gdb: make add_dyn_prop a method of struct type
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
b811d2c2 3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c
SS
23#include "bfd.h"
24#include "symtab.h"
25#include "symfile.h"
26#include "objfiles.h"
27#include "gdbtypes.h"
28#include "expression.h"
29#include "language.h"
30#include "target.h"
31#include "value.h"
32#include "demangle.h"
33#include "complaints.h"
34#include "gdbcmd.h"
015a42b4 35#include "cp-abi.h"
ae5a43e0 36#include "hashtab.h"
8de20a37 37#include "cp-support.h"
ca092b61 38#include "bcache.h"
82ca8957 39#include "dwarf2/loc.h"
80180f79 40#include "gdbcore.h"
1841ee5d 41#include "floatformat.h"
ef83a141 42#include <algorithm>
ac3aafc7 43
6403aeea
SW
44/* Initialize BADNESS constants. */
45
a9d5ef47 46const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 47
a9d5ef47
SW
48const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
49const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 50
a9d5ef47 51const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 52
a9d5ef47
SW
53const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
54const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
55const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
e15c3eb4 56const struct rank CV_CONVERSION_BADNESS = {1, 0};
a9d5ef47
SW
57const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
58const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
59const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
60const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 61const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
62const struct rank BASE_CONVERSION_BADNESS = {2,0};
63const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
06acc08f 64const struct rank REFERENCE_SEE_THROUGH_BADNESS = {0,1};
da096638 65const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 66const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 67const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 68
8da61cc4 69/* Floatformat pairs. */
f9e9243a
UW
70const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_half_big,
72 &floatformat_ieee_half_little
73};
8da61cc4
DJ
74const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_single_big,
76 &floatformat_ieee_single_little
77};
78const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_little
81};
82const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_ieee_double_big,
84 &floatformat_ieee_double_littlebyte_bigword
85};
86const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_i387_ext,
88 &floatformat_i387_ext
89};
90const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_m68881_ext,
92 &floatformat_m68881_ext
93};
94const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_arm_ext_big,
96 &floatformat_arm_ext_littlebyte_bigword
97};
98const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_spill_big,
100 &floatformat_ia64_spill_little
101};
102const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_ia64_quad_big,
104 &floatformat_ia64_quad_little
105};
106const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_f,
108 &floatformat_vax_f
109};
110const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_vax_d,
112 &floatformat_vax_d
113};
b14d30e1 114const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
f5aee5ee
AM
115 &floatformat_ibm_long_double_big,
116 &floatformat_ibm_long_double_little
b14d30e1 117};
8da61cc4 118
2873700e
KS
119/* Should opaque types be resolved? */
120
491144b5 121static bool opaque_type_resolution = true;
2873700e 122
79bb1944 123/* See gdbtypes.h. */
2873700e
KS
124
125unsigned int overload_debug = 0;
126
a451cb65
KS
127/* A flag to enable strict type checking. */
128
491144b5 129static bool strict_type_checking = true;
a451cb65 130
2873700e 131/* A function to show whether opaque types are resolved. */
5212577a 132
920d2a44
AC
133static void
134show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
135 struct cmd_list_element *c,
136 const char *value)
920d2a44 137{
3e43a32a
MS
138 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
139 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
140 value);
141}
142
2873700e 143/* A function to show whether C++ overload debugging is enabled. */
5212577a 144
920d2a44
AC
145static void
146show_overload_debug (struct ui_file *file, int from_tty,
147 struct cmd_list_element *c, const char *value)
148{
7ba81444
MS
149 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
150 value);
920d2a44 151}
c906108c 152
a451cb65
KS
153/* A function to show the status of strict type checking. */
154
155static void
156show_strict_type_checking (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158{
159 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
160}
161
5212577a 162\f
e9bb382b
UW
163/* Allocate a new OBJFILE-associated type structure and fill it
164 with some defaults. Space for the type structure is allocated
165 on the objfile's objfile_obstack. */
c906108c
SS
166
167struct type *
fba45db2 168alloc_type (struct objfile *objfile)
c906108c 169{
52f0bd74 170 struct type *type;
c906108c 171
e9bb382b
UW
172 gdb_assert (objfile != NULL);
173
7ba81444 174 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
175 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
176 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
177 struct main_type);
178 OBJSTAT (objfile, n_types++);
c906108c 179
e9bb382b
UW
180 TYPE_OBJFILE_OWNED (type) = 1;
181 TYPE_OWNER (type).objfile = objfile;
c906108c 182
7ba81444 183 /* Initialize the fields that might not be zero. */
c906108c
SS
184
185 TYPE_CODE (type) = TYPE_CODE_UNDEF;
2fdde8f8 186 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 187
c16abbde 188 return type;
c906108c
SS
189}
190
e9bb382b
UW
191/* Allocate a new GDBARCH-associated type structure and fill it
192 with some defaults. Space for the type structure is allocated
8f57eec2 193 on the obstack associated with GDBARCH. */
e9bb382b
UW
194
195struct type *
196alloc_type_arch (struct gdbarch *gdbarch)
197{
198 struct type *type;
199
200 gdb_assert (gdbarch != NULL);
201
202 /* Alloc the structure and start off with all fields zeroed. */
203
8f57eec2
PP
204 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
205 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
e9bb382b
UW
206
207 TYPE_OBJFILE_OWNED (type) = 0;
208 TYPE_OWNER (type).gdbarch = gdbarch;
209
210 /* Initialize the fields that might not be zero. */
211
212 TYPE_CODE (type) = TYPE_CODE_UNDEF;
e9bb382b
UW
213 TYPE_CHAIN (type) = type; /* Chain back to itself. */
214
215 return type;
216}
217
218/* If TYPE is objfile-associated, allocate a new type structure
219 associated with the same objfile. If TYPE is gdbarch-associated,
220 allocate a new type structure associated with the same gdbarch. */
221
222struct type *
223alloc_type_copy (const struct type *type)
224{
225 if (TYPE_OBJFILE_OWNED (type))
226 return alloc_type (TYPE_OWNER (type).objfile);
227 else
228 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
229}
230
231/* If TYPE is gdbarch-associated, return that architecture.
232 If TYPE is objfile-associated, return that objfile's architecture. */
233
234struct gdbarch *
235get_type_arch (const struct type *type)
236{
2fabdf33
AB
237 struct gdbarch *arch;
238
e9bb382b 239 if (TYPE_OBJFILE_OWNED (type))
08feed99 240 arch = TYPE_OWNER (type).objfile->arch ();
e9bb382b 241 else
2fabdf33
AB
242 arch = TYPE_OWNER (type).gdbarch;
243
244 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
245 a gdbarch, however, this is very rare, and even then, in most cases
246 that get_type_arch is called, we assume that a non-NULL value is
247 returned. */
248 gdb_assert (arch != NULL);
249 return arch;
e9bb382b
UW
250}
251
99ad9427
YQ
252/* See gdbtypes.h. */
253
254struct type *
255get_target_type (struct type *type)
256{
257 if (type != NULL)
258 {
259 type = TYPE_TARGET_TYPE (type);
260 if (type != NULL)
261 type = check_typedef (type);
262 }
263
264 return type;
265}
266
2e056931
SM
267/* See gdbtypes.h. */
268
269unsigned int
270type_length_units (struct type *type)
271{
272 struct gdbarch *arch = get_type_arch (type);
273 int unit_size = gdbarch_addressable_memory_unit_size (arch);
274
275 return TYPE_LENGTH (type) / unit_size;
276}
277
2fdde8f8
DJ
278/* Alloc a new type instance structure, fill it with some defaults,
279 and point it at OLDTYPE. Allocate the new type instance from the
280 same place as OLDTYPE. */
281
282static struct type *
283alloc_type_instance (struct type *oldtype)
284{
285 struct type *type;
286
287 /* Allocate the structure. */
288
e9bb382b 289 if (! TYPE_OBJFILE_OWNED (oldtype))
2fabdf33 290 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
2fdde8f8 291 else
1deafd4e
PA
292 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
293 struct type);
294
2fdde8f8
DJ
295 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
296
297 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
298
c16abbde 299 return type;
2fdde8f8
DJ
300}
301
302/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 303 replacing it with something else. Preserve owner information. */
5212577a 304
2fdde8f8
DJ
305static void
306smash_type (struct type *type)
307{
e9bb382b
UW
308 int objfile_owned = TYPE_OBJFILE_OWNED (type);
309 union type_owner owner = TYPE_OWNER (type);
310
2fdde8f8
DJ
311 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
312
e9bb382b
UW
313 /* Restore owner information. */
314 TYPE_OBJFILE_OWNED (type) = objfile_owned;
315 TYPE_OWNER (type) = owner;
316
2fdde8f8
DJ
317 /* For now, delete the rings. */
318 TYPE_CHAIN (type) = type;
319
320 /* For now, leave the pointer/reference types alone. */
321}
322
c906108c
SS
323/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
324 to a pointer to memory where the pointer type should be stored.
325 If *TYPEPTR is zero, update it to point to the pointer type we return.
326 We allocate new memory if needed. */
327
328struct type *
fba45db2 329make_pointer_type (struct type *type, struct type **typeptr)
c906108c 330{
52f0bd74 331 struct type *ntype; /* New type */
053cb41b 332 struct type *chain;
c906108c
SS
333
334 ntype = TYPE_POINTER_TYPE (type);
335
c5aa993b 336 if (ntype)
c906108c 337 {
c5aa993b 338 if (typeptr == 0)
7ba81444
MS
339 return ntype; /* Don't care about alloc,
340 and have new type. */
c906108c 341 else if (*typeptr == 0)
c5aa993b 342 {
7ba81444 343 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 344 return ntype;
c5aa993b 345 }
c906108c
SS
346 }
347
348 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
349 {
e9bb382b 350 ntype = alloc_type_copy (type);
c906108c
SS
351 if (typeptr)
352 *typeptr = ntype;
353 }
7ba81444 354 else /* We have storage, but need to reset it. */
c906108c
SS
355 {
356 ntype = *typeptr;
053cb41b 357 chain = TYPE_CHAIN (ntype);
2fdde8f8 358 smash_type (ntype);
053cb41b 359 TYPE_CHAIN (ntype) = chain;
c906108c
SS
360 }
361
362 TYPE_TARGET_TYPE (ntype) = type;
363 TYPE_POINTER_TYPE (type) = ntype;
364
5212577a 365 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 366
50810684
UW
367 TYPE_LENGTH (ntype)
368 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
369 TYPE_CODE (ntype) = TYPE_CODE_PTR;
370
67b2adb2 371 /* Mark pointers as unsigned. The target converts between pointers
76e71323 372 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 373 gdbarch_address_to_pointer. */
876cecd0 374 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 375
053cb41b
JB
376 /* Update the length of all the other variants of this type. */
377 chain = TYPE_CHAIN (ntype);
378 while (chain != ntype)
379 {
380 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
381 chain = TYPE_CHAIN (chain);
382 }
383
c906108c
SS
384 return ntype;
385}
386
387/* Given a type TYPE, return a type of pointers to that type.
388 May need to construct such a type if this is the first use. */
389
390struct type *
fba45db2 391lookup_pointer_type (struct type *type)
c906108c 392{
c5aa993b 393 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
394}
395
7ba81444
MS
396/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
397 points to a pointer to memory where the reference type should be
398 stored. If *TYPEPTR is zero, update it to point to the reference
3b224330
AV
399 type we return. We allocate new memory if needed. REFCODE denotes
400 the kind of reference type to lookup (lvalue or rvalue reference). */
c906108c
SS
401
402struct type *
3b224330
AV
403make_reference_type (struct type *type, struct type **typeptr,
404 enum type_code refcode)
c906108c 405{
52f0bd74 406 struct type *ntype; /* New type */
3b224330 407 struct type **reftype;
1e98b326 408 struct type *chain;
c906108c 409
3b224330
AV
410 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
411
412 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
413 : TYPE_RVALUE_REFERENCE_TYPE (type));
c906108c 414
c5aa993b 415 if (ntype)
c906108c 416 {
c5aa993b 417 if (typeptr == 0)
7ba81444
MS
418 return ntype; /* Don't care about alloc,
419 and have new type. */
c906108c 420 else if (*typeptr == 0)
c5aa993b 421 {
7ba81444 422 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 423 return ntype;
c5aa993b 424 }
c906108c
SS
425 }
426
427 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
428 {
e9bb382b 429 ntype = alloc_type_copy (type);
c906108c
SS
430 if (typeptr)
431 *typeptr = ntype;
432 }
7ba81444 433 else /* We have storage, but need to reset it. */
c906108c
SS
434 {
435 ntype = *typeptr;
1e98b326 436 chain = TYPE_CHAIN (ntype);
2fdde8f8 437 smash_type (ntype);
1e98b326 438 TYPE_CHAIN (ntype) = chain;
c906108c
SS
439 }
440
441 TYPE_TARGET_TYPE (ntype) = type;
3b224330
AV
442 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
443 : &TYPE_RVALUE_REFERENCE_TYPE (type));
444
445 *reftype = ntype;
c906108c 446
7ba81444
MS
447 /* FIXME! Assume the machine has only one representation for
448 references, and that it matches the (only) representation for
449 pointers! */
c906108c 450
50810684
UW
451 TYPE_LENGTH (ntype) =
452 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
3b224330 453 TYPE_CODE (ntype) = refcode;
c5aa993b 454
3b224330 455 *reftype = ntype;
c906108c 456
1e98b326
JB
457 /* Update the length of all the other variants of this type. */
458 chain = TYPE_CHAIN (ntype);
459 while (chain != ntype)
460 {
461 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
462 chain = TYPE_CHAIN (chain);
463 }
464
c906108c
SS
465 return ntype;
466}
467
7ba81444
MS
468/* Same as above, but caller doesn't care about memory allocation
469 details. */
c906108c
SS
470
471struct type *
3b224330
AV
472lookup_reference_type (struct type *type, enum type_code refcode)
473{
474 return make_reference_type (type, (struct type **) 0, refcode);
475}
476
477/* Lookup the lvalue reference type for the type TYPE. */
478
479struct type *
480lookup_lvalue_reference_type (struct type *type)
481{
482 return lookup_reference_type (type, TYPE_CODE_REF);
483}
484
485/* Lookup the rvalue reference type for the type TYPE. */
486
487struct type *
488lookup_rvalue_reference_type (struct type *type)
c906108c 489{
3b224330 490 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
c906108c
SS
491}
492
7ba81444
MS
493/* Lookup a function type that returns type TYPE. TYPEPTR, if
494 nonzero, points to a pointer to memory where the function type
495 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 496 function type we return. We allocate new memory if needed. */
c906108c
SS
497
498struct type *
0c8b41f1 499make_function_type (struct type *type, struct type **typeptr)
c906108c 500{
52f0bd74 501 struct type *ntype; /* New type */
c906108c
SS
502
503 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
504 {
e9bb382b 505 ntype = alloc_type_copy (type);
c906108c
SS
506 if (typeptr)
507 *typeptr = ntype;
508 }
7ba81444 509 else /* We have storage, but need to reset it. */
c906108c
SS
510 {
511 ntype = *typeptr;
2fdde8f8 512 smash_type (ntype);
c906108c
SS
513 }
514
515 TYPE_TARGET_TYPE (ntype) = type;
516
517 TYPE_LENGTH (ntype) = 1;
518 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 519
b6cdc2c1
JK
520 INIT_FUNC_SPECIFIC (ntype);
521
c906108c
SS
522 return ntype;
523}
524
c906108c
SS
525/* Given a type TYPE, return a type of functions that return that type.
526 May need to construct such a type if this is the first use. */
527
528struct type *
fba45db2 529lookup_function_type (struct type *type)
c906108c 530{
0c8b41f1 531 return make_function_type (type, (struct type **) 0);
c906108c
SS
532}
533
71918a86 534/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
535 function type. If the final type in PARAM_TYPES is NULL, make a
536 varargs function. */
71918a86
TT
537
538struct type *
539lookup_function_type_with_arguments (struct type *type,
540 int nparams,
541 struct type **param_types)
542{
543 struct type *fn = make_function_type (type, (struct type **) 0);
544 int i;
545
e314d629 546 if (nparams > 0)
a6fb9c08 547 {
e314d629
TT
548 if (param_types[nparams - 1] == NULL)
549 {
550 --nparams;
551 TYPE_VARARGS (fn) = 1;
552 }
553 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
554 == TYPE_CODE_VOID)
555 {
556 --nparams;
557 /* Caller should have ensured this. */
558 gdb_assert (nparams == 0);
559 TYPE_PROTOTYPED (fn) = 1;
560 }
54990598
PA
561 else
562 TYPE_PROTOTYPED (fn) = 1;
a6fb9c08
TT
563 }
564
71918a86 565 TYPE_NFIELDS (fn) = nparams;
224c3ddb
SM
566 TYPE_FIELDS (fn)
567 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
71918a86
TT
568 for (i = 0; i < nparams; ++i)
569 TYPE_FIELD_TYPE (fn, i) = param_types[i];
570
571 return fn;
572}
573
47663de5
MS
574/* Identify address space identifier by name --
575 return the integer flag defined in gdbtypes.h. */
5212577a
DE
576
577int
61f4b350
TT
578address_space_name_to_int (struct gdbarch *gdbarch,
579 const char *space_identifier)
47663de5 580{
8b2dbe47 581 int type_flags;
d8734c88 582
7ba81444 583 /* Check for known address space delimiters. */
47663de5 584 if (!strcmp (space_identifier, "code"))
876cecd0 585 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 586 else if (!strcmp (space_identifier, "data"))
876cecd0 587 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
588 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
589 && gdbarch_address_class_name_to_type_flags (gdbarch,
590 space_identifier,
591 &type_flags))
8b2dbe47 592 return type_flags;
47663de5 593 else
8a3fe4f8 594 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
595}
596
597/* Identify address space identifier by integer flag as defined in
7ba81444 598 gdbtypes.h -- return the string version of the adress space name. */
47663de5 599
321432c0 600const char *
50810684 601address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 602{
876cecd0 603 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 604 return "code";
876cecd0 605 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 606 return "data";
876cecd0 607 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
608 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
609 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
610 else
611 return NULL;
612}
613
2fdde8f8 614/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
615
616 If STORAGE is non-NULL, create the new type instance there.
617 STORAGE must be in the same obstack as TYPE. */
47663de5 618
b9362cc7 619static struct type *
2fdde8f8
DJ
620make_qualified_type (struct type *type, int new_flags,
621 struct type *storage)
47663de5
MS
622{
623 struct type *ntype;
624
625 ntype = type;
5f61c20e
JK
626 do
627 {
628 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
629 return ntype;
630 ntype = TYPE_CHAIN (ntype);
631 }
632 while (ntype != type);
47663de5 633
2fdde8f8
DJ
634 /* Create a new type instance. */
635 if (storage == NULL)
636 ntype = alloc_type_instance (type);
637 else
638 {
7ba81444
MS
639 /* If STORAGE was provided, it had better be in the same objfile
640 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
641 if one objfile is freed and the other kept, we'd have
642 dangling pointers. */
ad766c0a
JB
643 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
644
2fdde8f8
DJ
645 ntype = storage;
646 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
647 TYPE_CHAIN (ntype) = ntype;
648 }
47663de5
MS
649
650 /* Pointers or references to the original type are not relevant to
2fdde8f8 651 the new type. */
47663de5
MS
652 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
653 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 654
2fdde8f8
DJ
655 /* Chain the new qualified type to the old type. */
656 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
657 TYPE_CHAIN (type) = ntype;
658
659 /* Now set the instance flags and return the new type. */
660 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 661
ab5d3da6
KB
662 /* Set length of new type to that of the original type. */
663 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
664
47663de5
MS
665 return ntype;
666}
667
2fdde8f8
DJ
668/* Make an address-space-delimited variant of a type -- a type that
669 is identical to the one supplied except that it has an address
670 space attribute attached to it (such as "code" or "data").
671
7ba81444
MS
672 The space attributes "code" and "data" are for Harvard
673 architectures. The address space attributes are for architectures
674 which have alternately sized pointers or pointers with alternate
675 representations. */
2fdde8f8
DJ
676
677struct type *
678make_type_with_address_space (struct type *type, int space_flag)
679{
2fdde8f8 680 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
681 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
682 | TYPE_INSTANCE_FLAG_DATA_SPACE
683 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
684 | space_flag);
685
686 return make_qualified_type (type, new_flags, NULL);
687}
c906108c
SS
688
689/* Make a "c-v" variant of a type -- a type that is identical to the
690 one supplied except that it may have const or volatile attributes
691 CNST is a flag for setting the const attribute
692 VOLTL is a flag for setting the volatile attribute
693 TYPE is the base type whose variant we are creating.
c906108c 694
ad766c0a
JB
695 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
696 storage to hold the new qualified type; *TYPEPTR and TYPE must be
697 in the same objfile. Otherwise, allocate fresh memory for the new
698 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
699 new type we construct. */
5212577a 700
c906108c 701struct type *
7ba81444
MS
702make_cv_type (int cnst, int voltl,
703 struct type *type,
704 struct type **typeptr)
c906108c 705{
52f0bd74 706 struct type *ntype; /* New type */
c906108c 707
2fdde8f8 708 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
709 & ~(TYPE_INSTANCE_FLAG_CONST
710 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 711
c906108c 712 if (cnst)
876cecd0 713 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
714
715 if (voltl)
876cecd0 716 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 717
2fdde8f8 718 if (typeptr && *typeptr != NULL)
a02fd225 719 {
ad766c0a
JB
720 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
721 a C-V variant chain that threads across objfiles: if one
722 objfile gets freed, then the other has a broken C-V chain.
723
724 This code used to try to copy over the main type from TYPE to
725 *TYPEPTR if they were in different objfiles, but that's
726 wrong, too: TYPE may have a field list or member function
727 lists, which refer to types of their own, etc. etc. The
728 whole shebang would need to be copied over recursively; you
729 can't have inter-objfile pointers. The only thing to do is
730 to leave stub types as stub types, and look them up afresh by
731 name each time you encounter them. */
732 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
733 }
734
7ba81444
MS
735 ntype = make_qualified_type (type, new_flags,
736 typeptr ? *typeptr : NULL);
c906108c 737
2fdde8f8
DJ
738 if (typeptr != NULL)
739 *typeptr = ntype;
a02fd225 740
2fdde8f8 741 return ntype;
a02fd225 742}
c906108c 743
06d66ee9
TT
744/* Make a 'restrict'-qualified version of TYPE. */
745
746struct type *
747make_restrict_type (struct type *type)
748{
749 return make_qualified_type (type,
750 (TYPE_INSTANCE_FLAGS (type)
751 | TYPE_INSTANCE_FLAG_RESTRICT),
752 NULL);
753}
754
f1660027
TT
755/* Make a type without const, volatile, or restrict. */
756
757struct type *
758make_unqualified_type (struct type *type)
759{
760 return make_qualified_type (type,
761 (TYPE_INSTANCE_FLAGS (type)
762 & ~(TYPE_INSTANCE_FLAG_CONST
763 | TYPE_INSTANCE_FLAG_VOLATILE
764 | TYPE_INSTANCE_FLAG_RESTRICT)),
765 NULL);
766}
767
a2c2acaf
MW
768/* Make a '_Atomic'-qualified version of TYPE. */
769
770struct type *
771make_atomic_type (struct type *type)
772{
773 return make_qualified_type (type,
774 (TYPE_INSTANCE_FLAGS (type)
775 | TYPE_INSTANCE_FLAG_ATOMIC),
776 NULL);
777}
778
2fdde8f8
DJ
779/* Replace the contents of ntype with the type *type. This changes the
780 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
781 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 782
cda6c68a
JB
783 In order to build recursive types, it's inevitable that we'll need
784 to update types in place --- but this sort of indiscriminate
785 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
786 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
787 clear if more steps are needed. */
5212577a 788
dd6bda65
DJ
789void
790replace_type (struct type *ntype, struct type *type)
791{
ab5d3da6 792 struct type *chain;
dd6bda65 793
ad766c0a
JB
794 /* These two types had better be in the same objfile. Otherwise,
795 the assignment of one type's main type structure to the other
796 will produce a type with references to objects (names; field
797 lists; etc.) allocated on an objfile other than its own. */
e46dd0f4 798 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
ad766c0a 799
2fdde8f8 800 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 801
7ba81444
MS
802 /* The type length is not a part of the main type. Update it for
803 each type on the variant chain. */
ab5d3da6 804 chain = ntype;
5f61c20e
JK
805 do
806 {
807 /* Assert that this element of the chain has no address-class bits
808 set in its flags. Such type variants might have type lengths
809 which are supposed to be different from the non-address-class
810 variants. This assertion shouldn't ever be triggered because
811 symbol readers which do construct address-class variants don't
812 call replace_type(). */
813 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
814
815 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
816 chain = TYPE_CHAIN (chain);
817 }
818 while (ntype != chain);
ab5d3da6 819
2fdde8f8
DJ
820 /* Assert that the two types have equivalent instance qualifiers.
821 This should be true for at least all of our debug readers. */
822 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
823}
824
c906108c
SS
825/* Implement direct support for MEMBER_TYPE in GNU C++.
826 May need to construct such a type if this is the first use.
827 The TYPE is the type of the member. The DOMAIN is the type
828 of the aggregate that the member belongs to. */
829
830struct type *
0d5de010 831lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 832{
52f0bd74 833 struct type *mtype;
c906108c 834
e9bb382b 835 mtype = alloc_type_copy (type);
0d5de010 836 smash_to_memberptr_type (mtype, domain, type);
c16abbde 837 return mtype;
c906108c
SS
838}
839
0d5de010
DJ
840/* Return a pointer-to-method type, for a method of type TO_TYPE. */
841
842struct type *
843lookup_methodptr_type (struct type *to_type)
844{
845 struct type *mtype;
846
e9bb382b 847 mtype = alloc_type_copy (to_type);
0b92b5bb 848 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
849 return mtype;
850}
851
7ba81444
MS
852/* Allocate a stub method whose return type is TYPE. This apparently
853 happens for speed of symbol reading, since parsing out the
854 arguments to the method is cpu-intensive, the way we are doing it.
855 So, we will fill in arguments later. This always returns a fresh
856 type. */
c906108c
SS
857
858struct type *
fba45db2 859allocate_stub_method (struct type *type)
c906108c
SS
860{
861 struct type *mtype;
862
e9bb382b
UW
863 mtype = alloc_type_copy (type);
864 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
865 TYPE_LENGTH (mtype) = 1;
866 TYPE_STUB (mtype) = 1;
c906108c 867 TYPE_TARGET_TYPE (mtype) = type;
4bfb94b8 868 /* TYPE_SELF_TYPE (mtype) = unknown yet */
c16abbde 869 return mtype;
c906108c
SS
870}
871
0f59d5fc
PA
872/* See gdbtypes.h. */
873
874bool
875operator== (const dynamic_prop &l, const dynamic_prop &r)
876{
877 if (l.kind != r.kind)
878 return false;
879
880 switch (l.kind)
881 {
882 case PROP_UNDEFINED:
883 return true;
884 case PROP_CONST:
885 return l.data.const_val == r.data.const_val;
886 case PROP_ADDR_OFFSET:
887 case PROP_LOCEXPR:
888 case PROP_LOCLIST:
889 return l.data.baton == r.data.baton;
ef83a141
TT
890 case PROP_VARIANT_PARTS:
891 return l.data.variant_parts == r.data.variant_parts;
892 case PROP_TYPE:
893 return l.data.original_type == r.data.original_type;
0f59d5fc
PA
894 }
895
896 gdb_assert_not_reached ("unhandled dynamic_prop kind");
897}
898
899/* See gdbtypes.h. */
900
901bool
902operator== (const range_bounds &l, const range_bounds &r)
903{
904#define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
905
906 return (FIELD_EQ (low)
907 && FIELD_EQ (high)
908 && FIELD_EQ (flag_upper_bound_is_count)
4e962e74
TT
909 && FIELD_EQ (flag_bound_evaluated)
910 && FIELD_EQ (bias));
0f59d5fc
PA
911
912#undef FIELD_EQ
913}
914
729efb13
SA
915/* Create a range type with a dynamic range from LOW_BOUND to
916 HIGH_BOUND, inclusive. See create_range_type for further details. */
c906108c
SS
917
918struct type *
729efb13
SA
919create_range_type (struct type *result_type, struct type *index_type,
920 const struct dynamic_prop *low_bound,
4e962e74
TT
921 const struct dynamic_prop *high_bound,
922 LONGEST bias)
c906108c 923{
b86352cf
AB
924 /* The INDEX_TYPE should be a type capable of holding the upper and lower
925 bounds, as such a zero sized, or void type makes no sense. */
926 gdb_assert (TYPE_CODE (index_type) != TYPE_CODE_VOID);
927 gdb_assert (TYPE_LENGTH (index_type) > 0);
928
c906108c 929 if (result_type == NULL)
e9bb382b 930 result_type = alloc_type_copy (index_type);
c906108c
SS
931 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
932 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 933 if (TYPE_STUB (index_type))
876cecd0 934 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
935 else
936 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
729efb13 937
43bbcdc2
PH
938 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
939 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
729efb13
SA
940 TYPE_RANGE_DATA (result_type)->low = *low_bound;
941 TYPE_RANGE_DATA (result_type)->high = *high_bound;
4e962e74 942 TYPE_RANGE_DATA (result_type)->bias = bias;
c906108c 943
5bbd8269
AB
944 /* Initialize the stride to be a constant, the value will already be zero
945 thanks to the use of TYPE_ZALLOC above. */
946 TYPE_RANGE_DATA (result_type)->stride.kind = PROP_CONST;
947
729efb13 948 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
876cecd0 949 TYPE_UNSIGNED (result_type) = 1;
c906108c 950
45e44d27
JB
951 /* Ada allows the declaration of range types whose upper bound is
952 less than the lower bound, so checking the lower bound is not
953 enough. Make sure we do not mark a range type whose upper bound
954 is negative as unsigned. */
955 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
956 TYPE_UNSIGNED (result_type) = 0;
957
a05cf17a
TT
958 TYPE_ENDIANITY_NOT_DEFAULT (result_type)
959 = TYPE_ENDIANITY_NOT_DEFAULT (index_type);
960
262452ec 961 return result_type;
c906108c
SS
962}
963
5bbd8269
AB
964/* See gdbtypes.h. */
965
966struct type *
967create_range_type_with_stride (struct type *result_type,
968 struct type *index_type,
969 const struct dynamic_prop *low_bound,
970 const struct dynamic_prop *high_bound,
971 LONGEST bias,
972 const struct dynamic_prop *stride,
973 bool byte_stride_p)
974{
975 result_type = create_range_type (result_type, index_type, low_bound,
976 high_bound, bias);
977
978 gdb_assert (stride != nullptr);
979 TYPE_RANGE_DATA (result_type)->stride = *stride;
980 TYPE_RANGE_DATA (result_type)->flag_is_byte_stride = byte_stride_p;
981
982 return result_type;
983}
984
985
986
729efb13
SA
987/* Create a range type using either a blank type supplied in
988 RESULT_TYPE, or creating a new type, inheriting the objfile from
989 INDEX_TYPE.
990
991 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
992 to HIGH_BOUND, inclusive.
993
994 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
995 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
996
997struct type *
998create_static_range_type (struct type *result_type, struct type *index_type,
999 LONGEST low_bound, LONGEST high_bound)
1000{
1001 struct dynamic_prop low, high;
1002
1003 low.kind = PROP_CONST;
1004 low.data.const_val = low_bound;
1005
1006 high.kind = PROP_CONST;
1007 high.data.const_val = high_bound;
1008
4e962e74 1009 result_type = create_range_type (result_type, index_type, &low, &high, 0);
729efb13
SA
1010
1011 return result_type;
1012}
1013
80180f79
SA
1014/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
1015 are static, otherwise returns 0. */
1016
5bbd8269 1017static bool
80180f79
SA
1018has_static_range (const struct range_bounds *bounds)
1019{
5bbd8269
AB
1020 /* If the range doesn't have a defined stride then its stride field will
1021 be initialized to the constant 0. */
80180f79 1022 return (bounds->low.kind == PROP_CONST
5bbd8269
AB
1023 && bounds->high.kind == PROP_CONST
1024 && bounds->stride.kind == PROP_CONST);
80180f79
SA
1025}
1026
1027
7ba81444
MS
1028/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
1029 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
1030 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
1031
1032int
fba45db2 1033get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c 1034{
f168693b 1035 type = check_typedef (type);
c906108c
SS
1036 switch (TYPE_CODE (type))
1037 {
1038 case TYPE_CODE_RANGE:
1039 *lowp = TYPE_LOW_BOUND (type);
1040 *highp = TYPE_HIGH_BOUND (type);
1041 return 1;
1042 case TYPE_CODE_ENUM:
1043 if (TYPE_NFIELDS (type) > 0)
1044 {
1045 /* The enums may not be sorted by value, so search all
0963b4bd 1046 entries. */
c906108c
SS
1047 int i;
1048
14e75d8e 1049 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
c906108c
SS
1050 for (i = 0; i < TYPE_NFIELDS (type); i++)
1051 {
14e75d8e
JK
1052 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1053 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1054 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1055 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
1056 }
1057
7ba81444 1058 /* Set unsigned indicator if warranted. */
c5aa993b 1059 if (*lowp >= 0)
c906108c 1060 {
876cecd0 1061 TYPE_UNSIGNED (type) = 1;
c906108c
SS
1062 }
1063 }
1064 else
1065 {
1066 *lowp = 0;
1067 *highp = -1;
1068 }
1069 return 0;
1070 case TYPE_CODE_BOOL:
1071 *lowp = 0;
1072 *highp = 1;
1073 return 0;
1074 case TYPE_CODE_INT:
c5aa993b 1075 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
1076 return -1;
1077 if (!TYPE_UNSIGNED (type))
1078 {
c5aa993b 1079 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
1080 *highp = -*lowp - 1;
1081 return 0;
1082 }
86a73007 1083 /* fall through */
c906108c
SS
1084 case TYPE_CODE_CHAR:
1085 *lowp = 0;
1086 /* This round-about calculation is to avoid shifting by
7b83ea04 1087 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 1088 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
1089 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1090 *highp = (*highp - 1) | *highp;
1091 return 0;
1092 default:
1093 return -1;
1094 }
1095}
1096
dbc98a8b
KW
1097/* Assuming TYPE is a simple, non-empty array type, compute its upper
1098 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1099 Save the high bound into HIGH_BOUND if not NULL.
1100
0963b4bd 1101 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
1102 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1103
1104 We now simply use get_discrete_bounds call to get the values
1105 of the low and high bounds.
1106 get_discrete_bounds can return three values:
1107 1, meaning that index is a range,
1108 0, meaning that index is a discrete type,
1109 or -1 for failure. */
1110
1111int
1112get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1113{
1114 struct type *index = TYPE_INDEX_TYPE (type);
1115 LONGEST low = 0;
1116 LONGEST high = 0;
1117 int res;
1118
1119 if (index == NULL)
1120 return 0;
1121
1122 res = get_discrete_bounds (index, &low, &high);
1123 if (res == -1)
1124 return 0;
1125
1126 /* Check if the array bounds are undefined. */
1127 if (res == 1
1128 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1129 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1130 return 0;
1131
1132 if (low_bound)
1133 *low_bound = low;
1134
1135 if (high_bound)
1136 *high_bound = high;
1137
1138 return 1;
1139}
1140
aa715135
JG
1141/* Assuming that TYPE is a discrete type and VAL is a valid integer
1142 representation of a value of this type, save the corresponding
1143 position number in POS.
1144
1145 Its differs from VAL only in the case of enumeration types. In
1146 this case, the position number of the value of the first listed
1147 enumeration literal is zero; the position number of the value of
1148 each subsequent enumeration literal is one more than that of its
1149 predecessor in the list.
1150
1151 Return 1 if the operation was successful. Return zero otherwise,
1152 in which case the value of POS is unmodified.
1153*/
1154
1155int
1156discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1157{
1158 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1159 {
1160 int i;
1161
1162 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1163 {
1164 if (val == TYPE_FIELD_ENUMVAL (type, i))
1165 {
1166 *pos = i;
1167 return 1;
1168 }
1169 }
1170 /* Invalid enumeration value. */
1171 return 0;
1172 }
1173 else
1174 {
1175 *pos = val;
1176 return 1;
1177 }
1178}
1179
8dbb1375
HD
1180/* If the array TYPE has static bounds calculate and update its
1181 size, then return true. Otherwise return false and leave TYPE
1182 unchanged. */
1183
1184static bool
1185update_static_array_size (struct type *type)
1186{
1187 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1188
1189 struct type *range_type = TYPE_INDEX_TYPE (type);
1190
24e99c6c 1191 if (type->dyn_prop (DYN_PROP_BYTE_STRIDE) == nullptr
8dbb1375
HD
1192 && has_static_range (TYPE_RANGE_DATA (range_type))
1193 && (!type_not_associated (type)
1194 && !type_not_allocated (type)))
1195 {
1196 LONGEST low_bound, high_bound;
1197 int stride;
1198 struct type *element_type;
1199
1200 /* If the array itself doesn't provide a stride value then take
1201 whatever stride the range provides. Don't update BIT_STRIDE as
1202 we don't want to place the stride value from the range into this
1203 arrays bit size field. */
1204 stride = TYPE_FIELD_BITSIZE (type, 0);
1205 if (stride == 0)
1206 stride = TYPE_BIT_STRIDE (range_type);
1207
1208 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1209 low_bound = high_bound = 0;
1210 element_type = check_typedef (TYPE_TARGET_TYPE (type));
1211 /* Be careful when setting the array length. Ada arrays can be
1212 empty arrays with the high_bound being smaller than the low_bound.
1213 In such cases, the array length should be zero. */
1214 if (high_bound < low_bound)
1215 TYPE_LENGTH (type) = 0;
1216 else if (stride != 0)
1217 {
1218 /* Ensure that the type length is always positive, even in the
1219 case where (for example in Fortran) we have a negative
1220 stride. It is possible to have a single element array with a
1221 negative stride in Fortran (this doesn't mean anything
1222 special, it's still just a single element array) so do
1223 consider that case when touching this code. */
1224 LONGEST element_count = std::abs (high_bound - low_bound + 1);
1225 TYPE_LENGTH (type)
1226 = ((std::abs (stride) * element_count) + 7) / 8;
1227 }
1228 else
1229 TYPE_LENGTH (type) =
1230 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1231
1232 return true;
1233 }
1234
1235 return false;
1236}
1237
7ba81444
MS
1238/* Create an array type using either a blank type supplied in
1239 RESULT_TYPE, or creating a new type, inheriting the objfile from
1240 RANGE_TYPE.
c906108c
SS
1241
1242 Elements will be of type ELEMENT_TYPE, the indices will be of type
1243 RANGE_TYPE.
1244
a405673c
JB
1245 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1246 This byte stride property is added to the resulting array type
1247 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1248 argument can only be used to create types that are objfile-owned
1249 (see add_dyn_prop), meaning that either this function must be called
1250 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1251
1252 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
dc53a7ad
JB
1253 If BIT_STRIDE is not zero, build a packed array type whose element
1254 size is BIT_STRIDE. Otherwise, ignore this parameter.
1255
7ba81444
MS
1256 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1257 sure it is TYPE_CODE_UNDEF before we bash it into an array
1258 type? */
c906108c
SS
1259
1260struct type *
dc53a7ad
JB
1261create_array_type_with_stride (struct type *result_type,
1262 struct type *element_type,
1263 struct type *range_type,
a405673c 1264 struct dynamic_prop *byte_stride_prop,
dc53a7ad 1265 unsigned int bit_stride)
c906108c 1266{
a405673c
JB
1267 if (byte_stride_prop != NULL
1268 && byte_stride_prop->kind == PROP_CONST)
1269 {
1270 /* The byte stride is actually not dynamic. Pretend we were
1271 called with bit_stride set instead of byte_stride_prop.
1272 This will give us the same result type, while avoiding
1273 the need to handle this as a special case. */
1274 bit_stride = byte_stride_prop->data.const_val * 8;
1275 byte_stride_prop = NULL;
1276 }
1277
c906108c 1278 if (result_type == NULL)
e9bb382b
UW
1279 result_type = alloc_type_copy (range_type);
1280
c906108c
SS
1281 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1282 TYPE_TARGET_TYPE (result_type) = element_type;
5bbd8269 1283
8dbb1375
HD
1284 TYPE_NFIELDS (result_type) = 1;
1285 TYPE_FIELDS (result_type) =
1286 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1287 TYPE_INDEX_TYPE (result_type) = range_type;
1288 if (byte_stride_prop != NULL)
5c54719c 1289 result_type->add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop);
8dbb1375
HD
1290 else if (bit_stride > 0)
1291 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
80180f79 1292
8dbb1375 1293 if (!update_static_array_size (result_type))
80180f79
SA
1294 {
1295 /* This type is dynamic and its length needs to be computed
1296 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1297 undefined by setting it to zero. Although we are not expected
1298 to trust TYPE_LENGTH in this case, setting the size to zero
1299 allows us to avoid allocating objects of random sizes in case
1300 we accidently do. */
1301 TYPE_LENGTH (result_type) = 0;
1302 }
1303
a9ff5f12 1304 /* TYPE_TARGET_STUB will take care of zero length arrays. */
c906108c 1305 if (TYPE_LENGTH (result_type) == 0)
876cecd0 1306 TYPE_TARGET_STUB (result_type) = 1;
c906108c 1307
c16abbde 1308 return result_type;
c906108c
SS
1309}
1310
dc53a7ad
JB
1311/* Same as create_array_type_with_stride but with no bit_stride
1312 (BIT_STRIDE = 0), thus building an unpacked array. */
1313
1314struct type *
1315create_array_type (struct type *result_type,
1316 struct type *element_type,
1317 struct type *range_type)
1318{
1319 return create_array_type_with_stride (result_type, element_type,
a405673c 1320 range_type, NULL, 0);
dc53a7ad
JB
1321}
1322
e3506a9f
UW
1323struct type *
1324lookup_array_range_type (struct type *element_type,
63375b74 1325 LONGEST low_bound, LONGEST high_bound)
e3506a9f 1326{
929b5ad4
JB
1327 struct type *index_type;
1328 struct type *range_type;
1329
1330 if (TYPE_OBJFILE_OWNED (element_type))
1331 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1332 else
1333 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1334 range_type = create_static_range_type (NULL, index_type,
1335 low_bound, high_bound);
d8734c88 1336
e3506a9f
UW
1337 return create_array_type (NULL, element_type, range_type);
1338}
1339
7ba81444
MS
1340/* Create a string type using either a blank type supplied in
1341 RESULT_TYPE, or creating a new type. String types are similar
1342 enough to array of char types that we can use create_array_type to
1343 build the basic type and then bash it into a string type.
c906108c
SS
1344
1345 For fixed length strings, the range type contains 0 as the lower
1346 bound and the length of the string minus one as the upper bound.
1347
7ba81444
MS
1348 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1349 sure it is TYPE_CODE_UNDEF before we bash it into a string
1350 type? */
c906108c
SS
1351
1352struct type *
3b7538c0
UW
1353create_string_type (struct type *result_type,
1354 struct type *string_char_type,
7ba81444 1355 struct type *range_type)
c906108c
SS
1356{
1357 result_type = create_array_type (result_type,
f290d38e 1358 string_char_type,
c906108c
SS
1359 range_type);
1360 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 1361 return result_type;
c906108c
SS
1362}
1363
e3506a9f
UW
1364struct type *
1365lookup_string_range_type (struct type *string_char_type,
63375b74 1366 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1367{
1368 struct type *result_type;
d8734c88 1369
e3506a9f
UW
1370 result_type = lookup_array_range_type (string_char_type,
1371 low_bound, high_bound);
1372 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1373 return result_type;
1374}
1375
c906108c 1376struct type *
fba45db2 1377create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1378{
c906108c 1379 if (result_type == NULL)
e9bb382b
UW
1380 result_type = alloc_type_copy (domain_type);
1381
c906108c
SS
1382 TYPE_CODE (result_type) = TYPE_CODE_SET;
1383 TYPE_NFIELDS (result_type) = 1;
224c3ddb
SM
1384 TYPE_FIELDS (result_type)
1385 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 1386
74a9bb82 1387 if (!TYPE_STUB (domain_type))
c906108c 1388 {
f9780d5b 1389 LONGEST low_bound, high_bound, bit_length;
d8734c88 1390
c906108c
SS
1391 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1392 low_bound = high_bound = 0;
1393 bit_length = high_bound - low_bound + 1;
1394 TYPE_LENGTH (result_type)
1395 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1396 if (low_bound >= 0)
876cecd0 1397 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
1398 }
1399 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1400
c16abbde 1401 return result_type;
c906108c
SS
1402}
1403
ea37ba09
DJ
1404/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1405 and any array types nested inside it. */
1406
1407void
1408make_vector_type (struct type *array_type)
1409{
1410 struct type *inner_array, *elt_type;
1411 int flags;
1412
1413 /* Find the innermost array type, in case the array is
1414 multi-dimensional. */
1415 inner_array = array_type;
1416 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1417 inner_array = TYPE_TARGET_TYPE (inner_array);
1418
1419 elt_type = TYPE_TARGET_TYPE (inner_array);
1420 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1421 {
2844d6b5 1422 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1423 elt_type = make_qualified_type (elt_type, flags, NULL);
1424 TYPE_TARGET_TYPE (inner_array) = elt_type;
1425 }
1426
876cecd0 1427 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1428}
1429
794ac428 1430struct type *
ac3aafc7
EZ
1431init_vector_type (struct type *elt_type, int n)
1432{
1433 struct type *array_type;
d8734c88 1434
e3506a9f 1435 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1436 make_vector_type (array_type);
ac3aafc7
EZ
1437 return array_type;
1438}
1439
09e2d7c7
DE
1440/* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1441 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1442 confusing. "self" is a common enough replacement for "this".
1443 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1444 TYPE_CODE_METHOD. */
1445
1446struct type *
1447internal_type_self_type (struct type *type)
1448{
1449 switch (TYPE_CODE (type))
1450 {
1451 case TYPE_CODE_METHODPTR:
1452 case TYPE_CODE_MEMBERPTR:
eaaf76ab
DE
1453 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1454 return NULL;
09e2d7c7
DE
1455 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1456 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1457 case TYPE_CODE_METHOD:
eaaf76ab
DE
1458 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1459 return NULL;
09e2d7c7
DE
1460 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1461 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1462 default:
1463 gdb_assert_not_reached ("bad type");
1464 }
1465}
1466
1467/* Set the type of the class that TYPE belongs to.
1468 In c++ this is the class of "this".
1469 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1470 TYPE_CODE_METHOD. */
1471
1472void
1473set_type_self_type (struct type *type, struct type *self_type)
1474{
1475 switch (TYPE_CODE (type))
1476 {
1477 case TYPE_CODE_METHODPTR:
1478 case TYPE_CODE_MEMBERPTR:
1479 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1480 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1481 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1482 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1483 break;
1484 case TYPE_CODE_METHOD:
1485 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1486 INIT_FUNC_SPECIFIC (type);
1487 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1488 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1489 break;
1490 default:
1491 gdb_assert_not_reached ("bad type");
1492 }
1493}
1494
1495/* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
0d5de010
DJ
1496 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1497 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1498 TYPE doesn't include the offset (that's the value of the MEMBER
1499 itself), but does include the structure type into which it points
1500 (for some reason).
c906108c 1501
7ba81444
MS
1502 When "smashing" the type, we preserve the objfile that the old type
1503 pointed to, since we aren't changing where the type is actually
c906108c
SS
1504 allocated. */
1505
1506void
09e2d7c7 1507smash_to_memberptr_type (struct type *type, struct type *self_type,
0d5de010 1508 struct type *to_type)
c906108c 1509{
2fdde8f8 1510 smash_type (type);
09e2d7c7 1511 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c 1512 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1513 set_type_self_type (type, self_type);
0d5de010
DJ
1514 /* Assume that a data member pointer is the same size as a normal
1515 pointer. */
50810684
UW
1516 TYPE_LENGTH (type)
1517 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
c906108c
SS
1518}
1519
0b92b5bb
TT
1520/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1521
1522 When "smashing" the type, we preserve the objfile that the old type
1523 pointed to, since we aren't changing where the type is actually
1524 allocated. */
1525
1526void
1527smash_to_methodptr_type (struct type *type, struct type *to_type)
1528{
1529 smash_type (type);
09e2d7c7 1530 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
0b92b5bb 1531 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1532 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
0b92b5bb 1533 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
0b92b5bb
TT
1534}
1535
09e2d7c7 1536/* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
c906108c
SS
1537 METHOD just means `function that gets an extra "this" argument'.
1538
7ba81444
MS
1539 When "smashing" the type, we preserve the objfile that the old type
1540 pointed to, since we aren't changing where the type is actually
c906108c
SS
1541 allocated. */
1542
1543void
09e2d7c7 1544smash_to_method_type (struct type *type, struct type *self_type,
ad2f7632
DJ
1545 struct type *to_type, struct field *args,
1546 int nargs, int varargs)
c906108c 1547{
2fdde8f8 1548 smash_type (type);
09e2d7c7 1549 TYPE_CODE (type) = TYPE_CODE_METHOD;
c906108c 1550 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1551 set_type_self_type (type, self_type);
ad2f7632
DJ
1552 TYPE_FIELDS (type) = args;
1553 TYPE_NFIELDS (type) = nargs;
1554 if (varargs)
876cecd0 1555 TYPE_VARARGS (type) = 1;
c906108c 1556 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
c906108c
SS
1557}
1558
a737d952 1559/* A wrapper of TYPE_NAME which calls error if the type is anonymous.
d8228535
JK
1560 Since GCC PR debug/47510 DWARF provides associated information to detect the
1561 anonymous class linkage name from its typedef.
1562
1563 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1564 apply it itself. */
1565
1566const char *
a737d952 1567type_name_or_error (struct type *type)
d8228535
JK
1568{
1569 struct type *saved_type = type;
1570 const char *name;
1571 struct objfile *objfile;
1572
f168693b 1573 type = check_typedef (type);
d8228535 1574
a737d952 1575 name = TYPE_NAME (type);
d8228535
JK
1576 if (name != NULL)
1577 return name;
1578
a737d952 1579 name = TYPE_NAME (saved_type);
d8228535
JK
1580 objfile = TYPE_OBJFILE (saved_type);
1581 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
4262abfb
JK
1582 name ? name : "<anonymous>",
1583 objfile ? objfile_name (objfile) : "<arch>");
d8228535
JK
1584}
1585
7ba81444
MS
1586/* Lookup a typedef or primitive type named NAME, visible in lexical
1587 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1588 suitably defined. */
c906108c
SS
1589
1590struct type *
e6c014f2 1591lookup_typename (const struct language_defn *language,
b858499d 1592 const char *name,
34eaf542 1593 const struct block *block, int noerr)
c906108c 1594{
52f0bd74 1595 struct symbol *sym;
c906108c 1596
1994afbf 1597 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
d12307c1 1598 language->la_language, NULL).symbol;
c51fe631
DE
1599 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1600 return SYMBOL_TYPE (sym);
1601
c51fe631
DE
1602 if (noerr)
1603 return NULL;
1604 error (_("No type named %s."), name);
c906108c
SS
1605}
1606
1607struct type *
e6c014f2 1608lookup_unsigned_typename (const struct language_defn *language,
b858499d 1609 const char *name)
c906108c 1610{
224c3ddb 1611 char *uns = (char *) alloca (strlen (name) + 10);
c906108c
SS
1612
1613 strcpy (uns, "unsigned ");
1614 strcpy (uns + 9, name);
b858499d 1615 return lookup_typename (language, uns, NULL, 0);
c906108c
SS
1616}
1617
1618struct type *
b858499d 1619lookup_signed_typename (const struct language_defn *language, const char *name)
c906108c
SS
1620{
1621 struct type *t;
224c3ddb 1622 char *uns = (char *) alloca (strlen (name) + 8);
c906108c
SS
1623
1624 strcpy (uns, "signed ");
1625 strcpy (uns + 7, name);
b858499d 1626 t = lookup_typename (language, uns, NULL, 1);
7ba81444 1627 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1628 if (t != NULL)
1629 return t;
b858499d 1630 return lookup_typename (language, name, NULL, 0);
c906108c
SS
1631}
1632
1633/* Lookup a structure type named "struct NAME",
1634 visible in lexical block BLOCK. */
1635
1636struct type *
270140bd 1637lookup_struct (const char *name, const struct block *block)
c906108c 1638{
52f0bd74 1639 struct symbol *sym;
c906108c 1640
d12307c1 1641 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1642
1643 if (sym == NULL)
1644 {
8a3fe4f8 1645 error (_("No struct type named %s."), name);
c906108c
SS
1646 }
1647 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1648 {
7ba81444
MS
1649 error (_("This context has class, union or enum %s, not a struct."),
1650 name);
c906108c
SS
1651 }
1652 return (SYMBOL_TYPE (sym));
1653}
1654
1655/* Lookup a union type named "union NAME",
1656 visible in lexical block BLOCK. */
1657
1658struct type *
270140bd 1659lookup_union (const char *name, const struct block *block)
c906108c 1660{
52f0bd74 1661 struct symbol *sym;
c5aa993b 1662 struct type *t;
c906108c 1663
d12307c1 1664 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1665
1666 if (sym == NULL)
8a3fe4f8 1667 error (_("No union type named %s."), name);
c906108c 1668
c5aa993b 1669 t = SYMBOL_TYPE (sym);
c906108c
SS
1670
1671 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1672 return t;
c906108c 1673
7ba81444
MS
1674 /* If we get here, it's not a union. */
1675 error (_("This context has class, struct or enum %s, not a union."),
1676 name);
c906108c
SS
1677}
1678
c906108c
SS
1679/* Lookup an enum type named "enum NAME",
1680 visible in lexical block BLOCK. */
1681
1682struct type *
270140bd 1683lookup_enum (const char *name, const struct block *block)
c906108c 1684{
52f0bd74 1685 struct symbol *sym;
c906108c 1686
d12307c1 1687 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1688 if (sym == NULL)
1689 {
8a3fe4f8 1690 error (_("No enum type named %s."), name);
c906108c
SS
1691 }
1692 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1693 {
7ba81444
MS
1694 error (_("This context has class, struct or union %s, not an enum."),
1695 name);
c906108c
SS
1696 }
1697 return (SYMBOL_TYPE (sym));
1698}
1699
1700/* Lookup a template type named "template NAME<TYPE>",
1701 visible in lexical block BLOCK. */
1702
1703struct type *
61f4b350 1704lookup_template_type (const char *name, struct type *type,
270140bd 1705 const struct block *block)
c906108c
SS
1706{
1707 struct symbol *sym;
7ba81444
MS
1708 char *nam = (char *)
1709 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1710
c906108c
SS
1711 strcpy (nam, name);
1712 strcat (nam, "<");
0004e5a2 1713 strcat (nam, TYPE_NAME (type));
0963b4bd 1714 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1715
d12307c1 1716 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
c906108c
SS
1717
1718 if (sym == NULL)
1719 {
8a3fe4f8 1720 error (_("No template type named %s."), name);
c906108c
SS
1721 }
1722 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1723 {
7ba81444
MS
1724 error (_("This context has class, union or enum %s, not a struct."),
1725 name);
c906108c
SS
1726 }
1727 return (SYMBOL_TYPE (sym));
1728}
1729
ef0bd204 1730/* See gdbtypes.h. */
c906108c 1731
ef0bd204
JB
1732struct_elt
1733lookup_struct_elt (struct type *type, const char *name, int noerr)
c906108c
SS
1734{
1735 int i;
1736
1737 for (;;)
1738 {
f168693b 1739 type = check_typedef (type);
c906108c
SS
1740 if (TYPE_CODE (type) != TYPE_CODE_PTR
1741 && TYPE_CODE (type) != TYPE_CODE_REF)
1742 break;
1743 type = TYPE_TARGET_TYPE (type);
1744 }
1745
687d6395
MS
1746 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1747 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1748 {
2f408ecb
PA
1749 std::string type_name = type_to_string (type);
1750 error (_("Type %s is not a structure or union type."),
1751 type_name.c_str ());
c906108c
SS
1752 }
1753
c906108c
SS
1754 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1755 {
0d5cff50 1756 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1757
db577aea 1758 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c 1759 {
ef0bd204 1760 return {&TYPE_FIELD (type, i), TYPE_FIELD_BITPOS (type, i)};
c906108c 1761 }
f5a010c0
PM
1762 else if (!t_field_name || *t_field_name == '\0')
1763 {
ef0bd204
JB
1764 struct_elt elt
1765 = lookup_struct_elt (TYPE_FIELD_TYPE (type, i), name, 1);
1766 if (elt.field != NULL)
1767 {
1768 elt.offset += TYPE_FIELD_BITPOS (type, i);
1769 return elt;
1770 }
f5a010c0 1771 }
c906108c
SS
1772 }
1773
1774 /* OK, it's not in this class. Recursively check the baseclasses. */
1775 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1776 {
ef0bd204
JB
1777 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1778 if (elt.field != NULL)
1779 return elt;
c906108c
SS
1780 }
1781
1782 if (noerr)
ef0bd204 1783 return {nullptr, 0};
c5aa993b 1784
2f408ecb
PA
1785 std::string type_name = type_to_string (type);
1786 error (_("Type %s has no component named %s."), type_name.c_str (), name);
c906108c
SS
1787}
1788
ef0bd204
JB
1789/* See gdbtypes.h. */
1790
1791struct type *
1792lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1793{
1794 struct_elt elt = lookup_struct_elt (type, name, noerr);
1795 if (elt.field != NULL)
1796 return FIELD_TYPE (*elt.field);
1797 else
1798 return NULL;
1799}
1800
ed3ef339
DE
1801/* Store in *MAX the largest number representable by unsigned integer type
1802 TYPE. */
1803
1804void
1805get_unsigned_type_max (struct type *type, ULONGEST *max)
1806{
1807 unsigned int n;
1808
f168693b 1809 type = check_typedef (type);
ed3ef339
DE
1810 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1811 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1812
1813 /* Written this way to avoid overflow. */
1814 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1815 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1816}
1817
1818/* Store in *MIN, *MAX the smallest and largest numbers representable by
1819 signed integer type TYPE. */
1820
1821void
1822get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1823{
1824 unsigned int n;
1825
f168693b 1826 type = check_typedef (type);
ed3ef339
DE
1827 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1828 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1829
1830 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1831 *min = -((ULONGEST) 1 << (n - 1));
1832 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1833}
1834
ae6ae975
DE
1835/* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1836 cplus_stuff.vptr_fieldno.
1837
1838 cplus_stuff is initialized to cplus_struct_default which does not
1839 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1840 designated initializers). We cope with that here. */
1841
1842int
1843internal_type_vptr_fieldno (struct type *type)
1844{
f168693b 1845 type = check_typedef (type);
ae6ae975
DE
1846 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1847 || TYPE_CODE (type) == TYPE_CODE_UNION);
1848 if (!HAVE_CPLUS_STRUCT (type))
1849 return -1;
1850 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1851}
1852
1853/* Set the value of cplus_stuff.vptr_fieldno. */
1854
1855void
1856set_type_vptr_fieldno (struct type *type, int fieldno)
1857{
f168693b 1858 type = check_typedef (type);
ae6ae975
DE
1859 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1860 || TYPE_CODE (type) == TYPE_CODE_UNION);
1861 if (!HAVE_CPLUS_STRUCT (type))
1862 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1863 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1864}
1865
1866/* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1867 cplus_stuff.vptr_basetype. */
1868
1869struct type *
1870internal_type_vptr_basetype (struct type *type)
1871{
f168693b 1872 type = check_typedef (type);
ae6ae975
DE
1873 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1874 || TYPE_CODE (type) == TYPE_CODE_UNION);
1875 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1876 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1877}
1878
1879/* Set the value of cplus_stuff.vptr_basetype. */
1880
1881void
1882set_type_vptr_basetype (struct type *type, struct type *basetype)
1883{
f168693b 1884 type = check_typedef (type);
ae6ae975
DE
1885 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1886 || TYPE_CODE (type) == TYPE_CODE_UNION);
1887 if (!HAVE_CPLUS_STRUCT (type))
1888 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1889 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1890}
1891
81fe8080
DE
1892/* Lookup the vptr basetype/fieldno values for TYPE.
1893 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1894 vptr_fieldno. Also, if found and basetype is from the same objfile,
1895 cache the results.
1896 If not found, return -1 and ignore BASETYPEP.
1897 Callers should be aware that in some cases (for example,
c906108c 1898 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1899 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1900 this function will not be able to find the
7ba81444 1901 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1902 vptr_basetype will remain NULL or incomplete. */
c906108c 1903
81fe8080
DE
1904int
1905get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c 1906{
f168693b 1907 type = check_typedef (type);
c906108c
SS
1908
1909 if (TYPE_VPTR_FIELDNO (type) < 0)
1910 {
1911 int i;
1912
7ba81444
MS
1913 /* We must start at zero in case the first (and only) baseclass
1914 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1915 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1916 {
81fe8080
DE
1917 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1918 int fieldno;
1919 struct type *basetype;
1920
1921 fieldno = get_vptr_fieldno (baseclass, &basetype);
1922 if (fieldno >= 0)
c906108c 1923 {
81fe8080 1924 /* If the type comes from a different objfile we can't cache
0963b4bd 1925 it, it may have a different lifetime. PR 2384 */
5ef73790 1926 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080 1927 {
ae6ae975
DE
1928 set_type_vptr_fieldno (type, fieldno);
1929 set_type_vptr_basetype (type, basetype);
81fe8080
DE
1930 }
1931 if (basetypep)
1932 *basetypep = basetype;
1933 return fieldno;
c906108c
SS
1934 }
1935 }
81fe8080
DE
1936
1937 /* Not found. */
1938 return -1;
1939 }
1940 else
1941 {
1942 if (basetypep)
1943 *basetypep = TYPE_VPTR_BASETYPE (type);
1944 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1945 }
1946}
1947
44e1a9eb
DJ
1948static void
1949stub_noname_complaint (void)
1950{
b98664d3 1951 complaint (_("stub type has NULL name"));
44e1a9eb
DJ
1952}
1953
a405673c
JB
1954/* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1955 attached to it, and that property has a non-constant value. */
1956
1957static int
1958array_type_has_dynamic_stride (struct type *type)
1959{
24e99c6c 1960 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
a405673c
JB
1961
1962 return (prop != NULL && prop->kind != PROP_CONST);
1963}
1964
d98b7a16 1965/* Worker for is_dynamic_type. */
80180f79 1966
d98b7a16 1967static int
ee715b5a 1968is_dynamic_type_internal (struct type *type, int top_level)
80180f79
SA
1969{
1970 type = check_typedef (type);
1971
e771e4be
PMR
1972 /* We only want to recognize references at the outermost level. */
1973 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1974 type = check_typedef (TYPE_TARGET_TYPE (type));
1975
3cdcd0ce
JB
1976 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1977 dynamic, even if the type itself is statically defined.
1978 From a user's point of view, this may appear counter-intuitive;
1979 but it makes sense in this context, because the point is to determine
1980 whether any part of the type needs to be resolved before it can
1981 be exploited. */
1982 if (TYPE_DATA_LOCATION (type) != NULL
1983 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1984 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1985 return 1;
1986
3f2f83dd
KB
1987 if (TYPE_ASSOCIATED_PROP (type))
1988 return 1;
1989
1990 if (TYPE_ALLOCATED_PROP (type))
1991 return 1;
1992
24e99c6c 1993 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_VARIANT_PARTS);
ef83a141
TT
1994 if (prop != nullptr && prop->kind != PROP_TYPE)
1995 return 1;
1996
f8e89861
TT
1997 if (TYPE_HAS_DYNAMIC_LENGTH (type))
1998 return 1;
1999
80180f79
SA
2000 switch (TYPE_CODE (type))
2001 {
6f8a3220 2002 case TYPE_CODE_RANGE:
ddb87a81
JB
2003 {
2004 /* A range type is obviously dynamic if it has at least one
2005 dynamic bound. But also consider the range type to be
2006 dynamic when its subtype is dynamic, even if the bounds
2007 of the range type are static. It allows us to assume that
2008 the subtype of a static range type is also static. */
2009 return (!has_static_range (TYPE_RANGE_DATA (type))
ee715b5a 2010 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
ddb87a81 2011 }
6f8a3220 2012
216a7e6b
AB
2013 case TYPE_CODE_STRING:
2014 /* Strings are very much like an array of characters, and can be
2015 treated as one here. */
80180f79
SA
2016 case TYPE_CODE_ARRAY:
2017 {
80180f79 2018 gdb_assert (TYPE_NFIELDS (type) == 1);
6f8a3220 2019
a405673c 2020 /* The array is dynamic if either the bounds are dynamic... */
ee715b5a 2021 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
80180f79 2022 return 1;
a405673c
JB
2023 /* ... or the elements it contains have a dynamic contents... */
2024 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
2025 return 1;
2026 /* ... or if it has a dynamic stride... */
2027 if (array_type_has_dynamic_stride (type))
2028 return 1;
2029 return 0;
80180f79 2030 }
012370f6
TT
2031
2032 case TYPE_CODE_STRUCT:
2033 case TYPE_CODE_UNION:
2034 {
2035 int i;
2036
7d79de9a
TT
2037 bool is_cplus = HAVE_CPLUS_STRUCT (type);
2038
012370f6 2039 for (i = 0; i < TYPE_NFIELDS (type); ++i)
7d79de9a
TT
2040 {
2041 /* Static fields can be ignored here. */
2042 if (field_is_static (&TYPE_FIELD (type, i)))
2043 continue;
2044 /* If the field has dynamic type, then so does TYPE. */
2045 if (is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
2046 return 1;
2047 /* If the field is at a fixed offset, then it is not
2048 dynamic. */
2049 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_DWARF_BLOCK)
2050 continue;
2051 /* Do not consider C++ virtual base types to be dynamic
2052 due to the field's offset being dynamic; these are
2053 handled via other means. */
2054 if (is_cplus && BASETYPE_VIA_VIRTUAL (type, i))
2055 continue;
012370f6 2056 return 1;
7d79de9a 2057 }
012370f6
TT
2058 }
2059 break;
80180f79 2060 }
92e2a17f
TT
2061
2062 return 0;
80180f79
SA
2063}
2064
d98b7a16
TT
2065/* See gdbtypes.h. */
2066
2067int
2068is_dynamic_type (struct type *type)
2069{
ee715b5a 2070 return is_dynamic_type_internal (type, 1);
d98b7a16
TT
2071}
2072
df25ebbd 2073static struct type *resolve_dynamic_type_internal
ee715b5a 2074 (struct type *type, struct property_addr_info *addr_stack, int top_level);
d98b7a16 2075
df25ebbd
JB
2076/* Given a dynamic range type (dyn_range_type) and a stack of
2077 struct property_addr_info elements, return a static version
2078 of that type. */
d190df30 2079
80180f79 2080static struct type *
df25ebbd
JB
2081resolve_dynamic_range (struct type *dyn_range_type,
2082 struct property_addr_info *addr_stack)
80180f79
SA
2083{
2084 CORE_ADDR value;
ddb87a81 2085 struct type *static_range_type, *static_target_type;
80180f79 2086 const struct dynamic_prop *prop;
5bbd8269 2087 struct dynamic_prop low_bound, high_bound, stride;
80180f79 2088
6f8a3220 2089 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
80180f79 2090
6f8a3220 2091 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
63e43d3a 2092 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
2093 {
2094 low_bound.kind = PROP_CONST;
2095 low_bound.data.const_val = value;
2096 }
2097 else
2098 {
2099 low_bound.kind = PROP_UNDEFINED;
2100 low_bound.data.const_val = 0;
2101 }
2102
6f8a3220 2103 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
63e43d3a 2104 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
2105 {
2106 high_bound.kind = PROP_CONST;
2107 high_bound.data.const_val = value;
c451ebe5 2108
6f8a3220 2109 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
c451ebe5
SA
2110 high_bound.data.const_val
2111 = low_bound.data.const_val + high_bound.data.const_val - 1;
80180f79
SA
2112 }
2113 else
2114 {
2115 high_bound.kind = PROP_UNDEFINED;
2116 high_bound.data.const_val = 0;
2117 }
2118
5bbd8269
AB
2119 bool byte_stride_p = TYPE_RANGE_DATA (dyn_range_type)->flag_is_byte_stride;
2120 prop = &TYPE_RANGE_DATA (dyn_range_type)->stride;
2121 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2122 {
2123 stride.kind = PROP_CONST;
2124 stride.data.const_val = value;
2125
2126 /* If we have a bit stride that is not an exact number of bytes then
2127 I really don't think this is going to work with current GDB, the
2128 array indexing code in GDB seems to be pretty heavily tied to byte
2129 offsets right now. Assuming 8 bits in a byte. */
2130 struct gdbarch *gdbarch = get_type_arch (dyn_range_type);
2131 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
2132 if (!byte_stride_p && (value % (unit_size * 8)) != 0)
2133 error (_("bit strides that are not a multiple of the byte size "
2134 "are currently not supported"));
2135 }
2136 else
2137 {
2138 stride.kind = PROP_UNDEFINED;
2139 stride.data.const_val = 0;
2140 byte_stride_p = true;
2141 }
2142
ddb87a81
JB
2143 static_target_type
2144 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
ee715b5a 2145 addr_stack, 0);
4e962e74 2146 LONGEST bias = TYPE_RANGE_DATA (dyn_range_type)->bias;
5bbd8269
AB
2147 static_range_type = create_range_type_with_stride
2148 (copy_type (dyn_range_type), static_target_type,
2149 &low_bound, &high_bound, bias, &stride, byte_stride_p);
6f8a3220
JB
2150 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2151 return static_range_type;
2152}
2153
216a7e6b
AB
2154/* Resolves dynamic bound values of an array or string type TYPE to static
2155 ones. ADDR_STACK is a stack of struct property_addr_info to be used if
2156 needed during the dynamic resolution. */
6f8a3220
JB
2157
2158static struct type *
216a7e6b
AB
2159resolve_dynamic_array_or_string (struct type *type,
2160 struct property_addr_info *addr_stack)
6f8a3220
JB
2161{
2162 CORE_ADDR value;
2163 struct type *elt_type;
2164 struct type *range_type;
2165 struct type *ary_dim;
3f2f83dd 2166 struct dynamic_prop *prop;
a405673c 2167 unsigned int bit_stride = 0;
6f8a3220 2168
216a7e6b
AB
2169 /* For dynamic type resolution strings can be treated like arrays of
2170 characters. */
2171 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY
2172 || TYPE_CODE (type) == TYPE_CODE_STRING);
6f8a3220 2173
3f2f83dd
KB
2174 type = copy_type (type);
2175
6f8a3220
JB
2176 elt_type = type;
2177 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
df25ebbd 2178 range_type = resolve_dynamic_range (range_type, addr_stack);
6f8a3220 2179
3f2f83dd
KB
2180 /* Resolve allocated/associated here before creating a new array type, which
2181 will update the length of the array accordingly. */
2182 prop = TYPE_ALLOCATED_PROP (type);
2183 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2184 {
2185 TYPE_DYN_PROP_ADDR (prop) = value;
2186 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2187 }
2188 prop = TYPE_ASSOCIATED_PROP (type);
2189 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2190 {
2191 TYPE_DYN_PROP_ADDR (prop) = value;
2192 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2193 }
2194
80180f79
SA
2195 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2196
2197 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
216a7e6b 2198 elt_type = resolve_dynamic_array_or_string (ary_dim, addr_stack);
80180f79
SA
2199 else
2200 elt_type = TYPE_TARGET_TYPE (type);
2201
24e99c6c 2202 prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
a405673c
JB
2203 if (prop != NULL)
2204 {
603490bf 2205 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
a405673c
JB
2206 {
2207 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2208 bit_stride = (unsigned int) (value * 8);
2209 }
2210 else
2211 {
2212 /* Could be a bug in our code, but it could also happen
2213 if the DWARF info is not correct. Issue a warning,
2214 and assume no byte/bit stride (leave bit_stride = 0). */
2215 warning (_("cannot determine array stride for type %s"),
2216 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2217 }
2218 }
2219 else
2220 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2221
2222 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2223 bit_stride);
80180f79
SA
2224}
2225
012370f6 2226/* Resolve dynamic bounds of members of the union TYPE to static
df25ebbd
JB
2227 bounds. ADDR_STACK is a stack of struct property_addr_info
2228 to be used if needed during the dynamic resolution. */
012370f6
TT
2229
2230static struct type *
df25ebbd
JB
2231resolve_dynamic_union (struct type *type,
2232 struct property_addr_info *addr_stack)
012370f6
TT
2233{
2234 struct type *resolved_type;
2235 int i;
2236 unsigned int max_len = 0;
2237
2238 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2239
2240 resolved_type = copy_type (type);
2241 TYPE_FIELDS (resolved_type)
224c3ddb
SM
2242 = (struct field *) TYPE_ALLOC (resolved_type,
2243 TYPE_NFIELDS (resolved_type)
2244 * sizeof (struct field));
012370f6
TT
2245 memcpy (TYPE_FIELDS (resolved_type),
2246 TYPE_FIELDS (type),
2247 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2248 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2249 {
2250 struct type *t;
2251
2252 if (field_is_static (&TYPE_FIELD (type, i)))
2253 continue;
2254
d98b7a16 2255 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2256 addr_stack, 0);
012370f6
TT
2257 TYPE_FIELD_TYPE (resolved_type, i) = t;
2258 if (TYPE_LENGTH (t) > max_len)
2259 max_len = TYPE_LENGTH (t);
2260 }
2261
2262 TYPE_LENGTH (resolved_type) = max_len;
2263 return resolved_type;
2264}
2265
ef83a141
TT
2266/* See gdbtypes.h. */
2267
2268bool
2269variant::matches (ULONGEST value, bool is_unsigned) const
2270{
2271 for (const discriminant_range &range : discriminants)
2272 if (range.contains (value, is_unsigned))
2273 return true;
2274 return false;
2275}
2276
2277static void
2278compute_variant_fields_inner (struct type *type,
2279 struct property_addr_info *addr_stack,
2280 const variant_part &part,
2281 std::vector<bool> &flags);
2282
2283/* A helper function to determine which variant fields will be active.
2284 This handles both the variant's direct fields, and any variant
2285 parts embedded in this variant. TYPE is the type we're examining.
2286 ADDR_STACK holds information about the concrete object. VARIANT is
2287 the current variant to be handled. FLAGS is where the results are
2288 stored -- this function sets the Nth element in FLAGS if the
2289 corresponding field is enabled. ENABLED is whether this variant is
2290 enabled or not. */
2291
2292static void
2293compute_variant_fields_recurse (struct type *type,
2294 struct property_addr_info *addr_stack,
2295 const variant &variant,
2296 std::vector<bool> &flags,
2297 bool enabled)
2298{
2299 for (int field = variant.first_field; field < variant.last_field; ++field)
2300 flags[field] = enabled;
2301
2302 for (const variant_part &new_part : variant.parts)
2303 {
2304 if (enabled)
2305 compute_variant_fields_inner (type, addr_stack, new_part, flags);
2306 else
2307 {
2308 for (const auto &sub_variant : new_part.variants)
2309 compute_variant_fields_recurse (type, addr_stack, sub_variant,
2310 flags, enabled);
2311 }
2312 }
2313}
2314
2315/* A helper function to determine which variant fields will be active.
2316 This evaluates the discriminant, decides which variant (if any) is
2317 active, and then updates FLAGS to reflect which fields should be
2318 available. TYPE is the type we're examining. ADDR_STACK holds
2319 information about the concrete object. VARIANT is the current
2320 variant to be handled. FLAGS is where the results are stored --
2321 this function sets the Nth element in FLAGS if the corresponding
2322 field is enabled. */
2323
2324static void
2325compute_variant_fields_inner (struct type *type,
2326 struct property_addr_info *addr_stack,
2327 const variant_part &part,
2328 std::vector<bool> &flags)
2329{
2330 /* Evaluate the discriminant. */
2331 gdb::optional<ULONGEST> discr_value;
2332 if (part.discriminant_index != -1)
2333 {
2334 int idx = part.discriminant_index;
2335
2336 if (TYPE_FIELD_LOC_KIND (type, idx) != FIELD_LOC_KIND_BITPOS)
2337 error (_("Cannot determine struct field location"
2338 " (invalid location kind)"));
2339
b249d2c2
TT
2340 if (addr_stack->valaddr.data () != NULL)
2341 discr_value = unpack_field_as_long (type, addr_stack->valaddr.data (),
2342 idx);
ef83a141
TT
2343 else
2344 {
2345 CORE_ADDR addr = (addr_stack->addr
2346 + (TYPE_FIELD_BITPOS (type, idx)
2347 / TARGET_CHAR_BIT));
2348
2349 LONGEST bitsize = TYPE_FIELD_BITSIZE (type, idx);
2350 LONGEST size = bitsize / 8;
2351 if (size == 0)
2352 size = TYPE_LENGTH (TYPE_FIELD_TYPE (type, idx));
2353
2354 gdb_byte bits[sizeof (ULONGEST)];
2355 read_memory (addr, bits, size);
2356
2357 LONGEST bitpos = (TYPE_FIELD_BITPOS (type, idx)
2358 % TARGET_CHAR_BIT);
2359
2360 discr_value = unpack_bits_as_long (TYPE_FIELD_TYPE (type, idx),
2361 bits, bitpos, bitsize);
2362 }
2363 }
2364
2365 /* Go through each variant and see which applies. */
2366 const variant *default_variant = nullptr;
2367 const variant *applied_variant = nullptr;
2368 for (const auto &variant : part.variants)
2369 {
2370 if (variant.is_default ())
2371 default_variant = &variant;
2372 else if (discr_value.has_value ()
2373 && variant.matches (*discr_value, part.is_unsigned))
2374 {
2375 applied_variant = &variant;
2376 break;
2377 }
2378 }
2379 if (applied_variant == nullptr)
2380 applied_variant = default_variant;
2381
2382 for (const auto &variant : part.variants)
2383 compute_variant_fields_recurse (type, addr_stack, variant,
2384 flags, applied_variant == &variant);
2385}
2386
2387/* Determine which variant fields are available in TYPE. The enabled
2388 fields are stored in RESOLVED_TYPE. ADDR_STACK holds information
2389 about the concrete object. PARTS describes the top-level variant
2390 parts for this type. */
2391
2392static void
2393compute_variant_fields (struct type *type,
2394 struct type *resolved_type,
2395 struct property_addr_info *addr_stack,
2396 const gdb::array_view<variant_part> &parts)
2397{
2398 /* Assume all fields are included by default. */
2399 std::vector<bool> flags (TYPE_NFIELDS (resolved_type), true);
2400
2401 /* Now disable fields based on the variants that control them. */
2402 for (const auto &part : parts)
2403 compute_variant_fields_inner (type, addr_stack, part, flags);
2404
2405 TYPE_NFIELDS (resolved_type) = std::count (flags.begin (), flags.end (),
2406 true);
2407 TYPE_FIELDS (resolved_type)
2408 = (struct field *) TYPE_ALLOC (resolved_type,
2409 TYPE_NFIELDS (resolved_type)
2410 * sizeof (struct field));
2411 int out = 0;
2412 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
2413 {
2414 if (!flags[i])
2415 continue;
2416
2417 TYPE_FIELD (resolved_type, out) = TYPE_FIELD (type, i);
2418 ++out;
2419 }
2420}
2421
012370f6 2422/* Resolve dynamic bounds of members of the struct TYPE to static
df25ebbd
JB
2423 bounds. ADDR_STACK is a stack of struct property_addr_info to
2424 be used if needed during the dynamic resolution. */
012370f6
TT
2425
2426static struct type *
df25ebbd
JB
2427resolve_dynamic_struct (struct type *type,
2428 struct property_addr_info *addr_stack)
012370f6
TT
2429{
2430 struct type *resolved_type;
2431 int i;
6908c509 2432 unsigned resolved_type_bit_length = 0;
012370f6
TT
2433
2434 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2435 gdb_assert (TYPE_NFIELDS (type) > 0);
2436
2437 resolved_type = copy_type (type);
ef83a141 2438
24e99c6c 2439 dynamic_prop *variant_prop = resolved_type->dyn_prop (DYN_PROP_VARIANT_PARTS);
ef83a141
TT
2440 if (variant_prop != nullptr && variant_prop->kind == PROP_VARIANT_PARTS)
2441 {
2442 compute_variant_fields (type, resolved_type, addr_stack,
2443 *variant_prop->data.variant_parts);
2444 /* We want to leave the property attached, so that the Rust code
2445 can tell whether the type was originally an enum. */
2446 variant_prop->kind = PROP_TYPE;
2447 variant_prop->data.original_type = type;
2448 }
2449 else
2450 {
2451 TYPE_FIELDS (resolved_type)
2452 = (struct field *) TYPE_ALLOC (resolved_type,
2453 TYPE_NFIELDS (resolved_type)
2454 * sizeof (struct field));
2455 memcpy (TYPE_FIELDS (resolved_type),
2456 TYPE_FIELDS (type),
2457 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2458 }
2459
012370f6
TT
2460 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2461 {
6908c509 2462 unsigned new_bit_length;
df25ebbd 2463 struct property_addr_info pinfo;
012370f6 2464
ef83a141 2465 if (field_is_static (&TYPE_FIELD (resolved_type, i)))
012370f6
TT
2466 continue;
2467
7d79de9a
TT
2468 if (TYPE_FIELD_LOC_KIND (resolved_type, i) == FIELD_LOC_KIND_DWARF_BLOCK)
2469 {
2470 struct dwarf2_property_baton baton;
2471 baton.property_type
2472 = lookup_pointer_type (TYPE_FIELD_TYPE (resolved_type, i));
2473 baton.locexpr = *TYPE_FIELD_DWARF_BLOCK (resolved_type, i);
2474
2475 struct dynamic_prop prop;
2476 prop.kind = PROP_LOCEXPR;
2477 prop.data.baton = &baton;
2478
2479 CORE_ADDR addr;
2480 if (dwarf2_evaluate_property (&prop, nullptr, addr_stack, &addr,
2481 true))
2482 SET_FIELD_BITPOS (TYPE_FIELD (resolved_type, i),
2483 TARGET_CHAR_BIT * (addr - addr_stack->addr));
2484 }
2485
6908c509
JB
2486 /* As we know this field is not a static field, the field's
2487 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2488 this is the case, but only trigger a simple error rather
2489 than an internal error if that fails. While failing
2490 that verification indicates a bug in our code, the error
2491 is not severe enough to suggest to the user he stops
2492 his debugging session because of it. */
ef83a141 2493 if (TYPE_FIELD_LOC_KIND (resolved_type, i) != FIELD_LOC_KIND_BITPOS)
6908c509
JB
2494 error (_("Cannot determine struct field location"
2495 " (invalid location kind)"));
df25ebbd 2496
ef83a141 2497 pinfo.type = check_typedef (TYPE_FIELD_TYPE (resolved_type, i));
c3345124 2498 pinfo.valaddr = addr_stack->valaddr;
9920b434
BH
2499 pinfo.addr
2500 = (addr_stack->addr
2501 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
df25ebbd
JB
2502 pinfo.next = addr_stack;
2503
2504 TYPE_FIELD_TYPE (resolved_type, i)
2505 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2506 &pinfo, 0);
df25ebbd
JB
2507 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2508 == FIELD_LOC_KIND_BITPOS);
2509
6908c509
JB
2510 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2511 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2512 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2513 else
2514 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2515 * TARGET_CHAR_BIT);
2516
2517 /* Normally, we would use the position and size of the last field
2518 to determine the size of the enclosing structure. But GCC seems
2519 to be encoding the position of some fields incorrectly when
2520 the struct contains a dynamic field that is not placed last.
2521 So we compute the struct size based on the field that has
2522 the highest position + size - probably the best we can do. */
2523 if (new_bit_length > resolved_type_bit_length)
2524 resolved_type_bit_length = new_bit_length;
012370f6
TT
2525 }
2526
9920b434
BH
2527 /* The length of a type won't change for fortran, but it does for C and Ada.
2528 For fortran the size of dynamic fields might change over time but not the
2529 type length of the structure. If we adapt it, we run into problems
2530 when calculating the element offset for arrays of structs. */
2531 if (current_language->la_language != language_fortran)
2532 TYPE_LENGTH (resolved_type)
2533 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
6908c509 2534
9e195661
PMR
2535 /* The Ada language uses this field as a cache for static fixed types: reset
2536 it as RESOLVED_TYPE must have its own static fixed type. */
2537 TYPE_TARGET_TYPE (resolved_type) = NULL;
2538
012370f6
TT
2539 return resolved_type;
2540}
2541
d98b7a16 2542/* Worker for resolved_dynamic_type. */
80180f79 2543
d98b7a16 2544static struct type *
df25ebbd 2545resolve_dynamic_type_internal (struct type *type,
ee715b5a
PMR
2546 struct property_addr_info *addr_stack,
2547 int top_level)
80180f79
SA
2548{
2549 struct type *real_type = check_typedef (type);
f8e89861 2550 struct type *resolved_type = nullptr;
d9823cbb 2551 struct dynamic_prop *prop;
3cdcd0ce 2552 CORE_ADDR value;
80180f79 2553
ee715b5a 2554 if (!is_dynamic_type_internal (real_type, top_level))
80180f79
SA
2555 return type;
2556
f8e89861
TT
2557 gdb::optional<CORE_ADDR> type_length;
2558 prop = TYPE_DYNAMIC_LENGTH (type);
2559 if (prop != NULL
2560 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2561 type_length = value;
2562
5537b577 2563 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
6f8a3220 2564 {
cac9b138
JK
2565 resolved_type = copy_type (type);
2566 TYPE_TARGET_TYPE (resolved_type)
ee715b5a
PMR
2567 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2568 top_level);
5537b577
JK
2569 }
2570 else
2571 {
2572 /* Before trying to resolve TYPE, make sure it is not a stub. */
2573 type = real_type;
012370f6 2574
5537b577
JK
2575 switch (TYPE_CODE (type))
2576 {
e771e4be
PMR
2577 case TYPE_CODE_REF:
2578 {
2579 struct property_addr_info pinfo;
2580
2581 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
b249d2c2
TT
2582 pinfo.valaddr = {};
2583 if (addr_stack->valaddr.data () != NULL)
2584 pinfo.addr = extract_typed_address (addr_stack->valaddr.data (),
2585 type);
c3345124
JB
2586 else
2587 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
e771e4be
PMR
2588 pinfo.next = addr_stack;
2589
2590 resolved_type = copy_type (type);
2591 TYPE_TARGET_TYPE (resolved_type)
2592 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2593 &pinfo, top_level);
2594 break;
2595 }
2596
216a7e6b
AB
2597 case TYPE_CODE_STRING:
2598 /* Strings are very much like an array of characters, and can be
2599 treated as one here. */
5537b577 2600 case TYPE_CODE_ARRAY:
216a7e6b 2601 resolved_type = resolve_dynamic_array_or_string (type, addr_stack);
5537b577
JK
2602 break;
2603
2604 case TYPE_CODE_RANGE:
df25ebbd 2605 resolved_type = resolve_dynamic_range (type, addr_stack);
5537b577
JK
2606 break;
2607
2608 case TYPE_CODE_UNION:
df25ebbd 2609 resolved_type = resolve_dynamic_union (type, addr_stack);
5537b577
JK
2610 break;
2611
2612 case TYPE_CODE_STRUCT:
df25ebbd 2613 resolved_type = resolve_dynamic_struct (type, addr_stack);
5537b577
JK
2614 break;
2615 }
6f8a3220 2616 }
80180f79 2617
f8e89861
TT
2618 if (resolved_type == nullptr)
2619 return type;
2620
2621 if (type_length.has_value ())
2622 {
2623 TYPE_LENGTH (resolved_type) = *type_length;
2624 remove_dyn_prop (DYN_PROP_BYTE_SIZE, resolved_type);
2625 }
2626
3cdcd0ce
JB
2627 /* Resolve data_location attribute. */
2628 prop = TYPE_DATA_LOCATION (resolved_type);
63e43d3a
PMR
2629 if (prop != NULL
2630 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
3cdcd0ce 2631 {
d9823cbb
KB
2632 TYPE_DYN_PROP_ADDR (prop) = value;
2633 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
3cdcd0ce 2634 }
3cdcd0ce 2635
80180f79
SA
2636 return resolved_type;
2637}
2638
d98b7a16
TT
2639/* See gdbtypes.h */
2640
2641struct type *
b249d2c2
TT
2642resolve_dynamic_type (struct type *type,
2643 gdb::array_view<const gdb_byte> valaddr,
c3345124 2644 CORE_ADDR addr)
d98b7a16 2645{
c3345124
JB
2646 struct property_addr_info pinfo
2647 = {check_typedef (type), valaddr, addr, NULL};
df25ebbd 2648
ee715b5a 2649 return resolve_dynamic_type_internal (type, &pinfo, 1);
d98b7a16
TT
2650}
2651
d9823cbb
KB
2652/* See gdbtypes.h */
2653
24e99c6c
SM
2654dynamic_prop *
2655type::dyn_prop (dynamic_prop_node_kind prop_kind) const
d9823cbb 2656{
24e99c6c 2657 dynamic_prop_list *node = TYPE_DYN_PROP_LIST (this);
d9823cbb
KB
2658
2659 while (node != NULL)
2660 {
2661 if (node->prop_kind == prop_kind)
283a9958 2662 return &node->prop;
d9823cbb
KB
2663 node = node->next;
2664 }
2665 return NULL;
2666}
2667
2668/* See gdbtypes.h */
2669
2670void
5c54719c 2671type::add_dyn_prop (dynamic_prop_node_kind prop_kind, dynamic_prop prop)
d9823cbb
KB
2672{
2673 struct dynamic_prop_list *temp;
2674
5c54719c 2675 gdb_assert (TYPE_OBJFILE_OWNED (this));
d9823cbb 2676
5c54719c 2677 temp = XOBNEW (&TYPE_OBJFILE (this)->objfile_obstack,
50a82047 2678 struct dynamic_prop_list);
d9823cbb 2679 temp->prop_kind = prop_kind;
283a9958 2680 temp->prop = prop;
5c54719c 2681 temp->next = TYPE_DYN_PROP_LIST (this);
d9823cbb 2682
5c54719c 2683 TYPE_DYN_PROP_LIST (this) = temp;
d9823cbb
KB
2684}
2685
9920b434
BH
2686/* Remove dynamic property from TYPE in case it exists. */
2687
2688void
2689remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2690 struct type *type)
2691{
2692 struct dynamic_prop_list *prev_node, *curr_node;
2693
2694 curr_node = TYPE_DYN_PROP_LIST (type);
2695 prev_node = NULL;
2696
2697 while (NULL != curr_node)
2698 {
2699 if (curr_node->prop_kind == prop_kind)
2700 {
2701 /* Update the linked list but don't free anything.
2702 The property was allocated on objstack and it is not known
2703 if we are on top of it. Nevertheless, everything is released
2704 when the complete objstack is freed. */
2705 if (NULL == prev_node)
2706 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2707 else
2708 prev_node->next = curr_node->next;
2709
2710 return;
2711 }
2712
2713 prev_node = curr_node;
2714 curr_node = curr_node->next;
2715 }
2716}
d9823cbb 2717
92163a10
JK
2718/* Find the real type of TYPE. This function returns the real type,
2719 after removing all layers of typedefs, and completing opaque or stub
2720 types. Completion changes the TYPE argument, but stripping of
2721 typedefs does not.
2722
2723 Instance flags (e.g. const/volatile) are preserved as typedefs are
2724 stripped. If necessary a new qualified form of the underlying type
2725 is created.
2726
2727 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2728 not been computed and we're either in the middle of reading symbols, or
2729 there was no name for the typedef in the debug info.
2730
9bc118a5
DE
2731 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2732 QUITs in the symbol reading code can also throw.
2733 Thus this function can throw an exception.
2734
92163a10
JK
2735 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2736 the target type.
c906108c
SS
2737
2738 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 2739 we can find a full definition in some other file. If so, copy this
7ba81444
MS
2740 definition, so we can use it in future. There used to be a comment
2741 (but not any code) that if we don't find a full definition, we'd
2742 set a flag so we don't spend time in the future checking the same
2743 type. That would be a mistake, though--we might load in more
92163a10 2744 symbols which contain a full definition for the type. */
c906108c
SS
2745
2746struct type *
a02fd225 2747check_typedef (struct type *type)
c906108c
SS
2748{
2749 struct type *orig_type = type;
92163a10
JK
2750 /* While we're removing typedefs, we don't want to lose qualifiers.
2751 E.g., const/volatile. */
2752 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 2753
423c0af8
MS
2754 gdb_assert (type);
2755
c906108c
SS
2756 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2757 {
2758 if (!TYPE_TARGET_TYPE (type))
2759 {
0d5cff50 2760 const char *name;
c906108c
SS
2761 struct symbol *sym;
2762
2763 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 2764 reading a symtab. Infinite recursion is one danger. */
c906108c 2765 if (currently_reading_symtab)
92163a10 2766 return make_qualified_type (type, instance_flags, NULL);
c906108c 2767
a737d952 2768 name = TYPE_NAME (type);
e86ca25f
TT
2769 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2770 VAR_DOMAIN as appropriate? */
c906108c
SS
2771 if (name == NULL)
2772 {
23136709 2773 stub_noname_complaint ();
92163a10 2774 return make_qualified_type (type, instance_flags, NULL);
c906108c 2775 }
d12307c1 2776 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
2777 if (sym)
2778 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 2779 else /* TYPE_CODE_UNDEF */
e9bb382b 2780 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
2781 }
2782 type = TYPE_TARGET_TYPE (type);
c906108c 2783
92163a10
JK
2784 /* Preserve the instance flags as we traverse down the typedef chain.
2785
2786 Handling address spaces/classes is nasty, what do we do if there's a
2787 conflict?
2788 E.g., what if an outer typedef marks the type as class_1 and an inner
2789 typedef marks the type as class_2?
2790 This is the wrong place to do such error checking. We leave it to
2791 the code that created the typedef in the first place to flag the
2792 error. We just pick the outer address space (akin to letting the
2793 outer cast in a chain of casting win), instead of assuming
2794 "it can't happen". */
2795 {
2796 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2797 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2798 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2799 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2800
2801 /* Treat code vs data spaces and address classes separately. */
2802 if ((instance_flags & ALL_SPACES) != 0)
2803 new_instance_flags &= ~ALL_SPACES;
2804 if ((instance_flags & ALL_CLASSES) != 0)
2805 new_instance_flags &= ~ALL_CLASSES;
2806
2807 instance_flags |= new_instance_flags;
2808 }
2809 }
a02fd225 2810
7ba81444
MS
2811 /* If this is a struct/class/union with no fields, then check
2812 whether a full definition exists somewhere else. This is for
2813 systems where a type definition with no fields is issued for such
2814 types, instead of identifying them as stub types in the first
2815 place. */
c5aa993b 2816
7ba81444
MS
2817 if (TYPE_IS_OPAQUE (type)
2818 && opaque_type_resolution
2819 && !currently_reading_symtab)
c906108c 2820 {
a737d952 2821 const char *name = TYPE_NAME (type);
c5aa993b 2822 struct type *newtype;
d8734c88 2823
c906108c
SS
2824 if (name == NULL)
2825 {
23136709 2826 stub_noname_complaint ();
92163a10 2827 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2828 }
2829 newtype = lookup_transparent_type (name);
ad766c0a 2830
c906108c 2831 if (newtype)
ad766c0a 2832 {
7ba81444
MS
2833 /* If the resolved type and the stub are in the same
2834 objfile, then replace the stub type with the real deal.
2835 But if they're in separate objfiles, leave the stub
2836 alone; we'll just look up the transparent type every time
2837 we call check_typedef. We can't create pointers between
2838 types allocated to different objfiles, since they may
2839 have different lifetimes. Trying to copy NEWTYPE over to
2840 TYPE's objfile is pointless, too, since you'll have to
2841 move over any other types NEWTYPE refers to, which could
2842 be an unbounded amount of stuff. */
ad766c0a 2843 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
2844 type = make_qualified_type (newtype,
2845 TYPE_INSTANCE_FLAGS (type),
2846 type);
ad766c0a
JB
2847 else
2848 type = newtype;
2849 }
c906108c 2850 }
7ba81444
MS
2851 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2852 types. */
74a9bb82 2853 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 2854 {
a737d952 2855 const char *name = TYPE_NAME (type);
e86ca25f
TT
2856 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2857 as appropriate? */
c906108c 2858 struct symbol *sym;
d8734c88 2859
c906108c
SS
2860 if (name == NULL)
2861 {
23136709 2862 stub_noname_complaint ();
92163a10 2863 return make_qualified_type (type, instance_flags, NULL);
c906108c 2864 }
d12307c1 2865 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c 2866 if (sym)
c26f2453
JB
2867 {
2868 /* Same as above for opaque types, we can replace the stub
92163a10 2869 with the complete type only if they are in the same
c26f2453
JB
2870 objfile. */
2871 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
2872 type = make_qualified_type (SYMBOL_TYPE (sym),
2873 TYPE_INSTANCE_FLAGS (type),
2874 type);
c26f2453
JB
2875 else
2876 type = SYMBOL_TYPE (sym);
2877 }
c906108c
SS
2878 }
2879
74a9bb82 2880 if (TYPE_TARGET_STUB (type))
c906108c 2881 {
c906108c
SS
2882 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2883
74a9bb82 2884 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 2885 {
73e2eb35 2886 /* Nothing we can do. */
c5aa993b 2887 }
c906108c
SS
2888 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2889 {
2890 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 2891 TYPE_TARGET_STUB (type) = 0;
c906108c 2892 }
8dbb1375
HD
2893 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2894 && update_static_array_size (type))
2895 TYPE_TARGET_STUB (type) = 0;
c906108c 2896 }
92163a10
JK
2897
2898 type = make_qualified_type (type, instance_flags, NULL);
2899
7ba81444 2900 /* Cache TYPE_LENGTH for future use. */
c906108c 2901 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 2902
c906108c
SS
2903 return type;
2904}
2905
7ba81444 2906/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 2907 occurs, silently return a void type. */
c91ecb25 2908
b9362cc7 2909static struct type *
48319d1f 2910safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
2911{
2912 struct ui_file *saved_gdb_stderr;
34365054 2913 struct type *type = NULL; /* Initialize to keep gcc happy. */
c91ecb25 2914
7ba81444 2915 /* Suppress error messages. */
c91ecb25 2916 saved_gdb_stderr = gdb_stderr;
d7e74731 2917 gdb_stderr = &null_stream;
c91ecb25 2918
7ba81444 2919 /* Call parse_and_eval_type() without fear of longjmp()s. */
a70b8144 2920 try
8e7b59a5
KS
2921 {
2922 type = parse_and_eval_type (p, length);
2923 }
230d2906 2924 catch (const gdb_exception_error &except)
492d29ea
PA
2925 {
2926 type = builtin_type (gdbarch)->builtin_void;
2927 }
c91ecb25 2928
7ba81444 2929 /* Stop suppressing error messages. */
c91ecb25
ND
2930 gdb_stderr = saved_gdb_stderr;
2931
2932 return type;
2933}
2934
c906108c
SS
2935/* Ugly hack to convert method stubs into method types.
2936
7ba81444
MS
2937 He ain't kiddin'. This demangles the name of the method into a
2938 string including argument types, parses out each argument type,
2939 generates a string casting a zero to that type, evaluates the
2940 string, and stuffs the resulting type into an argtype vector!!!
2941 Then it knows the type of the whole function (including argument
2942 types for overloading), which info used to be in the stab's but was
2943 removed to hack back the space required for them. */
c906108c 2944
de17c821 2945static void
fba45db2 2946check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 2947{
50810684 2948 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
2949 struct fn_field *f;
2950 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
8de20a37
TT
2951 char *demangled_name = gdb_demangle (mangled_name,
2952 DMGL_PARAMS | DMGL_ANSI);
c906108c
SS
2953 char *argtypetext, *p;
2954 int depth = 0, argcount = 1;
ad2f7632 2955 struct field *argtypes;
c906108c
SS
2956 struct type *mtype;
2957
2958 /* Make sure we got back a function string that we can use. */
2959 if (demangled_name)
2960 p = strchr (demangled_name, '(');
502dcf4e
AC
2961 else
2962 p = NULL;
c906108c
SS
2963
2964 if (demangled_name == NULL || p == NULL)
7ba81444
MS
2965 error (_("Internal: Cannot demangle mangled name `%s'."),
2966 mangled_name);
c906108c
SS
2967
2968 /* Now, read in the parameters that define this type. */
2969 p += 1;
2970 argtypetext = p;
2971 while (*p)
2972 {
070ad9f0 2973 if (*p == '(' || *p == '<')
c906108c
SS
2974 {
2975 depth += 1;
2976 }
070ad9f0 2977 else if (*p == ')' || *p == '>')
c906108c
SS
2978 {
2979 depth -= 1;
2980 }
2981 else if (*p == ',' && depth == 0)
2982 {
2983 argcount += 1;
2984 }
2985
2986 p += 1;
2987 }
2988
ad2f7632 2989 /* If we read one argument and it was ``void'', don't count it. */
61012eef 2990 if (startswith (argtypetext, "(void)"))
ad2f7632 2991 argcount -= 1;
c906108c 2992
ad2f7632
DJ
2993 /* We need one extra slot, for the THIS pointer. */
2994
2995 argtypes = (struct field *)
2996 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 2997 p = argtypetext;
4a1970e4
DJ
2998
2999 /* Add THIS pointer for non-static methods. */
3000 f = TYPE_FN_FIELDLIST1 (type, method_id);
3001 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
3002 argcount = 0;
3003 else
3004 {
ad2f7632 3005 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
3006 argcount = 1;
3007 }
c906108c 3008
0963b4bd 3009 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
3010 {
3011 depth = 0;
3012 while (*p)
3013 {
3014 if (depth <= 0 && (*p == ',' || *p == ')'))
3015 {
ad2f7632
DJ
3016 /* Avoid parsing of ellipsis, they will be handled below.
3017 Also avoid ``void'' as above. */
3018 if (strncmp (argtypetext, "...", p - argtypetext) != 0
3019 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 3020 {
ad2f7632 3021 argtypes[argcount].type =
48319d1f 3022 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
3023 argcount += 1;
3024 }
3025 argtypetext = p + 1;
3026 }
3027
070ad9f0 3028 if (*p == '(' || *p == '<')
c906108c
SS
3029 {
3030 depth += 1;
3031 }
070ad9f0 3032 else if (*p == ')' || *p == '>')
c906108c
SS
3033 {
3034 depth -= 1;
3035 }
3036
3037 p += 1;
3038 }
3039 }
3040
c906108c
SS
3041 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
3042
3043 /* Now update the old "stub" type into a real type. */
3044 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
09e2d7c7
DE
3045 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
3046 We want a method (TYPE_CODE_METHOD). */
3047 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
3048 argtypes, argcount, p[-2] == '.');
876cecd0 3049 TYPE_STUB (mtype) = 0;
c906108c 3050 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632
DJ
3051
3052 xfree (demangled_name);
c906108c
SS
3053}
3054
7ba81444
MS
3055/* This is the external interface to check_stub_method, above. This
3056 function unstubs all of the signatures for TYPE's METHOD_ID method
3057 name. After calling this function TYPE_FN_FIELD_STUB will be
3058 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
3059 correct.
de17c821
DJ
3060
3061 This function unfortunately can not die until stabs do. */
3062
3063void
3064check_stub_method_group (struct type *type, int method_id)
3065{
3066 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
3067 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
de17c821 3068
041be526
SM
3069 for (int j = 0; j < len; j++)
3070 {
3071 if (TYPE_FN_FIELD_STUB (f, j))
de17c821 3072 check_stub_method (type, method_id, j);
de17c821
DJ
3073 }
3074}
3075
405feb71 3076/* Ensure it is in .rodata (if available) by working around GCC PR 44690. */
9655fd1a 3077const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
3078
3079void
fba45db2 3080allocate_cplus_struct_type (struct type *type)
c906108c 3081{
b4ba55a1
JB
3082 if (HAVE_CPLUS_STRUCT (type))
3083 /* Structure was already allocated. Nothing more to do. */
3084 return;
3085
3086 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
3087 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
3088 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
3089 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
ae6ae975 3090 set_type_vptr_fieldno (type, -1);
c906108c
SS
3091}
3092
b4ba55a1
JB
3093const struct gnat_aux_type gnat_aux_default =
3094 { NULL };
3095
3096/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
3097 and allocate the associated gnat-specific data. The gnat-specific
3098 data is also initialized to gnat_aux_default. */
5212577a 3099
b4ba55a1
JB
3100void
3101allocate_gnat_aux_type (struct type *type)
3102{
3103 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
3104 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
3105 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
3106 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
3107}
3108
ae438bc5
UW
3109/* Helper function to initialize a newly allocated type. Set type code
3110 to CODE and initialize the type-specific fields accordingly. */
3111
3112static void
3113set_type_code (struct type *type, enum type_code code)
3114{
3115 TYPE_CODE (type) = code;
3116
3117 switch (code)
3118 {
3119 case TYPE_CODE_STRUCT:
3120 case TYPE_CODE_UNION:
3121 case TYPE_CODE_NAMESPACE:
3122 INIT_CPLUS_SPECIFIC (type);
3123 break;
3124 case TYPE_CODE_FLT:
3125 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
3126 break;
3127 case TYPE_CODE_FUNC:
3128 INIT_FUNC_SPECIFIC (type);
3129 break;
3130 }
3131}
3132
19f392bc
UW
3133/* Helper function to verify floating-point format and size.
3134 BIT is the type size in bits; if BIT equals -1, the size is
3135 determined by the floatformat. Returns size to be used. */
3136
3137static int
0db7851f 3138verify_floatformat (int bit, const struct floatformat *floatformat)
19f392bc 3139{
0db7851f 3140 gdb_assert (floatformat != NULL);
9b790ce7 3141
19f392bc 3142 if (bit == -1)
0db7851f 3143 bit = floatformat->totalsize;
19f392bc 3144
0db7851f
UW
3145 gdb_assert (bit >= 0);
3146 gdb_assert (bit >= floatformat->totalsize);
19f392bc
UW
3147
3148 return bit;
3149}
3150
0db7851f
UW
3151/* Return the floating-point format for a floating-point variable of
3152 type TYPE. */
3153
3154const struct floatformat *
3155floatformat_from_type (const struct type *type)
3156{
3157 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
3158 gdb_assert (TYPE_FLOATFORMAT (type));
3159 return TYPE_FLOATFORMAT (type);
3160}
3161
c906108c
SS
3162/* Helper function to initialize the standard scalar types.
3163
86f62fd7
TT
3164 If NAME is non-NULL, then it is used to initialize the type name.
3165 Note that NAME is not copied; it is required to have a lifetime at
3166 least as long as OBJFILE. */
c906108c
SS
3167
3168struct type *
77b7c781 3169init_type (struct objfile *objfile, enum type_code code, int bit,
19f392bc 3170 const char *name)
c906108c 3171{
52f0bd74 3172 struct type *type;
c906108c
SS
3173
3174 type = alloc_type (objfile);
ae438bc5 3175 set_type_code (type, code);
77b7c781
UW
3176 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
3177 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
86f62fd7 3178 TYPE_NAME (type) = name;
c906108c 3179
c16abbde 3180 return type;
c906108c 3181}
19f392bc 3182
46a4882b
PA
3183/* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
3184 to use with variables that have no debug info. NAME is the type
3185 name. */
3186
3187static struct type *
3188init_nodebug_var_type (struct objfile *objfile, const char *name)
3189{
3190 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
3191}
3192
19f392bc
UW
3193/* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
3194 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3195 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3196
3197struct type *
3198init_integer_type (struct objfile *objfile,
3199 int bit, int unsigned_p, const char *name)
3200{
3201 struct type *t;
3202
77b7c781 3203 t = init_type (objfile, TYPE_CODE_INT, bit, name);
19f392bc
UW
3204 if (unsigned_p)
3205 TYPE_UNSIGNED (t) = 1;
3206
3207 return t;
3208}
3209
3210/* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
3211 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3212 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3213
3214struct type *
3215init_character_type (struct objfile *objfile,
3216 int bit, int unsigned_p, const char *name)
3217{
3218 struct type *t;
3219
77b7c781 3220 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
19f392bc
UW
3221 if (unsigned_p)
3222 TYPE_UNSIGNED (t) = 1;
3223
3224 return t;
3225}
3226
3227/* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
3228 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3229 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3230
3231struct type *
3232init_boolean_type (struct objfile *objfile,
3233 int bit, int unsigned_p, const char *name)
3234{
3235 struct type *t;
3236
77b7c781 3237 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
19f392bc
UW
3238 if (unsigned_p)
3239 TYPE_UNSIGNED (t) = 1;
3240
3241 return t;
3242}
3243
3244/* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
3245 BIT is the type size in bits; if BIT equals -1, the size is
3246 determined by the floatformat. NAME is the type name. Set the
103a685e
TT
3247 TYPE_FLOATFORMAT from FLOATFORMATS. BYTE_ORDER is the byte order
3248 to use. If it is BFD_ENDIAN_UNKNOWN (the default), then the byte
3249 order of the objfile's architecture is used. */
19f392bc
UW
3250
3251struct type *
3252init_float_type (struct objfile *objfile,
3253 int bit, const char *name,
103a685e
TT
3254 const struct floatformat **floatformats,
3255 enum bfd_endian byte_order)
19f392bc 3256{
103a685e
TT
3257 if (byte_order == BFD_ENDIAN_UNKNOWN)
3258 {
08feed99 3259 struct gdbarch *gdbarch = objfile->arch ();
103a685e
TT
3260 byte_order = gdbarch_byte_order (gdbarch);
3261 }
3262 const struct floatformat *fmt = floatformats[byte_order];
19f392bc
UW
3263 struct type *t;
3264
0db7851f 3265 bit = verify_floatformat (bit, fmt);
77b7c781 3266 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
0db7851f 3267 TYPE_FLOATFORMAT (t) = fmt;
19f392bc
UW
3268
3269 return t;
3270}
3271
3272/* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
3273 BIT is the type size in bits. NAME is the type name. */
3274
3275struct type *
3276init_decfloat_type (struct objfile *objfile, int bit, const char *name)
3277{
3278 struct type *t;
3279
77b7c781 3280 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
19f392bc
UW
3281 return t;
3282}
3283
5b930b45
TT
3284/* Allocate a TYPE_CODE_COMPLEX type structure. NAME is the type
3285 name. TARGET_TYPE is the component type. */
19f392bc
UW
3286
3287struct type *
5b930b45 3288init_complex_type (const char *name, struct type *target_type)
19f392bc
UW
3289{
3290 struct type *t;
3291
5b930b45
TT
3292 gdb_assert (TYPE_CODE (target_type) == TYPE_CODE_INT
3293 || TYPE_CODE (target_type) == TYPE_CODE_FLT);
3294
3295 if (TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type == nullptr)
3296 {
3297 if (name == nullptr)
3298 {
3299 char *new_name
3300 = (char *) TYPE_ALLOC (target_type,
3301 strlen (TYPE_NAME (target_type))
3302 + strlen ("_Complex ") + 1);
3303 strcpy (new_name, "_Complex ");
3304 strcat (new_name, TYPE_NAME (target_type));
3305 name = new_name;
3306 }
3307
3308 t = alloc_type_copy (target_type);
3309 set_type_code (t, TYPE_CODE_COMPLEX);
3310 TYPE_LENGTH (t) = 2 * TYPE_LENGTH (target_type);
3311 TYPE_NAME (t) = name;
3312
3313 TYPE_TARGET_TYPE (t) = target_type;
3314 TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type = t;
3315 }
3316
3317 return TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type;
19f392bc
UW
3318}
3319
3320/* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
3321 BIT is the pointer type size in bits. NAME is the type name.
3322 TARGET_TYPE is the pointer target type. Always sets the pointer type's
3323 TYPE_UNSIGNED flag. */
3324
3325struct type *
3326init_pointer_type (struct objfile *objfile,
3327 int bit, const char *name, struct type *target_type)
3328{
3329 struct type *t;
3330
77b7c781 3331 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
19f392bc
UW
3332 TYPE_TARGET_TYPE (t) = target_type;
3333 TYPE_UNSIGNED (t) = 1;
3334 return t;
3335}
3336
2b4424c3
TT
3337/* See gdbtypes.h. */
3338
3339unsigned
3340type_raw_align (struct type *type)
3341{
3342 if (type->align_log2 != 0)
3343 return 1 << (type->align_log2 - 1);
3344 return 0;
3345}
3346
3347/* See gdbtypes.h. */
3348
3349unsigned
3350type_align (struct type *type)
3351{
5561fc30 3352 /* Check alignment provided in the debug information. */
2b4424c3
TT
3353 unsigned raw_align = type_raw_align (type);
3354 if (raw_align != 0)
3355 return raw_align;
3356
5561fc30
AB
3357 /* Allow the architecture to provide an alignment. */
3358 struct gdbarch *arch = get_type_arch (type);
3359 ULONGEST align = gdbarch_type_align (arch, type);
3360 if (align != 0)
3361 return align;
3362
2b4424c3
TT
3363 switch (TYPE_CODE (type))
3364 {
3365 case TYPE_CODE_PTR:
3366 case TYPE_CODE_FUNC:
3367 case TYPE_CODE_FLAGS:
3368 case TYPE_CODE_INT:
75ba10dc 3369 case TYPE_CODE_RANGE:
2b4424c3
TT
3370 case TYPE_CODE_FLT:
3371 case TYPE_CODE_ENUM:
3372 case TYPE_CODE_REF:
3373 case TYPE_CODE_RVALUE_REF:
3374 case TYPE_CODE_CHAR:
3375 case TYPE_CODE_BOOL:
3376 case TYPE_CODE_DECFLOAT:
70cd633e
AB
3377 case TYPE_CODE_METHODPTR:
3378 case TYPE_CODE_MEMBERPTR:
5561fc30 3379 align = type_length_units (check_typedef (type));
2b4424c3
TT
3380 break;
3381
3382 case TYPE_CODE_ARRAY:
3383 case TYPE_CODE_COMPLEX:
3384 case TYPE_CODE_TYPEDEF:
3385 align = type_align (TYPE_TARGET_TYPE (type));
3386 break;
3387
3388 case TYPE_CODE_STRUCT:
3389 case TYPE_CODE_UNION:
3390 {
41077b66 3391 int number_of_non_static_fields = 0;
2b4424c3
TT
3392 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3393 {
bf9a735e 3394 if (!field_is_static (&TYPE_FIELD (type, i)))
2b4424c3 3395 {
41077b66 3396 number_of_non_static_fields++;
bf9a735e
AB
3397 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3398 if (f_align == 0)
3399 {
3400 /* Don't pretend we know something we don't. */
3401 align = 0;
3402 break;
3403 }
3404 if (f_align > align)
3405 align = f_align;
2b4424c3 3406 }
2b4424c3 3407 }
41077b66
AB
3408 /* A struct with no fields, or with only static fields has an
3409 alignment of 1. */
3410 if (number_of_non_static_fields == 0)
3411 align = 1;
2b4424c3
TT
3412 }
3413 break;
3414
3415 case TYPE_CODE_SET:
2b4424c3
TT
3416 case TYPE_CODE_STRING:
3417 /* Not sure what to do here, and these can't appear in C or C++
3418 anyway. */
3419 break;
3420
2b4424c3
TT
3421 case TYPE_CODE_VOID:
3422 align = 1;
3423 break;
3424
3425 case TYPE_CODE_ERROR:
3426 case TYPE_CODE_METHOD:
3427 default:
3428 break;
3429 }
3430
3431 if ((align & (align - 1)) != 0)
3432 {
3433 /* Not a power of 2, so pass. */
3434 align = 0;
3435 }
3436
3437 return align;
3438}
3439
3440/* See gdbtypes.h. */
3441
3442bool
3443set_type_align (struct type *type, ULONGEST align)
3444{
3445 /* Must be a power of 2. Zero is ok. */
3446 gdb_assert ((align & (align - 1)) == 0);
3447
3448 unsigned result = 0;
3449 while (align != 0)
3450 {
3451 ++result;
3452 align >>= 1;
3453 }
3454
3455 if (result >= (1 << TYPE_ALIGN_BITS))
3456 return false;
3457
3458 type->align_log2 = result;
3459 return true;
3460}
3461
5212577a
DE
3462\f
3463/* Queries on types. */
c906108c 3464
c906108c 3465int
fba45db2 3466can_dereference (struct type *t)
c906108c 3467{
7ba81444
MS
3468 /* FIXME: Should we return true for references as well as
3469 pointers? */
f168693b 3470 t = check_typedef (t);
c906108c
SS
3471 return
3472 (t != NULL
3473 && TYPE_CODE (t) == TYPE_CODE_PTR
3474 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3475}
3476
adf40b2e 3477int
fba45db2 3478is_integral_type (struct type *t)
adf40b2e 3479{
f168693b 3480 t = check_typedef (t);
adf40b2e
JM
3481 return
3482 ((t != NULL)
d4f3574e
SS
3483 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3484 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 3485 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
3486 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3487 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3488 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
3489}
3490
70100014
UW
3491int
3492is_floating_type (struct type *t)
3493{
3494 t = check_typedef (t);
3495 return
3496 ((t != NULL)
3497 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3498 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3499}
3500
e09342b5
TJB
3501/* Return true if TYPE is scalar. */
3502
220475ed 3503int
e09342b5
TJB
3504is_scalar_type (struct type *type)
3505{
f168693b 3506 type = check_typedef (type);
e09342b5
TJB
3507
3508 switch (TYPE_CODE (type))
3509 {
3510 case TYPE_CODE_ARRAY:
3511 case TYPE_CODE_STRUCT:
3512 case TYPE_CODE_UNION:
3513 case TYPE_CODE_SET:
3514 case TYPE_CODE_STRING:
e09342b5
TJB
3515 return 0;
3516 default:
3517 return 1;
3518 }
3519}
3520
3521/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
3522 the memory layout of a scalar type. E.g., an array or struct with only
3523 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
3524
3525int
3526is_scalar_type_recursive (struct type *t)
3527{
f168693b 3528 t = check_typedef (t);
e09342b5
TJB
3529
3530 if (is_scalar_type (t))
3531 return 1;
3532 /* Are we dealing with an array or string of known dimensions? */
3533 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3534 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3535 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3536 {
3537 LONGEST low_bound, high_bound;
3538 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3539
3540 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3541
3542 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3543 }
3544 /* Are we dealing with a struct with one element? */
3545 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3546 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3547 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3548 {
3549 int i, n = TYPE_NFIELDS (t);
3550
3551 /* If all elements of the union are scalar, then the union is scalar. */
3552 for (i = 0; i < n; i++)
3553 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3554 return 0;
3555
3556 return 1;
3557 }
3558
3559 return 0;
3560}
3561
6c659fc2
SC
3562/* Return true is T is a class or a union. False otherwise. */
3563
3564int
3565class_or_union_p (const struct type *t)
3566{
3567 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3568 || TYPE_CODE (t) == TYPE_CODE_UNION);
3569}
3570
4e8f195d
TT
3571/* A helper function which returns true if types A and B represent the
3572 "same" class type. This is true if the types have the same main
3573 type, or the same name. */
3574
3575int
3576class_types_same_p (const struct type *a, const struct type *b)
3577{
3578 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3579 || (TYPE_NAME (a) && TYPE_NAME (b)
3580 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3581}
3582
a9d5ef47
SW
3583/* If BASE is an ancestor of DCLASS return the distance between them.
3584 otherwise return -1;
3585 eg:
3586
3587 class A {};
3588 class B: public A {};
3589 class C: public B {};
3590 class D: C {};
3591
3592 distance_to_ancestor (A, A, 0) = 0
3593 distance_to_ancestor (A, B, 0) = 1
3594 distance_to_ancestor (A, C, 0) = 2
3595 distance_to_ancestor (A, D, 0) = 3
3596
3597 If PUBLIC is 1 then only public ancestors are considered,
3598 and the function returns the distance only if BASE is a public ancestor
3599 of DCLASS.
3600 Eg:
3601
0963b4bd 3602 distance_to_ancestor (A, D, 1) = -1. */
c906108c 3603
0526b37a 3604static int
fe978cb0 3605distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
c906108c
SS
3606{
3607 int i;
a9d5ef47 3608 int d;
c5aa993b 3609
f168693b
SM
3610 base = check_typedef (base);
3611 dclass = check_typedef (dclass);
c906108c 3612
4e8f195d 3613 if (class_types_same_p (base, dclass))
a9d5ef47 3614 return 0;
c906108c
SS
3615
3616 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 3617 {
fe978cb0 3618 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
0526b37a
SW
3619 continue;
3620
fe978cb0 3621 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
a9d5ef47
SW
3622 if (d >= 0)
3623 return 1 + d;
4e8f195d 3624 }
c906108c 3625
a9d5ef47 3626 return -1;
c906108c 3627}
4e8f195d 3628
0526b37a
SW
3629/* Check whether BASE is an ancestor or base class or DCLASS
3630 Return 1 if so, and 0 if not.
3631 Note: If BASE and DCLASS are of the same type, this function
3632 will return 1. So for some class A, is_ancestor (A, A) will
3633 return 1. */
3634
3635int
3636is_ancestor (struct type *base, struct type *dclass)
3637{
a9d5ef47 3638 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
3639}
3640
4e8f195d
TT
3641/* Like is_ancestor, but only returns true when BASE is a public
3642 ancestor of DCLASS. */
3643
3644int
3645is_public_ancestor (struct type *base, struct type *dclass)
3646{
a9d5ef47 3647 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
3648}
3649
3650/* A helper function for is_unique_ancestor. */
3651
3652static int
3653is_unique_ancestor_worker (struct type *base, struct type *dclass,
3654 int *offset,
8af8e3bc
PA
3655 const gdb_byte *valaddr, int embedded_offset,
3656 CORE_ADDR address, struct value *val)
4e8f195d
TT
3657{
3658 int i, count = 0;
3659
f168693b
SM
3660 base = check_typedef (base);
3661 dclass = check_typedef (dclass);
4e8f195d
TT
3662
3663 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3664 {
8af8e3bc
PA
3665 struct type *iter;
3666 int this_offset;
4e8f195d 3667
8af8e3bc
PA
3668 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3669
3670 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3671 address, val);
4e8f195d
TT
3672
3673 if (class_types_same_p (base, iter))
3674 {
3675 /* If this is the first subclass, set *OFFSET and set count
3676 to 1. Otherwise, if this is at the same offset as
3677 previous instances, do nothing. Otherwise, increment
3678 count. */
3679 if (*offset == -1)
3680 {
3681 *offset = this_offset;
3682 count = 1;
3683 }
3684 else if (this_offset == *offset)
3685 {
3686 /* Nothing. */
3687 }
3688 else
3689 ++count;
3690 }
3691 else
3692 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
3693 valaddr,
3694 embedded_offset + this_offset,
3695 address, val);
4e8f195d
TT
3696 }
3697
3698 return count;
3699}
3700
3701/* Like is_ancestor, but only returns true if BASE is a unique base
3702 class of the type of VAL. */
3703
3704int
3705is_unique_ancestor (struct type *base, struct value *val)
3706{
3707 int offset = -1;
3708
3709 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
3710 value_contents_for_printing (val),
3711 value_embedded_offset (val),
3712 value_address (val), val) == 1;
4e8f195d
TT
3713}
3714
7ab4a236
TT
3715/* See gdbtypes.h. */
3716
3717enum bfd_endian
3718type_byte_order (const struct type *type)
3719{
3720 bfd_endian byteorder = gdbarch_byte_order (get_type_arch (type));
3721 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
3722 {
3723 if (byteorder == BFD_ENDIAN_BIG)
3724 return BFD_ENDIAN_LITTLE;
3725 else
3726 {
3727 gdb_assert (byteorder == BFD_ENDIAN_LITTLE);
3728 return BFD_ENDIAN_BIG;
3729 }
3730 }
3731
3732 return byteorder;
3733}
3734
c906108c 3735\f
5212577a 3736/* Overload resolution. */
c906108c 3737
6403aeea
SW
3738/* Return the sum of the rank of A with the rank of B. */
3739
3740struct rank
3741sum_ranks (struct rank a, struct rank b)
3742{
3743 struct rank c;
3744 c.rank = a.rank + b.rank;
a9d5ef47 3745 c.subrank = a.subrank + b.subrank;
6403aeea
SW
3746 return c;
3747}
3748
3749/* Compare rank A and B and return:
3750 0 if a = b
3751 1 if a is better than b
3752 -1 if b is better than a. */
3753
3754int
3755compare_ranks (struct rank a, struct rank b)
3756{
3757 if (a.rank == b.rank)
a9d5ef47
SW
3758 {
3759 if (a.subrank == b.subrank)
3760 return 0;
3761 if (a.subrank < b.subrank)
3762 return 1;
3763 if (a.subrank > b.subrank)
3764 return -1;
3765 }
6403aeea
SW
3766
3767 if (a.rank < b.rank)
3768 return 1;
3769
0963b4bd 3770 /* a.rank > b.rank */
6403aeea
SW
3771 return -1;
3772}
c5aa993b 3773
0963b4bd 3774/* Functions for overload resolution begin here. */
c906108c
SS
3775
3776/* Compare two badness vectors A and B and return the result.
7ba81444
MS
3777 0 => A and B are identical
3778 1 => A and B are incomparable
3779 2 => A is better than B
3780 3 => A is worse than B */
c906108c
SS
3781
3782int
82ceee50 3783compare_badness (const badness_vector &a, const badness_vector &b)
c906108c
SS
3784{
3785 int i;
3786 int tmp;
c5aa993b
JM
3787 short found_pos = 0; /* any positives in c? */
3788 short found_neg = 0; /* any negatives in c? */
3789
82ceee50
PA
3790 /* differing sizes => incomparable */
3791 if (a.size () != b.size ())
c906108c
SS
3792 return 1;
3793
c5aa993b 3794 /* Subtract b from a */
82ceee50 3795 for (i = 0; i < a.size (); i++)
c906108c 3796 {
82ceee50 3797 tmp = compare_ranks (b[i], a[i]);
c906108c 3798 if (tmp > 0)
c5aa993b 3799 found_pos = 1;
c906108c 3800 else if (tmp < 0)
c5aa993b 3801 found_neg = 1;
c906108c
SS
3802 }
3803
3804 if (found_pos)
3805 {
3806 if (found_neg)
c5aa993b 3807 return 1; /* incomparable */
c906108c 3808 else
c5aa993b 3809 return 3; /* A > B */
c906108c 3810 }
c5aa993b
JM
3811 else
3812 /* no positives */
c906108c
SS
3813 {
3814 if (found_neg)
c5aa993b 3815 return 2; /* A < B */
c906108c 3816 else
c5aa993b 3817 return 0; /* A == B */
c906108c
SS
3818 }
3819}
3820
6b1747cd 3821/* Rank a function by comparing its parameter types (PARMS), to the
82ceee50
PA
3822 types of an argument list (ARGS). Return the badness vector. This
3823 has ARGS.size() + 1 entries. */
c906108c 3824
82ceee50 3825badness_vector
6b1747cd
PA
3826rank_function (gdb::array_view<type *> parms,
3827 gdb::array_view<value *> args)
c906108c 3828{
82ceee50
PA
3829 /* add 1 for the length-match rank. */
3830 badness_vector bv;
3831 bv.reserve (1 + args.size ());
c906108c
SS
3832
3833 /* First compare the lengths of the supplied lists.
7ba81444 3834 If there is a mismatch, set it to a high value. */
c5aa993b 3835
c906108c 3836 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
3837 arguments and ellipsis parameter lists, we should consider those
3838 and rank the length-match more finely. */
c906108c 3839
82ceee50
PA
3840 bv.push_back ((args.size () != parms.size ())
3841 ? LENGTH_MISMATCH_BADNESS
3842 : EXACT_MATCH_BADNESS);
c906108c 3843
0963b4bd 3844 /* Now rank all the parameters of the candidate function. */
82ceee50
PA
3845 size_t min_len = std::min (parms.size (), args.size ());
3846
3847 for (size_t i = 0; i < min_len; i++)
3848 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3849 args[i]));
c906108c 3850
0963b4bd 3851 /* If more arguments than parameters, add dummy entries. */
82ceee50
PA
3852 for (size_t i = min_len; i < args.size (); i++)
3853 bv.push_back (TOO_FEW_PARAMS_BADNESS);
c906108c
SS
3854
3855 return bv;
3856}
3857
973ccf8b
DJ
3858/* Compare the names of two integer types, assuming that any sign
3859 qualifiers have been checked already. We do it this way because
3860 there may be an "int" in the name of one of the types. */
3861
3862static int
3863integer_types_same_name_p (const char *first, const char *second)
3864{
3865 int first_p, second_p;
3866
7ba81444
MS
3867 /* If both are shorts, return 1; if neither is a short, keep
3868 checking. */
973ccf8b
DJ
3869 first_p = (strstr (first, "short") != NULL);
3870 second_p = (strstr (second, "short") != NULL);
3871 if (first_p && second_p)
3872 return 1;
3873 if (first_p || second_p)
3874 return 0;
3875
3876 /* Likewise for long. */
3877 first_p = (strstr (first, "long") != NULL);
3878 second_p = (strstr (second, "long") != NULL);
3879 if (first_p && second_p)
3880 return 1;
3881 if (first_p || second_p)
3882 return 0;
3883
3884 /* Likewise for char. */
3885 first_p = (strstr (first, "char") != NULL);
3886 second_p = (strstr (second, "char") != NULL);
3887 if (first_p && second_p)
3888 return 1;
3889 if (first_p || second_p)
3890 return 0;
3891
3892 /* They must both be ints. */
3893 return 1;
3894}
3895
894882e3
TT
3896/* Compares type A to type B. Returns true if they represent the same
3897 type, false otherwise. */
7062b0a0 3898
894882e3 3899bool
7062b0a0
SW
3900types_equal (struct type *a, struct type *b)
3901{
3902 /* Identical type pointers. */
3903 /* However, this still doesn't catch all cases of same type for b
3904 and a. The reason is that builtin types are different from
3905 the same ones constructed from the object. */
3906 if (a == b)
894882e3 3907 return true;
7062b0a0
SW
3908
3909 /* Resolve typedefs */
3910 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3911 a = check_typedef (a);
3912 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3913 b = check_typedef (b);
3914
3915 /* If after resolving typedefs a and b are not of the same type
3916 code then they are not equal. */
3917 if (TYPE_CODE (a) != TYPE_CODE (b))
894882e3 3918 return false;
7062b0a0
SW
3919
3920 /* If a and b are both pointers types or both reference types then
3921 they are equal of the same type iff the objects they refer to are
3922 of the same type. */
3923 if (TYPE_CODE (a) == TYPE_CODE_PTR
3924 || TYPE_CODE (a) == TYPE_CODE_REF)
3925 return types_equal (TYPE_TARGET_TYPE (a),
3926 TYPE_TARGET_TYPE (b));
3927
0963b4bd 3928 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
3929 are exactly the same. This happens when we generate method
3930 stubs. The types won't point to the same address, but they
0963b4bd 3931 really are the same. */
7062b0a0
SW
3932
3933 if (TYPE_NAME (a) && TYPE_NAME (b)
3934 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
894882e3 3935 return true;
7062b0a0
SW
3936
3937 /* Check if identical after resolving typedefs. */
3938 if (a == b)
894882e3 3939 return true;
7062b0a0 3940
9ce98649
TT
3941 /* Two function types are equal if their argument and return types
3942 are equal. */
3943 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3944 {
3945 int i;
3946
3947 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
894882e3 3948 return false;
9ce98649
TT
3949
3950 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
894882e3 3951 return false;
9ce98649
TT
3952
3953 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3954 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
894882e3 3955 return false;
9ce98649 3956
894882e3 3957 return true;
9ce98649
TT
3958 }
3959
894882e3 3960 return false;
7062b0a0 3961}
ca092b61
DE
3962\f
3963/* Deep comparison of types. */
3964
3965/* An entry in the type-equality bcache. */
3966
894882e3 3967struct type_equality_entry
ca092b61 3968{
894882e3
TT
3969 type_equality_entry (struct type *t1, struct type *t2)
3970 : type1 (t1),
3971 type2 (t2)
3972 {
3973 }
ca092b61 3974
894882e3
TT
3975 struct type *type1, *type2;
3976};
ca092b61 3977
894882e3
TT
3978/* A helper function to compare two strings. Returns true if they are
3979 the same, false otherwise. Handles NULLs properly. */
ca092b61 3980
894882e3 3981static bool
ca092b61
DE
3982compare_maybe_null_strings (const char *s, const char *t)
3983{
894882e3
TT
3984 if (s == NULL || t == NULL)
3985 return s == t;
ca092b61
DE
3986 return strcmp (s, t) == 0;
3987}
3988
3989/* A helper function for check_types_worklist that checks two types for
894882e3
TT
3990 "deep" equality. Returns true if the types are considered the
3991 same, false otherwise. */
ca092b61 3992
894882e3 3993static bool
ca092b61 3994check_types_equal (struct type *type1, struct type *type2,
894882e3 3995 std::vector<type_equality_entry> *worklist)
ca092b61 3996{
f168693b
SM
3997 type1 = check_typedef (type1);
3998 type2 = check_typedef (type2);
ca092b61
DE
3999
4000 if (type1 == type2)
894882e3 4001 return true;
ca092b61
DE
4002
4003 if (TYPE_CODE (type1) != TYPE_CODE (type2)
4004 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
4005 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
4006 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
34877895 4007 || TYPE_ENDIANITY_NOT_DEFAULT (type1) != TYPE_ENDIANITY_NOT_DEFAULT (type2)
ca092b61
DE
4008 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
4009 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
4010 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
4011 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
4012 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
894882e3 4013 return false;
ca092b61 4014
e86ca25f 4015 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
894882e3 4016 return false;
ca092b61 4017 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
894882e3 4018 return false;
ca092b61
DE
4019
4020 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
4021 {
0f59d5fc 4022 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
894882e3 4023 return false;
ca092b61
DE
4024 }
4025 else
4026 {
4027 int i;
4028
4029 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
4030 {
4031 const struct field *field1 = &TYPE_FIELD (type1, i);
4032 const struct field *field2 = &TYPE_FIELD (type2, i);
ca092b61
DE
4033
4034 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
4035 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
4036 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
894882e3 4037 return false;
ca092b61
DE
4038 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
4039 FIELD_NAME (*field2)))
894882e3 4040 return false;
ca092b61
DE
4041 switch (FIELD_LOC_KIND (*field1))
4042 {
4043 case FIELD_LOC_KIND_BITPOS:
4044 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
894882e3 4045 return false;
ca092b61
DE
4046 break;
4047 case FIELD_LOC_KIND_ENUMVAL:
4048 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
894882e3 4049 return false;
ca092b61
DE
4050 break;
4051 case FIELD_LOC_KIND_PHYSADDR:
4052 if (FIELD_STATIC_PHYSADDR (*field1)
4053 != FIELD_STATIC_PHYSADDR (*field2))
894882e3 4054 return false;
ca092b61
DE
4055 break;
4056 case FIELD_LOC_KIND_PHYSNAME:
4057 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
4058 FIELD_STATIC_PHYSNAME (*field2)))
894882e3 4059 return false;
ca092b61
DE
4060 break;
4061 case FIELD_LOC_KIND_DWARF_BLOCK:
4062 {
4063 struct dwarf2_locexpr_baton *block1, *block2;
4064
4065 block1 = FIELD_DWARF_BLOCK (*field1);
4066 block2 = FIELD_DWARF_BLOCK (*field2);
4067 if (block1->per_cu != block2->per_cu
4068 || block1->size != block2->size
4069 || memcmp (block1->data, block2->data, block1->size) != 0)
894882e3 4070 return false;
ca092b61
DE
4071 }
4072 break;
4073 default:
4074 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
4075 "%d by check_types_equal"),
4076 FIELD_LOC_KIND (*field1));
4077 }
4078
894882e3 4079 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
ca092b61
DE
4080 }
4081 }
4082
4083 if (TYPE_TARGET_TYPE (type1) != NULL)
4084 {
ca092b61 4085 if (TYPE_TARGET_TYPE (type2) == NULL)
894882e3 4086 return false;
ca092b61 4087
894882e3
TT
4088 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
4089 TYPE_TARGET_TYPE (type2));
ca092b61
DE
4090 }
4091 else if (TYPE_TARGET_TYPE (type2) != NULL)
894882e3 4092 return false;
ca092b61 4093
894882e3 4094 return true;
ca092b61
DE
4095}
4096
894882e3
TT
4097/* Check types on a worklist for equality. Returns false if any pair
4098 is not equal, true if they are all considered equal. */
ca092b61 4099
894882e3
TT
4100static bool
4101check_types_worklist (std::vector<type_equality_entry> *worklist,
dfb65191 4102 gdb::bcache *cache)
ca092b61 4103{
894882e3 4104 while (!worklist->empty ())
ca092b61 4105 {
ca092b61
DE
4106 int added;
4107
894882e3
TT
4108 struct type_equality_entry entry = std::move (worklist->back ());
4109 worklist->pop_back ();
ca092b61
DE
4110
4111 /* If the type pair has already been visited, we know it is
4112 ok. */
25629dfd 4113 cache->insert (&entry, sizeof (entry), &added);
ca092b61
DE
4114 if (!added)
4115 continue;
4116
894882e3
TT
4117 if (!check_types_equal (entry.type1, entry.type2, worklist))
4118 return false;
ca092b61 4119 }
7062b0a0 4120
894882e3 4121 return true;
ca092b61
DE
4122}
4123
894882e3
TT
4124/* Return true if types TYPE1 and TYPE2 are equal, as determined by a
4125 "deep comparison". Otherwise return false. */
ca092b61 4126
894882e3 4127bool
ca092b61
DE
4128types_deeply_equal (struct type *type1, struct type *type2)
4129{
894882e3 4130 std::vector<type_equality_entry> worklist;
ca092b61
DE
4131
4132 gdb_assert (type1 != NULL && type2 != NULL);
4133
4134 /* Early exit for the simple case. */
4135 if (type1 == type2)
894882e3 4136 return true;
ca092b61 4137
dfb65191 4138 gdb::bcache cache (nullptr, nullptr);
894882e3 4139 worklist.emplace_back (type1, type2);
25629dfd 4140 return check_types_worklist (&worklist, &cache);
ca092b61 4141}
3f2f83dd
KB
4142
4143/* Allocated status of type TYPE. Return zero if type TYPE is allocated.
4144 Otherwise return one. */
4145
4146int
4147type_not_allocated (const struct type *type)
4148{
4149 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
4150
4151 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
4152 && !TYPE_DYN_PROP_ADDR (prop));
4153}
4154
4155/* Associated status of type TYPE. Return zero if type TYPE is associated.
4156 Otherwise return one. */
4157
4158int
4159type_not_associated (const struct type *type)
4160{
4161 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
4162
4163 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
4164 && !TYPE_DYN_PROP_ADDR (prop));
4165}
9293fc63
SM
4166
4167/* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
4168
4169static struct rank
4170rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
4171{
4172 struct rank rank = {0,0};
4173
4174 switch (TYPE_CODE (arg))
4175 {
4176 case TYPE_CODE_PTR:
4177
4178 /* Allowed pointer conversions are:
4179 (a) pointer to void-pointer conversion. */
4180 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
4181 return VOID_PTR_CONVERSION_BADNESS;
4182
4183 /* (b) pointer to ancestor-pointer conversion. */
4184 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
4185 TYPE_TARGET_TYPE (arg),
4186 0);
4187 if (rank.subrank >= 0)
4188 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
4189
4190 return INCOMPATIBLE_TYPE_BADNESS;
4191 case TYPE_CODE_ARRAY:
4192 {
4193 struct type *t1 = TYPE_TARGET_TYPE (parm);
4194 struct type *t2 = TYPE_TARGET_TYPE (arg);
4195
4196 if (types_equal (t1, t2))
4197 {
4198 /* Make sure they are CV equal. */
4199 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4200 rank.subrank |= CV_CONVERSION_CONST;
4201 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4202 rank.subrank |= CV_CONVERSION_VOLATILE;
4203 if (rank.subrank != 0)
4204 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4205 return EXACT_MATCH_BADNESS;
4206 }
4207 return INCOMPATIBLE_TYPE_BADNESS;
4208 }
4209 case TYPE_CODE_FUNC:
4210 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
4211 case TYPE_CODE_INT:
4212 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
4213 {
4214 if (value_as_long (value) == 0)
4215 {
4216 /* Null pointer conversion: allow it to be cast to a pointer.
4217 [4.10.1 of C++ standard draft n3290] */
4218 return NULL_POINTER_CONVERSION_BADNESS;
4219 }
4220 else
4221 {
4222 /* If type checking is disabled, allow the conversion. */
4223 if (!strict_type_checking)
4224 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
4225 }
4226 }
4227 /* fall through */
4228 case TYPE_CODE_ENUM:
4229 case TYPE_CODE_FLAGS:
4230 case TYPE_CODE_CHAR:
4231 case TYPE_CODE_RANGE:
4232 case TYPE_CODE_BOOL:
4233 default:
4234 return INCOMPATIBLE_TYPE_BADNESS;
4235 }
4236}
4237
b9f4512f
SM
4238/* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
4239
4240static struct rank
4241rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
4242{
4243 switch (TYPE_CODE (arg))
4244 {
4245 case TYPE_CODE_PTR:
4246 case TYPE_CODE_ARRAY:
4247 return rank_one_type (TYPE_TARGET_TYPE (parm),
4248 TYPE_TARGET_TYPE (arg), NULL);
4249 default:
4250 return INCOMPATIBLE_TYPE_BADNESS;
4251 }
4252}
4253
f1f832d6
SM
4254/* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
4255
4256static struct rank
4257rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
4258{
4259 switch (TYPE_CODE (arg))
4260 {
4261 case TYPE_CODE_PTR: /* funcptr -> func */
4262 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
4263 default:
4264 return INCOMPATIBLE_TYPE_BADNESS;
4265 }
4266}
4267
34910087
SM
4268/* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
4269
4270static struct rank
4271rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
4272{
4273 switch (TYPE_CODE (arg))
4274 {
4275 case TYPE_CODE_INT:
4276 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4277 {
4278 /* Deal with signed, unsigned, and plain chars and
4279 signed and unsigned ints. */
4280 if (TYPE_NOSIGN (parm))
4281 {
4282 /* This case only for character types. */
4283 if (TYPE_NOSIGN (arg))
4284 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
4285 else /* signed/unsigned char -> plain char */
4286 return INTEGER_CONVERSION_BADNESS;
4287 }
4288 else if (TYPE_UNSIGNED (parm))
4289 {
4290 if (TYPE_UNSIGNED (arg))
4291 {
4292 /* unsigned int -> unsigned int, or
4293 unsigned long -> unsigned long */
4294 if (integer_types_same_name_p (TYPE_NAME (parm),
4295 TYPE_NAME (arg)))
4296 return EXACT_MATCH_BADNESS;
4297 else if (integer_types_same_name_p (TYPE_NAME (arg),
4298 "int")
4299 && integer_types_same_name_p (TYPE_NAME (parm),
4300 "long"))
4301 /* unsigned int -> unsigned long */
4302 return INTEGER_PROMOTION_BADNESS;
4303 else
4304 /* unsigned long -> unsigned int */
4305 return INTEGER_CONVERSION_BADNESS;
4306 }
4307 else
4308 {
4309 if (integer_types_same_name_p (TYPE_NAME (arg),
4310 "long")
4311 && integer_types_same_name_p (TYPE_NAME (parm),
4312 "int"))
4313 /* signed long -> unsigned int */
4314 return INTEGER_CONVERSION_BADNESS;
4315 else
4316 /* signed int/long -> unsigned int/long */
4317 return INTEGER_CONVERSION_BADNESS;
4318 }
4319 }
4320 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4321 {
4322 if (integer_types_same_name_p (TYPE_NAME (parm),
4323 TYPE_NAME (arg)))
4324 return EXACT_MATCH_BADNESS;
4325 else if (integer_types_same_name_p (TYPE_NAME (arg),
4326 "int")
4327 && integer_types_same_name_p (TYPE_NAME (parm),
4328 "long"))
4329 return INTEGER_PROMOTION_BADNESS;
4330 else
4331 return INTEGER_CONVERSION_BADNESS;
4332 }
4333 else
4334 return INTEGER_CONVERSION_BADNESS;
4335 }
4336 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4337 return INTEGER_PROMOTION_BADNESS;
4338 else
4339 return INTEGER_CONVERSION_BADNESS;
4340 case TYPE_CODE_ENUM:
4341 case TYPE_CODE_FLAGS:
4342 case TYPE_CODE_CHAR:
4343 case TYPE_CODE_RANGE:
4344 case TYPE_CODE_BOOL:
4345 if (TYPE_DECLARED_CLASS (arg))
4346 return INCOMPATIBLE_TYPE_BADNESS;
4347 return INTEGER_PROMOTION_BADNESS;
4348 case TYPE_CODE_FLT:
4349 return INT_FLOAT_CONVERSION_BADNESS;
4350 case TYPE_CODE_PTR:
4351 return NS_POINTER_CONVERSION_BADNESS;
4352 default:
4353 return INCOMPATIBLE_TYPE_BADNESS;
4354 }
4355}
4356
793cd1d2
SM
4357/* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
4358
4359static struct rank
4360rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
4361{
4362 switch (TYPE_CODE (arg))
4363 {
4364 case TYPE_CODE_INT:
4365 case TYPE_CODE_CHAR:
4366 case TYPE_CODE_RANGE:
4367 case TYPE_CODE_BOOL:
4368 case TYPE_CODE_ENUM:
4369 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4370 return INCOMPATIBLE_TYPE_BADNESS;
4371 return INTEGER_CONVERSION_BADNESS;
4372 case TYPE_CODE_FLT:
4373 return INT_FLOAT_CONVERSION_BADNESS;
4374 default:
4375 return INCOMPATIBLE_TYPE_BADNESS;
4376 }
4377}
4378
41ea4728
SM
4379/* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
4380
4381static struct rank
4382rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
4383{
4384 switch (TYPE_CODE (arg))
4385 {
4386 case TYPE_CODE_RANGE:
4387 case TYPE_CODE_BOOL:
4388 case TYPE_CODE_ENUM:
4389 if (TYPE_DECLARED_CLASS (arg))
4390 return INCOMPATIBLE_TYPE_BADNESS;
4391 return INTEGER_CONVERSION_BADNESS;
4392 case TYPE_CODE_FLT:
4393 return INT_FLOAT_CONVERSION_BADNESS;
4394 case TYPE_CODE_INT:
4395 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4396 return INTEGER_CONVERSION_BADNESS;
4397 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4398 return INTEGER_PROMOTION_BADNESS;
4399 /* fall through */
4400 case TYPE_CODE_CHAR:
4401 /* Deal with signed, unsigned, and plain chars for C++ and
4402 with int cases falling through from previous case. */
4403 if (TYPE_NOSIGN (parm))
4404 {
4405 if (TYPE_NOSIGN (arg))
4406 return EXACT_MATCH_BADNESS;
4407 else
4408 return INTEGER_CONVERSION_BADNESS;
4409 }
4410 else if (TYPE_UNSIGNED (parm))
4411 {
4412 if (TYPE_UNSIGNED (arg))
4413 return EXACT_MATCH_BADNESS;
4414 else
4415 return INTEGER_PROMOTION_BADNESS;
4416 }
4417 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4418 return EXACT_MATCH_BADNESS;
4419 else
4420 return INTEGER_CONVERSION_BADNESS;
4421 default:
4422 return INCOMPATIBLE_TYPE_BADNESS;
4423 }
4424}
4425
0dd322dc
SM
4426/* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4427
4428static struct rank
4429rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4430{
4431 switch (TYPE_CODE (arg))
4432 {
4433 case TYPE_CODE_INT:
4434 case TYPE_CODE_CHAR:
4435 case TYPE_CODE_RANGE:
4436 case TYPE_CODE_BOOL:
4437 case TYPE_CODE_ENUM:
4438 return INTEGER_CONVERSION_BADNESS;
4439 case TYPE_CODE_FLT:
4440 return INT_FLOAT_CONVERSION_BADNESS;
4441 default:
4442 return INCOMPATIBLE_TYPE_BADNESS;
4443 }
4444}
4445
2c509035
SM
4446/* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4447
4448static struct rank
4449rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4450{
4451 switch (TYPE_CODE (arg))
4452 {
4453 /* n3290 draft, section 4.12.1 (conv.bool):
4454
4455 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4456 pointer to member type can be converted to a prvalue of type
4457 bool. A zero value, null pointer value, or null member pointer
4458 value is converted to false; any other value is converted to
4459 true. A prvalue of type std::nullptr_t can be converted to a
4460 prvalue of type bool; the resulting value is false." */
4461 case TYPE_CODE_INT:
4462 case TYPE_CODE_CHAR:
4463 case TYPE_CODE_ENUM:
4464 case TYPE_CODE_FLT:
4465 case TYPE_CODE_MEMBERPTR:
4466 case TYPE_CODE_PTR:
4467 return BOOL_CONVERSION_BADNESS;
4468 case TYPE_CODE_RANGE:
4469 return INCOMPATIBLE_TYPE_BADNESS;
4470 case TYPE_CODE_BOOL:
4471 return EXACT_MATCH_BADNESS;
4472 default:
4473 return INCOMPATIBLE_TYPE_BADNESS;
4474 }
4475}
4476
7f17b20d
SM
4477/* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4478
4479static struct rank
4480rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4481{
4482 switch (TYPE_CODE (arg))
4483 {
4484 case TYPE_CODE_FLT:
4485 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4486 return FLOAT_PROMOTION_BADNESS;
4487 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4488 return EXACT_MATCH_BADNESS;
4489 else
4490 return FLOAT_CONVERSION_BADNESS;
4491 case TYPE_CODE_INT:
4492 case TYPE_CODE_BOOL:
4493 case TYPE_CODE_ENUM:
4494 case TYPE_CODE_RANGE:
4495 case TYPE_CODE_CHAR:
4496 return INT_FLOAT_CONVERSION_BADNESS;
4497 default:
4498 return INCOMPATIBLE_TYPE_BADNESS;
4499 }
4500}
4501
2598a94b
SM
4502/* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4503
4504static struct rank
4505rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4506{
4507 switch (TYPE_CODE (arg))
4508 { /* Strictly not needed for C++, but... */
4509 case TYPE_CODE_FLT:
4510 return FLOAT_PROMOTION_BADNESS;
4511 case TYPE_CODE_COMPLEX:
4512 return EXACT_MATCH_BADNESS;
4513 default:
4514 return INCOMPATIBLE_TYPE_BADNESS;
4515 }
4516}
4517
595f96a9
SM
4518/* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4519
4520static struct rank
4521rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4522{
4523 struct rank rank = {0, 0};
4524
4525 switch (TYPE_CODE (arg))
4526 {
4527 case TYPE_CODE_STRUCT:
4528 /* Check for derivation */
4529 rank.subrank = distance_to_ancestor (parm, arg, 0);
4530 if (rank.subrank >= 0)
4531 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4532 /* fall through */
4533 default:
4534 return INCOMPATIBLE_TYPE_BADNESS;
4535 }
4536}
4537
f09ce22d
SM
4538/* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4539
4540static struct rank
4541rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4542{
4543 switch (TYPE_CODE (arg))
4544 {
4545 /* Not in C++ */
4546 case TYPE_CODE_SET:
4547 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4548 TYPE_FIELD_TYPE (arg, 0), NULL);
4549 default:
4550 return INCOMPATIBLE_TYPE_BADNESS;
4551 }
4552}
4553
c906108c
SS
4554/* Compare one type (PARM) for compatibility with another (ARG).
4555 * PARM is intended to be the parameter type of a function; and
4556 * ARG is the supplied argument's type. This function tests if
4557 * the latter can be converted to the former.
da096638 4558 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
4559 *
4560 * Return 0 if they are identical types;
4561 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
4562 * PARM is to ARG. The higher the return value, the worse the match.
4563 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 4564
6403aeea 4565struct rank
da096638 4566rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 4567{
a9d5ef47 4568 struct rank rank = {0,0};
7062b0a0 4569
c906108c
SS
4570 /* Resolve typedefs */
4571 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
4572 parm = check_typedef (parm);
4573 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
4574 arg = check_typedef (arg);
4575
e15c3eb4 4576 if (TYPE_IS_REFERENCE (parm) && value != NULL)
15c0a2a9 4577 {
e15c3eb4
KS
4578 if (VALUE_LVAL (value) == not_lval)
4579 {
4580 /* Rvalues should preferably bind to rvalue references or const
4581 lvalue references. */
4582 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4583 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4584 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4585 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4586 else
4587 return INCOMPATIBLE_TYPE_BADNESS;
4588 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4589 }
4590 else
4591 {
330f1d38 4592 /* It's illegal to pass an lvalue as an rvalue. */
e15c3eb4 4593 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
330f1d38 4594 return INCOMPATIBLE_TYPE_BADNESS;
e15c3eb4 4595 }
15c0a2a9
AV
4596 }
4597
4598 if (types_equal (parm, arg))
15c0a2a9 4599 {
e15c3eb4
KS
4600 struct type *t1 = parm;
4601 struct type *t2 = arg;
15c0a2a9 4602
e15c3eb4
KS
4603 /* For pointers and references, compare target type. */
4604 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4605 {
4606 t1 = TYPE_TARGET_TYPE (parm);
4607 t2 = TYPE_TARGET_TYPE (arg);
4608 }
15c0a2a9 4609
e15c3eb4
KS
4610 /* Make sure they are CV equal, too. */
4611 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4612 rank.subrank |= CV_CONVERSION_CONST;
4613 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4614 rank.subrank |= CV_CONVERSION_VOLATILE;
4615 if (rank.subrank != 0)
4616 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4617 return EXACT_MATCH_BADNESS;
15c0a2a9
AV
4618 }
4619
db577aea 4620 /* See through references, since we can almost make non-references
7ba81444 4621 references. */
aa006118
AV
4622
4623 if (TYPE_IS_REFERENCE (arg))
da096638 4624 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
06acc08f 4625 REFERENCE_SEE_THROUGH_BADNESS));
aa006118 4626 if (TYPE_IS_REFERENCE (parm))
da096638 4627 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
06acc08f 4628 REFERENCE_SEE_THROUGH_BADNESS));
5d161b24 4629 if (overload_debug)
7ba81444
MS
4630 /* Debugging only. */
4631 fprintf_filtered (gdb_stderr,
4632 "------ Arg is %s [%d], parm is %s [%d]\n",
4633 TYPE_NAME (arg), TYPE_CODE (arg),
4634 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 4635
0963b4bd 4636 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
4637
4638 switch (TYPE_CODE (parm))
4639 {
c5aa993b 4640 case TYPE_CODE_PTR:
9293fc63 4641 return rank_one_type_parm_ptr (parm, arg, value);
c5aa993b 4642 case TYPE_CODE_ARRAY:
b9f4512f 4643 return rank_one_type_parm_array (parm, arg, value);
c5aa993b 4644 case TYPE_CODE_FUNC:
f1f832d6 4645 return rank_one_type_parm_func (parm, arg, value);
c5aa993b 4646 case TYPE_CODE_INT:
34910087 4647 return rank_one_type_parm_int (parm, arg, value);
c5aa993b 4648 case TYPE_CODE_ENUM:
793cd1d2 4649 return rank_one_type_parm_enum (parm, arg, value);
c5aa993b 4650 case TYPE_CODE_CHAR:
41ea4728 4651 return rank_one_type_parm_char (parm, arg, value);
c5aa993b 4652 case TYPE_CODE_RANGE:
0dd322dc 4653 return rank_one_type_parm_range (parm, arg, value);
c5aa993b 4654 case TYPE_CODE_BOOL:
2c509035 4655 return rank_one_type_parm_bool (parm, arg, value);
c5aa993b 4656 case TYPE_CODE_FLT:
7f17b20d 4657 return rank_one_type_parm_float (parm, arg, value);
c5aa993b 4658 case TYPE_CODE_COMPLEX:
2598a94b 4659 return rank_one_type_parm_complex (parm, arg, value);
c5aa993b 4660 case TYPE_CODE_STRUCT:
595f96a9 4661 return rank_one_type_parm_struct (parm, arg, value);
c5aa993b 4662 case TYPE_CODE_SET:
f09ce22d 4663 return rank_one_type_parm_set (parm, arg, value);
c5aa993b
JM
4664 default:
4665 return INCOMPATIBLE_TYPE_BADNESS;
4666 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
4667}
4668
0963b4bd 4669/* End of functions for overload resolution. */
5212577a
DE
4670\f
4671/* Routines to pretty-print types. */
c906108c 4672
c906108c 4673static void
fba45db2 4674print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
4675{
4676 int bitno;
4677
4678 for (bitno = 0; bitno < nbits; bitno++)
4679 {
4680 if ((bitno % 8) == 0)
4681 {
4682 puts_filtered (" ");
4683 }
4684 if (B_TST (bits, bitno))
a3f17187 4685 printf_filtered (("1"));
c906108c 4686 else
a3f17187 4687 printf_filtered (("0"));
c906108c
SS
4688 }
4689}
4690
ad2f7632 4691/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
4692 include it since we may get into a infinitely recursive
4693 situation. */
c906108c
SS
4694
4695static void
4c9e8482 4696print_args (struct field *args, int nargs, int spaces)
c906108c
SS
4697{
4698 if (args != NULL)
4699 {
ad2f7632
DJ
4700 int i;
4701
4702 for (i = 0; i < nargs; i++)
4c9e8482
DE
4703 {
4704 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4705 args[i].name != NULL ? args[i].name : "<NULL>");
4706 recursive_dump_type (args[i].type, spaces + 2);
4707 }
c906108c
SS
4708 }
4709}
4710
d6a843b5
JK
4711int
4712field_is_static (struct field *f)
4713{
4714 /* "static" fields are the fields whose location is not relative
4715 to the address of the enclosing struct. It would be nice to
4716 have a dedicated flag that would be set for static fields when
4717 the type is being created. But in practice, checking the field
254e6b9e 4718 loc_kind should give us an accurate answer. */
d6a843b5
JK
4719 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4720 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4721}
4722
c906108c 4723static void
fba45db2 4724dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
4725{
4726 int method_idx;
4727 int overload_idx;
4728 struct fn_field *f;
4729
4730 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 4731 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
4732 printf_filtered ("\n");
4733 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4734 {
4735 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4736 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4737 method_idx,
4738 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
4739 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4740 gdb_stdout);
a3f17187 4741 printf_filtered (_(") length %d\n"),
c906108c
SS
4742 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4743 for (overload_idx = 0;
4744 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4745 overload_idx++)
4746 {
4747 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4748 overload_idx,
4749 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
4750 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4751 gdb_stdout);
c906108c
SS
4752 printf_filtered (")\n");
4753 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
4754 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4755 gdb_stdout);
c906108c
SS
4756 printf_filtered ("\n");
4757
4758 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4759 spaces + 8 + 2);
4760
4761 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
4762 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4763 gdb_stdout);
c906108c 4764 printf_filtered ("\n");
4c9e8482
DE
4765 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4766 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4767 spaces + 8 + 2);
c906108c 4768 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
4769 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4770 gdb_stdout);
c906108c
SS
4771 printf_filtered ("\n");
4772
4773 printfi_filtered (spaces + 8, "is_const %d\n",
4774 TYPE_FN_FIELD_CONST (f, overload_idx));
4775 printfi_filtered (spaces + 8, "is_volatile %d\n",
4776 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4777 printfi_filtered (spaces + 8, "is_private %d\n",
4778 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4779 printfi_filtered (spaces + 8, "is_protected %d\n",
4780 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4781 printfi_filtered (spaces + 8, "is_stub %d\n",
4782 TYPE_FN_FIELD_STUB (f, overload_idx));
e35000a7
TBA
4783 printfi_filtered (spaces + 8, "defaulted %d\n",
4784 TYPE_FN_FIELD_DEFAULTED (f, overload_idx));
4785 printfi_filtered (spaces + 8, "is_deleted %d\n",
4786 TYPE_FN_FIELD_DELETED (f, overload_idx));
c906108c
SS
4787 printfi_filtered (spaces + 8, "voffset %u\n",
4788 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4789 }
4790 }
4791}
4792
4793static void
fba45db2 4794print_cplus_stuff (struct type *type, int spaces)
c906108c 4795{
ae6ae975
DE
4796 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4797 printfi_filtered (spaces, "vptr_basetype ");
4798 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4799 puts_filtered ("\n");
4800 if (TYPE_VPTR_BASETYPE (type) != NULL)
4801 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4802
c906108c
SS
4803 printfi_filtered (spaces, "n_baseclasses %d\n",
4804 TYPE_N_BASECLASSES (type));
4805 printfi_filtered (spaces, "nfn_fields %d\n",
4806 TYPE_NFN_FIELDS (type));
c906108c
SS
4807 if (TYPE_N_BASECLASSES (type) > 0)
4808 {
4809 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4810 TYPE_N_BASECLASSES (type));
7ba81444
MS
4811 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4812 gdb_stdout);
c906108c
SS
4813 printf_filtered (")");
4814
4815 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4816 TYPE_N_BASECLASSES (type));
4817 puts_filtered ("\n");
4818 }
4819 if (TYPE_NFIELDS (type) > 0)
4820 {
4821 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4822 {
7ba81444
MS
4823 printfi_filtered (spaces,
4824 "private_field_bits (%d bits at *",
c906108c 4825 TYPE_NFIELDS (type));
7ba81444
MS
4826 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4827 gdb_stdout);
c906108c
SS
4828 printf_filtered (")");
4829 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4830 TYPE_NFIELDS (type));
4831 puts_filtered ("\n");
4832 }
4833 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4834 {
7ba81444
MS
4835 printfi_filtered (spaces,
4836 "protected_field_bits (%d bits at *",
c906108c 4837 TYPE_NFIELDS (type));
7ba81444
MS
4838 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4839 gdb_stdout);
c906108c
SS
4840 printf_filtered (")");
4841 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4842 TYPE_NFIELDS (type));
4843 puts_filtered ("\n");
4844 }
4845 }
4846 if (TYPE_NFN_FIELDS (type) > 0)
4847 {
4848 dump_fn_fieldlists (type, spaces);
4849 }
e35000a7
TBA
4850
4851 printfi_filtered (spaces, "calling_convention %d\n",
4852 TYPE_CPLUS_CALLING_CONVENTION (type));
c906108c
SS
4853}
4854
b4ba55a1
JB
4855/* Print the contents of the TYPE's type_specific union, assuming that
4856 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4857
4858static void
4859print_gnat_stuff (struct type *type, int spaces)
4860{
4861 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4862
8cd00c59
PMR
4863 if (descriptive_type == NULL)
4864 printfi_filtered (spaces + 2, "no descriptive type\n");
4865 else
4866 {
4867 printfi_filtered (spaces + 2, "descriptive type\n");
4868 recursive_dump_type (descriptive_type, spaces + 4);
4869 }
b4ba55a1
JB
4870}
4871
c906108c
SS
4872static struct obstack dont_print_type_obstack;
4873
4874void
fba45db2 4875recursive_dump_type (struct type *type, int spaces)
c906108c
SS
4876{
4877 int idx;
4878
4879 if (spaces == 0)
4880 obstack_begin (&dont_print_type_obstack, 0);
4881
4882 if (TYPE_NFIELDS (type) > 0
b4ba55a1 4883 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
4884 {
4885 struct type **first_dont_print
7ba81444 4886 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 4887
7ba81444
MS
4888 int i = (struct type **)
4889 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
4890
4891 while (--i >= 0)
4892 {
4893 if (type == first_dont_print[i])
4894 {
4895 printfi_filtered (spaces, "type node ");
d4f3574e 4896 gdb_print_host_address (type, gdb_stdout);
a3f17187 4897 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
4898 return;
4899 }
4900 }
4901
4902 obstack_ptr_grow (&dont_print_type_obstack, type);
4903 }
4904
4905 printfi_filtered (spaces, "type node ");
d4f3574e 4906 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
4907 printf_filtered ("\n");
4908 printfi_filtered (spaces, "name '%s' (",
4909 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 4910 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 4911 printf_filtered (")\n");
c906108c
SS
4912 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4913 switch (TYPE_CODE (type))
4914 {
c5aa993b
JM
4915 case TYPE_CODE_UNDEF:
4916 printf_filtered ("(TYPE_CODE_UNDEF)");
4917 break;
4918 case TYPE_CODE_PTR:
4919 printf_filtered ("(TYPE_CODE_PTR)");
4920 break;
4921 case TYPE_CODE_ARRAY:
4922 printf_filtered ("(TYPE_CODE_ARRAY)");
4923 break;
4924 case TYPE_CODE_STRUCT:
4925 printf_filtered ("(TYPE_CODE_STRUCT)");
4926 break;
4927 case TYPE_CODE_UNION:
4928 printf_filtered ("(TYPE_CODE_UNION)");
4929 break;
4930 case TYPE_CODE_ENUM:
4931 printf_filtered ("(TYPE_CODE_ENUM)");
4932 break;
4f2aea11
MK
4933 case TYPE_CODE_FLAGS:
4934 printf_filtered ("(TYPE_CODE_FLAGS)");
4935 break;
c5aa993b
JM
4936 case TYPE_CODE_FUNC:
4937 printf_filtered ("(TYPE_CODE_FUNC)");
4938 break;
4939 case TYPE_CODE_INT:
4940 printf_filtered ("(TYPE_CODE_INT)");
4941 break;
4942 case TYPE_CODE_FLT:
4943 printf_filtered ("(TYPE_CODE_FLT)");
4944 break;
4945 case TYPE_CODE_VOID:
4946 printf_filtered ("(TYPE_CODE_VOID)");
4947 break;
4948 case TYPE_CODE_SET:
4949 printf_filtered ("(TYPE_CODE_SET)");
4950 break;
4951 case TYPE_CODE_RANGE:
4952 printf_filtered ("(TYPE_CODE_RANGE)");
4953 break;
4954 case TYPE_CODE_STRING:
4955 printf_filtered ("(TYPE_CODE_STRING)");
4956 break;
4957 case TYPE_CODE_ERROR:
4958 printf_filtered ("(TYPE_CODE_ERROR)");
4959 break;
0d5de010
DJ
4960 case TYPE_CODE_MEMBERPTR:
4961 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4962 break;
4963 case TYPE_CODE_METHODPTR:
4964 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
4965 break;
4966 case TYPE_CODE_METHOD:
4967 printf_filtered ("(TYPE_CODE_METHOD)");
4968 break;
4969 case TYPE_CODE_REF:
4970 printf_filtered ("(TYPE_CODE_REF)");
4971 break;
4972 case TYPE_CODE_CHAR:
4973 printf_filtered ("(TYPE_CODE_CHAR)");
4974 break;
4975 case TYPE_CODE_BOOL:
4976 printf_filtered ("(TYPE_CODE_BOOL)");
4977 break;
e9e79dd9
FF
4978 case TYPE_CODE_COMPLEX:
4979 printf_filtered ("(TYPE_CODE_COMPLEX)");
4980 break;
c5aa993b
JM
4981 case TYPE_CODE_TYPEDEF:
4982 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4983 break;
5c4e30ca
DC
4984 case TYPE_CODE_NAMESPACE:
4985 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4986 break;
c5aa993b
JM
4987 default:
4988 printf_filtered ("(UNKNOWN TYPE CODE)");
4989 break;
c906108c
SS
4990 }
4991 puts_filtered ("\n");
cc1defb1 4992 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
e9bb382b
UW
4993 if (TYPE_OBJFILE_OWNED (type))
4994 {
4995 printfi_filtered (spaces, "objfile ");
4996 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4997 }
4998 else
4999 {
5000 printfi_filtered (spaces, "gdbarch ");
5001 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
5002 }
c906108c
SS
5003 printf_filtered ("\n");
5004 printfi_filtered (spaces, "target_type ");
d4f3574e 5005 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
5006 printf_filtered ("\n");
5007 if (TYPE_TARGET_TYPE (type) != NULL)
5008 {
5009 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
5010 }
5011 printfi_filtered (spaces, "pointer_type ");
d4f3574e 5012 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
5013 printf_filtered ("\n");
5014 printfi_filtered (spaces, "reference_type ");
d4f3574e 5015 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 5016 printf_filtered ("\n");
2fdde8f8
DJ
5017 printfi_filtered (spaces, "type_chain ");
5018 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 5019 printf_filtered ("\n");
7ba81444
MS
5020 printfi_filtered (spaces, "instance_flags 0x%x",
5021 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
5022 if (TYPE_CONST (type))
5023 {
a9ff5f12 5024 puts_filtered (" TYPE_CONST");
2fdde8f8
DJ
5025 }
5026 if (TYPE_VOLATILE (type))
5027 {
a9ff5f12 5028 puts_filtered (" TYPE_VOLATILE");
2fdde8f8
DJ
5029 }
5030 if (TYPE_CODE_SPACE (type))
5031 {
a9ff5f12 5032 puts_filtered (" TYPE_CODE_SPACE");
2fdde8f8
DJ
5033 }
5034 if (TYPE_DATA_SPACE (type))
5035 {
a9ff5f12 5036 puts_filtered (" TYPE_DATA_SPACE");
2fdde8f8 5037 }
8b2dbe47
KB
5038 if (TYPE_ADDRESS_CLASS_1 (type))
5039 {
a9ff5f12 5040 puts_filtered (" TYPE_ADDRESS_CLASS_1");
8b2dbe47
KB
5041 }
5042 if (TYPE_ADDRESS_CLASS_2 (type))
5043 {
a9ff5f12 5044 puts_filtered (" TYPE_ADDRESS_CLASS_2");
8b2dbe47 5045 }
06d66ee9
TT
5046 if (TYPE_RESTRICT (type))
5047 {
a9ff5f12 5048 puts_filtered (" TYPE_RESTRICT");
06d66ee9 5049 }
a2c2acaf
MW
5050 if (TYPE_ATOMIC (type))
5051 {
a9ff5f12 5052 puts_filtered (" TYPE_ATOMIC");
a2c2acaf 5053 }
2fdde8f8 5054 puts_filtered ("\n");
876cecd0
TT
5055
5056 printfi_filtered (spaces, "flags");
762a036f 5057 if (TYPE_UNSIGNED (type))
c906108c 5058 {
a9ff5f12 5059 puts_filtered (" TYPE_UNSIGNED");
c906108c 5060 }
762a036f
FF
5061 if (TYPE_NOSIGN (type))
5062 {
a9ff5f12 5063 puts_filtered (" TYPE_NOSIGN");
762a036f 5064 }
34877895
PJ
5065 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
5066 {
5067 puts_filtered (" TYPE_ENDIANITY_NOT_DEFAULT");
5068 }
762a036f 5069 if (TYPE_STUB (type))
c906108c 5070 {
a9ff5f12 5071 puts_filtered (" TYPE_STUB");
c906108c 5072 }
762a036f
FF
5073 if (TYPE_TARGET_STUB (type))
5074 {
a9ff5f12 5075 puts_filtered (" TYPE_TARGET_STUB");
762a036f 5076 }
762a036f
FF
5077 if (TYPE_PROTOTYPED (type))
5078 {
a9ff5f12 5079 puts_filtered (" TYPE_PROTOTYPED");
762a036f 5080 }
762a036f
FF
5081 if (TYPE_VARARGS (type))
5082 {
a9ff5f12 5083 puts_filtered (" TYPE_VARARGS");
762a036f 5084 }
f5f8a009
EZ
5085 /* This is used for things like AltiVec registers on ppc. Gcc emits
5086 an attribute for the array type, which tells whether or not we
5087 have a vector, instead of a regular array. */
5088 if (TYPE_VECTOR (type))
5089 {
a9ff5f12 5090 puts_filtered (" TYPE_VECTOR");
f5f8a009 5091 }
876cecd0
TT
5092 if (TYPE_FIXED_INSTANCE (type))
5093 {
5094 puts_filtered (" TYPE_FIXED_INSTANCE");
5095 }
5096 if (TYPE_STUB_SUPPORTED (type))
5097 {
5098 puts_filtered (" TYPE_STUB_SUPPORTED");
5099 }
5100 if (TYPE_NOTTEXT (type))
5101 {
5102 puts_filtered (" TYPE_NOTTEXT");
5103 }
c906108c
SS
5104 puts_filtered ("\n");
5105 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 5106 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
5107 puts_filtered ("\n");
5108 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
5109 {
14e75d8e
JK
5110 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
5111 printfi_filtered (spaces + 2,
5112 "[%d] enumval %s type ",
5113 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
5114 else
5115 printfi_filtered (spaces + 2,
6b850546
DT
5116 "[%d] bitpos %s bitsize %d type ",
5117 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
14e75d8e 5118 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 5119 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
5120 printf_filtered (" name '%s' (",
5121 TYPE_FIELD_NAME (type, idx) != NULL
5122 ? TYPE_FIELD_NAME (type, idx)
5123 : "<NULL>");
d4f3574e 5124 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
5125 printf_filtered (")\n");
5126 if (TYPE_FIELD_TYPE (type, idx) != NULL)
5127 {
5128 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
5129 }
5130 }
43bbcdc2
PH
5131 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
5132 {
5133 printfi_filtered (spaces, "low %s%s high %s%s\n",
5134 plongest (TYPE_LOW_BOUND (type)),
5135 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
5136 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
5137 TYPE_HIGH_BOUND_UNDEFINED (type)
5138 ? " (undefined)" : "");
43bbcdc2 5139 }
c906108c 5140
b4ba55a1
JB
5141 switch (TYPE_SPECIFIC_FIELD (type))
5142 {
5143 case TYPE_SPECIFIC_CPLUS_STUFF:
5144 printfi_filtered (spaces, "cplus_stuff ");
5145 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
5146 gdb_stdout);
5147 puts_filtered ("\n");
5148 print_cplus_stuff (type, spaces);
5149 break;
8da61cc4 5150
b4ba55a1
JB
5151 case TYPE_SPECIFIC_GNAT_STUFF:
5152 printfi_filtered (spaces, "gnat_stuff ");
5153 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
5154 puts_filtered ("\n");
5155 print_gnat_stuff (type, spaces);
5156 break;
701c159d 5157
b4ba55a1
JB
5158 case TYPE_SPECIFIC_FLOATFORMAT:
5159 printfi_filtered (spaces, "floatformat ");
0db7851f
UW
5160 if (TYPE_FLOATFORMAT (type) == NULL
5161 || TYPE_FLOATFORMAT (type)->name == NULL)
b4ba55a1
JB
5162 puts_filtered ("(null)");
5163 else
0db7851f 5164 puts_filtered (TYPE_FLOATFORMAT (type)->name);
b4ba55a1
JB
5165 puts_filtered ("\n");
5166 break;
c906108c 5167
b6cdc2c1 5168 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
5169 printfi_filtered (spaces, "calling_convention %d\n",
5170 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 5171 /* tail_call_list is not printed. */
b4ba55a1 5172 break;
09e2d7c7
DE
5173
5174 case TYPE_SPECIFIC_SELF_TYPE:
5175 printfi_filtered (spaces, "self_type ");
5176 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
5177 puts_filtered ("\n");
5178 break;
c906108c 5179 }
b4ba55a1 5180
c906108c
SS
5181 if (spaces == 0)
5182 obstack_free (&dont_print_type_obstack, NULL);
5183}
5212577a 5184\f
ae5a43e0
DJ
5185/* Trivial helpers for the libiberty hash table, for mapping one
5186 type to another. */
5187
fd90ace4 5188struct type_pair : public allocate_on_obstack
ae5a43e0 5189{
fd90ace4
YQ
5190 type_pair (struct type *old_, struct type *newobj_)
5191 : old (old_), newobj (newobj_)
5192 {}
5193
5194 struct type * const old, * const newobj;
ae5a43e0
DJ
5195};
5196
5197static hashval_t
5198type_pair_hash (const void *item)
5199{
9a3c8263 5200 const struct type_pair *pair = (const struct type_pair *) item;
d8734c88 5201
ae5a43e0
DJ
5202 return htab_hash_pointer (pair->old);
5203}
5204
5205static int
5206type_pair_eq (const void *item_lhs, const void *item_rhs)
5207{
9a3c8263
SM
5208 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
5209 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
d8734c88 5210
ae5a43e0
DJ
5211 return lhs->old == rhs->old;
5212}
5213
5214/* Allocate the hash table used by copy_type_recursive to walk
5215 types without duplicates. We use OBJFILE's obstack, because
5216 OBJFILE is about to be deleted. */
5217
5218htab_t
5219create_copied_types_hash (struct objfile *objfile)
5220{
5221 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
5222 NULL, &objfile->objfile_obstack,
5223 hashtab_obstack_allocate,
5224 dummy_obstack_deallocate);
5225}
5226
d9823cbb
KB
5227/* Recursively copy (deep copy) a dynamic attribute list of a type. */
5228
5229static struct dynamic_prop_list *
5230copy_dynamic_prop_list (struct obstack *objfile_obstack,
5231 struct dynamic_prop_list *list)
5232{
5233 struct dynamic_prop_list *copy = list;
5234 struct dynamic_prop_list **node_ptr = &copy;
5235
5236 while (*node_ptr != NULL)
5237 {
5238 struct dynamic_prop_list *node_copy;
5239
224c3ddb
SM
5240 node_copy = ((struct dynamic_prop_list *)
5241 obstack_copy (objfile_obstack, *node_ptr,
5242 sizeof (struct dynamic_prop_list)));
283a9958 5243 node_copy->prop = (*node_ptr)->prop;
d9823cbb
KB
5244 *node_ptr = node_copy;
5245
5246 node_ptr = &node_copy->next;
5247 }
5248
5249 return copy;
5250}
5251
7ba81444 5252/* Recursively copy (deep copy) TYPE, if it is associated with
eed8b28a
PP
5253 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
5254 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
5255 it is not associated with OBJFILE. */
ae5a43e0
DJ
5256
5257struct type *
7ba81444
MS
5258copy_type_recursive (struct objfile *objfile,
5259 struct type *type,
ae5a43e0
DJ
5260 htab_t copied_types)
5261{
ae5a43e0
DJ
5262 void **slot;
5263 struct type *new_type;
5264
e9bb382b 5265 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
5266 return type;
5267
7ba81444
MS
5268 /* This type shouldn't be pointing to any types in other objfiles;
5269 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
5270 gdb_assert (TYPE_OBJFILE (type) == objfile);
5271
fd90ace4
YQ
5272 struct type_pair pair (type, nullptr);
5273
ae5a43e0
DJ
5274 slot = htab_find_slot (copied_types, &pair, INSERT);
5275 if (*slot != NULL)
fe978cb0 5276 return ((struct type_pair *) *slot)->newobj;
ae5a43e0 5277
e9bb382b 5278 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
5279
5280 /* We must add the new type to the hash table immediately, in case
5281 we encounter this type again during a recursive call below. */
fd90ace4
YQ
5282 struct type_pair *stored
5283 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
5284
ae5a43e0
DJ
5285 *slot = stored;
5286
876cecd0
TT
5287 /* Copy the common fields of types. For the main type, we simply
5288 copy the entire thing and then update specific fields as needed. */
5289 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
5290 TYPE_OBJFILE_OWNED (new_type) = 0;
5291 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 5292
ae5a43e0
DJ
5293 if (TYPE_NAME (type))
5294 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
ae5a43e0
DJ
5295
5296 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5297 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5298
5299 /* Copy the fields. */
ae5a43e0
DJ
5300 if (TYPE_NFIELDS (type))
5301 {
5302 int i, nfields;
5303
5304 nfields = TYPE_NFIELDS (type);
2fabdf33
AB
5305 TYPE_FIELDS (new_type) = (struct field *)
5306 TYPE_ZALLOC (new_type, nfields * sizeof (struct field));
ae5a43e0
DJ
5307 for (i = 0; i < nfields; i++)
5308 {
7ba81444
MS
5309 TYPE_FIELD_ARTIFICIAL (new_type, i) =
5310 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
5311 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
5312 if (TYPE_FIELD_TYPE (type, i))
5313 TYPE_FIELD_TYPE (new_type, i)
5314 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
5315 copied_types);
5316 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
5317 TYPE_FIELD_NAME (new_type, i) =
5318 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 5319 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 5320 {
d6a843b5
JK
5321 case FIELD_LOC_KIND_BITPOS:
5322 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
5323 TYPE_FIELD_BITPOS (type, i));
5324 break;
14e75d8e
JK
5325 case FIELD_LOC_KIND_ENUMVAL:
5326 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
5327 TYPE_FIELD_ENUMVAL (type, i));
5328 break;
d6a843b5
JK
5329 case FIELD_LOC_KIND_PHYSADDR:
5330 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
5331 TYPE_FIELD_STATIC_PHYSADDR (type, i));
5332 break;
5333 case FIELD_LOC_KIND_PHYSNAME:
5334 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
5335 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
5336 i)));
5337 break;
5338 default:
5339 internal_error (__FILE__, __LINE__,
5340 _("Unexpected type field location kind: %d"),
5341 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
5342 }
5343 }
5344 }
5345
0963b4bd 5346 /* For range types, copy the bounds information. */
43bbcdc2
PH
5347 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
5348 {
2fabdf33
AB
5349 TYPE_RANGE_DATA (new_type) = (struct range_bounds *)
5350 TYPE_ALLOC (new_type, sizeof (struct range_bounds));
43bbcdc2
PH
5351 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
5352 }
5353
d9823cbb
KB
5354 if (TYPE_DYN_PROP_LIST (type) != NULL)
5355 TYPE_DYN_PROP_LIST (new_type)
5356 = copy_dynamic_prop_list (&objfile->objfile_obstack,
5357 TYPE_DYN_PROP_LIST (type));
5358
3cdcd0ce 5359
ae5a43e0
DJ
5360 /* Copy pointers to other types. */
5361 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
5362 TYPE_TARGET_TYPE (new_type) =
5363 copy_type_recursive (objfile,
5364 TYPE_TARGET_TYPE (type),
5365 copied_types);
f6b3afbf 5366
ae5a43e0
DJ
5367 /* Maybe copy the type_specific bits.
5368
5369 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
5370 base classes and methods. There's no fundamental reason why we
5371 can't, but at the moment it is not needed. */
5372
f6b3afbf
DE
5373 switch (TYPE_SPECIFIC_FIELD (type))
5374 {
5375 case TYPE_SPECIFIC_NONE:
5376 break;
5377 case TYPE_SPECIFIC_FUNC:
5378 INIT_FUNC_SPECIFIC (new_type);
5379 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
5380 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
5381 TYPE_TAIL_CALL_LIST (new_type) = NULL;
5382 break;
5383 case TYPE_SPECIFIC_FLOATFORMAT:
5384 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
5385 break;
5386 case TYPE_SPECIFIC_CPLUS_STUFF:
5387 INIT_CPLUS_SPECIFIC (new_type);
5388 break;
5389 case TYPE_SPECIFIC_GNAT_STUFF:
5390 INIT_GNAT_SPECIFIC (new_type);
5391 break;
09e2d7c7
DE
5392 case TYPE_SPECIFIC_SELF_TYPE:
5393 set_type_self_type (new_type,
5394 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5395 copied_types));
5396 break;
f6b3afbf
DE
5397 default:
5398 gdb_assert_not_reached ("bad type_specific_kind");
5399 }
ae5a43e0
DJ
5400
5401 return new_type;
5402}
5403
4af88198
JB
5404/* Make a copy of the given TYPE, except that the pointer & reference
5405 types are not preserved.
5406
5407 This function assumes that the given type has an associated objfile.
5408 This objfile is used to allocate the new type. */
5409
5410struct type *
5411copy_type (const struct type *type)
5412{
5413 struct type *new_type;
5414
e9bb382b 5415 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 5416
e9bb382b 5417 new_type = alloc_type_copy (type);
4af88198
JB
5418 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5419 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5420 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5421 sizeof (struct main_type));
d9823cbb
KB
5422 if (TYPE_DYN_PROP_LIST (type) != NULL)
5423 TYPE_DYN_PROP_LIST (new_type)
5424 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5425 TYPE_DYN_PROP_LIST (type));
4af88198
JB
5426
5427 return new_type;
5428}
5212577a 5429\f
e9bb382b
UW
5430/* Helper functions to initialize architecture-specific types. */
5431
5432/* Allocate a type structure associated with GDBARCH and set its
5433 CODE, LENGTH, and NAME fields. */
5212577a 5434
e9bb382b
UW
5435struct type *
5436arch_type (struct gdbarch *gdbarch,
77b7c781 5437 enum type_code code, int bit, const char *name)
e9bb382b
UW
5438{
5439 struct type *type;
5440
5441 type = alloc_type_arch (gdbarch);
ae438bc5 5442 set_type_code (type, code);
77b7c781
UW
5443 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5444 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
e9bb382b
UW
5445
5446 if (name)
6c214e7c 5447 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
e9bb382b
UW
5448
5449 return type;
5450}
5451
5452/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5453 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5454 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5455
e9bb382b
UW
5456struct type *
5457arch_integer_type (struct gdbarch *gdbarch,
695bfa52 5458 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5459{
5460 struct type *t;
5461
77b7c781 5462 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
e9bb382b
UW
5463 if (unsigned_p)
5464 TYPE_UNSIGNED (t) = 1;
e9bb382b
UW
5465
5466 return t;
5467}
5468
5469/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5470 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5471 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5472
e9bb382b
UW
5473struct type *
5474arch_character_type (struct gdbarch *gdbarch,
695bfa52 5475 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5476{
5477 struct type *t;
5478
77b7c781 5479 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
e9bb382b
UW
5480 if (unsigned_p)
5481 TYPE_UNSIGNED (t) = 1;
5482
5483 return t;
5484}
5485
5486/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5487 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5488 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5489
e9bb382b
UW
5490struct type *
5491arch_boolean_type (struct gdbarch *gdbarch,
695bfa52 5492 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5493{
5494 struct type *t;
5495
77b7c781 5496 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
e9bb382b
UW
5497 if (unsigned_p)
5498 TYPE_UNSIGNED (t) = 1;
5499
5500 return t;
5501}
5502
5503/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5504 BIT is the type size in bits; if BIT equals -1, the size is
5505 determined by the floatformat. NAME is the type name. Set the
5506 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 5507
27067745 5508struct type *
e9bb382b 5509arch_float_type (struct gdbarch *gdbarch,
695bfa52
TT
5510 int bit, const char *name,
5511 const struct floatformat **floatformats)
8da61cc4 5512{
0db7851f 5513 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
8da61cc4
DJ
5514 struct type *t;
5515
0db7851f 5516 bit = verify_floatformat (bit, fmt);
77b7c781 5517 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
0db7851f 5518 TYPE_FLOATFORMAT (t) = fmt;
b79497cb 5519
8da61cc4
DJ
5520 return t;
5521}
5522
88dfca6c
UW
5523/* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5524 BIT is the type size in bits. NAME is the type name. */
5525
5526struct type *
5527arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5528{
5529 struct type *t;
5530
77b7c781 5531 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
88dfca6c
UW
5532 return t;
5533}
5534
88dfca6c
UW
5535/* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5536 BIT is the pointer type size in bits. NAME is the type name.
5537 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5538 TYPE_UNSIGNED flag. */
5539
5540struct type *
5541arch_pointer_type (struct gdbarch *gdbarch,
5542 int bit, const char *name, struct type *target_type)
5543{
5544 struct type *t;
5545
77b7c781 5546 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
88dfca6c
UW
5547 TYPE_TARGET_TYPE (t) = target_type;
5548 TYPE_UNSIGNED (t) = 1;
5549 return t;
5550}
5551
e9bb382b 5552/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
77b7c781 5553 NAME is the type name. BIT is the size of the flag word in bits. */
5212577a 5554
e9bb382b 5555struct type *
77b7c781 5556arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
e9bb382b 5557{
e9bb382b
UW
5558 struct type *type;
5559
77b7c781 5560 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
e9bb382b 5561 TYPE_UNSIGNED (type) = 1;
81516450
DE
5562 TYPE_NFIELDS (type) = 0;
5563 /* Pre-allocate enough space assuming every field is one bit. */
224c3ddb 5564 TYPE_FIELDS (type)
77b7c781 5565 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
e9bb382b
UW
5566
5567 return type;
5568}
5569
5570/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
81516450
DE
5571 position BITPOS is called NAME. Pass NAME as "" for fields that
5572 should not be printed. */
5573
5574void
5575append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
695bfa52 5576 struct type *field_type, const char *name)
81516450
DE
5577{
5578 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5579 int field_nr = TYPE_NFIELDS (type);
5580
5581 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5582 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5583 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5584 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5585 gdb_assert (name != NULL);
5586
5587 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5588 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5589 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5590 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5591 ++TYPE_NFIELDS (type);
5592}
5593
5594/* Special version of append_flags_type_field to add a flag field.
5595 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
e9bb382b 5596 position BITPOS is called NAME. */
5212577a 5597
e9bb382b 5598void
695bfa52 5599append_flags_type_flag (struct type *type, int bitpos, const char *name)
e9bb382b 5600{
81516450 5601 struct gdbarch *gdbarch = get_type_arch (type);
e9bb382b 5602
81516450
DE
5603 append_flags_type_field (type, bitpos, 1,
5604 builtin_type (gdbarch)->builtin_bool,
5605 name);
e9bb382b
UW
5606}
5607
5608/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5609 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 5610
e9bb382b 5611struct type *
695bfa52
TT
5612arch_composite_type (struct gdbarch *gdbarch, const char *name,
5613 enum type_code code)
e9bb382b
UW
5614{
5615 struct type *t;
d8734c88 5616
e9bb382b
UW
5617 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5618 t = arch_type (gdbarch, code, 0, NULL);
e86ca25f 5619 TYPE_NAME (t) = name;
e9bb382b
UW
5620 INIT_CPLUS_SPECIFIC (t);
5621 return t;
5622}
5623
5624/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
5625 Do not set the field's position or adjust the type's length;
5626 the caller should do so. Return the new field. */
5212577a 5627
f5dff777 5628struct field *
695bfa52 5629append_composite_type_field_raw (struct type *t, const char *name,
f5dff777 5630 struct type *field)
e9bb382b
UW
5631{
5632 struct field *f;
d8734c88 5633
e9bb382b 5634 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
224c3ddb
SM
5635 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5636 TYPE_NFIELDS (t));
e9bb382b
UW
5637 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5638 memset (f, 0, sizeof f[0]);
5639 FIELD_TYPE (f[0]) = field;
5640 FIELD_NAME (f[0]) = name;
f5dff777
DJ
5641 return f;
5642}
5643
5644/* Add new field with name NAME and type FIELD to composite type T.
5645 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 5646
f5dff777 5647void
695bfa52 5648append_composite_type_field_aligned (struct type *t, const char *name,
f5dff777
DJ
5649 struct type *field, int alignment)
5650{
5651 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 5652
e9bb382b
UW
5653 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5654 {
5655 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5656 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5657 }
5658 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5659 {
5660 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5661 if (TYPE_NFIELDS (t) > 1)
5662 {
f41f5e61
PA
5663 SET_FIELD_BITPOS (f[0],
5664 (FIELD_BITPOS (f[-1])
5665 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5666 * TARGET_CHAR_BIT)));
e9bb382b
UW
5667
5668 if (alignment)
5669 {
86c3c1fc
AB
5670 int left;
5671
5672 alignment *= TARGET_CHAR_BIT;
5673 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 5674
e9bb382b
UW
5675 if (left)
5676 {
f41f5e61 5677 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 5678 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
5679 }
5680 }
5681 }
5682 }
5683}
5684
5685/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 5686
e9bb382b 5687void
695bfa52 5688append_composite_type_field (struct type *t, const char *name,
e9bb382b
UW
5689 struct type *field)
5690{
5691 append_composite_type_field_aligned (t, name, field, 0);
5692}
5693
000177f0
AC
5694static struct gdbarch_data *gdbtypes_data;
5695
5696const struct builtin_type *
5697builtin_type (struct gdbarch *gdbarch)
5698{
9a3c8263 5699 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
000177f0
AC
5700}
5701
5702static void *
5703gdbtypes_post_init (struct gdbarch *gdbarch)
5704{
5705 struct builtin_type *builtin_type
5706 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5707
46bf5051 5708 /* Basic types. */
e9bb382b 5709 builtin_type->builtin_void
77b7c781 5710 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
e9bb382b
UW
5711 builtin_type->builtin_char
5712 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5713 !gdbarch_char_signed (gdbarch), "char");
c413c448 5714 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
e9bb382b
UW
5715 builtin_type->builtin_signed_char
5716 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5717 0, "signed char");
5718 builtin_type->builtin_unsigned_char
5719 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5720 1, "unsigned char");
5721 builtin_type->builtin_short
5722 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5723 0, "short");
5724 builtin_type->builtin_unsigned_short
5725 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5726 1, "unsigned short");
5727 builtin_type->builtin_int
5728 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5729 0, "int");
5730 builtin_type->builtin_unsigned_int
5731 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5732 1, "unsigned int");
5733 builtin_type->builtin_long
5734 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5735 0, "long");
5736 builtin_type->builtin_unsigned_long
5737 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5738 1, "unsigned long");
5739 builtin_type->builtin_long_long
5740 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5741 0, "long long");
5742 builtin_type->builtin_unsigned_long_long
5743 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5744 1, "unsigned long long");
a6d0f249
AH
5745 builtin_type->builtin_half
5746 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5747 "half", gdbarch_half_format (gdbarch));
70bd8e24 5748 builtin_type->builtin_float
e9bb382b 5749 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 5750 "float", gdbarch_float_format (gdbarch));
70bd8e24 5751 builtin_type->builtin_double
e9bb382b 5752 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 5753 "double", gdbarch_double_format (gdbarch));
70bd8e24 5754 builtin_type->builtin_long_double
e9bb382b 5755 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 5756 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 5757 builtin_type->builtin_complex
5b930b45 5758 = init_complex_type ("complex", builtin_type->builtin_float);
70bd8e24 5759 builtin_type->builtin_double_complex
5b930b45 5760 = init_complex_type ("double complex", builtin_type->builtin_double);
e9bb382b 5761 builtin_type->builtin_string
77b7c781 5762 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
e9bb382b 5763 builtin_type->builtin_bool
77b7c781 5764 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
000177f0 5765
7678ef8f
TJB
5766 /* The following three are about decimal floating point types, which
5767 are 32-bits, 64-bits and 128-bits respectively. */
5768 builtin_type->builtin_decfloat
88dfca6c 5769 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
7678ef8f 5770 builtin_type->builtin_decdouble
88dfca6c 5771 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
7678ef8f 5772 builtin_type->builtin_declong
88dfca6c 5773 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
7678ef8f 5774
69feb676 5775 /* "True" character types. */
e9bb382b
UW
5776 builtin_type->builtin_true_char
5777 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5778 builtin_type->builtin_true_unsigned_char
5779 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 5780
df4df182 5781 /* Fixed-size integer types. */
e9bb382b
UW
5782 builtin_type->builtin_int0
5783 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5784 builtin_type->builtin_int8
5785 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5786 builtin_type->builtin_uint8
5787 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5788 builtin_type->builtin_int16
5789 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5790 builtin_type->builtin_uint16
5791 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
d1908f2d
JD
5792 builtin_type->builtin_int24
5793 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5794 builtin_type->builtin_uint24
5795 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
e9bb382b
UW
5796 builtin_type->builtin_int32
5797 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5798 builtin_type->builtin_uint32
5799 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5800 builtin_type->builtin_int64
5801 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5802 builtin_type->builtin_uint64
5803 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5804 builtin_type->builtin_int128
5805 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5806 builtin_type->builtin_uint128
5807 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
5808 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5809 TYPE_INSTANCE_FLAG_NOTTEXT;
5810 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5811 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 5812
9a22f0d0
PM
5813 /* Wide character types. */
5814 builtin_type->builtin_char16
53e710ac 5815 = arch_integer_type (gdbarch, 16, 1, "char16_t");
9a22f0d0 5816 builtin_type->builtin_char32
53e710ac 5817 = arch_integer_type (gdbarch, 32, 1, "char32_t");
53375380
PA
5818 builtin_type->builtin_wchar
5819 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5820 !gdbarch_wchar_signed (gdbarch), "wchar_t");
9a22f0d0 5821
46bf5051 5822 /* Default data/code pointer types. */
e9bb382b
UW
5823 builtin_type->builtin_data_ptr
5824 = lookup_pointer_type (builtin_type->builtin_void);
5825 builtin_type->builtin_func_ptr
5826 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
5827 builtin_type->builtin_func_func
5828 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 5829
78267919 5830 /* This type represents a GDB internal function. */
e9bb382b
UW
5831 builtin_type->internal_fn
5832 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5833 "<internal function>");
78267919 5834
e81e7f5e
SC
5835 /* This type represents an xmethod. */
5836 builtin_type->xmethod
5837 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5838
46bf5051
UW
5839 return builtin_type;
5840}
5841
46bf5051
UW
5842/* This set of objfile-based types is intended to be used by symbol
5843 readers as basic types. */
5844
7a102139
TT
5845static const struct objfile_key<struct objfile_type,
5846 gdb::noop_deleter<struct objfile_type>>
5847 objfile_type_data;
46bf5051
UW
5848
5849const struct objfile_type *
5850objfile_type (struct objfile *objfile)
5851{
5852 struct gdbarch *gdbarch;
7a102139 5853 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
46bf5051
UW
5854
5855 if (objfile_type)
5856 return objfile_type;
5857
5858 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5859 1, struct objfile_type);
5860
5861 /* Use the objfile architecture to determine basic type properties. */
08feed99 5862 gdbarch = objfile->arch ();
46bf5051
UW
5863
5864 /* Basic types. */
5865 objfile_type->builtin_void
77b7c781 5866 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
46bf5051 5867 objfile_type->builtin_char
19f392bc
UW
5868 = init_integer_type (objfile, TARGET_CHAR_BIT,
5869 !gdbarch_char_signed (gdbarch), "char");
c413c448 5870 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
46bf5051 5871 objfile_type->builtin_signed_char
19f392bc
UW
5872 = init_integer_type (objfile, TARGET_CHAR_BIT,
5873 0, "signed char");
46bf5051 5874 objfile_type->builtin_unsigned_char
19f392bc
UW
5875 = init_integer_type (objfile, TARGET_CHAR_BIT,
5876 1, "unsigned char");
46bf5051 5877 objfile_type->builtin_short
19f392bc
UW
5878 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5879 0, "short");
46bf5051 5880 objfile_type->builtin_unsigned_short
19f392bc
UW
5881 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5882 1, "unsigned short");
46bf5051 5883 objfile_type->builtin_int
19f392bc
UW
5884 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5885 0, "int");
46bf5051 5886 objfile_type->builtin_unsigned_int
19f392bc
UW
5887 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5888 1, "unsigned int");
46bf5051 5889 objfile_type->builtin_long
19f392bc
UW
5890 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5891 0, "long");
46bf5051 5892 objfile_type->builtin_unsigned_long
19f392bc
UW
5893 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5894 1, "unsigned long");
46bf5051 5895 objfile_type->builtin_long_long
19f392bc
UW
5896 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5897 0, "long long");
46bf5051 5898 objfile_type->builtin_unsigned_long_long
19f392bc
UW
5899 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5900 1, "unsigned long long");
46bf5051 5901 objfile_type->builtin_float
19f392bc
UW
5902 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5903 "float", gdbarch_float_format (gdbarch));
46bf5051 5904 objfile_type->builtin_double
19f392bc
UW
5905 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5906 "double", gdbarch_double_format (gdbarch));
46bf5051 5907 objfile_type->builtin_long_double
19f392bc
UW
5908 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5909 "long double", gdbarch_long_double_format (gdbarch));
46bf5051
UW
5910
5911 /* This type represents a type that was unrecognized in symbol read-in. */
5912 objfile_type->builtin_error
19f392bc 5913 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
46bf5051
UW
5914
5915 /* The following set of types is used for symbols with no
5916 debug information. */
5917 objfile_type->nodebug_text_symbol
77b7c781 5918 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5919 "<text variable, no debug info>");
0875794a 5920 objfile_type->nodebug_text_gnu_ifunc_symbol
77b7c781 5921 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5922 "<text gnu-indirect-function variable, no debug info>");
19f392bc 5923 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
0875794a 5924 objfile_type->nodebug_got_plt_symbol
19f392bc
UW
5925 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5926 "<text from jump slot in .got.plt, no debug info>",
5927 objfile_type->nodebug_text_symbol);
46bf5051 5928 objfile_type->nodebug_data_symbol
46a4882b 5929 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
46bf5051 5930 objfile_type->nodebug_unknown_symbol
46a4882b 5931 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
46bf5051 5932 objfile_type->nodebug_tls_symbol
46a4882b 5933 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
000177f0
AC
5934
5935 /* NOTE: on some targets, addresses and pointers are not necessarily
0a7cfe2c 5936 the same.
000177f0
AC
5937
5938 The upshot is:
5939 - gdb's `struct type' always describes the target's
5940 representation.
5941 - gdb's `struct value' objects should always hold values in
5942 target form.
5943 - gdb's CORE_ADDR values are addresses in the unified virtual
5944 address space that the assembler and linker work with. Thus,
5945 since target_read_memory takes a CORE_ADDR as an argument, it
5946 can access any memory on the target, even if the processor has
5947 separate code and data address spaces.
5948
46bf5051
UW
5949 In this context, objfile_type->builtin_core_addr is a bit odd:
5950 it's a target type for a value the target will never see. It's
5951 only used to hold the values of (typeless) linker symbols, which
5952 are indeed in the unified virtual address space. */
000177f0 5953
46bf5051 5954 objfile_type->builtin_core_addr
19f392bc
UW
5955 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5956 "__CORE_ADDR");
64c50499 5957
7a102139 5958 objfile_type_data.set (objfile, objfile_type);
46bf5051 5959 return objfile_type;
000177f0
AC
5960}
5961
6c265988 5962void _initialize_gdbtypes ();
c906108c 5963void
6c265988 5964_initialize_gdbtypes ()
c906108c 5965{
5674de60
UW
5966 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5967
ccce17b0
YQ
5968 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5969 _("Set debugging of C++ overloading."),
5970 _("Show debugging of C++ overloading."),
5971 _("When enabled, ranking of the "
5972 "functions is displayed."),
5973 NULL,
5974 show_overload_debug,
5975 &setdebuglist, &showdebuglist);
5674de60 5976
7ba81444 5977 /* Add user knob for controlling resolution of opaque types. */
5674de60 5978 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
5979 &opaque_type_resolution,
5980 _("Set resolution of opaque struct/class/union"
5981 " types (if set before loading symbols)."),
5982 _("Show resolution of opaque struct/class/union"
5983 " types (if set before loading symbols)."),
5984 NULL, NULL,
5674de60
UW
5985 show_opaque_type_resolution,
5986 &setlist, &showlist);
a451cb65
KS
5987
5988 /* Add an option to permit non-strict type checking. */
5989 add_setshow_boolean_cmd ("type", class_support,
5990 &strict_type_checking,
5991 _("Set strict type checking."),
5992 _("Show strict type checking."),
5993 NULL, NULL,
5994 show_strict_type_checking,
5995 &setchecklist, &showchecklist);
c906108c 5996}
This page took 2.453561 seconds and 4 git commands to generate.