
UW
4552 show_opaque_type_resolution,
4553 &setlist, &showlist);
a451cb65
KS
4554
4555 /* Add an option to permit non-strict type checking. */
4556 add_setshow_boolean_cmd ("type", class_support,
4557 &strict_type_checking,
4558 _("Set strict type checking."),
4559 _("Show strict type checking."),
4560 NULL, NULL,
4561 show_strict_type_checking,
4562 &setchecklist, &showchecklist);
c906108c 4563}
This page took 1.722287 seconds and 4 git commands to generate.