gdb: Convert dwarf2_evaluate_property to return bool
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
42a4f53d 3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c
SS
23#include "bfd.h"
24#include "symtab.h"
25#include "symfile.h"
26#include "objfiles.h"
27#include "gdbtypes.h"
28#include "expression.h"
29#include "language.h"
30#include "target.h"
31#include "value.h"
32#include "demangle.h"
33#include "complaints.h"
34#include "gdbcmd.h"
015a42b4 35#include "cp-abi.h"
ae5a43e0 36#include "hashtab.h"
8de20a37 37#include "cp-support.h"
ca092b61
DE
38#include "bcache.h"
39#include "dwarf2loc.h"
80180f79 40#include "gdbcore.h"
1841ee5d 41#include "floatformat.h"
ac3aafc7 42
6403aeea
SW
43/* Initialize BADNESS constants. */
44
a9d5ef47 45const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 46
a9d5ef47
SW
47const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
48const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 49
a9d5ef47 50const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 51
a9d5ef47
SW
52const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
53const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
54const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
e15c3eb4 55const struct rank CV_CONVERSION_BADNESS = {1, 0};
a9d5ef47
SW
56const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 60const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
61const struct rank BASE_CONVERSION_BADNESS = {2,0};
62const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
da096638 63const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 64const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 65const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 66
8da61cc4 67/* Floatformat pairs. */
f9e9243a
UW
68const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_half_big,
70 &floatformat_ieee_half_little
71};
8da61cc4
DJ
72const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_single_big,
74 &floatformat_ieee_single_little
75};
76const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_little
79};
80const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_littlebyte_bigword
83};
84const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_i387_ext,
86 &floatformat_i387_ext
87};
88const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_m68881_ext,
90 &floatformat_m68881_ext
91};
92const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_arm_ext_big,
94 &floatformat_arm_ext_littlebyte_bigword
95};
96const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_spill_big,
98 &floatformat_ia64_spill_little
99};
100const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_quad_big,
102 &floatformat_ia64_quad_little
103};
104const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_f,
106 &floatformat_vax_f
107};
108const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_d,
110 &floatformat_vax_d
111};
b14d30e1 112const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
f5aee5ee
AM
113 &floatformat_ibm_long_double_big,
114 &floatformat_ibm_long_double_little
b14d30e1 115};
8da61cc4 116
2873700e
KS
117/* Should opaque types be resolved? */
118
119static int opaque_type_resolution = 1;
120
121/* A flag to enable printing of debugging information of C++
122 overloading. */
123
124unsigned int overload_debug = 0;
125
a451cb65
KS
126/* A flag to enable strict type checking. */
127
128static int strict_type_checking = 1;
129
2873700e 130/* A function to show whether opaque types are resolved. */
5212577a 131
920d2a44
AC
132static void
133show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
134 struct cmd_list_element *c,
135 const char *value)
920d2a44 136{
3e43a32a
MS
137 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
138 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
139 value);
140}
141
2873700e 142/* A function to show whether C++ overload debugging is enabled. */
5212577a 143
920d2a44
AC
144static void
145show_overload_debug (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147{
7ba81444
MS
148 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
149 value);
920d2a44 150}
c906108c 151
a451cb65
KS
152/* A function to show the status of strict type checking. */
153
154static void
155show_strict_type_checking (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157{
158 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
159}
160
5212577a 161\f
e9bb382b
UW
162/* Allocate a new OBJFILE-associated type structure and fill it
163 with some defaults. Space for the type structure is allocated
164 on the objfile's objfile_obstack. */
c906108c
SS
165
166struct type *
fba45db2 167alloc_type (struct objfile *objfile)
c906108c 168{
52f0bd74 169 struct type *type;
c906108c 170
e9bb382b
UW
171 gdb_assert (objfile != NULL);
172
7ba81444 173 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
174 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
175 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
176 struct main_type);
177 OBJSTAT (objfile, n_types++);
c906108c 178
e9bb382b
UW
179 TYPE_OBJFILE_OWNED (type) = 1;
180 TYPE_OWNER (type).objfile = objfile;
c906108c 181
7ba81444 182 /* Initialize the fields that might not be zero. */
c906108c
SS
183
184 TYPE_CODE (type) = TYPE_CODE_UNDEF;
2fdde8f8 185 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 186
c16abbde 187 return type;
c906108c
SS
188}
189
e9bb382b
UW
190/* Allocate a new GDBARCH-associated type structure and fill it
191 with some defaults. Space for the type structure is allocated
8f57eec2 192 on the obstack associated with GDBARCH. */
e9bb382b
UW
193
194struct type *
195alloc_type_arch (struct gdbarch *gdbarch)
196{
197 struct type *type;
198
199 gdb_assert (gdbarch != NULL);
200
201 /* Alloc the structure and start off with all fields zeroed. */
202
8f57eec2
PP
203 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
204 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
e9bb382b
UW
205
206 TYPE_OBJFILE_OWNED (type) = 0;
207 TYPE_OWNER (type).gdbarch = gdbarch;
208
209 /* Initialize the fields that might not be zero. */
210
211 TYPE_CODE (type) = TYPE_CODE_UNDEF;
e9bb382b
UW
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215}
216
217/* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221struct type *
222alloc_type_copy (const struct type *type)
223{
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228}
229
230/* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233struct gdbarch *
234get_type_arch (const struct type *type)
235{
2fabdf33
AB
236 struct gdbarch *arch;
237
e9bb382b 238 if (TYPE_OBJFILE_OWNED (type))
2fabdf33 239 arch = get_objfile_arch (TYPE_OWNER (type).objfile);
e9bb382b 240 else
2fabdf33
AB
241 arch = TYPE_OWNER (type).gdbarch;
242
243 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
244 a gdbarch, however, this is very rare, and even then, in most cases
245 that get_type_arch is called, we assume that a non-NULL value is
246 returned. */
247 gdb_assert (arch != NULL);
248 return arch;
e9bb382b
UW
249}
250
99ad9427
YQ
251/* See gdbtypes.h. */
252
253struct type *
254get_target_type (struct type *type)
255{
256 if (type != NULL)
257 {
258 type = TYPE_TARGET_TYPE (type);
259 if (type != NULL)
260 type = check_typedef (type);
261 }
262
263 return type;
264}
265
2e056931
SM
266/* See gdbtypes.h. */
267
268unsigned int
269type_length_units (struct type *type)
270{
271 struct gdbarch *arch = get_type_arch (type);
272 int unit_size = gdbarch_addressable_memory_unit_size (arch);
273
274 return TYPE_LENGTH (type) / unit_size;
275}
276
2fdde8f8
DJ
277/* Alloc a new type instance structure, fill it with some defaults,
278 and point it at OLDTYPE. Allocate the new type instance from the
279 same place as OLDTYPE. */
280
281static struct type *
282alloc_type_instance (struct type *oldtype)
283{
284 struct type *type;
285
286 /* Allocate the structure. */
287
e9bb382b 288 if (! TYPE_OBJFILE_OWNED (oldtype))
2fabdf33 289 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
2fdde8f8 290 else
1deafd4e
PA
291 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
292 struct type);
293
2fdde8f8
DJ
294 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
295
296 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
297
c16abbde 298 return type;
2fdde8f8
DJ
299}
300
301/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 302 replacing it with something else. Preserve owner information. */
5212577a 303
2fdde8f8
DJ
304static void
305smash_type (struct type *type)
306{
e9bb382b
UW
307 int objfile_owned = TYPE_OBJFILE_OWNED (type);
308 union type_owner owner = TYPE_OWNER (type);
309
2fdde8f8
DJ
310 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
311
e9bb382b
UW
312 /* Restore owner information. */
313 TYPE_OBJFILE_OWNED (type) = objfile_owned;
314 TYPE_OWNER (type) = owner;
315
2fdde8f8
DJ
316 /* For now, delete the rings. */
317 TYPE_CHAIN (type) = type;
318
319 /* For now, leave the pointer/reference types alone. */
320}
321
c906108c
SS
322/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
323 to a pointer to memory where the pointer type should be stored.
324 If *TYPEPTR is zero, update it to point to the pointer type we return.
325 We allocate new memory if needed. */
326
327struct type *
fba45db2 328make_pointer_type (struct type *type, struct type **typeptr)
c906108c 329{
52f0bd74 330 struct type *ntype; /* New type */
053cb41b 331 struct type *chain;
c906108c
SS
332
333 ntype = TYPE_POINTER_TYPE (type);
334
c5aa993b 335 if (ntype)
c906108c 336 {
c5aa993b 337 if (typeptr == 0)
7ba81444
MS
338 return ntype; /* Don't care about alloc,
339 and have new type. */
c906108c 340 else if (*typeptr == 0)
c5aa993b 341 {
7ba81444 342 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 343 return ntype;
c5aa993b 344 }
c906108c
SS
345 }
346
347 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
348 {
e9bb382b 349 ntype = alloc_type_copy (type);
c906108c
SS
350 if (typeptr)
351 *typeptr = ntype;
352 }
7ba81444 353 else /* We have storage, but need to reset it. */
c906108c
SS
354 {
355 ntype = *typeptr;
053cb41b 356 chain = TYPE_CHAIN (ntype);
2fdde8f8 357 smash_type (ntype);
053cb41b 358 TYPE_CHAIN (ntype) = chain;
c906108c
SS
359 }
360
361 TYPE_TARGET_TYPE (ntype) = type;
362 TYPE_POINTER_TYPE (type) = ntype;
363
5212577a 364 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 365
50810684
UW
366 TYPE_LENGTH (ntype)
367 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
368 TYPE_CODE (ntype) = TYPE_CODE_PTR;
369
67b2adb2 370 /* Mark pointers as unsigned. The target converts between pointers
76e71323 371 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 372 gdbarch_address_to_pointer. */
876cecd0 373 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 374
053cb41b
JB
375 /* Update the length of all the other variants of this type. */
376 chain = TYPE_CHAIN (ntype);
377 while (chain != ntype)
378 {
379 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
380 chain = TYPE_CHAIN (chain);
381 }
382
c906108c
SS
383 return ntype;
384}
385
386/* Given a type TYPE, return a type of pointers to that type.
387 May need to construct such a type if this is the first use. */
388
389struct type *
fba45db2 390lookup_pointer_type (struct type *type)
c906108c 391{
c5aa993b 392 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
393}
394
7ba81444
MS
395/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
396 points to a pointer to memory where the reference type should be
397 stored. If *TYPEPTR is zero, update it to point to the reference
3b224330
AV
398 type we return. We allocate new memory if needed. REFCODE denotes
399 the kind of reference type to lookup (lvalue or rvalue reference). */
c906108c
SS
400
401struct type *
3b224330
AV
402make_reference_type (struct type *type, struct type **typeptr,
403 enum type_code refcode)
c906108c 404{
52f0bd74 405 struct type *ntype; /* New type */
3b224330 406 struct type **reftype;
1e98b326 407 struct type *chain;
c906108c 408
3b224330
AV
409 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
410
411 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
412 : TYPE_RVALUE_REFERENCE_TYPE (type));
c906108c 413
c5aa993b 414 if (ntype)
c906108c 415 {
c5aa993b 416 if (typeptr == 0)
7ba81444
MS
417 return ntype; /* Don't care about alloc,
418 and have new type. */
c906108c 419 else if (*typeptr == 0)
c5aa993b 420 {
7ba81444 421 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 422 return ntype;
c5aa993b 423 }
c906108c
SS
424 }
425
426 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
427 {
e9bb382b 428 ntype = alloc_type_copy (type);
c906108c
SS
429 if (typeptr)
430 *typeptr = ntype;
431 }
7ba81444 432 else /* We have storage, but need to reset it. */
c906108c
SS
433 {
434 ntype = *typeptr;
1e98b326 435 chain = TYPE_CHAIN (ntype);
2fdde8f8 436 smash_type (ntype);
1e98b326 437 TYPE_CHAIN (ntype) = chain;
c906108c
SS
438 }
439
440 TYPE_TARGET_TYPE (ntype) = type;
3b224330
AV
441 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
442 : &TYPE_RVALUE_REFERENCE_TYPE (type));
443
444 *reftype = ntype;
c906108c 445
7ba81444
MS
446 /* FIXME! Assume the machine has only one representation for
447 references, and that it matches the (only) representation for
448 pointers! */
c906108c 449
50810684
UW
450 TYPE_LENGTH (ntype) =
451 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
3b224330 452 TYPE_CODE (ntype) = refcode;
c5aa993b 453
3b224330 454 *reftype = ntype;
c906108c 455
1e98b326
JB
456 /* Update the length of all the other variants of this type. */
457 chain = TYPE_CHAIN (ntype);
458 while (chain != ntype)
459 {
460 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
461 chain = TYPE_CHAIN (chain);
462 }
463
c906108c
SS
464 return ntype;
465}
466
7ba81444
MS
467/* Same as above, but caller doesn't care about memory allocation
468 details. */
c906108c
SS
469
470struct type *
3b224330
AV
471lookup_reference_type (struct type *type, enum type_code refcode)
472{
473 return make_reference_type (type, (struct type **) 0, refcode);
474}
475
476/* Lookup the lvalue reference type for the type TYPE. */
477
478struct type *
479lookup_lvalue_reference_type (struct type *type)
480{
481 return lookup_reference_type (type, TYPE_CODE_REF);
482}
483
484/* Lookup the rvalue reference type for the type TYPE. */
485
486struct type *
487lookup_rvalue_reference_type (struct type *type)
c906108c 488{
3b224330 489 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
c906108c
SS
490}
491
7ba81444
MS
492/* Lookup a function type that returns type TYPE. TYPEPTR, if
493 nonzero, points to a pointer to memory where the function type
494 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 495 function type we return. We allocate new memory if needed. */
c906108c
SS
496
497struct type *
0c8b41f1 498make_function_type (struct type *type, struct type **typeptr)
c906108c 499{
52f0bd74 500 struct type *ntype; /* New type */
c906108c
SS
501
502 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
503 {
e9bb382b 504 ntype = alloc_type_copy (type);
c906108c
SS
505 if (typeptr)
506 *typeptr = ntype;
507 }
7ba81444 508 else /* We have storage, but need to reset it. */
c906108c
SS
509 {
510 ntype = *typeptr;
2fdde8f8 511 smash_type (ntype);
c906108c
SS
512 }
513
514 TYPE_TARGET_TYPE (ntype) = type;
515
516 TYPE_LENGTH (ntype) = 1;
517 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 518
b6cdc2c1
JK
519 INIT_FUNC_SPECIFIC (ntype);
520
c906108c
SS
521 return ntype;
522}
523
c906108c
SS
524/* Given a type TYPE, return a type of functions that return that type.
525 May need to construct such a type if this is the first use. */
526
527struct type *
fba45db2 528lookup_function_type (struct type *type)
c906108c 529{
0c8b41f1 530 return make_function_type (type, (struct type **) 0);
c906108c
SS
531}
532
71918a86 533/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
534 function type. If the final type in PARAM_TYPES is NULL, make a
535 varargs function. */
71918a86
TT
536
537struct type *
538lookup_function_type_with_arguments (struct type *type,
539 int nparams,
540 struct type **param_types)
541{
542 struct type *fn = make_function_type (type, (struct type **) 0);
543 int i;
544
e314d629 545 if (nparams > 0)
a6fb9c08 546 {
e314d629
TT
547 if (param_types[nparams - 1] == NULL)
548 {
549 --nparams;
550 TYPE_VARARGS (fn) = 1;
551 }
552 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
553 == TYPE_CODE_VOID)
554 {
555 --nparams;
556 /* Caller should have ensured this. */
557 gdb_assert (nparams == 0);
558 TYPE_PROTOTYPED (fn) = 1;
559 }
54990598
PA
560 else
561 TYPE_PROTOTYPED (fn) = 1;
a6fb9c08
TT
562 }
563
71918a86 564 TYPE_NFIELDS (fn) = nparams;
224c3ddb
SM
565 TYPE_FIELDS (fn)
566 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
71918a86
TT
567 for (i = 0; i < nparams; ++i)
568 TYPE_FIELD_TYPE (fn, i) = param_types[i];
569
570 return fn;
571}
572
47663de5
MS
573/* Identify address space identifier by name --
574 return the integer flag defined in gdbtypes.h. */
5212577a
DE
575
576int
61f4b350
TT
577address_space_name_to_int (struct gdbarch *gdbarch,
578 const char *space_identifier)
47663de5 579{
8b2dbe47 580 int type_flags;
d8734c88 581
7ba81444 582 /* Check for known address space delimiters. */
47663de5 583 if (!strcmp (space_identifier, "code"))
876cecd0 584 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 585 else if (!strcmp (space_identifier, "data"))
876cecd0 586 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
587 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
588 && gdbarch_address_class_name_to_type_flags (gdbarch,
589 space_identifier,
590 &type_flags))
8b2dbe47 591 return type_flags;
47663de5 592 else
8a3fe4f8 593 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
594}
595
596/* Identify address space identifier by integer flag as defined in
7ba81444 597 gdbtypes.h -- return the string version of the adress space name. */
47663de5 598
321432c0 599const char *
50810684 600address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 601{
876cecd0 602 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 603 return "code";
876cecd0 604 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 605 return "data";
876cecd0 606 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
607 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
608 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
609 else
610 return NULL;
611}
612
2fdde8f8 613/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
614
615 If STORAGE is non-NULL, create the new type instance there.
616 STORAGE must be in the same obstack as TYPE. */
47663de5 617
b9362cc7 618static struct type *
2fdde8f8
DJ
619make_qualified_type (struct type *type, int new_flags,
620 struct type *storage)
47663de5
MS
621{
622 struct type *ntype;
623
624 ntype = type;
5f61c20e
JK
625 do
626 {
627 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
628 return ntype;
629 ntype = TYPE_CHAIN (ntype);
630 }
631 while (ntype != type);
47663de5 632
2fdde8f8
DJ
633 /* Create a new type instance. */
634 if (storage == NULL)
635 ntype = alloc_type_instance (type);
636 else
637 {
7ba81444
MS
638 /* If STORAGE was provided, it had better be in the same objfile
639 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
640 if one objfile is freed and the other kept, we'd have
641 dangling pointers. */
ad766c0a
JB
642 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
643
2fdde8f8
DJ
644 ntype = storage;
645 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
646 TYPE_CHAIN (ntype) = ntype;
647 }
47663de5
MS
648
649 /* Pointers or references to the original type are not relevant to
2fdde8f8 650 the new type. */
47663de5
MS
651 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
652 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 653
2fdde8f8
DJ
654 /* Chain the new qualified type to the old type. */
655 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
656 TYPE_CHAIN (type) = ntype;
657
658 /* Now set the instance flags and return the new type. */
659 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 660
ab5d3da6
KB
661 /* Set length of new type to that of the original type. */
662 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
663
47663de5
MS
664 return ntype;
665}
666
2fdde8f8
DJ
667/* Make an address-space-delimited variant of a type -- a type that
668 is identical to the one supplied except that it has an address
669 space attribute attached to it (such as "code" or "data").
670
7ba81444
MS
671 The space attributes "code" and "data" are for Harvard
672 architectures. The address space attributes are for architectures
673 which have alternately sized pointers or pointers with alternate
674 representations. */
2fdde8f8
DJ
675
676struct type *
677make_type_with_address_space (struct type *type, int space_flag)
678{
2fdde8f8 679 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
680 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
681 | TYPE_INSTANCE_FLAG_DATA_SPACE
682 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
683 | space_flag);
684
685 return make_qualified_type (type, new_flags, NULL);
686}
c906108c
SS
687
688/* Make a "c-v" variant of a type -- a type that is identical to the
689 one supplied except that it may have const or volatile attributes
690 CNST is a flag for setting the const attribute
691 VOLTL is a flag for setting the volatile attribute
692 TYPE is the base type whose variant we are creating.
c906108c 693
ad766c0a
JB
694 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
695 storage to hold the new qualified type; *TYPEPTR and TYPE must be
696 in the same objfile. Otherwise, allocate fresh memory for the new
697 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
698 new type we construct. */
5212577a 699
c906108c 700struct type *
7ba81444
MS
701make_cv_type (int cnst, int voltl,
702 struct type *type,
703 struct type **typeptr)
c906108c 704{
52f0bd74 705 struct type *ntype; /* New type */
c906108c 706
2fdde8f8 707 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
708 & ~(TYPE_INSTANCE_FLAG_CONST
709 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 710
c906108c 711 if (cnst)
876cecd0 712 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
713
714 if (voltl)
876cecd0 715 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 716
2fdde8f8 717 if (typeptr && *typeptr != NULL)
a02fd225 718 {
ad766c0a
JB
719 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
720 a C-V variant chain that threads across objfiles: if one
721 objfile gets freed, then the other has a broken C-V chain.
722
723 This code used to try to copy over the main type from TYPE to
724 *TYPEPTR if they were in different objfiles, but that's
725 wrong, too: TYPE may have a field list or member function
726 lists, which refer to types of their own, etc. etc. The
727 whole shebang would need to be copied over recursively; you
728 can't have inter-objfile pointers. The only thing to do is
729 to leave stub types as stub types, and look them up afresh by
730 name each time you encounter them. */
731 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
732 }
733
7ba81444
MS
734 ntype = make_qualified_type (type, new_flags,
735 typeptr ? *typeptr : NULL);
c906108c 736
2fdde8f8
DJ
737 if (typeptr != NULL)
738 *typeptr = ntype;
a02fd225 739
2fdde8f8 740 return ntype;
a02fd225 741}
c906108c 742
06d66ee9
TT
743/* Make a 'restrict'-qualified version of TYPE. */
744
745struct type *
746make_restrict_type (struct type *type)
747{
748 return make_qualified_type (type,
749 (TYPE_INSTANCE_FLAGS (type)
750 | TYPE_INSTANCE_FLAG_RESTRICT),
751 NULL);
752}
753
f1660027
TT
754/* Make a type without const, volatile, or restrict. */
755
756struct type *
757make_unqualified_type (struct type *type)
758{
759 return make_qualified_type (type,
760 (TYPE_INSTANCE_FLAGS (type)
761 & ~(TYPE_INSTANCE_FLAG_CONST
762 | TYPE_INSTANCE_FLAG_VOLATILE
763 | TYPE_INSTANCE_FLAG_RESTRICT)),
764 NULL);
765}
766
a2c2acaf
MW
767/* Make a '_Atomic'-qualified version of TYPE. */
768
769struct type *
770make_atomic_type (struct type *type)
771{
772 return make_qualified_type (type,
773 (TYPE_INSTANCE_FLAGS (type)
774 | TYPE_INSTANCE_FLAG_ATOMIC),
775 NULL);
776}
777
2fdde8f8
DJ
778/* Replace the contents of ntype with the type *type. This changes the
779 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
780 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 781
cda6c68a
JB
782 In order to build recursive types, it's inevitable that we'll need
783 to update types in place --- but this sort of indiscriminate
784 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
785 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
786 clear if more steps are needed. */
5212577a 787
dd6bda65
DJ
788void
789replace_type (struct type *ntype, struct type *type)
790{
ab5d3da6 791 struct type *chain;
dd6bda65 792
ad766c0a
JB
793 /* These two types had better be in the same objfile. Otherwise,
794 the assignment of one type's main type structure to the other
795 will produce a type with references to objects (names; field
796 lists; etc.) allocated on an objfile other than its own. */
e46dd0f4 797 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
ad766c0a 798
2fdde8f8 799 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 800
7ba81444
MS
801 /* The type length is not a part of the main type. Update it for
802 each type on the variant chain. */
ab5d3da6 803 chain = ntype;
5f61c20e
JK
804 do
805 {
806 /* Assert that this element of the chain has no address-class bits
807 set in its flags. Such type variants might have type lengths
808 which are supposed to be different from the non-address-class
809 variants. This assertion shouldn't ever be triggered because
810 symbol readers which do construct address-class variants don't
811 call replace_type(). */
812 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
813
814 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
815 chain = TYPE_CHAIN (chain);
816 }
817 while (ntype != chain);
ab5d3da6 818
2fdde8f8
DJ
819 /* Assert that the two types have equivalent instance qualifiers.
820 This should be true for at least all of our debug readers. */
821 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
822}
823
c906108c
SS
824/* Implement direct support for MEMBER_TYPE in GNU C++.
825 May need to construct such a type if this is the first use.
826 The TYPE is the type of the member. The DOMAIN is the type
827 of the aggregate that the member belongs to. */
828
829struct type *
0d5de010 830lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 831{
52f0bd74 832 struct type *mtype;
c906108c 833
e9bb382b 834 mtype = alloc_type_copy (type);
0d5de010 835 smash_to_memberptr_type (mtype, domain, type);
c16abbde 836 return mtype;
c906108c
SS
837}
838
0d5de010
DJ
839/* Return a pointer-to-method type, for a method of type TO_TYPE. */
840
841struct type *
842lookup_methodptr_type (struct type *to_type)
843{
844 struct type *mtype;
845
e9bb382b 846 mtype = alloc_type_copy (to_type);
0b92b5bb 847 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
848 return mtype;
849}
850
7ba81444
MS
851/* Allocate a stub method whose return type is TYPE. This apparently
852 happens for speed of symbol reading, since parsing out the
853 arguments to the method is cpu-intensive, the way we are doing it.
854 So, we will fill in arguments later. This always returns a fresh
855 type. */
c906108c
SS
856
857struct type *
fba45db2 858allocate_stub_method (struct type *type)
c906108c
SS
859{
860 struct type *mtype;
861
e9bb382b
UW
862 mtype = alloc_type_copy (type);
863 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
864 TYPE_LENGTH (mtype) = 1;
865 TYPE_STUB (mtype) = 1;
c906108c 866 TYPE_TARGET_TYPE (mtype) = type;
4bfb94b8 867 /* TYPE_SELF_TYPE (mtype) = unknown yet */
c16abbde 868 return mtype;
c906108c
SS
869}
870
0f59d5fc
PA
871/* See gdbtypes.h. */
872
873bool
874operator== (const dynamic_prop &l, const dynamic_prop &r)
875{
876 if (l.kind != r.kind)
877 return false;
878
879 switch (l.kind)
880 {
881 case PROP_UNDEFINED:
882 return true;
883 case PROP_CONST:
884 return l.data.const_val == r.data.const_val;
885 case PROP_ADDR_OFFSET:
886 case PROP_LOCEXPR:
887 case PROP_LOCLIST:
888 return l.data.baton == r.data.baton;
889 }
890
891 gdb_assert_not_reached ("unhandled dynamic_prop kind");
892}
893
894/* See gdbtypes.h. */
895
896bool
897operator== (const range_bounds &l, const range_bounds &r)
898{
899#define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
900
901 return (FIELD_EQ (low)
902 && FIELD_EQ (high)
903 && FIELD_EQ (flag_upper_bound_is_count)
904 && FIELD_EQ (flag_bound_evaluated));
905
906#undef FIELD_EQ
907}
908
729efb13
SA
909/* Create a range type with a dynamic range from LOW_BOUND to
910 HIGH_BOUND, inclusive. See create_range_type for further details. */
c906108c
SS
911
912struct type *
729efb13
SA
913create_range_type (struct type *result_type, struct type *index_type,
914 const struct dynamic_prop *low_bound,
915 const struct dynamic_prop *high_bound)
c906108c
SS
916{
917 if (result_type == NULL)
e9bb382b 918 result_type = alloc_type_copy (index_type);
c906108c
SS
919 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
920 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 921 if (TYPE_STUB (index_type))
876cecd0 922 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
923 else
924 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
729efb13 925
43bbcdc2
PH
926 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
927 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
729efb13
SA
928 TYPE_RANGE_DATA (result_type)->low = *low_bound;
929 TYPE_RANGE_DATA (result_type)->high = *high_bound;
c906108c 930
729efb13 931 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
876cecd0 932 TYPE_UNSIGNED (result_type) = 1;
c906108c 933
45e44d27
JB
934 /* Ada allows the declaration of range types whose upper bound is
935 less than the lower bound, so checking the lower bound is not
936 enough. Make sure we do not mark a range type whose upper bound
937 is negative as unsigned. */
938 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
939 TYPE_UNSIGNED (result_type) = 0;
940
262452ec 941 return result_type;
c906108c
SS
942}
943
729efb13
SA
944/* Create a range type using either a blank type supplied in
945 RESULT_TYPE, or creating a new type, inheriting the objfile from
946 INDEX_TYPE.
947
948 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
949 to HIGH_BOUND, inclusive.
950
951 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
952 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
953
954struct type *
955create_static_range_type (struct type *result_type, struct type *index_type,
956 LONGEST low_bound, LONGEST high_bound)
957{
958 struct dynamic_prop low, high;
959
960 low.kind = PROP_CONST;
961 low.data.const_val = low_bound;
962
963 high.kind = PROP_CONST;
964 high.data.const_val = high_bound;
965
966 result_type = create_range_type (result_type, index_type, &low, &high);
967
968 return result_type;
969}
970
80180f79
SA
971/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
972 are static, otherwise returns 0. */
973
974static int
975has_static_range (const struct range_bounds *bounds)
976{
977 return (bounds->low.kind == PROP_CONST
978 && bounds->high.kind == PROP_CONST);
979}
980
981
7ba81444
MS
982/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
983 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
984 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
985
986int
fba45db2 987get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c 988{
f168693b 989 type = check_typedef (type);
c906108c
SS
990 switch (TYPE_CODE (type))
991 {
992 case TYPE_CODE_RANGE:
993 *lowp = TYPE_LOW_BOUND (type);
994 *highp = TYPE_HIGH_BOUND (type);
995 return 1;
996 case TYPE_CODE_ENUM:
997 if (TYPE_NFIELDS (type) > 0)
998 {
999 /* The enums may not be sorted by value, so search all
0963b4bd 1000 entries. */
c906108c
SS
1001 int i;
1002
14e75d8e 1003 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
c906108c
SS
1004 for (i = 0; i < TYPE_NFIELDS (type); i++)
1005 {
14e75d8e
JK
1006 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1007 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1008 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1009 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
1010 }
1011
7ba81444 1012 /* Set unsigned indicator if warranted. */
c5aa993b 1013 if (*lowp >= 0)
c906108c 1014 {
876cecd0 1015 TYPE_UNSIGNED (type) = 1;
c906108c
SS
1016 }
1017 }
1018 else
1019 {
1020 *lowp = 0;
1021 *highp = -1;
1022 }
1023 return 0;
1024 case TYPE_CODE_BOOL:
1025 *lowp = 0;
1026 *highp = 1;
1027 return 0;
1028 case TYPE_CODE_INT:
c5aa993b 1029 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
1030 return -1;
1031 if (!TYPE_UNSIGNED (type))
1032 {
c5aa993b 1033 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
1034 *highp = -*lowp - 1;
1035 return 0;
1036 }
86a73007 1037 /* fall through */
c906108c
SS
1038 case TYPE_CODE_CHAR:
1039 *lowp = 0;
1040 /* This round-about calculation is to avoid shifting by
7b83ea04 1041 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 1042 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
1043 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1044 *highp = (*highp - 1) | *highp;
1045 return 0;
1046 default:
1047 return -1;
1048 }
1049}
1050
dbc98a8b
KW
1051/* Assuming TYPE is a simple, non-empty array type, compute its upper
1052 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1053 Save the high bound into HIGH_BOUND if not NULL.
1054
0963b4bd 1055 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
1056 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1057
1058 We now simply use get_discrete_bounds call to get the values
1059 of the low and high bounds.
1060 get_discrete_bounds can return three values:
1061 1, meaning that index is a range,
1062 0, meaning that index is a discrete type,
1063 or -1 for failure. */
1064
1065int
1066get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1067{
1068 struct type *index = TYPE_INDEX_TYPE (type);
1069 LONGEST low = 0;
1070 LONGEST high = 0;
1071 int res;
1072
1073 if (index == NULL)
1074 return 0;
1075
1076 res = get_discrete_bounds (index, &low, &high);
1077 if (res == -1)
1078 return 0;
1079
1080 /* Check if the array bounds are undefined. */
1081 if (res == 1
1082 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1083 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1084 return 0;
1085
1086 if (low_bound)
1087 *low_bound = low;
1088
1089 if (high_bound)
1090 *high_bound = high;
1091
1092 return 1;
1093}
1094
aa715135
JG
1095/* Assuming that TYPE is a discrete type and VAL is a valid integer
1096 representation of a value of this type, save the corresponding
1097 position number in POS.
1098
1099 Its differs from VAL only in the case of enumeration types. In
1100 this case, the position number of the value of the first listed
1101 enumeration literal is zero; the position number of the value of
1102 each subsequent enumeration literal is one more than that of its
1103 predecessor in the list.
1104
1105 Return 1 if the operation was successful. Return zero otherwise,
1106 in which case the value of POS is unmodified.
1107*/
1108
1109int
1110discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1111{
1112 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1113 {
1114 int i;
1115
1116 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1117 {
1118 if (val == TYPE_FIELD_ENUMVAL (type, i))
1119 {
1120 *pos = i;
1121 return 1;
1122 }
1123 }
1124 /* Invalid enumeration value. */
1125 return 0;
1126 }
1127 else
1128 {
1129 *pos = val;
1130 return 1;
1131 }
1132}
1133
7ba81444
MS
1134/* Create an array type using either a blank type supplied in
1135 RESULT_TYPE, or creating a new type, inheriting the objfile from
1136 RANGE_TYPE.
c906108c
SS
1137
1138 Elements will be of type ELEMENT_TYPE, the indices will be of type
1139 RANGE_TYPE.
1140
a405673c
JB
1141 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1142 This byte stride property is added to the resulting array type
1143 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1144 argument can only be used to create types that are objfile-owned
1145 (see add_dyn_prop), meaning that either this function must be called
1146 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1147
1148 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
dc53a7ad
JB
1149 If BIT_STRIDE is not zero, build a packed array type whose element
1150 size is BIT_STRIDE. Otherwise, ignore this parameter.
1151
7ba81444
MS
1152 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1153 sure it is TYPE_CODE_UNDEF before we bash it into an array
1154 type? */
c906108c
SS
1155
1156struct type *
dc53a7ad
JB
1157create_array_type_with_stride (struct type *result_type,
1158 struct type *element_type,
1159 struct type *range_type,
a405673c 1160 struct dynamic_prop *byte_stride_prop,
dc53a7ad 1161 unsigned int bit_stride)
c906108c 1162{
a405673c
JB
1163 if (byte_stride_prop != NULL
1164 && byte_stride_prop->kind == PROP_CONST)
1165 {
1166 /* The byte stride is actually not dynamic. Pretend we were
1167 called with bit_stride set instead of byte_stride_prop.
1168 This will give us the same result type, while avoiding
1169 the need to handle this as a special case. */
1170 bit_stride = byte_stride_prop->data.const_val * 8;
1171 byte_stride_prop = NULL;
1172 }
1173
c906108c 1174 if (result_type == NULL)
e9bb382b
UW
1175 result_type = alloc_type_copy (range_type);
1176
c906108c
SS
1177 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1178 TYPE_TARGET_TYPE (result_type) = element_type;
a405673c
JB
1179 if (byte_stride_prop == NULL
1180 && has_static_range (TYPE_RANGE_DATA (range_type))
b4a7fcab
JB
1181 && (!type_not_associated (result_type)
1182 && !type_not_allocated (result_type)))
80180f79
SA
1183 {
1184 LONGEST low_bound, high_bound;
1185
1186 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1187 low_bound = high_bound = 0;
f168693b 1188 element_type = check_typedef (element_type);
80180f79
SA
1189 /* Be careful when setting the array length. Ada arrays can be
1190 empty arrays with the high_bound being smaller than the low_bound.
1191 In such cases, the array length should be zero. */
1192 if (high_bound < low_bound)
1193 TYPE_LENGTH (result_type) = 0;
1194 else if (bit_stride > 0)
1195 TYPE_LENGTH (result_type) =
1196 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1197 else
1198 TYPE_LENGTH (result_type) =
1199 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1200 }
ab0d6e0d 1201 else
80180f79
SA
1202 {
1203 /* This type is dynamic and its length needs to be computed
1204 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1205 undefined by setting it to zero. Although we are not expected
1206 to trust TYPE_LENGTH in this case, setting the size to zero
1207 allows us to avoid allocating objects of random sizes in case
1208 we accidently do. */
1209 TYPE_LENGTH (result_type) = 0;
1210 }
1211
c906108c
SS
1212 TYPE_NFIELDS (result_type) = 1;
1213 TYPE_FIELDS (result_type) =
1deafd4e 1214 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 1215 TYPE_INDEX_TYPE (result_type) = range_type;
a405673c 1216 if (byte_stride_prop != NULL)
50a82047 1217 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
a405673c 1218 else if (bit_stride > 0)
dc53a7ad 1219 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
c906108c 1220
a9ff5f12 1221 /* TYPE_TARGET_STUB will take care of zero length arrays. */
c906108c 1222 if (TYPE_LENGTH (result_type) == 0)
876cecd0 1223 TYPE_TARGET_STUB (result_type) = 1;
c906108c 1224
c16abbde 1225 return result_type;
c906108c
SS
1226}
1227
dc53a7ad
JB
1228/* Same as create_array_type_with_stride but with no bit_stride
1229 (BIT_STRIDE = 0), thus building an unpacked array. */
1230
1231struct type *
1232create_array_type (struct type *result_type,
1233 struct type *element_type,
1234 struct type *range_type)
1235{
1236 return create_array_type_with_stride (result_type, element_type,
a405673c 1237 range_type, NULL, 0);
dc53a7ad
JB
1238}
1239
e3506a9f
UW
1240struct type *
1241lookup_array_range_type (struct type *element_type,
63375b74 1242 LONGEST low_bound, LONGEST high_bound)
e3506a9f 1243{
929b5ad4
JB
1244 struct type *index_type;
1245 struct type *range_type;
1246
1247 if (TYPE_OBJFILE_OWNED (element_type))
1248 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1249 else
1250 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1251 range_type = create_static_range_type (NULL, index_type,
1252 low_bound, high_bound);
d8734c88 1253
e3506a9f
UW
1254 return create_array_type (NULL, element_type, range_type);
1255}
1256
7ba81444
MS
1257/* Create a string type using either a blank type supplied in
1258 RESULT_TYPE, or creating a new type. String types are similar
1259 enough to array of char types that we can use create_array_type to
1260 build the basic type and then bash it into a string type.
c906108c
SS
1261
1262 For fixed length strings, the range type contains 0 as the lower
1263 bound and the length of the string minus one as the upper bound.
1264
7ba81444
MS
1265 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1266 sure it is TYPE_CODE_UNDEF before we bash it into a string
1267 type? */
c906108c
SS
1268
1269struct type *
3b7538c0
UW
1270create_string_type (struct type *result_type,
1271 struct type *string_char_type,
7ba81444 1272 struct type *range_type)
c906108c
SS
1273{
1274 result_type = create_array_type (result_type,
f290d38e 1275 string_char_type,
c906108c
SS
1276 range_type);
1277 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 1278 return result_type;
c906108c
SS
1279}
1280
e3506a9f
UW
1281struct type *
1282lookup_string_range_type (struct type *string_char_type,
63375b74 1283 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1284{
1285 struct type *result_type;
d8734c88 1286
e3506a9f
UW
1287 result_type = lookup_array_range_type (string_char_type,
1288 low_bound, high_bound);
1289 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1290 return result_type;
1291}
1292
c906108c 1293struct type *
fba45db2 1294create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1295{
c906108c 1296 if (result_type == NULL)
e9bb382b
UW
1297 result_type = alloc_type_copy (domain_type);
1298
c906108c
SS
1299 TYPE_CODE (result_type) = TYPE_CODE_SET;
1300 TYPE_NFIELDS (result_type) = 1;
224c3ddb
SM
1301 TYPE_FIELDS (result_type)
1302 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 1303
74a9bb82 1304 if (!TYPE_STUB (domain_type))
c906108c 1305 {
f9780d5b 1306 LONGEST low_bound, high_bound, bit_length;
d8734c88 1307
c906108c
SS
1308 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1309 low_bound = high_bound = 0;
1310 bit_length = high_bound - low_bound + 1;
1311 TYPE_LENGTH (result_type)
1312 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1313 if (low_bound >= 0)
876cecd0 1314 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
1315 }
1316 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1317
c16abbde 1318 return result_type;
c906108c
SS
1319}
1320
ea37ba09
DJ
1321/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1322 and any array types nested inside it. */
1323
1324void
1325make_vector_type (struct type *array_type)
1326{
1327 struct type *inner_array, *elt_type;
1328 int flags;
1329
1330 /* Find the innermost array type, in case the array is
1331 multi-dimensional. */
1332 inner_array = array_type;
1333 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1334 inner_array = TYPE_TARGET_TYPE (inner_array);
1335
1336 elt_type = TYPE_TARGET_TYPE (inner_array);
1337 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1338 {
2844d6b5 1339 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1340 elt_type = make_qualified_type (elt_type, flags, NULL);
1341 TYPE_TARGET_TYPE (inner_array) = elt_type;
1342 }
1343
876cecd0 1344 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1345}
1346
794ac428 1347struct type *
ac3aafc7
EZ
1348init_vector_type (struct type *elt_type, int n)
1349{
1350 struct type *array_type;
d8734c88 1351
e3506a9f 1352 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1353 make_vector_type (array_type);
ac3aafc7
EZ
1354 return array_type;
1355}
1356
09e2d7c7
DE
1357/* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1358 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1359 confusing. "self" is a common enough replacement for "this".
1360 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1361 TYPE_CODE_METHOD. */
1362
1363struct type *
1364internal_type_self_type (struct type *type)
1365{
1366 switch (TYPE_CODE (type))
1367 {
1368 case TYPE_CODE_METHODPTR:
1369 case TYPE_CODE_MEMBERPTR:
eaaf76ab
DE
1370 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1371 return NULL;
09e2d7c7
DE
1372 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1373 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1374 case TYPE_CODE_METHOD:
eaaf76ab
DE
1375 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1376 return NULL;
09e2d7c7
DE
1377 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1378 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1379 default:
1380 gdb_assert_not_reached ("bad type");
1381 }
1382}
1383
1384/* Set the type of the class that TYPE belongs to.
1385 In c++ this is the class of "this".
1386 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1387 TYPE_CODE_METHOD. */
1388
1389void
1390set_type_self_type (struct type *type, struct type *self_type)
1391{
1392 switch (TYPE_CODE (type))
1393 {
1394 case TYPE_CODE_METHODPTR:
1395 case TYPE_CODE_MEMBERPTR:
1396 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1397 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1398 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1399 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1400 break;
1401 case TYPE_CODE_METHOD:
1402 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1403 INIT_FUNC_SPECIFIC (type);
1404 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1405 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1406 break;
1407 default:
1408 gdb_assert_not_reached ("bad type");
1409 }
1410}
1411
1412/* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
0d5de010
DJ
1413 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1414 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1415 TYPE doesn't include the offset (that's the value of the MEMBER
1416 itself), but does include the structure type into which it points
1417 (for some reason).
c906108c 1418
7ba81444
MS
1419 When "smashing" the type, we preserve the objfile that the old type
1420 pointed to, since we aren't changing where the type is actually
c906108c
SS
1421 allocated. */
1422
1423void
09e2d7c7 1424smash_to_memberptr_type (struct type *type, struct type *self_type,
0d5de010 1425 struct type *to_type)
c906108c 1426{
2fdde8f8 1427 smash_type (type);
09e2d7c7 1428 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c 1429 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1430 set_type_self_type (type, self_type);
0d5de010
DJ
1431 /* Assume that a data member pointer is the same size as a normal
1432 pointer. */
50810684
UW
1433 TYPE_LENGTH (type)
1434 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
c906108c
SS
1435}
1436
0b92b5bb
TT
1437/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1438
1439 When "smashing" the type, we preserve the objfile that the old type
1440 pointed to, since we aren't changing where the type is actually
1441 allocated. */
1442
1443void
1444smash_to_methodptr_type (struct type *type, struct type *to_type)
1445{
1446 smash_type (type);
09e2d7c7 1447 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
0b92b5bb 1448 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1449 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
0b92b5bb 1450 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
0b92b5bb
TT
1451}
1452
09e2d7c7 1453/* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
c906108c
SS
1454 METHOD just means `function that gets an extra "this" argument'.
1455
7ba81444
MS
1456 When "smashing" the type, we preserve the objfile that the old type
1457 pointed to, since we aren't changing where the type is actually
c906108c
SS
1458 allocated. */
1459
1460void
09e2d7c7 1461smash_to_method_type (struct type *type, struct type *self_type,
ad2f7632
DJ
1462 struct type *to_type, struct field *args,
1463 int nargs, int varargs)
c906108c 1464{
2fdde8f8 1465 smash_type (type);
09e2d7c7 1466 TYPE_CODE (type) = TYPE_CODE_METHOD;
c906108c 1467 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1468 set_type_self_type (type, self_type);
ad2f7632
DJ
1469 TYPE_FIELDS (type) = args;
1470 TYPE_NFIELDS (type) = nargs;
1471 if (varargs)
876cecd0 1472 TYPE_VARARGS (type) = 1;
c906108c 1473 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
c906108c
SS
1474}
1475
a737d952 1476/* A wrapper of TYPE_NAME which calls error if the type is anonymous.
d8228535
JK
1477 Since GCC PR debug/47510 DWARF provides associated information to detect the
1478 anonymous class linkage name from its typedef.
1479
1480 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1481 apply it itself. */
1482
1483const char *
a737d952 1484type_name_or_error (struct type *type)
d8228535
JK
1485{
1486 struct type *saved_type = type;
1487 const char *name;
1488 struct objfile *objfile;
1489
f168693b 1490 type = check_typedef (type);
d8228535 1491
a737d952 1492 name = TYPE_NAME (type);
d8228535
JK
1493 if (name != NULL)
1494 return name;
1495
a737d952 1496 name = TYPE_NAME (saved_type);
d8228535
JK
1497 objfile = TYPE_OBJFILE (saved_type);
1498 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
4262abfb
JK
1499 name ? name : "<anonymous>",
1500 objfile ? objfile_name (objfile) : "<arch>");
d8228535
JK
1501}
1502
7ba81444
MS
1503/* Lookup a typedef or primitive type named NAME, visible in lexical
1504 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1505 suitably defined. */
c906108c
SS
1506
1507struct type *
e6c014f2 1508lookup_typename (const struct language_defn *language,
ddd49eee 1509 struct gdbarch *gdbarch, const char *name,
34eaf542 1510 const struct block *block, int noerr)
c906108c 1511{
52f0bd74 1512 struct symbol *sym;
c906108c 1513
1994afbf 1514 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
d12307c1 1515 language->la_language, NULL).symbol;
c51fe631
DE
1516 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1517 return SYMBOL_TYPE (sym);
1518
c51fe631
DE
1519 if (noerr)
1520 return NULL;
1521 error (_("No type named %s."), name);
c906108c
SS
1522}
1523
1524struct type *
e6c014f2 1525lookup_unsigned_typename (const struct language_defn *language,
0d5cff50 1526 struct gdbarch *gdbarch, const char *name)
c906108c 1527{
224c3ddb 1528 char *uns = (char *) alloca (strlen (name) + 10);
c906108c
SS
1529
1530 strcpy (uns, "unsigned ");
1531 strcpy (uns + 9, name);
582942f4 1532 return lookup_typename (language, gdbarch, uns, NULL, 0);
c906108c
SS
1533}
1534
1535struct type *
e6c014f2 1536lookup_signed_typename (const struct language_defn *language,
0d5cff50 1537 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1538{
1539 struct type *t;
224c3ddb 1540 char *uns = (char *) alloca (strlen (name) + 8);
c906108c
SS
1541
1542 strcpy (uns, "signed ");
1543 strcpy (uns + 7, name);
582942f4 1544 t = lookup_typename (language, gdbarch, uns, NULL, 1);
7ba81444 1545 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1546 if (t != NULL)
1547 return t;
582942f4 1548 return lookup_typename (language, gdbarch, name, NULL, 0);
c906108c
SS
1549}
1550
1551/* Lookup a structure type named "struct NAME",
1552 visible in lexical block BLOCK. */
1553
1554struct type *
270140bd 1555lookup_struct (const char *name, const struct block *block)
c906108c 1556{
52f0bd74 1557 struct symbol *sym;
c906108c 1558
d12307c1 1559 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1560
1561 if (sym == NULL)
1562 {
8a3fe4f8 1563 error (_("No struct type named %s."), name);
c906108c
SS
1564 }
1565 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1566 {
7ba81444
MS
1567 error (_("This context has class, union or enum %s, not a struct."),
1568 name);
c906108c
SS
1569 }
1570 return (SYMBOL_TYPE (sym));
1571}
1572
1573/* Lookup a union type named "union NAME",
1574 visible in lexical block BLOCK. */
1575
1576struct type *
270140bd 1577lookup_union (const char *name, const struct block *block)
c906108c 1578{
52f0bd74 1579 struct symbol *sym;
c5aa993b 1580 struct type *t;
c906108c 1581
d12307c1 1582 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1583
1584 if (sym == NULL)
8a3fe4f8 1585 error (_("No union type named %s."), name);
c906108c 1586
c5aa993b 1587 t = SYMBOL_TYPE (sym);
c906108c
SS
1588
1589 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1590 return t;
c906108c 1591
7ba81444
MS
1592 /* If we get here, it's not a union. */
1593 error (_("This context has class, struct or enum %s, not a union."),
1594 name);
c906108c
SS
1595}
1596
c906108c
SS
1597/* Lookup an enum type named "enum NAME",
1598 visible in lexical block BLOCK. */
1599
1600struct type *
270140bd 1601lookup_enum (const char *name, const struct block *block)
c906108c 1602{
52f0bd74 1603 struct symbol *sym;
c906108c 1604
d12307c1 1605 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1606 if (sym == NULL)
1607 {
8a3fe4f8 1608 error (_("No enum type named %s."), name);
c906108c
SS
1609 }
1610 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1611 {
7ba81444
MS
1612 error (_("This context has class, struct or union %s, not an enum."),
1613 name);
c906108c
SS
1614 }
1615 return (SYMBOL_TYPE (sym));
1616}
1617
1618/* Lookup a template type named "template NAME<TYPE>",
1619 visible in lexical block BLOCK. */
1620
1621struct type *
61f4b350 1622lookup_template_type (const char *name, struct type *type,
270140bd 1623 const struct block *block)
c906108c
SS
1624{
1625 struct symbol *sym;
7ba81444
MS
1626 char *nam = (char *)
1627 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1628
c906108c
SS
1629 strcpy (nam, name);
1630 strcat (nam, "<");
0004e5a2 1631 strcat (nam, TYPE_NAME (type));
0963b4bd 1632 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1633
d12307c1 1634 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
c906108c
SS
1635
1636 if (sym == NULL)
1637 {
8a3fe4f8 1638 error (_("No template type named %s."), name);
c906108c
SS
1639 }
1640 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1641 {
7ba81444
MS
1642 error (_("This context has class, union or enum %s, not a struct."),
1643 name);
c906108c
SS
1644 }
1645 return (SYMBOL_TYPE (sym));
1646}
1647
ef0bd204 1648/* See gdbtypes.h. */
c906108c 1649
ef0bd204
JB
1650struct_elt
1651lookup_struct_elt (struct type *type, const char *name, int noerr)
c906108c
SS
1652{
1653 int i;
1654
1655 for (;;)
1656 {
f168693b 1657 type = check_typedef (type);
c906108c
SS
1658 if (TYPE_CODE (type) != TYPE_CODE_PTR
1659 && TYPE_CODE (type) != TYPE_CODE_REF)
1660 break;
1661 type = TYPE_TARGET_TYPE (type);
1662 }
1663
687d6395
MS
1664 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1665 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1666 {
2f408ecb
PA
1667 std::string type_name = type_to_string (type);
1668 error (_("Type %s is not a structure or union type."),
1669 type_name.c_str ());
c906108c
SS
1670 }
1671
c906108c
SS
1672 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1673 {
0d5cff50 1674 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1675
db577aea 1676 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c 1677 {
ef0bd204 1678 return {&TYPE_FIELD (type, i), TYPE_FIELD_BITPOS (type, i)};
c906108c 1679 }
f5a010c0
PM
1680 else if (!t_field_name || *t_field_name == '\0')
1681 {
ef0bd204
JB
1682 struct_elt elt
1683 = lookup_struct_elt (TYPE_FIELD_TYPE (type, i), name, 1);
1684 if (elt.field != NULL)
1685 {
1686 elt.offset += TYPE_FIELD_BITPOS (type, i);
1687 return elt;
1688 }
f5a010c0 1689 }
c906108c
SS
1690 }
1691
1692 /* OK, it's not in this class. Recursively check the baseclasses. */
1693 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1694 {
ef0bd204
JB
1695 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1696 if (elt.field != NULL)
1697 return elt;
c906108c
SS
1698 }
1699
1700 if (noerr)
ef0bd204 1701 return {nullptr, 0};
c5aa993b 1702
2f408ecb
PA
1703 std::string type_name = type_to_string (type);
1704 error (_("Type %s has no component named %s."), type_name.c_str (), name);
c906108c
SS
1705}
1706
ef0bd204
JB
1707/* See gdbtypes.h. */
1708
1709struct type *
1710lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1711{
1712 struct_elt elt = lookup_struct_elt (type, name, noerr);
1713 if (elt.field != NULL)
1714 return FIELD_TYPE (*elt.field);
1715 else
1716 return NULL;
1717}
1718
ed3ef339
DE
1719/* Store in *MAX the largest number representable by unsigned integer type
1720 TYPE. */
1721
1722void
1723get_unsigned_type_max (struct type *type, ULONGEST *max)
1724{
1725 unsigned int n;
1726
f168693b 1727 type = check_typedef (type);
ed3ef339
DE
1728 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1729 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1730
1731 /* Written this way to avoid overflow. */
1732 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1733 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1734}
1735
1736/* Store in *MIN, *MAX the smallest and largest numbers representable by
1737 signed integer type TYPE. */
1738
1739void
1740get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1741{
1742 unsigned int n;
1743
f168693b 1744 type = check_typedef (type);
ed3ef339
DE
1745 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1746 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1747
1748 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1749 *min = -((ULONGEST) 1 << (n - 1));
1750 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1751}
1752
ae6ae975
DE
1753/* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1754 cplus_stuff.vptr_fieldno.
1755
1756 cplus_stuff is initialized to cplus_struct_default which does not
1757 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1758 designated initializers). We cope with that here. */
1759
1760int
1761internal_type_vptr_fieldno (struct type *type)
1762{
f168693b 1763 type = check_typedef (type);
ae6ae975
DE
1764 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1765 || TYPE_CODE (type) == TYPE_CODE_UNION);
1766 if (!HAVE_CPLUS_STRUCT (type))
1767 return -1;
1768 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1769}
1770
1771/* Set the value of cplus_stuff.vptr_fieldno. */
1772
1773void
1774set_type_vptr_fieldno (struct type *type, int fieldno)
1775{
f168693b 1776 type = check_typedef (type);
ae6ae975
DE
1777 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1778 || TYPE_CODE (type) == TYPE_CODE_UNION);
1779 if (!HAVE_CPLUS_STRUCT (type))
1780 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1781 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1782}
1783
1784/* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1785 cplus_stuff.vptr_basetype. */
1786
1787struct type *
1788internal_type_vptr_basetype (struct type *type)
1789{
f168693b 1790 type = check_typedef (type);
ae6ae975
DE
1791 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1792 || TYPE_CODE (type) == TYPE_CODE_UNION);
1793 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1794 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1795}
1796
1797/* Set the value of cplus_stuff.vptr_basetype. */
1798
1799void
1800set_type_vptr_basetype (struct type *type, struct type *basetype)
1801{
f168693b 1802 type = check_typedef (type);
ae6ae975
DE
1803 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1804 || TYPE_CODE (type) == TYPE_CODE_UNION);
1805 if (!HAVE_CPLUS_STRUCT (type))
1806 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1807 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1808}
1809
81fe8080
DE
1810/* Lookup the vptr basetype/fieldno values for TYPE.
1811 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1812 vptr_fieldno. Also, if found and basetype is from the same objfile,
1813 cache the results.
1814 If not found, return -1 and ignore BASETYPEP.
1815 Callers should be aware that in some cases (for example,
c906108c 1816 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1817 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1818 this function will not be able to find the
7ba81444 1819 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1820 vptr_basetype will remain NULL or incomplete. */
c906108c 1821
81fe8080
DE
1822int
1823get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c 1824{
f168693b 1825 type = check_typedef (type);
c906108c
SS
1826
1827 if (TYPE_VPTR_FIELDNO (type) < 0)
1828 {
1829 int i;
1830
7ba81444
MS
1831 /* We must start at zero in case the first (and only) baseclass
1832 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1833 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1834 {
81fe8080
DE
1835 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1836 int fieldno;
1837 struct type *basetype;
1838
1839 fieldno = get_vptr_fieldno (baseclass, &basetype);
1840 if (fieldno >= 0)
c906108c 1841 {
81fe8080 1842 /* If the type comes from a different objfile we can't cache
0963b4bd 1843 it, it may have a different lifetime. PR 2384 */
5ef73790 1844 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080 1845 {
ae6ae975
DE
1846 set_type_vptr_fieldno (type, fieldno);
1847 set_type_vptr_basetype (type, basetype);
81fe8080
DE
1848 }
1849 if (basetypep)
1850 *basetypep = basetype;
1851 return fieldno;
c906108c
SS
1852 }
1853 }
81fe8080
DE
1854
1855 /* Not found. */
1856 return -1;
1857 }
1858 else
1859 {
1860 if (basetypep)
1861 *basetypep = TYPE_VPTR_BASETYPE (type);
1862 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1863 }
1864}
1865
44e1a9eb
DJ
1866static void
1867stub_noname_complaint (void)
1868{
b98664d3 1869 complaint (_("stub type has NULL name"));
44e1a9eb
DJ
1870}
1871
a405673c
JB
1872/* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1873 attached to it, and that property has a non-constant value. */
1874
1875static int
1876array_type_has_dynamic_stride (struct type *type)
1877{
1878 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1879
1880 return (prop != NULL && prop->kind != PROP_CONST);
1881}
1882
d98b7a16 1883/* Worker for is_dynamic_type. */
80180f79 1884
d98b7a16 1885static int
ee715b5a 1886is_dynamic_type_internal (struct type *type, int top_level)
80180f79
SA
1887{
1888 type = check_typedef (type);
1889
e771e4be
PMR
1890 /* We only want to recognize references at the outermost level. */
1891 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1892 type = check_typedef (TYPE_TARGET_TYPE (type));
1893
3cdcd0ce
JB
1894 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1895 dynamic, even if the type itself is statically defined.
1896 From a user's point of view, this may appear counter-intuitive;
1897 but it makes sense in this context, because the point is to determine
1898 whether any part of the type needs to be resolved before it can
1899 be exploited. */
1900 if (TYPE_DATA_LOCATION (type) != NULL
1901 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1902 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1903 return 1;
1904
3f2f83dd
KB
1905 if (TYPE_ASSOCIATED_PROP (type))
1906 return 1;
1907
1908 if (TYPE_ALLOCATED_PROP (type))
1909 return 1;
1910
80180f79
SA
1911 switch (TYPE_CODE (type))
1912 {
6f8a3220 1913 case TYPE_CODE_RANGE:
ddb87a81
JB
1914 {
1915 /* A range type is obviously dynamic if it has at least one
1916 dynamic bound. But also consider the range type to be
1917 dynamic when its subtype is dynamic, even if the bounds
1918 of the range type are static. It allows us to assume that
1919 the subtype of a static range type is also static. */
1920 return (!has_static_range (TYPE_RANGE_DATA (type))
ee715b5a 1921 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
ddb87a81 1922 }
6f8a3220 1923
80180f79
SA
1924 case TYPE_CODE_ARRAY:
1925 {
80180f79 1926 gdb_assert (TYPE_NFIELDS (type) == 1);
6f8a3220 1927
a405673c 1928 /* The array is dynamic if either the bounds are dynamic... */
ee715b5a 1929 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
80180f79 1930 return 1;
a405673c
JB
1931 /* ... or the elements it contains have a dynamic contents... */
1932 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
1933 return 1;
1934 /* ... or if it has a dynamic stride... */
1935 if (array_type_has_dynamic_stride (type))
1936 return 1;
1937 return 0;
80180f79 1938 }
012370f6
TT
1939
1940 case TYPE_CODE_STRUCT:
1941 case TYPE_CODE_UNION:
1942 {
1943 int i;
1944
1945 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1946 if (!field_is_static (&TYPE_FIELD (type, i))
ee715b5a 1947 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
012370f6
TT
1948 return 1;
1949 }
1950 break;
80180f79 1951 }
92e2a17f
TT
1952
1953 return 0;
80180f79
SA
1954}
1955
d98b7a16
TT
1956/* See gdbtypes.h. */
1957
1958int
1959is_dynamic_type (struct type *type)
1960{
ee715b5a 1961 return is_dynamic_type_internal (type, 1);
d98b7a16
TT
1962}
1963
df25ebbd 1964static struct type *resolve_dynamic_type_internal
ee715b5a 1965 (struct type *type, struct property_addr_info *addr_stack, int top_level);
d98b7a16 1966
df25ebbd
JB
1967/* Given a dynamic range type (dyn_range_type) and a stack of
1968 struct property_addr_info elements, return a static version
1969 of that type. */
d190df30 1970
80180f79 1971static struct type *
df25ebbd
JB
1972resolve_dynamic_range (struct type *dyn_range_type,
1973 struct property_addr_info *addr_stack)
80180f79
SA
1974{
1975 CORE_ADDR value;
ddb87a81 1976 struct type *static_range_type, *static_target_type;
80180f79 1977 const struct dynamic_prop *prop;
80180f79
SA
1978 struct dynamic_prop low_bound, high_bound;
1979
6f8a3220 1980 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
80180f79 1981
6f8a3220 1982 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
63e43d3a 1983 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
1984 {
1985 low_bound.kind = PROP_CONST;
1986 low_bound.data.const_val = value;
1987 }
1988 else
1989 {
1990 low_bound.kind = PROP_UNDEFINED;
1991 low_bound.data.const_val = 0;
1992 }
1993
6f8a3220 1994 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
63e43d3a 1995 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
1996 {
1997 high_bound.kind = PROP_CONST;
1998 high_bound.data.const_val = value;
c451ebe5 1999
6f8a3220 2000 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
c451ebe5
SA
2001 high_bound.data.const_val
2002 = low_bound.data.const_val + high_bound.data.const_val - 1;
80180f79
SA
2003 }
2004 else
2005 {
2006 high_bound.kind = PROP_UNDEFINED;
2007 high_bound.data.const_val = 0;
2008 }
2009
ddb87a81
JB
2010 static_target_type
2011 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
ee715b5a 2012 addr_stack, 0);
6f8a3220 2013 static_range_type = create_range_type (copy_type (dyn_range_type),
ddb87a81 2014 static_target_type,
6f8a3220
JB
2015 &low_bound, &high_bound);
2016 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2017 return static_range_type;
2018}
2019
2020/* Resolves dynamic bound values of an array type TYPE to static ones.
df25ebbd
JB
2021 ADDR_STACK is a stack of struct property_addr_info to be used
2022 if needed during the dynamic resolution. */
6f8a3220
JB
2023
2024static struct type *
df25ebbd
JB
2025resolve_dynamic_array (struct type *type,
2026 struct property_addr_info *addr_stack)
6f8a3220
JB
2027{
2028 CORE_ADDR value;
2029 struct type *elt_type;
2030 struct type *range_type;
2031 struct type *ary_dim;
3f2f83dd 2032 struct dynamic_prop *prop;
a405673c 2033 unsigned int bit_stride = 0;
6f8a3220
JB
2034
2035 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
2036
3f2f83dd
KB
2037 type = copy_type (type);
2038
6f8a3220
JB
2039 elt_type = type;
2040 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
df25ebbd 2041 range_type = resolve_dynamic_range (range_type, addr_stack);
6f8a3220 2042
3f2f83dd
KB
2043 /* Resolve allocated/associated here before creating a new array type, which
2044 will update the length of the array accordingly. */
2045 prop = TYPE_ALLOCATED_PROP (type);
2046 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2047 {
2048 TYPE_DYN_PROP_ADDR (prop) = value;
2049 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2050 }
2051 prop = TYPE_ASSOCIATED_PROP (type);
2052 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2053 {
2054 TYPE_DYN_PROP_ADDR (prop) = value;
2055 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2056 }
2057
80180f79
SA
2058 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2059
2060 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
d0d84780 2061 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
80180f79
SA
2062 else
2063 elt_type = TYPE_TARGET_TYPE (type);
2064
a405673c
JB
2065 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2066 if (prop != NULL)
2067 {
603490bf 2068 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
a405673c
JB
2069 {
2070 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2071 bit_stride = (unsigned int) (value * 8);
2072 }
2073 else
2074 {
2075 /* Could be a bug in our code, but it could also happen
2076 if the DWARF info is not correct. Issue a warning,
2077 and assume no byte/bit stride (leave bit_stride = 0). */
2078 warning (_("cannot determine array stride for type %s"),
2079 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2080 }
2081 }
2082 else
2083 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2084
2085 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2086 bit_stride);
80180f79
SA
2087}
2088
012370f6 2089/* Resolve dynamic bounds of members of the union TYPE to static
df25ebbd
JB
2090 bounds. ADDR_STACK is a stack of struct property_addr_info
2091 to be used if needed during the dynamic resolution. */
012370f6
TT
2092
2093static struct type *
df25ebbd
JB
2094resolve_dynamic_union (struct type *type,
2095 struct property_addr_info *addr_stack)
012370f6
TT
2096{
2097 struct type *resolved_type;
2098 int i;
2099 unsigned int max_len = 0;
2100
2101 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2102
2103 resolved_type = copy_type (type);
2104 TYPE_FIELDS (resolved_type)
224c3ddb
SM
2105 = (struct field *) TYPE_ALLOC (resolved_type,
2106 TYPE_NFIELDS (resolved_type)
2107 * sizeof (struct field));
012370f6
TT
2108 memcpy (TYPE_FIELDS (resolved_type),
2109 TYPE_FIELDS (type),
2110 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2111 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2112 {
2113 struct type *t;
2114
2115 if (field_is_static (&TYPE_FIELD (type, i)))
2116 continue;
2117
d98b7a16 2118 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2119 addr_stack, 0);
012370f6
TT
2120 TYPE_FIELD_TYPE (resolved_type, i) = t;
2121 if (TYPE_LENGTH (t) > max_len)
2122 max_len = TYPE_LENGTH (t);
2123 }
2124
2125 TYPE_LENGTH (resolved_type) = max_len;
2126 return resolved_type;
2127}
2128
2129/* Resolve dynamic bounds of members of the struct TYPE to static
df25ebbd
JB
2130 bounds. ADDR_STACK is a stack of struct property_addr_info to
2131 be used if needed during the dynamic resolution. */
012370f6
TT
2132
2133static struct type *
df25ebbd
JB
2134resolve_dynamic_struct (struct type *type,
2135 struct property_addr_info *addr_stack)
012370f6
TT
2136{
2137 struct type *resolved_type;
2138 int i;
6908c509 2139 unsigned resolved_type_bit_length = 0;
012370f6
TT
2140
2141 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2142 gdb_assert (TYPE_NFIELDS (type) > 0);
2143
2144 resolved_type = copy_type (type);
2145 TYPE_FIELDS (resolved_type)
224c3ddb
SM
2146 = (struct field *) TYPE_ALLOC (resolved_type,
2147 TYPE_NFIELDS (resolved_type)
2148 * sizeof (struct field));
012370f6
TT
2149 memcpy (TYPE_FIELDS (resolved_type),
2150 TYPE_FIELDS (type),
2151 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2152 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2153 {
6908c509 2154 unsigned new_bit_length;
df25ebbd 2155 struct property_addr_info pinfo;
012370f6
TT
2156
2157 if (field_is_static (&TYPE_FIELD (type, i)))
2158 continue;
2159
6908c509
JB
2160 /* As we know this field is not a static field, the field's
2161 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2162 this is the case, but only trigger a simple error rather
2163 than an internal error if that fails. While failing
2164 that verification indicates a bug in our code, the error
2165 is not severe enough to suggest to the user he stops
2166 his debugging session because of it. */
df25ebbd 2167 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
6908c509
JB
2168 error (_("Cannot determine struct field location"
2169 " (invalid location kind)"));
df25ebbd
JB
2170
2171 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
c3345124 2172 pinfo.valaddr = addr_stack->valaddr;
9920b434
BH
2173 pinfo.addr
2174 = (addr_stack->addr
2175 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
df25ebbd
JB
2176 pinfo.next = addr_stack;
2177
2178 TYPE_FIELD_TYPE (resolved_type, i)
2179 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2180 &pinfo, 0);
df25ebbd
JB
2181 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2182 == FIELD_LOC_KIND_BITPOS);
2183
6908c509
JB
2184 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2185 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2186 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2187 else
2188 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2189 * TARGET_CHAR_BIT);
2190
2191 /* Normally, we would use the position and size of the last field
2192 to determine the size of the enclosing structure. But GCC seems
2193 to be encoding the position of some fields incorrectly when
2194 the struct contains a dynamic field that is not placed last.
2195 So we compute the struct size based on the field that has
2196 the highest position + size - probably the best we can do. */
2197 if (new_bit_length > resolved_type_bit_length)
2198 resolved_type_bit_length = new_bit_length;
012370f6
TT
2199 }
2200
9920b434
BH
2201 /* The length of a type won't change for fortran, but it does for C and Ada.
2202 For fortran the size of dynamic fields might change over time but not the
2203 type length of the structure. If we adapt it, we run into problems
2204 when calculating the element offset for arrays of structs. */
2205 if (current_language->la_language != language_fortran)
2206 TYPE_LENGTH (resolved_type)
2207 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
6908c509 2208
9e195661
PMR
2209 /* The Ada language uses this field as a cache for static fixed types: reset
2210 it as RESOLVED_TYPE must have its own static fixed type. */
2211 TYPE_TARGET_TYPE (resolved_type) = NULL;
2212
012370f6
TT
2213 return resolved_type;
2214}
2215
d98b7a16 2216/* Worker for resolved_dynamic_type. */
80180f79 2217
d98b7a16 2218static struct type *
df25ebbd 2219resolve_dynamic_type_internal (struct type *type,
ee715b5a
PMR
2220 struct property_addr_info *addr_stack,
2221 int top_level)
80180f79
SA
2222{
2223 struct type *real_type = check_typedef (type);
6f8a3220 2224 struct type *resolved_type = type;
d9823cbb 2225 struct dynamic_prop *prop;
3cdcd0ce 2226 CORE_ADDR value;
80180f79 2227
ee715b5a 2228 if (!is_dynamic_type_internal (real_type, top_level))
80180f79
SA
2229 return type;
2230
5537b577 2231 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
6f8a3220 2232 {
cac9b138
JK
2233 resolved_type = copy_type (type);
2234 TYPE_TARGET_TYPE (resolved_type)
ee715b5a
PMR
2235 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2236 top_level);
5537b577
JK
2237 }
2238 else
2239 {
2240 /* Before trying to resolve TYPE, make sure it is not a stub. */
2241 type = real_type;
012370f6 2242
5537b577
JK
2243 switch (TYPE_CODE (type))
2244 {
e771e4be
PMR
2245 case TYPE_CODE_REF:
2246 {
2247 struct property_addr_info pinfo;
2248
2249 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
c3345124
JB
2250 pinfo.valaddr = NULL;
2251 if (addr_stack->valaddr != NULL)
2252 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2253 else
2254 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
e771e4be
PMR
2255 pinfo.next = addr_stack;
2256
2257 resolved_type = copy_type (type);
2258 TYPE_TARGET_TYPE (resolved_type)
2259 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2260 &pinfo, top_level);
2261 break;
2262 }
2263
5537b577 2264 case TYPE_CODE_ARRAY:
df25ebbd 2265 resolved_type = resolve_dynamic_array (type, addr_stack);
5537b577
JK
2266 break;
2267
2268 case TYPE_CODE_RANGE:
df25ebbd 2269 resolved_type = resolve_dynamic_range (type, addr_stack);
5537b577
JK
2270 break;
2271
2272 case TYPE_CODE_UNION:
df25ebbd 2273 resolved_type = resolve_dynamic_union (type, addr_stack);
5537b577
JK
2274 break;
2275
2276 case TYPE_CODE_STRUCT:
df25ebbd 2277 resolved_type = resolve_dynamic_struct (type, addr_stack);
5537b577
JK
2278 break;
2279 }
6f8a3220 2280 }
80180f79 2281
3cdcd0ce
JB
2282 /* Resolve data_location attribute. */
2283 prop = TYPE_DATA_LOCATION (resolved_type);
63e43d3a
PMR
2284 if (prop != NULL
2285 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
3cdcd0ce 2286 {
d9823cbb
KB
2287 TYPE_DYN_PROP_ADDR (prop) = value;
2288 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
3cdcd0ce 2289 }
3cdcd0ce 2290
80180f79
SA
2291 return resolved_type;
2292}
2293
d98b7a16
TT
2294/* See gdbtypes.h */
2295
2296struct type *
c3345124
JB
2297resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2298 CORE_ADDR addr)
d98b7a16 2299{
c3345124
JB
2300 struct property_addr_info pinfo
2301 = {check_typedef (type), valaddr, addr, NULL};
df25ebbd 2302
ee715b5a 2303 return resolve_dynamic_type_internal (type, &pinfo, 1);
d98b7a16
TT
2304}
2305
d9823cbb
KB
2306/* See gdbtypes.h */
2307
2308struct dynamic_prop *
2309get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2310{
2311 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2312
2313 while (node != NULL)
2314 {
2315 if (node->prop_kind == prop_kind)
283a9958 2316 return &node->prop;
d9823cbb
KB
2317 node = node->next;
2318 }
2319 return NULL;
2320}
2321
2322/* See gdbtypes.h */
2323
2324void
2325add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
50a82047 2326 struct type *type)
d9823cbb
KB
2327{
2328 struct dynamic_prop_list *temp;
2329
2330 gdb_assert (TYPE_OBJFILE_OWNED (type));
2331
50a82047
TT
2332 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2333 struct dynamic_prop_list);
d9823cbb 2334 temp->prop_kind = prop_kind;
283a9958 2335 temp->prop = prop;
d9823cbb
KB
2336 temp->next = TYPE_DYN_PROP_LIST (type);
2337
2338 TYPE_DYN_PROP_LIST (type) = temp;
2339}
2340
9920b434
BH
2341/* Remove dynamic property from TYPE in case it exists. */
2342
2343void
2344remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2345 struct type *type)
2346{
2347 struct dynamic_prop_list *prev_node, *curr_node;
2348
2349 curr_node = TYPE_DYN_PROP_LIST (type);
2350 prev_node = NULL;
2351
2352 while (NULL != curr_node)
2353 {
2354 if (curr_node->prop_kind == prop_kind)
2355 {
2356 /* Update the linked list but don't free anything.
2357 The property was allocated on objstack and it is not known
2358 if we are on top of it. Nevertheless, everything is released
2359 when the complete objstack is freed. */
2360 if (NULL == prev_node)
2361 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2362 else
2363 prev_node->next = curr_node->next;
2364
2365 return;
2366 }
2367
2368 prev_node = curr_node;
2369 curr_node = curr_node->next;
2370 }
2371}
d9823cbb 2372
92163a10
JK
2373/* Find the real type of TYPE. This function returns the real type,
2374 after removing all layers of typedefs, and completing opaque or stub
2375 types. Completion changes the TYPE argument, but stripping of
2376 typedefs does not.
2377
2378 Instance flags (e.g. const/volatile) are preserved as typedefs are
2379 stripped. If necessary a new qualified form of the underlying type
2380 is created.
2381
2382 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2383 not been computed and we're either in the middle of reading symbols, or
2384 there was no name for the typedef in the debug info.
2385
9bc118a5
DE
2386 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2387 QUITs in the symbol reading code can also throw.
2388 Thus this function can throw an exception.
2389
92163a10
JK
2390 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2391 the target type.
c906108c
SS
2392
2393 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 2394 we can find a full definition in some other file. If so, copy this
7ba81444
MS
2395 definition, so we can use it in future. There used to be a comment
2396 (but not any code) that if we don't find a full definition, we'd
2397 set a flag so we don't spend time in the future checking the same
2398 type. That would be a mistake, though--we might load in more
92163a10 2399 symbols which contain a full definition for the type. */
c906108c
SS
2400
2401struct type *
a02fd225 2402check_typedef (struct type *type)
c906108c
SS
2403{
2404 struct type *orig_type = type;
92163a10
JK
2405 /* While we're removing typedefs, we don't want to lose qualifiers.
2406 E.g., const/volatile. */
2407 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 2408
423c0af8
MS
2409 gdb_assert (type);
2410
c906108c
SS
2411 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2412 {
2413 if (!TYPE_TARGET_TYPE (type))
2414 {
0d5cff50 2415 const char *name;
c906108c
SS
2416 struct symbol *sym;
2417
2418 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 2419 reading a symtab. Infinite recursion is one danger. */
c906108c 2420 if (currently_reading_symtab)
92163a10 2421 return make_qualified_type (type, instance_flags, NULL);
c906108c 2422
a737d952 2423 name = TYPE_NAME (type);
e86ca25f
TT
2424 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2425 VAR_DOMAIN as appropriate? */
c906108c
SS
2426 if (name == NULL)
2427 {
23136709 2428 stub_noname_complaint ();
92163a10 2429 return make_qualified_type (type, instance_flags, NULL);
c906108c 2430 }
d12307c1 2431 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
2432 if (sym)
2433 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 2434 else /* TYPE_CODE_UNDEF */
e9bb382b 2435 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
2436 }
2437 type = TYPE_TARGET_TYPE (type);
c906108c 2438
92163a10
JK
2439 /* Preserve the instance flags as we traverse down the typedef chain.
2440
2441 Handling address spaces/classes is nasty, what do we do if there's a
2442 conflict?
2443 E.g., what if an outer typedef marks the type as class_1 and an inner
2444 typedef marks the type as class_2?
2445 This is the wrong place to do such error checking. We leave it to
2446 the code that created the typedef in the first place to flag the
2447 error. We just pick the outer address space (akin to letting the
2448 outer cast in a chain of casting win), instead of assuming
2449 "it can't happen". */
2450 {
2451 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2452 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2453 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2454 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2455
2456 /* Treat code vs data spaces and address classes separately. */
2457 if ((instance_flags & ALL_SPACES) != 0)
2458 new_instance_flags &= ~ALL_SPACES;
2459 if ((instance_flags & ALL_CLASSES) != 0)
2460 new_instance_flags &= ~ALL_CLASSES;
2461
2462 instance_flags |= new_instance_flags;
2463 }
2464 }
a02fd225 2465
7ba81444
MS
2466 /* If this is a struct/class/union with no fields, then check
2467 whether a full definition exists somewhere else. This is for
2468 systems where a type definition with no fields is issued for such
2469 types, instead of identifying them as stub types in the first
2470 place. */
c5aa993b 2471
7ba81444
MS
2472 if (TYPE_IS_OPAQUE (type)
2473 && opaque_type_resolution
2474 && !currently_reading_symtab)
c906108c 2475 {
a737d952 2476 const char *name = TYPE_NAME (type);
c5aa993b 2477 struct type *newtype;
d8734c88 2478
c906108c
SS
2479 if (name == NULL)
2480 {
23136709 2481 stub_noname_complaint ();
92163a10 2482 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2483 }
2484 newtype = lookup_transparent_type (name);
ad766c0a 2485
c906108c 2486 if (newtype)
ad766c0a 2487 {
7ba81444
MS
2488 /* If the resolved type and the stub are in the same
2489 objfile, then replace the stub type with the real deal.
2490 But if they're in separate objfiles, leave the stub
2491 alone; we'll just look up the transparent type every time
2492 we call check_typedef. We can't create pointers between
2493 types allocated to different objfiles, since they may
2494 have different lifetimes. Trying to copy NEWTYPE over to
2495 TYPE's objfile is pointless, too, since you'll have to
2496 move over any other types NEWTYPE refers to, which could
2497 be an unbounded amount of stuff. */
ad766c0a 2498 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
2499 type = make_qualified_type (newtype,
2500 TYPE_INSTANCE_FLAGS (type),
2501 type);
ad766c0a
JB
2502 else
2503 type = newtype;
2504 }
c906108c 2505 }
7ba81444
MS
2506 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2507 types. */
74a9bb82 2508 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 2509 {
a737d952 2510 const char *name = TYPE_NAME (type);
e86ca25f
TT
2511 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2512 as appropriate? */
c906108c 2513 struct symbol *sym;
d8734c88 2514
c906108c
SS
2515 if (name == NULL)
2516 {
23136709 2517 stub_noname_complaint ();
92163a10 2518 return make_qualified_type (type, instance_flags, NULL);
c906108c 2519 }
d12307c1 2520 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c 2521 if (sym)
c26f2453
JB
2522 {
2523 /* Same as above for opaque types, we can replace the stub
92163a10 2524 with the complete type only if they are in the same
c26f2453
JB
2525 objfile. */
2526 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
2527 type = make_qualified_type (SYMBOL_TYPE (sym),
2528 TYPE_INSTANCE_FLAGS (type),
2529 type);
c26f2453
JB
2530 else
2531 type = SYMBOL_TYPE (sym);
2532 }
c906108c
SS
2533 }
2534
74a9bb82 2535 if (TYPE_TARGET_STUB (type))
c906108c 2536 {
c906108c
SS
2537 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2538
74a9bb82 2539 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 2540 {
73e2eb35 2541 /* Nothing we can do. */
c5aa993b 2542 }
c906108c
SS
2543 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2544 {
2545 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 2546 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
2547 }
2548 }
92163a10
JK
2549
2550 type = make_qualified_type (type, instance_flags, NULL);
2551
7ba81444 2552 /* Cache TYPE_LENGTH for future use. */
c906108c 2553 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 2554
c906108c
SS
2555 return type;
2556}
2557
7ba81444 2558/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 2559 occurs, silently return a void type. */
c91ecb25 2560
b9362cc7 2561static struct type *
48319d1f 2562safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
2563{
2564 struct ui_file *saved_gdb_stderr;
34365054 2565 struct type *type = NULL; /* Initialize to keep gcc happy. */
c91ecb25 2566
7ba81444 2567 /* Suppress error messages. */
c91ecb25 2568 saved_gdb_stderr = gdb_stderr;
d7e74731 2569 gdb_stderr = &null_stream;
c91ecb25 2570
7ba81444 2571 /* Call parse_and_eval_type() without fear of longjmp()s. */
a70b8144 2572 try
8e7b59a5
KS
2573 {
2574 type = parse_and_eval_type (p, length);
2575 }
230d2906 2576 catch (const gdb_exception_error &except)
492d29ea
PA
2577 {
2578 type = builtin_type (gdbarch)->builtin_void;
2579 }
c91ecb25 2580
7ba81444 2581 /* Stop suppressing error messages. */
c91ecb25
ND
2582 gdb_stderr = saved_gdb_stderr;
2583
2584 return type;
2585}
2586
c906108c
SS
2587/* Ugly hack to convert method stubs into method types.
2588
7ba81444
MS
2589 He ain't kiddin'. This demangles the name of the method into a
2590 string including argument types, parses out each argument type,
2591 generates a string casting a zero to that type, evaluates the
2592 string, and stuffs the resulting type into an argtype vector!!!
2593 Then it knows the type of the whole function (including argument
2594 types for overloading), which info used to be in the stab's but was
2595 removed to hack back the space required for them. */
c906108c 2596
de17c821 2597static void
fba45db2 2598check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 2599{
50810684 2600 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
2601 struct fn_field *f;
2602 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
8de20a37
TT
2603 char *demangled_name = gdb_demangle (mangled_name,
2604 DMGL_PARAMS | DMGL_ANSI);
c906108c
SS
2605 char *argtypetext, *p;
2606 int depth = 0, argcount = 1;
ad2f7632 2607 struct field *argtypes;
c906108c
SS
2608 struct type *mtype;
2609
2610 /* Make sure we got back a function string that we can use. */
2611 if (demangled_name)
2612 p = strchr (demangled_name, '(');
502dcf4e
AC
2613 else
2614 p = NULL;
c906108c
SS
2615
2616 if (demangled_name == NULL || p == NULL)
7ba81444
MS
2617 error (_("Internal: Cannot demangle mangled name `%s'."),
2618 mangled_name);
c906108c
SS
2619
2620 /* Now, read in the parameters that define this type. */
2621 p += 1;
2622 argtypetext = p;
2623 while (*p)
2624 {
070ad9f0 2625 if (*p == '(' || *p == '<')
c906108c
SS
2626 {
2627 depth += 1;
2628 }
070ad9f0 2629 else if (*p == ')' || *p == '>')
c906108c
SS
2630 {
2631 depth -= 1;
2632 }
2633 else if (*p == ',' && depth == 0)
2634 {
2635 argcount += 1;
2636 }
2637
2638 p += 1;
2639 }
2640
ad2f7632 2641 /* If we read one argument and it was ``void'', don't count it. */
61012eef 2642 if (startswith (argtypetext, "(void)"))
ad2f7632 2643 argcount -= 1;
c906108c 2644
ad2f7632
DJ
2645 /* We need one extra slot, for the THIS pointer. */
2646
2647 argtypes = (struct field *)
2648 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 2649 p = argtypetext;
4a1970e4
DJ
2650
2651 /* Add THIS pointer for non-static methods. */
2652 f = TYPE_FN_FIELDLIST1 (type, method_id);
2653 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2654 argcount = 0;
2655 else
2656 {
ad2f7632 2657 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
2658 argcount = 1;
2659 }
c906108c 2660
0963b4bd 2661 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
2662 {
2663 depth = 0;
2664 while (*p)
2665 {
2666 if (depth <= 0 && (*p == ',' || *p == ')'))
2667 {
ad2f7632
DJ
2668 /* Avoid parsing of ellipsis, they will be handled below.
2669 Also avoid ``void'' as above. */
2670 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2671 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 2672 {
ad2f7632 2673 argtypes[argcount].type =
48319d1f 2674 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
2675 argcount += 1;
2676 }
2677 argtypetext = p + 1;
2678 }
2679
070ad9f0 2680 if (*p == '(' || *p == '<')
c906108c
SS
2681 {
2682 depth += 1;
2683 }
070ad9f0 2684 else if (*p == ')' || *p == '>')
c906108c
SS
2685 {
2686 depth -= 1;
2687 }
2688
2689 p += 1;
2690 }
2691 }
2692
c906108c
SS
2693 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2694
2695 /* Now update the old "stub" type into a real type. */
2696 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
09e2d7c7
DE
2697 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2698 We want a method (TYPE_CODE_METHOD). */
2699 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2700 argtypes, argcount, p[-2] == '.');
876cecd0 2701 TYPE_STUB (mtype) = 0;
c906108c 2702 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632
DJ
2703
2704 xfree (demangled_name);
c906108c
SS
2705}
2706
7ba81444
MS
2707/* This is the external interface to check_stub_method, above. This
2708 function unstubs all of the signatures for TYPE's METHOD_ID method
2709 name. After calling this function TYPE_FN_FIELD_STUB will be
2710 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2711 correct.
de17c821
DJ
2712
2713 This function unfortunately can not die until stabs do. */
2714
2715void
2716check_stub_method_group (struct type *type, int method_id)
2717{
2718 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2719 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
de17c821 2720
041be526
SM
2721 for (int j = 0; j < len; j++)
2722 {
2723 if (TYPE_FN_FIELD_STUB (f, j))
de17c821 2724 check_stub_method (type, method_id, j);
de17c821
DJ
2725 }
2726}
2727
9655fd1a
JK
2728/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2729const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
2730
2731void
fba45db2 2732allocate_cplus_struct_type (struct type *type)
c906108c 2733{
b4ba55a1
JB
2734 if (HAVE_CPLUS_STRUCT (type))
2735 /* Structure was already allocated. Nothing more to do. */
2736 return;
2737
2738 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2739 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2740 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2741 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
ae6ae975 2742 set_type_vptr_fieldno (type, -1);
c906108c
SS
2743}
2744
b4ba55a1
JB
2745const struct gnat_aux_type gnat_aux_default =
2746 { NULL };
2747
2748/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2749 and allocate the associated gnat-specific data. The gnat-specific
2750 data is also initialized to gnat_aux_default. */
5212577a 2751
b4ba55a1
JB
2752void
2753allocate_gnat_aux_type (struct type *type)
2754{
2755 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2756 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2757 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2758 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2759}
2760
ae438bc5
UW
2761/* Helper function to initialize a newly allocated type. Set type code
2762 to CODE and initialize the type-specific fields accordingly. */
2763
2764static void
2765set_type_code (struct type *type, enum type_code code)
2766{
2767 TYPE_CODE (type) = code;
2768
2769 switch (code)
2770 {
2771 case TYPE_CODE_STRUCT:
2772 case TYPE_CODE_UNION:
2773 case TYPE_CODE_NAMESPACE:
2774 INIT_CPLUS_SPECIFIC (type);
2775 break;
2776 case TYPE_CODE_FLT:
2777 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2778 break;
2779 case TYPE_CODE_FUNC:
2780 INIT_FUNC_SPECIFIC (type);
2781 break;
2782 }
2783}
2784
19f392bc
UW
2785/* Helper function to verify floating-point format and size.
2786 BIT is the type size in bits; if BIT equals -1, the size is
2787 determined by the floatformat. Returns size to be used. */
2788
2789static int
0db7851f 2790verify_floatformat (int bit, const struct floatformat *floatformat)
19f392bc 2791{
0db7851f 2792 gdb_assert (floatformat != NULL);
9b790ce7 2793
19f392bc 2794 if (bit == -1)
0db7851f 2795 bit = floatformat->totalsize;
19f392bc 2796
0db7851f
UW
2797 gdb_assert (bit >= 0);
2798 gdb_assert (bit >= floatformat->totalsize);
19f392bc
UW
2799
2800 return bit;
2801}
2802
0db7851f
UW
2803/* Return the floating-point format for a floating-point variable of
2804 type TYPE. */
2805
2806const struct floatformat *
2807floatformat_from_type (const struct type *type)
2808{
2809 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2810 gdb_assert (TYPE_FLOATFORMAT (type));
2811 return TYPE_FLOATFORMAT (type);
2812}
2813
c906108c
SS
2814/* Helper function to initialize the standard scalar types.
2815
86f62fd7
TT
2816 If NAME is non-NULL, then it is used to initialize the type name.
2817 Note that NAME is not copied; it is required to have a lifetime at
2818 least as long as OBJFILE. */
c906108c
SS
2819
2820struct type *
77b7c781 2821init_type (struct objfile *objfile, enum type_code code, int bit,
19f392bc 2822 const char *name)
c906108c 2823{
52f0bd74 2824 struct type *type;
c906108c
SS
2825
2826 type = alloc_type (objfile);
ae438bc5 2827 set_type_code (type, code);
77b7c781
UW
2828 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
2829 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
86f62fd7 2830 TYPE_NAME (type) = name;
c906108c 2831
c16abbde 2832 return type;
c906108c 2833}
19f392bc 2834
46a4882b
PA
2835/* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2836 to use with variables that have no debug info. NAME is the type
2837 name. */
2838
2839static struct type *
2840init_nodebug_var_type (struct objfile *objfile, const char *name)
2841{
2842 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2843}
2844
19f392bc
UW
2845/* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2846 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2847 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2848
2849struct type *
2850init_integer_type (struct objfile *objfile,
2851 int bit, int unsigned_p, const char *name)
2852{
2853 struct type *t;
2854
77b7c781 2855 t = init_type (objfile, TYPE_CODE_INT, bit, name);
19f392bc
UW
2856 if (unsigned_p)
2857 TYPE_UNSIGNED (t) = 1;
2858
2859 return t;
2860}
2861
2862/* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2863 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2864 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2865
2866struct type *
2867init_character_type (struct objfile *objfile,
2868 int bit, int unsigned_p, const char *name)
2869{
2870 struct type *t;
2871
77b7c781 2872 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
19f392bc
UW
2873 if (unsigned_p)
2874 TYPE_UNSIGNED (t) = 1;
2875
2876 return t;
2877}
2878
2879/* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2880 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2881 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2882
2883struct type *
2884init_boolean_type (struct objfile *objfile,
2885 int bit, int unsigned_p, const char *name)
2886{
2887 struct type *t;
2888
77b7c781 2889 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
19f392bc
UW
2890 if (unsigned_p)
2891 TYPE_UNSIGNED (t) = 1;
2892
2893 return t;
2894}
2895
2896/* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2897 BIT is the type size in bits; if BIT equals -1, the size is
2898 determined by the floatformat. NAME is the type name. Set the
2899 TYPE_FLOATFORMAT from FLOATFORMATS. */
2900
2901struct type *
2902init_float_type (struct objfile *objfile,
2903 int bit, const char *name,
2904 const struct floatformat **floatformats)
2905{
0db7851f
UW
2906 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2907 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
19f392bc
UW
2908 struct type *t;
2909
0db7851f 2910 bit = verify_floatformat (bit, fmt);
77b7c781 2911 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
0db7851f 2912 TYPE_FLOATFORMAT (t) = fmt;
19f392bc
UW
2913
2914 return t;
2915}
2916
2917/* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2918 BIT is the type size in bits. NAME is the type name. */
2919
2920struct type *
2921init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2922{
2923 struct type *t;
2924
77b7c781 2925 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
19f392bc
UW
2926 return t;
2927}
2928
2929/* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2930 NAME is the type name. TARGET_TYPE is the component float type. */
2931
2932struct type *
2933init_complex_type (struct objfile *objfile,
2934 const char *name, struct type *target_type)
2935{
2936 struct type *t;
2937
2938 t = init_type (objfile, TYPE_CODE_COMPLEX,
77b7c781 2939 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
19f392bc
UW
2940 TYPE_TARGET_TYPE (t) = target_type;
2941 return t;
2942}
2943
2944/* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
2945 BIT is the pointer type size in bits. NAME is the type name.
2946 TARGET_TYPE is the pointer target type. Always sets the pointer type's
2947 TYPE_UNSIGNED flag. */
2948
2949struct type *
2950init_pointer_type (struct objfile *objfile,
2951 int bit, const char *name, struct type *target_type)
2952{
2953 struct type *t;
2954
77b7c781 2955 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
19f392bc
UW
2956 TYPE_TARGET_TYPE (t) = target_type;
2957 TYPE_UNSIGNED (t) = 1;
2958 return t;
2959}
2960
2b4424c3
TT
2961/* See gdbtypes.h. */
2962
2963unsigned
2964type_raw_align (struct type *type)
2965{
2966 if (type->align_log2 != 0)
2967 return 1 << (type->align_log2 - 1);
2968 return 0;
2969}
2970
2971/* See gdbtypes.h. */
2972
2973unsigned
2974type_align (struct type *type)
2975{
5561fc30 2976 /* Check alignment provided in the debug information. */
2b4424c3
TT
2977 unsigned raw_align = type_raw_align (type);
2978 if (raw_align != 0)
2979 return raw_align;
2980
5561fc30
AB
2981 /* Allow the architecture to provide an alignment. */
2982 struct gdbarch *arch = get_type_arch (type);
2983 ULONGEST align = gdbarch_type_align (arch, type);
2984 if (align != 0)
2985 return align;
2986
2b4424c3
TT
2987 switch (TYPE_CODE (type))
2988 {
2989 case TYPE_CODE_PTR:
2990 case TYPE_CODE_FUNC:
2991 case TYPE_CODE_FLAGS:
2992 case TYPE_CODE_INT:
75ba10dc 2993 case TYPE_CODE_RANGE:
2b4424c3
TT
2994 case TYPE_CODE_FLT:
2995 case TYPE_CODE_ENUM:
2996 case TYPE_CODE_REF:
2997 case TYPE_CODE_RVALUE_REF:
2998 case TYPE_CODE_CHAR:
2999 case TYPE_CODE_BOOL:
3000 case TYPE_CODE_DECFLOAT:
70cd633e
AB
3001 case TYPE_CODE_METHODPTR:
3002 case TYPE_CODE_MEMBERPTR:
5561fc30 3003 align = type_length_units (check_typedef (type));
2b4424c3
TT
3004 break;
3005
3006 case TYPE_CODE_ARRAY:
3007 case TYPE_CODE_COMPLEX:
3008 case TYPE_CODE_TYPEDEF:
3009 align = type_align (TYPE_TARGET_TYPE (type));
3010 break;
3011
3012 case TYPE_CODE_STRUCT:
3013 case TYPE_CODE_UNION:
3014 {
41077b66 3015 int number_of_non_static_fields = 0;
2b4424c3
TT
3016 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3017 {
bf9a735e 3018 if (!field_is_static (&TYPE_FIELD (type, i)))
2b4424c3 3019 {
41077b66 3020 number_of_non_static_fields++;
bf9a735e
AB
3021 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3022 if (f_align == 0)
3023 {
3024 /* Don't pretend we know something we don't. */
3025 align = 0;
3026 break;
3027 }
3028 if (f_align > align)
3029 align = f_align;
2b4424c3 3030 }
2b4424c3 3031 }
41077b66
AB
3032 /* A struct with no fields, or with only static fields has an
3033 alignment of 1. */
3034 if (number_of_non_static_fields == 0)
3035 align = 1;
2b4424c3
TT
3036 }
3037 break;
3038
3039 case TYPE_CODE_SET:
2b4424c3
TT
3040 case TYPE_CODE_STRING:
3041 /* Not sure what to do here, and these can't appear in C or C++
3042 anyway. */
3043 break;
3044
2b4424c3
TT
3045 case TYPE_CODE_VOID:
3046 align = 1;
3047 break;
3048
3049 case TYPE_CODE_ERROR:
3050 case TYPE_CODE_METHOD:
3051 default:
3052 break;
3053 }
3054
3055 if ((align & (align - 1)) != 0)
3056 {
3057 /* Not a power of 2, so pass. */
3058 align = 0;
3059 }
3060
3061 return align;
3062}
3063
3064/* See gdbtypes.h. */
3065
3066bool
3067set_type_align (struct type *type, ULONGEST align)
3068{
3069 /* Must be a power of 2. Zero is ok. */
3070 gdb_assert ((align & (align - 1)) == 0);
3071
3072 unsigned result = 0;
3073 while (align != 0)
3074 {
3075 ++result;
3076 align >>= 1;
3077 }
3078
3079 if (result >= (1 << TYPE_ALIGN_BITS))
3080 return false;
3081
3082 type->align_log2 = result;
3083 return true;
3084}
3085
5212577a
DE
3086\f
3087/* Queries on types. */
c906108c 3088
c906108c 3089int
fba45db2 3090can_dereference (struct type *t)
c906108c 3091{
7ba81444
MS
3092 /* FIXME: Should we return true for references as well as
3093 pointers? */
f168693b 3094 t = check_typedef (t);
c906108c
SS
3095 return
3096 (t != NULL
3097 && TYPE_CODE (t) == TYPE_CODE_PTR
3098 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3099}
3100
adf40b2e 3101int
fba45db2 3102is_integral_type (struct type *t)
adf40b2e 3103{
f168693b 3104 t = check_typedef (t);
adf40b2e
JM
3105 return
3106 ((t != NULL)
d4f3574e
SS
3107 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3108 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 3109 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
3110 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3111 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3112 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
3113}
3114
70100014
UW
3115int
3116is_floating_type (struct type *t)
3117{
3118 t = check_typedef (t);
3119 return
3120 ((t != NULL)
3121 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3122 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3123}
3124
e09342b5
TJB
3125/* Return true if TYPE is scalar. */
3126
220475ed 3127int
e09342b5
TJB
3128is_scalar_type (struct type *type)
3129{
f168693b 3130 type = check_typedef (type);
e09342b5
TJB
3131
3132 switch (TYPE_CODE (type))
3133 {
3134 case TYPE_CODE_ARRAY:
3135 case TYPE_CODE_STRUCT:
3136 case TYPE_CODE_UNION:
3137 case TYPE_CODE_SET:
3138 case TYPE_CODE_STRING:
e09342b5
TJB
3139 return 0;
3140 default:
3141 return 1;
3142 }
3143}
3144
3145/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
3146 the memory layout of a scalar type. E.g., an array or struct with only
3147 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
3148
3149int
3150is_scalar_type_recursive (struct type *t)
3151{
f168693b 3152 t = check_typedef (t);
e09342b5
TJB
3153
3154 if (is_scalar_type (t))
3155 return 1;
3156 /* Are we dealing with an array or string of known dimensions? */
3157 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3158 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3159 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3160 {
3161 LONGEST low_bound, high_bound;
3162 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3163
3164 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3165
3166 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3167 }
3168 /* Are we dealing with a struct with one element? */
3169 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3170 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3171 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3172 {
3173 int i, n = TYPE_NFIELDS (t);
3174
3175 /* If all elements of the union are scalar, then the union is scalar. */
3176 for (i = 0; i < n; i++)
3177 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3178 return 0;
3179
3180 return 1;
3181 }
3182
3183 return 0;
3184}
3185
6c659fc2
SC
3186/* Return true is T is a class or a union. False otherwise. */
3187
3188int
3189class_or_union_p (const struct type *t)
3190{
3191 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3192 || TYPE_CODE (t) == TYPE_CODE_UNION);
3193}
3194
4e8f195d
TT
3195/* A helper function which returns true if types A and B represent the
3196 "same" class type. This is true if the types have the same main
3197 type, or the same name. */
3198
3199int
3200class_types_same_p (const struct type *a, const struct type *b)
3201{
3202 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3203 || (TYPE_NAME (a) && TYPE_NAME (b)
3204 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3205}
3206
a9d5ef47
SW
3207/* If BASE is an ancestor of DCLASS return the distance between them.
3208 otherwise return -1;
3209 eg:
3210
3211 class A {};
3212 class B: public A {};
3213 class C: public B {};
3214 class D: C {};
3215
3216 distance_to_ancestor (A, A, 0) = 0
3217 distance_to_ancestor (A, B, 0) = 1
3218 distance_to_ancestor (A, C, 0) = 2
3219 distance_to_ancestor (A, D, 0) = 3
3220
3221 If PUBLIC is 1 then only public ancestors are considered,
3222 and the function returns the distance only if BASE is a public ancestor
3223 of DCLASS.
3224 Eg:
3225
0963b4bd 3226 distance_to_ancestor (A, D, 1) = -1. */
c906108c 3227
0526b37a 3228static int
fe978cb0 3229distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
c906108c
SS
3230{
3231 int i;
a9d5ef47 3232 int d;
c5aa993b 3233
f168693b
SM
3234 base = check_typedef (base);
3235 dclass = check_typedef (dclass);
c906108c 3236
4e8f195d 3237 if (class_types_same_p (base, dclass))
a9d5ef47 3238 return 0;
c906108c
SS
3239
3240 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 3241 {
fe978cb0 3242 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
0526b37a
SW
3243 continue;
3244
fe978cb0 3245 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
a9d5ef47
SW
3246 if (d >= 0)
3247 return 1 + d;
4e8f195d 3248 }
c906108c 3249
a9d5ef47 3250 return -1;
c906108c 3251}
4e8f195d 3252
0526b37a
SW
3253/* Check whether BASE is an ancestor or base class or DCLASS
3254 Return 1 if so, and 0 if not.
3255 Note: If BASE and DCLASS are of the same type, this function
3256 will return 1. So for some class A, is_ancestor (A, A) will
3257 return 1. */
3258
3259int
3260is_ancestor (struct type *base, struct type *dclass)
3261{
a9d5ef47 3262 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
3263}
3264
4e8f195d
TT
3265/* Like is_ancestor, but only returns true when BASE is a public
3266 ancestor of DCLASS. */
3267
3268int
3269is_public_ancestor (struct type *base, struct type *dclass)
3270{
a9d5ef47 3271 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
3272}
3273
3274/* A helper function for is_unique_ancestor. */
3275
3276static int
3277is_unique_ancestor_worker (struct type *base, struct type *dclass,
3278 int *offset,
8af8e3bc
PA
3279 const gdb_byte *valaddr, int embedded_offset,
3280 CORE_ADDR address, struct value *val)
4e8f195d
TT
3281{
3282 int i, count = 0;
3283
f168693b
SM
3284 base = check_typedef (base);
3285 dclass = check_typedef (dclass);
4e8f195d
TT
3286
3287 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3288 {
8af8e3bc
PA
3289 struct type *iter;
3290 int this_offset;
4e8f195d 3291
8af8e3bc
PA
3292 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3293
3294 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3295 address, val);
4e8f195d
TT
3296
3297 if (class_types_same_p (base, iter))
3298 {
3299 /* If this is the first subclass, set *OFFSET and set count
3300 to 1. Otherwise, if this is at the same offset as
3301 previous instances, do nothing. Otherwise, increment
3302 count. */
3303 if (*offset == -1)
3304 {
3305 *offset = this_offset;
3306 count = 1;
3307 }
3308 else if (this_offset == *offset)
3309 {
3310 /* Nothing. */
3311 }
3312 else
3313 ++count;
3314 }
3315 else
3316 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
3317 valaddr,
3318 embedded_offset + this_offset,
3319 address, val);
4e8f195d
TT
3320 }
3321
3322 return count;
3323}
3324
3325/* Like is_ancestor, but only returns true if BASE is a unique base
3326 class of the type of VAL. */
3327
3328int
3329is_unique_ancestor (struct type *base, struct value *val)
3330{
3331 int offset = -1;
3332
3333 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
3334 value_contents_for_printing (val),
3335 value_embedded_offset (val),
3336 value_address (val), val) == 1;
4e8f195d
TT
3337}
3338
c906108c 3339\f
5212577a 3340/* Overload resolution. */
c906108c 3341
6403aeea
SW
3342/* Return the sum of the rank of A with the rank of B. */
3343
3344struct rank
3345sum_ranks (struct rank a, struct rank b)
3346{
3347 struct rank c;
3348 c.rank = a.rank + b.rank;
a9d5ef47 3349 c.subrank = a.subrank + b.subrank;
6403aeea
SW
3350 return c;
3351}
3352
3353/* Compare rank A and B and return:
3354 0 if a = b
3355 1 if a is better than b
3356 -1 if b is better than a. */
3357
3358int
3359compare_ranks (struct rank a, struct rank b)
3360{
3361 if (a.rank == b.rank)
a9d5ef47
SW
3362 {
3363 if (a.subrank == b.subrank)
3364 return 0;
3365 if (a.subrank < b.subrank)
3366 return 1;
3367 if (a.subrank > b.subrank)
3368 return -1;
3369 }
6403aeea
SW
3370
3371 if (a.rank < b.rank)
3372 return 1;
3373
0963b4bd 3374 /* a.rank > b.rank */
6403aeea
SW
3375 return -1;
3376}
c5aa993b 3377
0963b4bd 3378/* Functions for overload resolution begin here. */
c906108c
SS
3379
3380/* Compare two badness vectors A and B and return the result.
7ba81444
MS
3381 0 => A and B are identical
3382 1 => A and B are incomparable
3383 2 => A is better than B
3384 3 => A is worse than B */
c906108c
SS
3385
3386int
82ceee50 3387compare_badness (const badness_vector &a, const badness_vector &b)
c906108c
SS
3388{
3389 int i;
3390 int tmp;
c5aa993b
JM
3391 short found_pos = 0; /* any positives in c? */
3392 short found_neg = 0; /* any negatives in c? */
3393
82ceee50
PA
3394 /* differing sizes => incomparable */
3395 if (a.size () != b.size ())
c906108c
SS
3396 return 1;
3397
c5aa993b 3398 /* Subtract b from a */
82ceee50 3399 for (i = 0; i < a.size (); i++)
c906108c 3400 {
82ceee50 3401 tmp = compare_ranks (b[i], a[i]);
c906108c 3402 if (tmp > 0)
c5aa993b 3403 found_pos = 1;
c906108c 3404 else if (tmp < 0)
c5aa993b 3405 found_neg = 1;
c906108c
SS
3406 }
3407
3408 if (found_pos)
3409 {
3410 if (found_neg)
c5aa993b 3411 return 1; /* incomparable */
c906108c 3412 else
c5aa993b 3413 return 3; /* A > B */
c906108c 3414 }
c5aa993b
JM
3415 else
3416 /* no positives */
c906108c
SS
3417 {
3418 if (found_neg)
c5aa993b 3419 return 2; /* A < B */
c906108c 3420 else
c5aa993b 3421 return 0; /* A == B */
c906108c
SS
3422 }
3423}
3424
6b1747cd 3425/* Rank a function by comparing its parameter types (PARMS), to the
82ceee50
PA
3426 types of an argument list (ARGS). Return the badness vector. This
3427 has ARGS.size() + 1 entries. */
c906108c 3428
82ceee50 3429badness_vector
6b1747cd
PA
3430rank_function (gdb::array_view<type *> parms,
3431 gdb::array_view<value *> args)
c906108c 3432{
82ceee50
PA
3433 /* add 1 for the length-match rank. */
3434 badness_vector bv;
3435 bv.reserve (1 + args.size ());
c906108c
SS
3436
3437 /* First compare the lengths of the supplied lists.
7ba81444 3438 If there is a mismatch, set it to a high value. */
c5aa993b 3439
c906108c 3440 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
3441 arguments and ellipsis parameter lists, we should consider those
3442 and rank the length-match more finely. */
c906108c 3443
82ceee50
PA
3444 bv.push_back ((args.size () != parms.size ())
3445 ? LENGTH_MISMATCH_BADNESS
3446 : EXACT_MATCH_BADNESS);
c906108c 3447
0963b4bd 3448 /* Now rank all the parameters of the candidate function. */
82ceee50
PA
3449 size_t min_len = std::min (parms.size (), args.size ());
3450
3451 for (size_t i = 0; i < min_len; i++)
3452 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3453 args[i]));
c906108c 3454
0963b4bd 3455 /* If more arguments than parameters, add dummy entries. */
82ceee50
PA
3456 for (size_t i = min_len; i < args.size (); i++)
3457 bv.push_back (TOO_FEW_PARAMS_BADNESS);
c906108c
SS
3458
3459 return bv;
3460}
3461
973ccf8b
DJ
3462/* Compare the names of two integer types, assuming that any sign
3463 qualifiers have been checked already. We do it this way because
3464 there may be an "int" in the name of one of the types. */
3465
3466static int
3467integer_types_same_name_p (const char *first, const char *second)
3468{
3469 int first_p, second_p;
3470
7ba81444
MS
3471 /* If both are shorts, return 1; if neither is a short, keep
3472 checking. */
973ccf8b
DJ
3473 first_p = (strstr (first, "short") != NULL);
3474 second_p = (strstr (second, "short") != NULL);
3475 if (first_p && second_p)
3476 return 1;
3477 if (first_p || second_p)
3478 return 0;
3479
3480 /* Likewise for long. */
3481 first_p = (strstr (first, "long") != NULL);
3482 second_p = (strstr (second, "long") != NULL);
3483 if (first_p && second_p)
3484 return 1;
3485 if (first_p || second_p)
3486 return 0;
3487
3488 /* Likewise for char. */
3489 first_p = (strstr (first, "char") != NULL);
3490 second_p = (strstr (second, "char") != NULL);
3491 if (first_p && second_p)
3492 return 1;
3493 if (first_p || second_p)
3494 return 0;
3495
3496 /* They must both be ints. */
3497 return 1;
3498}
3499
894882e3
TT
3500/* Compares type A to type B. Returns true if they represent the same
3501 type, false otherwise. */
7062b0a0 3502
894882e3 3503bool
7062b0a0
SW
3504types_equal (struct type *a, struct type *b)
3505{
3506 /* Identical type pointers. */
3507 /* However, this still doesn't catch all cases of same type for b
3508 and a. The reason is that builtin types are different from
3509 the same ones constructed from the object. */
3510 if (a == b)
894882e3 3511 return true;
7062b0a0
SW
3512
3513 /* Resolve typedefs */
3514 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3515 a = check_typedef (a);
3516 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3517 b = check_typedef (b);
3518
3519 /* If after resolving typedefs a and b are not of the same type
3520 code then they are not equal. */
3521 if (TYPE_CODE (a) != TYPE_CODE (b))
894882e3 3522 return false;
7062b0a0
SW
3523
3524 /* If a and b are both pointers types or both reference types then
3525 they are equal of the same type iff the objects they refer to are
3526 of the same type. */
3527 if (TYPE_CODE (a) == TYPE_CODE_PTR
3528 || TYPE_CODE (a) == TYPE_CODE_REF)
3529 return types_equal (TYPE_TARGET_TYPE (a),
3530 TYPE_TARGET_TYPE (b));
3531
0963b4bd 3532 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
3533 are exactly the same. This happens when we generate method
3534 stubs. The types won't point to the same address, but they
0963b4bd 3535 really are the same. */
7062b0a0
SW
3536
3537 if (TYPE_NAME (a) && TYPE_NAME (b)
3538 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
894882e3 3539 return true;
7062b0a0
SW
3540
3541 /* Check if identical after resolving typedefs. */
3542 if (a == b)
894882e3 3543 return true;
7062b0a0 3544
9ce98649
TT
3545 /* Two function types are equal if their argument and return types
3546 are equal. */
3547 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3548 {
3549 int i;
3550
3551 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
894882e3 3552 return false;
9ce98649
TT
3553
3554 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
894882e3 3555 return false;
9ce98649
TT
3556
3557 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3558 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
894882e3 3559 return false;
9ce98649 3560
894882e3 3561 return true;
9ce98649
TT
3562 }
3563
894882e3 3564 return false;
7062b0a0 3565}
ca092b61
DE
3566\f
3567/* Deep comparison of types. */
3568
3569/* An entry in the type-equality bcache. */
3570
894882e3 3571struct type_equality_entry
ca092b61 3572{
894882e3
TT
3573 type_equality_entry (struct type *t1, struct type *t2)
3574 : type1 (t1),
3575 type2 (t2)
3576 {
3577 }
ca092b61 3578
894882e3
TT
3579 struct type *type1, *type2;
3580};
ca092b61 3581
894882e3
TT
3582/* A helper function to compare two strings. Returns true if they are
3583 the same, false otherwise. Handles NULLs properly. */
ca092b61 3584
894882e3 3585static bool
ca092b61
DE
3586compare_maybe_null_strings (const char *s, const char *t)
3587{
894882e3
TT
3588 if (s == NULL || t == NULL)
3589 return s == t;
ca092b61
DE
3590 return strcmp (s, t) == 0;
3591}
3592
3593/* A helper function for check_types_worklist that checks two types for
894882e3
TT
3594 "deep" equality. Returns true if the types are considered the
3595 same, false otherwise. */
ca092b61 3596
894882e3 3597static bool
ca092b61 3598check_types_equal (struct type *type1, struct type *type2,
894882e3 3599 std::vector<type_equality_entry> *worklist)
ca092b61 3600{
f168693b
SM
3601 type1 = check_typedef (type1);
3602 type2 = check_typedef (type2);
ca092b61
DE
3603
3604 if (type1 == type2)
894882e3 3605 return true;
ca092b61
DE
3606
3607 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3608 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3609 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3610 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3611 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3612 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3613 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3614 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3615 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
894882e3 3616 return false;
ca092b61 3617
e86ca25f 3618 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
894882e3 3619 return false;
ca092b61 3620 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
894882e3 3621 return false;
ca092b61
DE
3622
3623 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3624 {
0f59d5fc 3625 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
894882e3 3626 return false;
ca092b61
DE
3627 }
3628 else
3629 {
3630 int i;
3631
3632 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3633 {
3634 const struct field *field1 = &TYPE_FIELD (type1, i);
3635 const struct field *field2 = &TYPE_FIELD (type2, i);
ca092b61
DE
3636
3637 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3638 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3639 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
894882e3 3640 return false;
ca092b61
DE
3641 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3642 FIELD_NAME (*field2)))
894882e3 3643 return false;
ca092b61
DE
3644 switch (FIELD_LOC_KIND (*field1))
3645 {
3646 case FIELD_LOC_KIND_BITPOS:
3647 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
894882e3 3648 return false;
ca092b61
DE
3649 break;
3650 case FIELD_LOC_KIND_ENUMVAL:
3651 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
894882e3 3652 return false;
ca092b61
DE
3653 break;
3654 case FIELD_LOC_KIND_PHYSADDR:
3655 if (FIELD_STATIC_PHYSADDR (*field1)
3656 != FIELD_STATIC_PHYSADDR (*field2))
894882e3 3657 return false;
ca092b61
DE
3658 break;
3659 case FIELD_LOC_KIND_PHYSNAME:
3660 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3661 FIELD_STATIC_PHYSNAME (*field2)))
894882e3 3662 return false;
ca092b61
DE
3663 break;
3664 case FIELD_LOC_KIND_DWARF_BLOCK:
3665 {
3666 struct dwarf2_locexpr_baton *block1, *block2;
3667
3668 block1 = FIELD_DWARF_BLOCK (*field1);
3669 block2 = FIELD_DWARF_BLOCK (*field2);
3670 if (block1->per_cu != block2->per_cu
3671 || block1->size != block2->size
3672 || memcmp (block1->data, block2->data, block1->size) != 0)
894882e3 3673 return false;
ca092b61
DE
3674 }
3675 break;
3676 default:
3677 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3678 "%d by check_types_equal"),
3679 FIELD_LOC_KIND (*field1));
3680 }
3681
894882e3 3682 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
ca092b61
DE
3683 }
3684 }
3685
3686 if (TYPE_TARGET_TYPE (type1) != NULL)
3687 {
ca092b61 3688 if (TYPE_TARGET_TYPE (type2) == NULL)
894882e3 3689 return false;
ca092b61 3690
894882e3
TT
3691 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
3692 TYPE_TARGET_TYPE (type2));
ca092b61
DE
3693 }
3694 else if (TYPE_TARGET_TYPE (type2) != NULL)
894882e3 3695 return false;
ca092b61 3696
894882e3 3697 return true;
ca092b61
DE
3698}
3699
894882e3
TT
3700/* Check types on a worklist for equality. Returns false if any pair
3701 is not equal, true if they are all considered equal. */
ca092b61 3702
894882e3
TT
3703static bool
3704check_types_worklist (std::vector<type_equality_entry> *worklist,
ca092b61
DE
3705 struct bcache *cache)
3706{
894882e3 3707 while (!worklist->empty ())
ca092b61 3708 {
ca092b61
DE
3709 int added;
3710
894882e3
TT
3711 struct type_equality_entry entry = std::move (worklist->back ());
3712 worklist->pop_back ();
ca092b61
DE
3713
3714 /* If the type pair has already been visited, we know it is
3715 ok. */
25629dfd 3716 cache->insert (&entry, sizeof (entry), &added);
ca092b61
DE
3717 if (!added)
3718 continue;
3719
894882e3
TT
3720 if (!check_types_equal (entry.type1, entry.type2, worklist))
3721 return false;
ca092b61 3722 }
7062b0a0 3723
894882e3 3724 return true;
ca092b61
DE
3725}
3726
894882e3
TT
3727/* Return true if types TYPE1 and TYPE2 are equal, as determined by a
3728 "deep comparison". Otherwise return false. */
ca092b61 3729
894882e3 3730bool
ca092b61
DE
3731types_deeply_equal (struct type *type1, struct type *type2)
3732{
894882e3 3733 std::vector<type_equality_entry> worklist;
ca092b61
DE
3734
3735 gdb_assert (type1 != NULL && type2 != NULL);
3736
3737 /* Early exit for the simple case. */
3738 if (type1 == type2)
894882e3 3739 return true;
ca092b61 3740
25629dfd 3741 struct bcache cache (nullptr, nullptr);
894882e3 3742 worklist.emplace_back (type1, type2);
25629dfd 3743 return check_types_worklist (&worklist, &cache);
ca092b61 3744}
3f2f83dd
KB
3745
3746/* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3747 Otherwise return one. */
3748
3749int
3750type_not_allocated (const struct type *type)
3751{
3752 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3753
3754 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3755 && !TYPE_DYN_PROP_ADDR (prop));
3756}
3757
3758/* Associated status of type TYPE. Return zero if type TYPE is associated.
3759 Otherwise return one. */
3760
3761int
3762type_not_associated (const struct type *type)
3763{
3764 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3765
3766 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3767 && !TYPE_DYN_PROP_ADDR (prop));
3768}
9293fc63
SM
3769
3770/* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
3771
3772static struct rank
3773rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
3774{
3775 struct rank rank = {0,0};
3776
3777 switch (TYPE_CODE (arg))
3778 {
3779 case TYPE_CODE_PTR:
3780
3781 /* Allowed pointer conversions are:
3782 (a) pointer to void-pointer conversion. */
3783 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3784 return VOID_PTR_CONVERSION_BADNESS;
3785
3786 /* (b) pointer to ancestor-pointer conversion. */
3787 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3788 TYPE_TARGET_TYPE (arg),
3789 0);
3790 if (rank.subrank >= 0)
3791 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3792
3793 return INCOMPATIBLE_TYPE_BADNESS;
3794 case TYPE_CODE_ARRAY:
3795 {
3796 struct type *t1 = TYPE_TARGET_TYPE (parm);
3797 struct type *t2 = TYPE_TARGET_TYPE (arg);
3798
3799 if (types_equal (t1, t2))
3800 {
3801 /* Make sure they are CV equal. */
3802 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3803 rank.subrank |= CV_CONVERSION_CONST;
3804 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3805 rank.subrank |= CV_CONVERSION_VOLATILE;
3806 if (rank.subrank != 0)
3807 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3808 return EXACT_MATCH_BADNESS;
3809 }
3810 return INCOMPATIBLE_TYPE_BADNESS;
3811 }
3812 case TYPE_CODE_FUNC:
3813 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3814 case TYPE_CODE_INT:
3815 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3816 {
3817 if (value_as_long (value) == 0)
3818 {
3819 /* Null pointer conversion: allow it to be cast to a pointer.
3820 [4.10.1 of C++ standard draft n3290] */
3821 return NULL_POINTER_CONVERSION_BADNESS;
3822 }
3823 else
3824 {
3825 /* If type checking is disabled, allow the conversion. */
3826 if (!strict_type_checking)
3827 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3828 }
3829 }
3830 /* fall through */
3831 case TYPE_CODE_ENUM:
3832 case TYPE_CODE_FLAGS:
3833 case TYPE_CODE_CHAR:
3834 case TYPE_CODE_RANGE:
3835 case TYPE_CODE_BOOL:
3836 default:
3837 return INCOMPATIBLE_TYPE_BADNESS;
3838 }
3839}
3840
b9f4512f
SM
3841/* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
3842
3843static struct rank
3844rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
3845{
3846 switch (TYPE_CODE (arg))
3847 {
3848 case TYPE_CODE_PTR:
3849 case TYPE_CODE_ARRAY:
3850 return rank_one_type (TYPE_TARGET_TYPE (parm),
3851 TYPE_TARGET_TYPE (arg), NULL);
3852 default:
3853 return INCOMPATIBLE_TYPE_BADNESS;
3854 }
3855}
3856
f1f832d6
SM
3857/* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
3858
3859static struct rank
3860rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
3861{
3862 switch (TYPE_CODE (arg))
3863 {
3864 case TYPE_CODE_PTR: /* funcptr -> func */
3865 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3866 default:
3867 return INCOMPATIBLE_TYPE_BADNESS;
3868 }
3869}
3870
34910087
SM
3871/* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
3872
3873static struct rank
3874rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
3875{
3876 switch (TYPE_CODE (arg))
3877 {
3878 case TYPE_CODE_INT:
3879 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3880 {
3881 /* Deal with signed, unsigned, and plain chars and
3882 signed and unsigned ints. */
3883 if (TYPE_NOSIGN (parm))
3884 {
3885 /* This case only for character types. */
3886 if (TYPE_NOSIGN (arg))
3887 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3888 else /* signed/unsigned char -> plain char */
3889 return INTEGER_CONVERSION_BADNESS;
3890 }
3891 else if (TYPE_UNSIGNED (parm))
3892 {
3893 if (TYPE_UNSIGNED (arg))
3894 {
3895 /* unsigned int -> unsigned int, or
3896 unsigned long -> unsigned long */
3897 if (integer_types_same_name_p (TYPE_NAME (parm),
3898 TYPE_NAME (arg)))
3899 return EXACT_MATCH_BADNESS;
3900 else if (integer_types_same_name_p (TYPE_NAME (arg),
3901 "int")
3902 && integer_types_same_name_p (TYPE_NAME (parm),
3903 "long"))
3904 /* unsigned int -> unsigned long */
3905 return INTEGER_PROMOTION_BADNESS;
3906 else
3907 /* unsigned long -> unsigned int */
3908 return INTEGER_CONVERSION_BADNESS;
3909 }
3910 else
3911 {
3912 if (integer_types_same_name_p (TYPE_NAME (arg),
3913 "long")
3914 && integer_types_same_name_p (TYPE_NAME (parm),
3915 "int"))
3916 /* signed long -> unsigned int */
3917 return INTEGER_CONVERSION_BADNESS;
3918 else
3919 /* signed int/long -> unsigned int/long */
3920 return INTEGER_CONVERSION_BADNESS;
3921 }
3922 }
3923 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3924 {
3925 if (integer_types_same_name_p (TYPE_NAME (parm),
3926 TYPE_NAME (arg)))
3927 return EXACT_MATCH_BADNESS;
3928 else if (integer_types_same_name_p (TYPE_NAME (arg),
3929 "int")
3930 && integer_types_same_name_p (TYPE_NAME (parm),
3931 "long"))
3932 return INTEGER_PROMOTION_BADNESS;
3933 else
3934 return INTEGER_CONVERSION_BADNESS;
3935 }
3936 else
3937 return INTEGER_CONVERSION_BADNESS;
3938 }
3939 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3940 return INTEGER_PROMOTION_BADNESS;
3941 else
3942 return INTEGER_CONVERSION_BADNESS;
3943 case TYPE_CODE_ENUM:
3944 case TYPE_CODE_FLAGS:
3945 case TYPE_CODE_CHAR:
3946 case TYPE_CODE_RANGE:
3947 case TYPE_CODE_BOOL:
3948 if (TYPE_DECLARED_CLASS (arg))
3949 return INCOMPATIBLE_TYPE_BADNESS;
3950 return INTEGER_PROMOTION_BADNESS;
3951 case TYPE_CODE_FLT:
3952 return INT_FLOAT_CONVERSION_BADNESS;
3953 case TYPE_CODE_PTR:
3954 return NS_POINTER_CONVERSION_BADNESS;
3955 default:
3956 return INCOMPATIBLE_TYPE_BADNESS;
3957 }
3958}
3959
793cd1d2
SM
3960/* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
3961
3962static struct rank
3963rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
3964{
3965 switch (TYPE_CODE (arg))
3966 {
3967 case TYPE_CODE_INT:
3968 case TYPE_CODE_CHAR:
3969 case TYPE_CODE_RANGE:
3970 case TYPE_CODE_BOOL:
3971 case TYPE_CODE_ENUM:
3972 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3973 return INCOMPATIBLE_TYPE_BADNESS;
3974 return INTEGER_CONVERSION_BADNESS;
3975 case TYPE_CODE_FLT:
3976 return INT_FLOAT_CONVERSION_BADNESS;
3977 default:
3978 return INCOMPATIBLE_TYPE_BADNESS;
3979 }
3980}
3981
41ea4728
SM
3982/* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
3983
3984static struct rank
3985rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
3986{
3987 switch (TYPE_CODE (arg))
3988 {
3989 case TYPE_CODE_RANGE:
3990 case TYPE_CODE_BOOL:
3991 case TYPE_CODE_ENUM:
3992 if (TYPE_DECLARED_CLASS (arg))
3993 return INCOMPATIBLE_TYPE_BADNESS;
3994 return INTEGER_CONVERSION_BADNESS;
3995 case TYPE_CODE_FLT:
3996 return INT_FLOAT_CONVERSION_BADNESS;
3997 case TYPE_CODE_INT:
3998 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3999 return INTEGER_CONVERSION_BADNESS;
4000 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4001 return INTEGER_PROMOTION_BADNESS;
4002 /* fall through */
4003 case TYPE_CODE_CHAR:
4004 /* Deal with signed, unsigned, and plain chars for C++ and
4005 with int cases falling through from previous case. */
4006 if (TYPE_NOSIGN (parm))
4007 {
4008 if (TYPE_NOSIGN (arg))
4009 return EXACT_MATCH_BADNESS;
4010 else
4011 return INTEGER_CONVERSION_BADNESS;
4012 }
4013 else if (TYPE_UNSIGNED (parm))
4014 {
4015 if (TYPE_UNSIGNED (arg))
4016 return EXACT_MATCH_BADNESS;
4017 else
4018 return INTEGER_PROMOTION_BADNESS;
4019 }
4020 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4021 return EXACT_MATCH_BADNESS;
4022 else
4023 return INTEGER_CONVERSION_BADNESS;
4024 default:
4025 return INCOMPATIBLE_TYPE_BADNESS;
4026 }
4027}
4028
0dd322dc
SM
4029/* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4030
4031static struct rank
4032rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4033{
4034 switch (TYPE_CODE (arg))
4035 {
4036 case TYPE_CODE_INT:
4037 case TYPE_CODE_CHAR:
4038 case TYPE_CODE_RANGE:
4039 case TYPE_CODE_BOOL:
4040 case TYPE_CODE_ENUM:
4041 return INTEGER_CONVERSION_BADNESS;
4042 case TYPE_CODE_FLT:
4043 return INT_FLOAT_CONVERSION_BADNESS;
4044 default:
4045 return INCOMPATIBLE_TYPE_BADNESS;
4046 }
4047}
4048
2c509035
SM
4049/* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4050
4051static struct rank
4052rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4053{
4054 switch (TYPE_CODE (arg))
4055 {
4056 /* n3290 draft, section 4.12.1 (conv.bool):
4057
4058 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4059 pointer to member type can be converted to a prvalue of type
4060 bool. A zero value, null pointer value, or null member pointer
4061 value is converted to false; any other value is converted to
4062 true. A prvalue of type std::nullptr_t can be converted to a
4063 prvalue of type bool; the resulting value is false." */
4064 case TYPE_CODE_INT:
4065 case TYPE_CODE_CHAR:
4066 case TYPE_CODE_ENUM:
4067 case TYPE_CODE_FLT:
4068 case TYPE_CODE_MEMBERPTR:
4069 case TYPE_CODE_PTR:
4070 return BOOL_CONVERSION_BADNESS;
4071 case TYPE_CODE_RANGE:
4072 return INCOMPATIBLE_TYPE_BADNESS;
4073 case TYPE_CODE_BOOL:
4074 return EXACT_MATCH_BADNESS;
4075 default:
4076 return INCOMPATIBLE_TYPE_BADNESS;
4077 }
4078}
4079
7f17b20d
SM
4080/* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4081
4082static struct rank
4083rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4084{
4085 switch (TYPE_CODE (arg))
4086 {
4087 case TYPE_CODE_FLT:
4088 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4089 return FLOAT_PROMOTION_BADNESS;
4090 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4091 return EXACT_MATCH_BADNESS;
4092 else
4093 return FLOAT_CONVERSION_BADNESS;
4094 case TYPE_CODE_INT:
4095 case TYPE_CODE_BOOL:
4096 case TYPE_CODE_ENUM:
4097 case TYPE_CODE_RANGE:
4098 case TYPE_CODE_CHAR:
4099 return INT_FLOAT_CONVERSION_BADNESS;
4100 default:
4101 return INCOMPATIBLE_TYPE_BADNESS;
4102 }
4103}
4104
2598a94b
SM
4105/* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4106
4107static struct rank
4108rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4109{
4110 switch (TYPE_CODE (arg))
4111 { /* Strictly not needed for C++, but... */
4112 case TYPE_CODE_FLT:
4113 return FLOAT_PROMOTION_BADNESS;
4114 case TYPE_CODE_COMPLEX:
4115 return EXACT_MATCH_BADNESS;
4116 default:
4117 return INCOMPATIBLE_TYPE_BADNESS;
4118 }
4119}
4120
595f96a9
SM
4121/* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4122
4123static struct rank
4124rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4125{
4126 struct rank rank = {0, 0};
4127
4128 switch (TYPE_CODE (arg))
4129 {
4130 case TYPE_CODE_STRUCT:
4131 /* Check for derivation */
4132 rank.subrank = distance_to_ancestor (parm, arg, 0);
4133 if (rank.subrank >= 0)
4134 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4135 /* fall through */
4136 default:
4137 return INCOMPATIBLE_TYPE_BADNESS;
4138 }
4139}
4140
f09ce22d
SM
4141/* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4142
4143static struct rank
4144rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4145{
4146 switch (TYPE_CODE (arg))
4147 {
4148 /* Not in C++ */
4149 case TYPE_CODE_SET:
4150 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4151 TYPE_FIELD_TYPE (arg, 0), NULL);
4152 default:
4153 return INCOMPATIBLE_TYPE_BADNESS;
4154 }
4155}
4156
c906108c
SS
4157/* Compare one type (PARM) for compatibility with another (ARG).
4158 * PARM is intended to be the parameter type of a function; and
4159 * ARG is the supplied argument's type. This function tests if
4160 * the latter can be converted to the former.
da096638 4161 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
4162 *
4163 * Return 0 if they are identical types;
4164 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
4165 * PARM is to ARG. The higher the return value, the worse the match.
4166 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 4167
6403aeea 4168struct rank
da096638 4169rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 4170{
a9d5ef47 4171 struct rank rank = {0,0};
7062b0a0 4172
c906108c
SS
4173 /* Resolve typedefs */
4174 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
4175 parm = check_typedef (parm);
4176 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
4177 arg = check_typedef (arg);
4178
e15c3eb4 4179 if (TYPE_IS_REFERENCE (parm) && value != NULL)
15c0a2a9 4180 {
e15c3eb4
KS
4181 if (VALUE_LVAL (value) == not_lval)
4182 {
4183 /* Rvalues should preferably bind to rvalue references or const
4184 lvalue references. */
4185 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4186 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4187 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4188 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4189 else
4190 return INCOMPATIBLE_TYPE_BADNESS;
4191 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4192 }
4193 else
4194 {
4195 /* Lvalues should prefer lvalue overloads. */
4196 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4197 {
4198 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4199 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4200 }
4201 }
15c0a2a9
AV
4202 }
4203
4204 if (types_equal (parm, arg))
15c0a2a9 4205 {
e15c3eb4
KS
4206 struct type *t1 = parm;
4207 struct type *t2 = arg;
15c0a2a9 4208
e15c3eb4
KS
4209 /* For pointers and references, compare target type. */
4210 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4211 {
4212 t1 = TYPE_TARGET_TYPE (parm);
4213 t2 = TYPE_TARGET_TYPE (arg);
4214 }
15c0a2a9 4215
e15c3eb4
KS
4216 /* Make sure they are CV equal, too. */
4217 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4218 rank.subrank |= CV_CONVERSION_CONST;
4219 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4220 rank.subrank |= CV_CONVERSION_VOLATILE;
4221 if (rank.subrank != 0)
4222 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4223 return EXACT_MATCH_BADNESS;
15c0a2a9
AV
4224 }
4225
db577aea 4226 /* See through references, since we can almost make non-references
7ba81444 4227 references. */
aa006118
AV
4228
4229 if (TYPE_IS_REFERENCE (arg))
da096638 4230 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
6403aeea 4231 REFERENCE_CONVERSION_BADNESS));
aa006118 4232 if (TYPE_IS_REFERENCE (parm))
da096638 4233 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
6403aeea 4234 REFERENCE_CONVERSION_BADNESS));
5d161b24 4235 if (overload_debug)
7ba81444
MS
4236 /* Debugging only. */
4237 fprintf_filtered (gdb_stderr,
4238 "------ Arg is %s [%d], parm is %s [%d]\n",
4239 TYPE_NAME (arg), TYPE_CODE (arg),
4240 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 4241
0963b4bd 4242 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
4243
4244 switch (TYPE_CODE (parm))
4245 {
c5aa993b 4246 case TYPE_CODE_PTR:
9293fc63 4247 return rank_one_type_parm_ptr (parm, arg, value);
c5aa993b 4248 case TYPE_CODE_ARRAY:
b9f4512f 4249 return rank_one_type_parm_array (parm, arg, value);
c5aa993b 4250 case TYPE_CODE_FUNC:
f1f832d6 4251 return rank_one_type_parm_func (parm, arg, value);
c5aa993b 4252 case TYPE_CODE_INT:
34910087 4253 return rank_one_type_parm_int (parm, arg, value);
c5aa993b 4254 case TYPE_CODE_ENUM:
793cd1d2 4255 return rank_one_type_parm_enum (parm, arg, value);
c5aa993b 4256 case TYPE_CODE_CHAR:
41ea4728 4257 return rank_one_type_parm_char (parm, arg, value);
c5aa993b 4258 case TYPE_CODE_RANGE:
0dd322dc 4259 return rank_one_type_parm_range (parm, arg, value);
c5aa993b 4260 case TYPE_CODE_BOOL:
2c509035 4261 return rank_one_type_parm_bool (parm, arg, value);
c5aa993b 4262 case TYPE_CODE_FLT:
7f17b20d 4263 return rank_one_type_parm_float (parm, arg, value);
c5aa993b 4264 case TYPE_CODE_COMPLEX:
2598a94b 4265 return rank_one_type_parm_complex (parm, arg, value);
c5aa993b 4266 case TYPE_CODE_STRUCT:
595f96a9 4267 return rank_one_type_parm_struct (parm, arg, value);
c5aa993b 4268 case TYPE_CODE_SET:
f09ce22d 4269 return rank_one_type_parm_set (parm, arg, value);
c5aa993b
JM
4270 default:
4271 return INCOMPATIBLE_TYPE_BADNESS;
4272 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
4273}
4274
0963b4bd 4275/* End of functions for overload resolution. */
5212577a
DE
4276\f
4277/* Routines to pretty-print types. */
c906108c 4278
c906108c 4279static void
fba45db2 4280print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
4281{
4282 int bitno;
4283
4284 for (bitno = 0; bitno < nbits; bitno++)
4285 {
4286 if ((bitno % 8) == 0)
4287 {
4288 puts_filtered (" ");
4289 }
4290 if (B_TST (bits, bitno))
a3f17187 4291 printf_filtered (("1"));
c906108c 4292 else
a3f17187 4293 printf_filtered (("0"));
c906108c
SS
4294 }
4295}
4296
ad2f7632 4297/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
4298 include it since we may get into a infinitely recursive
4299 situation. */
c906108c
SS
4300
4301static void
4c9e8482 4302print_args (struct field *args, int nargs, int spaces)
c906108c
SS
4303{
4304 if (args != NULL)
4305 {
ad2f7632
DJ
4306 int i;
4307
4308 for (i = 0; i < nargs; i++)
4c9e8482
DE
4309 {
4310 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4311 args[i].name != NULL ? args[i].name : "<NULL>");
4312 recursive_dump_type (args[i].type, spaces + 2);
4313 }
c906108c
SS
4314 }
4315}
4316
d6a843b5
JK
4317int
4318field_is_static (struct field *f)
4319{
4320 /* "static" fields are the fields whose location is not relative
4321 to the address of the enclosing struct. It would be nice to
4322 have a dedicated flag that would be set for static fields when
4323 the type is being created. But in practice, checking the field
254e6b9e 4324 loc_kind should give us an accurate answer. */
d6a843b5
JK
4325 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4326 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4327}
4328
c906108c 4329static void
fba45db2 4330dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
4331{
4332 int method_idx;
4333 int overload_idx;
4334 struct fn_field *f;
4335
4336 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 4337 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
4338 printf_filtered ("\n");
4339 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4340 {
4341 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4342 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4343 method_idx,
4344 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
4345 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4346 gdb_stdout);
a3f17187 4347 printf_filtered (_(") length %d\n"),
c906108c
SS
4348 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4349 for (overload_idx = 0;
4350 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4351 overload_idx++)
4352 {
4353 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4354 overload_idx,
4355 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
4356 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4357 gdb_stdout);
c906108c
SS
4358 printf_filtered (")\n");
4359 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
4360 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4361 gdb_stdout);
c906108c
SS
4362 printf_filtered ("\n");
4363
4364 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4365 spaces + 8 + 2);
4366
4367 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
4368 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4369 gdb_stdout);
c906108c 4370 printf_filtered ("\n");
4c9e8482
DE
4371 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4372 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4373 spaces + 8 + 2);
c906108c 4374 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
4375 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4376 gdb_stdout);
c906108c
SS
4377 printf_filtered ("\n");
4378
4379 printfi_filtered (spaces + 8, "is_const %d\n",
4380 TYPE_FN_FIELD_CONST (f, overload_idx));
4381 printfi_filtered (spaces + 8, "is_volatile %d\n",
4382 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4383 printfi_filtered (spaces + 8, "is_private %d\n",
4384 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4385 printfi_filtered (spaces + 8, "is_protected %d\n",
4386 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4387 printfi_filtered (spaces + 8, "is_stub %d\n",
4388 TYPE_FN_FIELD_STUB (f, overload_idx));
4389 printfi_filtered (spaces + 8, "voffset %u\n",
4390 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4391 }
4392 }
4393}
4394
4395static void
fba45db2 4396print_cplus_stuff (struct type *type, int spaces)
c906108c 4397{
ae6ae975
DE
4398 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4399 printfi_filtered (spaces, "vptr_basetype ");
4400 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4401 puts_filtered ("\n");
4402 if (TYPE_VPTR_BASETYPE (type) != NULL)
4403 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4404
c906108c
SS
4405 printfi_filtered (spaces, "n_baseclasses %d\n",
4406 TYPE_N_BASECLASSES (type));
4407 printfi_filtered (spaces, "nfn_fields %d\n",
4408 TYPE_NFN_FIELDS (type));
c906108c
SS
4409 if (TYPE_N_BASECLASSES (type) > 0)
4410 {
4411 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4412 TYPE_N_BASECLASSES (type));
7ba81444
MS
4413 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4414 gdb_stdout);
c906108c
SS
4415 printf_filtered (")");
4416
4417 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4418 TYPE_N_BASECLASSES (type));
4419 puts_filtered ("\n");
4420 }
4421 if (TYPE_NFIELDS (type) > 0)
4422 {
4423 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4424 {
7ba81444
MS
4425 printfi_filtered (spaces,
4426 "private_field_bits (%d bits at *",
c906108c 4427 TYPE_NFIELDS (type));
7ba81444
MS
4428 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4429 gdb_stdout);
c906108c
SS
4430 printf_filtered (")");
4431 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4432 TYPE_NFIELDS (type));
4433 puts_filtered ("\n");
4434 }
4435 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4436 {
7ba81444
MS
4437 printfi_filtered (spaces,
4438 "protected_field_bits (%d bits at *",
c906108c 4439 TYPE_NFIELDS (type));
7ba81444
MS
4440 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4441 gdb_stdout);
c906108c
SS
4442 printf_filtered (")");
4443 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4444 TYPE_NFIELDS (type));
4445 puts_filtered ("\n");
4446 }
4447 }
4448 if (TYPE_NFN_FIELDS (type) > 0)
4449 {
4450 dump_fn_fieldlists (type, spaces);
4451 }
4452}
4453
b4ba55a1
JB
4454/* Print the contents of the TYPE's type_specific union, assuming that
4455 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4456
4457static void
4458print_gnat_stuff (struct type *type, int spaces)
4459{
4460 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4461
8cd00c59
PMR
4462 if (descriptive_type == NULL)
4463 printfi_filtered (spaces + 2, "no descriptive type\n");
4464 else
4465 {
4466 printfi_filtered (spaces + 2, "descriptive type\n");
4467 recursive_dump_type (descriptive_type, spaces + 4);
4468 }
b4ba55a1
JB
4469}
4470
c906108c
SS
4471static struct obstack dont_print_type_obstack;
4472
4473void
fba45db2 4474recursive_dump_type (struct type *type, int spaces)
c906108c
SS
4475{
4476 int idx;
4477
4478 if (spaces == 0)
4479 obstack_begin (&dont_print_type_obstack, 0);
4480
4481 if (TYPE_NFIELDS (type) > 0
b4ba55a1 4482 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
4483 {
4484 struct type **first_dont_print
7ba81444 4485 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 4486
7ba81444
MS
4487 int i = (struct type **)
4488 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
4489
4490 while (--i >= 0)
4491 {
4492 if (type == first_dont_print[i])
4493 {
4494 printfi_filtered (spaces, "type node ");
d4f3574e 4495 gdb_print_host_address (type, gdb_stdout);
a3f17187 4496 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
4497 return;
4498 }
4499 }
4500
4501 obstack_ptr_grow (&dont_print_type_obstack, type);
4502 }
4503
4504 printfi_filtered (spaces, "type node ");
d4f3574e 4505 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
4506 printf_filtered ("\n");
4507 printfi_filtered (spaces, "name '%s' (",
4508 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 4509 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 4510 printf_filtered (")\n");
c906108c
SS
4511 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4512 switch (TYPE_CODE (type))
4513 {
c5aa993b
JM
4514 case TYPE_CODE_UNDEF:
4515 printf_filtered ("(TYPE_CODE_UNDEF)");
4516 break;
4517 case TYPE_CODE_PTR:
4518 printf_filtered ("(TYPE_CODE_PTR)");
4519 break;
4520 case TYPE_CODE_ARRAY:
4521 printf_filtered ("(TYPE_CODE_ARRAY)");
4522 break;
4523 case TYPE_CODE_STRUCT:
4524 printf_filtered ("(TYPE_CODE_STRUCT)");
4525 break;
4526 case TYPE_CODE_UNION:
4527 printf_filtered ("(TYPE_CODE_UNION)");
4528 break;
4529 case TYPE_CODE_ENUM:
4530 printf_filtered ("(TYPE_CODE_ENUM)");
4531 break;
4f2aea11
MK
4532 case TYPE_CODE_FLAGS:
4533 printf_filtered ("(TYPE_CODE_FLAGS)");
4534 break;
c5aa993b
JM
4535 case TYPE_CODE_FUNC:
4536 printf_filtered ("(TYPE_CODE_FUNC)");
4537 break;
4538 case TYPE_CODE_INT:
4539 printf_filtered ("(TYPE_CODE_INT)");
4540 break;
4541 case TYPE_CODE_FLT:
4542 printf_filtered ("(TYPE_CODE_FLT)");
4543 break;
4544 case TYPE_CODE_VOID:
4545 printf_filtered ("(TYPE_CODE_VOID)");
4546 break;
4547 case TYPE_CODE_SET:
4548 printf_filtered ("(TYPE_CODE_SET)");
4549 break;
4550 case TYPE_CODE_RANGE:
4551 printf_filtered ("(TYPE_CODE_RANGE)");
4552 break;
4553 case TYPE_CODE_STRING:
4554 printf_filtered ("(TYPE_CODE_STRING)");
4555 break;
4556 case TYPE_CODE_ERROR:
4557 printf_filtered ("(TYPE_CODE_ERROR)");
4558 break;
0d5de010
DJ
4559 case TYPE_CODE_MEMBERPTR:
4560 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4561 break;
4562 case TYPE_CODE_METHODPTR:
4563 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
4564 break;
4565 case TYPE_CODE_METHOD:
4566 printf_filtered ("(TYPE_CODE_METHOD)");
4567 break;
4568 case TYPE_CODE_REF:
4569 printf_filtered ("(TYPE_CODE_REF)");
4570 break;
4571 case TYPE_CODE_CHAR:
4572 printf_filtered ("(TYPE_CODE_CHAR)");
4573 break;
4574 case TYPE_CODE_BOOL:
4575 printf_filtered ("(TYPE_CODE_BOOL)");
4576 break;
e9e79dd9
FF
4577 case TYPE_CODE_COMPLEX:
4578 printf_filtered ("(TYPE_CODE_COMPLEX)");
4579 break;
c5aa993b
JM
4580 case TYPE_CODE_TYPEDEF:
4581 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4582 break;
5c4e30ca
DC
4583 case TYPE_CODE_NAMESPACE:
4584 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4585 break;
c5aa993b
JM
4586 default:
4587 printf_filtered ("(UNKNOWN TYPE CODE)");
4588 break;
c906108c
SS
4589 }
4590 puts_filtered ("\n");
cc1defb1 4591 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
e9bb382b
UW
4592 if (TYPE_OBJFILE_OWNED (type))
4593 {
4594 printfi_filtered (spaces, "objfile ");
4595 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4596 }
4597 else
4598 {
4599 printfi_filtered (spaces, "gdbarch ");
4600 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4601 }
c906108c
SS
4602 printf_filtered ("\n");
4603 printfi_filtered (spaces, "target_type ");
d4f3574e 4604 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
4605 printf_filtered ("\n");
4606 if (TYPE_TARGET_TYPE (type) != NULL)
4607 {
4608 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4609 }
4610 printfi_filtered (spaces, "pointer_type ");
d4f3574e 4611 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
4612 printf_filtered ("\n");
4613 printfi_filtered (spaces, "reference_type ");
d4f3574e 4614 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 4615 printf_filtered ("\n");
2fdde8f8
DJ
4616 printfi_filtered (spaces, "type_chain ");
4617 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 4618 printf_filtered ("\n");
7ba81444
MS
4619 printfi_filtered (spaces, "instance_flags 0x%x",
4620 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
4621 if (TYPE_CONST (type))
4622 {
a9ff5f12 4623 puts_filtered (" TYPE_CONST");
2fdde8f8
DJ
4624 }
4625 if (TYPE_VOLATILE (type))
4626 {
a9ff5f12 4627 puts_filtered (" TYPE_VOLATILE");
2fdde8f8
DJ
4628 }
4629 if (TYPE_CODE_SPACE (type))
4630 {
a9ff5f12 4631 puts_filtered (" TYPE_CODE_SPACE");
2fdde8f8
DJ
4632 }
4633 if (TYPE_DATA_SPACE (type))
4634 {
a9ff5f12 4635 puts_filtered (" TYPE_DATA_SPACE");
2fdde8f8 4636 }
8b2dbe47
KB
4637 if (TYPE_ADDRESS_CLASS_1 (type))
4638 {
a9ff5f12 4639 puts_filtered (" TYPE_ADDRESS_CLASS_1");
8b2dbe47
KB
4640 }
4641 if (TYPE_ADDRESS_CLASS_2 (type))
4642 {
a9ff5f12 4643 puts_filtered (" TYPE_ADDRESS_CLASS_2");
8b2dbe47 4644 }
06d66ee9
TT
4645 if (TYPE_RESTRICT (type))
4646 {
a9ff5f12 4647 puts_filtered (" TYPE_RESTRICT");
06d66ee9 4648 }
a2c2acaf
MW
4649 if (TYPE_ATOMIC (type))
4650 {
a9ff5f12 4651 puts_filtered (" TYPE_ATOMIC");
a2c2acaf 4652 }
2fdde8f8 4653 puts_filtered ("\n");
876cecd0
TT
4654
4655 printfi_filtered (spaces, "flags");
762a036f 4656 if (TYPE_UNSIGNED (type))
c906108c 4657 {
a9ff5f12 4658 puts_filtered (" TYPE_UNSIGNED");
c906108c 4659 }
762a036f
FF
4660 if (TYPE_NOSIGN (type))
4661 {
a9ff5f12 4662 puts_filtered (" TYPE_NOSIGN");
762a036f
FF
4663 }
4664 if (TYPE_STUB (type))
c906108c 4665 {
a9ff5f12 4666 puts_filtered (" TYPE_STUB");
c906108c 4667 }
762a036f
FF
4668 if (TYPE_TARGET_STUB (type))
4669 {
a9ff5f12 4670 puts_filtered (" TYPE_TARGET_STUB");
762a036f 4671 }
762a036f
FF
4672 if (TYPE_PROTOTYPED (type))
4673 {
a9ff5f12 4674 puts_filtered (" TYPE_PROTOTYPED");
762a036f
FF
4675 }
4676 if (TYPE_INCOMPLETE (type))
4677 {
a9ff5f12 4678 puts_filtered (" TYPE_INCOMPLETE");
762a036f 4679 }
762a036f
FF
4680 if (TYPE_VARARGS (type))
4681 {
a9ff5f12 4682 puts_filtered (" TYPE_VARARGS");
762a036f 4683 }
f5f8a009
EZ
4684 /* This is used for things like AltiVec registers on ppc. Gcc emits
4685 an attribute for the array type, which tells whether or not we
4686 have a vector, instead of a regular array. */
4687 if (TYPE_VECTOR (type))
4688 {
a9ff5f12 4689 puts_filtered (" TYPE_VECTOR");
f5f8a009 4690 }
876cecd0
TT
4691 if (TYPE_FIXED_INSTANCE (type))
4692 {
4693 puts_filtered (" TYPE_FIXED_INSTANCE");
4694 }
4695 if (TYPE_STUB_SUPPORTED (type))
4696 {
4697 puts_filtered (" TYPE_STUB_SUPPORTED");
4698 }
4699 if (TYPE_NOTTEXT (type))
4700 {
4701 puts_filtered (" TYPE_NOTTEXT");
4702 }
c906108c
SS
4703 puts_filtered ("\n");
4704 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 4705 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
4706 puts_filtered ("\n");
4707 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4708 {
14e75d8e
JK
4709 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4710 printfi_filtered (spaces + 2,
4711 "[%d] enumval %s type ",
4712 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4713 else
4714 printfi_filtered (spaces + 2,
6b850546
DT
4715 "[%d] bitpos %s bitsize %d type ",
4716 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
14e75d8e 4717 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 4718 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
4719 printf_filtered (" name '%s' (",
4720 TYPE_FIELD_NAME (type, idx) != NULL
4721 ? TYPE_FIELD_NAME (type, idx)
4722 : "<NULL>");
d4f3574e 4723 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
4724 printf_filtered (")\n");
4725 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4726 {
4727 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4728 }
4729 }
43bbcdc2
PH
4730 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4731 {
4732 printfi_filtered (spaces, "low %s%s high %s%s\n",
4733 plongest (TYPE_LOW_BOUND (type)),
4734 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4735 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
4736 TYPE_HIGH_BOUND_UNDEFINED (type)
4737 ? " (undefined)" : "");
43bbcdc2 4738 }
c906108c 4739
b4ba55a1
JB
4740 switch (TYPE_SPECIFIC_FIELD (type))
4741 {
4742 case TYPE_SPECIFIC_CPLUS_STUFF:
4743 printfi_filtered (spaces, "cplus_stuff ");
4744 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4745 gdb_stdout);
4746 puts_filtered ("\n");
4747 print_cplus_stuff (type, spaces);
4748 break;
8da61cc4 4749
b4ba55a1
JB
4750 case TYPE_SPECIFIC_GNAT_STUFF:
4751 printfi_filtered (spaces, "gnat_stuff ");
4752 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4753 puts_filtered ("\n");
4754 print_gnat_stuff (type, spaces);
4755 break;
701c159d 4756
b4ba55a1
JB
4757 case TYPE_SPECIFIC_FLOATFORMAT:
4758 printfi_filtered (spaces, "floatformat ");
0db7851f
UW
4759 if (TYPE_FLOATFORMAT (type) == NULL
4760 || TYPE_FLOATFORMAT (type)->name == NULL)
b4ba55a1
JB
4761 puts_filtered ("(null)");
4762 else
0db7851f 4763 puts_filtered (TYPE_FLOATFORMAT (type)->name);
b4ba55a1
JB
4764 puts_filtered ("\n");
4765 break;
c906108c 4766
b6cdc2c1 4767 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
4768 printfi_filtered (spaces, "calling_convention %d\n",
4769 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 4770 /* tail_call_list is not printed. */
b4ba55a1 4771 break;
09e2d7c7
DE
4772
4773 case TYPE_SPECIFIC_SELF_TYPE:
4774 printfi_filtered (spaces, "self_type ");
4775 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4776 puts_filtered ("\n");
4777 break;
c906108c 4778 }
b4ba55a1 4779
c906108c
SS
4780 if (spaces == 0)
4781 obstack_free (&dont_print_type_obstack, NULL);
4782}
5212577a 4783\f
ae5a43e0
DJ
4784/* Trivial helpers for the libiberty hash table, for mapping one
4785 type to another. */
4786
fd90ace4 4787struct type_pair : public allocate_on_obstack
ae5a43e0 4788{
fd90ace4
YQ
4789 type_pair (struct type *old_, struct type *newobj_)
4790 : old (old_), newobj (newobj_)
4791 {}
4792
4793 struct type * const old, * const newobj;
ae5a43e0
DJ
4794};
4795
4796static hashval_t
4797type_pair_hash (const void *item)
4798{
9a3c8263 4799 const struct type_pair *pair = (const struct type_pair *) item;
d8734c88 4800
ae5a43e0
DJ
4801 return htab_hash_pointer (pair->old);
4802}
4803
4804static int
4805type_pair_eq (const void *item_lhs, const void *item_rhs)
4806{
9a3c8263
SM
4807 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4808 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
d8734c88 4809
ae5a43e0
DJ
4810 return lhs->old == rhs->old;
4811}
4812
4813/* Allocate the hash table used by copy_type_recursive to walk
4814 types without duplicates. We use OBJFILE's obstack, because
4815 OBJFILE is about to be deleted. */
4816
4817htab_t
4818create_copied_types_hash (struct objfile *objfile)
4819{
4820 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4821 NULL, &objfile->objfile_obstack,
4822 hashtab_obstack_allocate,
4823 dummy_obstack_deallocate);
4824}
4825
d9823cbb
KB
4826/* Recursively copy (deep copy) a dynamic attribute list of a type. */
4827
4828static struct dynamic_prop_list *
4829copy_dynamic_prop_list (struct obstack *objfile_obstack,
4830 struct dynamic_prop_list *list)
4831{
4832 struct dynamic_prop_list *copy = list;
4833 struct dynamic_prop_list **node_ptr = &copy;
4834
4835 while (*node_ptr != NULL)
4836 {
4837 struct dynamic_prop_list *node_copy;
4838
224c3ddb
SM
4839 node_copy = ((struct dynamic_prop_list *)
4840 obstack_copy (objfile_obstack, *node_ptr,
4841 sizeof (struct dynamic_prop_list)));
283a9958 4842 node_copy->prop = (*node_ptr)->prop;
d9823cbb
KB
4843 *node_ptr = node_copy;
4844
4845 node_ptr = &node_copy->next;
4846 }
4847
4848 return copy;
4849}
4850
7ba81444 4851/* Recursively copy (deep copy) TYPE, if it is associated with
eed8b28a
PP
4852 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4853 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4854 it is not associated with OBJFILE. */
ae5a43e0
DJ
4855
4856struct type *
7ba81444
MS
4857copy_type_recursive (struct objfile *objfile,
4858 struct type *type,
ae5a43e0
DJ
4859 htab_t copied_types)
4860{
ae5a43e0
DJ
4861 void **slot;
4862 struct type *new_type;
4863
e9bb382b 4864 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
4865 return type;
4866
7ba81444
MS
4867 /* This type shouldn't be pointing to any types in other objfiles;
4868 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
4869 gdb_assert (TYPE_OBJFILE (type) == objfile);
4870
fd90ace4
YQ
4871 struct type_pair pair (type, nullptr);
4872
ae5a43e0
DJ
4873 slot = htab_find_slot (copied_types, &pair, INSERT);
4874 if (*slot != NULL)
fe978cb0 4875 return ((struct type_pair *) *slot)->newobj;
ae5a43e0 4876
e9bb382b 4877 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
4878
4879 /* We must add the new type to the hash table immediately, in case
4880 we encounter this type again during a recursive call below. */
fd90ace4
YQ
4881 struct type_pair *stored
4882 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
4883
ae5a43e0
DJ
4884 *slot = stored;
4885
876cecd0
TT
4886 /* Copy the common fields of types. For the main type, we simply
4887 copy the entire thing and then update specific fields as needed. */
4888 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
4889 TYPE_OBJFILE_OWNED (new_type) = 0;
4890 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 4891
ae5a43e0
DJ
4892 if (TYPE_NAME (type))
4893 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
ae5a43e0
DJ
4894
4895 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4896 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4897
4898 /* Copy the fields. */
ae5a43e0
DJ
4899 if (TYPE_NFIELDS (type))
4900 {
4901 int i, nfields;
4902
4903 nfields = TYPE_NFIELDS (type);
2fabdf33
AB
4904 TYPE_FIELDS (new_type) = (struct field *)
4905 TYPE_ZALLOC (new_type, nfields * sizeof (struct field));
ae5a43e0
DJ
4906 for (i = 0; i < nfields; i++)
4907 {
7ba81444
MS
4908 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4909 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
4910 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4911 if (TYPE_FIELD_TYPE (type, i))
4912 TYPE_FIELD_TYPE (new_type, i)
4913 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4914 copied_types);
4915 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
4916 TYPE_FIELD_NAME (new_type, i) =
4917 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 4918 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 4919 {
d6a843b5
JK
4920 case FIELD_LOC_KIND_BITPOS:
4921 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4922 TYPE_FIELD_BITPOS (type, i));
4923 break;
14e75d8e
JK
4924 case FIELD_LOC_KIND_ENUMVAL:
4925 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4926 TYPE_FIELD_ENUMVAL (type, i));
4927 break;
d6a843b5
JK
4928 case FIELD_LOC_KIND_PHYSADDR:
4929 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4930 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4931 break;
4932 case FIELD_LOC_KIND_PHYSNAME:
4933 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4934 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4935 i)));
4936 break;
4937 default:
4938 internal_error (__FILE__, __LINE__,
4939 _("Unexpected type field location kind: %d"),
4940 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
4941 }
4942 }
4943 }
4944
0963b4bd 4945 /* For range types, copy the bounds information. */
43bbcdc2
PH
4946 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4947 {
2fabdf33
AB
4948 TYPE_RANGE_DATA (new_type) = (struct range_bounds *)
4949 TYPE_ALLOC (new_type, sizeof (struct range_bounds));
43bbcdc2
PH
4950 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4951 }
4952
d9823cbb
KB
4953 if (TYPE_DYN_PROP_LIST (type) != NULL)
4954 TYPE_DYN_PROP_LIST (new_type)
4955 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4956 TYPE_DYN_PROP_LIST (type));
4957
3cdcd0ce 4958
ae5a43e0
DJ
4959 /* Copy pointers to other types. */
4960 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
4961 TYPE_TARGET_TYPE (new_type) =
4962 copy_type_recursive (objfile,
4963 TYPE_TARGET_TYPE (type),
4964 copied_types);
f6b3afbf 4965
ae5a43e0
DJ
4966 /* Maybe copy the type_specific bits.
4967
4968 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4969 base classes and methods. There's no fundamental reason why we
4970 can't, but at the moment it is not needed. */
4971
f6b3afbf
DE
4972 switch (TYPE_SPECIFIC_FIELD (type))
4973 {
4974 case TYPE_SPECIFIC_NONE:
4975 break;
4976 case TYPE_SPECIFIC_FUNC:
4977 INIT_FUNC_SPECIFIC (new_type);
4978 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4979 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4980 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4981 break;
4982 case TYPE_SPECIFIC_FLOATFORMAT:
4983 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4984 break;
4985 case TYPE_SPECIFIC_CPLUS_STUFF:
4986 INIT_CPLUS_SPECIFIC (new_type);
4987 break;
4988 case TYPE_SPECIFIC_GNAT_STUFF:
4989 INIT_GNAT_SPECIFIC (new_type);
4990 break;
09e2d7c7
DE
4991 case TYPE_SPECIFIC_SELF_TYPE:
4992 set_type_self_type (new_type,
4993 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4994 copied_types));
4995 break;
f6b3afbf
DE
4996 default:
4997 gdb_assert_not_reached ("bad type_specific_kind");
4998 }
ae5a43e0
DJ
4999
5000 return new_type;
5001}
5002
4af88198
JB
5003/* Make a copy of the given TYPE, except that the pointer & reference
5004 types are not preserved.
5005
5006 This function assumes that the given type has an associated objfile.
5007 This objfile is used to allocate the new type. */
5008
5009struct type *
5010copy_type (const struct type *type)
5011{
5012 struct type *new_type;
5013
e9bb382b 5014 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 5015
e9bb382b 5016 new_type = alloc_type_copy (type);
4af88198
JB
5017 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5018 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5019 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5020 sizeof (struct main_type));
d9823cbb
KB
5021 if (TYPE_DYN_PROP_LIST (type) != NULL)
5022 TYPE_DYN_PROP_LIST (new_type)
5023 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5024 TYPE_DYN_PROP_LIST (type));
4af88198
JB
5025
5026 return new_type;
5027}
5212577a 5028\f
e9bb382b
UW
5029/* Helper functions to initialize architecture-specific types. */
5030
5031/* Allocate a type structure associated with GDBARCH and set its
5032 CODE, LENGTH, and NAME fields. */
5212577a 5033
e9bb382b
UW
5034struct type *
5035arch_type (struct gdbarch *gdbarch,
77b7c781 5036 enum type_code code, int bit, const char *name)
e9bb382b
UW
5037{
5038 struct type *type;
5039
5040 type = alloc_type_arch (gdbarch);
ae438bc5 5041 set_type_code (type, code);
77b7c781
UW
5042 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5043 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
e9bb382b
UW
5044
5045 if (name)
6c214e7c 5046 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
e9bb382b
UW
5047
5048 return type;
5049}
5050
5051/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5052 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5053 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5054
e9bb382b
UW
5055struct type *
5056arch_integer_type (struct gdbarch *gdbarch,
695bfa52 5057 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5058{
5059 struct type *t;
5060
77b7c781 5061 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
e9bb382b
UW
5062 if (unsigned_p)
5063 TYPE_UNSIGNED (t) = 1;
e9bb382b
UW
5064
5065 return t;
5066}
5067
5068/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5069 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5070 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5071
e9bb382b
UW
5072struct type *
5073arch_character_type (struct gdbarch *gdbarch,
695bfa52 5074 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5075{
5076 struct type *t;
5077
77b7c781 5078 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
e9bb382b
UW
5079 if (unsigned_p)
5080 TYPE_UNSIGNED (t) = 1;
5081
5082 return t;
5083}
5084
5085/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5086 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5087 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5088
e9bb382b
UW
5089struct type *
5090arch_boolean_type (struct gdbarch *gdbarch,
695bfa52 5091 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5092{
5093 struct type *t;
5094
77b7c781 5095 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
e9bb382b
UW
5096 if (unsigned_p)
5097 TYPE_UNSIGNED (t) = 1;
5098
5099 return t;
5100}
5101
5102/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5103 BIT is the type size in bits; if BIT equals -1, the size is
5104 determined by the floatformat. NAME is the type name. Set the
5105 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 5106
27067745 5107struct type *
e9bb382b 5108arch_float_type (struct gdbarch *gdbarch,
695bfa52
TT
5109 int bit, const char *name,
5110 const struct floatformat **floatformats)
8da61cc4 5111{
0db7851f 5112 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
8da61cc4
DJ
5113 struct type *t;
5114
0db7851f 5115 bit = verify_floatformat (bit, fmt);
77b7c781 5116 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
0db7851f 5117 TYPE_FLOATFORMAT (t) = fmt;
b79497cb 5118
8da61cc4
DJ
5119 return t;
5120}
5121
88dfca6c
UW
5122/* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5123 BIT is the type size in bits. NAME is the type name. */
5124
5125struct type *
5126arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5127{
5128 struct type *t;
5129
77b7c781 5130 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
88dfca6c
UW
5131 return t;
5132}
5133
e9bb382b
UW
5134/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
5135 NAME is the type name. TARGET_TYPE is the component float type. */
5212577a 5136
27067745 5137struct type *
e9bb382b 5138arch_complex_type (struct gdbarch *gdbarch,
695bfa52 5139 const char *name, struct type *target_type)
27067745
UW
5140{
5141 struct type *t;
d8734c88 5142
e9bb382b 5143 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
77b7c781 5144 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
27067745
UW
5145 TYPE_TARGET_TYPE (t) = target_type;
5146 return t;
5147}
5148
88dfca6c
UW
5149/* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5150 BIT is the pointer type size in bits. NAME is the type name.
5151 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5152 TYPE_UNSIGNED flag. */
5153
5154struct type *
5155arch_pointer_type (struct gdbarch *gdbarch,
5156 int bit, const char *name, struct type *target_type)
5157{
5158 struct type *t;
5159
77b7c781 5160 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
88dfca6c
UW
5161 TYPE_TARGET_TYPE (t) = target_type;
5162 TYPE_UNSIGNED (t) = 1;
5163 return t;
5164}
5165
e9bb382b 5166/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
77b7c781 5167 NAME is the type name. BIT is the size of the flag word in bits. */
5212577a 5168
e9bb382b 5169struct type *
77b7c781 5170arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
e9bb382b 5171{
e9bb382b
UW
5172 struct type *type;
5173
77b7c781 5174 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
e9bb382b 5175 TYPE_UNSIGNED (type) = 1;
81516450
DE
5176 TYPE_NFIELDS (type) = 0;
5177 /* Pre-allocate enough space assuming every field is one bit. */
224c3ddb 5178 TYPE_FIELDS (type)
77b7c781 5179 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
e9bb382b
UW
5180
5181 return type;
5182}
5183
5184/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
81516450
DE
5185 position BITPOS is called NAME. Pass NAME as "" for fields that
5186 should not be printed. */
5187
5188void
5189append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
695bfa52 5190 struct type *field_type, const char *name)
81516450
DE
5191{
5192 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5193 int field_nr = TYPE_NFIELDS (type);
5194
5195 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5196 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5197 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5198 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5199 gdb_assert (name != NULL);
5200
5201 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5202 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5203 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5204 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5205 ++TYPE_NFIELDS (type);
5206}
5207
5208/* Special version of append_flags_type_field to add a flag field.
5209 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
e9bb382b 5210 position BITPOS is called NAME. */
5212577a 5211
e9bb382b 5212void
695bfa52 5213append_flags_type_flag (struct type *type, int bitpos, const char *name)
e9bb382b 5214{
81516450 5215 struct gdbarch *gdbarch = get_type_arch (type);
e9bb382b 5216
81516450
DE
5217 append_flags_type_field (type, bitpos, 1,
5218 builtin_type (gdbarch)->builtin_bool,
5219 name);
e9bb382b
UW
5220}
5221
5222/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5223 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 5224
e9bb382b 5225struct type *
695bfa52
TT
5226arch_composite_type (struct gdbarch *gdbarch, const char *name,
5227 enum type_code code)
e9bb382b
UW
5228{
5229 struct type *t;
d8734c88 5230
e9bb382b
UW
5231 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5232 t = arch_type (gdbarch, code, 0, NULL);
e86ca25f 5233 TYPE_NAME (t) = name;
e9bb382b
UW
5234 INIT_CPLUS_SPECIFIC (t);
5235 return t;
5236}
5237
5238/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
5239 Do not set the field's position or adjust the type's length;
5240 the caller should do so. Return the new field. */
5212577a 5241
f5dff777 5242struct field *
695bfa52 5243append_composite_type_field_raw (struct type *t, const char *name,
f5dff777 5244 struct type *field)
e9bb382b
UW
5245{
5246 struct field *f;
d8734c88 5247
e9bb382b 5248 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
224c3ddb
SM
5249 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5250 TYPE_NFIELDS (t));
e9bb382b
UW
5251 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5252 memset (f, 0, sizeof f[0]);
5253 FIELD_TYPE (f[0]) = field;
5254 FIELD_NAME (f[0]) = name;
f5dff777
DJ
5255 return f;
5256}
5257
5258/* Add new field with name NAME and type FIELD to composite type T.
5259 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 5260
f5dff777 5261void
695bfa52 5262append_composite_type_field_aligned (struct type *t, const char *name,
f5dff777
DJ
5263 struct type *field, int alignment)
5264{
5265 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 5266
e9bb382b
UW
5267 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5268 {
5269 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5270 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5271 }
5272 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5273 {
5274 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5275 if (TYPE_NFIELDS (t) > 1)
5276 {
f41f5e61
PA
5277 SET_FIELD_BITPOS (f[0],
5278 (FIELD_BITPOS (f[-1])
5279 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5280 * TARGET_CHAR_BIT)));
e9bb382b
UW
5281
5282 if (alignment)
5283 {
86c3c1fc
AB
5284 int left;
5285
5286 alignment *= TARGET_CHAR_BIT;
5287 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 5288
e9bb382b
UW
5289 if (left)
5290 {
f41f5e61 5291 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 5292 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
5293 }
5294 }
5295 }
5296 }
5297}
5298
5299/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 5300
e9bb382b 5301void
695bfa52 5302append_composite_type_field (struct type *t, const char *name,
e9bb382b
UW
5303 struct type *field)
5304{
5305 append_composite_type_field_aligned (t, name, field, 0);
5306}
5307
000177f0
AC
5308static struct gdbarch_data *gdbtypes_data;
5309
5310const struct builtin_type *
5311builtin_type (struct gdbarch *gdbarch)
5312{
9a3c8263 5313 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
000177f0
AC
5314}
5315
5316static void *
5317gdbtypes_post_init (struct gdbarch *gdbarch)
5318{
5319 struct builtin_type *builtin_type
5320 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5321
46bf5051 5322 /* Basic types. */
e9bb382b 5323 builtin_type->builtin_void
77b7c781 5324 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
e9bb382b
UW
5325 builtin_type->builtin_char
5326 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5327 !gdbarch_char_signed (gdbarch), "char");
c413c448 5328 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
e9bb382b
UW
5329 builtin_type->builtin_signed_char
5330 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5331 0, "signed char");
5332 builtin_type->builtin_unsigned_char
5333 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5334 1, "unsigned char");
5335 builtin_type->builtin_short
5336 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5337 0, "short");
5338 builtin_type->builtin_unsigned_short
5339 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5340 1, "unsigned short");
5341 builtin_type->builtin_int
5342 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5343 0, "int");
5344 builtin_type->builtin_unsigned_int
5345 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5346 1, "unsigned int");
5347 builtin_type->builtin_long
5348 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5349 0, "long");
5350 builtin_type->builtin_unsigned_long
5351 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5352 1, "unsigned long");
5353 builtin_type->builtin_long_long
5354 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5355 0, "long long");
5356 builtin_type->builtin_unsigned_long_long
5357 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5358 1, "unsigned long long");
a6d0f249
AH
5359 builtin_type->builtin_half
5360 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5361 "half", gdbarch_half_format (gdbarch));
70bd8e24 5362 builtin_type->builtin_float
e9bb382b 5363 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 5364 "float", gdbarch_float_format (gdbarch));
70bd8e24 5365 builtin_type->builtin_double
e9bb382b 5366 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 5367 "double", gdbarch_double_format (gdbarch));
70bd8e24 5368 builtin_type->builtin_long_double
e9bb382b 5369 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 5370 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 5371 builtin_type->builtin_complex
e9bb382b
UW
5372 = arch_complex_type (gdbarch, "complex",
5373 builtin_type->builtin_float);
70bd8e24 5374 builtin_type->builtin_double_complex
e9bb382b
UW
5375 = arch_complex_type (gdbarch, "double complex",
5376 builtin_type->builtin_double);
5377 builtin_type->builtin_string
77b7c781 5378 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
e9bb382b 5379 builtin_type->builtin_bool
77b7c781 5380 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
000177f0 5381
7678ef8f
TJB
5382 /* The following three are about decimal floating point types, which
5383 are 32-bits, 64-bits and 128-bits respectively. */
5384 builtin_type->builtin_decfloat
88dfca6c 5385 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
7678ef8f 5386 builtin_type->builtin_decdouble
88dfca6c 5387 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
7678ef8f 5388 builtin_type->builtin_declong
88dfca6c 5389 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
7678ef8f 5390
69feb676 5391 /* "True" character types. */
e9bb382b
UW
5392 builtin_type->builtin_true_char
5393 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5394 builtin_type->builtin_true_unsigned_char
5395 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 5396
df4df182 5397 /* Fixed-size integer types. */
e9bb382b
UW
5398 builtin_type->builtin_int0
5399 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5400 builtin_type->builtin_int8
5401 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5402 builtin_type->builtin_uint8
5403 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5404 builtin_type->builtin_int16
5405 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5406 builtin_type->builtin_uint16
5407 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
d1908f2d
JD
5408 builtin_type->builtin_int24
5409 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5410 builtin_type->builtin_uint24
5411 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
e9bb382b
UW
5412 builtin_type->builtin_int32
5413 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5414 builtin_type->builtin_uint32
5415 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5416 builtin_type->builtin_int64
5417 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5418 builtin_type->builtin_uint64
5419 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5420 builtin_type->builtin_int128
5421 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5422 builtin_type->builtin_uint128
5423 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
5424 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5425 TYPE_INSTANCE_FLAG_NOTTEXT;
5426 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5427 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 5428
9a22f0d0
PM
5429 /* Wide character types. */
5430 builtin_type->builtin_char16
53e710ac 5431 = arch_integer_type (gdbarch, 16, 1, "char16_t");
9a22f0d0 5432 builtin_type->builtin_char32
53e710ac 5433 = arch_integer_type (gdbarch, 32, 1, "char32_t");
53375380
PA
5434 builtin_type->builtin_wchar
5435 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5436 !gdbarch_wchar_signed (gdbarch), "wchar_t");
9a22f0d0 5437
46bf5051 5438 /* Default data/code pointer types. */
e9bb382b
UW
5439 builtin_type->builtin_data_ptr
5440 = lookup_pointer_type (builtin_type->builtin_void);
5441 builtin_type->builtin_func_ptr
5442 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
5443 builtin_type->builtin_func_func
5444 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 5445
78267919 5446 /* This type represents a GDB internal function. */
e9bb382b
UW
5447 builtin_type->internal_fn
5448 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5449 "<internal function>");
78267919 5450
e81e7f5e
SC
5451 /* This type represents an xmethod. */
5452 builtin_type->xmethod
5453 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5454
46bf5051
UW
5455 return builtin_type;
5456}
5457
46bf5051
UW
5458/* This set of objfile-based types is intended to be used by symbol
5459 readers as basic types. */
5460
7a102139
TT
5461static const struct objfile_key<struct objfile_type,
5462 gdb::noop_deleter<struct objfile_type>>
5463 objfile_type_data;
46bf5051
UW
5464
5465const struct objfile_type *
5466objfile_type (struct objfile *objfile)
5467{
5468 struct gdbarch *gdbarch;
7a102139 5469 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
46bf5051
UW
5470
5471 if (objfile_type)
5472 return objfile_type;
5473
5474 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5475 1, struct objfile_type);
5476
5477 /* Use the objfile architecture to determine basic type properties. */
5478 gdbarch = get_objfile_arch (objfile);
5479
5480 /* Basic types. */
5481 objfile_type->builtin_void
77b7c781 5482 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
46bf5051 5483 objfile_type->builtin_char
19f392bc
UW
5484 = init_integer_type (objfile, TARGET_CHAR_BIT,
5485 !gdbarch_char_signed (gdbarch), "char");
c413c448 5486 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
46bf5051 5487 objfile_type->builtin_signed_char
19f392bc
UW
5488 = init_integer_type (objfile, TARGET_CHAR_BIT,
5489 0, "signed char");
46bf5051 5490 objfile_type->builtin_unsigned_char
19f392bc
UW
5491 = init_integer_type (objfile, TARGET_CHAR_BIT,
5492 1, "unsigned char");
46bf5051 5493 objfile_type->builtin_short
19f392bc
UW
5494 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5495 0, "short");
46bf5051 5496 objfile_type->builtin_unsigned_short
19f392bc
UW
5497 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5498 1, "unsigned short");
46bf5051 5499 objfile_type->builtin_int
19f392bc
UW
5500 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5501 0, "int");
46bf5051 5502 objfile_type->builtin_unsigned_int
19f392bc
UW
5503 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5504 1, "unsigned int");
46bf5051 5505 objfile_type->builtin_long
19f392bc
UW
5506 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5507 0, "long");
46bf5051 5508 objfile_type->builtin_unsigned_long
19f392bc
UW
5509 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5510 1, "unsigned long");
46bf5051 5511 objfile_type->builtin_long_long
19f392bc
UW
5512 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5513 0, "long long");
46bf5051 5514 objfile_type->builtin_unsigned_long_long
19f392bc
UW
5515 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5516 1, "unsigned long long");
46bf5051 5517 objfile_type->builtin_float
19f392bc
UW
5518 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5519 "float", gdbarch_float_format (gdbarch));
46bf5051 5520 objfile_type->builtin_double
19f392bc
UW
5521 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5522 "double", gdbarch_double_format (gdbarch));
46bf5051 5523 objfile_type->builtin_long_double
19f392bc
UW
5524 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5525 "long double", gdbarch_long_double_format (gdbarch));
46bf5051
UW
5526
5527 /* This type represents a type that was unrecognized in symbol read-in. */
5528 objfile_type->builtin_error
19f392bc 5529 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
46bf5051
UW
5530
5531 /* The following set of types is used for symbols with no
5532 debug information. */
5533 objfile_type->nodebug_text_symbol
77b7c781 5534 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5535 "<text variable, no debug info>");
0875794a 5536 objfile_type->nodebug_text_gnu_ifunc_symbol
77b7c781 5537 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5538 "<text gnu-indirect-function variable, no debug info>");
19f392bc 5539 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
0875794a 5540 objfile_type->nodebug_got_plt_symbol
19f392bc
UW
5541 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5542 "<text from jump slot in .got.plt, no debug info>",
5543 objfile_type->nodebug_text_symbol);
46bf5051 5544 objfile_type->nodebug_data_symbol
46a4882b 5545 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
46bf5051 5546 objfile_type->nodebug_unknown_symbol
46a4882b 5547 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
46bf5051 5548 objfile_type->nodebug_tls_symbol
46a4882b 5549 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
000177f0
AC
5550
5551 /* NOTE: on some targets, addresses and pointers are not necessarily
0a7cfe2c 5552 the same.
000177f0
AC
5553
5554 The upshot is:
5555 - gdb's `struct type' always describes the target's
5556 representation.
5557 - gdb's `struct value' objects should always hold values in
5558 target form.
5559 - gdb's CORE_ADDR values are addresses in the unified virtual
5560 address space that the assembler and linker work with. Thus,
5561 since target_read_memory takes a CORE_ADDR as an argument, it
5562 can access any memory on the target, even if the processor has
5563 separate code and data address spaces.
5564
46bf5051
UW
5565 In this context, objfile_type->builtin_core_addr is a bit odd:
5566 it's a target type for a value the target will never see. It's
5567 only used to hold the values of (typeless) linker symbols, which
5568 are indeed in the unified virtual address space. */
000177f0 5569
46bf5051 5570 objfile_type->builtin_core_addr
19f392bc
UW
5571 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5572 "__CORE_ADDR");
64c50499 5573
7a102139 5574 objfile_type_data.set (objfile, objfile_type);
46bf5051 5575 return objfile_type;
000177f0
AC
5576}
5577
c906108c 5578void
fba45db2 5579_initialize_gdbtypes (void)
c906108c 5580{
5674de60
UW
5581 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5582
ccce17b0
YQ
5583 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5584 _("Set debugging of C++ overloading."),
5585 _("Show debugging of C++ overloading."),
5586 _("When enabled, ranking of the "
5587 "functions is displayed."),
5588 NULL,
5589 show_overload_debug,
5590 &setdebuglist, &showdebuglist);
5674de60 5591
7ba81444 5592 /* Add user knob for controlling resolution of opaque types. */
5674de60 5593 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
5594 &opaque_type_resolution,
5595 _("Set resolution of opaque struct/class/union"
5596 " types (if set before loading symbols)."),
5597 _("Show resolution of opaque struct/class/union"
5598 " types (if set before loading symbols)."),
5599 NULL, NULL,
5674de60
UW
5600 show_opaque_type_resolution,
5601 &setlist, &showlist);
a451cb65
KS
5602
5603 /* Add an option to permit non-strict type checking. */
5604 add_setshow_boolean_cmd ("type", class_support,
5605 &strict_type_checking,
5606 _("Set strict type checking."),
5607 _("Show strict type checking."),
5608 NULL, NULL,
5609 show_strict_type_checking,
5610 &setchecklist, &showchecklist);
c906108c 5611}
This page took 2.72871 seconds and 4 git commands to generate.