2011-10-14 Alexey Makhalov <makhaloff@gmail.com>
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
9b254dd1 3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002,
7b6bb8da 4 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4c38e0a4 5 Free Software Foundation, Inc.
4f2aea11 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#include "defs.h"
25#include "gdb_string.h"
26#include "bfd.h"
27#include "symtab.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "gdbtypes.h"
31#include "expression.h"
32#include "language.h"
33#include "target.h"
34#include "value.h"
35#include "demangle.h"
36#include "complaints.h"
37#include "gdbcmd.h"
c91ecb25 38#include "wrapper.h"
015a42b4 39#include "cp-abi.h"
a02fd225 40#include "gdb_assert.h"
ae5a43e0 41#include "hashtab.h"
c906108c 42
ac3aafc7 43
6403aeea
SW
44/* Initialize BADNESS constants. */
45
a9d5ef47 46const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 47
a9d5ef47
SW
48const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
49const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 50
a9d5ef47 51const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 52
a9d5ef47
SW
53const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
54const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
55const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
56const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
60const struct rank BOOL_PTR_CONVERSION_BADNESS = {3,0};
61const struct rank BASE_CONVERSION_BADNESS = {2,0};
62const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
6403aeea 63
a9d5ef47 64const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
6403aeea 65
8da61cc4 66/* Floatformat pairs. */
f9e9243a
UW
67const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
68 &floatformat_ieee_half_big,
69 &floatformat_ieee_half_little
70};
8da61cc4
DJ
71const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
72 &floatformat_ieee_single_big,
73 &floatformat_ieee_single_little
74};
75const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
76 &floatformat_ieee_double_big,
77 &floatformat_ieee_double_little
78};
79const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
80 &floatformat_ieee_double_big,
81 &floatformat_ieee_double_littlebyte_bigword
82};
83const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
84 &floatformat_i387_ext,
85 &floatformat_i387_ext
86};
87const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
88 &floatformat_m68881_ext,
89 &floatformat_m68881_ext
90};
91const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
92 &floatformat_arm_ext_big,
93 &floatformat_arm_ext_littlebyte_bigword
94};
95const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
96 &floatformat_ia64_spill_big,
97 &floatformat_ia64_spill_little
98};
99const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
100 &floatformat_ia64_quad_big,
101 &floatformat_ia64_quad_little
102};
103const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
104 &floatformat_vax_f,
105 &floatformat_vax_f
106};
107const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
108 &floatformat_vax_d,
109 &floatformat_vax_d
110};
b14d30e1
JM
111const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
112 &floatformat_ibm_long_double,
113 &floatformat_ibm_long_double
114};
8da61cc4 115
8da61cc4 116
c906108c 117int opaque_type_resolution = 1;
920d2a44
AC
118static void
119show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
120 struct cmd_list_element *c,
121 const char *value)
920d2a44 122{
3e43a32a
MS
123 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
124 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
125 value);
126}
127
5d161b24 128int overload_debug = 0;
920d2a44
AC
129static void
130show_overload_debug (struct ui_file *file, int from_tty,
131 struct cmd_list_element *c, const char *value)
132{
7ba81444
MS
133 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
134 value);
920d2a44 135}
c906108c 136
c5aa993b
JM
137struct extra
138 {
139 char str[128];
140 int len;
7ba81444 141 }; /* Maximum extension is 128! FIXME */
c906108c 142
a14ed312 143static void print_bit_vector (B_TYPE *, int);
ad2f7632 144static void print_arg_types (struct field *, int, int);
a14ed312
KB
145static void dump_fn_fieldlists (struct type *, int);
146static void print_cplus_stuff (struct type *, int);
7a292a7a 147
c906108c 148
e9bb382b
UW
149/* Allocate a new OBJFILE-associated type structure and fill it
150 with some defaults. Space for the type structure is allocated
151 on the objfile's objfile_obstack. */
c906108c
SS
152
153struct type *
fba45db2 154alloc_type (struct objfile *objfile)
c906108c 155{
52f0bd74 156 struct type *type;
c906108c 157
e9bb382b
UW
158 gdb_assert (objfile != NULL);
159
7ba81444 160 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
161 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
162 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
163 struct main_type);
164 OBJSTAT (objfile, n_types++);
c906108c 165
e9bb382b
UW
166 TYPE_OBJFILE_OWNED (type) = 1;
167 TYPE_OWNER (type).objfile = objfile;
c906108c 168
7ba81444 169 /* Initialize the fields that might not be zero. */
c906108c
SS
170
171 TYPE_CODE (type) = TYPE_CODE_UNDEF;
c906108c 172 TYPE_VPTR_FIELDNO (type) = -1;
2fdde8f8 173 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 174
c16abbde 175 return type;
c906108c
SS
176}
177
e9bb382b
UW
178/* Allocate a new GDBARCH-associated type structure and fill it
179 with some defaults. Space for the type structure is allocated
180 on the heap. */
181
182struct type *
183alloc_type_arch (struct gdbarch *gdbarch)
184{
185 struct type *type;
186
187 gdb_assert (gdbarch != NULL);
188
189 /* Alloc the structure and start off with all fields zeroed. */
190
191 type = XZALLOC (struct type);
192 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
193
194 TYPE_OBJFILE_OWNED (type) = 0;
195 TYPE_OWNER (type).gdbarch = gdbarch;
196
197 /* Initialize the fields that might not be zero. */
198
199 TYPE_CODE (type) = TYPE_CODE_UNDEF;
200 TYPE_VPTR_FIELDNO (type) = -1;
201 TYPE_CHAIN (type) = type; /* Chain back to itself. */
202
203 return type;
204}
205
206/* If TYPE is objfile-associated, allocate a new type structure
207 associated with the same objfile. If TYPE is gdbarch-associated,
208 allocate a new type structure associated with the same gdbarch. */
209
210struct type *
211alloc_type_copy (const struct type *type)
212{
213 if (TYPE_OBJFILE_OWNED (type))
214 return alloc_type (TYPE_OWNER (type).objfile);
215 else
216 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
217}
218
219/* If TYPE is gdbarch-associated, return that architecture.
220 If TYPE is objfile-associated, return that objfile's architecture. */
221
222struct gdbarch *
223get_type_arch (const struct type *type)
224{
225 if (TYPE_OBJFILE_OWNED (type))
226 return get_objfile_arch (TYPE_OWNER (type).objfile);
227 else
228 return TYPE_OWNER (type).gdbarch;
229}
230
231
2fdde8f8
DJ
232/* Alloc a new type instance structure, fill it with some defaults,
233 and point it at OLDTYPE. Allocate the new type instance from the
234 same place as OLDTYPE. */
235
236static struct type *
237alloc_type_instance (struct type *oldtype)
238{
239 struct type *type;
240
241 /* Allocate the structure. */
242
e9bb382b 243 if (! TYPE_OBJFILE_OWNED (oldtype))
1deafd4e 244 type = XZALLOC (struct type);
2fdde8f8 245 else
1deafd4e
PA
246 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
247 struct type);
248
2fdde8f8
DJ
249 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
250
251 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
252
c16abbde 253 return type;
2fdde8f8
DJ
254}
255
256/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 257 replacing it with something else. Preserve owner information. */
2fdde8f8
DJ
258static void
259smash_type (struct type *type)
260{
e9bb382b
UW
261 int objfile_owned = TYPE_OBJFILE_OWNED (type);
262 union type_owner owner = TYPE_OWNER (type);
263
2fdde8f8
DJ
264 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
265
e9bb382b
UW
266 /* Restore owner information. */
267 TYPE_OBJFILE_OWNED (type) = objfile_owned;
268 TYPE_OWNER (type) = owner;
269
2fdde8f8
DJ
270 /* For now, delete the rings. */
271 TYPE_CHAIN (type) = type;
272
273 /* For now, leave the pointer/reference types alone. */
274}
275
c906108c
SS
276/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
277 to a pointer to memory where the pointer type should be stored.
278 If *TYPEPTR is zero, update it to point to the pointer type we return.
279 We allocate new memory if needed. */
280
281struct type *
fba45db2 282make_pointer_type (struct type *type, struct type **typeptr)
c906108c 283{
52f0bd74 284 struct type *ntype; /* New type */
053cb41b 285 struct type *chain;
c906108c
SS
286
287 ntype = TYPE_POINTER_TYPE (type);
288
c5aa993b 289 if (ntype)
c906108c 290 {
c5aa993b 291 if (typeptr == 0)
7ba81444
MS
292 return ntype; /* Don't care about alloc,
293 and have new type. */
c906108c 294 else if (*typeptr == 0)
c5aa993b 295 {
7ba81444 296 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 297 return ntype;
c5aa993b 298 }
c906108c
SS
299 }
300
301 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
302 {
e9bb382b 303 ntype = alloc_type_copy (type);
c906108c
SS
304 if (typeptr)
305 *typeptr = ntype;
306 }
7ba81444 307 else /* We have storage, but need to reset it. */
c906108c
SS
308 {
309 ntype = *typeptr;
053cb41b 310 chain = TYPE_CHAIN (ntype);
2fdde8f8 311 smash_type (ntype);
053cb41b 312 TYPE_CHAIN (ntype) = chain;
c906108c
SS
313 }
314
315 TYPE_TARGET_TYPE (ntype) = type;
316 TYPE_POINTER_TYPE (type) = ntype;
317
7ba81444
MS
318 /* FIXME! Assume the machine has only one representation for
319 pointers! */
c906108c 320
50810684
UW
321 TYPE_LENGTH (ntype)
322 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
323 TYPE_CODE (ntype) = TYPE_CODE_PTR;
324
67b2adb2 325 /* Mark pointers as unsigned. The target converts between pointers
76e71323 326 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 327 gdbarch_address_to_pointer. */
876cecd0 328 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 329
c906108c
SS
330 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
331 TYPE_POINTER_TYPE (type) = ntype;
332
053cb41b
JB
333 /* Update the length of all the other variants of this type. */
334 chain = TYPE_CHAIN (ntype);
335 while (chain != ntype)
336 {
337 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
338 chain = TYPE_CHAIN (chain);
339 }
340
c906108c
SS
341 return ntype;
342}
343
344/* Given a type TYPE, return a type of pointers to that type.
345 May need to construct such a type if this is the first use. */
346
347struct type *
fba45db2 348lookup_pointer_type (struct type *type)
c906108c 349{
c5aa993b 350 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
351}
352
7ba81444
MS
353/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
354 points to a pointer to memory where the reference type should be
355 stored. If *TYPEPTR is zero, update it to point to the reference
356 type we return. We allocate new memory if needed. */
c906108c
SS
357
358struct type *
fba45db2 359make_reference_type (struct type *type, struct type **typeptr)
c906108c 360{
52f0bd74 361 struct type *ntype; /* New type */
1e98b326 362 struct type *chain;
c906108c
SS
363
364 ntype = TYPE_REFERENCE_TYPE (type);
365
c5aa993b 366 if (ntype)
c906108c 367 {
c5aa993b 368 if (typeptr == 0)
7ba81444
MS
369 return ntype; /* Don't care about alloc,
370 and have new type. */
c906108c 371 else if (*typeptr == 0)
c5aa993b 372 {
7ba81444 373 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 374 return ntype;
c5aa993b 375 }
c906108c
SS
376 }
377
378 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
379 {
e9bb382b 380 ntype = alloc_type_copy (type);
c906108c
SS
381 if (typeptr)
382 *typeptr = ntype;
383 }
7ba81444 384 else /* We have storage, but need to reset it. */
c906108c
SS
385 {
386 ntype = *typeptr;
1e98b326 387 chain = TYPE_CHAIN (ntype);
2fdde8f8 388 smash_type (ntype);
1e98b326 389 TYPE_CHAIN (ntype) = chain;
c906108c
SS
390 }
391
392 TYPE_TARGET_TYPE (ntype) = type;
393 TYPE_REFERENCE_TYPE (type) = ntype;
394
7ba81444
MS
395 /* FIXME! Assume the machine has only one representation for
396 references, and that it matches the (only) representation for
397 pointers! */
c906108c 398
50810684
UW
399 TYPE_LENGTH (ntype) =
400 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c 401 TYPE_CODE (ntype) = TYPE_CODE_REF;
c5aa993b 402
c906108c
SS
403 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
404 TYPE_REFERENCE_TYPE (type) = ntype;
405
1e98b326
JB
406 /* Update the length of all the other variants of this type. */
407 chain = TYPE_CHAIN (ntype);
408 while (chain != ntype)
409 {
410 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
411 chain = TYPE_CHAIN (chain);
412 }
413
c906108c
SS
414 return ntype;
415}
416
7ba81444
MS
417/* Same as above, but caller doesn't care about memory allocation
418 details. */
c906108c
SS
419
420struct type *
fba45db2 421lookup_reference_type (struct type *type)
c906108c 422{
c5aa993b 423 return make_reference_type (type, (struct type **) 0);
c906108c
SS
424}
425
7ba81444
MS
426/* Lookup a function type that returns type TYPE. TYPEPTR, if
427 nonzero, points to a pointer to memory where the function type
428 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 429 function type we return. We allocate new memory if needed. */
c906108c
SS
430
431struct type *
0c8b41f1 432make_function_type (struct type *type, struct type **typeptr)
c906108c 433{
52f0bd74 434 struct type *ntype; /* New type */
c906108c
SS
435
436 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
437 {
e9bb382b 438 ntype = alloc_type_copy (type);
c906108c
SS
439 if (typeptr)
440 *typeptr = ntype;
441 }
7ba81444 442 else /* We have storage, but need to reset it. */
c906108c
SS
443 {
444 ntype = *typeptr;
2fdde8f8 445 smash_type (ntype);
c906108c
SS
446 }
447
448 TYPE_TARGET_TYPE (ntype) = type;
449
450 TYPE_LENGTH (ntype) = 1;
451 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 452
b6cdc2c1
JK
453 INIT_FUNC_SPECIFIC (ntype);
454
c906108c
SS
455 return ntype;
456}
457
458
459/* Given a type TYPE, return a type of functions that return that type.
460 May need to construct such a type if this is the first use. */
461
462struct type *
fba45db2 463lookup_function_type (struct type *type)
c906108c 464{
0c8b41f1 465 return make_function_type (type, (struct type **) 0);
c906108c
SS
466}
467
47663de5
MS
468/* Identify address space identifier by name --
469 return the integer flag defined in gdbtypes.h. */
470extern int
50810684 471address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
47663de5 472{
8b2dbe47 473 int type_flags;
d8734c88 474
7ba81444 475 /* Check for known address space delimiters. */
47663de5 476 if (!strcmp (space_identifier, "code"))
876cecd0 477 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 478 else if (!strcmp (space_identifier, "data"))
876cecd0 479 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
480 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
481 && gdbarch_address_class_name_to_type_flags (gdbarch,
482 space_identifier,
483 &type_flags))
8b2dbe47 484 return type_flags;
47663de5 485 else
8a3fe4f8 486 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
487}
488
489/* Identify address space identifier by integer flag as defined in
7ba81444 490 gdbtypes.h -- return the string version of the adress space name. */
47663de5 491
321432c0 492const char *
50810684 493address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 494{
876cecd0 495 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 496 return "code";
876cecd0 497 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 498 return "data";
876cecd0 499 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
500 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
501 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
502 else
503 return NULL;
504}
505
2fdde8f8 506/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
507
508 If STORAGE is non-NULL, create the new type instance there.
509 STORAGE must be in the same obstack as TYPE. */
47663de5 510
b9362cc7 511static struct type *
2fdde8f8
DJ
512make_qualified_type (struct type *type, int new_flags,
513 struct type *storage)
47663de5
MS
514{
515 struct type *ntype;
516
517 ntype = type;
5f61c20e
JK
518 do
519 {
520 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
521 return ntype;
522 ntype = TYPE_CHAIN (ntype);
523 }
524 while (ntype != type);
47663de5 525
2fdde8f8
DJ
526 /* Create a new type instance. */
527 if (storage == NULL)
528 ntype = alloc_type_instance (type);
529 else
530 {
7ba81444
MS
531 /* If STORAGE was provided, it had better be in the same objfile
532 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
533 if one objfile is freed and the other kept, we'd have
534 dangling pointers. */
ad766c0a
JB
535 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
536
2fdde8f8
DJ
537 ntype = storage;
538 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
539 TYPE_CHAIN (ntype) = ntype;
540 }
47663de5
MS
541
542 /* Pointers or references to the original type are not relevant to
2fdde8f8 543 the new type. */
47663de5
MS
544 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
545 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 546
2fdde8f8
DJ
547 /* Chain the new qualified type to the old type. */
548 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
549 TYPE_CHAIN (type) = ntype;
550
551 /* Now set the instance flags and return the new type. */
552 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 553
ab5d3da6
KB
554 /* Set length of new type to that of the original type. */
555 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
556
47663de5
MS
557 return ntype;
558}
559
2fdde8f8
DJ
560/* Make an address-space-delimited variant of a type -- a type that
561 is identical to the one supplied except that it has an address
562 space attribute attached to it (such as "code" or "data").
563
7ba81444
MS
564 The space attributes "code" and "data" are for Harvard
565 architectures. The address space attributes are for architectures
566 which have alternately sized pointers or pointers with alternate
567 representations. */
2fdde8f8
DJ
568
569struct type *
570make_type_with_address_space (struct type *type, int space_flag)
571{
2fdde8f8 572 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
573 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
574 | TYPE_INSTANCE_FLAG_DATA_SPACE
575 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
576 | space_flag);
577
578 return make_qualified_type (type, new_flags, NULL);
579}
c906108c
SS
580
581/* Make a "c-v" variant of a type -- a type that is identical to the
582 one supplied except that it may have const or volatile attributes
583 CNST is a flag for setting the const attribute
584 VOLTL is a flag for setting the volatile attribute
585 TYPE is the base type whose variant we are creating.
c906108c 586
ad766c0a
JB
587 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
588 storage to hold the new qualified type; *TYPEPTR and TYPE must be
589 in the same objfile. Otherwise, allocate fresh memory for the new
590 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
591 new type we construct. */
c906108c 592struct type *
7ba81444
MS
593make_cv_type (int cnst, int voltl,
594 struct type *type,
595 struct type **typeptr)
c906108c 596{
52f0bd74 597 struct type *ntype; /* New type */
c906108c 598
2fdde8f8 599 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
600 & ~(TYPE_INSTANCE_FLAG_CONST
601 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 602
c906108c 603 if (cnst)
876cecd0 604 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
605
606 if (voltl)
876cecd0 607 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 608
2fdde8f8 609 if (typeptr && *typeptr != NULL)
a02fd225 610 {
ad766c0a
JB
611 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
612 a C-V variant chain that threads across objfiles: if one
613 objfile gets freed, then the other has a broken C-V chain.
614
615 This code used to try to copy over the main type from TYPE to
616 *TYPEPTR if they were in different objfiles, but that's
617 wrong, too: TYPE may have a field list or member function
618 lists, which refer to types of their own, etc. etc. The
619 whole shebang would need to be copied over recursively; you
620 can't have inter-objfile pointers. The only thing to do is
621 to leave stub types as stub types, and look them up afresh by
622 name each time you encounter them. */
623 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
624 }
625
7ba81444
MS
626 ntype = make_qualified_type (type, new_flags,
627 typeptr ? *typeptr : NULL);
c906108c 628
2fdde8f8
DJ
629 if (typeptr != NULL)
630 *typeptr = ntype;
a02fd225 631
2fdde8f8 632 return ntype;
a02fd225 633}
c906108c 634
2fdde8f8
DJ
635/* Replace the contents of ntype with the type *type. This changes the
636 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
637 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 638
cda6c68a
JB
639 In order to build recursive types, it's inevitable that we'll need
640 to update types in place --- but this sort of indiscriminate
641 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
642 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
643 clear if more steps are needed. */
dd6bda65
DJ
644void
645replace_type (struct type *ntype, struct type *type)
646{
ab5d3da6 647 struct type *chain;
dd6bda65 648
ad766c0a
JB
649 /* These two types had better be in the same objfile. Otherwise,
650 the assignment of one type's main type structure to the other
651 will produce a type with references to objects (names; field
652 lists; etc.) allocated on an objfile other than its own. */
653 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
654
2fdde8f8 655 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 656
7ba81444
MS
657 /* The type length is not a part of the main type. Update it for
658 each type on the variant chain. */
ab5d3da6 659 chain = ntype;
5f61c20e
JK
660 do
661 {
662 /* Assert that this element of the chain has no address-class bits
663 set in its flags. Such type variants might have type lengths
664 which are supposed to be different from the non-address-class
665 variants. This assertion shouldn't ever be triggered because
666 symbol readers which do construct address-class variants don't
667 call replace_type(). */
668 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
669
670 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
671 chain = TYPE_CHAIN (chain);
672 }
673 while (ntype != chain);
ab5d3da6 674
2fdde8f8
DJ
675 /* Assert that the two types have equivalent instance qualifiers.
676 This should be true for at least all of our debug readers. */
677 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
678}
679
c906108c
SS
680/* Implement direct support for MEMBER_TYPE in GNU C++.
681 May need to construct such a type if this is the first use.
682 The TYPE is the type of the member. The DOMAIN is the type
683 of the aggregate that the member belongs to. */
684
685struct type *
0d5de010 686lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 687{
52f0bd74 688 struct type *mtype;
c906108c 689
e9bb382b 690 mtype = alloc_type_copy (type);
0d5de010 691 smash_to_memberptr_type (mtype, domain, type);
c16abbde 692 return mtype;
c906108c
SS
693}
694
0d5de010
DJ
695/* Return a pointer-to-method type, for a method of type TO_TYPE. */
696
697struct type *
698lookup_methodptr_type (struct type *to_type)
699{
700 struct type *mtype;
701
e9bb382b 702 mtype = alloc_type_copy (to_type);
0b92b5bb 703 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
704 return mtype;
705}
706
7ba81444
MS
707/* Allocate a stub method whose return type is TYPE. This apparently
708 happens for speed of symbol reading, since parsing out the
709 arguments to the method is cpu-intensive, the way we are doing it.
710 So, we will fill in arguments later. This always returns a fresh
711 type. */
c906108c
SS
712
713struct type *
fba45db2 714allocate_stub_method (struct type *type)
c906108c
SS
715{
716 struct type *mtype;
717
e9bb382b
UW
718 mtype = alloc_type_copy (type);
719 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
720 TYPE_LENGTH (mtype) = 1;
721 TYPE_STUB (mtype) = 1;
c906108c
SS
722 TYPE_TARGET_TYPE (mtype) = type;
723 /* _DOMAIN_TYPE (mtype) = unknown yet */
c16abbde 724 return mtype;
c906108c
SS
725}
726
7ba81444
MS
727/* Create a range type using either a blank type supplied in
728 RESULT_TYPE, or creating a new type, inheriting the objfile from
729 INDEX_TYPE.
c906108c 730
7ba81444
MS
731 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
732 to HIGH_BOUND, inclusive.
c906108c 733
7ba81444
MS
734 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
735 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
c906108c
SS
736
737struct type *
fba45db2 738create_range_type (struct type *result_type, struct type *index_type,
43bbcdc2 739 LONGEST low_bound, LONGEST high_bound)
c906108c
SS
740{
741 if (result_type == NULL)
e9bb382b 742 result_type = alloc_type_copy (index_type);
c906108c
SS
743 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
744 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 745 if (TYPE_STUB (index_type))
876cecd0 746 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
747 else
748 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
43bbcdc2
PH
749 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
750 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
262452ec
JK
751 TYPE_LOW_BOUND (result_type) = low_bound;
752 TYPE_HIGH_BOUND (result_type) = high_bound;
c906108c 753
c5aa993b 754 if (low_bound >= 0)
876cecd0 755 TYPE_UNSIGNED (result_type) = 1;
c906108c 756
262452ec 757 return result_type;
c906108c
SS
758}
759
7ba81444
MS
760/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
761 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
762 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
763
764int
fba45db2 765get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c
SS
766{
767 CHECK_TYPEDEF (type);
768 switch (TYPE_CODE (type))
769 {
770 case TYPE_CODE_RANGE:
771 *lowp = TYPE_LOW_BOUND (type);
772 *highp = TYPE_HIGH_BOUND (type);
773 return 1;
774 case TYPE_CODE_ENUM:
775 if (TYPE_NFIELDS (type) > 0)
776 {
777 /* The enums may not be sorted by value, so search all
0963b4bd 778 entries. */
c906108c
SS
779 int i;
780
781 *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
782 for (i = 0; i < TYPE_NFIELDS (type); i++)
783 {
784 if (TYPE_FIELD_BITPOS (type, i) < *lowp)
785 *lowp = TYPE_FIELD_BITPOS (type, i);
786 if (TYPE_FIELD_BITPOS (type, i) > *highp)
787 *highp = TYPE_FIELD_BITPOS (type, i);
788 }
789
7ba81444 790 /* Set unsigned indicator if warranted. */
c5aa993b 791 if (*lowp >= 0)
c906108c 792 {
876cecd0 793 TYPE_UNSIGNED (type) = 1;
c906108c
SS
794 }
795 }
796 else
797 {
798 *lowp = 0;
799 *highp = -1;
800 }
801 return 0;
802 case TYPE_CODE_BOOL:
803 *lowp = 0;
804 *highp = 1;
805 return 0;
806 case TYPE_CODE_INT:
c5aa993b 807 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
808 return -1;
809 if (!TYPE_UNSIGNED (type))
810 {
c5aa993b 811 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
812 *highp = -*lowp - 1;
813 return 0;
814 }
7ba81444 815 /* ... fall through for unsigned ints ... */
c906108c
SS
816 case TYPE_CODE_CHAR:
817 *lowp = 0;
818 /* This round-about calculation is to avoid shifting by
7b83ea04 819 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 820 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
821 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
822 *highp = (*highp - 1) | *highp;
823 return 0;
824 default:
825 return -1;
826 }
827}
828
dbc98a8b
KW
829/* Assuming TYPE is a simple, non-empty array type, compute its upper
830 and lower bound. Save the low bound into LOW_BOUND if not NULL.
831 Save the high bound into HIGH_BOUND if not NULL.
832
0963b4bd 833 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
834 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
835
836 We now simply use get_discrete_bounds call to get the values
837 of the low and high bounds.
838 get_discrete_bounds can return three values:
839 1, meaning that index is a range,
840 0, meaning that index is a discrete type,
841 or -1 for failure. */
842
843int
844get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
845{
846 struct type *index = TYPE_INDEX_TYPE (type);
847 LONGEST low = 0;
848 LONGEST high = 0;
849 int res;
850
851 if (index == NULL)
852 return 0;
853
854 res = get_discrete_bounds (index, &low, &high);
855 if (res == -1)
856 return 0;
857
858 /* Check if the array bounds are undefined. */
859 if (res == 1
860 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
861 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
862 return 0;
863
864 if (low_bound)
865 *low_bound = low;
866
867 if (high_bound)
868 *high_bound = high;
869
870 return 1;
871}
872
7ba81444
MS
873/* Create an array type using either a blank type supplied in
874 RESULT_TYPE, or creating a new type, inheriting the objfile from
875 RANGE_TYPE.
c906108c
SS
876
877 Elements will be of type ELEMENT_TYPE, the indices will be of type
878 RANGE_TYPE.
879
7ba81444
MS
880 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
881 sure it is TYPE_CODE_UNDEF before we bash it into an array
882 type? */
c906108c
SS
883
884struct type *
7ba81444
MS
885create_array_type (struct type *result_type,
886 struct type *element_type,
fba45db2 887 struct type *range_type)
c906108c
SS
888{
889 LONGEST low_bound, high_bound;
890
891 if (result_type == NULL)
e9bb382b
UW
892 result_type = alloc_type_copy (range_type);
893
c906108c
SS
894 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
895 TYPE_TARGET_TYPE (result_type) = element_type;
896 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
897 low_bound = high_bound = 0;
898 CHECK_TYPEDEF (element_type);
ab0d6e0d
JB
899 /* Be careful when setting the array length. Ada arrays can be
900 empty arrays with the high_bound being smaller than the low_bound.
901 In such cases, the array length should be zero. */
902 if (high_bound < low_bound)
903 TYPE_LENGTH (result_type) = 0;
904 else
905 TYPE_LENGTH (result_type) =
906 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
c906108c
SS
907 TYPE_NFIELDS (result_type) = 1;
908 TYPE_FIELDS (result_type) =
1deafd4e 909 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 910 TYPE_INDEX_TYPE (result_type) = range_type;
c906108c
SS
911 TYPE_VPTR_FIELDNO (result_type) = -1;
912
0963b4bd 913 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
c906108c 914 if (TYPE_LENGTH (result_type) == 0)
876cecd0 915 TYPE_TARGET_STUB (result_type) = 1;
c906108c 916
c16abbde 917 return result_type;
c906108c
SS
918}
919
e3506a9f
UW
920struct type *
921lookup_array_range_type (struct type *element_type,
922 int low_bound, int high_bound)
923{
50810684 924 struct gdbarch *gdbarch = get_type_arch (element_type);
e3506a9f
UW
925 struct type *index_type = builtin_type (gdbarch)->builtin_int;
926 struct type *range_type
927 = create_range_type (NULL, index_type, low_bound, high_bound);
d8734c88 928
e3506a9f
UW
929 return create_array_type (NULL, element_type, range_type);
930}
931
7ba81444
MS
932/* Create a string type using either a blank type supplied in
933 RESULT_TYPE, or creating a new type. String types are similar
934 enough to array of char types that we can use create_array_type to
935 build the basic type and then bash it into a string type.
c906108c
SS
936
937 For fixed length strings, the range type contains 0 as the lower
938 bound and the length of the string minus one as the upper bound.
939
7ba81444
MS
940 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
941 sure it is TYPE_CODE_UNDEF before we bash it into a string
942 type? */
c906108c
SS
943
944struct type *
3b7538c0
UW
945create_string_type (struct type *result_type,
946 struct type *string_char_type,
7ba81444 947 struct type *range_type)
c906108c
SS
948{
949 result_type = create_array_type (result_type,
f290d38e 950 string_char_type,
c906108c
SS
951 range_type);
952 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 953 return result_type;
c906108c
SS
954}
955
e3506a9f
UW
956struct type *
957lookup_string_range_type (struct type *string_char_type,
958 int low_bound, int high_bound)
959{
960 struct type *result_type;
d8734c88 961
e3506a9f
UW
962 result_type = lookup_array_range_type (string_char_type,
963 low_bound, high_bound);
964 TYPE_CODE (result_type) = TYPE_CODE_STRING;
965 return result_type;
966}
967
c906108c 968struct type *
fba45db2 969create_set_type (struct type *result_type, struct type *domain_type)
c906108c 970{
c906108c 971 if (result_type == NULL)
e9bb382b
UW
972 result_type = alloc_type_copy (domain_type);
973
c906108c
SS
974 TYPE_CODE (result_type) = TYPE_CODE_SET;
975 TYPE_NFIELDS (result_type) = 1;
1deafd4e 976 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 977
74a9bb82 978 if (!TYPE_STUB (domain_type))
c906108c 979 {
f9780d5b 980 LONGEST low_bound, high_bound, bit_length;
d8734c88 981
c906108c
SS
982 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
983 low_bound = high_bound = 0;
984 bit_length = high_bound - low_bound + 1;
985 TYPE_LENGTH (result_type)
986 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 987 if (low_bound >= 0)
876cecd0 988 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
989 }
990 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
991
c16abbde 992 return result_type;
c906108c
SS
993}
994
ea37ba09
DJ
995/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
996 and any array types nested inside it. */
997
998void
999make_vector_type (struct type *array_type)
1000{
1001 struct type *inner_array, *elt_type;
1002 int flags;
1003
1004 /* Find the innermost array type, in case the array is
1005 multi-dimensional. */
1006 inner_array = array_type;
1007 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1008 inner_array = TYPE_TARGET_TYPE (inner_array);
1009
1010 elt_type = TYPE_TARGET_TYPE (inner_array);
1011 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1012 {
2844d6b5 1013 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1014 elt_type = make_qualified_type (elt_type, flags, NULL);
1015 TYPE_TARGET_TYPE (inner_array) = elt_type;
1016 }
1017
876cecd0 1018 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1019}
1020
794ac428 1021struct type *
ac3aafc7
EZ
1022init_vector_type (struct type *elt_type, int n)
1023{
1024 struct type *array_type;
d8734c88 1025
e3506a9f 1026 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1027 make_vector_type (array_type);
ac3aafc7
EZ
1028 return array_type;
1029}
1030
0d5de010
DJ
1031/* Smash TYPE to be a type of pointers to members of DOMAIN with type
1032 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1033 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1034 TYPE doesn't include the offset (that's the value of the MEMBER
1035 itself), but does include the structure type into which it points
1036 (for some reason).
c906108c 1037
7ba81444
MS
1038 When "smashing" the type, we preserve the objfile that the old type
1039 pointed to, since we aren't changing where the type is actually
c906108c
SS
1040 allocated. */
1041
1042void
0d5de010
DJ
1043smash_to_memberptr_type (struct type *type, struct type *domain,
1044 struct type *to_type)
c906108c 1045{
2fdde8f8 1046 smash_type (type);
c906108c
SS
1047 TYPE_TARGET_TYPE (type) = to_type;
1048 TYPE_DOMAIN_TYPE (type) = domain;
0d5de010
DJ
1049 /* Assume that a data member pointer is the same size as a normal
1050 pointer. */
50810684
UW
1051 TYPE_LENGTH (type)
1052 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
0d5de010 1053 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c
SS
1054}
1055
0b92b5bb
TT
1056/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1057
1058 When "smashing" the type, we preserve the objfile that the old type
1059 pointed to, since we aren't changing where the type is actually
1060 allocated. */
1061
1062void
1063smash_to_methodptr_type (struct type *type, struct type *to_type)
1064{
1065 smash_type (type);
1066 TYPE_TARGET_TYPE (type) = to_type;
1067 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1068 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1069 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1070}
1071
c906108c
SS
1072/* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1073 METHOD just means `function that gets an extra "this" argument'.
1074
7ba81444
MS
1075 When "smashing" the type, we preserve the objfile that the old type
1076 pointed to, since we aren't changing where the type is actually
c906108c
SS
1077 allocated. */
1078
1079void
fba45db2 1080smash_to_method_type (struct type *type, struct type *domain,
ad2f7632
DJ
1081 struct type *to_type, struct field *args,
1082 int nargs, int varargs)
c906108c 1083{
2fdde8f8 1084 smash_type (type);
c906108c
SS
1085 TYPE_TARGET_TYPE (type) = to_type;
1086 TYPE_DOMAIN_TYPE (type) = domain;
ad2f7632
DJ
1087 TYPE_FIELDS (type) = args;
1088 TYPE_NFIELDS (type) = nargs;
1089 if (varargs)
876cecd0 1090 TYPE_VARARGS (type) = 1;
c906108c
SS
1091 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1092 TYPE_CODE (type) = TYPE_CODE_METHOD;
1093}
1094
1095/* Return a typename for a struct/union/enum type without "struct ",
1096 "union ", or "enum ". If the type has a NULL name, return NULL. */
1097
1098char *
aa1ee363 1099type_name_no_tag (const struct type *type)
c906108c
SS
1100{
1101 if (TYPE_TAG_NAME (type) != NULL)
1102 return TYPE_TAG_NAME (type);
1103
7ba81444
MS
1104 /* Is there code which expects this to return the name if there is
1105 no tag name? My guess is that this is mainly used for C++ in
1106 cases where the two will always be the same. */
c906108c
SS
1107 return TYPE_NAME (type);
1108}
1109
d8228535
JK
1110/* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1111 Since GCC PR debug/47510 DWARF provides associated information to detect the
1112 anonymous class linkage name from its typedef.
1113
1114 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1115 apply it itself. */
1116
1117const char *
1118type_name_no_tag_or_error (struct type *type)
1119{
1120 struct type *saved_type = type;
1121 const char *name;
1122 struct objfile *objfile;
1123
1124 CHECK_TYPEDEF (type);
1125
1126 name = type_name_no_tag (type);
1127 if (name != NULL)
1128 return name;
1129
1130 name = type_name_no_tag (saved_type);
1131 objfile = TYPE_OBJFILE (saved_type);
1132 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1133 name ? name : "<anonymous>", objfile ? objfile->name : "<arch>");
1134}
1135
7ba81444
MS
1136/* Lookup a typedef or primitive type named NAME, visible in lexical
1137 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1138 suitably defined. */
c906108c
SS
1139
1140struct type *
e6c014f2 1141lookup_typename (const struct language_defn *language,
ddd49eee 1142 struct gdbarch *gdbarch, const char *name,
34eaf542 1143 const struct block *block, int noerr)
c906108c 1144{
52f0bd74
AC
1145 struct symbol *sym;
1146 struct type *tmp;
c906108c 1147
774b6a14 1148 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
c906108c
SS
1149 if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
1150 {
e6c014f2 1151 tmp = language_lookup_primitive_type_by_name (language, gdbarch, name);
c906108c
SS
1152 if (tmp)
1153 {
c16abbde 1154 return tmp;
c906108c
SS
1155 }
1156 else if (!tmp && noerr)
1157 {
c16abbde 1158 return NULL;
c906108c
SS
1159 }
1160 else
1161 {
8a3fe4f8 1162 error (_("No type named %s."), name);
c906108c
SS
1163 }
1164 }
1165 return (SYMBOL_TYPE (sym));
1166}
1167
1168struct type *
e6c014f2
UW
1169lookup_unsigned_typename (const struct language_defn *language,
1170 struct gdbarch *gdbarch, char *name)
c906108c
SS
1171{
1172 char *uns = alloca (strlen (name) + 10);
1173
1174 strcpy (uns, "unsigned ");
1175 strcpy (uns + 9, name);
e6c014f2 1176 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
c906108c
SS
1177}
1178
1179struct type *
e6c014f2
UW
1180lookup_signed_typename (const struct language_defn *language,
1181 struct gdbarch *gdbarch, char *name)
c906108c
SS
1182{
1183 struct type *t;
1184 char *uns = alloca (strlen (name) + 8);
1185
1186 strcpy (uns, "signed ");
1187 strcpy (uns + 7, name);
e6c014f2 1188 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
7ba81444 1189 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1190 if (t != NULL)
1191 return t;
e6c014f2 1192 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
c906108c
SS
1193}
1194
1195/* Lookup a structure type named "struct NAME",
1196 visible in lexical block BLOCK. */
1197
1198struct type *
ddd49eee 1199lookup_struct (const char *name, struct block *block)
c906108c 1200{
52f0bd74 1201 struct symbol *sym;
c906108c 1202
2570f2b7 1203 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1204
1205 if (sym == NULL)
1206 {
8a3fe4f8 1207 error (_("No struct type named %s."), name);
c906108c
SS
1208 }
1209 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1210 {
7ba81444
MS
1211 error (_("This context has class, union or enum %s, not a struct."),
1212 name);
c906108c
SS
1213 }
1214 return (SYMBOL_TYPE (sym));
1215}
1216
1217/* Lookup a union type named "union NAME",
1218 visible in lexical block BLOCK. */
1219
1220struct type *
ddd49eee 1221lookup_union (const char *name, struct block *block)
c906108c 1222{
52f0bd74 1223 struct symbol *sym;
c5aa993b 1224 struct type *t;
c906108c 1225
2570f2b7 1226 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1227
1228 if (sym == NULL)
8a3fe4f8 1229 error (_("No union type named %s."), name);
c906108c 1230
c5aa993b 1231 t = SYMBOL_TYPE (sym);
c906108c
SS
1232
1233 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1234 return t;
c906108c 1235
7ba81444
MS
1236 /* If we get here, it's not a union. */
1237 error (_("This context has class, struct or enum %s, not a union."),
1238 name);
c906108c
SS
1239}
1240
1241
1242/* Lookup an enum type named "enum NAME",
1243 visible in lexical block BLOCK. */
1244
1245struct type *
ddd49eee 1246lookup_enum (const char *name, struct block *block)
c906108c 1247{
52f0bd74 1248 struct symbol *sym;
c906108c 1249
2570f2b7 1250 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1251 if (sym == NULL)
1252 {
8a3fe4f8 1253 error (_("No enum type named %s."), name);
c906108c
SS
1254 }
1255 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1256 {
7ba81444
MS
1257 error (_("This context has class, struct or union %s, not an enum."),
1258 name);
c906108c
SS
1259 }
1260 return (SYMBOL_TYPE (sym));
1261}
1262
1263/* Lookup a template type named "template NAME<TYPE>",
1264 visible in lexical block BLOCK. */
1265
1266struct type *
7ba81444
MS
1267lookup_template_type (char *name, struct type *type,
1268 struct block *block)
c906108c
SS
1269{
1270 struct symbol *sym;
7ba81444
MS
1271 char *nam = (char *)
1272 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1273
c906108c
SS
1274 strcpy (nam, name);
1275 strcat (nam, "<");
0004e5a2 1276 strcat (nam, TYPE_NAME (type));
0963b4bd 1277 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1278
2570f2b7 1279 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
c906108c
SS
1280
1281 if (sym == NULL)
1282 {
8a3fe4f8 1283 error (_("No template type named %s."), name);
c906108c
SS
1284 }
1285 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1286 {
7ba81444
MS
1287 error (_("This context has class, union or enum %s, not a struct."),
1288 name);
c906108c
SS
1289 }
1290 return (SYMBOL_TYPE (sym));
1291}
1292
7ba81444
MS
1293/* Given a type TYPE, lookup the type of the component of type named
1294 NAME.
c906108c 1295
7ba81444
MS
1296 TYPE can be either a struct or union, or a pointer or reference to
1297 a struct or union. If it is a pointer or reference, its target
1298 type is automatically used. Thus '.' and '->' are interchangable,
1299 as specified for the definitions of the expression element types
1300 STRUCTOP_STRUCT and STRUCTOP_PTR.
c906108c
SS
1301
1302 If NOERR is nonzero, return zero if NAME is not suitably defined.
1303 If NAME is the name of a baseclass type, return that type. */
1304
1305struct type *
fba45db2 1306lookup_struct_elt_type (struct type *type, char *name, int noerr)
c906108c
SS
1307{
1308 int i;
c92817ce 1309 char *typename;
c906108c
SS
1310
1311 for (;;)
1312 {
1313 CHECK_TYPEDEF (type);
1314 if (TYPE_CODE (type) != TYPE_CODE_PTR
1315 && TYPE_CODE (type) != TYPE_CODE_REF)
1316 break;
1317 type = TYPE_TARGET_TYPE (type);
1318 }
1319
687d6395
MS
1320 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1321 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1322 {
c92817ce
TT
1323 typename = type_to_string (type);
1324 make_cleanup (xfree, typename);
1325 error (_("Type %s is not a structure or union type."), typename);
c906108c
SS
1326 }
1327
1328#if 0
7ba81444
MS
1329 /* FIXME: This change put in by Michael seems incorrect for the case
1330 where the structure tag name is the same as the member name.
0963b4bd 1331 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
7ba81444 1332 foo; } bell;" Disabled by fnf. */
c906108c
SS
1333 {
1334 char *typename;
1335
1336 typename = type_name_no_tag (type);
762f08a3 1337 if (typename != NULL && strcmp (typename, name) == 0)
c906108c
SS
1338 return type;
1339 }
1340#endif
1341
1342 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1343 {
1344 char *t_field_name = TYPE_FIELD_NAME (type, i);
1345
db577aea 1346 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1347 {
1348 return TYPE_FIELD_TYPE (type, i);
1349 }
f5a010c0
PM
1350 else if (!t_field_name || *t_field_name == '\0')
1351 {
d8734c88
MS
1352 struct type *subtype
1353 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1354
f5a010c0
PM
1355 if (subtype != NULL)
1356 return subtype;
1357 }
c906108c
SS
1358 }
1359
1360 /* OK, it's not in this class. Recursively check the baseclasses. */
1361 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1362 {
1363 struct type *t;
1364
9733fc94 1365 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
c906108c
SS
1366 if (t != NULL)
1367 {
1368 return t;
1369 }
1370 }
1371
1372 if (noerr)
1373 {
1374 return NULL;
1375 }
c5aa993b 1376
c92817ce
TT
1377 typename = type_to_string (type);
1378 make_cleanup (xfree, typename);
1379 error (_("Type %s has no component named %s."), typename, name);
c906108c
SS
1380}
1381
81fe8080
DE
1382/* Lookup the vptr basetype/fieldno values for TYPE.
1383 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1384 vptr_fieldno. Also, if found and basetype is from the same objfile,
1385 cache the results.
1386 If not found, return -1 and ignore BASETYPEP.
1387 Callers should be aware that in some cases (for example,
c906108c 1388 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1389 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1390 this function will not be able to find the
7ba81444 1391 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1392 vptr_basetype will remain NULL or incomplete. */
c906108c 1393
81fe8080
DE
1394int
1395get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c
SS
1396{
1397 CHECK_TYPEDEF (type);
1398
1399 if (TYPE_VPTR_FIELDNO (type) < 0)
1400 {
1401 int i;
1402
7ba81444
MS
1403 /* We must start at zero in case the first (and only) baseclass
1404 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1405 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1406 {
81fe8080
DE
1407 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1408 int fieldno;
1409 struct type *basetype;
1410
1411 fieldno = get_vptr_fieldno (baseclass, &basetype);
1412 if (fieldno >= 0)
c906108c 1413 {
81fe8080 1414 /* If the type comes from a different objfile we can't cache
0963b4bd 1415 it, it may have a different lifetime. PR 2384 */
5ef73790 1416 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080
DE
1417 {
1418 TYPE_VPTR_FIELDNO (type) = fieldno;
1419 TYPE_VPTR_BASETYPE (type) = basetype;
1420 }
1421 if (basetypep)
1422 *basetypep = basetype;
1423 return fieldno;
c906108c
SS
1424 }
1425 }
81fe8080
DE
1426
1427 /* Not found. */
1428 return -1;
1429 }
1430 else
1431 {
1432 if (basetypep)
1433 *basetypep = TYPE_VPTR_BASETYPE (type);
1434 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1435 }
1436}
1437
44e1a9eb
DJ
1438static void
1439stub_noname_complaint (void)
1440{
e2e0b3e5 1441 complaint (&symfile_complaints, _("stub type has NULL name"));
44e1a9eb
DJ
1442}
1443
92163a10
JK
1444/* Find the real type of TYPE. This function returns the real type,
1445 after removing all layers of typedefs, and completing opaque or stub
1446 types. Completion changes the TYPE argument, but stripping of
1447 typedefs does not.
1448
1449 Instance flags (e.g. const/volatile) are preserved as typedefs are
1450 stripped. If necessary a new qualified form of the underlying type
1451 is created.
1452
1453 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1454 not been computed and we're either in the middle of reading symbols, or
1455 there was no name for the typedef in the debug info.
1456
1457 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1458 the target type.
c906108c
SS
1459
1460 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 1461 we can find a full definition in some other file. If so, copy this
7ba81444
MS
1462 definition, so we can use it in future. There used to be a comment
1463 (but not any code) that if we don't find a full definition, we'd
1464 set a flag so we don't spend time in the future checking the same
1465 type. That would be a mistake, though--we might load in more
92163a10 1466 symbols which contain a full definition for the type. */
c906108c
SS
1467
1468struct type *
a02fd225 1469check_typedef (struct type *type)
c906108c
SS
1470{
1471 struct type *orig_type = type;
92163a10
JK
1472 /* While we're removing typedefs, we don't want to lose qualifiers.
1473 E.g., const/volatile. */
1474 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 1475
423c0af8
MS
1476 gdb_assert (type);
1477
c906108c
SS
1478 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1479 {
1480 if (!TYPE_TARGET_TYPE (type))
1481 {
c5aa993b 1482 char *name;
c906108c
SS
1483 struct symbol *sym;
1484
1485 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 1486 reading a symtab. Infinite recursion is one danger. */
c906108c 1487 if (currently_reading_symtab)
92163a10 1488 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
1489
1490 name = type_name_no_tag (type);
7ba81444
MS
1491 /* FIXME: shouldn't we separately check the TYPE_NAME and
1492 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1493 VAR_DOMAIN as appropriate? (this code was written before
1494 TYPE_NAME and TYPE_TAG_NAME were separate). */
c906108c
SS
1495 if (name == NULL)
1496 {
23136709 1497 stub_noname_complaint ();
92163a10 1498 return make_qualified_type (type, instance_flags, NULL);
c906108c 1499 }
2570f2b7 1500 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c
SS
1501 if (sym)
1502 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 1503 else /* TYPE_CODE_UNDEF */
e9bb382b 1504 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
1505 }
1506 type = TYPE_TARGET_TYPE (type);
c906108c 1507
92163a10
JK
1508 /* Preserve the instance flags as we traverse down the typedef chain.
1509
1510 Handling address spaces/classes is nasty, what do we do if there's a
1511 conflict?
1512 E.g., what if an outer typedef marks the type as class_1 and an inner
1513 typedef marks the type as class_2?
1514 This is the wrong place to do such error checking. We leave it to
1515 the code that created the typedef in the first place to flag the
1516 error. We just pick the outer address space (akin to letting the
1517 outer cast in a chain of casting win), instead of assuming
1518 "it can't happen". */
1519 {
1520 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1521 | TYPE_INSTANCE_FLAG_DATA_SPACE);
1522 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1523 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1524
1525 /* Treat code vs data spaces and address classes separately. */
1526 if ((instance_flags & ALL_SPACES) != 0)
1527 new_instance_flags &= ~ALL_SPACES;
1528 if ((instance_flags & ALL_CLASSES) != 0)
1529 new_instance_flags &= ~ALL_CLASSES;
1530
1531 instance_flags |= new_instance_flags;
1532 }
1533 }
a02fd225 1534
7ba81444
MS
1535 /* If this is a struct/class/union with no fields, then check
1536 whether a full definition exists somewhere else. This is for
1537 systems where a type definition with no fields is issued for such
1538 types, instead of identifying them as stub types in the first
1539 place. */
c5aa993b 1540
7ba81444
MS
1541 if (TYPE_IS_OPAQUE (type)
1542 && opaque_type_resolution
1543 && !currently_reading_symtab)
c906108c 1544 {
c5aa993b
JM
1545 char *name = type_name_no_tag (type);
1546 struct type *newtype;
d8734c88 1547
c906108c
SS
1548 if (name == NULL)
1549 {
23136709 1550 stub_noname_complaint ();
92163a10 1551 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
1552 }
1553 newtype = lookup_transparent_type (name);
ad766c0a 1554
c906108c 1555 if (newtype)
ad766c0a 1556 {
7ba81444
MS
1557 /* If the resolved type and the stub are in the same
1558 objfile, then replace the stub type with the real deal.
1559 But if they're in separate objfiles, leave the stub
1560 alone; we'll just look up the transparent type every time
1561 we call check_typedef. We can't create pointers between
1562 types allocated to different objfiles, since they may
1563 have different lifetimes. Trying to copy NEWTYPE over to
1564 TYPE's objfile is pointless, too, since you'll have to
1565 move over any other types NEWTYPE refers to, which could
1566 be an unbounded amount of stuff. */
ad766c0a 1567 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
1568 type = make_qualified_type (newtype,
1569 TYPE_INSTANCE_FLAGS (type),
1570 type);
ad766c0a
JB
1571 else
1572 type = newtype;
1573 }
c906108c 1574 }
7ba81444
MS
1575 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1576 types. */
74a9bb82 1577 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 1578 {
c5aa993b 1579 char *name = type_name_no_tag (type);
c906108c 1580 /* FIXME: shouldn't we separately check the TYPE_NAME and the
176620f1 1581 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
7b83ea04
AC
1582 as appropriate? (this code was written before TYPE_NAME and
1583 TYPE_TAG_NAME were separate). */
c906108c 1584 struct symbol *sym;
d8734c88 1585
c906108c
SS
1586 if (name == NULL)
1587 {
23136709 1588 stub_noname_complaint ();
92163a10 1589 return make_qualified_type (type, instance_flags, NULL);
c906108c 1590 }
2570f2b7 1591 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c 1592 if (sym)
c26f2453
JB
1593 {
1594 /* Same as above for opaque types, we can replace the stub
92163a10 1595 with the complete type only if they are in the same
c26f2453
JB
1596 objfile. */
1597 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
1598 type = make_qualified_type (SYMBOL_TYPE (sym),
1599 TYPE_INSTANCE_FLAGS (type),
1600 type);
c26f2453
JB
1601 else
1602 type = SYMBOL_TYPE (sym);
1603 }
c906108c
SS
1604 }
1605
74a9bb82 1606 if (TYPE_TARGET_STUB (type))
c906108c
SS
1607 {
1608 struct type *range_type;
1609 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1610
74a9bb82 1611 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 1612 {
73e2eb35 1613 /* Nothing we can do. */
c5aa993b 1614 }
c906108c
SS
1615 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1616 && TYPE_NFIELDS (type) == 1
262452ec 1617 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
c906108c
SS
1618 == TYPE_CODE_RANGE))
1619 {
1620 /* Now recompute the length of the array type, based on its
ab0d6e0d
JB
1621 number of elements and the target type's length.
1622 Watch out for Ada null Ada arrays where the high bound
0963b4bd 1623 is smaller than the low bound. */
43bbcdc2
PH
1624 const LONGEST low_bound = TYPE_LOW_BOUND (range_type);
1625 const LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
1626 ULONGEST len;
1627
ab0d6e0d 1628 if (high_bound < low_bound)
43bbcdc2 1629 len = 0;
d8734c88
MS
1630 else
1631 {
1632 /* For now, we conservatively take the array length to be 0
1633 if its length exceeds UINT_MAX. The code below assumes
1634 that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1,
1635 which is technically not guaranteed by C, but is usually true
1636 (because it would be true if x were unsigned with its
0963b4bd 1637 high-order bit on). It uses the fact that
d8734c88
MS
1638 high_bound-low_bound is always representable in
1639 ULONGEST and that if high_bound-low_bound+1 overflows,
1640 it overflows to 0. We must change these tests if we
1641 decide to increase the representation of TYPE_LENGTH
0963b4bd 1642 from unsigned int to ULONGEST. */
d8734c88
MS
1643 ULONGEST ulow = low_bound, uhigh = high_bound;
1644 ULONGEST tlen = TYPE_LENGTH (target_type);
1645
1646 len = tlen * (uhigh - ulow + 1);
1647 if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh
1648 || len > UINT_MAX)
1649 len = 0;
1650 }
43bbcdc2 1651 TYPE_LENGTH (type) = len;
876cecd0 1652 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
1653 }
1654 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1655 {
1656 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 1657 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
1658 }
1659 }
92163a10
JK
1660
1661 type = make_qualified_type (type, instance_flags, NULL);
1662
7ba81444 1663 /* Cache TYPE_LENGTH for future use. */
c906108c 1664 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 1665
c906108c
SS
1666 return type;
1667}
1668
7ba81444 1669/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 1670 occurs, silently return a void type. */
c91ecb25 1671
b9362cc7 1672static struct type *
48319d1f 1673safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
1674{
1675 struct ui_file *saved_gdb_stderr;
1676 struct type *type;
1677
7ba81444 1678 /* Suppress error messages. */
c91ecb25
ND
1679 saved_gdb_stderr = gdb_stderr;
1680 gdb_stderr = ui_file_new ();
1681
7ba81444 1682 /* Call parse_and_eval_type() without fear of longjmp()s. */
c91ecb25 1683 if (!gdb_parse_and_eval_type (p, length, &type))
48319d1f 1684 type = builtin_type (gdbarch)->builtin_void;
c91ecb25 1685
7ba81444 1686 /* Stop suppressing error messages. */
c91ecb25
ND
1687 ui_file_delete (gdb_stderr);
1688 gdb_stderr = saved_gdb_stderr;
1689
1690 return type;
1691}
1692
c906108c
SS
1693/* Ugly hack to convert method stubs into method types.
1694
7ba81444
MS
1695 He ain't kiddin'. This demangles the name of the method into a
1696 string including argument types, parses out each argument type,
1697 generates a string casting a zero to that type, evaluates the
1698 string, and stuffs the resulting type into an argtype vector!!!
1699 Then it knows the type of the whole function (including argument
1700 types for overloading), which info used to be in the stab's but was
1701 removed to hack back the space required for them. */
c906108c 1702
de17c821 1703static void
fba45db2 1704check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 1705{
50810684 1706 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
1707 struct fn_field *f;
1708 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1709 char *demangled_name = cplus_demangle (mangled_name,
1710 DMGL_PARAMS | DMGL_ANSI);
1711 char *argtypetext, *p;
1712 int depth = 0, argcount = 1;
ad2f7632 1713 struct field *argtypes;
c906108c
SS
1714 struct type *mtype;
1715
1716 /* Make sure we got back a function string that we can use. */
1717 if (demangled_name)
1718 p = strchr (demangled_name, '(');
502dcf4e
AC
1719 else
1720 p = NULL;
c906108c
SS
1721
1722 if (demangled_name == NULL || p == NULL)
7ba81444
MS
1723 error (_("Internal: Cannot demangle mangled name `%s'."),
1724 mangled_name);
c906108c
SS
1725
1726 /* Now, read in the parameters that define this type. */
1727 p += 1;
1728 argtypetext = p;
1729 while (*p)
1730 {
070ad9f0 1731 if (*p == '(' || *p == '<')
c906108c
SS
1732 {
1733 depth += 1;
1734 }
070ad9f0 1735 else if (*p == ')' || *p == '>')
c906108c
SS
1736 {
1737 depth -= 1;
1738 }
1739 else if (*p == ',' && depth == 0)
1740 {
1741 argcount += 1;
1742 }
1743
1744 p += 1;
1745 }
1746
ad2f7632
DJ
1747 /* If we read one argument and it was ``void'', don't count it. */
1748 if (strncmp (argtypetext, "(void)", 6) == 0)
1749 argcount -= 1;
c906108c 1750
ad2f7632
DJ
1751 /* We need one extra slot, for the THIS pointer. */
1752
1753 argtypes = (struct field *)
1754 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 1755 p = argtypetext;
4a1970e4
DJ
1756
1757 /* Add THIS pointer for non-static methods. */
1758 f = TYPE_FN_FIELDLIST1 (type, method_id);
1759 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1760 argcount = 0;
1761 else
1762 {
ad2f7632 1763 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
1764 argcount = 1;
1765 }
c906108c 1766
0963b4bd 1767 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
1768 {
1769 depth = 0;
1770 while (*p)
1771 {
1772 if (depth <= 0 && (*p == ',' || *p == ')'))
1773 {
ad2f7632
DJ
1774 /* Avoid parsing of ellipsis, they will be handled below.
1775 Also avoid ``void'' as above. */
1776 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1777 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 1778 {
ad2f7632 1779 argtypes[argcount].type =
48319d1f 1780 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
1781 argcount += 1;
1782 }
1783 argtypetext = p + 1;
1784 }
1785
070ad9f0 1786 if (*p == '(' || *p == '<')
c906108c
SS
1787 {
1788 depth += 1;
1789 }
070ad9f0 1790 else if (*p == ')' || *p == '>')
c906108c
SS
1791 {
1792 depth -= 1;
1793 }
1794
1795 p += 1;
1796 }
1797 }
1798
c906108c
SS
1799 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1800
1801 /* Now update the old "stub" type into a real type. */
1802 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1803 TYPE_DOMAIN_TYPE (mtype) = type;
ad2f7632
DJ
1804 TYPE_FIELDS (mtype) = argtypes;
1805 TYPE_NFIELDS (mtype) = argcount;
876cecd0 1806 TYPE_STUB (mtype) = 0;
c906108c 1807 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632 1808 if (p[-2] == '.')
876cecd0 1809 TYPE_VARARGS (mtype) = 1;
ad2f7632
DJ
1810
1811 xfree (demangled_name);
c906108c
SS
1812}
1813
7ba81444
MS
1814/* This is the external interface to check_stub_method, above. This
1815 function unstubs all of the signatures for TYPE's METHOD_ID method
1816 name. After calling this function TYPE_FN_FIELD_STUB will be
1817 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1818 correct.
de17c821
DJ
1819
1820 This function unfortunately can not die until stabs do. */
1821
1822void
1823check_stub_method_group (struct type *type, int method_id)
1824{
1825 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1826 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
f710f4fc 1827 int j, found_stub = 0;
de17c821
DJ
1828
1829 for (j = 0; j < len; j++)
1830 if (TYPE_FN_FIELD_STUB (f, j))
1831 {
1832 found_stub = 1;
1833 check_stub_method (type, method_id, j);
1834 }
1835
7ba81444
MS
1836 /* GNU v3 methods with incorrect names were corrected when we read
1837 in type information, because it was cheaper to do it then. The
1838 only GNU v2 methods with incorrect method names are operators and
1839 destructors; destructors were also corrected when we read in type
1840 information.
de17c821
DJ
1841
1842 Therefore the only thing we need to handle here are v2 operator
1843 names. */
1844 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1845 {
1846 int ret;
1847 char dem_opname[256];
1848
7ba81444
MS
1849 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1850 method_id),
de17c821
DJ
1851 dem_opname, DMGL_ANSI);
1852 if (!ret)
7ba81444
MS
1853 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1854 method_id),
de17c821
DJ
1855 dem_opname, 0);
1856 if (ret)
1857 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1858 }
1859}
1860
9655fd1a
JK
1861/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
1862const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
1863
1864void
fba45db2 1865allocate_cplus_struct_type (struct type *type)
c906108c 1866{
b4ba55a1
JB
1867 if (HAVE_CPLUS_STRUCT (type))
1868 /* Structure was already allocated. Nothing more to do. */
1869 return;
1870
1871 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
1872 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1873 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1874 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
c906108c
SS
1875}
1876
b4ba55a1
JB
1877const struct gnat_aux_type gnat_aux_default =
1878 { NULL };
1879
1880/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
1881 and allocate the associated gnat-specific data. The gnat-specific
1882 data is also initialized to gnat_aux_default. */
1883void
1884allocate_gnat_aux_type (struct type *type)
1885{
1886 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
1887 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
1888 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
1889 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
1890}
1891
1892
c906108c
SS
1893/* Helper function to initialize the standard scalar types.
1894
e9bb382b
UW
1895 If NAME is non-NULL, then we make a copy of the string pointed
1896 to by name in the objfile_obstack for that objfile, and initialize
1897 the type name to that copy. There are places (mipsread.c in particular),
1898 where init_type is called with a NULL value for NAME). */
c906108c
SS
1899
1900struct type *
7ba81444
MS
1901init_type (enum type_code code, int length, int flags,
1902 char *name, struct objfile *objfile)
c906108c 1903{
52f0bd74 1904 struct type *type;
c906108c
SS
1905
1906 type = alloc_type (objfile);
1907 TYPE_CODE (type) = code;
1908 TYPE_LENGTH (type) = length;
876cecd0
TT
1909
1910 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1911 if (flags & TYPE_FLAG_UNSIGNED)
1912 TYPE_UNSIGNED (type) = 1;
1913 if (flags & TYPE_FLAG_NOSIGN)
1914 TYPE_NOSIGN (type) = 1;
1915 if (flags & TYPE_FLAG_STUB)
1916 TYPE_STUB (type) = 1;
1917 if (flags & TYPE_FLAG_TARGET_STUB)
1918 TYPE_TARGET_STUB (type) = 1;
1919 if (flags & TYPE_FLAG_STATIC)
1920 TYPE_STATIC (type) = 1;
1921 if (flags & TYPE_FLAG_PROTOTYPED)
1922 TYPE_PROTOTYPED (type) = 1;
1923 if (flags & TYPE_FLAG_INCOMPLETE)
1924 TYPE_INCOMPLETE (type) = 1;
1925 if (flags & TYPE_FLAG_VARARGS)
1926 TYPE_VARARGS (type) = 1;
1927 if (flags & TYPE_FLAG_VECTOR)
1928 TYPE_VECTOR (type) = 1;
1929 if (flags & TYPE_FLAG_STUB_SUPPORTED)
1930 TYPE_STUB_SUPPORTED (type) = 1;
876cecd0
TT
1931 if (flags & TYPE_FLAG_FIXED_INSTANCE)
1932 TYPE_FIXED_INSTANCE (type) = 1;
0875794a
JK
1933 if (flags & TYPE_FLAG_GNU_IFUNC)
1934 TYPE_GNU_IFUNC (type) = 1;
876cecd0 1935
e9bb382b
UW
1936 if (name)
1937 TYPE_NAME (type) = obsavestring (name, strlen (name),
1938 &objfile->objfile_obstack);
c906108c
SS
1939
1940 /* C++ fancies. */
1941
973ccf8b 1942 if (name && strcmp (name, "char") == 0)
876cecd0 1943 TYPE_NOSIGN (type) = 1;
973ccf8b 1944
b4ba55a1 1945 switch (code)
c906108c 1946 {
b4ba55a1
JB
1947 case TYPE_CODE_STRUCT:
1948 case TYPE_CODE_UNION:
1949 case TYPE_CODE_NAMESPACE:
1950 INIT_CPLUS_SPECIFIC (type);
1951 break;
1952 case TYPE_CODE_FLT:
1953 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
1954 break;
1955 case TYPE_CODE_FUNC:
b6cdc2c1 1956 INIT_FUNC_SPECIFIC (type);
b4ba55a1 1957 break;
c906108c 1958 }
c16abbde 1959 return type;
c906108c
SS
1960}
1961
c906108c 1962int
fba45db2 1963can_dereference (struct type *t)
c906108c 1964{
7ba81444
MS
1965 /* FIXME: Should we return true for references as well as
1966 pointers? */
c906108c
SS
1967 CHECK_TYPEDEF (t);
1968 return
1969 (t != NULL
1970 && TYPE_CODE (t) == TYPE_CODE_PTR
1971 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1972}
1973
adf40b2e 1974int
fba45db2 1975is_integral_type (struct type *t)
adf40b2e
JM
1976{
1977 CHECK_TYPEDEF (t);
1978 return
1979 ((t != NULL)
d4f3574e
SS
1980 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1981 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 1982 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
1983 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1984 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1985 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
1986}
1987
e09342b5
TJB
1988/* Return true if TYPE is scalar. */
1989
1990static int
1991is_scalar_type (struct type *type)
1992{
1993 CHECK_TYPEDEF (type);
1994
1995 switch (TYPE_CODE (type))
1996 {
1997 case TYPE_CODE_ARRAY:
1998 case TYPE_CODE_STRUCT:
1999 case TYPE_CODE_UNION:
2000 case TYPE_CODE_SET:
2001 case TYPE_CODE_STRING:
2002 case TYPE_CODE_BITSTRING:
2003 return 0;
2004 default:
2005 return 1;
2006 }
2007}
2008
2009/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
2010 the memory layout of a scalar type. E.g., an array or struct with only
2011 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
2012
2013int
2014is_scalar_type_recursive (struct type *t)
2015{
2016 CHECK_TYPEDEF (t);
2017
2018 if (is_scalar_type (t))
2019 return 1;
2020 /* Are we dealing with an array or string of known dimensions? */
2021 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2022 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2023 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2024 {
2025 LONGEST low_bound, high_bound;
2026 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2027
2028 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2029
2030 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2031 }
2032 /* Are we dealing with a struct with one element? */
2033 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2034 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2035 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2036 {
2037 int i, n = TYPE_NFIELDS (t);
2038
2039 /* If all elements of the union are scalar, then the union is scalar. */
2040 for (i = 0; i < n; i++)
2041 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2042 return 0;
2043
2044 return 1;
2045 }
2046
2047 return 0;
2048}
2049
4e8f195d
TT
2050/* A helper function which returns true if types A and B represent the
2051 "same" class type. This is true if the types have the same main
2052 type, or the same name. */
2053
2054int
2055class_types_same_p (const struct type *a, const struct type *b)
2056{
2057 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2058 || (TYPE_NAME (a) && TYPE_NAME (b)
2059 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2060}
2061
a9d5ef47
SW
2062/* If BASE is an ancestor of DCLASS return the distance between them.
2063 otherwise return -1;
2064 eg:
2065
2066 class A {};
2067 class B: public A {};
2068 class C: public B {};
2069 class D: C {};
2070
2071 distance_to_ancestor (A, A, 0) = 0
2072 distance_to_ancestor (A, B, 0) = 1
2073 distance_to_ancestor (A, C, 0) = 2
2074 distance_to_ancestor (A, D, 0) = 3
2075
2076 If PUBLIC is 1 then only public ancestors are considered,
2077 and the function returns the distance only if BASE is a public ancestor
2078 of DCLASS.
2079 Eg:
2080
0963b4bd 2081 distance_to_ancestor (A, D, 1) = -1. */
c906108c 2082
0526b37a 2083static int
a9d5ef47 2084distance_to_ancestor (struct type *base, struct type *dclass, int public)
c906108c
SS
2085{
2086 int i;
a9d5ef47 2087 int d;
c5aa993b 2088
c906108c
SS
2089 CHECK_TYPEDEF (base);
2090 CHECK_TYPEDEF (dclass);
2091
4e8f195d 2092 if (class_types_same_p (base, dclass))
a9d5ef47 2093 return 0;
c906108c
SS
2094
2095 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 2096 {
0526b37a
SW
2097 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2098 continue;
2099
a9d5ef47
SW
2100 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2101 if (d >= 0)
2102 return 1 + d;
4e8f195d 2103 }
c906108c 2104
a9d5ef47 2105 return -1;
c906108c 2106}
4e8f195d 2107
0526b37a
SW
2108/* Check whether BASE is an ancestor or base class or DCLASS
2109 Return 1 if so, and 0 if not.
2110 Note: If BASE and DCLASS are of the same type, this function
2111 will return 1. So for some class A, is_ancestor (A, A) will
2112 return 1. */
2113
2114int
2115is_ancestor (struct type *base, struct type *dclass)
2116{
a9d5ef47 2117 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
2118}
2119
4e8f195d
TT
2120/* Like is_ancestor, but only returns true when BASE is a public
2121 ancestor of DCLASS. */
2122
2123int
2124is_public_ancestor (struct type *base, struct type *dclass)
2125{
a9d5ef47 2126 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
2127}
2128
2129/* A helper function for is_unique_ancestor. */
2130
2131static int
2132is_unique_ancestor_worker (struct type *base, struct type *dclass,
2133 int *offset,
8af8e3bc
PA
2134 const gdb_byte *valaddr, int embedded_offset,
2135 CORE_ADDR address, struct value *val)
4e8f195d
TT
2136{
2137 int i, count = 0;
2138
2139 CHECK_TYPEDEF (base);
2140 CHECK_TYPEDEF (dclass);
2141
2142 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2143 {
8af8e3bc
PA
2144 struct type *iter;
2145 int this_offset;
4e8f195d 2146
8af8e3bc
PA
2147 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2148
2149 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2150 address, val);
4e8f195d
TT
2151
2152 if (class_types_same_p (base, iter))
2153 {
2154 /* If this is the first subclass, set *OFFSET and set count
2155 to 1. Otherwise, if this is at the same offset as
2156 previous instances, do nothing. Otherwise, increment
2157 count. */
2158 if (*offset == -1)
2159 {
2160 *offset = this_offset;
2161 count = 1;
2162 }
2163 else if (this_offset == *offset)
2164 {
2165 /* Nothing. */
2166 }
2167 else
2168 ++count;
2169 }
2170 else
2171 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
2172 valaddr,
2173 embedded_offset + this_offset,
2174 address, val);
4e8f195d
TT
2175 }
2176
2177 return count;
2178}
2179
2180/* Like is_ancestor, but only returns true if BASE is a unique base
2181 class of the type of VAL. */
2182
2183int
2184is_unique_ancestor (struct type *base, struct value *val)
2185{
2186 int offset = -1;
2187
2188 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
2189 value_contents_for_printing (val),
2190 value_embedded_offset (val),
2191 value_address (val), val) == 1;
4e8f195d
TT
2192}
2193
c906108c
SS
2194\f
2195
6403aeea
SW
2196/* Return the sum of the rank of A with the rank of B. */
2197
2198struct rank
2199sum_ranks (struct rank a, struct rank b)
2200{
2201 struct rank c;
2202 c.rank = a.rank + b.rank;
a9d5ef47 2203 c.subrank = a.subrank + b.subrank;
6403aeea
SW
2204 return c;
2205}
2206
2207/* Compare rank A and B and return:
2208 0 if a = b
2209 1 if a is better than b
2210 -1 if b is better than a. */
2211
2212int
2213compare_ranks (struct rank a, struct rank b)
2214{
2215 if (a.rank == b.rank)
a9d5ef47
SW
2216 {
2217 if (a.subrank == b.subrank)
2218 return 0;
2219 if (a.subrank < b.subrank)
2220 return 1;
2221 if (a.subrank > b.subrank)
2222 return -1;
2223 }
6403aeea
SW
2224
2225 if (a.rank < b.rank)
2226 return 1;
2227
0963b4bd 2228 /* a.rank > b.rank */
6403aeea
SW
2229 return -1;
2230}
c5aa993b 2231
0963b4bd 2232/* Functions for overload resolution begin here. */
c906108c
SS
2233
2234/* Compare two badness vectors A and B and return the result.
7ba81444
MS
2235 0 => A and B are identical
2236 1 => A and B are incomparable
2237 2 => A is better than B
2238 3 => A is worse than B */
c906108c
SS
2239
2240int
fba45db2 2241compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
2242{
2243 int i;
2244 int tmp;
c5aa993b
JM
2245 short found_pos = 0; /* any positives in c? */
2246 short found_neg = 0; /* any negatives in c? */
2247
2248 /* differing lengths => incomparable */
c906108c
SS
2249 if (a->length != b->length)
2250 return 1;
2251
c5aa993b
JM
2252 /* Subtract b from a */
2253 for (i = 0; i < a->length; i++)
c906108c 2254 {
6403aeea 2255 tmp = compare_ranks (b->rank[i], a->rank[i]);
c906108c 2256 if (tmp > 0)
c5aa993b 2257 found_pos = 1;
c906108c 2258 else if (tmp < 0)
c5aa993b 2259 found_neg = 1;
c906108c
SS
2260 }
2261
2262 if (found_pos)
2263 {
2264 if (found_neg)
c5aa993b 2265 return 1; /* incomparable */
c906108c 2266 else
c5aa993b 2267 return 3; /* A > B */
c906108c 2268 }
c5aa993b
JM
2269 else
2270 /* no positives */
c906108c
SS
2271 {
2272 if (found_neg)
c5aa993b 2273 return 2; /* A < B */
c906108c 2274 else
c5aa993b 2275 return 0; /* A == B */
c906108c
SS
2276 }
2277}
2278
7ba81444
MS
2279/* Rank a function by comparing its parameter types (PARMS, length
2280 NPARMS), to the types of an argument list (ARGS, length NARGS).
2281 Return a pointer to a badness vector. This has NARGS + 1
2282 entries. */
c906108c
SS
2283
2284struct badness_vector *
7ba81444
MS
2285rank_function (struct type **parms, int nparms,
2286 struct type **args, int nargs)
c906108c
SS
2287{
2288 int i;
c5aa993b 2289 struct badness_vector *bv;
c906108c
SS
2290 int min_len = nparms < nargs ? nparms : nargs;
2291
2292 bv = xmalloc (sizeof (struct badness_vector));
0963b4bd 2293 bv->length = nargs + 1; /* add 1 for the length-match rank. */
c906108c
SS
2294 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2295
2296 /* First compare the lengths of the supplied lists.
7ba81444 2297 If there is a mismatch, set it to a high value. */
c5aa993b 2298
c906108c 2299 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
2300 arguments and ellipsis parameter lists, we should consider those
2301 and rank the length-match more finely. */
c906108c 2302
6403aeea
SW
2303 LENGTH_MATCH (bv) = (nargs != nparms)
2304 ? LENGTH_MISMATCH_BADNESS
2305 : EXACT_MATCH_BADNESS;
c906108c 2306
0963b4bd 2307 /* Now rank all the parameters of the candidate function. */
74cc24b0
DB
2308 for (i = 1; i <= min_len; i++)
2309 bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
c906108c 2310
0963b4bd 2311 /* If more arguments than parameters, add dummy entries. */
c5aa993b 2312 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
2313 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2314
2315 return bv;
2316}
2317
973ccf8b
DJ
2318/* Compare the names of two integer types, assuming that any sign
2319 qualifiers have been checked already. We do it this way because
2320 there may be an "int" in the name of one of the types. */
2321
2322static int
2323integer_types_same_name_p (const char *first, const char *second)
2324{
2325 int first_p, second_p;
2326
7ba81444
MS
2327 /* If both are shorts, return 1; if neither is a short, keep
2328 checking. */
973ccf8b
DJ
2329 first_p = (strstr (first, "short") != NULL);
2330 second_p = (strstr (second, "short") != NULL);
2331 if (first_p && second_p)
2332 return 1;
2333 if (first_p || second_p)
2334 return 0;
2335
2336 /* Likewise for long. */
2337 first_p = (strstr (first, "long") != NULL);
2338 second_p = (strstr (second, "long") != NULL);
2339 if (first_p && second_p)
2340 return 1;
2341 if (first_p || second_p)
2342 return 0;
2343
2344 /* Likewise for char. */
2345 first_p = (strstr (first, "char") != NULL);
2346 second_p = (strstr (second, "char") != NULL);
2347 if (first_p && second_p)
2348 return 1;
2349 if (first_p || second_p)
2350 return 0;
2351
2352 /* They must both be ints. */
2353 return 1;
2354}
2355
7062b0a0
SW
2356/* Compares type A to type B returns 1 if the represent the same type
2357 0 otherwise. */
2358
2359static int
2360types_equal (struct type *a, struct type *b)
2361{
2362 /* Identical type pointers. */
2363 /* However, this still doesn't catch all cases of same type for b
2364 and a. The reason is that builtin types are different from
2365 the same ones constructed from the object. */
2366 if (a == b)
2367 return 1;
2368
2369 /* Resolve typedefs */
2370 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2371 a = check_typedef (a);
2372 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2373 b = check_typedef (b);
2374
2375 /* If after resolving typedefs a and b are not of the same type
2376 code then they are not equal. */
2377 if (TYPE_CODE (a) != TYPE_CODE (b))
2378 return 0;
2379
2380 /* If a and b are both pointers types or both reference types then
2381 they are equal of the same type iff the objects they refer to are
2382 of the same type. */
2383 if (TYPE_CODE (a) == TYPE_CODE_PTR
2384 || TYPE_CODE (a) == TYPE_CODE_REF)
2385 return types_equal (TYPE_TARGET_TYPE (a),
2386 TYPE_TARGET_TYPE (b));
2387
0963b4bd 2388 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
2389 are exactly the same. This happens when we generate method
2390 stubs. The types won't point to the same address, but they
0963b4bd 2391 really are the same. */
7062b0a0
SW
2392
2393 if (TYPE_NAME (a) && TYPE_NAME (b)
2394 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2395 return 1;
2396
2397 /* Check if identical after resolving typedefs. */
2398 if (a == b)
2399 return 1;
2400
2401 return 0;
2402}
2403
c906108c
SS
2404/* Compare one type (PARM) for compatibility with another (ARG).
2405 * PARM is intended to be the parameter type of a function; and
2406 * ARG is the supplied argument's type. This function tests if
2407 * the latter can be converted to the former.
2408 *
2409 * Return 0 if they are identical types;
2410 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
2411 * PARM is to ARG. The higher the return value, the worse the match.
2412 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 2413
6403aeea 2414struct rank
fba45db2 2415rank_one_type (struct type *parm, struct type *arg)
c906108c 2416{
a9d5ef47 2417 struct rank rank = {0,0};
7062b0a0
SW
2418
2419 if (types_equal (parm, arg))
6403aeea 2420 return EXACT_MATCH_BADNESS;
c906108c
SS
2421
2422 /* Resolve typedefs */
2423 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2424 parm = check_typedef (parm);
2425 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2426 arg = check_typedef (arg);
2427
db577aea 2428 /* See through references, since we can almost make non-references
7ba81444 2429 references. */
db577aea 2430 if (TYPE_CODE (arg) == TYPE_CODE_REF)
6403aeea
SW
2431 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg)),
2432 REFERENCE_CONVERSION_BADNESS));
db577aea 2433 if (TYPE_CODE (parm) == TYPE_CODE_REF)
6403aeea
SW
2434 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg),
2435 REFERENCE_CONVERSION_BADNESS));
5d161b24 2436 if (overload_debug)
7ba81444
MS
2437 /* Debugging only. */
2438 fprintf_filtered (gdb_stderr,
2439 "------ Arg is %s [%d], parm is %s [%d]\n",
2440 TYPE_NAME (arg), TYPE_CODE (arg),
2441 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 2442
0963b4bd 2443 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
2444
2445 switch (TYPE_CODE (parm))
2446 {
c5aa993b
JM
2447 case TYPE_CODE_PTR:
2448 switch (TYPE_CODE (arg))
2449 {
2450 case TYPE_CODE_PTR:
7062b0a0
SW
2451
2452 /* Allowed pointer conversions are:
2453 (a) pointer to void-pointer conversion. */
2454 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
c5aa993b 2455 return VOID_PTR_CONVERSION_BADNESS;
7062b0a0
SW
2456
2457 /* (b) pointer to ancestor-pointer conversion. */
a9d5ef47
SW
2458 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
2459 TYPE_TARGET_TYPE (arg),
2460 0);
2461 if (rank.subrank >= 0)
2462 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
7062b0a0
SW
2463
2464 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 2465 case TYPE_CODE_ARRAY:
7062b0a0
SW
2466 if (types_equal (TYPE_TARGET_TYPE (parm),
2467 TYPE_TARGET_TYPE (arg)))
6403aeea 2468 return EXACT_MATCH_BADNESS;
7062b0a0 2469 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b
JM
2470 case TYPE_CODE_FUNC:
2471 return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
2472 case TYPE_CODE_INT:
2473 case TYPE_CODE_ENUM:
4f2aea11 2474 case TYPE_CODE_FLAGS:
c5aa993b
JM
2475 case TYPE_CODE_CHAR:
2476 case TYPE_CODE_RANGE:
2477 case TYPE_CODE_BOOL:
c5aa993b
JM
2478 default:
2479 return INCOMPATIBLE_TYPE_BADNESS;
2480 }
2481 case TYPE_CODE_ARRAY:
2482 switch (TYPE_CODE (arg))
2483 {
2484 case TYPE_CODE_PTR:
2485 case TYPE_CODE_ARRAY:
7ba81444
MS
2486 return rank_one_type (TYPE_TARGET_TYPE (parm),
2487 TYPE_TARGET_TYPE (arg));
c5aa993b
JM
2488 default:
2489 return INCOMPATIBLE_TYPE_BADNESS;
2490 }
2491 case TYPE_CODE_FUNC:
2492 switch (TYPE_CODE (arg))
2493 {
2494 case TYPE_CODE_PTR: /* funcptr -> func */
2495 return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
2496 default:
2497 return INCOMPATIBLE_TYPE_BADNESS;
2498 }
2499 case TYPE_CODE_INT:
2500 switch (TYPE_CODE (arg))
2501 {
2502 case TYPE_CODE_INT:
2503 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2504 {
2505 /* Deal with signed, unsigned, and plain chars and
7ba81444 2506 signed and unsigned ints. */
c5aa993b
JM
2507 if (TYPE_NOSIGN (parm))
2508 {
0963b4bd 2509 /* This case only for character types. */
7ba81444 2510 if (TYPE_NOSIGN (arg))
6403aeea 2511 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
7ba81444
MS
2512 else /* signed/unsigned char -> plain char */
2513 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2514 }
2515 else if (TYPE_UNSIGNED (parm))
2516 {
2517 if (TYPE_UNSIGNED (arg))
2518 {
7ba81444
MS
2519 /* unsigned int -> unsigned int, or
2520 unsigned long -> unsigned long */
2521 if (integer_types_same_name_p (TYPE_NAME (parm),
2522 TYPE_NAME (arg)))
6403aeea 2523 return EXACT_MATCH_BADNESS;
7ba81444
MS
2524 else if (integer_types_same_name_p (TYPE_NAME (arg),
2525 "int")
2526 && integer_types_same_name_p (TYPE_NAME (parm),
2527 "long"))
3e43a32a
MS
2528 /* unsigned int -> unsigned long */
2529 return INTEGER_PROMOTION_BADNESS;
c5aa993b 2530 else
3e43a32a
MS
2531 /* unsigned long -> unsigned int */
2532 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2533 }
2534 else
2535 {
7ba81444
MS
2536 if (integer_types_same_name_p (TYPE_NAME (arg),
2537 "long")
2538 && integer_types_same_name_p (TYPE_NAME (parm),
2539 "int"))
3e43a32a
MS
2540 /* signed long -> unsigned int */
2541 return INTEGER_CONVERSION_BADNESS;
c5aa993b 2542 else
3e43a32a
MS
2543 /* signed int/long -> unsigned int/long */
2544 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2545 }
2546 }
2547 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2548 {
7ba81444
MS
2549 if (integer_types_same_name_p (TYPE_NAME (parm),
2550 TYPE_NAME (arg)))
6403aeea 2551 return EXACT_MATCH_BADNESS;
7ba81444
MS
2552 else if (integer_types_same_name_p (TYPE_NAME (arg),
2553 "int")
2554 && integer_types_same_name_p (TYPE_NAME (parm),
2555 "long"))
c5aa993b
JM
2556 return INTEGER_PROMOTION_BADNESS;
2557 else
1c5cb38e 2558 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2559 }
2560 else
1c5cb38e 2561 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2562 }
2563 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2564 return INTEGER_PROMOTION_BADNESS;
2565 else
1c5cb38e 2566 return INTEGER_CONVERSION_BADNESS;
c5aa993b 2567 case TYPE_CODE_ENUM:
4f2aea11 2568 case TYPE_CODE_FLAGS:
c5aa993b
JM
2569 case TYPE_CODE_CHAR:
2570 case TYPE_CODE_RANGE:
2571 case TYPE_CODE_BOOL:
2572 return INTEGER_PROMOTION_BADNESS;
2573 case TYPE_CODE_FLT:
2574 return INT_FLOAT_CONVERSION_BADNESS;
2575 case TYPE_CODE_PTR:
2576 return NS_POINTER_CONVERSION_BADNESS;
2577 default:
2578 return INCOMPATIBLE_TYPE_BADNESS;
2579 }
2580 break;
2581 case TYPE_CODE_ENUM:
2582 switch (TYPE_CODE (arg))
2583 {
2584 case TYPE_CODE_INT:
2585 case TYPE_CODE_CHAR:
2586 case TYPE_CODE_RANGE:
2587 case TYPE_CODE_BOOL:
2588 case TYPE_CODE_ENUM:
1c5cb38e 2589 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2590 case TYPE_CODE_FLT:
2591 return INT_FLOAT_CONVERSION_BADNESS;
2592 default:
2593 return INCOMPATIBLE_TYPE_BADNESS;
2594 }
2595 break;
2596 case TYPE_CODE_CHAR:
2597 switch (TYPE_CODE (arg))
2598 {
2599 case TYPE_CODE_RANGE:
2600 case TYPE_CODE_BOOL:
2601 case TYPE_CODE_ENUM:
1c5cb38e 2602 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2603 case TYPE_CODE_FLT:
2604 return INT_FLOAT_CONVERSION_BADNESS;
2605 case TYPE_CODE_INT:
2606 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
1c5cb38e 2607 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2608 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2609 return INTEGER_PROMOTION_BADNESS;
2610 /* >>> !! else fall through !! <<< */
2611 case TYPE_CODE_CHAR:
7ba81444
MS
2612 /* Deal with signed, unsigned, and plain chars for C++ and
2613 with int cases falling through from previous case. */
c5aa993b
JM
2614 if (TYPE_NOSIGN (parm))
2615 {
2616 if (TYPE_NOSIGN (arg))
6403aeea 2617 return EXACT_MATCH_BADNESS;
c5aa993b 2618 else
1c5cb38e 2619 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2620 }
2621 else if (TYPE_UNSIGNED (parm))
2622 {
2623 if (TYPE_UNSIGNED (arg))
6403aeea 2624 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2625 else
2626 return INTEGER_PROMOTION_BADNESS;
2627 }
2628 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
6403aeea 2629 return EXACT_MATCH_BADNESS;
c5aa993b 2630 else
1c5cb38e 2631 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2632 default:
2633 return INCOMPATIBLE_TYPE_BADNESS;
2634 }
2635 break;
2636 case TYPE_CODE_RANGE:
2637 switch (TYPE_CODE (arg))
2638 {
2639 case TYPE_CODE_INT:
2640 case TYPE_CODE_CHAR:
2641 case TYPE_CODE_RANGE:
2642 case TYPE_CODE_BOOL:
2643 case TYPE_CODE_ENUM:
1c5cb38e 2644 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2645 case TYPE_CODE_FLT:
2646 return INT_FLOAT_CONVERSION_BADNESS;
2647 default:
2648 return INCOMPATIBLE_TYPE_BADNESS;
2649 }
2650 break;
2651 case TYPE_CODE_BOOL:
2652 switch (TYPE_CODE (arg))
2653 {
2654 case TYPE_CODE_INT:
2655 case TYPE_CODE_CHAR:
2656 case TYPE_CODE_RANGE:
2657 case TYPE_CODE_ENUM:
2658 case TYPE_CODE_FLT:
026ffab7 2659 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 2660 case TYPE_CODE_PTR:
026ffab7 2661 return BOOL_PTR_CONVERSION_BADNESS;
c5aa993b 2662 case TYPE_CODE_BOOL:
6403aeea 2663 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2664 default:
2665 return INCOMPATIBLE_TYPE_BADNESS;
2666 }
2667 break;
2668 case TYPE_CODE_FLT:
2669 switch (TYPE_CODE (arg))
2670 {
2671 case TYPE_CODE_FLT:
2672 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2673 return FLOAT_PROMOTION_BADNESS;
2674 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
6403aeea 2675 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2676 else
2677 return FLOAT_CONVERSION_BADNESS;
2678 case TYPE_CODE_INT:
2679 case TYPE_CODE_BOOL:
2680 case TYPE_CODE_ENUM:
2681 case TYPE_CODE_RANGE:
2682 case TYPE_CODE_CHAR:
2683 return INT_FLOAT_CONVERSION_BADNESS;
2684 default:
2685 return INCOMPATIBLE_TYPE_BADNESS;
2686 }
2687 break;
2688 case TYPE_CODE_COMPLEX:
2689 switch (TYPE_CODE (arg))
7ba81444 2690 { /* Strictly not needed for C++, but... */
c5aa993b
JM
2691 case TYPE_CODE_FLT:
2692 return FLOAT_PROMOTION_BADNESS;
2693 case TYPE_CODE_COMPLEX:
6403aeea 2694 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2695 default:
2696 return INCOMPATIBLE_TYPE_BADNESS;
2697 }
2698 break;
2699 case TYPE_CODE_STRUCT:
0963b4bd 2700 /* currently same as TYPE_CODE_CLASS. */
c5aa993b
JM
2701 switch (TYPE_CODE (arg))
2702 {
2703 case TYPE_CODE_STRUCT:
2704 /* Check for derivation */
a9d5ef47
SW
2705 rank.subrank = distance_to_ancestor (parm, arg, 0);
2706 if (rank.subrank >= 0)
2707 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
c5aa993b
JM
2708 /* else fall through */
2709 default:
2710 return INCOMPATIBLE_TYPE_BADNESS;
2711 }
2712 break;
2713 case TYPE_CODE_UNION:
2714 switch (TYPE_CODE (arg))
2715 {
2716 case TYPE_CODE_UNION:
2717 default:
2718 return INCOMPATIBLE_TYPE_BADNESS;
2719 }
2720 break;
0d5de010 2721 case TYPE_CODE_MEMBERPTR:
c5aa993b
JM
2722 switch (TYPE_CODE (arg))
2723 {
2724 default:
2725 return INCOMPATIBLE_TYPE_BADNESS;
2726 }
2727 break;
2728 case TYPE_CODE_METHOD:
2729 switch (TYPE_CODE (arg))
2730 {
2731
2732 default:
2733 return INCOMPATIBLE_TYPE_BADNESS;
2734 }
2735 break;
2736 case TYPE_CODE_REF:
2737 switch (TYPE_CODE (arg))
2738 {
2739
2740 default:
2741 return INCOMPATIBLE_TYPE_BADNESS;
2742 }
2743
2744 break;
2745 case TYPE_CODE_SET:
2746 switch (TYPE_CODE (arg))
2747 {
2748 /* Not in C++ */
2749 case TYPE_CODE_SET:
7ba81444
MS
2750 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
2751 TYPE_FIELD_TYPE (arg, 0));
c5aa993b
JM
2752 default:
2753 return INCOMPATIBLE_TYPE_BADNESS;
2754 }
2755 break;
2756 case TYPE_CODE_VOID:
2757 default:
2758 return INCOMPATIBLE_TYPE_BADNESS;
2759 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
2760}
2761
c5aa993b 2762
0963b4bd 2763/* End of functions for overload resolution. */
c906108c 2764
c906108c 2765static void
fba45db2 2766print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
2767{
2768 int bitno;
2769
2770 for (bitno = 0; bitno < nbits; bitno++)
2771 {
2772 if ((bitno % 8) == 0)
2773 {
2774 puts_filtered (" ");
2775 }
2776 if (B_TST (bits, bitno))
a3f17187 2777 printf_filtered (("1"));
c906108c 2778 else
a3f17187 2779 printf_filtered (("0"));
c906108c
SS
2780 }
2781}
2782
ad2f7632 2783/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
2784 include it since we may get into a infinitely recursive
2785 situation. */
c906108c
SS
2786
2787static void
ad2f7632 2788print_arg_types (struct field *args, int nargs, int spaces)
c906108c
SS
2789{
2790 if (args != NULL)
2791 {
ad2f7632
DJ
2792 int i;
2793
2794 for (i = 0; i < nargs; i++)
2795 recursive_dump_type (args[i].type, spaces + 2);
c906108c
SS
2796 }
2797}
2798
d6a843b5
JK
2799int
2800field_is_static (struct field *f)
2801{
2802 /* "static" fields are the fields whose location is not relative
2803 to the address of the enclosing struct. It would be nice to
2804 have a dedicated flag that would be set for static fields when
2805 the type is being created. But in practice, checking the field
254e6b9e 2806 loc_kind should give us an accurate answer. */
d6a843b5
JK
2807 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
2808 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
2809}
2810
c906108c 2811static void
fba45db2 2812dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
2813{
2814 int method_idx;
2815 int overload_idx;
2816 struct fn_field *f;
2817
2818 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 2819 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
2820 printf_filtered ("\n");
2821 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2822 {
2823 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2824 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2825 method_idx,
2826 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
2827 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2828 gdb_stdout);
a3f17187 2829 printf_filtered (_(") length %d\n"),
c906108c
SS
2830 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2831 for (overload_idx = 0;
2832 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2833 overload_idx++)
2834 {
2835 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2836 overload_idx,
2837 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
2838 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2839 gdb_stdout);
c906108c
SS
2840 printf_filtered (")\n");
2841 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
2842 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2843 gdb_stdout);
c906108c
SS
2844 printf_filtered ("\n");
2845
2846 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2847 spaces + 8 + 2);
2848
2849 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
2850 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2851 gdb_stdout);
c906108c
SS
2852 printf_filtered ("\n");
2853
ad2f7632 2854 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
7ba81444
MS
2855 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2856 overload_idx)),
ad2f7632 2857 spaces);
c906108c 2858 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
2859 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2860 gdb_stdout);
c906108c
SS
2861 printf_filtered ("\n");
2862
2863 printfi_filtered (spaces + 8, "is_const %d\n",
2864 TYPE_FN_FIELD_CONST (f, overload_idx));
2865 printfi_filtered (spaces + 8, "is_volatile %d\n",
2866 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2867 printfi_filtered (spaces + 8, "is_private %d\n",
2868 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2869 printfi_filtered (spaces + 8, "is_protected %d\n",
2870 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2871 printfi_filtered (spaces + 8, "is_stub %d\n",
2872 TYPE_FN_FIELD_STUB (f, overload_idx));
2873 printfi_filtered (spaces + 8, "voffset %u\n",
2874 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2875 }
2876 }
2877}
2878
2879static void
fba45db2 2880print_cplus_stuff (struct type *type, int spaces)
c906108c
SS
2881{
2882 printfi_filtered (spaces, "n_baseclasses %d\n",
2883 TYPE_N_BASECLASSES (type));
2884 printfi_filtered (spaces, "nfn_fields %d\n",
2885 TYPE_NFN_FIELDS (type));
2886 printfi_filtered (spaces, "nfn_fields_total %d\n",
2887 TYPE_NFN_FIELDS_TOTAL (type));
2888 if (TYPE_N_BASECLASSES (type) > 0)
2889 {
2890 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2891 TYPE_N_BASECLASSES (type));
7ba81444
MS
2892 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2893 gdb_stdout);
c906108c
SS
2894 printf_filtered (")");
2895
2896 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2897 TYPE_N_BASECLASSES (type));
2898 puts_filtered ("\n");
2899 }
2900 if (TYPE_NFIELDS (type) > 0)
2901 {
2902 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2903 {
7ba81444
MS
2904 printfi_filtered (spaces,
2905 "private_field_bits (%d bits at *",
c906108c 2906 TYPE_NFIELDS (type));
7ba81444
MS
2907 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2908 gdb_stdout);
c906108c
SS
2909 printf_filtered (")");
2910 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2911 TYPE_NFIELDS (type));
2912 puts_filtered ("\n");
2913 }
2914 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2915 {
7ba81444
MS
2916 printfi_filtered (spaces,
2917 "protected_field_bits (%d bits at *",
c906108c 2918 TYPE_NFIELDS (type));
7ba81444
MS
2919 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2920 gdb_stdout);
c906108c
SS
2921 printf_filtered (")");
2922 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2923 TYPE_NFIELDS (type));
2924 puts_filtered ("\n");
2925 }
2926 }
2927 if (TYPE_NFN_FIELDS (type) > 0)
2928 {
2929 dump_fn_fieldlists (type, spaces);
2930 }
2931}
2932
b4ba55a1
JB
2933/* Print the contents of the TYPE's type_specific union, assuming that
2934 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
2935
2936static void
2937print_gnat_stuff (struct type *type, int spaces)
2938{
2939 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
2940
2941 recursive_dump_type (descriptive_type, spaces + 2);
2942}
2943
c906108c
SS
2944static struct obstack dont_print_type_obstack;
2945
2946void
fba45db2 2947recursive_dump_type (struct type *type, int spaces)
c906108c
SS
2948{
2949 int idx;
2950
2951 if (spaces == 0)
2952 obstack_begin (&dont_print_type_obstack, 0);
2953
2954 if (TYPE_NFIELDS (type) > 0
b4ba55a1 2955 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
2956 {
2957 struct type **first_dont_print
7ba81444 2958 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 2959
7ba81444
MS
2960 int i = (struct type **)
2961 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
2962
2963 while (--i >= 0)
2964 {
2965 if (type == first_dont_print[i])
2966 {
2967 printfi_filtered (spaces, "type node ");
d4f3574e 2968 gdb_print_host_address (type, gdb_stdout);
a3f17187 2969 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
2970 return;
2971 }
2972 }
2973
2974 obstack_ptr_grow (&dont_print_type_obstack, type);
2975 }
2976
2977 printfi_filtered (spaces, "type node ");
d4f3574e 2978 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
2979 printf_filtered ("\n");
2980 printfi_filtered (spaces, "name '%s' (",
2981 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 2982 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 2983 printf_filtered (")\n");
e9e79dd9
FF
2984 printfi_filtered (spaces, "tagname '%s' (",
2985 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2986 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2987 printf_filtered (")\n");
c906108c
SS
2988 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2989 switch (TYPE_CODE (type))
2990 {
c5aa993b
JM
2991 case TYPE_CODE_UNDEF:
2992 printf_filtered ("(TYPE_CODE_UNDEF)");
2993 break;
2994 case TYPE_CODE_PTR:
2995 printf_filtered ("(TYPE_CODE_PTR)");
2996 break;
2997 case TYPE_CODE_ARRAY:
2998 printf_filtered ("(TYPE_CODE_ARRAY)");
2999 break;
3000 case TYPE_CODE_STRUCT:
3001 printf_filtered ("(TYPE_CODE_STRUCT)");
3002 break;
3003 case TYPE_CODE_UNION:
3004 printf_filtered ("(TYPE_CODE_UNION)");
3005 break;
3006 case TYPE_CODE_ENUM:
3007 printf_filtered ("(TYPE_CODE_ENUM)");
3008 break;
4f2aea11
MK
3009 case TYPE_CODE_FLAGS:
3010 printf_filtered ("(TYPE_CODE_FLAGS)");
3011 break;
c5aa993b
JM
3012 case TYPE_CODE_FUNC:
3013 printf_filtered ("(TYPE_CODE_FUNC)");
3014 break;
3015 case TYPE_CODE_INT:
3016 printf_filtered ("(TYPE_CODE_INT)");
3017 break;
3018 case TYPE_CODE_FLT:
3019 printf_filtered ("(TYPE_CODE_FLT)");
3020 break;
3021 case TYPE_CODE_VOID:
3022 printf_filtered ("(TYPE_CODE_VOID)");
3023 break;
3024 case TYPE_CODE_SET:
3025 printf_filtered ("(TYPE_CODE_SET)");
3026 break;
3027 case TYPE_CODE_RANGE:
3028 printf_filtered ("(TYPE_CODE_RANGE)");
3029 break;
3030 case TYPE_CODE_STRING:
3031 printf_filtered ("(TYPE_CODE_STRING)");
3032 break;
e9e79dd9
FF
3033 case TYPE_CODE_BITSTRING:
3034 printf_filtered ("(TYPE_CODE_BITSTRING)");
3035 break;
c5aa993b
JM
3036 case TYPE_CODE_ERROR:
3037 printf_filtered ("(TYPE_CODE_ERROR)");
3038 break;
0d5de010
DJ
3039 case TYPE_CODE_MEMBERPTR:
3040 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3041 break;
3042 case TYPE_CODE_METHODPTR:
3043 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
3044 break;
3045 case TYPE_CODE_METHOD:
3046 printf_filtered ("(TYPE_CODE_METHOD)");
3047 break;
3048 case TYPE_CODE_REF:
3049 printf_filtered ("(TYPE_CODE_REF)");
3050 break;
3051 case TYPE_CODE_CHAR:
3052 printf_filtered ("(TYPE_CODE_CHAR)");
3053 break;
3054 case TYPE_CODE_BOOL:
3055 printf_filtered ("(TYPE_CODE_BOOL)");
3056 break;
e9e79dd9
FF
3057 case TYPE_CODE_COMPLEX:
3058 printf_filtered ("(TYPE_CODE_COMPLEX)");
3059 break;
c5aa993b
JM
3060 case TYPE_CODE_TYPEDEF:
3061 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3062 break;
5c4e30ca
DC
3063 case TYPE_CODE_NAMESPACE:
3064 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3065 break;
c5aa993b
JM
3066 default:
3067 printf_filtered ("(UNKNOWN TYPE CODE)");
3068 break;
c906108c
SS
3069 }
3070 puts_filtered ("\n");
3071 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9bb382b
UW
3072 if (TYPE_OBJFILE_OWNED (type))
3073 {
3074 printfi_filtered (spaces, "objfile ");
3075 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3076 }
3077 else
3078 {
3079 printfi_filtered (spaces, "gdbarch ");
3080 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3081 }
c906108c
SS
3082 printf_filtered ("\n");
3083 printfi_filtered (spaces, "target_type ");
d4f3574e 3084 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
3085 printf_filtered ("\n");
3086 if (TYPE_TARGET_TYPE (type) != NULL)
3087 {
3088 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3089 }
3090 printfi_filtered (spaces, "pointer_type ");
d4f3574e 3091 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
3092 printf_filtered ("\n");
3093 printfi_filtered (spaces, "reference_type ");
d4f3574e 3094 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 3095 printf_filtered ("\n");
2fdde8f8
DJ
3096 printfi_filtered (spaces, "type_chain ");
3097 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 3098 printf_filtered ("\n");
7ba81444
MS
3099 printfi_filtered (spaces, "instance_flags 0x%x",
3100 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
3101 if (TYPE_CONST (type))
3102 {
3103 puts_filtered (" TYPE_FLAG_CONST");
3104 }
3105 if (TYPE_VOLATILE (type))
3106 {
3107 puts_filtered (" TYPE_FLAG_VOLATILE");
3108 }
3109 if (TYPE_CODE_SPACE (type))
3110 {
3111 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3112 }
3113 if (TYPE_DATA_SPACE (type))
3114 {
3115 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3116 }
8b2dbe47
KB
3117 if (TYPE_ADDRESS_CLASS_1 (type))
3118 {
3119 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3120 }
3121 if (TYPE_ADDRESS_CLASS_2 (type))
3122 {
3123 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3124 }
2fdde8f8 3125 puts_filtered ("\n");
876cecd0
TT
3126
3127 printfi_filtered (spaces, "flags");
762a036f 3128 if (TYPE_UNSIGNED (type))
c906108c
SS
3129 {
3130 puts_filtered (" TYPE_FLAG_UNSIGNED");
3131 }
762a036f
FF
3132 if (TYPE_NOSIGN (type))
3133 {
3134 puts_filtered (" TYPE_FLAG_NOSIGN");
3135 }
3136 if (TYPE_STUB (type))
c906108c
SS
3137 {
3138 puts_filtered (" TYPE_FLAG_STUB");
3139 }
762a036f
FF
3140 if (TYPE_TARGET_STUB (type))
3141 {
3142 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3143 }
3144 if (TYPE_STATIC (type))
3145 {
3146 puts_filtered (" TYPE_FLAG_STATIC");
3147 }
762a036f
FF
3148 if (TYPE_PROTOTYPED (type))
3149 {
3150 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3151 }
3152 if (TYPE_INCOMPLETE (type))
3153 {
3154 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3155 }
762a036f
FF
3156 if (TYPE_VARARGS (type))
3157 {
3158 puts_filtered (" TYPE_FLAG_VARARGS");
3159 }
f5f8a009
EZ
3160 /* This is used for things like AltiVec registers on ppc. Gcc emits
3161 an attribute for the array type, which tells whether or not we
3162 have a vector, instead of a regular array. */
3163 if (TYPE_VECTOR (type))
3164 {
3165 puts_filtered (" TYPE_FLAG_VECTOR");
3166 }
876cecd0
TT
3167 if (TYPE_FIXED_INSTANCE (type))
3168 {
3169 puts_filtered (" TYPE_FIXED_INSTANCE");
3170 }
3171 if (TYPE_STUB_SUPPORTED (type))
3172 {
3173 puts_filtered (" TYPE_STUB_SUPPORTED");
3174 }
3175 if (TYPE_NOTTEXT (type))
3176 {
3177 puts_filtered (" TYPE_NOTTEXT");
3178 }
c906108c
SS
3179 puts_filtered ("\n");
3180 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 3181 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
3182 puts_filtered ("\n");
3183 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3184 {
3185 printfi_filtered (spaces + 2,
3186 "[%d] bitpos %d bitsize %d type ",
3187 idx, TYPE_FIELD_BITPOS (type, idx),
3188 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 3189 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
3190 printf_filtered (" name '%s' (",
3191 TYPE_FIELD_NAME (type, idx) != NULL
3192 ? TYPE_FIELD_NAME (type, idx)
3193 : "<NULL>");
d4f3574e 3194 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
3195 printf_filtered (")\n");
3196 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3197 {
3198 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3199 }
3200 }
43bbcdc2
PH
3201 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3202 {
3203 printfi_filtered (spaces, "low %s%s high %s%s\n",
3204 plongest (TYPE_LOW_BOUND (type)),
3205 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3206 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
3207 TYPE_HIGH_BOUND_UNDEFINED (type)
3208 ? " (undefined)" : "");
43bbcdc2 3209 }
c906108c 3210 printfi_filtered (spaces, "vptr_basetype ");
d4f3574e 3211 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
c906108c
SS
3212 puts_filtered ("\n");
3213 if (TYPE_VPTR_BASETYPE (type) != NULL)
3214 {
3215 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3216 }
7ba81444
MS
3217 printfi_filtered (spaces, "vptr_fieldno %d\n",
3218 TYPE_VPTR_FIELDNO (type));
c906108c 3219
b4ba55a1
JB
3220 switch (TYPE_SPECIFIC_FIELD (type))
3221 {
3222 case TYPE_SPECIFIC_CPLUS_STUFF:
3223 printfi_filtered (spaces, "cplus_stuff ");
3224 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3225 gdb_stdout);
3226 puts_filtered ("\n");
3227 print_cplus_stuff (type, spaces);
3228 break;
8da61cc4 3229
b4ba55a1
JB
3230 case TYPE_SPECIFIC_GNAT_STUFF:
3231 printfi_filtered (spaces, "gnat_stuff ");
3232 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3233 puts_filtered ("\n");
3234 print_gnat_stuff (type, spaces);
3235 break;
701c159d 3236
b4ba55a1
JB
3237 case TYPE_SPECIFIC_FLOATFORMAT:
3238 printfi_filtered (spaces, "floatformat ");
3239 if (TYPE_FLOATFORMAT (type) == NULL)
3240 puts_filtered ("(null)");
3241 else
3242 {
3243 puts_filtered ("{ ");
3244 if (TYPE_FLOATFORMAT (type)[0] == NULL
3245 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3246 puts_filtered ("(null)");
3247 else
3248 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3249
3250 puts_filtered (", ");
3251 if (TYPE_FLOATFORMAT (type)[1] == NULL
3252 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3253 puts_filtered ("(null)");
3254 else
3255 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3256
3257 puts_filtered (" }");
3258 }
3259 puts_filtered ("\n");
3260 break;
c906108c 3261
b6cdc2c1 3262 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
3263 printfi_filtered (spaces, "calling_convention %d\n",
3264 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 3265 /* tail_call_list is not printed. */
b4ba55a1 3266 break;
c906108c 3267 }
b4ba55a1 3268
c906108c
SS
3269 if (spaces == 0)
3270 obstack_free (&dont_print_type_obstack, NULL);
3271}
3272
ae5a43e0
DJ
3273/* Trivial helpers for the libiberty hash table, for mapping one
3274 type to another. */
3275
3276struct type_pair
3277{
3278 struct type *old, *new;
3279};
3280
3281static hashval_t
3282type_pair_hash (const void *item)
3283{
3284 const struct type_pair *pair = item;
d8734c88 3285
ae5a43e0
DJ
3286 return htab_hash_pointer (pair->old);
3287}
3288
3289static int
3290type_pair_eq (const void *item_lhs, const void *item_rhs)
3291{
3292 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
d8734c88 3293
ae5a43e0
DJ
3294 return lhs->old == rhs->old;
3295}
3296
3297/* Allocate the hash table used by copy_type_recursive to walk
3298 types without duplicates. We use OBJFILE's obstack, because
3299 OBJFILE is about to be deleted. */
3300
3301htab_t
3302create_copied_types_hash (struct objfile *objfile)
3303{
3304 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3305 NULL, &objfile->objfile_obstack,
3306 hashtab_obstack_allocate,
3307 dummy_obstack_deallocate);
3308}
3309
7ba81444
MS
3310/* Recursively copy (deep copy) TYPE, if it is associated with
3311 OBJFILE. Return a new type allocated using malloc, a saved type if
3312 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3313 not associated with OBJFILE. */
ae5a43e0
DJ
3314
3315struct type *
7ba81444
MS
3316copy_type_recursive (struct objfile *objfile,
3317 struct type *type,
ae5a43e0
DJ
3318 htab_t copied_types)
3319{
3320 struct type_pair *stored, pair;
3321 void **slot;
3322 struct type *new_type;
3323
e9bb382b 3324 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
3325 return type;
3326
7ba81444
MS
3327 /* This type shouldn't be pointing to any types in other objfiles;
3328 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
3329 gdb_assert (TYPE_OBJFILE (type) == objfile);
3330
3331 pair.old = type;
3332 slot = htab_find_slot (copied_types, &pair, INSERT);
3333 if (*slot != NULL)
3334 return ((struct type_pair *) *slot)->new;
3335
e9bb382b 3336 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
3337
3338 /* We must add the new type to the hash table immediately, in case
3339 we encounter this type again during a recursive call below. */
3e43a32a
MS
3340 stored
3341 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
ae5a43e0
DJ
3342 stored->old = type;
3343 stored->new = new_type;
3344 *slot = stored;
3345
876cecd0
TT
3346 /* Copy the common fields of types. For the main type, we simply
3347 copy the entire thing and then update specific fields as needed. */
3348 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
3349 TYPE_OBJFILE_OWNED (new_type) = 0;
3350 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 3351
ae5a43e0
DJ
3352 if (TYPE_NAME (type))
3353 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3354 if (TYPE_TAG_NAME (type))
3355 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
ae5a43e0
DJ
3356
3357 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3358 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3359
3360 /* Copy the fields. */
ae5a43e0
DJ
3361 if (TYPE_NFIELDS (type))
3362 {
3363 int i, nfields;
3364
3365 nfields = TYPE_NFIELDS (type);
1deafd4e 3366 TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
ae5a43e0
DJ
3367 for (i = 0; i < nfields; i++)
3368 {
7ba81444
MS
3369 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3370 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
3371 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3372 if (TYPE_FIELD_TYPE (type, i))
3373 TYPE_FIELD_TYPE (new_type, i)
3374 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3375 copied_types);
3376 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
3377 TYPE_FIELD_NAME (new_type, i) =
3378 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 3379 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 3380 {
d6a843b5
JK
3381 case FIELD_LOC_KIND_BITPOS:
3382 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3383 TYPE_FIELD_BITPOS (type, i));
3384 break;
3385 case FIELD_LOC_KIND_PHYSADDR:
3386 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3387 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3388 break;
3389 case FIELD_LOC_KIND_PHYSNAME:
3390 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3391 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3392 i)));
3393 break;
3394 default:
3395 internal_error (__FILE__, __LINE__,
3396 _("Unexpected type field location kind: %d"),
3397 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
3398 }
3399 }
3400 }
3401
0963b4bd 3402 /* For range types, copy the bounds information. */
43bbcdc2
PH
3403 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3404 {
3405 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3406 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3407 }
3408
ae5a43e0
DJ
3409 /* Copy pointers to other types. */
3410 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
3411 TYPE_TARGET_TYPE (new_type) =
3412 copy_type_recursive (objfile,
3413 TYPE_TARGET_TYPE (type),
3414 copied_types);
ae5a43e0 3415 if (TYPE_VPTR_BASETYPE (type))
7ba81444
MS
3416 TYPE_VPTR_BASETYPE (new_type) =
3417 copy_type_recursive (objfile,
3418 TYPE_VPTR_BASETYPE (type),
3419 copied_types);
ae5a43e0
DJ
3420 /* Maybe copy the type_specific bits.
3421
3422 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3423 base classes and methods. There's no fundamental reason why we
3424 can't, but at the moment it is not needed. */
3425
3426 if (TYPE_CODE (type) == TYPE_CODE_FLT)
d5d6fca5 3427 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
ae5a43e0
DJ
3428 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3429 || TYPE_CODE (type) == TYPE_CODE_UNION
ae5a43e0
DJ
3430 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3431 INIT_CPLUS_SPECIFIC (new_type);
3432
3433 return new_type;
3434}
3435
4af88198
JB
3436/* Make a copy of the given TYPE, except that the pointer & reference
3437 types are not preserved.
3438
3439 This function assumes that the given type has an associated objfile.
3440 This objfile is used to allocate the new type. */
3441
3442struct type *
3443copy_type (const struct type *type)
3444{
3445 struct type *new_type;
3446
e9bb382b 3447 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 3448
e9bb382b 3449 new_type = alloc_type_copy (type);
4af88198
JB
3450 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3451 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3452 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3453 sizeof (struct main_type));
3454
3455 return new_type;
3456}
3457
e9bb382b
UW
3458
3459/* Helper functions to initialize architecture-specific types. */
3460
3461/* Allocate a type structure associated with GDBARCH and set its
3462 CODE, LENGTH, and NAME fields. */
3463struct type *
3464arch_type (struct gdbarch *gdbarch,
3465 enum type_code code, int length, char *name)
3466{
3467 struct type *type;
3468
3469 type = alloc_type_arch (gdbarch);
3470 TYPE_CODE (type) = code;
3471 TYPE_LENGTH (type) = length;
3472
3473 if (name)
3474 TYPE_NAME (type) = xstrdup (name);
3475
3476 return type;
3477}
3478
3479/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
3480 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3481 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3482struct type *
3483arch_integer_type (struct gdbarch *gdbarch,
3484 int bit, int unsigned_p, char *name)
3485{
3486 struct type *t;
3487
3488 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
3489 if (unsigned_p)
3490 TYPE_UNSIGNED (t) = 1;
3491 if (name && strcmp (name, "char") == 0)
3492 TYPE_NOSIGN (t) = 1;
3493
3494 return t;
3495}
3496
3497/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
3498 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3499 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3500struct type *
3501arch_character_type (struct gdbarch *gdbarch,
3502 int bit, int unsigned_p, char *name)
3503{
3504 struct type *t;
3505
3506 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
3507 if (unsigned_p)
3508 TYPE_UNSIGNED (t) = 1;
3509
3510 return t;
3511}
3512
3513/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
3514 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3515 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3516struct type *
3517arch_boolean_type (struct gdbarch *gdbarch,
3518 int bit, int unsigned_p, char *name)
3519{
3520 struct type *t;
3521
3522 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
3523 if (unsigned_p)
3524 TYPE_UNSIGNED (t) = 1;
3525
3526 return t;
3527}
3528
3529/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
3530 BIT is the type size in bits; if BIT equals -1, the size is
3531 determined by the floatformat. NAME is the type name. Set the
3532 TYPE_FLOATFORMAT from FLOATFORMATS. */
27067745 3533struct type *
e9bb382b
UW
3534arch_float_type (struct gdbarch *gdbarch,
3535 int bit, char *name, const struct floatformat **floatformats)
8da61cc4
DJ
3536{
3537 struct type *t;
3538
3539 if (bit == -1)
3540 {
3541 gdb_assert (floatformats != NULL);
3542 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3543 bit = floatformats[0]->totalsize;
3544 }
3545 gdb_assert (bit >= 0);
3546
e9bb382b 3547 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
8da61cc4
DJ
3548 TYPE_FLOATFORMAT (t) = floatformats;
3549 return t;
3550}
3551
e9bb382b
UW
3552/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
3553 NAME is the type name. TARGET_TYPE is the component float type. */
27067745 3554struct type *
e9bb382b
UW
3555arch_complex_type (struct gdbarch *gdbarch,
3556 char *name, struct type *target_type)
27067745
UW
3557{
3558 struct type *t;
d8734c88 3559
e9bb382b
UW
3560 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
3561 2 * TYPE_LENGTH (target_type), name);
27067745
UW
3562 TYPE_TARGET_TYPE (t) = target_type;
3563 return t;
3564}
3565
e9bb382b 3566/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
eb90ce83 3567 NAME is the type name. LENGTH is the size of the flag word in bytes. */
e9bb382b
UW
3568struct type *
3569arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
3570{
3571 int nfields = length * TARGET_CHAR_BIT;
3572 struct type *type;
3573
3574 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
3575 TYPE_UNSIGNED (type) = 1;
3576 TYPE_NFIELDS (type) = nfields;
3577 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
3578
3579 return type;
3580}
3581
3582/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
3583 position BITPOS is called NAME. */
3584void
3585append_flags_type_flag (struct type *type, int bitpos, char *name)
3586{
3587 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
3588 gdb_assert (bitpos < TYPE_NFIELDS (type));
3589 gdb_assert (bitpos >= 0);
3590
3591 if (name)
3592 {
3593 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
3594 TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
3595 }
3596 else
3597 {
3598 /* Don't show this field to the user. */
3599 TYPE_FIELD_BITPOS (type, bitpos) = -1;
3600 }
3601}
3602
3603/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
3604 specified by CODE) associated with GDBARCH. NAME is the type name. */
3605struct type *
3606arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
3607{
3608 struct type *t;
d8734c88 3609
e9bb382b
UW
3610 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
3611 t = arch_type (gdbarch, code, 0, NULL);
3612 TYPE_TAG_NAME (t) = name;
3613 INIT_CPLUS_SPECIFIC (t);
3614 return t;
3615}
3616
3617/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
3618 Do not set the field's position or adjust the type's length;
3619 the caller should do so. Return the new field. */
3620struct field *
3621append_composite_type_field_raw (struct type *t, char *name,
3622 struct type *field)
e9bb382b
UW
3623{
3624 struct field *f;
d8734c88 3625
e9bb382b
UW
3626 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
3627 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
3628 sizeof (struct field) * TYPE_NFIELDS (t));
3629 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
3630 memset (f, 0, sizeof f[0]);
3631 FIELD_TYPE (f[0]) = field;
3632 FIELD_NAME (f[0]) = name;
f5dff777
DJ
3633 return f;
3634}
3635
3636/* Add new field with name NAME and type FIELD to composite type T.
3637 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
3638void
3639append_composite_type_field_aligned (struct type *t, char *name,
3640 struct type *field, int alignment)
3641{
3642 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 3643
e9bb382b
UW
3644 if (TYPE_CODE (t) == TYPE_CODE_UNION)
3645 {
3646 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
3647 TYPE_LENGTH (t) = TYPE_LENGTH (field);
3648 }
3649 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
3650 {
3651 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
3652 if (TYPE_NFIELDS (t) > 1)
3653 {
3654 FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
3655 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
3656 * TARGET_CHAR_BIT));
3657
3658 if (alignment)
3659 {
86c3c1fc
AB
3660 int left;
3661
3662 alignment *= TARGET_CHAR_BIT;
3663 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 3664
e9bb382b
UW
3665 if (left)
3666 {
86c3c1fc
AB
3667 FIELD_BITPOS (f[0]) += (alignment - left);
3668 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
3669 }
3670 }
3671 }
3672 }
3673}
3674
3675/* Add new field with name NAME and type FIELD to composite type T. */
3676void
3677append_composite_type_field (struct type *t, char *name,
3678 struct type *field)
3679{
3680 append_composite_type_field_aligned (t, name, field, 0);
3681}
3682
3683
000177f0
AC
3684static struct gdbarch_data *gdbtypes_data;
3685
3686const struct builtin_type *
3687builtin_type (struct gdbarch *gdbarch)
3688{
3689 return gdbarch_data (gdbarch, gdbtypes_data);
3690}
3691
3692static void *
3693gdbtypes_post_init (struct gdbarch *gdbarch)
3694{
3695 struct builtin_type *builtin_type
3696 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3697
46bf5051 3698 /* Basic types. */
e9bb382b
UW
3699 builtin_type->builtin_void
3700 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
3701 builtin_type->builtin_char
3702 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3703 !gdbarch_char_signed (gdbarch), "char");
3704 builtin_type->builtin_signed_char
3705 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3706 0, "signed char");
3707 builtin_type->builtin_unsigned_char
3708 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3709 1, "unsigned char");
3710 builtin_type->builtin_short
3711 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3712 0, "short");
3713 builtin_type->builtin_unsigned_short
3714 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3715 1, "unsigned short");
3716 builtin_type->builtin_int
3717 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3718 0, "int");
3719 builtin_type->builtin_unsigned_int
3720 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3721 1, "unsigned int");
3722 builtin_type->builtin_long
3723 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3724 0, "long");
3725 builtin_type->builtin_unsigned_long
3726 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3727 1, "unsigned long");
3728 builtin_type->builtin_long_long
3729 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3730 0, "long long");
3731 builtin_type->builtin_unsigned_long_long
3732 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3733 1, "unsigned long long");
70bd8e24 3734 builtin_type->builtin_float
e9bb382b 3735 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 3736 "float", gdbarch_float_format (gdbarch));
70bd8e24 3737 builtin_type->builtin_double
e9bb382b 3738 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 3739 "double", gdbarch_double_format (gdbarch));
70bd8e24 3740 builtin_type->builtin_long_double
e9bb382b 3741 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 3742 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 3743 builtin_type->builtin_complex
e9bb382b
UW
3744 = arch_complex_type (gdbarch, "complex",
3745 builtin_type->builtin_float);
70bd8e24 3746 builtin_type->builtin_double_complex
e9bb382b
UW
3747 = arch_complex_type (gdbarch, "double complex",
3748 builtin_type->builtin_double);
3749 builtin_type->builtin_string
3750 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
3751 builtin_type->builtin_bool
3752 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
000177f0 3753
7678ef8f
TJB
3754 /* The following three are about decimal floating point types, which
3755 are 32-bits, 64-bits and 128-bits respectively. */
3756 builtin_type->builtin_decfloat
e9bb382b 3757 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
7678ef8f 3758 builtin_type->builtin_decdouble
e9bb382b 3759 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
7678ef8f 3760 builtin_type->builtin_declong
e9bb382b 3761 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
7678ef8f 3762
69feb676 3763 /* "True" character types. */
e9bb382b
UW
3764 builtin_type->builtin_true_char
3765 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
3766 builtin_type->builtin_true_unsigned_char
3767 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 3768
df4df182 3769 /* Fixed-size integer types. */
e9bb382b
UW
3770 builtin_type->builtin_int0
3771 = arch_integer_type (gdbarch, 0, 0, "int0_t");
3772 builtin_type->builtin_int8
3773 = arch_integer_type (gdbarch, 8, 0, "int8_t");
3774 builtin_type->builtin_uint8
3775 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
3776 builtin_type->builtin_int16
3777 = arch_integer_type (gdbarch, 16, 0, "int16_t");
3778 builtin_type->builtin_uint16
3779 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
3780 builtin_type->builtin_int32
3781 = arch_integer_type (gdbarch, 32, 0, "int32_t");
3782 builtin_type->builtin_uint32
3783 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
3784 builtin_type->builtin_int64
3785 = arch_integer_type (gdbarch, 64, 0, "int64_t");
3786 builtin_type->builtin_uint64
3787 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
3788 builtin_type->builtin_int128
3789 = arch_integer_type (gdbarch, 128, 0, "int128_t");
3790 builtin_type->builtin_uint128
3791 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
3792 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
3793 TYPE_INSTANCE_FLAG_NOTTEXT;
3794 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
3795 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 3796
9a22f0d0
PM
3797 /* Wide character types. */
3798 builtin_type->builtin_char16
3799 = arch_integer_type (gdbarch, 16, 0, "char16_t");
3800 builtin_type->builtin_char32
3801 = arch_integer_type (gdbarch, 32, 0, "char32_t");
3802
3803
46bf5051 3804 /* Default data/code pointer types. */
e9bb382b
UW
3805 builtin_type->builtin_data_ptr
3806 = lookup_pointer_type (builtin_type->builtin_void);
3807 builtin_type->builtin_func_ptr
3808 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
3809 builtin_type->builtin_func_func
3810 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 3811
78267919 3812 /* This type represents a GDB internal function. */
e9bb382b
UW
3813 builtin_type->internal_fn
3814 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
3815 "<internal function>");
78267919 3816
46bf5051
UW
3817 return builtin_type;
3818}
3819
3820
3821/* This set of objfile-based types is intended to be used by symbol
3822 readers as basic types. */
3823
3824static const struct objfile_data *objfile_type_data;
3825
3826const struct objfile_type *
3827objfile_type (struct objfile *objfile)
3828{
3829 struct gdbarch *gdbarch;
3830 struct objfile_type *objfile_type
3831 = objfile_data (objfile, objfile_type_data);
3832
3833 if (objfile_type)
3834 return objfile_type;
3835
3836 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
3837 1, struct objfile_type);
3838
3839 /* Use the objfile architecture to determine basic type properties. */
3840 gdbarch = get_objfile_arch (objfile);
3841
3842 /* Basic types. */
3843 objfile_type->builtin_void
3844 = init_type (TYPE_CODE_VOID, 1,
3845 0,
3846 "void", objfile);
3847
3848 objfile_type->builtin_char
3849 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3850 (TYPE_FLAG_NOSIGN
3851 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3852 "char", objfile);
3853 objfile_type->builtin_signed_char
3854 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3855 0,
3856 "signed char", objfile);
3857 objfile_type->builtin_unsigned_char
3858 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3859 TYPE_FLAG_UNSIGNED,
3860 "unsigned char", objfile);
3861 objfile_type->builtin_short
3862 = init_type (TYPE_CODE_INT,
3863 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3864 0, "short", objfile);
3865 objfile_type->builtin_unsigned_short
3866 = init_type (TYPE_CODE_INT,
3867 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3868 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
3869 objfile_type->builtin_int
3870 = init_type (TYPE_CODE_INT,
3871 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3872 0, "int", objfile);
3873 objfile_type->builtin_unsigned_int
3874 = init_type (TYPE_CODE_INT,
3875 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3876 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
3877 objfile_type->builtin_long
3878 = init_type (TYPE_CODE_INT,
3879 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3880 0, "long", objfile);
3881 objfile_type->builtin_unsigned_long
3882 = init_type (TYPE_CODE_INT,
3883 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3884 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
3885 objfile_type->builtin_long_long
3886 = init_type (TYPE_CODE_INT,
3887 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3888 0, "long long", objfile);
3889 objfile_type->builtin_unsigned_long_long
3890 = init_type (TYPE_CODE_INT,
3891 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3892 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
3893
3894 objfile_type->builtin_float
3895 = init_type (TYPE_CODE_FLT,
3896 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
3897 0, "float", objfile);
3898 TYPE_FLOATFORMAT (objfile_type->builtin_float)
3899 = gdbarch_float_format (gdbarch);
3900 objfile_type->builtin_double
3901 = init_type (TYPE_CODE_FLT,
3902 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
3903 0, "double", objfile);
3904 TYPE_FLOATFORMAT (objfile_type->builtin_double)
3905 = gdbarch_double_format (gdbarch);
3906 objfile_type->builtin_long_double
3907 = init_type (TYPE_CODE_FLT,
3908 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
3909 0, "long double", objfile);
3910 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
3911 = gdbarch_long_double_format (gdbarch);
3912
3913 /* This type represents a type that was unrecognized in symbol read-in. */
3914 objfile_type->builtin_error
3915 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
3916
3917 /* The following set of types is used for symbols with no
3918 debug information. */
3919 objfile_type->nodebug_text_symbol
3920 = init_type (TYPE_CODE_FUNC, 1, 0,
3921 "<text variable, no debug info>", objfile);
3922 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
3923 = objfile_type->builtin_int;
0875794a
JK
3924 objfile_type->nodebug_text_gnu_ifunc_symbol
3925 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
3926 "<text gnu-indirect-function variable, no debug info>",
3927 objfile);
3928 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
3929 = objfile_type->nodebug_text_symbol;
3930 objfile_type->nodebug_got_plt_symbol
3931 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
3932 "<text from jump slot in .got.plt, no debug info>",
3933 objfile);
3934 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
3935 = objfile_type->nodebug_text_symbol;
46bf5051
UW
3936 objfile_type->nodebug_data_symbol
3937 = init_type (TYPE_CODE_INT,
3938 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3939 "<data variable, no debug info>", objfile);
3940 objfile_type->nodebug_unknown_symbol
3941 = init_type (TYPE_CODE_INT, 1, 0,
3942 "<variable (not text or data), no debug info>", objfile);
3943 objfile_type->nodebug_tls_symbol
3944 = init_type (TYPE_CODE_INT,
3945 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3946 "<thread local variable, no debug info>", objfile);
000177f0
AC
3947
3948 /* NOTE: on some targets, addresses and pointers are not necessarily
3949 the same --- for example, on the D10V, pointers are 16 bits long,
3950 but addresses are 32 bits long. See doc/gdbint.texinfo,
3951 ``Pointers Are Not Always Addresses''.
3952
3953 The upshot is:
3954 - gdb's `struct type' always describes the target's
3955 representation.
3956 - gdb's `struct value' objects should always hold values in
3957 target form.
3958 - gdb's CORE_ADDR values are addresses in the unified virtual
3959 address space that the assembler and linker work with. Thus,
3960 since target_read_memory takes a CORE_ADDR as an argument, it
3961 can access any memory on the target, even if the processor has
3962 separate code and data address spaces.
3963
3964 So, for example:
3965 - If v is a value holding a D10V code pointer, its contents are
3966 in target form: a big-endian address left-shifted two bits.
3967 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3968 sizeof (void *) == 2 on the target.
3969
46bf5051
UW
3970 In this context, objfile_type->builtin_core_addr is a bit odd:
3971 it's a target type for a value the target will never see. It's
3972 only used to hold the values of (typeless) linker symbols, which
3973 are indeed in the unified virtual address space. */
000177f0 3974
46bf5051
UW
3975 objfile_type->builtin_core_addr
3976 = init_type (TYPE_CODE_INT,
3977 gdbarch_addr_bit (gdbarch) / 8,
3978 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
64c50499 3979
46bf5051
UW
3980 set_objfile_data (objfile, objfile_type_data, objfile_type);
3981 return objfile_type;
000177f0
AC
3982}
3983
46bf5051 3984
a14ed312 3985extern void _initialize_gdbtypes (void);
c906108c 3986void
fba45db2 3987_initialize_gdbtypes (void)
c906108c 3988{
5674de60 3989 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
46bf5051 3990 objfile_type_data = register_objfile_data ();
5674de60 3991
3e43a32a
MS
3992 add_setshow_zinteger_cmd ("overload", no_class, &overload_debug,
3993 _("Set debugging of C++ overloading."),
3994 _("Show debugging of C++ overloading."),
3995 _("When enabled, ranking of the "
3996 "functions is displayed."),
85c07804 3997 NULL,
920d2a44 3998 show_overload_debug,
85c07804 3999 &setdebuglist, &showdebuglist);
5674de60 4000
7ba81444 4001 /* Add user knob for controlling resolution of opaque types. */
5674de60 4002 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
4003 &opaque_type_resolution,
4004 _("Set resolution of opaque struct/class/union"
4005 " types (if set before loading symbols)."),
4006 _("Show resolution of opaque struct/class/union"
4007 " types (if set before loading symbols)."),
4008 NULL, NULL,
5674de60
UW
4009 show_opaque_type_resolution,
4010 &setlist, &showlist);
c906108c 4011}
This page took 1.261623 seconds and 4 git commands to generate.