Use int instead of LONGEST in tdesc_type sizes.
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
618f726f 3 Copyright (C) 1992-2016 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c
SS
23#include "bfd.h"
24#include "symtab.h"
25#include "symfile.h"
26#include "objfiles.h"
27#include "gdbtypes.h"
28#include "expression.h"
29#include "language.h"
30#include "target.h"
31#include "value.h"
32#include "demangle.h"
33#include "complaints.h"
34#include "gdbcmd.h"
015a42b4 35#include "cp-abi.h"
ae5a43e0 36#include "hashtab.h"
8de20a37 37#include "cp-support.h"
ca092b61
DE
38#include "bcache.h"
39#include "dwarf2loc.h"
80180f79 40#include "gdbcore.h"
ac3aafc7 41
6403aeea
SW
42/* Initialize BADNESS constants. */
43
a9d5ef47 44const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 45
a9d5ef47
SW
46const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 48
a9d5ef47 49const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 50
a9d5ef47
SW
51const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 58const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
59const struct rank BASE_CONVERSION_BADNESS = {2,0};
60const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
da096638 61const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 62const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 63const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 64
8da61cc4 65/* Floatformat pairs. */
f9e9243a
UW
66const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
69};
8da61cc4
DJ
70const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
73};
74const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
77};
78const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
81};
82const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
84 &floatformat_i387_ext
85};
86const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
89};
90const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
93};
94const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
97};
98const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
101};
102const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_vax_f,
104 &floatformat_vax_f
105};
106const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_d,
108 &floatformat_vax_d
109};
b14d30e1 110const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
f5aee5ee
AM
111 &floatformat_ibm_long_double_big,
112 &floatformat_ibm_long_double_little
b14d30e1 113};
8da61cc4 114
2873700e
KS
115/* Should opaque types be resolved? */
116
117static int opaque_type_resolution = 1;
118
119/* A flag to enable printing of debugging information of C++
120 overloading. */
121
122unsigned int overload_debug = 0;
123
a451cb65
KS
124/* A flag to enable strict type checking. */
125
126static int strict_type_checking = 1;
127
2873700e 128/* A function to show whether opaque types are resolved. */
5212577a 129
920d2a44
AC
130static void
131show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
132 struct cmd_list_element *c,
133 const char *value)
920d2a44 134{
3e43a32a
MS
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
137 value);
138}
139
2873700e 140/* A function to show whether C++ overload debugging is enabled. */
5212577a 141
920d2a44
AC
142static void
143show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145{
7ba81444
MS
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
147 value);
920d2a44 148}
c906108c 149
a451cb65
KS
150/* A function to show the status of strict type checking. */
151
152static void
153show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155{
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
157}
158
5212577a 159\f
e9bb382b
UW
160/* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
c906108c
SS
163
164struct type *
fba45db2 165alloc_type (struct objfile *objfile)
c906108c 166{
52f0bd74 167 struct type *type;
c906108c 168
e9bb382b
UW
169 gdb_assert (objfile != NULL);
170
7ba81444 171 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
174 struct main_type);
175 OBJSTAT (objfile, n_types++);
c906108c 176
e9bb382b
UW
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
c906108c 179
7ba81444 180 /* Initialize the fields that might not be zero. */
c906108c
SS
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
2fdde8f8 183 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 184
c16abbde 185 return type;
c906108c
SS
186}
187
e9bb382b
UW
188/* Allocate a new GDBARCH-associated type structure and fill it
189 with some defaults. Space for the type structure is allocated
8f57eec2 190 on the obstack associated with GDBARCH. */
e9bb382b
UW
191
192struct type *
193alloc_type_arch (struct gdbarch *gdbarch)
194{
195 struct type *type;
196
197 gdb_assert (gdbarch != NULL);
198
199 /* Alloc the structure and start off with all fields zeroed. */
200
8f57eec2
PP
201 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
202 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
e9bb382b
UW
203
204 TYPE_OBJFILE_OWNED (type) = 0;
205 TYPE_OWNER (type).gdbarch = gdbarch;
206
207 /* Initialize the fields that might not be zero. */
208
209 TYPE_CODE (type) = TYPE_CODE_UNDEF;
e9bb382b
UW
210 TYPE_CHAIN (type) = type; /* Chain back to itself. */
211
212 return type;
213}
214
215/* If TYPE is objfile-associated, allocate a new type structure
216 associated with the same objfile. If TYPE is gdbarch-associated,
217 allocate a new type structure associated with the same gdbarch. */
218
219struct type *
220alloc_type_copy (const struct type *type)
221{
222 if (TYPE_OBJFILE_OWNED (type))
223 return alloc_type (TYPE_OWNER (type).objfile);
224 else
225 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
226}
227
228/* If TYPE is gdbarch-associated, return that architecture.
229 If TYPE is objfile-associated, return that objfile's architecture. */
230
231struct gdbarch *
232get_type_arch (const struct type *type)
233{
234 if (TYPE_OBJFILE_OWNED (type))
235 return get_objfile_arch (TYPE_OWNER (type).objfile);
236 else
237 return TYPE_OWNER (type).gdbarch;
238}
239
99ad9427
YQ
240/* See gdbtypes.h. */
241
242struct type *
243get_target_type (struct type *type)
244{
245 if (type != NULL)
246 {
247 type = TYPE_TARGET_TYPE (type);
248 if (type != NULL)
249 type = check_typedef (type);
250 }
251
252 return type;
253}
254
2e056931
SM
255/* See gdbtypes.h. */
256
257unsigned int
258type_length_units (struct type *type)
259{
260 struct gdbarch *arch = get_type_arch (type);
261 int unit_size = gdbarch_addressable_memory_unit_size (arch);
262
263 return TYPE_LENGTH (type) / unit_size;
264}
265
2fdde8f8
DJ
266/* Alloc a new type instance structure, fill it with some defaults,
267 and point it at OLDTYPE. Allocate the new type instance from the
268 same place as OLDTYPE. */
269
270static struct type *
271alloc_type_instance (struct type *oldtype)
272{
273 struct type *type;
274
275 /* Allocate the structure. */
276
e9bb382b 277 if (! TYPE_OBJFILE_OWNED (oldtype))
41bf6aca 278 type = XCNEW (struct type);
2fdde8f8 279 else
1deafd4e
PA
280 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
281 struct type);
282
2fdde8f8
DJ
283 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
284
285 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
286
c16abbde 287 return type;
2fdde8f8
DJ
288}
289
290/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 291 replacing it with something else. Preserve owner information. */
5212577a 292
2fdde8f8
DJ
293static void
294smash_type (struct type *type)
295{
e9bb382b
UW
296 int objfile_owned = TYPE_OBJFILE_OWNED (type);
297 union type_owner owner = TYPE_OWNER (type);
298
2fdde8f8
DJ
299 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
300
e9bb382b
UW
301 /* Restore owner information. */
302 TYPE_OBJFILE_OWNED (type) = objfile_owned;
303 TYPE_OWNER (type) = owner;
304
2fdde8f8
DJ
305 /* For now, delete the rings. */
306 TYPE_CHAIN (type) = type;
307
308 /* For now, leave the pointer/reference types alone. */
309}
310
c906108c
SS
311/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
312 to a pointer to memory where the pointer type should be stored.
313 If *TYPEPTR is zero, update it to point to the pointer type we return.
314 We allocate new memory if needed. */
315
316struct type *
fba45db2 317make_pointer_type (struct type *type, struct type **typeptr)
c906108c 318{
52f0bd74 319 struct type *ntype; /* New type */
053cb41b 320 struct type *chain;
c906108c
SS
321
322 ntype = TYPE_POINTER_TYPE (type);
323
c5aa993b 324 if (ntype)
c906108c 325 {
c5aa993b 326 if (typeptr == 0)
7ba81444
MS
327 return ntype; /* Don't care about alloc,
328 and have new type. */
c906108c 329 else if (*typeptr == 0)
c5aa993b 330 {
7ba81444 331 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 332 return ntype;
c5aa993b 333 }
c906108c
SS
334 }
335
336 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
337 {
e9bb382b 338 ntype = alloc_type_copy (type);
c906108c
SS
339 if (typeptr)
340 *typeptr = ntype;
341 }
7ba81444 342 else /* We have storage, but need to reset it. */
c906108c
SS
343 {
344 ntype = *typeptr;
053cb41b 345 chain = TYPE_CHAIN (ntype);
2fdde8f8 346 smash_type (ntype);
053cb41b 347 TYPE_CHAIN (ntype) = chain;
c906108c
SS
348 }
349
350 TYPE_TARGET_TYPE (ntype) = type;
351 TYPE_POINTER_TYPE (type) = ntype;
352
5212577a 353 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 354
50810684
UW
355 TYPE_LENGTH (ntype)
356 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
357 TYPE_CODE (ntype) = TYPE_CODE_PTR;
358
67b2adb2 359 /* Mark pointers as unsigned. The target converts between pointers
76e71323 360 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 361 gdbarch_address_to_pointer. */
876cecd0 362 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 363
053cb41b
JB
364 /* Update the length of all the other variants of this type. */
365 chain = TYPE_CHAIN (ntype);
366 while (chain != ntype)
367 {
368 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
369 chain = TYPE_CHAIN (chain);
370 }
371
c906108c
SS
372 return ntype;
373}
374
375/* Given a type TYPE, return a type of pointers to that type.
376 May need to construct such a type if this is the first use. */
377
378struct type *
fba45db2 379lookup_pointer_type (struct type *type)
c906108c 380{
c5aa993b 381 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
382}
383
7ba81444
MS
384/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
385 points to a pointer to memory where the reference type should be
386 stored. If *TYPEPTR is zero, update it to point to the reference
387 type we return. We allocate new memory if needed. */
c906108c
SS
388
389struct type *
fba45db2 390make_reference_type (struct type *type, struct type **typeptr)
c906108c 391{
52f0bd74 392 struct type *ntype; /* New type */
1e98b326 393 struct type *chain;
c906108c
SS
394
395 ntype = TYPE_REFERENCE_TYPE (type);
396
c5aa993b 397 if (ntype)
c906108c 398 {
c5aa993b 399 if (typeptr == 0)
7ba81444
MS
400 return ntype; /* Don't care about alloc,
401 and have new type. */
c906108c 402 else if (*typeptr == 0)
c5aa993b 403 {
7ba81444 404 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 405 return ntype;
c5aa993b 406 }
c906108c
SS
407 }
408
409 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
410 {
e9bb382b 411 ntype = alloc_type_copy (type);
c906108c
SS
412 if (typeptr)
413 *typeptr = ntype;
414 }
7ba81444 415 else /* We have storage, but need to reset it. */
c906108c
SS
416 {
417 ntype = *typeptr;
1e98b326 418 chain = TYPE_CHAIN (ntype);
2fdde8f8 419 smash_type (ntype);
1e98b326 420 TYPE_CHAIN (ntype) = chain;
c906108c
SS
421 }
422
423 TYPE_TARGET_TYPE (ntype) = type;
424 TYPE_REFERENCE_TYPE (type) = ntype;
425
7ba81444
MS
426 /* FIXME! Assume the machine has only one representation for
427 references, and that it matches the (only) representation for
428 pointers! */
c906108c 429
50810684
UW
430 TYPE_LENGTH (ntype) =
431 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c 432 TYPE_CODE (ntype) = TYPE_CODE_REF;
c5aa993b 433
c906108c
SS
434 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
435 TYPE_REFERENCE_TYPE (type) = ntype;
436
1e98b326
JB
437 /* Update the length of all the other variants of this type. */
438 chain = TYPE_CHAIN (ntype);
439 while (chain != ntype)
440 {
441 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
442 chain = TYPE_CHAIN (chain);
443 }
444
c906108c
SS
445 return ntype;
446}
447
7ba81444
MS
448/* Same as above, but caller doesn't care about memory allocation
449 details. */
c906108c
SS
450
451struct type *
fba45db2 452lookup_reference_type (struct type *type)
c906108c 453{
c5aa993b 454 return make_reference_type (type, (struct type **) 0);
c906108c
SS
455}
456
7ba81444
MS
457/* Lookup a function type that returns type TYPE. TYPEPTR, if
458 nonzero, points to a pointer to memory where the function type
459 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 460 function type we return. We allocate new memory if needed. */
c906108c
SS
461
462struct type *
0c8b41f1 463make_function_type (struct type *type, struct type **typeptr)
c906108c 464{
52f0bd74 465 struct type *ntype; /* New type */
c906108c
SS
466
467 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
468 {
e9bb382b 469 ntype = alloc_type_copy (type);
c906108c
SS
470 if (typeptr)
471 *typeptr = ntype;
472 }
7ba81444 473 else /* We have storage, but need to reset it. */
c906108c
SS
474 {
475 ntype = *typeptr;
2fdde8f8 476 smash_type (ntype);
c906108c
SS
477 }
478
479 TYPE_TARGET_TYPE (ntype) = type;
480
481 TYPE_LENGTH (ntype) = 1;
482 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 483
b6cdc2c1
JK
484 INIT_FUNC_SPECIFIC (ntype);
485
c906108c
SS
486 return ntype;
487}
488
c906108c
SS
489/* Given a type TYPE, return a type of functions that return that type.
490 May need to construct such a type if this is the first use. */
491
492struct type *
fba45db2 493lookup_function_type (struct type *type)
c906108c 494{
0c8b41f1 495 return make_function_type (type, (struct type **) 0);
c906108c
SS
496}
497
71918a86 498/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
499 function type. If the final type in PARAM_TYPES is NULL, make a
500 varargs function. */
71918a86
TT
501
502struct type *
503lookup_function_type_with_arguments (struct type *type,
504 int nparams,
505 struct type **param_types)
506{
507 struct type *fn = make_function_type (type, (struct type **) 0);
508 int i;
509
e314d629 510 if (nparams > 0)
a6fb9c08 511 {
e314d629
TT
512 if (param_types[nparams - 1] == NULL)
513 {
514 --nparams;
515 TYPE_VARARGS (fn) = 1;
516 }
517 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
518 == TYPE_CODE_VOID)
519 {
520 --nparams;
521 /* Caller should have ensured this. */
522 gdb_assert (nparams == 0);
523 TYPE_PROTOTYPED (fn) = 1;
524 }
a6fb9c08
TT
525 }
526
71918a86 527 TYPE_NFIELDS (fn) = nparams;
224c3ddb
SM
528 TYPE_FIELDS (fn)
529 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
71918a86
TT
530 for (i = 0; i < nparams; ++i)
531 TYPE_FIELD_TYPE (fn, i) = param_types[i];
532
533 return fn;
534}
535
47663de5
MS
536/* Identify address space identifier by name --
537 return the integer flag defined in gdbtypes.h. */
5212577a
DE
538
539int
50810684 540address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
47663de5 541{
8b2dbe47 542 int type_flags;
d8734c88 543
7ba81444 544 /* Check for known address space delimiters. */
47663de5 545 if (!strcmp (space_identifier, "code"))
876cecd0 546 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 547 else if (!strcmp (space_identifier, "data"))
876cecd0 548 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
549 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
550 && gdbarch_address_class_name_to_type_flags (gdbarch,
551 space_identifier,
552 &type_flags))
8b2dbe47 553 return type_flags;
47663de5 554 else
8a3fe4f8 555 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
556}
557
558/* Identify address space identifier by integer flag as defined in
7ba81444 559 gdbtypes.h -- return the string version of the adress space name. */
47663de5 560
321432c0 561const char *
50810684 562address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 563{
876cecd0 564 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 565 return "code";
876cecd0 566 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 567 return "data";
876cecd0 568 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
569 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
570 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
571 else
572 return NULL;
573}
574
2fdde8f8 575/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
576
577 If STORAGE is non-NULL, create the new type instance there.
578 STORAGE must be in the same obstack as TYPE. */
47663de5 579
b9362cc7 580static struct type *
2fdde8f8
DJ
581make_qualified_type (struct type *type, int new_flags,
582 struct type *storage)
47663de5
MS
583{
584 struct type *ntype;
585
586 ntype = type;
5f61c20e
JK
587 do
588 {
589 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
590 return ntype;
591 ntype = TYPE_CHAIN (ntype);
592 }
593 while (ntype != type);
47663de5 594
2fdde8f8
DJ
595 /* Create a new type instance. */
596 if (storage == NULL)
597 ntype = alloc_type_instance (type);
598 else
599 {
7ba81444
MS
600 /* If STORAGE was provided, it had better be in the same objfile
601 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
602 if one objfile is freed and the other kept, we'd have
603 dangling pointers. */
ad766c0a
JB
604 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
605
2fdde8f8
DJ
606 ntype = storage;
607 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
608 TYPE_CHAIN (ntype) = ntype;
609 }
47663de5
MS
610
611 /* Pointers or references to the original type are not relevant to
2fdde8f8 612 the new type. */
47663de5
MS
613 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
614 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 615
2fdde8f8
DJ
616 /* Chain the new qualified type to the old type. */
617 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
618 TYPE_CHAIN (type) = ntype;
619
620 /* Now set the instance flags and return the new type. */
621 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 622
ab5d3da6
KB
623 /* Set length of new type to that of the original type. */
624 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
625
47663de5
MS
626 return ntype;
627}
628
2fdde8f8
DJ
629/* Make an address-space-delimited variant of a type -- a type that
630 is identical to the one supplied except that it has an address
631 space attribute attached to it (such as "code" or "data").
632
7ba81444
MS
633 The space attributes "code" and "data" are for Harvard
634 architectures. The address space attributes are for architectures
635 which have alternately sized pointers or pointers with alternate
636 representations. */
2fdde8f8
DJ
637
638struct type *
639make_type_with_address_space (struct type *type, int space_flag)
640{
2fdde8f8 641 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
642 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
643 | TYPE_INSTANCE_FLAG_DATA_SPACE
644 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
645 | space_flag);
646
647 return make_qualified_type (type, new_flags, NULL);
648}
c906108c
SS
649
650/* Make a "c-v" variant of a type -- a type that is identical to the
651 one supplied except that it may have const or volatile attributes
652 CNST is a flag for setting the const attribute
653 VOLTL is a flag for setting the volatile attribute
654 TYPE is the base type whose variant we are creating.
c906108c 655
ad766c0a
JB
656 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
657 storage to hold the new qualified type; *TYPEPTR and TYPE must be
658 in the same objfile. Otherwise, allocate fresh memory for the new
659 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
660 new type we construct. */
5212577a 661
c906108c 662struct type *
7ba81444
MS
663make_cv_type (int cnst, int voltl,
664 struct type *type,
665 struct type **typeptr)
c906108c 666{
52f0bd74 667 struct type *ntype; /* New type */
c906108c 668
2fdde8f8 669 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
670 & ~(TYPE_INSTANCE_FLAG_CONST
671 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 672
c906108c 673 if (cnst)
876cecd0 674 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
675
676 if (voltl)
876cecd0 677 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 678
2fdde8f8 679 if (typeptr && *typeptr != NULL)
a02fd225 680 {
ad766c0a
JB
681 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
682 a C-V variant chain that threads across objfiles: if one
683 objfile gets freed, then the other has a broken C-V chain.
684
685 This code used to try to copy over the main type from TYPE to
686 *TYPEPTR if they were in different objfiles, but that's
687 wrong, too: TYPE may have a field list or member function
688 lists, which refer to types of their own, etc. etc. The
689 whole shebang would need to be copied over recursively; you
690 can't have inter-objfile pointers. The only thing to do is
691 to leave stub types as stub types, and look them up afresh by
692 name each time you encounter them. */
693 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
694 }
695
7ba81444
MS
696 ntype = make_qualified_type (type, new_flags,
697 typeptr ? *typeptr : NULL);
c906108c 698
2fdde8f8
DJ
699 if (typeptr != NULL)
700 *typeptr = ntype;
a02fd225 701
2fdde8f8 702 return ntype;
a02fd225 703}
c906108c 704
06d66ee9
TT
705/* Make a 'restrict'-qualified version of TYPE. */
706
707struct type *
708make_restrict_type (struct type *type)
709{
710 return make_qualified_type (type,
711 (TYPE_INSTANCE_FLAGS (type)
712 | TYPE_INSTANCE_FLAG_RESTRICT),
713 NULL);
714}
715
f1660027
TT
716/* Make a type without const, volatile, or restrict. */
717
718struct type *
719make_unqualified_type (struct type *type)
720{
721 return make_qualified_type (type,
722 (TYPE_INSTANCE_FLAGS (type)
723 & ~(TYPE_INSTANCE_FLAG_CONST
724 | TYPE_INSTANCE_FLAG_VOLATILE
725 | TYPE_INSTANCE_FLAG_RESTRICT)),
726 NULL);
727}
728
a2c2acaf
MW
729/* Make a '_Atomic'-qualified version of TYPE. */
730
731struct type *
732make_atomic_type (struct type *type)
733{
734 return make_qualified_type (type,
735 (TYPE_INSTANCE_FLAGS (type)
736 | TYPE_INSTANCE_FLAG_ATOMIC),
737 NULL);
738}
739
2fdde8f8
DJ
740/* Replace the contents of ntype with the type *type. This changes the
741 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
742 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 743
cda6c68a
JB
744 In order to build recursive types, it's inevitable that we'll need
745 to update types in place --- but this sort of indiscriminate
746 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
747 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
748 clear if more steps are needed. */
5212577a 749
dd6bda65
DJ
750void
751replace_type (struct type *ntype, struct type *type)
752{
ab5d3da6 753 struct type *chain;
dd6bda65 754
ad766c0a
JB
755 /* These two types had better be in the same objfile. Otherwise,
756 the assignment of one type's main type structure to the other
757 will produce a type with references to objects (names; field
758 lists; etc.) allocated on an objfile other than its own. */
759 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
760
2fdde8f8 761 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 762
7ba81444
MS
763 /* The type length is not a part of the main type. Update it for
764 each type on the variant chain. */
ab5d3da6 765 chain = ntype;
5f61c20e
JK
766 do
767 {
768 /* Assert that this element of the chain has no address-class bits
769 set in its flags. Such type variants might have type lengths
770 which are supposed to be different from the non-address-class
771 variants. This assertion shouldn't ever be triggered because
772 symbol readers which do construct address-class variants don't
773 call replace_type(). */
774 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
775
776 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
777 chain = TYPE_CHAIN (chain);
778 }
779 while (ntype != chain);
ab5d3da6 780
2fdde8f8
DJ
781 /* Assert that the two types have equivalent instance qualifiers.
782 This should be true for at least all of our debug readers. */
783 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
784}
785
c906108c
SS
786/* Implement direct support for MEMBER_TYPE in GNU C++.
787 May need to construct such a type if this is the first use.
788 The TYPE is the type of the member. The DOMAIN is the type
789 of the aggregate that the member belongs to. */
790
791struct type *
0d5de010 792lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 793{
52f0bd74 794 struct type *mtype;
c906108c 795
e9bb382b 796 mtype = alloc_type_copy (type);
0d5de010 797 smash_to_memberptr_type (mtype, domain, type);
c16abbde 798 return mtype;
c906108c
SS
799}
800
0d5de010
DJ
801/* Return a pointer-to-method type, for a method of type TO_TYPE. */
802
803struct type *
804lookup_methodptr_type (struct type *to_type)
805{
806 struct type *mtype;
807
e9bb382b 808 mtype = alloc_type_copy (to_type);
0b92b5bb 809 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
810 return mtype;
811}
812
7ba81444
MS
813/* Allocate a stub method whose return type is TYPE. This apparently
814 happens for speed of symbol reading, since parsing out the
815 arguments to the method is cpu-intensive, the way we are doing it.
816 So, we will fill in arguments later. This always returns a fresh
817 type. */
c906108c
SS
818
819struct type *
fba45db2 820allocate_stub_method (struct type *type)
c906108c
SS
821{
822 struct type *mtype;
823
e9bb382b
UW
824 mtype = alloc_type_copy (type);
825 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
826 TYPE_LENGTH (mtype) = 1;
827 TYPE_STUB (mtype) = 1;
c906108c 828 TYPE_TARGET_TYPE (mtype) = type;
4bfb94b8 829 /* TYPE_SELF_TYPE (mtype) = unknown yet */
c16abbde 830 return mtype;
c906108c
SS
831}
832
729efb13
SA
833/* Create a range type with a dynamic range from LOW_BOUND to
834 HIGH_BOUND, inclusive. See create_range_type for further details. */
c906108c
SS
835
836struct type *
729efb13
SA
837create_range_type (struct type *result_type, struct type *index_type,
838 const struct dynamic_prop *low_bound,
839 const struct dynamic_prop *high_bound)
c906108c
SS
840{
841 if (result_type == NULL)
e9bb382b 842 result_type = alloc_type_copy (index_type);
c906108c
SS
843 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
844 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 845 if (TYPE_STUB (index_type))
876cecd0 846 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
847 else
848 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
729efb13 849
43bbcdc2
PH
850 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
851 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
729efb13
SA
852 TYPE_RANGE_DATA (result_type)->low = *low_bound;
853 TYPE_RANGE_DATA (result_type)->high = *high_bound;
c906108c 854
729efb13 855 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
876cecd0 856 TYPE_UNSIGNED (result_type) = 1;
c906108c 857
45e44d27
JB
858 /* Ada allows the declaration of range types whose upper bound is
859 less than the lower bound, so checking the lower bound is not
860 enough. Make sure we do not mark a range type whose upper bound
861 is negative as unsigned. */
862 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
863 TYPE_UNSIGNED (result_type) = 0;
864
262452ec 865 return result_type;
c906108c
SS
866}
867
729efb13
SA
868/* Create a range type using either a blank type supplied in
869 RESULT_TYPE, or creating a new type, inheriting the objfile from
870 INDEX_TYPE.
871
872 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
873 to HIGH_BOUND, inclusive.
874
875 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
876 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
877
878struct type *
879create_static_range_type (struct type *result_type, struct type *index_type,
880 LONGEST low_bound, LONGEST high_bound)
881{
882 struct dynamic_prop low, high;
883
884 low.kind = PROP_CONST;
885 low.data.const_val = low_bound;
886
887 high.kind = PROP_CONST;
888 high.data.const_val = high_bound;
889
890 result_type = create_range_type (result_type, index_type, &low, &high);
891
892 return result_type;
893}
894
80180f79
SA
895/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
896 are static, otherwise returns 0. */
897
898static int
899has_static_range (const struct range_bounds *bounds)
900{
901 return (bounds->low.kind == PROP_CONST
902 && bounds->high.kind == PROP_CONST);
903}
904
905
7ba81444
MS
906/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
907 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
908 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
909
910int
fba45db2 911get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c 912{
f168693b 913 type = check_typedef (type);
c906108c
SS
914 switch (TYPE_CODE (type))
915 {
916 case TYPE_CODE_RANGE:
917 *lowp = TYPE_LOW_BOUND (type);
918 *highp = TYPE_HIGH_BOUND (type);
919 return 1;
920 case TYPE_CODE_ENUM:
921 if (TYPE_NFIELDS (type) > 0)
922 {
923 /* The enums may not be sorted by value, so search all
0963b4bd 924 entries. */
c906108c
SS
925 int i;
926
14e75d8e 927 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
c906108c
SS
928 for (i = 0; i < TYPE_NFIELDS (type); i++)
929 {
14e75d8e
JK
930 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
931 *lowp = TYPE_FIELD_ENUMVAL (type, i);
932 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
933 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
934 }
935
7ba81444 936 /* Set unsigned indicator if warranted. */
c5aa993b 937 if (*lowp >= 0)
c906108c 938 {
876cecd0 939 TYPE_UNSIGNED (type) = 1;
c906108c
SS
940 }
941 }
942 else
943 {
944 *lowp = 0;
945 *highp = -1;
946 }
947 return 0;
948 case TYPE_CODE_BOOL:
949 *lowp = 0;
950 *highp = 1;
951 return 0;
952 case TYPE_CODE_INT:
c5aa993b 953 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
954 return -1;
955 if (!TYPE_UNSIGNED (type))
956 {
c5aa993b 957 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
958 *highp = -*lowp - 1;
959 return 0;
960 }
7ba81444 961 /* ... fall through for unsigned ints ... */
c906108c
SS
962 case TYPE_CODE_CHAR:
963 *lowp = 0;
964 /* This round-about calculation is to avoid shifting by
7b83ea04 965 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 966 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
967 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
968 *highp = (*highp - 1) | *highp;
969 return 0;
970 default:
971 return -1;
972 }
973}
974
dbc98a8b
KW
975/* Assuming TYPE is a simple, non-empty array type, compute its upper
976 and lower bound. Save the low bound into LOW_BOUND if not NULL.
977 Save the high bound into HIGH_BOUND if not NULL.
978
0963b4bd 979 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
980 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
981
982 We now simply use get_discrete_bounds call to get the values
983 of the low and high bounds.
984 get_discrete_bounds can return three values:
985 1, meaning that index is a range,
986 0, meaning that index is a discrete type,
987 or -1 for failure. */
988
989int
990get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
991{
992 struct type *index = TYPE_INDEX_TYPE (type);
993 LONGEST low = 0;
994 LONGEST high = 0;
995 int res;
996
997 if (index == NULL)
998 return 0;
999
1000 res = get_discrete_bounds (index, &low, &high);
1001 if (res == -1)
1002 return 0;
1003
1004 /* Check if the array bounds are undefined. */
1005 if (res == 1
1006 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1007 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1008 return 0;
1009
1010 if (low_bound)
1011 *low_bound = low;
1012
1013 if (high_bound)
1014 *high_bound = high;
1015
1016 return 1;
1017}
1018
aa715135
JG
1019/* Assuming that TYPE is a discrete type and VAL is a valid integer
1020 representation of a value of this type, save the corresponding
1021 position number in POS.
1022
1023 Its differs from VAL only in the case of enumeration types. In
1024 this case, the position number of the value of the first listed
1025 enumeration literal is zero; the position number of the value of
1026 each subsequent enumeration literal is one more than that of its
1027 predecessor in the list.
1028
1029 Return 1 if the operation was successful. Return zero otherwise,
1030 in which case the value of POS is unmodified.
1031*/
1032
1033int
1034discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1035{
1036 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1037 {
1038 int i;
1039
1040 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1041 {
1042 if (val == TYPE_FIELD_ENUMVAL (type, i))
1043 {
1044 *pos = i;
1045 return 1;
1046 }
1047 }
1048 /* Invalid enumeration value. */
1049 return 0;
1050 }
1051 else
1052 {
1053 *pos = val;
1054 return 1;
1055 }
1056}
1057
7ba81444
MS
1058/* Create an array type using either a blank type supplied in
1059 RESULT_TYPE, or creating a new type, inheriting the objfile from
1060 RANGE_TYPE.
c906108c
SS
1061
1062 Elements will be of type ELEMENT_TYPE, the indices will be of type
1063 RANGE_TYPE.
1064
dc53a7ad
JB
1065 If BIT_STRIDE is not zero, build a packed array type whose element
1066 size is BIT_STRIDE. Otherwise, ignore this parameter.
1067
7ba81444
MS
1068 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1069 sure it is TYPE_CODE_UNDEF before we bash it into an array
1070 type? */
c906108c
SS
1071
1072struct type *
dc53a7ad
JB
1073create_array_type_with_stride (struct type *result_type,
1074 struct type *element_type,
1075 struct type *range_type,
1076 unsigned int bit_stride)
c906108c 1077{
c906108c 1078 if (result_type == NULL)
e9bb382b
UW
1079 result_type = alloc_type_copy (range_type);
1080
c906108c
SS
1081 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1082 TYPE_TARGET_TYPE (result_type) = element_type;
3f2f83dd 1083 if (has_static_range (TYPE_RANGE_DATA (range_type))
b4a7fcab
JB
1084 && (!type_not_associated (result_type)
1085 && !type_not_allocated (result_type)))
80180f79
SA
1086 {
1087 LONGEST low_bound, high_bound;
1088
1089 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1090 low_bound = high_bound = 0;
f168693b 1091 element_type = check_typedef (element_type);
80180f79
SA
1092 /* Be careful when setting the array length. Ada arrays can be
1093 empty arrays with the high_bound being smaller than the low_bound.
1094 In such cases, the array length should be zero. */
1095 if (high_bound < low_bound)
1096 TYPE_LENGTH (result_type) = 0;
1097 else if (bit_stride > 0)
1098 TYPE_LENGTH (result_type) =
1099 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1100 else
1101 TYPE_LENGTH (result_type) =
1102 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1103 }
ab0d6e0d 1104 else
80180f79
SA
1105 {
1106 /* This type is dynamic and its length needs to be computed
1107 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1108 undefined by setting it to zero. Although we are not expected
1109 to trust TYPE_LENGTH in this case, setting the size to zero
1110 allows us to avoid allocating objects of random sizes in case
1111 we accidently do. */
1112 TYPE_LENGTH (result_type) = 0;
1113 }
1114
c906108c
SS
1115 TYPE_NFIELDS (result_type) = 1;
1116 TYPE_FIELDS (result_type) =
1deafd4e 1117 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 1118 TYPE_INDEX_TYPE (result_type) = range_type;
dc53a7ad
JB
1119 if (bit_stride > 0)
1120 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
c906108c 1121
0963b4bd 1122 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
c906108c 1123 if (TYPE_LENGTH (result_type) == 0)
876cecd0 1124 TYPE_TARGET_STUB (result_type) = 1;
c906108c 1125
c16abbde 1126 return result_type;
c906108c
SS
1127}
1128
dc53a7ad
JB
1129/* Same as create_array_type_with_stride but with no bit_stride
1130 (BIT_STRIDE = 0), thus building an unpacked array. */
1131
1132struct type *
1133create_array_type (struct type *result_type,
1134 struct type *element_type,
1135 struct type *range_type)
1136{
1137 return create_array_type_with_stride (result_type, element_type,
1138 range_type, 0);
1139}
1140
e3506a9f
UW
1141struct type *
1142lookup_array_range_type (struct type *element_type,
63375b74 1143 LONGEST low_bound, LONGEST high_bound)
e3506a9f 1144{
50810684 1145 struct gdbarch *gdbarch = get_type_arch (element_type);
e3506a9f
UW
1146 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1147 struct type *range_type
0c9c3474 1148 = create_static_range_type (NULL, index_type, low_bound, high_bound);
d8734c88 1149
e3506a9f
UW
1150 return create_array_type (NULL, element_type, range_type);
1151}
1152
7ba81444
MS
1153/* Create a string type using either a blank type supplied in
1154 RESULT_TYPE, or creating a new type. String types are similar
1155 enough to array of char types that we can use create_array_type to
1156 build the basic type and then bash it into a string type.
c906108c
SS
1157
1158 For fixed length strings, the range type contains 0 as the lower
1159 bound and the length of the string minus one as the upper bound.
1160
7ba81444
MS
1161 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1162 sure it is TYPE_CODE_UNDEF before we bash it into a string
1163 type? */
c906108c
SS
1164
1165struct type *
3b7538c0
UW
1166create_string_type (struct type *result_type,
1167 struct type *string_char_type,
7ba81444 1168 struct type *range_type)
c906108c
SS
1169{
1170 result_type = create_array_type (result_type,
f290d38e 1171 string_char_type,
c906108c
SS
1172 range_type);
1173 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 1174 return result_type;
c906108c
SS
1175}
1176
e3506a9f
UW
1177struct type *
1178lookup_string_range_type (struct type *string_char_type,
63375b74 1179 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1180{
1181 struct type *result_type;
d8734c88 1182
e3506a9f
UW
1183 result_type = lookup_array_range_type (string_char_type,
1184 low_bound, high_bound);
1185 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1186 return result_type;
1187}
1188
c906108c 1189struct type *
fba45db2 1190create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1191{
c906108c 1192 if (result_type == NULL)
e9bb382b
UW
1193 result_type = alloc_type_copy (domain_type);
1194
c906108c
SS
1195 TYPE_CODE (result_type) = TYPE_CODE_SET;
1196 TYPE_NFIELDS (result_type) = 1;
224c3ddb
SM
1197 TYPE_FIELDS (result_type)
1198 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 1199
74a9bb82 1200 if (!TYPE_STUB (domain_type))
c906108c 1201 {
f9780d5b 1202 LONGEST low_bound, high_bound, bit_length;
d8734c88 1203
c906108c
SS
1204 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1205 low_bound = high_bound = 0;
1206 bit_length = high_bound - low_bound + 1;
1207 TYPE_LENGTH (result_type)
1208 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1209 if (low_bound >= 0)
876cecd0 1210 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
1211 }
1212 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1213
c16abbde 1214 return result_type;
c906108c
SS
1215}
1216
ea37ba09
DJ
1217/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1218 and any array types nested inside it. */
1219
1220void
1221make_vector_type (struct type *array_type)
1222{
1223 struct type *inner_array, *elt_type;
1224 int flags;
1225
1226 /* Find the innermost array type, in case the array is
1227 multi-dimensional. */
1228 inner_array = array_type;
1229 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1230 inner_array = TYPE_TARGET_TYPE (inner_array);
1231
1232 elt_type = TYPE_TARGET_TYPE (inner_array);
1233 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1234 {
2844d6b5 1235 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1236 elt_type = make_qualified_type (elt_type, flags, NULL);
1237 TYPE_TARGET_TYPE (inner_array) = elt_type;
1238 }
1239
876cecd0 1240 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1241}
1242
794ac428 1243struct type *
ac3aafc7
EZ
1244init_vector_type (struct type *elt_type, int n)
1245{
1246 struct type *array_type;
d8734c88 1247
e3506a9f 1248 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1249 make_vector_type (array_type);
ac3aafc7
EZ
1250 return array_type;
1251}
1252
09e2d7c7
DE
1253/* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1254 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1255 confusing. "self" is a common enough replacement for "this".
1256 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1257 TYPE_CODE_METHOD. */
1258
1259struct type *
1260internal_type_self_type (struct type *type)
1261{
1262 switch (TYPE_CODE (type))
1263 {
1264 case TYPE_CODE_METHODPTR:
1265 case TYPE_CODE_MEMBERPTR:
eaaf76ab
DE
1266 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1267 return NULL;
09e2d7c7
DE
1268 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1269 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1270 case TYPE_CODE_METHOD:
eaaf76ab
DE
1271 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1272 return NULL;
09e2d7c7
DE
1273 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1274 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1275 default:
1276 gdb_assert_not_reached ("bad type");
1277 }
1278}
1279
1280/* Set the type of the class that TYPE belongs to.
1281 In c++ this is the class of "this".
1282 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1283 TYPE_CODE_METHOD. */
1284
1285void
1286set_type_self_type (struct type *type, struct type *self_type)
1287{
1288 switch (TYPE_CODE (type))
1289 {
1290 case TYPE_CODE_METHODPTR:
1291 case TYPE_CODE_MEMBERPTR:
1292 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1293 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1294 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1295 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1296 break;
1297 case TYPE_CODE_METHOD:
1298 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1299 INIT_FUNC_SPECIFIC (type);
1300 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1301 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1302 break;
1303 default:
1304 gdb_assert_not_reached ("bad type");
1305 }
1306}
1307
1308/* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
0d5de010
DJ
1309 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1310 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1311 TYPE doesn't include the offset (that's the value of the MEMBER
1312 itself), but does include the structure type into which it points
1313 (for some reason).
c906108c 1314
7ba81444
MS
1315 When "smashing" the type, we preserve the objfile that the old type
1316 pointed to, since we aren't changing where the type is actually
c906108c
SS
1317 allocated. */
1318
1319void
09e2d7c7 1320smash_to_memberptr_type (struct type *type, struct type *self_type,
0d5de010 1321 struct type *to_type)
c906108c 1322{
2fdde8f8 1323 smash_type (type);
09e2d7c7 1324 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c 1325 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1326 set_type_self_type (type, self_type);
0d5de010
DJ
1327 /* Assume that a data member pointer is the same size as a normal
1328 pointer. */
50810684
UW
1329 TYPE_LENGTH (type)
1330 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
c906108c
SS
1331}
1332
0b92b5bb
TT
1333/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1334
1335 When "smashing" the type, we preserve the objfile that the old type
1336 pointed to, since we aren't changing where the type is actually
1337 allocated. */
1338
1339void
1340smash_to_methodptr_type (struct type *type, struct type *to_type)
1341{
1342 smash_type (type);
09e2d7c7 1343 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
0b92b5bb 1344 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1345 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
0b92b5bb 1346 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
0b92b5bb
TT
1347}
1348
09e2d7c7 1349/* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
c906108c
SS
1350 METHOD just means `function that gets an extra "this" argument'.
1351
7ba81444
MS
1352 When "smashing" the type, we preserve the objfile that the old type
1353 pointed to, since we aren't changing where the type is actually
c906108c
SS
1354 allocated. */
1355
1356void
09e2d7c7 1357smash_to_method_type (struct type *type, struct type *self_type,
ad2f7632
DJ
1358 struct type *to_type, struct field *args,
1359 int nargs, int varargs)
c906108c 1360{
2fdde8f8 1361 smash_type (type);
09e2d7c7 1362 TYPE_CODE (type) = TYPE_CODE_METHOD;
c906108c 1363 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1364 set_type_self_type (type, self_type);
ad2f7632
DJ
1365 TYPE_FIELDS (type) = args;
1366 TYPE_NFIELDS (type) = nargs;
1367 if (varargs)
876cecd0 1368 TYPE_VARARGS (type) = 1;
c906108c 1369 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
c906108c
SS
1370}
1371
1372/* Return a typename for a struct/union/enum type without "struct ",
1373 "union ", or "enum ". If the type has a NULL name, return NULL. */
1374
0d5cff50 1375const char *
aa1ee363 1376type_name_no_tag (const struct type *type)
c906108c
SS
1377{
1378 if (TYPE_TAG_NAME (type) != NULL)
1379 return TYPE_TAG_NAME (type);
1380
7ba81444
MS
1381 /* Is there code which expects this to return the name if there is
1382 no tag name? My guess is that this is mainly used for C++ in
1383 cases where the two will always be the same. */
c906108c
SS
1384 return TYPE_NAME (type);
1385}
1386
d8228535
JK
1387/* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1388 Since GCC PR debug/47510 DWARF provides associated information to detect the
1389 anonymous class linkage name from its typedef.
1390
1391 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1392 apply it itself. */
1393
1394const char *
1395type_name_no_tag_or_error (struct type *type)
1396{
1397 struct type *saved_type = type;
1398 const char *name;
1399 struct objfile *objfile;
1400
f168693b 1401 type = check_typedef (type);
d8228535
JK
1402
1403 name = type_name_no_tag (type);
1404 if (name != NULL)
1405 return name;
1406
1407 name = type_name_no_tag (saved_type);
1408 objfile = TYPE_OBJFILE (saved_type);
1409 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
4262abfb
JK
1410 name ? name : "<anonymous>",
1411 objfile ? objfile_name (objfile) : "<arch>");
d8228535
JK
1412}
1413
7ba81444
MS
1414/* Lookup a typedef or primitive type named NAME, visible in lexical
1415 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1416 suitably defined. */
c906108c
SS
1417
1418struct type *
e6c014f2 1419lookup_typename (const struct language_defn *language,
ddd49eee 1420 struct gdbarch *gdbarch, const char *name,
34eaf542 1421 const struct block *block, int noerr)
c906108c 1422{
52f0bd74 1423 struct symbol *sym;
659c9f3a 1424 struct type *type;
c906108c 1425
1994afbf 1426 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
d12307c1 1427 language->la_language, NULL).symbol;
c51fe631
DE
1428 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1429 return SYMBOL_TYPE (sym);
1430
c51fe631
DE
1431 if (noerr)
1432 return NULL;
1433 error (_("No type named %s."), name);
c906108c
SS
1434}
1435
1436struct type *
e6c014f2 1437lookup_unsigned_typename (const struct language_defn *language,
0d5cff50 1438 struct gdbarch *gdbarch, const char *name)
c906108c 1439{
224c3ddb 1440 char *uns = (char *) alloca (strlen (name) + 10);
c906108c
SS
1441
1442 strcpy (uns, "unsigned ");
1443 strcpy (uns + 9, name);
e6c014f2 1444 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
c906108c
SS
1445}
1446
1447struct type *
e6c014f2 1448lookup_signed_typename (const struct language_defn *language,
0d5cff50 1449 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1450{
1451 struct type *t;
224c3ddb 1452 char *uns = (char *) alloca (strlen (name) + 8);
c906108c
SS
1453
1454 strcpy (uns, "signed ");
1455 strcpy (uns + 7, name);
e6c014f2 1456 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
7ba81444 1457 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1458 if (t != NULL)
1459 return t;
e6c014f2 1460 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
c906108c
SS
1461}
1462
1463/* Lookup a structure type named "struct NAME",
1464 visible in lexical block BLOCK. */
1465
1466struct type *
270140bd 1467lookup_struct (const char *name, const struct block *block)
c906108c 1468{
52f0bd74 1469 struct symbol *sym;
c906108c 1470
d12307c1 1471 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1472
1473 if (sym == NULL)
1474 {
8a3fe4f8 1475 error (_("No struct type named %s."), name);
c906108c
SS
1476 }
1477 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1478 {
7ba81444
MS
1479 error (_("This context has class, union or enum %s, not a struct."),
1480 name);
c906108c
SS
1481 }
1482 return (SYMBOL_TYPE (sym));
1483}
1484
1485/* Lookup a union type named "union NAME",
1486 visible in lexical block BLOCK. */
1487
1488struct type *
270140bd 1489lookup_union (const char *name, const struct block *block)
c906108c 1490{
52f0bd74 1491 struct symbol *sym;
c5aa993b 1492 struct type *t;
c906108c 1493
d12307c1 1494 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1495
1496 if (sym == NULL)
8a3fe4f8 1497 error (_("No union type named %s."), name);
c906108c 1498
c5aa993b 1499 t = SYMBOL_TYPE (sym);
c906108c
SS
1500
1501 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1502 return t;
c906108c 1503
7ba81444
MS
1504 /* If we get here, it's not a union. */
1505 error (_("This context has class, struct or enum %s, not a union."),
1506 name);
c906108c
SS
1507}
1508
c906108c
SS
1509/* Lookup an enum type named "enum NAME",
1510 visible in lexical block BLOCK. */
1511
1512struct type *
270140bd 1513lookup_enum (const char *name, const struct block *block)
c906108c 1514{
52f0bd74 1515 struct symbol *sym;
c906108c 1516
d12307c1 1517 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1518 if (sym == NULL)
1519 {
8a3fe4f8 1520 error (_("No enum type named %s."), name);
c906108c
SS
1521 }
1522 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1523 {
7ba81444
MS
1524 error (_("This context has class, struct or union %s, not an enum."),
1525 name);
c906108c
SS
1526 }
1527 return (SYMBOL_TYPE (sym));
1528}
1529
1530/* Lookup a template type named "template NAME<TYPE>",
1531 visible in lexical block BLOCK. */
1532
1533struct type *
7ba81444 1534lookup_template_type (char *name, struct type *type,
270140bd 1535 const struct block *block)
c906108c
SS
1536{
1537 struct symbol *sym;
7ba81444
MS
1538 char *nam = (char *)
1539 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1540
c906108c
SS
1541 strcpy (nam, name);
1542 strcat (nam, "<");
0004e5a2 1543 strcat (nam, TYPE_NAME (type));
0963b4bd 1544 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1545
d12307c1 1546 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
c906108c
SS
1547
1548 if (sym == NULL)
1549 {
8a3fe4f8 1550 error (_("No template type named %s."), name);
c906108c
SS
1551 }
1552 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1553 {
7ba81444
MS
1554 error (_("This context has class, union or enum %s, not a struct."),
1555 name);
c906108c
SS
1556 }
1557 return (SYMBOL_TYPE (sym));
1558}
1559
7ba81444
MS
1560/* Given a type TYPE, lookup the type of the component of type named
1561 NAME.
c906108c 1562
7ba81444
MS
1563 TYPE can be either a struct or union, or a pointer or reference to
1564 a struct or union. If it is a pointer or reference, its target
1565 type is automatically used. Thus '.' and '->' are interchangable,
1566 as specified for the definitions of the expression element types
1567 STRUCTOP_STRUCT and STRUCTOP_PTR.
c906108c
SS
1568
1569 If NOERR is nonzero, return zero if NAME is not suitably defined.
1570 If NAME is the name of a baseclass type, return that type. */
1571
1572struct type *
d7561cbb 1573lookup_struct_elt_type (struct type *type, const char *name, int noerr)
c906108c
SS
1574{
1575 int i;
fe978cb0 1576 char *type_name;
c906108c
SS
1577
1578 for (;;)
1579 {
f168693b 1580 type = check_typedef (type);
c906108c
SS
1581 if (TYPE_CODE (type) != TYPE_CODE_PTR
1582 && TYPE_CODE (type) != TYPE_CODE_REF)
1583 break;
1584 type = TYPE_TARGET_TYPE (type);
1585 }
1586
687d6395
MS
1587 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1588 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1589 {
fe978cb0
PA
1590 type_name = type_to_string (type);
1591 make_cleanup (xfree, type_name);
1592 error (_("Type %s is not a structure or union type."), type_name);
c906108c
SS
1593 }
1594
1595#if 0
7ba81444
MS
1596 /* FIXME: This change put in by Michael seems incorrect for the case
1597 where the structure tag name is the same as the member name.
0963b4bd 1598 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
7ba81444 1599 foo; } bell;" Disabled by fnf. */
c906108c 1600 {
fe978cb0 1601 char *type_name;
c906108c 1602
fe978cb0
PA
1603 type_name = type_name_no_tag (type);
1604 if (type_name != NULL && strcmp (type_name, name) == 0)
c906108c
SS
1605 return type;
1606 }
1607#endif
1608
1609 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1610 {
0d5cff50 1611 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1612
db577aea 1613 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1614 {
1615 return TYPE_FIELD_TYPE (type, i);
1616 }
f5a010c0
PM
1617 else if (!t_field_name || *t_field_name == '\0')
1618 {
d8734c88
MS
1619 struct type *subtype
1620 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1621
f5a010c0
PM
1622 if (subtype != NULL)
1623 return subtype;
1624 }
c906108c
SS
1625 }
1626
1627 /* OK, it's not in this class. Recursively check the baseclasses. */
1628 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1629 {
1630 struct type *t;
1631
9733fc94 1632 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
c906108c
SS
1633 if (t != NULL)
1634 {
1635 return t;
1636 }
1637 }
1638
1639 if (noerr)
1640 {
1641 return NULL;
1642 }
c5aa993b 1643
fe978cb0
PA
1644 type_name = type_to_string (type);
1645 make_cleanup (xfree, type_name);
1646 error (_("Type %s has no component named %s."), type_name, name);
c906108c
SS
1647}
1648
ed3ef339
DE
1649/* Store in *MAX the largest number representable by unsigned integer type
1650 TYPE. */
1651
1652void
1653get_unsigned_type_max (struct type *type, ULONGEST *max)
1654{
1655 unsigned int n;
1656
f168693b 1657 type = check_typedef (type);
ed3ef339
DE
1658 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1659 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1660
1661 /* Written this way to avoid overflow. */
1662 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1663 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1664}
1665
1666/* Store in *MIN, *MAX the smallest and largest numbers representable by
1667 signed integer type TYPE. */
1668
1669void
1670get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1671{
1672 unsigned int n;
1673
f168693b 1674 type = check_typedef (type);
ed3ef339
DE
1675 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1676 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1677
1678 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1679 *min = -((ULONGEST) 1 << (n - 1));
1680 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1681}
1682
ae6ae975
DE
1683/* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1684 cplus_stuff.vptr_fieldno.
1685
1686 cplus_stuff is initialized to cplus_struct_default which does not
1687 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1688 designated initializers). We cope with that here. */
1689
1690int
1691internal_type_vptr_fieldno (struct type *type)
1692{
f168693b 1693 type = check_typedef (type);
ae6ae975
DE
1694 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1695 || TYPE_CODE (type) == TYPE_CODE_UNION);
1696 if (!HAVE_CPLUS_STRUCT (type))
1697 return -1;
1698 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1699}
1700
1701/* Set the value of cplus_stuff.vptr_fieldno. */
1702
1703void
1704set_type_vptr_fieldno (struct type *type, int fieldno)
1705{
f168693b 1706 type = check_typedef (type);
ae6ae975
DE
1707 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1708 || TYPE_CODE (type) == TYPE_CODE_UNION);
1709 if (!HAVE_CPLUS_STRUCT (type))
1710 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1711 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1712}
1713
1714/* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1715 cplus_stuff.vptr_basetype. */
1716
1717struct type *
1718internal_type_vptr_basetype (struct type *type)
1719{
f168693b 1720 type = check_typedef (type);
ae6ae975
DE
1721 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1722 || TYPE_CODE (type) == TYPE_CODE_UNION);
1723 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1724 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1725}
1726
1727/* Set the value of cplus_stuff.vptr_basetype. */
1728
1729void
1730set_type_vptr_basetype (struct type *type, struct type *basetype)
1731{
f168693b 1732 type = check_typedef (type);
ae6ae975
DE
1733 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1734 || TYPE_CODE (type) == TYPE_CODE_UNION);
1735 if (!HAVE_CPLUS_STRUCT (type))
1736 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1737 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1738}
1739
81fe8080
DE
1740/* Lookup the vptr basetype/fieldno values for TYPE.
1741 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1742 vptr_fieldno. Also, if found and basetype is from the same objfile,
1743 cache the results.
1744 If not found, return -1 and ignore BASETYPEP.
1745 Callers should be aware that in some cases (for example,
c906108c 1746 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1747 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1748 this function will not be able to find the
7ba81444 1749 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1750 vptr_basetype will remain NULL or incomplete. */
c906108c 1751
81fe8080
DE
1752int
1753get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c 1754{
f168693b 1755 type = check_typedef (type);
c906108c
SS
1756
1757 if (TYPE_VPTR_FIELDNO (type) < 0)
1758 {
1759 int i;
1760
7ba81444
MS
1761 /* We must start at zero in case the first (and only) baseclass
1762 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1763 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1764 {
81fe8080
DE
1765 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1766 int fieldno;
1767 struct type *basetype;
1768
1769 fieldno = get_vptr_fieldno (baseclass, &basetype);
1770 if (fieldno >= 0)
c906108c 1771 {
81fe8080 1772 /* If the type comes from a different objfile we can't cache
0963b4bd 1773 it, it may have a different lifetime. PR 2384 */
5ef73790 1774 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080 1775 {
ae6ae975
DE
1776 set_type_vptr_fieldno (type, fieldno);
1777 set_type_vptr_basetype (type, basetype);
81fe8080
DE
1778 }
1779 if (basetypep)
1780 *basetypep = basetype;
1781 return fieldno;
c906108c
SS
1782 }
1783 }
81fe8080
DE
1784
1785 /* Not found. */
1786 return -1;
1787 }
1788 else
1789 {
1790 if (basetypep)
1791 *basetypep = TYPE_VPTR_BASETYPE (type);
1792 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1793 }
1794}
1795
44e1a9eb
DJ
1796static void
1797stub_noname_complaint (void)
1798{
e2e0b3e5 1799 complaint (&symfile_complaints, _("stub type has NULL name"));
44e1a9eb
DJ
1800}
1801
d98b7a16 1802/* Worker for is_dynamic_type. */
80180f79 1803
d98b7a16 1804static int
ee715b5a 1805is_dynamic_type_internal (struct type *type, int top_level)
80180f79
SA
1806{
1807 type = check_typedef (type);
1808
e771e4be
PMR
1809 /* We only want to recognize references at the outermost level. */
1810 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1811 type = check_typedef (TYPE_TARGET_TYPE (type));
1812
3cdcd0ce
JB
1813 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1814 dynamic, even if the type itself is statically defined.
1815 From a user's point of view, this may appear counter-intuitive;
1816 but it makes sense in this context, because the point is to determine
1817 whether any part of the type needs to be resolved before it can
1818 be exploited. */
1819 if (TYPE_DATA_LOCATION (type) != NULL
1820 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1821 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1822 return 1;
1823
3f2f83dd
KB
1824 if (TYPE_ASSOCIATED_PROP (type))
1825 return 1;
1826
1827 if (TYPE_ALLOCATED_PROP (type))
1828 return 1;
1829
80180f79
SA
1830 switch (TYPE_CODE (type))
1831 {
6f8a3220 1832 case TYPE_CODE_RANGE:
ddb87a81
JB
1833 {
1834 /* A range type is obviously dynamic if it has at least one
1835 dynamic bound. But also consider the range type to be
1836 dynamic when its subtype is dynamic, even if the bounds
1837 of the range type are static. It allows us to assume that
1838 the subtype of a static range type is also static. */
1839 return (!has_static_range (TYPE_RANGE_DATA (type))
ee715b5a 1840 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
ddb87a81 1841 }
6f8a3220 1842
80180f79
SA
1843 case TYPE_CODE_ARRAY:
1844 {
80180f79 1845 gdb_assert (TYPE_NFIELDS (type) == 1);
6f8a3220
JB
1846
1847 /* The array is dynamic if either the bounds are dynamic,
1848 or the elements it contains have a dynamic contents. */
ee715b5a 1849 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
80180f79 1850 return 1;
ee715b5a 1851 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
80180f79 1852 }
012370f6
TT
1853
1854 case TYPE_CODE_STRUCT:
1855 case TYPE_CODE_UNION:
1856 {
1857 int i;
1858
1859 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1860 if (!field_is_static (&TYPE_FIELD (type, i))
ee715b5a 1861 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
012370f6
TT
1862 return 1;
1863 }
1864 break;
80180f79 1865 }
92e2a17f
TT
1866
1867 return 0;
80180f79
SA
1868}
1869
d98b7a16
TT
1870/* See gdbtypes.h. */
1871
1872int
1873is_dynamic_type (struct type *type)
1874{
ee715b5a 1875 return is_dynamic_type_internal (type, 1);
d98b7a16
TT
1876}
1877
df25ebbd 1878static struct type *resolve_dynamic_type_internal
ee715b5a 1879 (struct type *type, struct property_addr_info *addr_stack, int top_level);
d98b7a16 1880
df25ebbd
JB
1881/* Given a dynamic range type (dyn_range_type) and a stack of
1882 struct property_addr_info elements, return a static version
1883 of that type. */
d190df30 1884
80180f79 1885static struct type *
df25ebbd
JB
1886resolve_dynamic_range (struct type *dyn_range_type,
1887 struct property_addr_info *addr_stack)
80180f79
SA
1888{
1889 CORE_ADDR value;
ddb87a81 1890 struct type *static_range_type, *static_target_type;
80180f79
SA
1891 const struct dynamic_prop *prop;
1892 const struct dwarf2_locexpr_baton *baton;
1893 struct dynamic_prop low_bound, high_bound;
1894
6f8a3220 1895 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
80180f79 1896
6f8a3220 1897 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
63e43d3a 1898 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
1899 {
1900 low_bound.kind = PROP_CONST;
1901 low_bound.data.const_val = value;
1902 }
1903 else
1904 {
1905 low_bound.kind = PROP_UNDEFINED;
1906 low_bound.data.const_val = 0;
1907 }
1908
6f8a3220 1909 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
63e43d3a 1910 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
1911 {
1912 high_bound.kind = PROP_CONST;
1913 high_bound.data.const_val = value;
c451ebe5 1914
6f8a3220 1915 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
c451ebe5
SA
1916 high_bound.data.const_val
1917 = low_bound.data.const_val + high_bound.data.const_val - 1;
80180f79
SA
1918 }
1919 else
1920 {
1921 high_bound.kind = PROP_UNDEFINED;
1922 high_bound.data.const_val = 0;
1923 }
1924
ddb87a81
JB
1925 static_target_type
1926 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
ee715b5a 1927 addr_stack, 0);
6f8a3220 1928 static_range_type = create_range_type (copy_type (dyn_range_type),
ddb87a81 1929 static_target_type,
6f8a3220
JB
1930 &low_bound, &high_bound);
1931 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1932 return static_range_type;
1933}
1934
1935/* Resolves dynamic bound values of an array type TYPE to static ones.
df25ebbd
JB
1936 ADDR_STACK is a stack of struct property_addr_info to be used
1937 if needed during the dynamic resolution. */
6f8a3220
JB
1938
1939static struct type *
df25ebbd
JB
1940resolve_dynamic_array (struct type *type,
1941 struct property_addr_info *addr_stack)
6f8a3220
JB
1942{
1943 CORE_ADDR value;
1944 struct type *elt_type;
1945 struct type *range_type;
1946 struct type *ary_dim;
3f2f83dd 1947 struct dynamic_prop *prop;
6f8a3220
JB
1948
1949 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1950
3f2f83dd
KB
1951 type = copy_type (type);
1952
6f8a3220
JB
1953 elt_type = type;
1954 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
df25ebbd 1955 range_type = resolve_dynamic_range (range_type, addr_stack);
6f8a3220 1956
3f2f83dd
KB
1957 /* Resolve allocated/associated here before creating a new array type, which
1958 will update the length of the array accordingly. */
1959 prop = TYPE_ALLOCATED_PROP (type);
1960 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1961 {
1962 TYPE_DYN_PROP_ADDR (prop) = value;
1963 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
1964 }
1965 prop = TYPE_ASSOCIATED_PROP (type);
1966 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1967 {
1968 TYPE_DYN_PROP_ADDR (prop) = value;
1969 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
1970 }
1971
80180f79
SA
1972 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1973
1974 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
d0d84780 1975 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
80180f79
SA
1976 else
1977 elt_type = TYPE_TARGET_TYPE (type);
1978
3f2f83dd
KB
1979 return create_array_type_with_stride (type, elt_type, range_type,
1980 TYPE_FIELD_BITSIZE (type, 0));
80180f79
SA
1981}
1982
012370f6 1983/* Resolve dynamic bounds of members of the union TYPE to static
df25ebbd
JB
1984 bounds. ADDR_STACK is a stack of struct property_addr_info
1985 to be used if needed during the dynamic resolution. */
012370f6
TT
1986
1987static struct type *
df25ebbd
JB
1988resolve_dynamic_union (struct type *type,
1989 struct property_addr_info *addr_stack)
012370f6
TT
1990{
1991 struct type *resolved_type;
1992 int i;
1993 unsigned int max_len = 0;
1994
1995 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1996
1997 resolved_type = copy_type (type);
1998 TYPE_FIELDS (resolved_type)
224c3ddb
SM
1999 = (struct field *) TYPE_ALLOC (resolved_type,
2000 TYPE_NFIELDS (resolved_type)
2001 * sizeof (struct field));
012370f6
TT
2002 memcpy (TYPE_FIELDS (resolved_type),
2003 TYPE_FIELDS (type),
2004 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2005 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2006 {
2007 struct type *t;
2008
2009 if (field_is_static (&TYPE_FIELD (type, i)))
2010 continue;
2011
d98b7a16 2012 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2013 addr_stack, 0);
012370f6
TT
2014 TYPE_FIELD_TYPE (resolved_type, i) = t;
2015 if (TYPE_LENGTH (t) > max_len)
2016 max_len = TYPE_LENGTH (t);
2017 }
2018
2019 TYPE_LENGTH (resolved_type) = max_len;
2020 return resolved_type;
2021}
2022
2023/* Resolve dynamic bounds of members of the struct TYPE to static
df25ebbd
JB
2024 bounds. ADDR_STACK is a stack of struct property_addr_info to
2025 be used if needed during the dynamic resolution. */
012370f6
TT
2026
2027static struct type *
df25ebbd
JB
2028resolve_dynamic_struct (struct type *type,
2029 struct property_addr_info *addr_stack)
012370f6
TT
2030{
2031 struct type *resolved_type;
2032 int i;
6908c509 2033 unsigned resolved_type_bit_length = 0;
012370f6
TT
2034
2035 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2036 gdb_assert (TYPE_NFIELDS (type) > 0);
2037
2038 resolved_type = copy_type (type);
2039 TYPE_FIELDS (resolved_type)
224c3ddb
SM
2040 = (struct field *) TYPE_ALLOC (resolved_type,
2041 TYPE_NFIELDS (resolved_type)
2042 * sizeof (struct field));
012370f6
TT
2043 memcpy (TYPE_FIELDS (resolved_type),
2044 TYPE_FIELDS (type),
2045 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2046 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2047 {
6908c509 2048 unsigned new_bit_length;
df25ebbd 2049 struct property_addr_info pinfo;
012370f6
TT
2050
2051 if (field_is_static (&TYPE_FIELD (type, i)))
2052 continue;
2053
6908c509
JB
2054 /* As we know this field is not a static field, the field's
2055 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2056 this is the case, but only trigger a simple error rather
2057 than an internal error if that fails. While failing
2058 that verification indicates a bug in our code, the error
2059 is not severe enough to suggest to the user he stops
2060 his debugging session because of it. */
df25ebbd 2061 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
6908c509
JB
2062 error (_("Cannot determine struct field location"
2063 " (invalid location kind)"));
df25ebbd
JB
2064
2065 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
c3345124 2066 pinfo.valaddr = addr_stack->valaddr;
df25ebbd
JB
2067 pinfo.addr = addr_stack->addr;
2068 pinfo.next = addr_stack;
2069
2070 TYPE_FIELD_TYPE (resolved_type, i)
2071 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2072 &pinfo, 0);
df25ebbd
JB
2073 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2074 == FIELD_LOC_KIND_BITPOS);
2075
6908c509
JB
2076 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2077 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2078 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2079 else
2080 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2081 * TARGET_CHAR_BIT);
2082
2083 /* Normally, we would use the position and size of the last field
2084 to determine the size of the enclosing structure. But GCC seems
2085 to be encoding the position of some fields incorrectly when
2086 the struct contains a dynamic field that is not placed last.
2087 So we compute the struct size based on the field that has
2088 the highest position + size - probably the best we can do. */
2089 if (new_bit_length > resolved_type_bit_length)
2090 resolved_type_bit_length = new_bit_length;
012370f6
TT
2091 }
2092
012370f6 2093 TYPE_LENGTH (resolved_type)
6908c509
JB
2094 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2095
9e195661
PMR
2096 /* The Ada language uses this field as a cache for static fixed types: reset
2097 it as RESOLVED_TYPE must have its own static fixed type. */
2098 TYPE_TARGET_TYPE (resolved_type) = NULL;
2099
012370f6
TT
2100 return resolved_type;
2101}
2102
d98b7a16 2103/* Worker for resolved_dynamic_type. */
80180f79 2104
d98b7a16 2105static struct type *
df25ebbd 2106resolve_dynamic_type_internal (struct type *type,
ee715b5a
PMR
2107 struct property_addr_info *addr_stack,
2108 int top_level)
80180f79
SA
2109{
2110 struct type *real_type = check_typedef (type);
6f8a3220 2111 struct type *resolved_type = type;
d9823cbb 2112 struct dynamic_prop *prop;
3cdcd0ce 2113 CORE_ADDR value;
80180f79 2114
ee715b5a 2115 if (!is_dynamic_type_internal (real_type, top_level))
80180f79
SA
2116 return type;
2117
5537b577 2118 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
6f8a3220 2119 {
cac9b138
JK
2120 resolved_type = copy_type (type);
2121 TYPE_TARGET_TYPE (resolved_type)
ee715b5a
PMR
2122 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2123 top_level);
5537b577
JK
2124 }
2125 else
2126 {
2127 /* Before trying to resolve TYPE, make sure it is not a stub. */
2128 type = real_type;
012370f6 2129
5537b577
JK
2130 switch (TYPE_CODE (type))
2131 {
e771e4be
PMR
2132 case TYPE_CODE_REF:
2133 {
2134 struct property_addr_info pinfo;
2135
2136 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
c3345124
JB
2137 pinfo.valaddr = NULL;
2138 if (addr_stack->valaddr != NULL)
2139 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2140 else
2141 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
e771e4be
PMR
2142 pinfo.next = addr_stack;
2143
2144 resolved_type = copy_type (type);
2145 TYPE_TARGET_TYPE (resolved_type)
2146 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2147 &pinfo, top_level);
2148 break;
2149 }
2150
5537b577 2151 case TYPE_CODE_ARRAY:
df25ebbd 2152 resolved_type = resolve_dynamic_array (type, addr_stack);
5537b577
JK
2153 break;
2154
2155 case TYPE_CODE_RANGE:
df25ebbd 2156 resolved_type = resolve_dynamic_range (type, addr_stack);
5537b577
JK
2157 break;
2158
2159 case TYPE_CODE_UNION:
df25ebbd 2160 resolved_type = resolve_dynamic_union (type, addr_stack);
5537b577
JK
2161 break;
2162
2163 case TYPE_CODE_STRUCT:
df25ebbd 2164 resolved_type = resolve_dynamic_struct (type, addr_stack);
5537b577
JK
2165 break;
2166 }
6f8a3220 2167 }
80180f79 2168
3cdcd0ce
JB
2169 /* Resolve data_location attribute. */
2170 prop = TYPE_DATA_LOCATION (resolved_type);
63e43d3a
PMR
2171 if (prop != NULL
2172 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
3cdcd0ce 2173 {
d9823cbb
KB
2174 TYPE_DYN_PROP_ADDR (prop) = value;
2175 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
3cdcd0ce 2176 }
3cdcd0ce 2177
80180f79
SA
2178 return resolved_type;
2179}
2180
d98b7a16
TT
2181/* See gdbtypes.h */
2182
2183struct type *
c3345124
JB
2184resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2185 CORE_ADDR addr)
d98b7a16 2186{
c3345124
JB
2187 struct property_addr_info pinfo
2188 = {check_typedef (type), valaddr, addr, NULL};
df25ebbd 2189
ee715b5a 2190 return resolve_dynamic_type_internal (type, &pinfo, 1);
d98b7a16
TT
2191}
2192
d9823cbb
KB
2193/* See gdbtypes.h */
2194
2195struct dynamic_prop *
2196get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2197{
2198 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2199
2200 while (node != NULL)
2201 {
2202 if (node->prop_kind == prop_kind)
283a9958 2203 return &node->prop;
d9823cbb
KB
2204 node = node->next;
2205 }
2206 return NULL;
2207}
2208
2209/* See gdbtypes.h */
2210
2211void
2212add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2213 struct type *type, struct objfile *objfile)
2214{
2215 struct dynamic_prop_list *temp;
2216
2217 gdb_assert (TYPE_OBJFILE_OWNED (type));
2218
224c3ddb 2219 temp = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop_list);
d9823cbb 2220 temp->prop_kind = prop_kind;
283a9958 2221 temp->prop = prop;
d9823cbb
KB
2222 temp->next = TYPE_DYN_PROP_LIST (type);
2223
2224 TYPE_DYN_PROP_LIST (type) = temp;
2225}
2226
2227
92163a10
JK
2228/* Find the real type of TYPE. This function returns the real type,
2229 after removing all layers of typedefs, and completing opaque or stub
2230 types. Completion changes the TYPE argument, but stripping of
2231 typedefs does not.
2232
2233 Instance flags (e.g. const/volatile) are preserved as typedefs are
2234 stripped. If necessary a new qualified form of the underlying type
2235 is created.
2236
2237 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2238 not been computed and we're either in the middle of reading symbols, or
2239 there was no name for the typedef in the debug info.
2240
9bc118a5
DE
2241 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2242 QUITs in the symbol reading code can also throw.
2243 Thus this function can throw an exception.
2244
92163a10
JK
2245 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2246 the target type.
c906108c
SS
2247
2248 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 2249 we can find a full definition in some other file. If so, copy this
7ba81444
MS
2250 definition, so we can use it in future. There used to be a comment
2251 (but not any code) that if we don't find a full definition, we'd
2252 set a flag so we don't spend time in the future checking the same
2253 type. That would be a mistake, though--we might load in more
92163a10 2254 symbols which contain a full definition for the type. */
c906108c
SS
2255
2256struct type *
a02fd225 2257check_typedef (struct type *type)
c906108c
SS
2258{
2259 struct type *orig_type = type;
92163a10
JK
2260 /* While we're removing typedefs, we don't want to lose qualifiers.
2261 E.g., const/volatile. */
2262 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 2263
423c0af8
MS
2264 gdb_assert (type);
2265
c906108c
SS
2266 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2267 {
2268 if (!TYPE_TARGET_TYPE (type))
2269 {
0d5cff50 2270 const char *name;
c906108c
SS
2271 struct symbol *sym;
2272
2273 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 2274 reading a symtab. Infinite recursion is one danger. */
c906108c 2275 if (currently_reading_symtab)
92163a10 2276 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2277
2278 name = type_name_no_tag (type);
7ba81444
MS
2279 /* FIXME: shouldn't we separately check the TYPE_NAME and
2280 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2281 VAR_DOMAIN as appropriate? (this code was written before
2282 TYPE_NAME and TYPE_TAG_NAME were separate). */
c906108c
SS
2283 if (name == NULL)
2284 {
23136709 2285 stub_noname_complaint ();
92163a10 2286 return make_qualified_type (type, instance_flags, NULL);
c906108c 2287 }
d12307c1 2288 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
2289 if (sym)
2290 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 2291 else /* TYPE_CODE_UNDEF */
e9bb382b 2292 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
2293 }
2294 type = TYPE_TARGET_TYPE (type);
c906108c 2295
92163a10
JK
2296 /* Preserve the instance flags as we traverse down the typedef chain.
2297
2298 Handling address spaces/classes is nasty, what do we do if there's a
2299 conflict?
2300 E.g., what if an outer typedef marks the type as class_1 and an inner
2301 typedef marks the type as class_2?
2302 This is the wrong place to do such error checking. We leave it to
2303 the code that created the typedef in the first place to flag the
2304 error. We just pick the outer address space (akin to letting the
2305 outer cast in a chain of casting win), instead of assuming
2306 "it can't happen". */
2307 {
2308 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2309 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2310 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2311 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2312
2313 /* Treat code vs data spaces and address classes separately. */
2314 if ((instance_flags & ALL_SPACES) != 0)
2315 new_instance_flags &= ~ALL_SPACES;
2316 if ((instance_flags & ALL_CLASSES) != 0)
2317 new_instance_flags &= ~ALL_CLASSES;
2318
2319 instance_flags |= new_instance_flags;
2320 }
2321 }
a02fd225 2322
7ba81444
MS
2323 /* If this is a struct/class/union with no fields, then check
2324 whether a full definition exists somewhere else. This is for
2325 systems where a type definition with no fields is issued for such
2326 types, instead of identifying them as stub types in the first
2327 place. */
c5aa993b 2328
7ba81444
MS
2329 if (TYPE_IS_OPAQUE (type)
2330 && opaque_type_resolution
2331 && !currently_reading_symtab)
c906108c 2332 {
0d5cff50 2333 const char *name = type_name_no_tag (type);
c5aa993b 2334 struct type *newtype;
d8734c88 2335
c906108c
SS
2336 if (name == NULL)
2337 {
23136709 2338 stub_noname_complaint ();
92163a10 2339 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2340 }
2341 newtype = lookup_transparent_type (name);
ad766c0a 2342
c906108c 2343 if (newtype)
ad766c0a 2344 {
7ba81444
MS
2345 /* If the resolved type and the stub are in the same
2346 objfile, then replace the stub type with the real deal.
2347 But if they're in separate objfiles, leave the stub
2348 alone; we'll just look up the transparent type every time
2349 we call check_typedef. We can't create pointers between
2350 types allocated to different objfiles, since they may
2351 have different lifetimes. Trying to copy NEWTYPE over to
2352 TYPE's objfile is pointless, too, since you'll have to
2353 move over any other types NEWTYPE refers to, which could
2354 be an unbounded amount of stuff. */
ad766c0a 2355 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
2356 type = make_qualified_type (newtype,
2357 TYPE_INSTANCE_FLAGS (type),
2358 type);
ad766c0a
JB
2359 else
2360 type = newtype;
2361 }
c906108c 2362 }
7ba81444
MS
2363 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2364 types. */
74a9bb82 2365 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 2366 {
0d5cff50 2367 const char *name = type_name_no_tag (type);
c906108c 2368 /* FIXME: shouldn't we separately check the TYPE_NAME and the
176620f1 2369 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
7b83ea04
AC
2370 as appropriate? (this code was written before TYPE_NAME and
2371 TYPE_TAG_NAME were separate). */
c906108c 2372 struct symbol *sym;
d8734c88 2373
c906108c
SS
2374 if (name == NULL)
2375 {
23136709 2376 stub_noname_complaint ();
92163a10 2377 return make_qualified_type (type, instance_flags, NULL);
c906108c 2378 }
d12307c1 2379 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c 2380 if (sym)
c26f2453
JB
2381 {
2382 /* Same as above for opaque types, we can replace the stub
92163a10 2383 with the complete type only if they are in the same
c26f2453
JB
2384 objfile. */
2385 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
2386 type = make_qualified_type (SYMBOL_TYPE (sym),
2387 TYPE_INSTANCE_FLAGS (type),
2388 type);
c26f2453
JB
2389 else
2390 type = SYMBOL_TYPE (sym);
2391 }
c906108c
SS
2392 }
2393
74a9bb82 2394 if (TYPE_TARGET_STUB (type))
c906108c
SS
2395 {
2396 struct type *range_type;
2397 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2398
74a9bb82 2399 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 2400 {
73e2eb35 2401 /* Nothing we can do. */
c5aa993b 2402 }
c906108c
SS
2403 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2404 {
2405 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 2406 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
2407 }
2408 }
92163a10
JK
2409
2410 type = make_qualified_type (type, instance_flags, NULL);
2411
7ba81444 2412 /* Cache TYPE_LENGTH for future use. */
c906108c 2413 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 2414
c906108c
SS
2415 return type;
2416}
2417
7ba81444 2418/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 2419 occurs, silently return a void type. */
c91ecb25 2420
b9362cc7 2421static struct type *
48319d1f 2422safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
2423{
2424 struct ui_file *saved_gdb_stderr;
34365054 2425 struct type *type = NULL; /* Initialize to keep gcc happy. */
c91ecb25 2426
7ba81444 2427 /* Suppress error messages. */
c91ecb25
ND
2428 saved_gdb_stderr = gdb_stderr;
2429 gdb_stderr = ui_file_new ();
2430
7ba81444 2431 /* Call parse_and_eval_type() without fear of longjmp()s. */
492d29ea 2432 TRY
8e7b59a5
KS
2433 {
2434 type = parse_and_eval_type (p, length);
2435 }
492d29ea
PA
2436 CATCH (except, RETURN_MASK_ERROR)
2437 {
2438 type = builtin_type (gdbarch)->builtin_void;
2439 }
2440 END_CATCH
c91ecb25 2441
7ba81444 2442 /* Stop suppressing error messages. */
c91ecb25
ND
2443 ui_file_delete (gdb_stderr);
2444 gdb_stderr = saved_gdb_stderr;
2445
2446 return type;
2447}
2448
c906108c
SS
2449/* Ugly hack to convert method stubs into method types.
2450
7ba81444
MS
2451 He ain't kiddin'. This demangles the name of the method into a
2452 string including argument types, parses out each argument type,
2453 generates a string casting a zero to that type, evaluates the
2454 string, and stuffs the resulting type into an argtype vector!!!
2455 Then it knows the type of the whole function (including argument
2456 types for overloading), which info used to be in the stab's but was
2457 removed to hack back the space required for them. */
c906108c 2458
de17c821 2459static void
fba45db2 2460check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 2461{
50810684 2462 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
2463 struct fn_field *f;
2464 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
8de20a37
TT
2465 char *demangled_name = gdb_demangle (mangled_name,
2466 DMGL_PARAMS | DMGL_ANSI);
c906108c
SS
2467 char *argtypetext, *p;
2468 int depth = 0, argcount = 1;
ad2f7632 2469 struct field *argtypes;
c906108c
SS
2470 struct type *mtype;
2471
2472 /* Make sure we got back a function string that we can use. */
2473 if (demangled_name)
2474 p = strchr (demangled_name, '(');
502dcf4e
AC
2475 else
2476 p = NULL;
c906108c
SS
2477
2478 if (demangled_name == NULL || p == NULL)
7ba81444
MS
2479 error (_("Internal: Cannot demangle mangled name `%s'."),
2480 mangled_name);
c906108c
SS
2481
2482 /* Now, read in the parameters that define this type. */
2483 p += 1;
2484 argtypetext = p;
2485 while (*p)
2486 {
070ad9f0 2487 if (*p == '(' || *p == '<')
c906108c
SS
2488 {
2489 depth += 1;
2490 }
070ad9f0 2491 else if (*p == ')' || *p == '>')
c906108c
SS
2492 {
2493 depth -= 1;
2494 }
2495 else if (*p == ',' && depth == 0)
2496 {
2497 argcount += 1;
2498 }
2499
2500 p += 1;
2501 }
2502
ad2f7632 2503 /* If we read one argument and it was ``void'', don't count it. */
61012eef 2504 if (startswith (argtypetext, "(void)"))
ad2f7632 2505 argcount -= 1;
c906108c 2506
ad2f7632
DJ
2507 /* We need one extra slot, for the THIS pointer. */
2508
2509 argtypes = (struct field *)
2510 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 2511 p = argtypetext;
4a1970e4
DJ
2512
2513 /* Add THIS pointer for non-static methods. */
2514 f = TYPE_FN_FIELDLIST1 (type, method_id);
2515 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2516 argcount = 0;
2517 else
2518 {
ad2f7632 2519 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
2520 argcount = 1;
2521 }
c906108c 2522
0963b4bd 2523 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
2524 {
2525 depth = 0;
2526 while (*p)
2527 {
2528 if (depth <= 0 && (*p == ',' || *p == ')'))
2529 {
ad2f7632
DJ
2530 /* Avoid parsing of ellipsis, they will be handled below.
2531 Also avoid ``void'' as above. */
2532 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2533 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 2534 {
ad2f7632 2535 argtypes[argcount].type =
48319d1f 2536 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
2537 argcount += 1;
2538 }
2539 argtypetext = p + 1;
2540 }
2541
070ad9f0 2542 if (*p == '(' || *p == '<')
c906108c
SS
2543 {
2544 depth += 1;
2545 }
070ad9f0 2546 else if (*p == ')' || *p == '>')
c906108c
SS
2547 {
2548 depth -= 1;
2549 }
2550
2551 p += 1;
2552 }
2553 }
2554
c906108c
SS
2555 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2556
2557 /* Now update the old "stub" type into a real type. */
2558 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
09e2d7c7
DE
2559 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2560 We want a method (TYPE_CODE_METHOD). */
2561 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2562 argtypes, argcount, p[-2] == '.');
876cecd0 2563 TYPE_STUB (mtype) = 0;
c906108c 2564 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632
DJ
2565
2566 xfree (demangled_name);
c906108c
SS
2567}
2568
7ba81444
MS
2569/* This is the external interface to check_stub_method, above. This
2570 function unstubs all of the signatures for TYPE's METHOD_ID method
2571 name. After calling this function TYPE_FN_FIELD_STUB will be
2572 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2573 correct.
de17c821
DJ
2574
2575 This function unfortunately can not die until stabs do. */
2576
2577void
2578check_stub_method_group (struct type *type, int method_id)
2579{
2580 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2581 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
f710f4fc 2582 int j, found_stub = 0;
de17c821
DJ
2583
2584 for (j = 0; j < len; j++)
2585 if (TYPE_FN_FIELD_STUB (f, j))
2586 {
2587 found_stub = 1;
2588 check_stub_method (type, method_id, j);
2589 }
2590
7ba81444
MS
2591 /* GNU v3 methods with incorrect names were corrected when we read
2592 in type information, because it was cheaper to do it then. The
2593 only GNU v2 methods with incorrect method names are operators and
2594 destructors; destructors were also corrected when we read in type
2595 information.
de17c821
DJ
2596
2597 Therefore the only thing we need to handle here are v2 operator
2598 names. */
61012eef 2599 if (found_stub && !startswith (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z"))
de17c821
DJ
2600 {
2601 int ret;
2602 char dem_opname[256];
2603
7ba81444
MS
2604 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2605 method_id),
de17c821
DJ
2606 dem_opname, DMGL_ANSI);
2607 if (!ret)
7ba81444
MS
2608 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2609 method_id),
de17c821
DJ
2610 dem_opname, 0);
2611 if (ret)
2612 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2613 }
2614}
2615
9655fd1a
JK
2616/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2617const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
2618
2619void
fba45db2 2620allocate_cplus_struct_type (struct type *type)
c906108c 2621{
b4ba55a1
JB
2622 if (HAVE_CPLUS_STRUCT (type))
2623 /* Structure was already allocated. Nothing more to do. */
2624 return;
2625
2626 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2627 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2628 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2629 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
ae6ae975 2630 set_type_vptr_fieldno (type, -1);
c906108c
SS
2631}
2632
b4ba55a1
JB
2633const struct gnat_aux_type gnat_aux_default =
2634 { NULL };
2635
2636/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2637 and allocate the associated gnat-specific data. The gnat-specific
2638 data is also initialized to gnat_aux_default. */
5212577a 2639
b4ba55a1
JB
2640void
2641allocate_gnat_aux_type (struct type *type)
2642{
2643 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2644 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2645 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2646 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2647}
2648
c906108c
SS
2649/* Helper function to initialize the standard scalar types.
2650
86f62fd7
TT
2651 If NAME is non-NULL, then it is used to initialize the type name.
2652 Note that NAME is not copied; it is required to have a lifetime at
2653 least as long as OBJFILE. */
c906108c
SS
2654
2655struct type *
7ba81444 2656init_type (enum type_code code, int length, int flags,
748e18ae 2657 const char *name, struct objfile *objfile)
c906108c 2658{
52f0bd74 2659 struct type *type;
c906108c
SS
2660
2661 type = alloc_type (objfile);
2662 TYPE_CODE (type) = code;
2663 TYPE_LENGTH (type) = length;
876cecd0
TT
2664
2665 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2666 if (flags & TYPE_FLAG_UNSIGNED)
2667 TYPE_UNSIGNED (type) = 1;
2668 if (flags & TYPE_FLAG_NOSIGN)
2669 TYPE_NOSIGN (type) = 1;
2670 if (flags & TYPE_FLAG_STUB)
2671 TYPE_STUB (type) = 1;
2672 if (flags & TYPE_FLAG_TARGET_STUB)
2673 TYPE_TARGET_STUB (type) = 1;
2674 if (flags & TYPE_FLAG_STATIC)
2675 TYPE_STATIC (type) = 1;
2676 if (flags & TYPE_FLAG_PROTOTYPED)
2677 TYPE_PROTOTYPED (type) = 1;
2678 if (flags & TYPE_FLAG_INCOMPLETE)
2679 TYPE_INCOMPLETE (type) = 1;
2680 if (flags & TYPE_FLAG_VARARGS)
2681 TYPE_VARARGS (type) = 1;
2682 if (flags & TYPE_FLAG_VECTOR)
2683 TYPE_VECTOR (type) = 1;
2684 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2685 TYPE_STUB_SUPPORTED (type) = 1;
876cecd0
TT
2686 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2687 TYPE_FIXED_INSTANCE (type) = 1;
0875794a
JK
2688 if (flags & TYPE_FLAG_GNU_IFUNC)
2689 TYPE_GNU_IFUNC (type) = 1;
876cecd0 2690
86f62fd7 2691 TYPE_NAME (type) = name;
c906108c
SS
2692
2693 /* C++ fancies. */
2694
973ccf8b 2695 if (name && strcmp (name, "char") == 0)
876cecd0 2696 TYPE_NOSIGN (type) = 1;
973ccf8b 2697
b4ba55a1 2698 switch (code)
c906108c 2699 {
b4ba55a1
JB
2700 case TYPE_CODE_STRUCT:
2701 case TYPE_CODE_UNION:
2702 case TYPE_CODE_NAMESPACE:
2703 INIT_CPLUS_SPECIFIC (type);
2704 break;
2705 case TYPE_CODE_FLT:
2706 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2707 break;
2708 case TYPE_CODE_FUNC:
b6cdc2c1 2709 INIT_FUNC_SPECIFIC (type);
b4ba55a1 2710 break;
c906108c 2711 }
c16abbde 2712 return type;
c906108c 2713}
5212577a
DE
2714\f
2715/* Queries on types. */
c906108c 2716
c906108c 2717int
fba45db2 2718can_dereference (struct type *t)
c906108c 2719{
7ba81444
MS
2720 /* FIXME: Should we return true for references as well as
2721 pointers? */
f168693b 2722 t = check_typedef (t);
c906108c
SS
2723 return
2724 (t != NULL
2725 && TYPE_CODE (t) == TYPE_CODE_PTR
2726 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2727}
2728
adf40b2e 2729int
fba45db2 2730is_integral_type (struct type *t)
adf40b2e 2731{
f168693b 2732 t = check_typedef (t);
adf40b2e
JM
2733 return
2734 ((t != NULL)
d4f3574e
SS
2735 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2736 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 2737 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
2738 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2739 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2740 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
2741}
2742
e09342b5
TJB
2743/* Return true if TYPE is scalar. */
2744
220475ed 2745int
e09342b5
TJB
2746is_scalar_type (struct type *type)
2747{
f168693b 2748 type = check_typedef (type);
e09342b5
TJB
2749
2750 switch (TYPE_CODE (type))
2751 {
2752 case TYPE_CODE_ARRAY:
2753 case TYPE_CODE_STRUCT:
2754 case TYPE_CODE_UNION:
2755 case TYPE_CODE_SET:
2756 case TYPE_CODE_STRING:
e09342b5
TJB
2757 return 0;
2758 default:
2759 return 1;
2760 }
2761}
2762
2763/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
2764 the memory layout of a scalar type. E.g., an array or struct with only
2765 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
2766
2767int
2768is_scalar_type_recursive (struct type *t)
2769{
f168693b 2770 t = check_typedef (t);
e09342b5
TJB
2771
2772 if (is_scalar_type (t))
2773 return 1;
2774 /* Are we dealing with an array or string of known dimensions? */
2775 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2776 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2777 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2778 {
2779 LONGEST low_bound, high_bound;
2780 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2781
2782 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2783
2784 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2785 }
2786 /* Are we dealing with a struct with one element? */
2787 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2788 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2789 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2790 {
2791 int i, n = TYPE_NFIELDS (t);
2792
2793 /* If all elements of the union are scalar, then the union is scalar. */
2794 for (i = 0; i < n; i++)
2795 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2796 return 0;
2797
2798 return 1;
2799 }
2800
2801 return 0;
2802}
2803
6c659fc2
SC
2804/* Return true is T is a class or a union. False otherwise. */
2805
2806int
2807class_or_union_p (const struct type *t)
2808{
2809 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
2810 || TYPE_CODE (t) == TYPE_CODE_UNION);
2811}
2812
4e8f195d
TT
2813/* A helper function which returns true if types A and B represent the
2814 "same" class type. This is true if the types have the same main
2815 type, or the same name. */
2816
2817int
2818class_types_same_p (const struct type *a, const struct type *b)
2819{
2820 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2821 || (TYPE_NAME (a) && TYPE_NAME (b)
2822 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2823}
2824
a9d5ef47
SW
2825/* If BASE is an ancestor of DCLASS return the distance between them.
2826 otherwise return -1;
2827 eg:
2828
2829 class A {};
2830 class B: public A {};
2831 class C: public B {};
2832 class D: C {};
2833
2834 distance_to_ancestor (A, A, 0) = 0
2835 distance_to_ancestor (A, B, 0) = 1
2836 distance_to_ancestor (A, C, 0) = 2
2837 distance_to_ancestor (A, D, 0) = 3
2838
2839 If PUBLIC is 1 then only public ancestors are considered,
2840 and the function returns the distance only if BASE is a public ancestor
2841 of DCLASS.
2842 Eg:
2843
0963b4bd 2844 distance_to_ancestor (A, D, 1) = -1. */
c906108c 2845
0526b37a 2846static int
fe978cb0 2847distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
c906108c
SS
2848{
2849 int i;
a9d5ef47 2850 int d;
c5aa993b 2851
f168693b
SM
2852 base = check_typedef (base);
2853 dclass = check_typedef (dclass);
c906108c 2854
4e8f195d 2855 if (class_types_same_p (base, dclass))
a9d5ef47 2856 return 0;
c906108c
SS
2857
2858 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 2859 {
fe978cb0 2860 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
0526b37a
SW
2861 continue;
2862
fe978cb0 2863 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
a9d5ef47
SW
2864 if (d >= 0)
2865 return 1 + d;
4e8f195d 2866 }
c906108c 2867
a9d5ef47 2868 return -1;
c906108c 2869}
4e8f195d 2870
0526b37a
SW
2871/* Check whether BASE is an ancestor or base class or DCLASS
2872 Return 1 if so, and 0 if not.
2873 Note: If BASE and DCLASS are of the same type, this function
2874 will return 1. So for some class A, is_ancestor (A, A) will
2875 return 1. */
2876
2877int
2878is_ancestor (struct type *base, struct type *dclass)
2879{
a9d5ef47 2880 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
2881}
2882
4e8f195d
TT
2883/* Like is_ancestor, but only returns true when BASE is a public
2884 ancestor of DCLASS. */
2885
2886int
2887is_public_ancestor (struct type *base, struct type *dclass)
2888{
a9d5ef47 2889 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
2890}
2891
2892/* A helper function for is_unique_ancestor. */
2893
2894static int
2895is_unique_ancestor_worker (struct type *base, struct type *dclass,
2896 int *offset,
8af8e3bc
PA
2897 const gdb_byte *valaddr, int embedded_offset,
2898 CORE_ADDR address, struct value *val)
4e8f195d
TT
2899{
2900 int i, count = 0;
2901
f168693b
SM
2902 base = check_typedef (base);
2903 dclass = check_typedef (dclass);
4e8f195d
TT
2904
2905 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2906 {
8af8e3bc
PA
2907 struct type *iter;
2908 int this_offset;
4e8f195d 2909
8af8e3bc
PA
2910 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2911
2912 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2913 address, val);
4e8f195d
TT
2914
2915 if (class_types_same_p (base, iter))
2916 {
2917 /* If this is the first subclass, set *OFFSET and set count
2918 to 1. Otherwise, if this is at the same offset as
2919 previous instances, do nothing. Otherwise, increment
2920 count. */
2921 if (*offset == -1)
2922 {
2923 *offset = this_offset;
2924 count = 1;
2925 }
2926 else if (this_offset == *offset)
2927 {
2928 /* Nothing. */
2929 }
2930 else
2931 ++count;
2932 }
2933 else
2934 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
2935 valaddr,
2936 embedded_offset + this_offset,
2937 address, val);
4e8f195d
TT
2938 }
2939
2940 return count;
2941}
2942
2943/* Like is_ancestor, but only returns true if BASE is a unique base
2944 class of the type of VAL. */
2945
2946int
2947is_unique_ancestor (struct type *base, struct value *val)
2948{
2949 int offset = -1;
2950
2951 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
2952 value_contents_for_printing (val),
2953 value_embedded_offset (val),
2954 value_address (val), val) == 1;
4e8f195d
TT
2955}
2956
c906108c 2957\f
5212577a 2958/* Overload resolution. */
c906108c 2959
6403aeea
SW
2960/* Return the sum of the rank of A with the rank of B. */
2961
2962struct rank
2963sum_ranks (struct rank a, struct rank b)
2964{
2965 struct rank c;
2966 c.rank = a.rank + b.rank;
a9d5ef47 2967 c.subrank = a.subrank + b.subrank;
6403aeea
SW
2968 return c;
2969}
2970
2971/* Compare rank A and B and return:
2972 0 if a = b
2973 1 if a is better than b
2974 -1 if b is better than a. */
2975
2976int
2977compare_ranks (struct rank a, struct rank b)
2978{
2979 if (a.rank == b.rank)
a9d5ef47
SW
2980 {
2981 if (a.subrank == b.subrank)
2982 return 0;
2983 if (a.subrank < b.subrank)
2984 return 1;
2985 if (a.subrank > b.subrank)
2986 return -1;
2987 }
6403aeea
SW
2988
2989 if (a.rank < b.rank)
2990 return 1;
2991
0963b4bd 2992 /* a.rank > b.rank */
6403aeea
SW
2993 return -1;
2994}
c5aa993b 2995
0963b4bd 2996/* Functions for overload resolution begin here. */
c906108c
SS
2997
2998/* Compare two badness vectors A and B and return the result.
7ba81444
MS
2999 0 => A and B are identical
3000 1 => A and B are incomparable
3001 2 => A is better than B
3002 3 => A is worse than B */
c906108c
SS
3003
3004int
fba45db2 3005compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
3006{
3007 int i;
3008 int tmp;
c5aa993b
JM
3009 short found_pos = 0; /* any positives in c? */
3010 short found_neg = 0; /* any negatives in c? */
3011
3012 /* differing lengths => incomparable */
c906108c
SS
3013 if (a->length != b->length)
3014 return 1;
3015
c5aa993b
JM
3016 /* Subtract b from a */
3017 for (i = 0; i < a->length; i++)
c906108c 3018 {
6403aeea 3019 tmp = compare_ranks (b->rank[i], a->rank[i]);
c906108c 3020 if (tmp > 0)
c5aa993b 3021 found_pos = 1;
c906108c 3022 else if (tmp < 0)
c5aa993b 3023 found_neg = 1;
c906108c
SS
3024 }
3025
3026 if (found_pos)
3027 {
3028 if (found_neg)
c5aa993b 3029 return 1; /* incomparable */
c906108c 3030 else
c5aa993b 3031 return 3; /* A > B */
c906108c 3032 }
c5aa993b
JM
3033 else
3034 /* no positives */
c906108c
SS
3035 {
3036 if (found_neg)
c5aa993b 3037 return 2; /* A < B */
c906108c 3038 else
c5aa993b 3039 return 0; /* A == B */
c906108c
SS
3040 }
3041}
3042
7ba81444
MS
3043/* Rank a function by comparing its parameter types (PARMS, length
3044 NPARMS), to the types of an argument list (ARGS, length NARGS).
3045 Return a pointer to a badness vector. This has NARGS + 1
3046 entries. */
c906108c
SS
3047
3048struct badness_vector *
7ba81444 3049rank_function (struct type **parms, int nparms,
da096638 3050 struct value **args, int nargs)
c906108c
SS
3051{
3052 int i;
8d749320 3053 struct badness_vector *bv = XNEW (struct badness_vector);
c906108c
SS
3054 int min_len = nparms < nargs ? nparms : nargs;
3055
0963b4bd 3056 bv->length = nargs + 1; /* add 1 for the length-match rank. */
c4e54771 3057 bv->rank = XNEWVEC (struct rank, nargs + 1);
c906108c
SS
3058
3059 /* First compare the lengths of the supplied lists.
7ba81444 3060 If there is a mismatch, set it to a high value. */
c5aa993b 3061
c906108c 3062 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
3063 arguments and ellipsis parameter lists, we should consider those
3064 and rank the length-match more finely. */
c906108c 3065
6403aeea
SW
3066 LENGTH_MATCH (bv) = (nargs != nparms)
3067 ? LENGTH_MISMATCH_BADNESS
3068 : EXACT_MATCH_BADNESS;
c906108c 3069
0963b4bd 3070 /* Now rank all the parameters of the candidate function. */
74cc24b0 3071 for (i = 1; i <= min_len; i++)
da096638
KS
3072 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
3073 args[i - 1]);
c906108c 3074
0963b4bd 3075 /* If more arguments than parameters, add dummy entries. */
c5aa993b 3076 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
3077 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
3078
3079 return bv;
3080}
3081
973ccf8b
DJ
3082/* Compare the names of two integer types, assuming that any sign
3083 qualifiers have been checked already. We do it this way because
3084 there may be an "int" in the name of one of the types. */
3085
3086static int
3087integer_types_same_name_p (const char *first, const char *second)
3088{
3089 int first_p, second_p;
3090
7ba81444
MS
3091 /* If both are shorts, return 1; if neither is a short, keep
3092 checking. */
973ccf8b
DJ
3093 first_p = (strstr (first, "short") != NULL);
3094 second_p = (strstr (second, "short") != NULL);
3095 if (first_p && second_p)
3096 return 1;
3097 if (first_p || second_p)
3098 return 0;
3099
3100 /* Likewise for long. */
3101 first_p = (strstr (first, "long") != NULL);
3102 second_p = (strstr (second, "long") != NULL);
3103 if (first_p && second_p)
3104 return 1;
3105 if (first_p || second_p)
3106 return 0;
3107
3108 /* Likewise for char. */
3109 first_p = (strstr (first, "char") != NULL);
3110 second_p = (strstr (second, "char") != NULL);
3111 if (first_p && second_p)
3112 return 1;
3113 if (first_p || second_p)
3114 return 0;
3115
3116 /* They must both be ints. */
3117 return 1;
3118}
3119
7062b0a0
SW
3120/* Compares type A to type B returns 1 if the represent the same type
3121 0 otherwise. */
3122
bd69fc68 3123int
7062b0a0
SW
3124types_equal (struct type *a, struct type *b)
3125{
3126 /* Identical type pointers. */
3127 /* However, this still doesn't catch all cases of same type for b
3128 and a. The reason is that builtin types are different from
3129 the same ones constructed from the object. */
3130 if (a == b)
3131 return 1;
3132
3133 /* Resolve typedefs */
3134 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3135 a = check_typedef (a);
3136 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3137 b = check_typedef (b);
3138
3139 /* If after resolving typedefs a and b are not of the same type
3140 code then they are not equal. */
3141 if (TYPE_CODE (a) != TYPE_CODE (b))
3142 return 0;
3143
3144 /* If a and b are both pointers types or both reference types then
3145 they are equal of the same type iff the objects they refer to are
3146 of the same type. */
3147 if (TYPE_CODE (a) == TYPE_CODE_PTR
3148 || TYPE_CODE (a) == TYPE_CODE_REF)
3149 return types_equal (TYPE_TARGET_TYPE (a),
3150 TYPE_TARGET_TYPE (b));
3151
0963b4bd 3152 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
3153 are exactly the same. This happens when we generate method
3154 stubs. The types won't point to the same address, but they
0963b4bd 3155 really are the same. */
7062b0a0
SW
3156
3157 if (TYPE_NAME (a) && TYPE_NAME (b)
3158 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3159 return 1;
3160
3161 /* Check if identical after resolving typedefs. */
3162 if (a == b)
3163 return 1;
3164
9ce98649
TT
3165 /* Two function types are equal if their argument and return types
3166 are equal. */
3167 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3168 {
3169 int i;
3170
3171 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3172 return 0;
3173
3174 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3175 return 0;
3176
3177 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3178 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3179 return 0;
3180
3181 return 1;
3182 }
3183
7062b0a0
SW
3184 return 0;
3185}
ca092b61
DE
3186\f
3187/* Deep comparison of types. */
3188
3189/* An entry in the type-equality bcache. */
3190
3191typedef struct type_equality_entry
3192{
3193 struct type *type1, *type2;
3194} type_equality_entry_d;
3195
3196DEF_VEC_O (type_equality_entry_d);
3197
3198/* A helper function to compare two strings. Returns 1 if they are
3199 the same, 0 otherwise. Handles NULLs properly. */
3200
3201static int
3202compare_maybe_null_strings (const char *s, const char *t)
3203{
3204 if (s == NULL && t != NULL)
3205 return 0;
3206 else if (s != NULL && t == NULL)
3207 return 0;
3208 else if (s == NULL && t== NULL)
3209 return 1;
3210 return strcmp (s, t) == 0;
3211}
3212
3213/* A helper function for check_types_worklist that checks two types for
3214 "deep" equality. Returns non-zero if the types are considered the
3215 same, zero otherwise. */
3216
3217static int
3218check_types_equal (struct type *type1, struct type *type2,
3219 VEC (type_equality_entry_d) **worklist)
3220{
f168693b
SM
3221 type1 = check_typedef (type1);
3222 type2 = check_typedef (type2);
ca092b61
DE
3223
3224 if (type1 == type2)
3225 return 1;
3226
3227 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3228 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3229 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3230 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3231 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3232 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3233 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3234 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3235 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3236 return 0;
3237
3238 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3239 TYPE_TAG_NAME (type2)))
3240 return 0;
3241 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3242 return 0;
3243
3244 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3245 {
3246 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
3247 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
3248 return 0;
3249 }
3250 else
3251 {
3252 int i;
3253
3254 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3255 {
3256 const struct field *field1 = &TYPE_FIELD (type1, i);
3257 const struct field *field2 = &TYPE_FIELD (type2, i);
3258 struct type_equality_entry entry;
3259
3260 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3261 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3262 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3263 return 0;
3264 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3265 FIELD_NAME (*field2)))
3266 return 0;
3267 switch (FIELD_LOC_KIND (*field1))
3268 {
3269 case FIELD_LOC_KIND_BITPOS:
3270 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3271 return 0;
3272 break;
3273 case FIELD_LOC_KIND_ENUMVAL:
3274 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3275 return 0;
3276 break;
3277 case FIELD_LOC_KIND_PHYSADDR:
3278 if (FIELD_STATIC_PHYSADDR (*field1)
3279 != FIELD_STATIC_PHYSADDR (*field2))
3280 return 0;
3281 break;
3282 case FIELD_LOC_KIND_PHYSNAME:
3283 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3284 FIELD_STATIC_PHYSNAME (*field2)))
3285 return 0;
3286 break;
3287 case FIELD_LOC_KIND_DWARF_BLOCK:
3288 {
3289 struct dwarf2_locexpr_baton *block1, *block2;
3290
3291 block1 = FIELD_DWARF_BLOCK (*field1);
3292 block2 = FIELD_DWARF_BLOCK (*field2);
3293 if (block1->per_cu != block2->per_cu
3294 || block1->size != block2->size
3295 || memcmp (block1->data, block2->data, block1->size) != 0)
3296 return 0;
3297 }
3298 break;
3299 default:
3300 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3301 "%d by check_types_equal"),
3302 FIELD_LOC_KIND (*field1));
3303 }
3304
3305 entry.type1 = FIELD_TYPE (*field1);
3306 entry.type2 = FIELD_TYPE (*field2);
3307 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3308 }
3309 }
3310
3311 if (TYPE_TARGET_TYPE (type1) != NULL)
3312 {
3313 struct type_equality_entry entry;
3314
3315 if (TYPE_TARGET_TYPE (type2) == NULL)
3316 return 0;
3317
3318 entry.type1 = TYPE_TARGET_TYPE (type1);
3319 entry.type2 = TYPE_TARGET_TYPE (type2);
3320 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3321 }
3322 else if (TYPE_TARGET_TYPE (type2) != NULL)
3323 return 0;
3324
3325 return 1;
3326}
3327
3328/* Check types on a worklist for equality. Returns zero if any pair
3329 is not equal, non-zero if they are all considered equal. */
3330
3331static int
3332check_types_worklist (VEC (type_equality_entry_d) **worklist,
3333 struct bcache *cache)
3334{
3335 while (!VEC_empty (type_equality_entry_d, *worklist))
3336 {
3337 struct type_equality_entry entry;
3338 int added;
3339
3340 entry = *VEC_last (type_equality_entry_d, *worklist);
3341 VEC_pop (type_equality_entry_d, *worklist);
3342
3343 /* If the type pair has already been visited, we know it is
3344 ok. */
3345 bcache_full (&entry, sizeof (entry), cache, &added);
3346 if (!added)
3347 continue;
3348
3349 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3350 return 0;
3351 }
7062b0a0 3352
ca092b61
DE
3353 return 1;
3354}
3355
3356/* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3357 "deep comparison". Otherwise return zero. */
3358
3359int
3360types_deeply_equal (struct type *type1, struct type *type2)
3361{
6c63c96a 3362 struct gdb_exception except = exception_none;
ca092b61
DE
3363 int result = 0;
3364 struct bcache *cache;
3365 VEC (type_equality_entry_d) *worklist = NULL;
3366 struct type_equality_entry entry;
3367
3368 gdb_assert (type1 != NULL && type2 != NULL);
3369
3370 /* Early exit for the simple case. */
3371 if (type1 == type2)
3372 return 1;
3373
3374 cache = bcache_xmalloc (NULL, NULL);
3375
3376 entry.type1 = type1;
3377 entry.type2 = type2;
3378 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3379
6c63c96a
PA
3380 /* check_types_worklist calls several nested helper functions, some
3381 of which can raise a GDB exception, so we just check and rethrow
3382 here. If there is a GDB exception, a comparison is not capable
3383 (or trusted), so exit. */
492d29ea 3384 TRY
ca092b61
DE
3385 {
3386 result = check_types_worklist (&worklist, cache);
3387 }
6c63c96a 3388 CATCH (ex, RETURN_MASK_ALL)
492d29ea 3389 {
6c63c96a 3390 except = ex;
492d29ea
PA
3391 }
3392 END_CATCH
ca092b61 3393
6c63c96a
PA
3394 bcache_xfree (cache);
3395 VEC_free (type_equality_entry_d, worklist);
3396
3397 /* Rethrow if there was a problem. */
3398 if (except.reason < 0)
3399 throw_exception (except);
3400
ca092b61
DE
3401 return result;
3402}
3f2f83dd
KB
3403
3404/* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3405 Otherwise return one. */
3406
3407int
3408type_not_allocated (const struct type *type)
3409{
3410 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3411
3412 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3413 && !TYPE_DYN_PROP_ADDR (prop));
3414}
3415
3416/* Associated status of type TYPE. Return zero if type TYPE is associated.
3417 Otherwise return one. */
3418
3419int
3420type_not_associated (const struct type *type)
3421{
3422 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3423
3424 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3425 && !TYPE_DYN_PROP_ADDR (prop));
3426}
ca092b61 3427\f
c906108c
SS
3428/* Compare one type (PARM) for compatibility with another (ARG).
3429 * PARM is intended to be the parameter type of a function; and
3430 * ARG is the supplied argument's type. This function tests if
3431 * the latter can be converted to the former.
da096638 3432 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
3433 *
3434 * Return 0 if they are identical types;
3435 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
3436 * PARM is to ARG. The higher the return value, the worse the match.
3437 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 3438
6403aeea 3439struct rank
da096638 3440rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 3441{
a9d5ef47 3442 struct rank rank = {0,0};
7062b0a0
SW
3443
3444 if (types_equal (parm, arg))
6403aeea 3445 return EXACT_MATCH_BADNESS;
c906108c
SS
3446
3447 /* Resolve typedefs */
3448 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3449 parm = check_typedef (parm);
3450 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3451 arg = check_typedef (arg);
3452
db577aea 3453 /* See through references, since we can almost make non-references
7ba81444 3454 references. */
db577aea 3455 if (TYPE_CODE (arg) == TYPE_CODE_REF)
da096638 3456 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
6403aeea 3457 REFERENCE_CONVERSION_BADNESS));
db577aea 3458 if (TYPE_CODE (parm) == TYPE_CODE_REF)
da096638 3459 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
6403aeea 3460 REFERENCE_CONVERSION_BADNESS));
5d161b24 3461 if (overload_debug)
7ba81444
MS
3462 /* Debugging only. */
3463 fprintf_filtered (gdb_stderr,
3464 "------ Arg is %s [%d], parm is %s [%d]\n",
3465 TYPE_NAME (arg), TYPE_CODE (arg),
3466 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 3467
0963b4bd 3468 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
3469
3470 switch (TYPE_CODE (parm))
3471 {
c5aa993b
JM
3472 case TYPE_CODE_PTR:
3473 switch (TYPE_CODE (arg))
3474 {
3475 case TYPE_CODE_PTR:
7062b0a0
SW
3476
3477 /* Allowed pointer conversions are:
3478 (a) pointer to void-pointer conversion. */
3479 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
c5aa993b 3480 return VOID_PTR_CONVERSION_BADNESS;
7062b0a0
SW
3481
3482 /* (b) pointer to ancestor-pointer conversion. */
a9d5ef47
SW
3483 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3484 TYPE_TARGET_TYPE (arg),
3485 0);
3486 if (rank.subrank >= 0)
3487 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
7062b0a0
SW
3488
3489 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3490 case TYPE_CODE_ARRAY:
7062b0a0
SW
3491 if (types_equal (TYPE_TARGET_TYPE (parm),
3492 TYPE_TARGET_TYPE (arg)))
6403aeea 3493 return EXACT_MATCH_BADNESS;
7062b0a0 3494 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3495 case TYPE_CODE_FUNC:
da096638 3496 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
c5aa993b 3497 case TYPE_CODE_INT:
a451cb65 3498 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
da096638 3499 {
a451cb65
KS
3500 if (value_as_long (value) == 0)
3501 {
3502 /* Null pointer conversion: allow it to be cast to a pointer.
3503 [4.10.1 of C++ standard draft n3290] */
3504 return NULL_POINTER_CONVERSION_BADNESS;
3505 }
3506 else
3507 {
3508 /* If type checking is disabled, allow the conversion. */
3509 if (!strict_type_checking)
3510 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3511 }
da096638
KS
3512 }
3513 /* fall through */
c5aa993b 3514 case TYPE_CODE_ENUM:
4f2aea11 3515 case TYPE_CODE_FLAGS:
c5aa993b
JM
3516 case TYPE_CODE_CHAR:
3517 case TYPE_CODE_RANGE:
3518 case TYPE_CODE_BOOL:
c5aa993b
JM
3519 default:
3520 return INCOMPATIBLE_TYPE_BADNESS;
3521 }
3522 case TYPE_CODE_ARRAY:
3523 switch (TYPE_CODE (arg))
3524 {
3525 case TYPE_CODE_PTR:
3526 case TYPE_CODE_ARRAY:
7ba81444 3527 return rank_one_type (TYPE_TARGET_TYPE (parm),
da096638 3528 TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3529 default:
3530 return INCOMPATIBLE_TYPE_BADNESS;
3531 }
3532 case TYPE_CODE_FUNC:
3533 switch (TYPE_CODE (arg))
3534 {
3535 case TYPE_CODE_PTR: /* funcptr -> func */
da096638 3536 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3537 default:
3538 return INCOMPATIBLE_TYPE_BADNESS;
3539 }
3540 case TYPE_CODE_INT:
3541 switch (TYPE_CODE (arg))
3542 {
3543 case TYPE_CODE_INT:
3544 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3545 {
3546 /* Deal with signed, unsigned, and plain chars and
7ba81444 3547 signed and unsigned ints. */
c5aa993b
JM
3548 if (TYPE_NOSIGN (parm))
3549 {
0963b4bd 3550 /* This case only for character types. */
7ba81444 3551 if (TYPE_NOSIGN (arg))
6403aeea 3552 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
7ba81444
MS
3553 else /* signed/unsigned char -> plain char */
3554 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3555 }
3556 else if (TYPE_UNSIGNED (parm))
3557 {
3558 if (TYPE_UNSIGNED (arg))
3559 {
7ba81444
MS
3560 /* unsigned int -> unsigned int, or
3561 unsigned long -> unsigned long */
3562 if (integer_types_same_name_p (TYPE_NAME (parm),
3563 TYPE_NAME (arg)))
6403aeea 3564 return EXACT_MATCH_BADNESS;
7ba81444
MS
3565 else if (integer_types_same_name_p (TYPE_NAME (arg),
3566 "int")
3567 && integer_types_same_name_p (TYPE_NAME (parm),
3568 "long"))
3e43a32a
MS
3569 /* unsigned int -> unsigned long */
3570 return INTEGER_PROMOTION_BADNESS;
c5aa993b 3571 else
3e43a32a
MS
3572 /* unsigned long -> unsigned int */
3573 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3574 }
3575 else
3576 {
7ba81444
MS
3577 if (integer_types_same_name_p (TYPE_NAME (arg),
3578 "long")
3579 && integer_types_same_name_p (TYPE_NAME (parm),
3580 "int"))
3e43a32a
MS
3581 /* signed long -> unsigned int */
3582 return INTEGER_CONVERSION_BADNESS;
c5aa993b 3583 else
3e43a32a
MS
3584 /* signed int/long -> unsigned int/long */
3585 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3586 }
3587 }
3588 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3589 {
7ba81444
MS
3590 if (integer_types_same_name_p (TYPE_NAME (parm),
3591 TYPE_NAME (arg)))
6403aeea 3592 return EXACT_MATCH_BADNESS;
7ba81444
MS
3593 else if (integer_types_same_name_p (TYPE_NAME (arg),
3594 "int")
3595 && integer_types_same_name_p (TYPE_NAME (parm),
3596 "long"))
c5aa993b
JM
3597 return INTEGER_PROMOTION_BADNESS;
3598 else
1c5cb38e 3599 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3600 }
3601 else
1c5cb38e 3602 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3603 }
3604 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3605 return INTEGER_PROMOTION_BADNESS;
3606 else
1c5cb38e 3607 return INTEGER_CONVERSION_BADNESS;
c5aa993b 3608 case TYPE_CODE_ENUM:
4f2aea11 3609 case TYPE_CODE_FLAGS:
c5aa993b
JM
3610 case TYPE_CODE_CHAR:
3611 case TYPE_CODE_RANGE:
3612 case TYPE_CODE_BOOL:
3d567982
TT
3613 if (TYPE_DECLARED_CLASS (arg))
3614 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b
JM
3615 return INTEGER_PROMOTION_BADNESS;
3616 case TYPE_CODE_FLT:
3617 return INT_FLOAT_CONVERSION_BADNESS;
3618 case TYPE_CODE_PTR:
3619 return NS_POINTER_CONVERSION_BADNESS;
3620 default:
3621 return INCOMPATIBLE_TYPE_BADNESS;
3622 }
3623 break;
3624 case TYPE_CODE_ENUM:
3625 switch (TYPE_CODE (arg))
3626 {
3627 case TYPE_CODE_INT:
3628 case TYPE_CODE_CHAR:
3629 case TYPE_CODE_RANGE:
3630 case TYPE_CODE_BOOL:
3631 case TYPE_CODE_ENUM:
3d567982
TT
3632 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3633 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 3634 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3635 case TYPE_CODE_FLT:
3636 return INT_FLOAT_CONVERSION_BADNESS;
3637 default:
3638 return INCOMPATIBLE_TYPE_BADNESS;
3639 }
3640 break;
3641 case TYPE_CODE_CHAR:
3642 switch (TYPE_CODE (arg))
3643 {
3644 case TYPE_CODE_RANGE:
3645 case TYPE_CODE_BOOL:
3646 case TYPE_CODE_ENUM:
3d567982
TT
3647 if (TYPE_DECLARED_CLASS (arg))
3648 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 3649 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3650 case TYPE_CODE_FLT:
3651 return INT_FLOAT_CONVERSION_BADNESS;
3652 case TYPE_CODE_INT:
3653 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
1c5cb38e 3654 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3655 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3656 return INTEGER_PROMOTION_BADNESS;
3657 /* >>> !! else fall through !! <<< */
3658 case TYPE_CODE_CHAR:
7ba81444
MS
3659 /* Deal with signed, unsigned, and plain chars for C++ and
3660 with int cases falling through from previous case. */
c5aa993b
JM
3661 if (TYPE_NOSIGN (parm))
3662 {
3663 if (TYPE_NOSIGN (arg))
6403aeea 3664 return EXACT_MATCH_BADNESS;
c5aa993b 3665 else
1c5cb38e 3666 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3667 }
3668 else if (TYPE_UNSIGNED (parm))
3669 {
3670 if (TYPE_UNSIGNED (arg))
6403aeea 3671 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3672 else
3673 return INTEGER_PROMOTION_BADNESS;
3674 }
3675 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
6403aeea 3676 return EXACT_MATCH_BADNESS;
c5aa993b 3677 else
1c5cb38e 3678 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3679 default:
3680 return INCOMPATIBLE_TYPE_BADNESS;
3681 }
3682 break;
3683 case TYPE_CODE_RANGE:
3684 switch (TYPE_CODE (arg))
3685 {
3686 case TYPE_CODE_INT:
3687 case TYPE_CODE_CHAR:
3688 case TYPE_CODE_RANGE:
3689 case TYPE_CODE_BOOL:
3690 case TYPE_CODE_ENUM:
1c5cb38e 3691 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3692 case TYPE_CODE_FLT:
3693 return INT_FLOAT_CONVERSION_BADNESS;
3694 default:
3695 return INCOMPATIBLE_TYPE_BADNESS;
3696 }
3697 break;
3698 case TYPE_CODE_BOOL:
3699 switch (TYPE_CODE (arg))
3700 {
5b4f6e25
KS
3701 /* n3290 draft, section 4.12.1 (conv.bool):
3702
3703 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3704 pointer to member type can be converted to a prvalue of type
3705 bool. A zero value, null pointer value, or null member pointer
3706 value is converted to false; any other value is converted to
3707 true. A prvalue of type std::nullptr_t can be converted to a
3708 prvalue of type bool; the resulting value is false." */
c5aa993b
JM
3709 case TYPE_CODE_INT:
3710 case TYPE_CODE_CHAR:
c5aa993b
JM
3711 case TYPE_CODE_ENUM:
3712 case TYPE_CODE_FLT:
5b4f6e25 3713 case TYPE_CODE_MEMBERPTR:
c5aa993b 3714 case TYPE_CODE_PTR:
5b4f6e25
KS
3715 return BOOL_CONVERSION_BADNESS;
3716 case TYPE_CODE_RANGE:
3717 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3718 case TYPE_CODE_BOOL:
6403aeea 3719 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3720 default:
3721 return INCOMPATIBLE_TYPE_BADNESS;
3722 }
3723 break;
3724 case TYPE_CODE_FLT:
3725 switch (TYPE_CODE (arg))
3726 {
3727 case TYPE_CODE_FLT:
3728 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3729 return FLOAT_PROMOTION_BADNESS;
3730 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
6403aeea 3731 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3732 else
3733 return FLOAT_CONVERSION_BADNESS;
3734 case TYPE_CODE_INT:
3735 case TYPE_CODE_BOOL:
3736 case TYPE_CODE_ENUM:
3737 case TYPE_CODE_RANGE:
3738 case TYPE_CODE_CHAR:
3739 return INT_FLOAT_CONVERSION_BADNESS;
3740 default:
3741 return INCOMPATIBLE_TYPE_BADNESS;
3742 }
3743 break;
3744 case TYPE_CODE_COMPLEX:
3745 switch (TYPE_CODE (arg))
7ba81444 3746 { /* Strictly not needed for C++, but... */
c5aa993b
JM
3747 case TYPE_CODE_FLT:
3748 return FLOAT_PROMOTION_BADNESS;
3749 case TYPE_CODE_COMPLEX:
6403aeea 3750 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3751 default:
3752 return INCOMPATIBLE_TYPE_BADNESS;
3753 }
3754 break;
3755 case TYPE_CODE_STRUCT:
c5aa993b
JM
3756 switch (TYPE_CODE (arg))
3757 {
3758 case TYPE_CODE_STRUCT:
3759 /* Check for derivation */
a9d5ef47
SW
3760 rank.subrank = distance_to_ancestor (parm, arg, 0);
3761 if (rank.subrank >= 0)
3762 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
c5aa993b
JM
3763 /* else fall through */
3764 default:
3765 return INCOMPATIBLE_TYPE_BADNESS;
3766 }
3767 break;
3768 case TYPE_CODE_UNION:
3769 switch (TYPE_CODE (arg))
3770 {
3771 case TYPE_CODE_UNION:
3772 default:
3773 return INCOMPATIBLE_TYPE_BADNESS;
3774 }
3775 break;
0d5de010 3776 case TYPE_CODE_MEMBERPTR:
c5aa993b
JM
3777 switch (TYPE_CODE (arg))
3778 {
3779 default:
3780 return INCOMPATIBLE_TYPE_BADNESS;
3781 }
3782 break;
3783 case TYPE_CODE_METHOD:
3784 switch (TYPE_CODE (arg))
3785 {
3786
3787 default:
3788 return INCOMPATIBLE_TYPE_BADNESS;
3789 }
3790 break;
3791 case TYPE_CODE_REF:
3792 switch (TYPE_CODE (arg))
3793 {
3794
3795 default:
3796 return INCOMPATIBLE_TYPE_BADNESS;
3797 }
3798
3799 break;
3800 case TYPE_CODE_SET:
3801 switch (TYPE_CODE (arg))
3802 {
3803 /* Not in C++ */
3804 case TYPE_CODE_SET:
7ba81444 3805 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
da096638 3806 TYPE_FIELD_TYPE (arg, 0), NULL);
c5aa993b
JM
3807 default:
3808 return INCOMPATIBLE_TYPE_BADNESS;
3809 }
3810 break;
3811 case TYPE_CODE_VOID:
3812 default:
3813 return INCOMPATIBLE_TYPE_BADNESS;
3814 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
3815}
3816
0963b4bd 3817/* End of functions for overload resolution. */
5212577a
DE
3818\f
3819/* Routines to pretty-print types. */
c906108c 3820
c906108c 3821static void
fba45db2 3822print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
3823{
3824 int bitno;
3825
3826 for (bitno = 0; bitno < nbits; bitno++)
3827 {
3828 if ((bitno % 8) == 0)
3829 {
3830 puts_filtered (" ");
3831 }
3832 if (B_TST (bits, bitno))
a3f17187 3833 printf_filtered (("1"));
c906108c 3834 else
a3f17187 3835 printf_filtered (("0"));
c906108c
SS
3836 }
3837}
3838
ad2f7632 3839/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
3840 include it since we may get into a infinitely recursive
3841 situation. */
c906108c
SS
3842
3843static void
4c9e8482 3844print_args (struct field *args, int nargs, int spaces)
c906108c
SS
3845{
3846 if (args != NULL)
3847 {
ad2f7632
DJ
3848 int i;
3849
3850 for (i = 0; i < nargs; i++)
4c9e8482
DE
3851 {
3852 printfi_filtered (spaces, "[%d] name '%s'\n", i,
3853 args[i].name != NULL ? args[i].name : "<NULL>");
3854 recursive_dump_type (args[i].type, spaces + 2);
3855 }
c906108c
SS
3856 }
3857}
3858
d6a843b5
JK
3859int
3860field_is_static (struct field *f)
3861{
3862 /* "static" fields are the fields whose location is not relative
3863 to the address of the enclosing struct. It would be nice to
3864 have a dedicated flag that would be set for static fields when
3865 the type is being created. But in practice, checking the field
254e6b9e 3866 loc_kind should give us an accurate answer. */
d6a843b5
JK
3867 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3868 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3869}
3870
c906108c 3871static void
fba45db2 3872dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
3873{
3874 int method_idx;
3875 int overload_idx;
3876 struct fn_field *f;
3877
3878 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 3879 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
3880 printf_filtered ("\n");
3881 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3882 {
3883 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3884 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3885 method_idx,
3886 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
3887 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3888 gdb_stdout);
a3f17187 3889 printf_filtered (_(") length %d\n"),
c906108c
SS
3890 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3891 for (overload_idx = 0;
3892 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3893 overload_idx++)
3894 {
3895 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3896 overload_idx,
3897 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
3898 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3899 gdb_stdout);
c906108c
SS
3900 printf_filtered (")\n");
3901 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
3902 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3903 gdb_stdout);
c906108c
SS
3904 printf_filtered ("\n");
3905
3906 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3907 spaces + 8 + 2);
3908
3909 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
3910 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3911 gdb_stdout);
c906108c 3912 printf_filtered ("\n");
4c9e8482
DE
3913 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
3914 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
3915 spaces + 8 + 2);
c906108c 3916 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
3917 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3918 gdb_stdout);
c906108c
SS
3919 printf_filtered ("\n");
3920
3921 printfi_filtered (spaces + 8, "is_const %d\n",
3922 TYPE_FN_FIELD_CONST (f, overload_idx));
3923 printfi_filtered (spaces + 8, "is_volatile %d\n",
3924 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3925 printfi_filtered (spaces + 8, "is_private %d\n",
3926 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3927 printfi_filtered (spaces + 8, "is_protected %d\n",
3928 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3929 printfi_filtered (spaces + 8, "is_stub %d\n",
3930 TYPE_FN_FIELD_STUB (f, overload_idx));
3931 printfi_filtered (spaces + 8, "voffset %u\n",
3932 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3933 }
3934 }
3935}
3936
3937static void
fba45db2 3938print_cplus_stuff (struct type *type, int spaces)
c906108c 3939{
ae6ae975
DE
3940 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
3941 printfi_filtered (spaces, "vptr_basetype ");
3942 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3943 puts_filtered ("\n");
3944 if (TYPE_VPTR_BASETYPE (type) != NULL)
3945 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3946
c906108c
SS
3947 printfi_filtered (spaces, "n_baseclasses %d\n",
3948 TYPE_N_BASECLASSES (type));
3949 printfi_filtered (spaces, "nfn_fields %d\n",
3950 TYPE_NFN_FIELDS (type));
c906108c
SS
3951 if (TYPE_N_BASECLASSES (type) > 0)
3952 {
3953 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3954 TYPE_N_BASECLASSES (type));
7ba81444
MS
3955 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3956 gdb_stdout);
c906108c
SS
3957 printf_filtered (")");
3958
3959 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3960 TYPE_N_BASECLASSES (type));
3961 puts_filtered ("\n");
3962 }
3963 if (TYPE_NFIELDS (type) > 0)
3964 {
3965 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3966 {
7ba81444
MS
3967 printfi_filtered (spaces,
3968 "private_field_bits (%d bits at *",
c906108c 3969 TYPE_NFIELDS (type));
7ba81444
MS
3970 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3971 gdb_stdout);
c906108c
SS
3972 printf_filtered (")");
3973 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3974 TYPE_NFIELDS (type));
3975 puts_filtered ("\n");
3976 }
3977 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3978 {
7ba81444
MS
3979 printfi_filtered (spaces,
3980 "protected_field_bits (%d bits at *",
c906108c 3981 TYPE_NFIELDS (type));
7ba81444
MS
3982 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3983 gdb_stdout);
c906108c
SS
3984 printf_filtered (")");
3985 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3986 TYPE_NFIELDS (type));
3987 puts_filtered ("\n");
3988 }
3989 }
3990 if (TYPE_NFN_FIELDS (type) > 0)
3991 {
3992 dump_fn_fieldlists (type, spaces);
3993 }
3994}
3995
b4ba55a1
JB
3996/* Print the contents of the TYPE's type_specific union, assuming that
3997 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3998
3999static void
4000print_gnat_stuff (struct type *type, int spaces)
4001{
4002 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4003
8cd00c59
PMR
4004 if (descriptive_type == NULL)
4005 printfi_filtered (spaces + 2, "no descriptive type\n");
4006 else
4007 {
4008 printfi_filtered (spaces + 2, "descriptive type\n");
4009 recursive_dump_type (descriptive_type, spaces + 4);
4010 }
b4ba55a1
JB
4011}
4012
c906108c
SS
4013static struct obstack dont_print_type_obstack;
4014
4015void
fba45db2 4016recursive_dump_type (struct type *type, int spaces)
c906108c
SS
4017{
4018 int idx;
4019
4020 if (spaces == 0)
4021 obstack_begin (&dont_print_type_obstack, 0);
4022
4023 if (TYPE_NFIELDS (type) > 0
b4ba55a1 4024 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
4025 {
4026 struct type **first_dont_print
7ba81444 4027 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 4028
7ba81444
MS
4029 int i = (struct type **)
4030 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
4031
4032 while (--i >= 0)
4033 {
4034 if (type == first_dont_print[i])
4035 {
4036 printfi_filtered (spaces, "type node ");
d4f3574e 4037 gdb_print_host_address (type, gdb_stdout);
a3f17187 4038 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
4039 return;
4040 }
4041 }
4042
4043 obstack_ptr_grow (&dont_print_type_obstack, type);
4044 }
4045
4046 printfi_filtered (spaces, "type node ");
d4f3574e 4047 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
4048 printf_filtered ("\n");
4049 printfi_filtered (spaces, "name '%s' (",
4050 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 4051 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 4052 printf_filtered (")\n");
e9e79dd9
FF
4053 printfi_filtered (spaces, "tagname '%s' (",
4054 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
4055 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
4056 printf_filtered (")\n");
c906108c
SS
4057 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4058 switch (TYPE_CODE (type))
4059 {
c5aa993b
JM
4060 case TYPE_CODE_UNDEF:
4061 printf_filtered ("(TYPE_CODE_UNDEF)");
4062 break;
4063 case TYPE_CODE_PTR:
4064 printf_filtered ("(TYPE_CODE_PTR)");
4065 break;
4066 case TYPE_CODE_ARRAY:
4067 printf_filtered ("(TYPE_CODE_ARRAY)");
4068 break;
4069 case TYPE_CODE_STRUCT:
4070 printf_filtered ("(TYPE_CODE_STRUCT)");
4071 break;
4072 case TYPE_CODE_UNION:
4073 printf_filtered ("(TYPE_CODE_UNION)");
4074 break;
4075 case TYPE_CODE_ENUM:
4076 printf_filtered ("(TYPE_CODE_ENUM)");
4077 break;
4f2aea11
MK
4078 case TYPE_CODE_FLAGS:
4079 printf_filtered ("(TYPE_CODE_FLAGS)");
4080 break;
c5aa993b
JM
4081 case TYPE_CODE_FUNC:
4082 printf_filtered ("(TYPE_CODE_FUNC)");
4083 break;
4084 case TYPE_CODE_INT:
4085 printf_filtered ("(TYPE_CODE_INT)");
4086 break;
4087 case TYPE_CODE_FLT:
4088 printf_filtered ("(TYPE_CODE_FLT)");
4089 break;
4090 case TYPE_CODE_VOID:
4091 printf_filtered ("(TYPE_CODE_VOID)");
4092 break;
4093 case TYPE_CODE_SET:
4094 printf_filtered ("(TYPE_CODE_SET)");
4095 break;
4096 case TYPE_CODE_RANGE:
4097 printf_filtered ("(TYPE_CODE_RANGE)");
4098 break;
4099 case TYPE_CODE_STRING:
4100 printf_filtered ("(TYPE_CODE_STRING)");
4101 break;
4102 case TYPE_CODE_ERROR:
4103 printf_filtered ("(TYPE_CODE_ERROR)");
4104 break;
0d5de010
DJ
4105 case TYPE_CODE_MEMBERPTR:
4106 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4107 break;
4108 case TYPE_CODE_METHODPTR:
4109 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
4110 break;
4111 case TYPE_CODE_METHOD:
4112 printf_filtered ("(TYPE_CODE_METHOD)");
4113 break;
4114 case TYPE_CODE_REF:
4115 printf_filtered ("(TYPE_CODE_REF)");
4116 break;
4117 case TYPE_CODE_CHAR:
4118 printf_filtered ("(TYPE_CODE_CHAR)");
4119 break;
4120 case TYPE_CODE_BOOL:
4121 printf_filtered ("(TYPE_CODE_BOOL)");
4122 break;
e9e79dd9
FF
4123 case TYPE_CODE_COMPLEX:
4124 printf_filtered ("(TYPE_CODE_COMPLEX)");
4125 break;
c5aa993b
JM
4126 case TYPE_CODE_TYPEDEF:
4127 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4128 break;
5c4e30ca
DC
4129 case TYPE_CODE_NAMESPACE:
4130 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4131 break;
c5aa993b
JM
4132 default:
4133 printf_filtered ("(UNKNOWN TYPE CODE)");
4134 break;
c906108c
SS
4135 }
4136 puts_filtered ("\n");
4137 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9bb382b
UW
4138 if (TYPE_OBJFILE_OWNED (type))
4139 {
4140 printfi_filtered (spaces, "objfile ");
4141 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4142 }
4143 else
4144 {
4145 printfi_filtered (spaces, "gdbarch ");
4146 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4147 }
c906108c
SS
4148 printf_filtered ("\n");
4149 printfi_filtered (spaces, "target_type ");
d4f3574e 4150 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
4151 printf_filtered ("\n");
4152 if (TYPE_TARGET_TYPE (type) != NULL)
4153 {
4154 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4155 }
4156 printfi_filtered (spaces, "pointer_type ");
d4f3574e 4157 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
4158 printf_filtered ("\n");
4159 printfi_filtered (spaces, "reference_type ");
d4f3574e 4160 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 4161 printf_filtered ("\n");
2fdde8f8
DJ
4162 printfi_filtered (spaces, "type_chain ");
4163 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 4164 printf_filtered ("\n");
7ba81444
MS
4165 printfi_filtered (spaces, "instance_flags 0x%x",
4166 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
4167 if (TYPE_CONST (type))
4168 {
4169 puts_filtered (" TYPE_FLAG_CONST");
4170 }
4171 if (TYPE_VOLATILE (type))
4172 {
4173 puts_filtered (" TYPE_FLAG_VOLATILE");
4174 }
4175 if (TYPE_CODE_SPACE (type))
4176 {
4177 puts_filtered (" TYPE_FLAG_CODE_SPACE");
4178 }
4179 if (TYPE_DATA_SPACE (type))
4180 {
4181 puts_filtered (" TYPE_FLAG_DATA_SPACE");
4182 }
8b2dbe47
KB
4183 if (TYPE_ADDRESS_CLASS_1 (type))
4184 {
4185 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
4186 }
4187 if (TYPE_ADDRESS_CLASS_2 (type))
4188 {
4189 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
4190 }
06d66ee9
TT
4191 if (TYPE_RESTRICT (type))
4192 {
4193 puts_filtered (" TYPE_FLAG_RESTRICT");
4194 }
a2c2acaf
MW
4195 if (TYPE_ATOMIC (type))
4196 {
4197 puts_filtered (" TYPE_FLAG_ATOMIC");
4198 }
2fdde8f8 4199 puts_filtered ("\n");
876cecd0
TT
4200
4201 printfi_filtered (spaces, "flags");
762a036f 4202 if (TYPE_UNSIGNED (type))
c906108c
SS
4203 {
4204 puts_filtered (" TYPE_FLAG_UNSIGNED");
4205 }
762a036f
FF
4206 if (TYPE_NOSIGN (type))
4207 {
4208 puts_filtered (" TYPE_FLAG_NOSIGN");
4209 }
4210 if (TYPE_STUB (type))
c906108c
SS
4211 {
4212 puts_filtered (" TYPE_FLAG_STUB");
4213 }
762a036f
FF
4214 if (TYPE_TARGET_STUB (type))
4215 {
4216 puts_filtered (" TYPE_FLAG_TARGET_STUB");
4217 }
4218 if (TYPE_STATIC (type))
4219 {
4220 puts_filtered (" TYPE_FLAG_STATIC");
4221 }
762a036f
FF
4222 if (TYPE_PROTOTYPED (type))
4223 {
4224 puts_filtered (" TYPE_FLAG_PROTOTYPED");
4225 }
4226 if (TYPE_INCOMPLETE (type))
4227 {
4228 puts_filtered (" TYPE_FLAG_INCOMPLETE");
4229 }
762a036f
FF
4230 if (TYPE_VARARGS (type))
4231 {
4232 puts_filtered (" TYPE_FLAG_VARARGS");
4233 }
f5f8a009
EZ
4234 /* This is used for things like AltiVec registers on ppc. Gcc emits
4235 an attribute for the array type, which tells whether or not we
4236 have a vector, instead of a regular array. */
4237 if (TYPE_VECTOR (type))
4238 {
4239 puts_filtered (" TYPE_FLAG_VECTOR");
4240 }
876cecd0
TT
4241 if (TYPE_FIXED_INSTANCE (type))
4242 {
4243 puts_filtered (" TYPE_FIXED_INSTANCE");
4244 }
4245 if (TYPE_STUB_SUPPORTED (type))
4246 {
4247 puts_filtered (" TYPE_STUB_SUPPORTED");
4248 }
4249 if (TYPE_NOTTEXT (type))
4250 {
4251 puts_filtered (" TYPE_NOTTEXT");
4252 }
c906108c
SS
4253 puts_filtered ("\n");
4254 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 4255 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
4256 puts_filtered ("\n");
4257 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4258 {
14e75d8e
JK
4259 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4260 printfi_filtered (spaces + 2,
4261 "[%d] enumval %s type ",
4262 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4263 else
4264 printfi_filtered (spaces + 2,
4265 "[%d] bitpos %d bitsize %d type ",
4266 idx, TYPE_FIELD_BITPOS (type, idx),
4267 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 4268 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
4269 printf_filtered (" name '%s' (",
4270 TYPE_FIELD_NAME (type, idx) != NULL
4271 ? TYPE_FIELD_NAME (type, idx)
4272 : "<NULL>");
d4f3574e 4273 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
4274 printf_filtered (")\n");
4275 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4276 {
4277 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4278 }
4279 }
43bbcdc2
PH
4280 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4281 {
4282 printfi_filtered (spaces, "low %s%s high %s%s\n",
4283 plongest (TYPE_LOW_BOUND (type)),
4284 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4285 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
4286 TYPE_HIGH_BOUND_UNDEFINED (type)
4287 ? " (undefined)" : "");
43bbcdc2 4288 }
c906108c 4289
b4ba55a1
JB
4290 switch (TYPE_SPECIFIC_FIELD (type))
4291 {
4292 case TYPE_SPECIFIC_CPLUS_STUFF:
4293 printfi_filtered (spaces, "cplus_stuff ");
4294 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4295 gdb_stdout);
4296 puts_filtered ("\n");
4297 print_cplus_stuff (type, spaces);
4298 break;
8da61cc4 4299
b4ba55a1
JB
4300 case TYPE_SPECIFIC_GNAT_STUFF:
4301 printfi_filtered (spaces, "gnat_stuff ");
4302 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4303 puts_filtered ("\n");
4304 print_gnat_stuff (type, spaces);
4305 break;
701c159d 4306
b4ba55a1
JB
4307 case TYPE_SPECIFIC_FLOATFORMAT:
4308 printfi_filtered (spaces, "floatformat ");
4309 if (TYPE_FLOATFORMAT (type) == NULL)
4310 puts_filtered ("(null)");
4311 else
4312 {
4313 puts_filtered ("{ ");
4314 if (TYPE_FLOATFORMAT (type)[0] == NULL
4315 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
4316 puts_filtered ("(null)");
4317 else
4318 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
4319
4320 puts_filtered (", ");
4321 if (TYPE_FLOATFORMAT (type)[1] == NULL
4322 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
4323 puts_filtered ("(null)");
4324 else
4325 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
4326
4327 puts_filtered (" }");
4328 }
4329 puts_filtered ("\n");
4330 break;
c906108c 4331
b6cdc2c1 4332 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
4333 printfi_filtered (spaces, "calling_convention %d\n",
4334 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 4335 /* tail_call_list is not printed. */
b4ba55a1 4336 break;
09e2d7c7
DE
4337
4338 case TYPE_SPECIFIC_SELF_TYPE:
4339 printfi_filtered (spaces, "self_type ");
4340 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4341 puts_filtered ("\n");
4342 break;
c906108c 4343 }
b4ba55a1 4344
c906108c
SS
4345 if (spaces == 0)
4346 obstack_free (&dont_print_type_obstack, NULL);
4347}
5212577a 4348\f
ae5a43e0
DJ
4349/* Trivial helpers for the libiberty hash table, for mapping one
4350 type to another. */
4351
4352struct type_pair
4353{
fe978cb0 4354 struct type *old, *newobj;
ae5a43e0
DJ
4355};
4356
4357static hashval_t
4358type_pair_hash (const void *item)
4359{
9a3c8263 4360 const struct type_pair *pair = (const struct type_pair *) item;
d8734c88 4361
ae5a43e0
DJ
4362 return htab_hash_pointer (pair->old);
4363}
4364
4365static int
4366type_pair_eq (const void *item_lhs, const void *item_rhs)
4367{
9a3c8263
SM
4368 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4369 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
d8734c88 4370
ae5a43e0
DJ
4371 return lhs->old == rhs->old;
4372}
4373
4374/* Allocate the hash table used by copy_type_recursive to walk
4375 types without duplicates. We use OBJFILE's obstack, because
4376 OBJFILE is about to be deleted. */
4377
4378htab_t
4379create_copied_types_hash (struct objfile *objfile)
4380{
4381 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4382 NULL, &objfile->objfile_obstack,
4383 hashtab_obstack_allocate,
4384 dummy_obstack_deallocate);
4385}
4386
d9823cbb
KB
4387/* Recursively copy (deep copy) a dynamic attribute list of a type. */
4388
4389static struct dynamic_prop_list *
4390copy_dynamic_prop_list (struct obstack *objfile_obstack,
4391 struct dynamic_prop_list *list)
4392{
4393 struct dynamic_prop_list *copy = list;
4394 struct dynamic_prop_list **node_ptr = &copy;
4395
4396 while (*node_ptr != NULL)
4397 {
4398 struct dynamic_prop_list *node_copy;
4399
224c3ddb
SM
4400 node_copy = ((struct dynamic_prop_list *)
4401 obstack_copy (objfile_obstack, *node_ptr,
4402 sizeof (struct dynamic_prop_list)));
283a9958 4403 node_copy->prop = (*node_ptr)->prop;
d9823cbb
KB
4404 *node_ptr = node_copy;
4405
4406 node_ptr = &node_copy->next;
4407 }
4408
4409 return copy;
4410}
4411
7ba81444 4412/* Recursively copy (deep copy) TYPE, if it is associated with
eed8b28a
PP
4413 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4414 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4415 it is not associated with OBJFILE. */
ae5a43e0
DJ
4416
4417struct type *
7ba81444
MS
4418copy_type_recursive (struct objfile *objfile,
4419 struct type *type,
ae5a43e0
DJ
4420 htab_t copied_types)
4421{
4422 struct type_pair *stored, pair;
4423 void **slot;
4424 struct type *new_type;
4425
e9bb382b 4426 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
4427 return type;
4428
7ba81444
MS
4429 /* This type shouldn't be pointing to any types in other objfiles;
4430 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
4431 gdb_assert (TYPE_OBJFILE (type) == objfile);
4432
4433 pair.old = type;
4434 slot = htab_find_slot (copied_types, &pair, INSERT);
4435 if (*slot != NULL)
fe978cb0 4436 return ((struct type_pair *) *slot)->newobj;
ae5a43e0 4437
e9bb382b 4438 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
4439
4440 /* We must add the new type to the hash table immediately, in case
4441 we encounter this type again during a recursive call below. */
8d749320 4442 stored = XOBNEW (&objfile->objfile_obstack, struct type_pair);
ae5a43e0 4443 stored->old = type;
fe978cb0 4444 stored->newobj = new_type;
ae5a43e0
DJ
4445 *slot = stored;
4446
876cecd0
TT
4447 /* Copy the common fields of types. For the main type, we simply
4448 copy the entire thing and then update specific fields as needed. */
4449 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
4450 TYPE_OBJFILE_OWNED (new_type) = 0;
4451 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 4452
ae5a43e0
DJ
4453 if (TYPE_NAME (type))
4454 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4455 if (TYPE_TAG_NAME (type))
4456 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
ae5a43e0
DJ
4457
4458 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4459 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4460
4461 /* Copy the fields. */
ae5a43e0
DJ
4462 if (TYPE_NFIELDS (type))
4463 {
4464 int i, nfields;
4465
4466 nfields = TYPE_NFIELDS (type);
fc270c35 4467 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
ae5a43e0
DJ
4468 for (i = 0; i < nfields; i++)
4469 {
7ba81444
MS
4470 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4471 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
4472 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4473 if (TYPE_FIELD_TYPE (type, i))
4474 TYPE_FIELD_TYPE (new_type, i)
4475 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4476 copied_types);
4477 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
4478 TYPE_FIELD_NAME (new_type, i) =
4479 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 4480 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 4481 {
d6a843b5
JK
4482 case FIELD_LOC_KIND_BITPOS:
4483 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4484 TYPE_FIELD_BITPOS (type, i));
4485 break;
14e75d8e
JK
4486 case FIELD_LOC_KIND_ENUMVAL:
4487 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4488 TYPE_FIELD_ENUMVAL (type, i));
4489 break;
d6a843b5
JK
4490 case FIELD_LOC_KIND_PHYSADDR:
4491 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4492 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4493 break;
4494 case FIELD_LOC_KIND_PHYSNAME:
4495 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4496 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4497 i)));
4498 break;
4499 default:
4500 internal_error (__FILE__, __LINE__,
4501 _("Unexpected type field location kind: %d"),
4502 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
4503 }
4504 }
4505 }
4506
0963b4bd 4507 /* For range types, copy the bounds information. */
43bbcdc2
PH
4508 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4509 {
8d749320 4510 TYPE_RANGE_DATA (new_type) = XNEW (struct range_bounds);
43bbcdc2
PH
4511 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4512 }
4513
d9823cbb
KB
4514 if (TYPE_DYN_PROP_LIST (type) != NULL)
4515 TYPE_DYN_PROP_LIST (new_type)
4516 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4517 TYPE_DYN_PROP_LIST (type));
4518
3cdcd0ce 4519
ae5a43e0
DJ
4520 /* Copy pointers to other types. */
4521 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
4522 TYPE_TARGET_TYPE (new_type) =
4523 copy_type_recursive (objfile,
4524 TYPE_TARGET_TYPE (type),
4525 copied_types);
f6b3afbf 4526
ae5a43e0
DJ
4527 /* Maybe copy the type_specific bits.
4528
4529 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4530 base classes and methods. There's no fundamental reason why we
4531 can't, but at the moment it is not needed. */
4532
f6b3afbf
DE
4533 switch (TYPE_SPECIFIC_FIELD (type))
4534 {
4535 case TYPE_SPECIFIC_NONE:
4536 break;
4537 case TYPE_SPECIFIC_FUNC:
4538 INIT_FUNC_SPECIFIC (new_type);
4539 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4540 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4541 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4542 break;
4543 case TYPE_SPECIFIC_FLOATFORMAT:
4544 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4545 break;
4546 case TYPE_SPECIFIC_CPLUS_STUFF:
4547 INIT_CPLUS_SPECIFIC (new_type);
4548 break;
4549 case TYPE_SPECIFIC_GNAT_STUFF:
4550 INIT_GNAT_SPECIFIC (new_type);
4551 break;
09e2d7c7
DE
4552 case TYPE_SPECIFIC_SELF_TYPE:
4553 set_type_self_type (new_type,
4554 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4555 copied_types));
4556 break;
f6b3afbf
DE
4557 default:
4558 gdb_assert_not_reached ("bad type_specific_kind");
4559 }
ae5a43e0
DJ
4560
4561 return new_type;
4562}
4563
4af88198
JB
4564/* Make a copy of the given TYPE, except that the pointer & reference
4565 types are not preserved.
4566
4567 This function assumes that the given type has an associated objfile.
4568 This objfile is used to allocate the new type. */
4569
4570struct type *
4571copy_type (const struct type *type)
4572{
4573 struct type *new_type;
4574
e9bb382b 4575 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 4576
e9bb382b 4577 new_type = alloc_type_copy (type);
4af88198
JB
4578 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4579 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4580 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4581 sizeof (struct main_type));
d9823cbb
KB
4582 if (TYPE_DYN_PROP_LIST (type) != NULL)
4583 TYPE_DYN_PROP_LIST (new_type)
4584 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
4585 TYPE_DYN_PROP_LIST (type));
4af88198
JB
4586
4587 return new_type;
4588}
5212577a 4589\f
e9bb382b
UW
4590/* Helper functions to initialize architecture-specific types. */
4591
4592/* Allocate a type structure associated with GDBARCH and set its
4593 CODE, LENGTH, and NAME fields. */
5212577a 4594
e9bb382b
UW
4595struct type *
4596arch_type (struct gdbarch *gdbarch,
4597 enum type_code code, int length, char *name)
4598{
4599 struct type *type;
4600
4601 type = alloc_type_arch (gdbarch);
4602 TYPE_CODE (type) = code;
4603 TYPE_LENGTH (type) = length;
4604
4605 if (name)
6c214e7c 4606 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
e9bb382b
UW
4607
4608 return type;
4609}
4610
4611/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4612 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4613 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4614
e9bb382b
UW
4615struct type *
4616arch_integer_type (struct gdbarch *gdbarch,
4617 int bit, int unsigned_p, char *name)
4618{
4619 struct type *t;
4620
4621 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4622 if (unsigned_p)
4623 TYPE_UNSIGNED (t) = 1;
4624 if (name && strcmp (name, "char") == 0)
4625 TYPE_NOSIGN (t) = 1;
4626
4627 return t;
4628}
4629
4630/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4631 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4632 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4633
e9bb382b
UW
4634struct type *
4635arch_character_type (struct gdbarch *gdbarch,
4636 int bit, int unsigned_p, char *name)
4637{
4638 struct type *t;
4639
4640 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4641 if (unsigned_p)
4642 TYPE_UNSIGNED (t) = 1;
4643
4644 return t;
4645}
4646
4647/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4648 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4649 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4650
e9bb382b
UW
4651struct type *
4652arch_boolean_type (struct gdbarch *gdbarch,
4653 int bit, int unsigned_p, char *name)
4654{
4655 struct type *t;
4656
4657 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4658 if (unsigned_p)
4659 TYPE_UNSIGNED (t) = 1;
4660
4661 return t;
4662}
4663
4664/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4665 BIT is the type size in bits; if BIT equals -1, the size is
4666 determined by the floatformat. NAME is the type name. Set the
4667 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 4668
27067745 4669struct type *
e9bb382b
UW
4670arch_float_type (struct gdbarch *gdbarch,
4671 int bit, char *name, const struct floatformat **floatformats)
8da61cc4
DJ
4672{
4673 struct type *t;
4674
4675 if (bit == -1)
4676 {
4677 gdb_assert (floatformats != NULL);
4678 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4679 bit = floatformats[0]->totalsize;
4680 }
4681 gdb_assert (bit >= 0);
4682
e9bb382b 4683 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
8da61cc4 4684 TYPE_FLOATFORMAT (t) = floatformats;
b79497cb
PA
4685
4686 if (floatformats != NULL)
4687 {
4688 size_t len = TYPE_LENGTH (t);
4689
4690 gdb_assert (len >= floatformat_totalsize_bytes (floatformats[0]));
4691 gdb_assert (len >= floatformat_totalsize_bytes (floatformats[1]));
4692 }
4693
8da61cc4
DJ
4694 return t;
4695}
4696
e9bb382b
UW
4697/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4698 NAME is the type name. TARGET_TYPE is the component float type. */
5212577a 4699
27067745 4700struct type *
e9bb382b
UW
4701arch_complex_type (struct gdbarch *gdbarch,
4702 char *name, struct type *target_type)
27067745
UW
4703{
4704 struct type *t;
d8734c88 4705
e9bb382b
UW
4706 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4707 2 * TYPE_LENGTH (target_type), name);
27067745
UW
4708 TYPE_TARGET_TYPE (t) = target_type;
4709 return t;
4710}
4711
e9bb382b 4712/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
eb90ce83 4713 NAME is the type name. LENGTH is the size of the flag word in bytes. */
5212577a 4714
e9bb382b
UW
4715struct type *
4716arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4717{
4718 int nfields = length * TARGET_CHAR_BIT;
4719 struct type *type;
4720
4721 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4722 TYPE_UNSIGNED (type) = 1;
4723 TYPE_NFIELDS (type) = nfields;
224c3ddb
SM
4724 TYPE_FIELDS (type)
4725 = (struct field *) TYPE_ZALLOC (type, nfields * sizeof (struct field));
e9bb382b
UW
4726
4727 return type;
4728}
4729
4730/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4731 position BITPOS is called NAME. */
5212577a 4732
e9bb382b
UW
4733void
4734append_flags_type_flag (struct type *type, int bitpos, char *name)
4735{
4736 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4737 gdb_assert (bitpos < TYPE_NFIELDS (type));
4738 gdb_assert (bitpos >= 0);
4739
4740 if (name)
4741 {
4742 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
945b3a32 4743 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
e9bb382b
UW
4744 }
4745 else
4746 {
4747 /* Don't show this field to the user. */
945b3a32 4748 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
e9bb382b
UW
4749 }
4750}
4751
4752/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4753 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 4754
e9bb382b
UW
4755struct type *
4756arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4757{
4758 struct type *t;
d8734c88 4759
e9bb382b
UW
4760 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4761 t = arch_type (gdbarch, code, 0, NULL);
4762 TYPE_TAG_NAME (t) = name;
4763 INIT_CPLUS_SPECIFIC (t);
4764 return t;
4765}
4766
4767/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
4768 Do not set the field's position or adjust the type's length;
4769 the caller should do so. Return the new field. */
5212577a 4770
f5dff777
DJ
4771struct field *
4772append_composite_type_field_raw (struct type *t, char *name,
4773 struct type *field)
e9bb382b
UW
4774{
4775 struct field *f;
d8734c88 4776
e9bb382b 4777 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
224c3ddb
SM
4778 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
4779 TYPE_NFIELDS (t));
e9bb382b
UW
4780 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4781 memset (f, 0, sizeof f[0]);
4782 FIELD_TYPE (f[0]) = field;
4783 FIELD_NAME (f[0]) = name;
f5dff777
DJ
4784 return f;
4785}
4786
4787/* Add new field with name NAME and type FIELD to composite type T.
4788 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 4789
f5dff777
DJ
4790void
4791append_composite_type_field_aligned (struct type *t, char *name,
4792 struct type *field, int alignment)
4793{
4794 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 4795
e9bb382b
UW
4796 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4797 {
4798 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4799 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4800 }
4801 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4802 {
4803 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4804 if (TYPE_NFIELDS (t) > 1)
4805 {
f41f5e61
PA
4806 SET_FIELD_BITPOS (f[0],
4807 (FIELD_BITPOS (f[-1])
4808 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4809 * TARGET_CHAR_BIT)));
e9bb382b
UW
4810
4811 if (alignment)
4812 {
86c3c1fc
AB
4813 int left;
4814
4815 alignment *= TARGET_CHAR_BIT;
4816 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 4817
e9bb382b
UW
4818 if (left)
4819 {
f41f5e61 4820 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 4821 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
4822 }
4823 }
4824 }
4825 }
4826}
4827
4828/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 4829
e9bb382b
UW
4830void
4831append_composite_type_field (struct type *t, char *name,
4832 struct type *field)
4833{
4834 append_composite_type_field_aligned (t, name, field, 0);
4835}
4836
000177f0
AC
4837static struct gdbarch_data *gdbtypes_data;
4838
4839const struct builtin_type *
4840builtin_type (struct gdbarch *gdbarch)
4841{
9a3c8263 4842 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
000177f0
AC
4843}
4844
4845static void *
4846gdbtypes_post_init (struct gdbarch *gdbarch)
4847{
4848 struct builtin_type *builtin_type
4849 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4850
46bf5051 4851 /* Basic types. */
e9bb382b
UW
4852 builtin_type->builtin_void
4853 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4854 builtin_type->builtin_char
4855 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4856 !gdbarch_char_signed (gdbarch), "char");
4857 builtin_type->builtin_signed_char
4858 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4859 0, "signed char");
4860 builtin_type->builtin_unsigned_char
4861 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4862 1, "unsigned char");
4863 builtin_type->builtin_short
4864 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4865 0, "short");
4866 builtin_type->builtin_unsigned_short
4867 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4868 1, "unsigned short");
4869 builtin_type->builtin_int
4870 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4871 0, "int");
4872 builtin_type->builtin_unsigned_int
4873 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4874 1, "unsigned int");
4875 builtin_type->builtin_long
4876 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4877 0, "long");
4878 builtin_type->builtin_unsigned_long
4879 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4880 1, "unsigned long");
4881 builtin_type->builtin_long_long
4882 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4883 0, "long long");
4884 builtin_type->builtin_unsigned_long_long
4885 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4886 1, "unsigned long long");
70bd8e24 4887 builtin_type->builtin_float
e9bb382b 4888 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 4889 "float", gdbarch_float_format (gdbarch));
70bd8e24 4890 builtin_type->builtin_double
e9bb382b 4891 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 4892 "double", gdbarch_double_format (gdbarch));
70bd8e24 4893 builtin_type->builtin_long_double
e9bb382b 4894 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 4895 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 4896 builtin_type->builtin_complex
e9bb382b
UW
4897 = arch_complex_type (gdbarch, "complex",
4898 builtin_type->builtin_float);
70bd8e24 4899 builtin_type->builtin_double_complex
e9bb382b
UW
4900 = arch_complex_type (gdbarch, "double complex",
4901 builtin_type->builtin_double);
4902 builtin_type->builtin_string
4903 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4904 builtin_type->builtin_bool
4905 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
000177f0 4906
7678ef8f
TJB
4907 /* The following three are about decimal floating point types, which
4908 are 32-bits, 64-bits and 128-bits respectively. */
4909 builtin_type->builtin_decfloat
e9bb382b 4910 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
7678ef8f 4911 builtin_type->builtin_decdouble
e9bb382b 4912 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
7678ef8f 4913 builtin_type->builtin_declong
e9bb382b 4914 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
7678ef8f 4915
69feb676 4916 /* "True" character types. */
e9bb382b
UW
4917 builtin_type->builtin_true_char
4918 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4919 builtin_type->builtin_true_unsigned_char
4920 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 4921
df4df182 4922 /* Fixed-size integer types. */
e9bb382b
UW
4923 builtin_type->builtin_int0
4924 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4925 builtin_type->builtin_int8
4926 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4927 builtin_type->builtin_uint8
4928 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4929 builtin_type->builtin_int16
4930 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4931 builtin_type->builtin_uint16
4932 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4933 builtin_type->builtin_int32
4934 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4935 builtin_type->builtin_uint32
4936 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4937 builtin_type->builtin_int64
4938 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4939 builtin_type->builtin_uint64
4940 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4941 builtin_type->builtin_int128
4942 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4943 builtin_type->builtin_uint128
4944 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
4945 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4946 TYPE_INSTANCE_FLAG_NOTTEXT;
4947 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4948 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 4949
9a22f0d0
PM
4950 /* Wide character types. */
4951 builtin_type->builtin_char16
4952 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4953 builtin_type->builtin_char32
4954 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4955
4956
46bf5051 4957 /* Default data/code pointer types. */
e9bb382b
UW
4958 builtin_type->builtin_data_ptr
4959 = lookup_pointer_type (builtin_type->builtin_void);
4960 builtin_type->builtin_func_ptr
4961 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
4962 builtin_type->builtin_func_func
4963 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 4964
78267919 4965 /* This type represents a GDB internal function. */
e9bb382b
UW
4966 builtin_type->internal_fn
4967 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4968 "<internal function>");
78267919 4969
e81e7f5e
SC
4970 /* This type represents an xmethod. */
4971 builtin_type->xmethod
4972 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
4973
46bf5051
UW
4974 return builtin_type;
4975}
4976
46bf5051
UW
4977/* This set of objfile-based types is intended to be used by symbol
4978 readers as basic types. */
4979
4980static const struct objfile_data *objfile_type_data;
4981
4982const struct objfile_type *
4983objfile_type (struct objfile *objfile)
4984{
4985 struct gdbarch *gdbarch;
4986 struct objfile_type *objfile_type
9a3c8263 4987 = (struct objfile_type *) objfile_data (objfile, objfile_type_data);
46bf5051
UW
4988
4989 if (objfile_type)
4990 return objfile_type;
4991
4992 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4993 1, struct objfile_type);
4994
4995 /* Use the objfile architecture to determine basic type properties. */
4996 gdbarch = get_objfile_arch (objfile);
4997
4998 /* Basic types. */
4999 objfile_type->builtin_void
5000 = init_type (TYPE_CODE_VOID, 1,
5001 0,
5002 "void", objfile);
5003
5004 objfile_type->builtin_char
5005 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
5006 (TYPE_FLAG_NOSIGN
5007 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
5008 "char", objfile);
5009 objfile_type->builtin_signed_char
5010 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
5011 0,
5012 "signed char", objfile);
5013 objfile_type->builtin_unsigned_char
5014 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
5015 TYPE_FLAG_UNSIGNED,
5016 "unsigned char", objfile);
5017 objfile_type->builtin_short
5018 = init_type (TYPE_CODE_INT,
5019 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
5020 0, "short", objfile);
5021 objfile_type->builtin_unsigned_short
5022 = init_type (TYPE_CODE_INT,
5023 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
5024 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
5025 objfile_type->builtin_int
5026 = init_type (TYPE_CODE_INT,
5027 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
5028 0, "int", objfile);
5029 objfile_type->builtin_unsigned_int
5030 = init_type (TYPE_CODE_INT,
5031 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
5032 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
5033 objfile_type->builtin_long
5034 = init_type (TYPE_CODE_INT,
5035 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
5036 0, "long", objfile);
5037 objfile_type->builtin_unsigned_long
5038 = init_type (TYPE_CODE_INT,
5039 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
5040 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
5041 objfile_type->builtin_long_long
5042 = init_type (TYPE_CODE_INT,
5043 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
5044 0, "long long", objfile);
5045 objfile_type->builtin_unsigned_long_long
5046 = init_type (TYPE_CODE_INT,
5047 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
5048 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
5049
5050 objfile_type->builtin_float
5051 = init_type (TYPE_CODE_FLT,
5052 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
5053 0, "float", objfile);
5054 TYPE_FLOATFORMAT (objfile_type->builtin_float)
5055 = gdbarch_float_format (gdbarch);
5056 objfile_type->builtin_double
5057 = init_type (TYPE_CODE_FLT,
5058 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
5059 0, "double", objfile);
5060 TYPE_FLOATFORMAT (objfile_type->builtin_double)
5061 = gdbarch_double_format (gdbarch);
5062 objfile_type->builtin_long_double
5063 = init_type (TYPE_CODE_FLT,
5064 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
5065 0, "long double", objfile);
5066 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
5067 = gdbarch_long_double_format (gdbarch);
5068
5069 /* This type represents a type that was unrecognized in symbol read-in. */
5070 objfile_type->builtin_error
5071 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
5072
5073 /* The following set of types is used for symbols with no
5074 debug information. */
5075 objfile_type->nodebug_text_symbol
5076 = init_type (TYPE_CODE_FUNC, 1, 0,
5077 "<text variable, no debug info>", objfile);
5078 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
5079 = objfile_type->builtin_int;
0875794a
JK
5080 objfile_type->nodebug_text_gnu_ifunc_symbol
5081 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
5082 "<text gnu-indirect-function variable, no debug info>",
5083 objfile);
5084 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
5085 = objfile_type->nodebug_text_symbol;
5086 objfile_type->nodebug_got_plt_symbol
5087 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
5088 "<text from jump slot in .got.plt, no debug info>",
5089 objfile);
5090 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
5091 = objfile_type->nodebug_text_symbol;
46bf5051
UW
5092 objfile_type->nodebug_data_symbol
5093 = init_type (TYPE_CODE_INT,
5094 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
5095 "<data variable, no debug info>", objfile);
5096 objfile_type->nodebug_unknown_symbol
5097 = init_type (TYPE_CODE_INT, 1, 0,
5098 "<variable (not text or data), no debug info>", objfile);
5099 objfile_type->nodebug_tls_symbol
5100 = init_type (TYPE_CODE_INT,
5101 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
5102 "<thread local variable, no debug info>", objfile);
000177f0
AC
5103
5104 /* NOTE: on some targets, addresses and pointers are not necessarily
0a7cfe2c 5105 the same.
000177f0
AC
5106
5107 The upshot is:
5108 - gdb's `struct type' always describes the target's
5109 representation.
5110 - gdb's `struct value' objects should always hold values in
5111 target form.
5112 - gdb's CORE_ADDR values are addresses in the unified virtual
5113 address space that the assembler and linker work with. Thus,
5114 since target_read_memory takes a CORE_ADDR as an argument, it
5115 can access any memory on the target, even if the processor has
5116 separate code and data address spaces.
5117
46bf5051
UW
5118 In this context, objfile_type->builtin_core_addr is a bit odd:
5119 it's a target type for a value the target will never see. It's
5120 only used to hold the values of (typeless) linker symbols, which
5121 are indeed in the unified virtual address space. */
000177f0 5122
46bf5051
UW
5123 objfile_type->builtin_core_addr
5124 = init_type (TYPE_CODE_INT,
5125 gdbarch_addr_bit (gdbarch) / 8,
5126 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
64c50499 5127
46bf5051
UW
5128 set_objfile_data (objfile, objfile_type_data, objfile_type);
5129 return objfile_type;
000177f0
AC
5130}
5131
5212577a 5132extern initialize_file_ftype _initialize_gdbtypes;
46bf5051 5133
c906108c 5134void
fba45db2 5135_initialize_gdbtypes (void)
c906108c 5136{
5674de60 5137 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
46bf5051 5138 objfile_type_data = register_objfile_data ();
5674de60 5139
ccce17b0
YQ
5140 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5141 _("Set debugging of C++ overloading."),
5142 _("Show debugging of C++ overloading."),
5143 _("When enabled, ranking of the "
5144 "functions is displayed."),
5145 NULL,
5146 show_overload_debug,
5147 &setdebuglist, &showdebuglist);
5674de60 5148
7ba81444 5149 /* Add user knob for controlling resolution of opaque types. */
5674de60 5150 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
5151 &opaque_type_resolution,
5152 _("Set resolution of opaque struct/class/union"
5153 " types (if set before loading symbols)."),
5154 _("Show resolution of opaque struct/class/union"
5155 " types (if set before loading symbols)."),
5156 NULL, NULL,
5674de60
UW
5157 show_opaque_type_resolution,
5158 &setlist, &showlist);
a451cb65
KS
5159
5160 /* Add an option to permit non-strict type checking. */
5161 add_setshow_boolean_cmd ("type", class_support,
5162 &strict_type_checking,
5163 _("Set strict type checking."),
5164 _("Show strict type checking."),
5165 NULL, NULL,
5166 show_strict_type_checking,
5167 &setchecklist, &showchecklist);
c906108c 5168}
This page took 2.147521 seconds and 4 git commands to generate.