Rename "variant" to "ppc_variant"
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
b811d2c2 3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c
SS
23#include "bfd.h"
24#include "symtab.h"
25#include "symfile.h"
26#include "objfiles.h"
27#include "gdbtypes.h"
28#include "expression.h"
29#include "language.h"
30#include "target.h"
31#include "value.h"
32#include "demangle.h"
33#include "complaints.h"
34#include "gdbcmd.h"
015a42b4 35#include "cp-abi.h"
ae5a43e0 36#include "hashtab.h"
8de20a37 37#include "cp-support.h"
ca092b61 38#include "bcache.h"
82ca8957 39#include "dwarf2/loc.h"
80180f79 40#include "gdbcore.h"
1841ee5d 41#include "floatformat.h"
ac3aafc7 42
6403aeea
SW
43/* Initialize BADNESS constants. */
44
a9d5ef47 45const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 46
a9d5ef47
SW
47const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
48const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 49
a9d5ef47 50const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 51
a9d5ef47
SW
52const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
53const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
54const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
e15c3eb4 55const struct rank CV_CONVERSION_BADNESS = {1, 0};
a9d5ef47
SW
56const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 60const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
61const struct rank BASE_CONVERSION_BADNESS = {2,0};
62const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
06acc08f 63const struct rank REFERENCE_SEE_THROUGH_BADNESS = {0,1};
da096638 64const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 65const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 66const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 67
8da61cc4 68/* Floatformat pairs. */
f9e9243a
UW
69const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
70 &floatformat_ieee_half_big,
71 &floatformat_ieee_half_little
72};
8da61cc4
DJ
73const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
74 &floatformat_ieee_single_big,
75 &floatformat_ieee_single_little
76};
77const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
78 &floatformat_ieee_double_big,
79 &floatformat_ieee_double_little
80};
81const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
82 &floatformat_ieee_double_big,
83 &floatformat_ieee_double_littlebyte_bigword
84};
85const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
86 &floatformat_i387_ext,
87 &floatformat_i387_ext
88};
89const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
90 &floatformat_m68881_ext,
91 &floatformat_m68881_ext
92};
93const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
94 &floatformat_arm_ext_big,
95 &floatformat_arm_ext_littlebyte_bigword
96};
97const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
98 &floatformat_ia64_spill_big,
99 &floatformat_ia64_spill_little
100};
101const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
102 &floatformat_ia64_quad_big,
103 &floatformat_ia64_quad_little
104};
105const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
106 &floatformat_vax_f,
107 &floatformat_vax_f
108};
109const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
110 &floatformat_vax_d,
111 &floatformat_vax_d
112};
b14d30e1 113const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
f5aee5ee
AM
114 &floatformat_ibm_long_double_big,
115 &floatformat_ibm_long_double_little
b14d30e1 116};
8da61cc4 117
2873700e
KS
118/* Should opaque types be resolved? */
119
491144b5 120static bool opaque_type_resolution = true;
2873700e 121
79bb1944 122/* See gdbtypes.h. */
2873700e
KS
123
124unsigned int overload_debug = 0;
125
a451cb65
KS
126/* A flag to enable strict type checking. */
127
491144b5 128static bool strict_type_checking = true;
a451cb65 129
2873700e 130/* A function to show whether opaque types are resolved. */
5212577a 131
920d2a44
AC
132static void
133show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
134 struct cmd_list_element *c,
135 const char *value)
920d2a44 136{
3e43a32a
MS
137 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
138 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
139 value);
140}
141
2873700e 142/* A function to show whether C++ overload debugging is enabled. */
5212577a 143
920d2a44
AC
144static void
145show_overload_debug (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147{
7ba81444
MS
148 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
149 value);
920d2a44 150}
c906108c 151
a451cb65
KS
152/* A function to show the status of strict type checking. */
153
154static void
155show_strict_type_checking (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157{
158 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
159}
160
5212577a 161\f
e9bb382b
UW
162/* Allocate a new OBJFILE-associated type structure and fill it
163 with some defaults. Space for the type structure is allocated
164 on the objfile's objfile_obstack. */
c906108c
SS
165
166struct type *
fba45db2 167alloc_type (struct objfile *objfile)
c906108c 168{
52f0bd74 169 struct type *type;
c906108c 170
e9bb382b
UW
171 gdb_assert (objfile != NULL);
172
7ba81444 173 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
174 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
175 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
176 struct main_type);
177 OBJSTAT (objfile, n_types++);
c906108c 178
e9bb382b
UW
179 TYPE_OBJFILE_OWNED (type) = 1;
180 TYPE_OWNER (type).objfile = objfile;
c906108c 181
7ba81444 182 /* Initialize the fields that might not be zero. */
c906108c
SS
183
184 TYPE_CODE (type) = TYPE_CODE_UNDEF;
2fdde8f8 185 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 186
c16abbde 187 return type;
c906108c
SS
188}
189
e9bb382b
UW
190/* Allocate a new GDBARCH-associated type structure and fill it
191 with some defaults. Space for the type structure is allocated
8f57eec2 192 on the obstack associated with GDBARCH. */
e9bb382b
UW
193
194struct type *
195alloc_type_arch (struct gdbarch *gdbarch)
196{
197 struct type *type;
198
199 gdb_assert (gdbarch != NULL);
200
201 /* Alloc the structure and start off with all fields zeroed. */
202
8f57eec2
PP
203 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
204 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
e9bb382b
UW
205
206 TYPE_OBJFILE_OWNED (type) = 0;
207 TYPE_OWNER (type).gdbarch = gdbarch;
208
209 /* Initialize the fields that might not be zero. */
210
211 TYPE_CODE (type) = TYPE_CODE_UNDEF;
e9bb382b
UW
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215}
216
217/* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221struct type *
222alloc_type_copy (const struct type *type)
223{
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228}
229
230/* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233struct gdbarch *
234get_type_arch (const struct type *type)
235{
2fabdf33
AB
236 struct gdbarch *arch;
237
e9bb382b 238 if (TYPE_OBJFILE_OWNED (type))
08feed99 239 arch = TYPE_OWNER (type).objfile->arch ();
e9bb382b 240 else
2fabdf33
AB
241 arch = TYPE_OWNER (type).gdbarch;
242
243 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
244 a gdbarch, however, this is very rare, and even then, in most cases
245 that get_type_arch is called, we assume that a non-NULL value is
246 returned. */
247 gdb_assert (arch != NULL);
248 return arch;
e9bb382b
UW
249}
250
99ad9427
YQ
251/* See gdbtypes.h. */
252
253struct type *
254get_target_type (struct type *type)
255{
256 if (type != NULL)
257 {
258 type = TYPE_TARGET_TYPE (type);
259 if (type != NULL)
260 type = check_typedef (type);
261 }
262
263 return type;
264}
265
2e056931
SM
266/* See gdbtypes.h. */
267
268unsigned int
269type_length_units (struct type *type)
270{
271 struct gdbarch *arch = get_type_arch (type);
272 int unit_size = gdbarch_addressable_memory_unit_size (arch);
273
274 return TYPE_LENGTH (type) / unit_size;
275}
276
2fdde8f8
DJ
277/* Alloc a new type instance structure, fill it with some defaults,
278 and point it at OLDTYPE. Allocate the new type instance from the
279 same place as OLDTYPE. */
280
281static struct type *
282alloc_type_instance (struct type *oldtype)
283{
284 struct type *type;
285
286 /* Allocate the structure. */
287
e9bb382b 288 if (! TYPE_OBJFILE_OWNED (oldtype))
2fabdf33 289 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
2fdde8f8 290 else
1deafd4e
PA
291 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
292 struct type);
293
2fdde8f8
DJ
294 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
295
296 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
297
c16abbde 298 return type;
2fdde8f8
DJ
299}
300
301/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 302 replacing it with something else. Preserve owner information. */
5212577a 303
2fdde8f8
DJ
304static void
305smash_type (struct type *type)
306{
e9bb382b
UW
307 int objfile_owned = TYPE_OBJFILE_OWNED (type);
308 union type_owner owner = TYPE_OWNER (type);
309
2fdde8f8
DJ
310 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
311
e9bb382b
UW
312 /* Restore owner information. */
313 TYPE_OBJFILE_OWNED (type) = objfile_owned;
314 TYPE_OWNER (type) = owner;
315
2fdde8f8
DJ
316 /* For now, delete the rings. */
317 TYPE_CHAIN (type) = type;
318
319 /* For now, leave the pointer/reference types alone. */
320}
321
c906108c
SS
322/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
323 to a pointer to memory where the pointer type should be stored.
324 If *TYPEPTR is zero, update it to point to the pointer type we return.
325 We allocate new memory if needed. */
326
327struct type *
fba45db2 328make_pointer_type (struct type *type, struct type **typeptr)
c906108c 329{
52f0bd74 330 struct type *ntype; /* New type */
053cb41b 331 struct type *chain;
c906108c
SS
332
333 ntype = TYPE_POINTER_TYPE (type);
334
c5aa993b 335 if (ntype)
c906108c 336 {
c5aa993b 337 if (typeptr == 0)
7ba81444
MS
338 return ntype; /* Don't care about alloc,
339 and have new type. */
c906108c 340 else if (*typeptr == 0)
c5aa993b 341 {
7ba81444 342 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 343 return ntype;
c5aa993b 344 }
c906108c
SS
345 }
346
347 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
348 {
e9bb382b 349 ntype = alloc_type_copy (type);
c906108c
SS
350 if (typeptr)
351 *typeptr = ntype;
352 }
7ba81444 353 else /* We have storage, but need to reset it. */
c906108c
SS
354 {
355 ntype = *typeptr;
053cb41b 356 chain = TYPE_CHAIN (ntype);
2fdde8f8 357 smash_type (ntype);
053cb41b 358 TYPE_CHAIN (ntype) = chain;
c906108c
SS
359 }
360
361 TYPE_TARGET_TYPE (ntype) = type;
362 TYPE_POINTER_TYPE (type) = ntype;
363
5212577a 364 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 365
50810684
UW
366 TYPE_LENGTH (ntype)
367 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
368 TYPE_CODE (ntype) = TYPE_CODE_PTR;
369
67b2adb2 370 /* Mark pointers as unsigned. The target converts between pointers
76e71323 371 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 372 gdbarch_address_to_pointer. */
876cecd0 373 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 374
053cb41b
JB
375 /* Update the length of all the other variants of this type. */
376 chain = TYPE_CHAIN (ntype);
377 while (chain != ntype)
378 {
379 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
380 chain = TYPE_CHAIN (chain);
381 }
382
c906108c
SS
383 return ntype;
384}
385
386/* Given a type TYPE, return a type of pointers to that type.
387 May need to construct such a type if this is the first use. */
388
389struct type *
fba45db2 390lookup_pointer_type (struct type *type)
c906108c 391{
c5aa993b 392 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
393}
394
7ba81444
MS
395/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
396 points to a pointer to memory where the reference type should be
397 stored. If *TYPEPTR is zero, update it to point to the reference
3b224330
AV
398 type we return. We allocate new memory if needed. REFCODE denotes
399 the kind of reference type to lookup (lvalue or rvalue reference). */
c906108c
SS
400
401struct type *
3b224330
AV
402make_reference_type (struct type *type, struct type **typeptr,
403 enum type_code refcode)
c906108c 404{
52f0bd74 405 struct type *ntype; /* New type */
3b224330 406 struct type **reftype;
1e98b326 407 struct type *chain;
c906108c 408
3b224330
AV
409 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
410
411 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
412 : TYPE_RVALUE_REFERENCE_TYPE (type));
c906108c 413
c5aa993b 414 if (ntype)
c906108c 415 {
c5aa993b 416 if (typeptr == 0)
7ba81444
MS
417 return ntype; /* Don't care about alloc,
418 and have new type. */
c906108c 419 else if (*typeptr == 0)
c5aa993b 420 {
7ba81444 421 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 422 return ntype;
c5aa993b 423 }
c906108c
SS
424 }
425
426 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
427 {
e9bb382b 428 ntype = alloc_type_copy (type);
c906108c
SS
429 if (typeptr)
430 *typeptr = ntype;
431 }
7ba81444 432 else /* We have storage, but need to reset it. */
c906108c
SS
433 {
434 ntype = *typeptr;
1e98b326 435 chain = TYPE_CHAIN (ntype);
2fdde8f8 436 smash_type (ntype);
1e98b326 437 TYPE_CHAIN (ntype) = chain;
c906108c
SS
438 }
439
440 TYPE_TARGET_TYPE (ntype) = type;
3b224330
AV
441 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
442 : &TYPE_RVALUE_REFERENCE_TYPE (type));
443
444 *reftype = ntype;
c906108c 445
7ba81444
MS
446 /* FIXME! Assume the machine has only one representation for
447 references, and that it matches the (only) representation for
448 pointers! */
c906108c 449
50810684
UW
450 TYPE_LENGTH (ntype) =
451 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
3b224330 452 TYPE_CODE (ntype) = refcode;
c5aa993b 453
3b224330 454 *reftype = ntype;
c906108c 455
1e98b326
JB
456 /* Update the length of all the other variants of this type. */
457 chain = TYPE_CHAIN (ntype);
458 while (chain != ntype)
459 {
460 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
461 chain = TYPE_CHAIN (chain);
462 }
463
c906108c
SS
464 return ntype;
465}
466
7ba81444
MS
467/* Same as above, but caller doesn't care about memory allocation
468 details. */
c906108c
SS
469
470struct type *
3b224330
AV
471lookup_reference_type (struct type *type, enum type_code refcode)
472{
473 return make_reference_type (type, (struct type **) 0, refcode);
474}
475
476/* Lookup the lvalue reference type for the type TYPE. */
477
478struct type *
479lookup_lvalue_reference_type (struct type *type)
480{
481 return lookup_reference_type (type, TYPE_CODE_REF);
482}
483
484/* Lookup the rvalue reference type for the type TYPE. */
485
486struct type *
487lookup_rvalue_reference_type (struct type *type)
c906108c 488{
3b224330 489 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
c906108c
SS
490}
491
7ba81444
MS
492/* Lookup a function type that returns type TYPE. TYPEPTR, if
493 nonzero, points to a pointer to memory where the function type
494 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 495 function type we return. We allocate new memory if needed. */
c906108c
SS
496
497struct type *
0c8b41f1 498make_function_type (struct type *type, struct type **typeptr)
c906108c 499{
52f0bd74 500 struct type *ntype; /* New type */
c906108c
SS
501
502 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
503 {
e9bb382b 504 ntype = alloc_type_copy (type);
c906108c
SS
505 if (typeptr)
506 *typeptr = ntype;
507 }
7ba81444 508 else /* We have storage, but need to reset it. */
c906108c
SS
509 {
510 ntype = *typeptr;
2fdde8f8 511 smash_type (ntype);
c906108c
SS
512 }
513
514 TYPE_TARGET_TYPE (ntype) = type;
515
516 TYPE_LENGTH (ntype) = 1;
517 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 518
b6cdc2c1
JK
519 INIT_FUNC_SPECIFIC (ntype);
520
c906108c
SS
521 return ntype;
522}
523
c906108c
SS
524/* Given a type TYPE, return a type of functions that return that type.
525 May need to construct such a type if this is the first use. */
526
527struct type *
fba45db2 528lookup_function_type (struct type *type)
c906108c 529{
0c8b41f1 530 return make_function_type (type, (struct type **) 0);
c906108c
SS
531}
532
71918a86 533/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
534 function type. If the final type in PARAM_TYPES is NULL, make a
535 varargs function. */
71918a86
TT
536
537struct type *
538lookup_function_type_with_arguments (struct type *type,
539 int nparams,
540 struct type **param_types)
541{
542 struct type *fn = make_function_type (type, (struct type **) 0);
543 int i;
544
e314d629 545 if (nparams > 0)
a6fb9c08 546 {
e314d629
TT
547 if (param_types[nparams - 1] == NULL)
548 {
549 --nparams;
550 TYPE_VARARGS (fn) = 1;
551 }
552 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
553 == TYPE_CODE_VOID)
554 {
555 --nparams;
556 /* Caller should have ensured this. */
557 gdb_assert (nparams == 0);
558 TYPE_PROTOTYPED (fn) = 1;
559 }
54990598
PA
560 else
561 TYPE_PROTOTYPED (fn) = 1;
a6fb9c08
TT
562 }
563
71918a86 564 TYPE_NFIELDS (fn) = nparams;
224c3ddb
SM
565 TYPE_FIELDS (fn)
566 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
71918a86
TT
567 for (i = 0; i < nparams; ++i)
568 TYPE_FIELD_TYPE (fn, i) = param_types[i];
569
570 return fn;
571}
572
47663de5
MS
573/* Identify address space identifier by name --
574 return the integer flag defined in gdbtypes.h. */
5212577a
DE
575
576int
61f4b350
TT
577address_space_name_to_int (struct gdbarch *gdbarch,
578 const char *space_identifier)
47663de5 579{
8b2dbe47 580 int type_flags;
d8734c88 581
7ba81444 582 /* Check for known address space delimiters. */
47663de5 583 if (!strcmp (space_identifier, "code"))
876cecd0 584 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 585 else if (!strcmp (space_identifier, "data"))
876cecd0 586 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
587 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
588 && gdbarch_address_class_name_to_type_flags (gdbarch,
589 space_identifier,
590 &type_flags))
8b2dbe47 591 return type_flags;
47663de5 592 else
8a3fe4f8 593 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
594}
595
596/* Identify address space identifier by integer flag as defined in
7ba81444 597 gdbtypes.h -- return the string version of the adress space name. */
47663de5 598
321432c0 599const char *
50810684 600address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 601{
876cecd0 602 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 603 return "code";
876cecd0 604 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 605 return "data";
876cecd0 606 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
607 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
608 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
609 else
610 return NULL;
611}
612
2fdde8f8 613/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
614
615 If STORAGE is non-NULL, create the new type instance there.
616 STORAGE must be in the same obstack as TYPE. */
47663de5 617
b9362cc7 618static struct type *
2fdde8f8
DJ
619make_qualified_type (struct type *type, int new_flags,
620 struct type *storage)
47663de5
MS
621{
622 struct type *ntype;
623
624 ntype = type;
5f61c20e
JK
625 do
626 {
627 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
628 return ntype;
629 ntype = TYPE_CHAIN (ntype);
630 }
631 while (ntype != type);
47663de5 632
2fdde8f8
DJ
633 /* Create a new type instance. */
634 if (storage == NULL)
635 ntype = alloc_type_instance (type);
636 else
637 {
7ba81444
MS
638 /* If STORAGE was provided, it had better be in the same objfile
639 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
640 if one objfile is freed and the other kept, we'd have
641 dangling pointers. */
ad766c0a
JB
642 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
643
2fdde8f8
DJ
644 ntype = storage;
645 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
646 TYPE_CHAIN (ntype) = ntype;
647 }
47663de5
MS
648
649 /* Pointers or references to the original type are not relevant to
2fdde8f8 650 the new type. */
47663de5
MS
651 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
652 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 653
2fdde8f8
DJ
654 /* Chain the new qualified type to the old type. */
655 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
656 TYPE_CHAIN (type) = ntype;
657
658 /* Now set the instance flags and return the new type. */
659 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 660
ab5d3da6
KB
661 /* Set length of new type to that of the original type. */
662 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
663
47663de5
MS
664 return ntype;
665}
666
2fdde8f8
DJ
667/* Make an address-space-delimited variant of a type -- a type that
668 is identical to the one supplied except that it has an address
669 space attribute attached to it (such as "code" or "data").
670
7ba81444
MS
671 The space attributes "code" and "data" are for Harvard
672 architectures. The address space attributes are for architectures
673 which have alternately sized pointers or pointers with alternate
674 representations. */
2fdde8f8
DJ
675
676struct type *
677make_type_with_address_space (struct type *type, int space_flag)
678{
2fdde8f8 679 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
680 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
681 | TYPE_INSTANCE_FLAG_DATA_SPACE
682 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
683 | space_flag);
684
685 return make_qualified_type (type, new_flags, NULL);
686}
c906108c
SS
687
688/* Make a "c-v" variant of a type -- a type that is identical to the
689 one supplied except that it may have const or volatile attributes
690 CNST is a flag for setting the const attribute
691 VOLTL is a flag for setting the volatile attribute
692 TYPE is the base type whose variant we are creating.
c906108c 693
ad766c0a
JB
694 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
695 storage to hold the new qualified type; *TYPEPTR and TYPE must be
696 in the same objfile. Otherwise, allocate fresh memory for the new
697 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
698 new type we construct. */
5212577a 699
c906108c 700struct type *
7ba81444
MS
701make_cv_type (int cnst, int voltl,
702 struct type *type,
703 struct type **typeptr)
c906108c 704{
52f0bd74 705 struct type *ntype; /* New type */
c906108c 706
2fdde8f8 707 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
708 & ~(TYPE_INSTANCE_FLAG_CONST
709 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 710
c906108c 711 if (cnst)
876cecd0 712 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
713
714 if (voltl)
876cecd0 715 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 716
2fdde8f8 717 if (typeptr && *typeptr != NULL)
a02fd225 718 {
ad766c0a
JB
719 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
720 a C-V variant chain that threads across objfiles: if one
721 objfile gets freed, then the other has a broken C-V chain.
722
723 This code used to try to copy over the main type from TYPE to
724 *TYPEPTR if they were in different objfiles, but that's
725 wrong, too: TYPE may have a field list or member function
726 lists, which refer to types of their own, etc. etc. The
727 whole shebang would need to be copied over recursively; you
728 can't have inter-objfile pointers. The only thing to do is
729 to leave stub types as stub types, and look them up afresh by
730 name each time you encounter them. */
731 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
732 }
733
7ba81444
MS
734 ntype = make_qualified_type (type, new_flags,
735 typeptr ? *typeptr : NULL);
c906108c 736
2fdde8f8
DJ
737 if (typeptr != NULL)
738 *typeptr = ntype;
a02fd225 739
2fdde8f8 740 return ntype;
a02fd225 741}
c906108c 742
06d66ee9
TT
743/* Make a 'restrict'-qualified version of TYPE. */
744
745struct type *
746make_restrict_type (struct type *type)
747{
748 return make_qualified_type (type,
749 (TYPE_INSTANCE_FLAGS (type)
750 | TYPE_INSTANCE_FLAG_RESTRICT),
751 NULL);
752}
753
f1660027
TT
754/* Make a type without const, volatile, or restrict. */
755
756struct type *
757make_unqualified_type (struct type *type)
758{
759 return make_qualified_type (type,
760 (TYPE_INSTANCE_FLAGS (type)
761 & ~(TYPE_INSTANCE_FLAG_CONST
762 | TYPE_INSTANCE_FLAG_VOLATILE
763 | TYPE_INSTANCE_FLAG_RESTRICT)),
764 NULL);
765}
766
a2c2acaf
MW
767/* Make a '_Atomic'-qualified version of TYPE. */
768
769struct type *
770make_atomic_type (struct type *type)
771{
772 return make_qualified_type (type,
773 (TYPE_INSTANCE_FLAGS (type)
774 | TYPE_INSTANCE_FLAG_ATOMIC),
775 NULL);
776}
777
2fdde8f8
DJ
778/* Replace the contents of ntype with the type *type. This changes the
779 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
780 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 781
cda6c68a
JB
782 In order to build recursive types, it's inevitable that we'll need
783 to update types in place --- but this sort of indiscriminate
784 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
785 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
786 clear if more steps are needed. */
5212577a 787
dd6bda65
DJ
788void
789replace_type (struct type *ntype, struct type *type)
790{
ab5d3da6 791 struct type *chain;
dd6bda65 792
ad766c0a
JB
793 /* These two types had better be in the same objfile. Otherwise,
794 the assignment of one type's main type structure to the other
795 will produce a type with references to objects (names; field
796 lists; etc.) allocated on an objfile other than its own. */
e46dd0f4 797 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
ad766c0a 798
2fdde8f8 799 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 800
7ba81444
MS
801 /* The type length is not a part of the main type. Update it for
802 each type on the variant chain. */
ab5d3da6 803 chain = ntype;
5f61c20e
JK
804 do
805 {
806 /* Assert that this element of the chain has no address-class bits
807 set in its flags. Such type variants might have type lengths
808 which are supposed to be different from the non-address-class
809 variants. This assertion shouldn't ever be triggered because
810 symbol readers which do construct address-class variants don't
811 call replace_type(). */
812 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
813
814 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
815 chain = TYPE_CHAIN (chain);
816 }
817 while (ntype != chain);
ab5d3da6 818
2fdde8f8
DJ
819 /* Assert that the two types have equivalent instance qualifiers.
820 This should be true for at least all of our debug readers. */
821 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
822}
823
c906108c
SS
824/* Implement direct support for MEMBER_TYPE in GNU C++.
825 May need to construct such a type if this is the first use.
826 The TYPE is the type of the member. The DOMAIN is the type
827 of the aggregate that the member belongs to. */
828
829struct type *
0d5de010 830lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 831{
52f0bd74 832 struct type *mtype;
c906108c 833
e9bb382b 834 mtype = alloc_type_copy (type);
0d5de010 835 smash_to_memberptr_type (mtype, domain, type);
c16abbde 836 return mtype;
c906108c
SS
837}
838
0d5de010
DJ
839/* Return a pointer-to-method type, for a method of type TO_TYPE. */
840
841struct type *
842lookup_methodptr_type (struct type *to_type)
843{
844 struct type *mtype;
845
e9bb382b 846 mtype = alloc_type_copy (to_type);
0b92b5bb 847 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
848 return mtype;
849}
850
7ba81444
MS
851/* Allocate a stub method whose return type is TYPE. This apparently
852 happens for speed of symbol reading, since parsing out the
853 arguments to the method is cpu-intensive, the way we are doing it.
854 So, we will fill in arguments later. This always returns a fresh
855 type. */
c906108c
SS
856
857struct type *
fba45db2 858allocate_stub_method (struct type *type)
c906108c
SS
859{
860 struct type *mtype;
861
e9bb382b
UW
862 mtype = alloc_type_copy (type);
863 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
864 TYPE_LENGTH (mtype) = 1;
865 TYPE_STUB (mtype) = 1;
c906108c 866 TYPE_TARGET_TYPE (mtype) = type;
4bfb94b8 867 /* TYPE_SELF_TYPE (mtype) = unknown yet */
c16abbde 868 return mtype;
c906108c
SS
869}
870
0f59d5fc
PA
871/* See gdbtypes.h. */
872
873bool
874operator== (const dynamic_prop &l, const dynamic_prop &r)
875{
876 if (l.kind != r.kind)
877 return false;
878
879 switch (l.kind)
880 {
881 case PROP_UNDEFINED:
882 return true;
883 case PROP_CONST:
884 return l.data.const_val == r.data.const_val;
885 case PROP_ADDR_OFFSET:
886 case PROP_LOCEXPR:
887 case PROP_LOCLIST:
888 return l.data.baton == r.data.baton;
889 }
890
891 gdb_assert_not_reached ("unhandled dynamic_prop kind");
892}
893
894/* See gdbtypes.h. */
895
896bool
897operator== (const range_bounds &l, const range_bounds &r)
898{
899#define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
900
901 return (FIELD_EQ (low)
902 && FIELD_EQ (high)
903 && FIELD_EQ (flag_upper_bound_is_count)
4e962e74
TT
904 && FIELD_EQ (flag_bound_evaluated)
905 && FIELD_EQ (bias));
0f59d5fc
PA
906
907#undef FIELD_EQ
908}
909
729efb13
SA
910/* Create a range type with a dynamic range from LOW_BOUND to
911 HIGH_BOUND, inclusive. See create_range_type for further details. */
c906108c
SS
912
913struct type *
729efb13
SA
914create_range_type (struct type *result_type, struct type *index_type,
915 const struct dynamic_prop *low_bound,
4e962e74
TT
916 const struct dynamic_prop *high_bound,
917 LONGEST bias)
c906108c 918{
b86352cf
AB
919 /* The INDEX_TYPE should be a type capable of holding the upper and lower
920 bounds, as such a zero sized, or void type makes no sense. */
921 gdb_assert (TYPE_CODE (index_type) != TYPE_CODE_VOID);
922 gdb_assert (TYPE_LENGTH (index_type) > 0);
923
c906108c 924 if (result_type == NULL)
e9bb382b 925 result_type = alloc_type_copy (index_type);
c906108c
SS
926 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
927 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 928 if (TYPE_STUB (index_type))
876cecd0 929 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
930 else
931 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
729efb13 932
43bbcdc2
PH
933 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
934 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
729efb13
SA
935 TYPE_RANGE_DATA (result_type)->low = *low_bound;
936 TYPE_RANGE_DATA (result_type)->high = *high_bound;
4e962e74 937 TYPE_RANGE_DATA (result_type)->bias = bias;
c906108c 938
5bbd8269
AB
939 /* Initialize the stride to be a constant, the value will already be zero
940 thanks to the use of TYPE_ZALLOC above. */
941 TYPE_RANGE_DATA (result_type)->stride.kind = PROP_CONST;
942
729efb13 943 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
876cecd0 944 TYPE_UNSIGNED (result_type) = 1;
c906108c 945
45e44d27
JB
946 /* Ada allows the declaration of range types whose upper bound is
947 less than the lower bound, so checking the lower bound is not
948 enough. Make sure we do not mark a range type whose upper bound
949 is negative as unsigned. */
950 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
951 TYPE_UNSIGNED (result_type) = 0;
952
a05cf17a
TT
953 TYPE_ENDIANITY_NOT_DEFAULT (result_type)
954 = TYPE_ENDIANITY_NOT_DEFAULT (index_type);
955
262452ec 956 return result_type;
c906108c
SS
957}
958
5bbd8269
AB
959/* See gdbtypes.h. */
960
961struct type *
962create_range_type_with_stride (struct type *result_type,
963 struct type *index_type,
964 const struct dynamic_prop *low_bound,
965 const struct dynamic_prop *high_bound,
966 LONGEST bias,
967 const struct dynamic_prop *stride,
968 bool byte_stride_p)
969{
970 result_type = create_range_type (result_type, index_type, low_bound,
971 high_bound, bias);
972
973 gdb_assert (stride != nullptr);
974 TYPE_RANGE_DATA (result_type)->stride = *stride;
975 TYPE_RANGE_DATA (result_type)->flag_is_byte_stride = byte_stride_p;
976
977 return result_type;
978}
979
980
981
729efb13
SA
982/* Create a range type using either a blank type supplied in
983 RESULT_TYPE, or creating a new type, inheriting the objfile from
984 INDEX_TYPE.
985
986 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
987 to HIGH_BOUND, inclusive.
988
989 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
990 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
991
992struct type *
993create_static_range_type (struct type *result_type, struct type *index_type,
994 LONGEST low_bound, LONGEST high_bound)
995{
996 struct dynamic_prop low, high;
997
998 low.kind = PROP_CONST;
999 low.data.const_val = low_bound;
1000
1001 high.kind = PROP_CONST;
1002 high.data.const_val = high_bound;
1003
4e962e74 1004 result_type = create_range_type (result_type, index_type, &low, &high, 0);
729efb13
SA
1005
1006 return result_type;
1007}
1008
80180f79
SA
1009/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
1010 are static, otherwise returns 0. */
1011
5bbd8269 1012static bool
80180f79
SA
1013has_static_range (const struct range_bounds *bounds)
1014{
5bbd8269
AB
1015 /* If the range doesn't have a defined stride then its stride field will
1016 be initialized to the constant 0. */
80180f79 1017 return (bounds->low.kind == PROP_CONST
5bbd8269
AB
1018 && bounds->high.kind == PROP_CONST
1019 && bounds->stride.kind == PROP_CONST);
80180f79
SA
1020}
1021
1022
7ba81444
MS
1023/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
1024 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
1025 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
1026
1027int
fba45db2 1028get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c 1029{
f168693b 1030 type = check_typedef (type);
c906108c
SS
1031 switch (TYPE_CODE (type))
1032 {
1033 case TYPE_CODE_RANGE:
1034 *lowp = TYPE_LOW_BOUND (type);
1035 *highp = TYPE_HIGH_BOUND (type);
1036 return 1;
1037 case TYPE_CODE_ENUM:
1038 if (TYPE_NFIELDS (type) > 0)
1039 {
1040 /* The enums may not be sorted by value, so search all
0963b4bd 1041 entries. */
c906108c
SS
1042 int i;
1043
14e75d8e 1044 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
c906108c
SS
1045 for (i = 0; i < TYPE_NFIELDS (type); i++)
1046 {
14e75d8e
JK
1047 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1048 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1049 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1050 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
1051 }
1052
7ba81444 1053 /* Set unsigned indicator if warranted. */
c5aa993b 1054 if (*lowp >= 0)
c906108c 1055 {
876cecd0 1056 TYPE_UNSIGNED (type) = 1;
c906108c
SS
1057 }
1058 }
1059 else
1060 {
1061 *lowp = 0;
1062 *highp = -1;
1063 }
1064 return 0;
1065 case TYPE_CODE_BOOL:
1066 *lowp = 0;
1067 *highp = 1;
1068 return 0;
1069 case TYPE_CODE_INT:
c5aa993b 1070 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
1071 return -1;
1072 if (!TYPE_UNSIGNED (type))
1073 {
c5aa993b 1074 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
1075 *highp = -*lowp - 1;
1076 return 0;
1077 }
86a73007 1078 /* fall through */
c906108c
SS
1079 case TYPE_CODE_CHAR:
1080 *lowp = 0;
1081 /* This round-about calculation is to avoid shifting by
7b83ea04 1082 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 1083 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
1084 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1085 *highp = (*highp - 1) | *highp;
1086 return 0;
1087 default:
1088 return -1;
1089 }
1090}
1091
dbc98a8b
KW
1092/* Assuming TYPE is a simple, non-empty array type, compute its upper
1093 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1094 Save the high bound into HIGH_BOUND if not NULL.
1095
0963b4bd 1096 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
1097 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1098
1099 We now simply use get_discrete_bounds call to get the values
1100 of the low and high bounds.
1101 get_discrete_bounds can return three values:
1102 1, meaning that index is a range,
1103 0, meaning that index is a discrete type,
1104 or -1 for failure. */
1105
1106int
1107get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1108{
1109 struct type *index = TYPE_INDEX_TYPE (type);
1110 LONGEST low = 0;
1111 LONGEST high = 0;
1112 int res;
1113
1114 if (index == NULL)
1115 return 0;
1116
1117 res = get_discrete_bounds (index, &low, &high);
1118 if (res == -1)
1119 return 0;
1120
1121 /* Check if the array bounds are undefined. */
1122 if (res == 1
1123 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1124 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1125 return 0;
1126
1127 if (low_bound)
1128 *low_bound = low;
1129
1130 if (high_bound)
1131 *high_bound = high;
1132
1133 return 1;
1134}
1135
aa715135
JG
1136/* Assuming that TYPE is a discrete type and VAL is a valid integer
1137 representation of a value of this type, save the corresponding
1138 position number in POS.
1139
1140 Its differs from VAL only in the case of enumeration types. In
1141 this case, the position number of the value of the first listed
1142 enumeration literal is zero; the position number of the value of
1143 each subsequent enumeration literal is one more than that of its
1144 predecessor in the list.
1145
1146 Return 1 if the operation was successful. Return zero otherwise,
1147 in which case the value of POS is unmodified.
1148*/
1149
1150int
1151discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1152{
1153 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1154 {
1155 int i;
1156
1157 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1158 {
1159 if (val == TYPE_FIELD_ENUMVAL (type, i))
1160 {
1161 *pos = i;
1162 return 1;
1163 }
1164 }
1165 /* Invalid enumeration value. */
1166 return 0;
1167 }
1168 else
1169 {
1170 *pos = val;
1171 return 1;
1172 }
1173}
1174
7ba81444
MS
1175/* Create an array type using either a blank type supplied in
1176 RESULT_TYPE, or creating a new type, inheriting the objfile from
1177 RANGE_TYPE.
c906108c
SS
1178
1179 Elements will be of type ELEMENT_TYPE, the indices will be of type
1180 RANGE_TYPE.
1181
a405673c
JB
1182 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1183 This byte stride property is added to the resulting array type
1184 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1185 argument can only be used to create types that are objfile-owned
1186 (see add_dyn_prop), meaning that either this function must be called
1187 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1188
1189 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
dc53a7ad
JB
1190 If BIT_STRIDE is not zero, build a packed array type whose element
1191 size is BIT_STRIDE. Otherwise, ignore this parameter.
1192
7ba81444
MS
1193 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1194 sure it is TYPE_CODE_UNDEF before we bash it into an array
1195 type? */
c906108c
SS
1196
1197struct type *
dc53a7ad
JB
1198create_array_type_with_stride (struct type *result_type,
1199 struct type *element_type,
1200 struct type *range_type,
a405673c 1201 struct dynamic_prop *byte_stride_prop,
dc53a7ad 1202 unsigned int bit_stride)
c906108c 1203{
a405673c
JB
1204 if (byte_stride_prop != NULL
1205 && byte_stride_prop->kind == PROP_CONST)
1206 {
1207 /* The byte stride is actually not dynamic. Pretend we were
1208 called with bit_stride set instead of byte_stride_prop.
1209 This will give us the same result type, while avoiding
1210 the need to handle this as a special case. */
1211 bit_stride = byte_stride_prop->data.const_val * 8;
1212 byte_stride_prop = NULL;
1213 }
1214
c906108c 1215 if (result_type == NULL)
e9bb382b
UW
1216 result_type = alloc_type_copy (range_type);
1217
c906108c
SS
1218 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1219 TYPE_TARGET_TYPE (result_type) = element_type;
a405673c
JB
1220 if (byte_stride_prop == NULL
1221 && has_static_range (TYPE_RANGE_DATA (range_type))
b4a7fcab
JB
1222 && (!type_not_associated (result_type)
1223 && !type_not_allocated (result_type)))
80180f79
SA
1224 {
1225 LONGEST low_bound, high_bound;
9e80cfa1 1226 int stride;
5bbd8269
AB
1227
1228 /* If the array itself doesn't provide a stride value then take
1229 whatever stride the range provides. Don't update BIT_STRIDE as
1230 we don't want to place the stride value from the range into this
1231 arrays bit size field. */
1232 stride = bit_stride;
1233 if (stride == 0)
1234 stride = TYPE_BIT_STRIDE (range_type);
80180f79
SA
1235
1236 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1237 low_bound = high_bound = 0;
f168693b 1238 element_type = check_typedef (element_type);
80180f79
SA
1239 /* Be careful when setting the array length. Ada arrays can be
1240 empty arrays with the high_bound being smaller than the low_bound.
1241 In such cases, the array length should be zero. */
1242 if (high_bound < low_bound)
1243 TYPE_LENGTH (result_type) = 0;
9e80cfa1
AB
1244 else if (stride != 0)
1245 {
1246 /* Ensure that the type length is always positive, even in the
1247 case where (for example in Fortran) we have a negative
1248 stride. It is possible to have a single element array with a
1249 negative stride in Fortran (this doesn't mean anything
1250 special, it's still just a single element array) so do
1251 consider that case when touching this code. */
3104d9ee 1252 LONGEST element_count = std::abs (high_bound - low_bound + 1);
9e80cfa1 1253 TYPE_LENGTH (result_type)
3104d9ee 1254 = ((std::abs (stride) * element_count) + 7) / 8;
9e80cfa1 1255 }
80180f79
SA
1256 else
1257 TYPE_LENGTH (result_type) =
1258 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1259 }
ab0d6e0d 1260 else
80180f79
SA
1261 {
1262 /* This type is dynamic and its length needs to be computed
1263 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1264 undefined by setting it to zero. Although we are not expected
1265 to trust TYPE_LENGTH in this case, setting the size to zero
1266 allows us to avoid allocating objects of random sizes in case
1267 we accidently do. */
1268 TYPE_LENGTH (result_type) = 0;
1269 }
1270
c906108c
SS
1271 TYPE_NFIELDS (result_type) = 1;
1272 TYPE_FIELDS (result_type) =
1deafd4e 1273 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 1274 TYPE_INDEX_TYPE (result_type) = range_type;
a405673c 1275 if (byte_stride_prop != NULL)
50a82047 1276 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
a405673c 1277 else if (bit_stride > 0)
dc53a7ad 1278 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
c906108c 1279
a9ff5f12 1280 /* TYPE_TARGET_STUB will take care of zero length arrays. */
c906108c 1281 if (TYPE_LENGTH (result_type) == 0)
876cecd0 1282 TYPE_TARGET_STUB (result_type) = 1;
c906108c 1283
c16abbde 1284 return result_type;
c906108c
SS
1285}
1286
dc53a7ad
JB
1287/* Same as create_array_type_with_stride but with no bit_stride
1288 (BIT_STRIDE = 0), thus building an unpacked array. */
1289
1290struct type *
1291create_array_type (struct type *result_type,
1292 struct type *element_type,
1293 struct type *range_type)
1294{
1295 return create_array_type_with_stride (result_type, element_type,
a405673c 1296 range_type, NULL, 0);
dc53a7ad
JB
1297}
1298
e3506a9f
UW
1299struct type *
1300lookup_array_range_type (struct type *element_type,
63375b74 1301 LONGEST low_bound, LONGEST high_bound)
e3506a9f 1302{
929b5ad4
JB
1303 struct type *index_type;
1304 struct type *range_type;
1305
1306 if (TYPE_OBJFILE_OWNED (element_type))
1307 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1308 else
1309 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1310 range_type = create_static_range_type (NULL, index_type,
1311 low_bound, high_bound);
d8734c88 1312
e3506a9f
UW
1313 return create_array_type (NULL, element_type, range_type);
1314}
1315
7ba81444
MS
1316/* Create a string type using either a blank type supplied in
1317 RESULT_TYPE, or creating a new type. String types are similar
1318 enough to array of char types that we can use create_array_type to
1319 build the basic type and then bash it into a string type.
c906108c
SS
1320
1321 For fixed length strings, the range type contains 0 as the lower
1322 bound and the length of the string minus one as the upper bound.
1323
7ba81444
MS
1324 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1325 sure it is TYPE_CODE_UNDEF before we bash it into a string
1326 type? */
c906108c
SS
1327
1328struct type *
3b7538c0
UW
1329create_string_type (struct type *result_type,
1330 struct type *string_char_type,
7ba81444 1331 struct type *range_type)
c906108c
SS
1332{
1333 result_type = create_array_type (result_type,
f290d38e 1334 string_char_type,
c906108c
SS
1335 range_type);
1336 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 1337 return result_type;
c906108c
SS
1338}
1339
e3506a9f
UW
1340struct type *
1341lookup_string_range_type (struct type *string_char_type,
63375b74 1342 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1343{
1344 struct type *result_type;
d8734c88 1345
e3506a9f
UW
1346 result_type = lookup_array_range_type (string_char_type,
1347 low_bound, high_bound);
1348 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1349 return result_type;
1350}
1351
c906108c 1352struct type *
fba45db2 1353create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1354{
c906108c 1355 if (result_type == NULL)
e9bb382b
UW
1356 result_type = alloc_type_copy (domain_type);
1357
c906108c
SS
1358 TYPE_CODE (result_type) = TYPE_CODE_SET;
1359 TYPE_NFIELDS (result_type) = 1;
224c3ddb
SM
1360 TYPE_FIELDS (result_type)
1361 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 1362
74a9bb82 1363 if (!TYPE_STUB (domain_type))
c906108c 1364 {
f9780d5b 1365 LONGEST low_bound, high_bound, bit_length;
d8734c88 1366
c906108c
SS
1367 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1368 low_bound = high_bound = 0;
1369 bit_length = high_bound - low_bound + 1;
1370 TYPE_LENGTH (result_type)
1371 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1372 if (low_bound >= 0)
876cecd0 1373 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
1374 }
1375 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1376
c16abbde 1377 return result_type;
c906108c
SS
1378}
1379
ea37ba09
DJ
1380/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1381 and any array types nested inside it. */
1382
1383void
1384make_vector_type (struct type *array_type)
1385{
1386 struct type *inner_array, *elt_type;
1387 int flags;
1388
1389 /* Find the innermost array type, in case the array is
1390 multi-dimensional. */
1391 inner_array = array_type;
1392 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1393 inner_array = TYPE_TARGET_TYPE (inner_array);
1394
1395 elt_type = TYPE_TARGET_TYPE (inner_array);
1396 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1397 {
2844d6b5 1398 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1399 elt_type = make_qualified_type (elt_type, flags, NULL);
1400 TYPE_TARGET_TYPE (inner_array) = elt_type;
1401 }
1402
876cecd0 1403 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1404}
1405
794ac428 1406struct type *
ac3aafc7
EZ
1407init_vector_type (struct type *elt_type, int n)
1408{
1409 struct type *array_type;
d8734c88 1410
e3506a9f 1411 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1412 make_vector_type (array_type);
ac3aafc7
EZ
1413 return array_type;
1414}
1415
09e2d7c7
DE
1416/* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1417 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1418 confusing. "self" is a common enough replacement for "this".
1419 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1420 TYPE_CODE_METHOD. */
1421
1422struct type *
1423internal_type_self_type (struct type *type)
1424{
1425 switch (TYPE_CODE (type))
1426 {
1427 case TYPE_CODE_METHODPTR:
1428 case TYPE_CODE_MEMBERPTR:
eaaf76ab
DE
1429 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1430 return NULL;
09e2d7c7
DE
1431 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1432 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1433 case TYPE_CODE_METHOD:
eaaf76ab
DE
1434 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1435 return NULL;
09e2d7c7
DE
1436 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1437 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1438 default:
1439 gdb_assert_not_reached ("bad type");
1440 }
1441}
1442
1443/* Set the type of the class that TYPE belongs to.
1444 In c++ this is the class of "this".
1445 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1446 TYPE_CODE_METHOD. */
1447
1448void
1449set_type_self_type (struct type *type, struct type *self_type)
1450{
1451 switch (TYPE_CODE (type))
1452 {
1453 case TYPE_CODE_METHODPTR:
1454 case TYPE_CODE_MEMBERPTR:
1455 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1456 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1457 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1458 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1459 break;
1460 case TYPE_CODE_METHOD:
1461 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1462 INIT_FUNC_SPECIFIC (type);
1463 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1464 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1465 break;
1466 default:
1467 gdb_assert_not_reached ("bad type");
1468 }
1469}
1470
1471/* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
0d5de010
DJ
1472 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1473 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1474 TYPE doesn't include the offset (that's the value of the MEMBER
1475 itself), but does include the structure type into which it points
1476 (for some reason).
c906108c 1477
7ba81444
MS
1478 When "smashing" the type, we preserve the objfile that the old type
1479 pointed to, since we aren't changing where the type is actually
c906108c
SS
1480 allocated. */
1481
1482void
09e2d7c7 1483smash_to_memberptr_type (struct type *type, struct type *self_type,
0d5de010 1484 struct type *to_type)
c906108c 1485{
2fdde8f8 1486 smash_type (type);
09e2d7c7 1487 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c 1488 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1489 set_type_self_type (type, self_type);
0d5de010
DJ
1490 /* Assume that a data member pointer is the same size as a normal
1491 pointer. */
50810684
UW
1492 TYPE_LENGTH (type)
1493 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
c906108c
SS
1494}
1495
0b92b5bb
TT
1496/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1497
1498 When "smashing" the type, we preserve the objfile that the old type
1499 pointed to, since we aren't changing where the type is actually
1500 allocated. */
1501
1502void
1503smash_to_methodptr_type (struct type *type, struct type *to_type)
1504{
1505 smash_type (type);
09e2d7c7 1506 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
0b92b5bb 1507 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1508 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
0b92b5bb 1509 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
0b92b5bb
TT
1510}
1511
09e2d7c7 1512/* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
c906108c
SS
1513 METHOD just means `function that gets an extra "this" argument'.
1514
7ba81444
MS
1515 When "smashing" the type, we preserve the objfile that the old type
1516 pointed to, since we aren't changing where the type is actually
c906108c
SS
1517 allocated. */
1518
1519void
09e2d7c7 1520smash_to_method_type (struct type *type, struct type *self_type,
ad2f7632
DJ
1521 struct type *to_type, struct field *args,
1522 int nargs, int varargs)
c906108c 1523{
2fdde8f8 1524 smash_type (type);
09e2d7c7 1525 TYPE_CODE (type) = TYPE_CODE_METHOD;
c906108c 1526 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1527 set_type_self_type (type, self_type);
ad2f7632
DJ
1528 TYPE_FIELDS (type) = args;
1529 TYPE_NFIELDS (type) = nargs;
1530 if (varargs)
876cecd0 1531 TYPE_VARARGS (type) = 1;
c906108c 1532 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
c906108c
SS
1533}
1534
a737d952 1535/* A wrapper of TYPE_NAME which calls error if the type is anonymous.
d8228535
JK
1536 Since GCC PR debug/47510 DWARF provides associated information to detect the
1537 anonymous class linkage name from its typedef.
1538
1539 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1540 apply it itself. */
1541
1542const char *
a737d952 1543type_name_or_error (struct type *type)
d8228535
JK
1544{
1545 struct type *saved_type = type;
1546 const char *name;
1547 struct objfile *objfile;
1548
f168693b 1549 type = check_typedef (type);
d8228535 1550
a737d952 1551 name = TYPE_NAME (type);
d8228535
JK
1552 if (name != NULL)
1553 return name;
1554
a737d952 1555 name = TYPE_NAME (saved_type);
d8228535
JK
1556 objfile = TYPE_OBJFILE (saved_type);
1557 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
4262abfb
JK
1558 name ? name : "<anonymous>",
1559 objfile ? objfile_name (objfile) : "<arch>");
d8228535
JK
1560}
1561
7ba81444
MS
1562/* Lookup a typedef or primitive type named NAME, visible in lexical
1563 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1564 suitably defined. */
c906108c
SS
1565
1566struct type *
e6c014f2 1567lookup_typename (const struct language_defn *language,
b858499d 1568 const char *name,
34eaf542 1569 const struct block *block, int noerr)
c906108c 1570{
52f0bd74 1571 struct symbol *sym;
c906108c 1572
1994afbf 1573 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
d12307c1 1574 language->la_language, NULL).symbol;
c51fe631
DE
1575 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1576 return SYMBOL_TYPE (sym);
1577
c51fe631
DE
1578 if (noerr)
1579 return NULL;
1580 error (_("No type named %s."), name);
c906108c
SS
1581}
1582
1583struct type *
e6c014f2 1584lookup_unsigned_typename (const struct language_defn *language,
b858499d 1585 const char *name)
c906108c 1586{
224c3ddb 1587 char *uns = (char *) alloca (strlen (name) + 10);
c906108c
SS
1588
1589 strcpy (uns, "unsigned ");
1590 strcpy (uns + 9, name);
b858499d 1591 return lookup_typename (language, uns, NULL, 0);
c906108c
SS
1592}
1593
1594struct type *
b858499d 1595lookup_signed_typename (const struct language_defn *language, const char *name)
c906108c
SS
1596{
1597 struct type *t;
224c3ddb 1598 char *uns = (char *) alloca (strlen (name) + 8);
c906108c
SS
1599
1600 strcpy (uns, "signed ");
1601 strcpy (uns + 7, name);
b858499d 1602 t = lookup_typename (language, uns, NULL, 1);
7ba81444 1603 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1604 if (t != NULL)
1605 return t;
b858499d 1606 return lookup_typename (language, name, NULL, 0);
c906108c
SS
1607}
1608
1609/* Lookup a structure type named "struct NAME",
1610 visible in lexical block BLOCK. */
1611
1612struct type *
270140bd 1613lookup_struct (const char *name, const struct block *block)
c906108c 1614{
52f0bd74 1615 struct symbol *sym;
c906108c 1616
d12307c1 1617 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1618
1619 if (sym == NULL)
1620 {
8a3fe4f8 1621 error (_("No struct type named %s."), name);
c906108c
SS
1622 }
1623 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1624 {
7ba81444
MS
1625 error (_("This context has class, union or enum %s, not a struct."),
1626 name);
c906108c
SS
1627 }
1628 return (SYMBOL_TYPE (sym));
1629}
1630
1631/* Lookup a union type named "union NAME",
1632 visible in lexical block BLOCK. */
1633
1634struct type *
270140bd 1635lookup_union (const char *name, const struct block *block)
c906108c 1636{
52f0bd74 1637 struct symbol *sym;
c5aa993b 1638 struct type *t;
c906108c 1639
d12307c1 1640 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1641
1642 if (sym == NULL)
8a3fe4f8 1643 error (_("No union type named %s."), name);
c906108c 1644
c5aa993b 1645 t = SYMBOL_TYPE (sym);
c906108c
SS
1646
1647 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1648 return t;
c906108c 1649
7ba81444
MS
1650 /* If we get here, it's not a union. */
1651 error (_("This context has class, struct or enum %s, not a union."),
1652 name);
c906108c
SS
1653}
1654
c906108c
SS
1655/* Lookup an enum type named "enum NAME",
1656 visible in lexical block BLOCK. */
1657
1658struct type *
270140bd 1659lookup_enum (const char *name, const struct block *block)
c906108c 1660{
52f0bd74 1661 struct symbol *sym;
c906108c 1662
d12307c1 1663 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1664 if (sym == NULL)
1665 {
8a3fe4f8 1666 error (_("No enum type named %s."), name);
c906108c
SS
1667 }
1668 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1669 {
7ba81444
MS
1670 error (_("This context has class, struct or union %s, not an enum."),
1671 name);
c906108c
SS
1672 }
1673 return (SYMBOL_TYPE (sym));
1674}
1675
1676/* Lookup a template type named "template NAME<TYPE>",
1677 visible in lexical block BLOCK. */
1678
1679struct type *
61f4b350 1680lookup_template_type (const char *name, struct type *type,
270140bd 1681 const struct block *block)
c906108c
SS
1682{
1683 struct symbol *sym;
7ba81444
MS
1684 char *nam = (char *)
1685 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1686
c906108c
SS
1687 strcpy (nam, name);
1688 strcat (nam, "<");
0004e5a2 1689 strcat (nam, TYPE_NAME (type));
0963b4bd 1690 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1691
d12307c1 1692 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
c906108c
SS
1693
1694 if (sym == NULL)
1695 {
8a3fe4f8 1696 error (_("No template type named %s."), name);
c906108c
SS
1697 }
1698 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1699 {
7ba81444
MS
1700 error (_("This context has class, union or enum %s, not a struct."),
1701 name);
c906108c
SS
1702 }
1703 return (SYMBOL_TYPE (sym));
1704}
1705
ef0bd204 1706/* See gdbtypes.h. */
c906108c 1707
ef0bd204
JB
1708struct_elt
1709lookup_struct_elt (struct type *type, const char *name, int noerr)
c906108c
SS
1710{
1711 int i;
1712
1713 for (;;)
1714 {
f168693b 1715 type = check_typedef (type);
c906108c
SS
1716 if (TYPE_CODE (type) != TYPE_CODE_PTR
1717 && TYPE_CODE (type) != TYPE_CODE_REF)
1718 break;
1719 type = TYPE_TARGET_TYPE (type);
1720 }
1721
687d6395
MS
1722 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1723 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1724 {
2f408ecb
PA
1725 std::string type_name = type_to_string (type);
1726 error (_("Type %s is not a structure or union type."),
1727 type_name.c_str ());
c906108c
SS
1728 }
1729
c906108c
SS
1730 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1731 {
0d5cff50 1732 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1733
db577aea 1734 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c 1735 {
ef0bd204 1736 return {&TYPE_FIELD (type, i), TYPE_FIELD_BITPOS (type, i)};
c906108c 1737 }
f5a010c0
PM
1738 else if (!t_field_name || *t_field_name == '\0')
1739 {
ef0bd204
JB
1740 struct_elt elt
1741 = lookup_struct_elt (TYPE_FIELD_TYPE (type, i), name, 1);
1742 if (elt.field != NULL)
1743 {
1744 elt.offset += TYPE_FIELD_BITPOS (type, i);
1745 return elt;
1746 }
f5a010c0 1747 }
c906108c
SS
1748 }
1749
1750 /* OK, it's not in this class. Recursively check the baseclasses. */
1751 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1752 {
ef0bd204
JB
1753 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1754 if (elt.field != NULL)
1755 return elt;
c906108c
SS
1756 }
1757
1758 if (noerr)
ef0bd204 1759 return {nullptr, 0};
c5aa993b 1760
2f408ecb
PA
1761 std::string type_name = type_to_string (type);
1762 error (_("Type %s has no component named %s."), type_name.c_str (), name);
c906108c
SS
1763}
1764
ef0bd204
JB
1765/* See gdbtypes.h. */
1766
1767struct type *
1768lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1769{
1770 struct_elt elt = lookup_struct_elt (type, name, noerr);
1771 if (elt.field != NULL)
1772 return FIELD_TYPE (*elt.field);
1773 else
1774 return NULL;
1775}
1776
ed3ef339
DE
1777/* Store in *MAX the largest number representable by unsigned integer type
1778 TYPE. */
1779
1780void
1781get_unsigned_type_max (struct type *type, ULONGEST *max)
1782{
1783 unsigned int n;
1784
f168693b 1785 type = check_typedef (type);
ed3ef339
DE
1786 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1787 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1788
1789 /* Written this way to avoid overflow. */
1790 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1791 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1792}
1793
1794/* Store in *MIN, *MAX the smallest and largest numbers representable by
1795 signed integer type TYPE. */
1796
1797void
1798get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1799{
1800 unsigned int n;
1801
f168693b 1802 type = check_typedef (type);
ed3ef339
DE
1803 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1804 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1805
1806 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1807 *min = -((ULONGEST) 1 << (n - 1));
1808 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1809}
1810
ae6ae975
DE
1811/* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1812 cplus_stuff.vptr_fieldno.
1813
1814 cplus_stuff is initialized to cplus_struct_default which does not
1815 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1816 designated initializers). We cope with that here. */
1817
1818int
1819internal_type_vptr_fieldno (struct type *type)
1820{
f168693b 1821 type = check_typedef (type);
ae6ae975
DE
1822 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1823 || TYPE_CODE (type) == TYPE_CODE_UNION);
1824 if (!HAVE_CPLUS_STRUCT (type))
1825 return -1;
1826 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1827}
1828
1829/* Set the value of cplus_stuff.vptr_fieldno. */
1830
1831void
1832set_type_vptr_fieldno (struct type *type, int fieldno)
1833{
f168693b 1834 type = check_typedef (type);
ae6ae975
DE
1835 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1836 || TYPE_CODE (type) == TYPE_CODE_UNION);
1837 if (!HAVE_CPLUS_STRUCT (type))
1838 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1839 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1840}
1841
1842/* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1843 cplus_stuff.vptr_basetype. */
1844
1845struct type *
1846internal_type_vptr_basetype (struct type *type)
1847{
f168693b 1848 type = check_typedef (type);
ae6ae975
DE
1849 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1850 || TYPE_CODE (type) == TYPE_CODE_UNION);
1851 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1852 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1853}
1854
1855/* Set the value of cplus_stuff.vptr_basetype. */
1856
1857void
1858set_type_vptr_basetype (struct type *type, struct type *basetype)
1859{
f168693b 1860 type = check_typedef (type);
ae6ae975
DE
1861 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1862 || TYPE_CODE (type) == TYPE_CODE_UNION);
1863 if (!HAVE_CPLUS_STRUCT (type))
1864 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1865 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1866}
1867
81fe8080
DE
1868/* Lookup the vptr basetype/fieldno values for TYPE.
1869 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1870 vptr_fieldno. Also, if found and basetype is from the same objfile,
1871 cache the results.
1872 If not found, return -1 and ignore BASETYPEP.
1873 Callers should be aware that in some cases (for example,
c906108c 1874 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1875 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1876 this function will not be able to find the
7ba81444 1877 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1878 vptr_basetype will remain NULL or incomplete. */
c906108c 1879
81fe8080
DE
1880int
1881get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c 1882{
f168693b 1883 type = check_typedef (type);
c906108c
SS
1884
1885 if (TYPE_VPTR_FIELDNO (type) < 0)
1886 {
1887 int i;
1888
7ba81444
MS
1889 /* We must start at zero in case the first (and only) baseclass
1890 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1891 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1892 {
81fe8080
DE
1893 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1894 int fieldno;
1895 struct type *basetype;
1896
1897 fieldno = get_vptr_fieldno (baseclass, &basetype);
1898 if (fieldno >= 0)
c906108c 1899 {
81fe8080 1900 /* If the type comes from a different objfile we can't cache
0963b4bd 1901 it, it may have a different lifetime. PR 2384 */
5ef73790 1902 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080 1903 {
ae6ae975
DE
1904 set_type_vptr_fieldno (type, fieldno);
1905 set_type_vptr_basetype (type, basetype);
81fe8080
DE
1906 }
1907 if (basetypep)
1908 *basetypep = basetype;
1909 return fieldno;
c906108c
SS
1910 }
1911 }
81fe8080
DE
1912
1913 /* Not found. */
1914 return -1;
1915 }
1916 else
1917 {
1918 if (basetypep)
1919 *basetypep = TYPE_VPTR_BASETYPE (type);
1920 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1921 }
1922}
1923
44e1a9eb
DJ
1924static void
1925stub_noname_complaint (void)
1926{
b98664d3 1927 complaint (_("stub type has NULL name"));
44e1a9eb
DJ
1928}
1929
a405673c
JB
1930/* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1931 attached to it, and that property has a non-constant value. */
1932
1933static int
1934array_type_has_dynamic_stride (struct type *type)
1935{
1936 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1937
1938 return (prop != NULL && prop->kind != PROP_CONST);
1939}
1940
d98b7a16 1941/* Worker for is_dynamic_type. */
80180f79 1942
d98b7a16 1943static int
ee715b5a 1944is_dynamic_type_internal (struct type *type, int top_level)
80180f79
SA
1945{
1946 type = check_typedef (type);
1947
e771e4be
PMR
1948 /* We only want to recognize references at the outermost level. */
1949 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1950 type = check_typedef (TYPE_TARGET_TYPE (type));
1951
3cdcd0ce
JB
1952 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1953 dynamic, even if the type itself is statically defined.
1954 From a user's point of view, this may appear counter-intuitive;
1955 but it makes sense in this context, because the point is to determine
1956 whether any part of the type needs to be resolved before it can
1957 be exploited. */
1958 if (TYPE_DATA_LOCATION (type) != NULL
1959 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1960 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1961 return 1;
1962
3f2f83dd
KB
1963 if (TYPE_ASSOCIATED_PROP (type))
1964 return 1;
1965
1966 if (TYPE_ALLOCATED_PROP (type))
1967 return 1;
1968
80180f79
SA
1969 switch (TYPE_CODE (type))
1970 {
6f8a3220 1971 case TYPE_CODE_RANGE:
ddb87a81
JB
1972 {
1973 /* A range type is obviously dynamic if it has at least one
1974 dynamic bound. But also consider the range type to be
1975 dynamic when its subtype is dynamic, even if the bounds
1976 of the range type are static. It allows us to assume that
1977 the subtype of a static range type is also static. */
1978 return (!has_static_range (TYPE_RANGE_DATA (type))
ee715b5a 1979 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
ddb87a81 1980 }
6f8a3220 1981
216a7e6b
AB
1982 case TYPE_CODE_STRING:
1983 /* Strings are very much like an array of characters, and can be
1984 treated as one here. */
80180f79
SA
1985 case TYPE_CODE_ARRAY:
1986 {
80180f79 1987 gdb_assert (TYPE_NFIELDS (type) == 1);
6f8a3220 1988
a405673c 1989 /* The array is dynamic if either the bounds are dynamic... */
ee715b5a 1990 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
80180f79 1991 return 1;
a405673c
JB
1992 /* ... or the elements it contains have a dynamic contents... */
1993 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
1994 return 1;
1995 /* ... or if it has a dynamic stride... */
1996 if (array_type_has_dynamic_stride (type))
1997 return 1;
1998 return 0;
80180f79 1999 }
012370f6
TT
2000
2001 case TYPE_CODE_STRUCT:
2002 case TYPE_CODE_UNION:
2003 {
2004 int i;
2005
2006 for (i = 0; i < TYPE_NFIELDS (type); ++i)
2007 if (!field_is_static (&TYPE_FIELD (type, i))
ee715b5a 2008 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
012370f6
TT
2009 return 1;
2010 }
2011 break;
80180f79 2012 }
92e2a17f
TT
2013
2014 return 0;
80180f79
SA
2015}
2016
d98b7a16
TT
2017/* See gdbtypes.h. */
2018
2019int
2020is_dynamic_type (struct type *type)
2021{
ee715b5a 2022 return is_dynamic_type_internal (type, 1);
d98b7a16
TT
2023}
2024
df25ebbd 2025static struct type *resolve_dynamic_type_internal
ee715b5a 2026 (struct type *type, struct property_addr_info *addr_stack, int top_level);
d98b7a16 2027
df25ebbd
JB
2028/* Given a dynamic range type (dyn_range_type) and a stack of
2029 struct property_addr_info elements, return a static version
2030 of that type. */
d190df30 2031
80180f79 2032static struct type *
df25ebbd
JB
2033resolve_dynamic_range (struct type *dyn_range_type,
2034 struct property_addr_info *addr_stack)
80180f79
SA
2035{
2036 CORE_ADDR value;
ddb87a81 2037 struct type *static_range_type, *static_target_type;
80180f79 2038 const struct dynamic_prop *prop;
5bbd8269 2039 struct dynamic_prop low_bound, high_bound, stride;
80180f79 2040
6f8a3220 2041 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
80180f79 2042
6f8a3220 2043 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
63e43d3a 2044 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
2045 {
2046 low_bound.kind = PROP_CONST;
2047 low_bound.data.const_val = value;
2048 }
2049 else
2050 {
2051 low_bound.kind = PROP_UNDEFINED;
2052 low_bound.data.const_val = 0;
2053 }
2054
6f8a3220 2055 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
63e43d3a 2056 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
2057 {
2058 high_bound.kind = PROP_CONST;
2059 high_bound.data.const_val = value;
c451ebe5 2060
6f8a3220 2061 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
c451ebe5
SA
2062 high_bound.data.const_val
2063 = low_bound.data.const_val + high_bound.data.const_val - 1;
80180f79
SA
2064 }
2065 else
2066 {
2067 high_bound.kind = PROP_UNDEFINED;
2068 high_bound.data.const_val = 0;
2069 }
2070
5bbd8269
AB
2071 bool byte_stride_p = TYPE_RANGE_DATA (dyn_range_type)->flag_is_byte_stride;
2072 prop = &TYPE_RANGE_DATA (dyn_range_type)->stride;
2073 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2074 {
2075 stride.kind = PROP_CONST;
2076 stride.data.const_val = value;
2077
2078 /* If we have a bit stride that is not an exact number of bytes then
2079 I really don't think this is going to work with current GDB, the
2080 array indexing code in GDB seems to be pretty heavily tied to byte
2081 offsets right now. Assuming 8 bits in a byte. */
2082 struct gdbarch *gdbarch = get_type_arch (dyn_range_type);
2083 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
2084 if (!byte_stride_p && (value % (unit_size * 8)) != 0)
2085 error (_("bit strides that are not a multiple of the byte size "
2086 "are currently not supported"));
2087 }
2088 else
2089 {
2090 stride.kind = PROP_UNDEFINED;
2091 stride.data.const_val = 0;
2092 byte_stride_p = true;
2093 }
2094
ddb87a81
JB
2095 static_target_type
2096 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
ee715b5a 2097 addr_stack, 0);
4e962e74 2098 LONGEST bias = TYPE_RANGE_DATA (dyn_range_type)->bias;
5bbd8269
AB
2099 static_range_type = create_range_type_with_stride
2100 (copy_type (dyn_range_type), static_target_type,
2101 &low_bound, &high_bound, bias, &stride, byte_stride_p);
6f8a3220
JB
2102 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2103 return static_range_type;
2104}
2105
216a7e6b
AB
2106/* Resolves dynamic bound values of an array or string type TYPE to static
2107 ones. ADDR_STACK is a stack of struct property_addr_info to be used if
2108 needed during the dynamic resolution. */
6f8a3220
JB
2109
2110static struct type *
216a7e6b
AB
2111resolve_dynamic_array_or_string (struct type *type,
2112 struct property_addr_info *addr_stack)
6f8a3220
JB
2113{
2114 CORE_ADDR value;
2115 struct type *elt_type;
2116 struct type *range_type;
2117 struct type *ary_dim;
3f2f83dd 2118 struct dynamic_prop *prop;
a405673c 2119 unsigned int bit_stride = 0;
6f8a3220 2120
216a7e6b
AB
2121 /* For dynamic type resolution strings can be treated like arrays of
2122 characters. */
2123 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY
2124 || TYPE_CODE (type) == TYPE_CODE_STRING);
6f8a3220 2125
3f2f83dd
KB
2126 type = copy_type (type);
2127
6f8a3220
JB
2128 elt_type = type;
2129 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
df25ebbd 2130 range_type = resolve_dynamic_range (range_type, addr_stack);
6f8a3220 2131
3f2f83dd
KB
2132 /* Resolve allocated/associated here before creating a new array type, which
2133 will update the length of the array accordingly. */
2134 prop = TYPE_ALLOCATED_PROP (type);
2135 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2136 {
2137 TYPE_DYN_PROP_ADDR (prop) = value;
2138 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2139 }
2140 prop = TYPE_ASSOCIATED_PROP (type);
2141 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2142 {
2143 TYPE_DYN_PROP_ADDR (prop) = value;
2144 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2145 }
2146
80180f79
SA
2147 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2148
2149 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
216a7e6b 2150 elt_type = resolve_dynamic_array_or_string (ary_dim, addr_stack);
80180f79
SA
2151 else
2152 elt_type = TYPE_TARGET_TYPE (type);
2153
a405673c
JB
2154 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2155 if (prop != NULL)
2156 {
603490bf 2157 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
a405673c
JB
2158 {
2159 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2160 bit_stride = (unsigned int) (value * 8);
2161 }
2162 else
2163 {
2164 /* Could be a bug in our code, but it could also happen
2165 if the DWARF info is not correct. Issue a warning,
2166 and assume no byte/bit stride (leave bit_stride = 0). */
2167 warning (_("cannot determine array stride for type %s"),
2168 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2169 }
2170 }
2171 else
2172 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2173
2174 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2175 bit_stride);
80180f79
SA
2176}
2177
012370f6 2178/* Resolve dynamic bounds of members of the union TYPE to static
df25ebbd
JB
2179 bounds. ADDR_STACK is a stack of struct property_addr_info
2180 to be used if needed during the dynamic resolution. */
012370f6
TT
2181
2182static struct type *
df25ebbd
JB
2183resolve_dynamic_union (struct type *type,
2184 struct property_addr_info *addr_stack)
012370f6
TT
2185{
2186 struct type *resolved_type;
2187 int i;
2188 unsigned int max_len = 0;
2189
2190 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2191
2192 resolved_type = copy_type (type);
2193 TYPE_FIELDS (resolved_type)
224c3ddb
SM
2194 = (struct field *) TYPE_ALLOC (resolved_type,
2195 TYPE_NFIELDS (resolved_type)
2196 * sizeof (struct field));
012370f6
TT
2197 memcpy (TYPE_FIELDS (resolved_type),
2198 TYPE_FIELDS (type),
2199 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2200 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2201 {
2202 struct type *t;
2203
2204 if (field_is_static (&TYPE_FIELD (type, i)))
2205 continue;
2206
d98b7a16 2207 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2208 addr_stack, 0);
012370f6
TT
2209 TYPE_FIELD_TYPE (resolved_type, i) = t;
2210 if (TYPE_LENGTH (t) > max_len)
2211 max_len = TYPE_LENGTH (t);
2212 }
2213
2214 TYPE_LENGTH (resolved_type) = max_len;
2215 return resolved_type;
2216}
2217
2218/* Resolve dynamic bounds of members of the struct TYPE to static
df25ebbd
JB
2219 bounds. ADDR_STACK is a stack of struct property_addr_info to
2220 be used if needed during the dynamic resolution. */
012370f6
TT
2221
2222static struct type *
df25ebbd
JB
2223resolve_dynamic_struct (struct type *type,
2224 struct property_addr_info *addr_stack)
012370f6
TT
2225{
2226 struct type *resolved_type;
2227 int i;
6908c509 2228 unsigned resolved_type_bit_length = 0;
012370f6
TT
2229
2230 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2231 gdb_assert (TYPE_NFIELDS (type) > 0);
2232
2233 resolved_type = copy_type (type);
2234 TYPE_FIELDS (resolved_type)
224c3ddb
SM
2235 = (struct field *) TYPE_ALLOC (resolved_type,
2236 TYPE_NFIELDS (resolved_type)
2237 * sizeof (struct field));
012370f6
TT
2238 memcpy (TYPE_FIELDS (resolved_type),
2239 TYPE_FIELDS (type),
2240 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2241 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2242 {
6908c509 2243 unsigned new_bit_length;
df25ebbd 2244 struct property_addr_info pinfo;
012370f6
TT
2245
2246 if (field_is_static (&TYPE_FIELD (type, i)))
2247 continue;
2248
6908c509
JB
2249 /* As we know this field is not a static field, the field's
2250 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2251 this is the case, but only trigger a simple error rather
2252 than an internal error if that fails. While failing
2253 that verification indicates a bug in our code, the error
2254 is not severe enough to suggest to the user he stops
2255 his debugging session because of it. */
df25ebbd 2256 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
6908c509
JB
2257 error (_("Cannot determine struct field location"
2258 " (invalid location kind)"));
df25ebbd
JB
2259
2260 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
c3345124 2261 pinfo.valaddr = addr_stack->valaddr;
9920b434
BH
2262 pinfo.addr
2263 = (addr_stack->addr
2264 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
df25ebbd
JB
2265 pinfo.next = addr_stack;
2266
2267 TYPE_FIELD_TYPE (resolved_type, i)
2268 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2269 &pinfo, 0);
df25ebbd
JB
2270 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2271 == FIELD_LOC_KIND_BITPOS);
2272
6908c509
JB
2273 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2274 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2275 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2276 else
2277 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2278 * TARGET_CHAR_BIT);
2279
2280 /* Normally, we would use the position and size of the last field
2281 to determine the size of the enclosing structure. But GCC seems
2282 to be encoding the position of some fields incorrectly when
2283 the struct contains a dynamic field that is not placed last.
2284 So we compute the struct size based on the field that has
2285 the highest position + size - probably the best we can do. */
2286 if (new_bit_length > resolved_type_bit_length)
2287 resolved_type_bit_length = new_bit_length;
012370f6
TT
2288 }
2289
9920b434
BH
2290 /* The length of a type won't change for fortran, but it does for C and Ada.
2291 For fortran the size of dynamic fields might change over time but not the
2292 type length of the structure. If we adapt it, we run into problems
2293 when calculating the element offset for arrays of structs. */
2294 if (current_language->la_language != language_fortran)
2295 TYPE_LENGTH (resolved_type)
2296 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
6908c509 2297
9e195661
PMR
2298 /* The Ada language uses this field as a cache for static fixed types: reset
2299 it as RESOLVED_TYPE must have its own static fixed type. */
2300 TYPE_TARGET_TYPE (resolved_type) = NULL;
2301
012370f6
TT
2302 return resolved_type;
2303}
2304
d98b7a16 2305/* Worker for resolved_dynamic_type. */
80180f79 2306
d98b7a16 2307static struct type *
df25ebbd 2308resolve_dynamic_type_internal (struct type *type,
ee715b5a
PMR
2309 struct property_addr_info *addr_stack,
2310 int top_level)
80180f79
SA
2311{
2312 struct type *real_type = check_typedef (type);
6f8a3220 2313 struct type *resolved_type = type;
d9823cbb 2314 struct dynamic_prop *prop;
3cdcd0ce 2315 CORE_ADDR value;
80180f79 2316
ee715b5a 2317 if (!is_dynamic_type_internal (real_type, top_level))
80180f79
SA
2318 return type;
2319
5537b577 2320 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
6f8a3220 2321 {
cac9b138
JK
2322 resolved_type = copy_type (type);
2323 TYPE_TARGET_TYPE (resolved_type)
ee715b5a
PMR
2324 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2325 top_level);
5537b577
JK
2326 }
2327 else
2328 {
2329 /* Before trying to resolve TYPE, make sure it is not a stub. */
2330 type = real_type;
012370f6 2331
5537b577
JK
2332 switch (TYPE_CODE (type))
2333 {
e771e4be
PMR
2334 case TYPE_CODE_REF:
2335 {
2336 struct property_addr_info pinfo;
2337
2338 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
c3345124
JB
2339 pinfo.valaddr = NULL;
2340 if (addr_stack->valaddr != NULL)
2341 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2342 else
2343 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
e771e4be
PMR
2344 pinfo.next = addr_stack;
2345
2346 resolved_type = copy_type (type);
2347 TYPE_TARGET_TYPE (resolved_type)
2348 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2349 &pinfo, top_level);
2350 break;
2351 }
2352
216a7e6b
AB
2353 case TYPE_CODE_STRING:
2354 /* Strings are very much like an array of characters, and can be
2355 treated as one here. */
5537b577 2356 case TYPE_CODE_ARRAY:
216a7e6b 2357 resolved_type = resolve_dynamic_array_or_string (type, addr_stack);
5537b577
JK
2358 break;
2359
2360 case TYPE_CODE_RANGE:
df25ebbd 2361 resolved_type = resolve_dynamic_range (type, addr_stack);
5537b577
JK
2362 break;
2363
2364 case TYPE_CODE_UNION:
df25ebbd 2365 resolved_type = resolve_dynamic_union (type, addr_stack);
5537b577
JK
2366 break;
2367
2368 case TYPE_CODE_STRUCT:
df25ebbd 2369 resolved_type = resolve_dynamic_struct (type, addr_stack);
5537b577
JK
2370 break;
2371 }
6f8a3220 2372 }
80180f79 2373
3cdcd0ce
JB
2374 /* Resolve data_location attribute. */
2375 prop = TYPE_DATA_LOCATION (resolved_type);
63e43d3a
PMR
2376 if (prop != NULL
2377 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
3cdcd0ce 2378 {
d9823cbb
KB
2379 TYPE_DYN_PROP_ADDR (prop) = value;
2380 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
3cdcd0ce 2381 }
3cdcd0ce 2382
80180f79
SA
2383 return resolved_type;
2384}
2385
d98b7a16
TT
2386/* See gdbtypes.h */
2387
2388struct type *
c3345124
JB
2389resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2390 CORE_ADDR addr)
d98b7a16 2391{
c3345124
JB
2392 struct property_addr_info pinfo
2393 = {check_typedef (type), valaddr, addr, NULL};
df25ebbd 2394
ee715b5a 2395 return resolve_dynamic_type_internal (type, &pinfo, 1);
d98b7a16
TT
2396}
2397
d9823cbb
KB
2398/* See gdbtypes.h */
2399
2400struct dynamic_prop *
2401get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2402{
2403 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2404
2405 while (node != NULL)
2406 {
2407 if (node->prop_kind == prop_kind)
283a9958 2408 return &node->prop;
d9823cbb
KB
2409 node = node->next;
2410 }
2411 return NULL;
2412}
2413
2414/* See gdbtypes.h */
2415
2416void
2417add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
50a82047 2418 struct type *type)
d9823cbb
KB
2419{
2420 struct dynamic_prop_list *temp;
2421
2422 gdb_assert (TYPE_OBJFILE_OWNED (type));
2423
50a82047
TT
2424 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2425 struct dynamic_prop_list);
d9823cbb 2426 temp->prop_kind = prop_kind;
283a9958 2427 temp->prop = prop;
d9823cbb
KB
2428 temp->next = TYPE_DYN_PROP_LIST (type);
2429
2430 TYPE_DYN_PROP_LIST (type) = temp;
2431}
2432
9920b434
BH
2433/* Remove dynamic property from TYPE in case it exists. */
2434
2435void
2436remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2437 struct type *type)
2438{
2439 struct dynamic_prop_list *prev_node, *curr_node;
2440
2441 curr_node = TYPE_DYN_PROP_LIST (type);
2442 prev_node = NULL;
2443
2444 while (NULL != curr_node)
2445 {
2446 if (curr_node->prop_kind == prop_kind)
2447 {
2448 /* Update the linked list but don't free anything.
2449 The property was allocated on objstack and it is not known
2450 if we are on top of it. Nevertheless, everything is released
2451 when the complete objstack is freed. */
2452 if (NULL == prev_node)
2453 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2454 else
2455 prev_node->next = curr_node->next;
2456
2457 return;
2458 }
2459
2460 prev_node = curr_node;
2461 curr_node = curr_node->next;
2462 }
2463}
d9823cbb 2464
92163a10
JK
2465/* Find the real type of TYPE. This function returns the real type,
2466 after removing all layers of typedefs, and completing opaque or stub
2467 types. Completion changes the TYPE argument, but stripping of
2468 typedefs does not.
2469
2470 Instance flags (e.g. const/volatile) are preserved as typedefs are
2471 stripped. If necessary a new qualified form of the underlying type
2472 is created.
2473
2474 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2475 not been computed and we're either in the middle of reading symbols, or
2476 there was no name for the typedef in the debug info.
2477
9bc118a5
DE
2478 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2479 QUITs in the symbol reading code can also throw.
2480 Thus this function can throw an exception.
2481
92163a10
JK
2482 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2483 the target type.
c906108c
SS
2484
2485 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 2486 we can find a full definition in some other file. If so, copy this
7ba81444
MS
2487 definition, so we can use it in future. There used to be a comment
2488 (but not any code) that if we don't find a full definition, we'd
2489 set a flag so we don't spend time in the future checking the same
2490 type. That would be a mistake, though--we might load in more
92163a10 2491 symbols which contain a full definition for the type. */
c906108c
SS
2492
2493struct type *
a02fd225 2494check_typedef (struct type *type)
c906108c
SS
2495{
2496 struct type *orig_type = type;
92163a10
JK
2497 /* While we're removing typedefs, we don't want to lose qualifiers.
2498 E.g., const/volatile. */
2499 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 2500
423c0af8
MS
2501 gdb_assert (type);
2502
c906108c
SS
2503 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2504 {
2505 if (!TYPE_TARGET_TYPE (type))
2506 {
0d5cff50 2507 const char *name;
c906108c
SS
2508 struct symbol *sym;
2509
2510 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 2511 reading a symtab. Infinite recursion is one danger. */
c906108c 2512 if (currently_reading_symtab)
92163a10 2513 return make_qualified_type (type, instance_flags, NULL);
c906108c 2514
a737d952 2515 name = TYPE_NAME (type);
e86ca25f
TT
2516 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2517 VAR_DOMAIN as appropriate? */
c906108c
SS
2518 if (name == NULL)
2519 {
23136709 2520 stub_noname_complaint ();
92163a10 2521 return make_qualified_type (type, instance_flags, NULL);
c906108c 2522 }
d12307c1 2523 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
2524 if (sym)
2525 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 2526 else /* TYPE_CODE_UNDEF */
e9bb382b 2527 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
2528 }
2529 type = TYPE_TARGET_TYPE (type);
c906108c 2530
92163a10
JK
2531 /* Preserve the instance flags as we traverse down the typedef chain.
2532
2533 Handling address spaces/classes is nasty, what do we do if there's a
2534 conflict?
2535 E.g., what if an outer typedef marks the type as class_1 and an inner
2536 typedef marks the type as class_2?
2537 This is the wrong place to do such error checking. We leave it to
2538 the code that created the typedef in the first place to flag the
2539 error. We just pick the outer address space (akin to letting the
2540 outer cast in a chain of casting win), instead of assuming
2541 "it can't happen". */
2542 {
2543 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2544 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2545 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2546 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2547
2548 /* Treat code vs data spaces and address classes separately. */
2549 if ((instance_flags & ALL_SPACES) != 0)
2550 new_instance_flags &= ~ALL_SPACES;
2551 if ((instance_flags & ALL_CLASSES) != 0)
2552 new_instance_flags &= ~ALL_CLASSES;
2553
2554 instance_flags |= new_instance_flags;
2555 }
2556 }
a02fd225 2557
7ba81444
MS
2558 /* If this is a struct/class/union with no fields, then check
2559 whether a full definition exists somewhere else. This is for
2560 systems where a type definition with no fields is issued for such
2561 types, instead of identifying them as stub types in the first
2562 place. */
c5aa993b 2563
7ba81444
MS
2564 if (TYPE_IS_OPAQUE (type)
2565 && opaque_type_resolution
2566 && !currently_reading_symtab)
c906108c 2567 {
a737d952 2568 const char *name = TYPE_NAME (type);
c5aa993b 2569 struct type *newtype;
d8734c88 2570
c906108c
SS
2571 if (name == NULL)
2572 {
23136709 2573 stub_noname_complaint ();
92163a10 2574 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2575 }
2576 newtype = lookup_transparent_type (name);
ad766c0a 2577
c906108c 2578 if (newtype)
ad766c0a 2579 {
7ba81444
MS
2580 /* If the resolved type and the stub are in the same
2581 objfile, then replace the stub type with the real deal.
2582 But if they're in separate objfiles, leave the stub
2583 alone; we'll just look up the transparent type every time
2584 we call check_typedef. We can't create pointers between
2585 types allocated to different objfiles, since they may
2586 have different lifetimes. Trying to copy NEWTYPE over to
2587 TYPE's objfile is pointless, too, since you'll have to
2588 move over any other types NEWTYPE refers to, which could
2589 be an unbounded amount of stuff. */
ad766c0a 2590 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
2591 type = make_qualified_type (newtype,
2592 TYPE_INSTANCE_FLAGS (type),
2593 type);
ad766c0a
JB
2594 else
2595 type = newtype;
2596 }
c906108c 2597 }
7ba81444
MS
2598 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2599 types. */
74a9bb82 2600 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 2601 {
a737d952 2602 const char *name = TYPE_NAME (type);
e86ca25f
TT
2603 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2604 as appropriate? */
c906108c 2605 struct symbol *sym;
d8734c88 2606
c906108c
SS
2607 if (name == NULL)
2608 {
23136709 2609 stub_noname_complaint ();
92163a10 2610 return make_qualified_type (type, instance_flags, NULL);
c906108c 2611 }
d12307c1 2612 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c 2613 if (sym)
c26f2453
JB
2614 {
2615 /* Same as above for opaque types, we can replace the stub
92163a10 2616 with the complete type only if they are in the same
c26f2453
JB
2617 objfile. */
2618 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
2619 type = make_qualified_type (SYMBOL_TYPE (sym),
2620 TYPE_INSTANCE_FLAGS (type),
2621 type);
c26f2453
JB
2622 else
2623 type = SYMBOL_TYPE (sym);
2624 }
c906108c
SS
2625 }
2626
74a9bb82 2627 if (TYPE_TARGET_STUB (type))
c906108c 2628 {
c906108c
SS
2629 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2630
74a9bb82 2631 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 2632 {
73e2eb35 2633 /* Nothing we can do. */
c5aa993b 2634 }
c906108c
SS
2635 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2636 {
2637 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 2638 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
2639 }
2640 }
92163a10
JK
2641
2642 type = make_qualified_type (type, instance_flags, NULL);
2643
7ba81444 2644 /* Cache TYPE_LENGTH for future use. */
c906108c 2645 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 2646
c906108c
SS
2647 return type;
2648}
2649
7ba81444 2650/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 2651 occurs, silently return a void type. */
c91ecb25 2652
b9362cc7 2653static struct type *
48319d1f 2654safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
2655{
2656 struct ui_file *saved_gdb_stderr;
34365054 2657 struct type *type = NULL; /* Initialize to keep gcc happy. */
c91ecb25 2658
7ba81444 2659 /* Suppress error messages. */
c91ecb25 2660 saved_gdb_stderr = gdb_stderr;
d7e74731 2661 gdb_stderr = &null_stream;
c91ecb25 2662
7ba81444 2663 /* Call parse_and_eval_type() without fear of longjmp()s. */
a70b8144 2664 try
8e7b59a5
KS
2665 {
2666 type = parse_and_eval_type (p, length);
2667 }
230d2906 2668 catch (const gdb_exception_error &except)
492d29ea
PA
2669 {
2670 type = builtin_type (gdbarch)->builtin_void;
2671 }
c91ecb25 2672
7ba81444 2673 /* Stop suppressing error messages. */
c91ecb25
ND
2674 gdb_stderr = saved_gdb_stderr;
2675
2676 return type;
2677}
2678
c906108c
SS
2679/* Ugly hack to convert method stubs into method types.
2680
7ba81444
MS
2681 He ain't kiddin'. This demangles the name of the method into a
2682 string including argument types, parses out each argument type,
2683 generates a string casting a zero to that type, evaluates the
2684 string, and stuffs the resulting type into an argtype vector!!!
2685 Then it knows the type of the whole function (including argument
2686 types for overloading), which info used to be in the stab's but was
2687 removed to hack back the space required for them. */
c906108c 2688
de17c821 2689static void
fba45db2 2690check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 2691{
50810684 2692 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
2693 struct fn_field *f;
2694 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
8de20a37
TT
2695 char *demangled_name = gdb_demangle (mangled_name,
2696 DMGL_PARAMS | DMGL_ANSI);
c906108c
SS
2697 char *argtypetext, *p;
2698 int depth = 0, argcount = 1;
ad2f7632 2699 struct field *argtypes;
c906108c
SS
2700 struct type *mtype;
2701
2702 /* Make sure we got back a function string that we can use. */
2703 if (demangled_name)
2704 p = strchr (demangled_name, '(');
502dcf4e
AC
2705 else
2706 p = NULL;
c906108c
SS
2707
2708 if (demangled_name == NULL || p == NULL)
7ba81444
MS
2709 error (_("Internal: Cannot demangle mangled name `%s'."),
2710 mangled_name);
c906108c
SS
2711
2712 /* Now, read in the parameters that define this type. */
2713 p += 1;
2714 argtypetext = p;
2715 while (*p)
2716 {
070ad9f0 2717 if (*p == '(' || *p == '<')
c906108c
SS
2718 {
2719 depth += 1;
2720 }
070ad9f0 2721 else if (*p == ')' || *p == '>')
c906108c
SS
2722 {
2723 depth -= 1;
2724 }
2725 else if (*p == ',' && depth == 0)
2726 {
2727 argcount += 1;
2728 }
2729
2730 p += 1;
2731 }
2732
ad2f7632 2733 /* If we read one argument and it was ``void'', don't count it. */
61012eef 2734 if (startswith (argtypetext, "(void)"))
ad2f7632 2735 argcount -= 1;
c906108c 2736
ad2f7632
DJ
2737 /* We need one extra slot, for the THIS pointer. */
2738
2739 argtypes = (struct field *)
2740 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 2741 p = argtypetext;
4a1970e4
DJ
2742
2743 /* Add THIS pointer for non-static methods. */
2744 f = TYPE_FN_FIELDLIST1 (type, method_id);
2745 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2746 argcount = 0;
2747 else
2748 {
ad2f7632 2749 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
2750 argcount = 1;
2751 }
c906108c 2752
0963b4bd 2753 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
2754 {
2755 depth = 0;
2756 while (*p)
2757 {
2758 if (depth <= 0 && (*p == ',' || *p == ')'))
2759 {
ad2f7632
DJ
2760 /* Avoid parsing of ellipsis, they will be handled below.
2761 Also avoid ``void'' as above. */
2762 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2763 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 2764 {
ad2f7632 2765 argtypes[argcount].type =
48319d1f 2766 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
2767 argcount += 1;
2768 }
2769 argtypetext = p + 1;
2770 }
2771
070ad9f0 2772 if (*p == '(' || *p == '<')
c906108c
SS
2773 {
2774 depth += 1;
2775 }
070ad9f0 2776 else if (*p == ')' || *p == '>')
c906108c
SS
2777 {
2778 depth -= 1;
2779 }
2780
2781 p += 1;
2782 }
2783 }
2784
c906108c
SS
2785 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2786
2787 /* Now update the old "stub" type into a real type. */
2788 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
09e2d7c7
DE
2789 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2790 We want a method (TYPE_CODE_METHOD). */
2791 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2792 argtypes, argcount, p[-2] == '.');
876cecd0 2793 TYPE_STUB (mtype) = 0;
c906108c 2794 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632
DJ
2795
2796 xfree (demangled_name);
c906108c
SS
2797}
2798
7ba81444
MS
2799/* This is the external interface to check_stub_method, above. This
2800 function unstubs all of the signatures for TYPE's METHOD_ID method
2801 name. After calling this function TYPE_FN_FIELD_STUB will be
2802 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2803 correct.
de17c821
DJ
2804
2805 This function unfortunately can not die until stabs do. */
2806
2807void
2808check_stub_method_group (struct type *type, int method_id)
2809{
2810 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2811 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
de17c821 2812
041be526
SM
2813 for (int j = 0; j < len; j++)
2814 {
2815 if (TYPE_FN_FIELD_STUB (f, j))
de17c821 2816 check_stub_method (type, method_id, j);
de17c821
DJ
2817 }
2818}
2819
405feb71 2820/* Ensure it is in .rodata (if available) by working around GCC PR 44690. */
9655fd1a 2821const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
2822
2823void
fba45db2 2824allocate_cplus_struct_type (struct type *type)
c906108c 2825{
b4ba55a1
JB
2826 if (HAVE_CPLUS_STRUCT (type))
2827 /* Structure was already allocated. Nothing more to do. */
2828 return;
2829
2830 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2831 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2832 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2833 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
ae6ae975 2834 set_type_vptr_fieldno (type, -1);
c906108c
SS
2835}
2836
b4ba55a1
JB
2837const struct gnat_aux_type gnat_aux_default =
2838 { NULL };
2839
2840/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2841 and allocate the associated gnat-specific data. The gnat-specific
2842 data is also initialized to gnat_aux_default. */
5212577a 2843
b4ba55a1
JB
2844void
2845allocate_gnat_aux_type (struct type *type)
2846{
2847 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2848 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2849 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2850 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2851}
2852
ae438bc5
UW
2853/* Helper function to initialize a newly allocated type. Set type code
2854 to CODE and initialize the type-specific fields accordingly. */
2855
2856static void
2857set_type_code (struct type *type, enum type_code code)
2858{
2859 TYPE_CODE (type) = code;
2860
2861 switch (code)
2862 {
2863 case TYPE_CODE_STRUCT:
2864 case TYPE_CODE_UNION:
2865 case TYPE_CODE_NAMESPACE:
2866 INIT_CPLUS_SPECIFIC (type);
2867 break;
2868 case TYPE_CODE_FLT:
2869 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2870 break;
2871 case TYPE_CODE_FUNC:
2872 INIT_FUNC_SPECIFIC (type);
2873 break;
2874 }
2875}
2876
19f392bc
UW
2877/* Helper function to verify floating-point format and size.
2878 BIT is the type size in bits; if BIT equals -1, the size is
2879 determined by the floatformat. Returns size to be used. */
2880
2881static int
0db7851f 2882verify_floatformat (int bit, const struct floatformat *floatformat)
19f392bc 2883{
0db7851f 2884 gdb_assert (floatformat != NULL);
9b790ce7 2885
19f392bc 2886 if (bit == -1)
0db7851f 2887 bit = floatformat->totalsize;
19f392bc 2888
0db7851f
UW
2889 gdb_assert (bit >= 0);
2890 gdb_assert (bit >= floatformat->totalsize);
19f392bc
UW
2891
2892 return bit;
2893}
2894
0db7851f
UW
2895/* Return the floating-point format for a floating-point variable of
2896 type TYPE. */
2897
2898const struct floatformat *
2899floatformat_from_type (const struct type *type)
2900{
2901 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2902 gdb_assert (TYPE_FLOATFORMAT (type));
2903 return TYPE_FLOATFORMAT (type);
2904}
2905
c906108c
SS
2906/* Helper function to initialize the standard scalar types.
2907
86f62fd7
TT
2908 If NAME is non-NULL, then it is used to initialize the type name.
2909 Note that NAME is not copied; it is required to have a lifetime at
2910 least as long as OBJFILE. */
c906108c
SS
2911
2912struct type *
77b7c781 2913init_type (struct objfile *objfile, enum type_code code, int bit,
19f392bc 2914 const char *name)
c906108c 2915{
52f0bd74 2916 struct type *type;
c906108c
SS
2917
2918 type = alloc_type (objfile);
ae438bc5 2919 set_type_code (type, code);
77b7c781
UW
2920 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
2921 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
86f62fd7 2922 TYPE_NAME (type) = name;
c906108c 2923
c16abbde 2924 return type;
c906108c 2925}
19f392bc 2926
46a4882b
PA
2927/* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2928 to use with variables that have no debug info. NAME is the type
2929 name. */
2930
2931static struct type *
2932init_nodebug_var_type (struct objfile *objfile, const char *name)
2933{
2934 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2935}
2936
19f392bc
UW
2937/* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2938 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2939 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2940
2941struct type *
2942init_integer_type (struct objfile *objfile,
2943 int bit, int unsigned_p, const char *name)
2944{
2945 struct type *t;
2946
77b7c781 2947 t = init_type (objfile, TYPE_CODE_INT, bit, name);
19f392bc
UW
2948 if (unsigned_p)
2949 TYPE_UNSIGNED (t) = 1;
2950
2951 return t;
2952}
2953
2954/* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2955 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2956 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2957
2958struct type *
2959init_character_type (struct objfile *objfile,
2960 int bit, int unsigned_p, const char *name)
2961{
2962 struct type *t;
2963
77b7c781 2964 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
19f392bc
UW
2965 if (unsigned_p)
2966 TYPE_UNSIGNED (t) = 1;
2967
2968 return t;
2969}
2970
2971/* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2972 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2973 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2974
2975struct type *
2976init_boolean_type (struct objfile *objfile,
2977 int bit, int unsigned_p, const char *name)
2978{
2979 struct type *t;
2980
77b7c781 2981 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
19f392bc
UW
2982 if (unsigned_p)
2983 TYPE_UNSIGNED (t) = 1;
2984
2985 return t;
2986}
2987
2988/* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2989 BIT is the type size in bits; if BIT equals -1, the size is
2990 determined by the floatformat. NAME is the type name. Set the
103a685e
TT
2991 TYPE_FLOATFORMAT from FLOATFORMATS. BYTE_ORDER is the byte order
2992 to use. If it is BFD_ENDIAN_UNKNOWN (the default), then the byte
2993 order of the objfile's architecture is used. */
19f392bc
UW
2994
2995struct type *
2996init_float_type (struct objfile *objfile,
2997 int bit, const char *name,
103a685e
TT
2998 const struct floatformat **floatformats,
2999 enum bfd_endian byte_order)
19f392bc 3000{
103a685e
TT
3001 if (byte_order == BFD_ENDIAN_UNKNOWN)
3002 {
08feed99 3003 struct gdbarch *gdbarch = objfile->arch ();
103a685e
TT
3004 byte_order = gdbarch_byte_order (gdbarch);
3005 }
3006 const struct floatformat *fmt = floatformats[byte_order];
19f392bc
UW
3007 struct type *t;
3008
0db7851f 3009 bit = verify_floatformat (bit, fmt);
77b7c781 3010 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
0db7851f 3011 TYPE_FLOATFORMAT (t) = fmt;
19f392bc
UW
3012
3013 return t;
3014}
3015
3016/* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
3017 BIT is the type size in bits. NAME is the type name. */
3018
3019struct type *
3020init_decfloat_type (struct objfile *objfile, int bit, const char *name)
3021{
3022 struct type *t;
3023
77b7c781 3024 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
19f392bc
UW
3025 return t;
3026}
3027
5b930b45
TT
3028/* Allocate a TYPE_CODE_COMPLEX type structure. NAME is the type
3029 name. TARGET_TYPE is the component type. */
19f392bc
UW
3030
3031struct type *
5b930b45 3032init_complex_type (const char *name, struct type *target_type)
19f392bc
UW
3033{
3034 struct type *t;
3035
5b930b45
TT
3036 gdb_assert (TYPE_CODE (target_type) == TYPE_CODE_INT
3037 || TYPE_CODE (target_type) == TYPE_CODE_FLT);
3038
3039 if (TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type == nullptr)
3040 {
3041 if (name == nullptr)
3042 {
3043 char *new_name
3044 = (char *) TYPE_ALLOC (target_type,
3045 strlen (TYPE_NAME (target_type))
3046 + strlen ("_Complex ") + 1);
3047 strcpy (new_name, "_Complex ");
3048 strcat (new_name, TYPE_NAME (target_type));
3049 name = new_name;
3050 }
3051
3052 t = alloc_type_copy (target_type);
3053 set_type_code (t, TYPE_CODE_COMPLEX);
3054 TYPE_LENGTH (t) = 2 * TYPE_LENGTH (target_type);
3055 TYPE_NAME (t) = name;
3056
3057 TYPE_TARGET_TYPE (t) = target_type;
3058 TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type = t;
3059 }
3060
3061 return TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type;
19f392bc
UW
3062}
3063
3064/* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
3065 BIT is the pointer type size in bits. NAME is the type name.
3066 TARGET_TYPE is the pointer target type. Always sets the pointer type's
3067 TYPE_UNSIGNED flag. */
3068
3069struct type *
3070init_pointer_type (struct objfile *objfile,
3071 int bit, const char *name, struct type *target_type)
3072{
3073 struct type *t;
3074
77b7c781 3075 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
19f392bc
UW
3076 TYPE_TARGET_TYPE (t) = target_type;
3077 TYPE_UNSIGNED (t) = 1;
3078 return t;
3079}
3080
2b4424c3
TT
3081/* See gdbtypes.h. */
3082
3083unsigned
3084type_raw_align (struct type *type)
3085{
3086 if (type->align_log2 != 0)
3087 return 1 << (type->align_log2 - 1);
3088 return 0;
3089}
3090
3091/* See gdbtypes.h. */
3092
3093unsigned
3094type_align (struct type *type)
3095{
5561fc30 3096 /* Check alignment provided in the debug information. */
2b4424c3
TT
3097 unsigned raw_align = type_raw_align (type);
3098 if (raw_align != 0)
3099 return raw_align;
3100
5561fc30
AB
3101 /* Allow the architecture to provide an alignment. */
3102 struct gdbarch *arch = get_type_arch (type);
3103 ULONGEST align = gdbarch_type_align (arch, type);
3104 if (align != 0)
3105 return align;
3106
2b4424c3
TT
3107 switch (TYPE_CODE (type))
3108 {
3109 case TYPE_CODE_PTR:
3110 case TYPE_CODE_FUNC:
3111 case TYPE_CODE_FLAGS:
3112 case TYPE_CODE_INT:
75ba10dc 3113 case TYPE_CODE_RANGE:
2b4424c3
TT
3114 case TYPE_CODE_FLT:
3115 case TYPE_CODE_ENUM:
3116 case TYPE_CODE_REF:
3117 case TYPE_CODE_RVALUE_REF:
3118 case TYPE_CODE_CHAR:
3119 case TYPE_CODE_BOOL:
3120 case TYPE_CODE_DECFLOAT:
70cd633e
AB
3121 case TYPE_CODE_METHODPTR:
3122 case TYPE_CODE_MEMBERPTR:
5561fc30 3123 align = type_length_units (check_typedef (type));
2b4424c3
TT
3124 break;
3125
3126 case TYPE_CODE_ARRAY:
3127 case TYPE_CODE_COMPLEX:
3128 case TYPE_CODE_TYPEDEF:
3129 align = type_align (TYPE_TARGET_TYPE (type));
3130 break;
3131
3132 case TYPE_CODE_STRUCT:
3133 case TYPE_CODE_UNION:
3134 {
41077b66 3135 int number_of_non_static_fields = 0;
2b4424c3
TT
3136 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3137 {
bf9a735e 3138 if (!field_is_static (&TYPE_FIELD (type, i)))
2b4424c3 3139 {
41077b66 3140 number_of_non_static_fields++;
bf9a735e
AB
3141 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3142 if (f_align == 0)
3143 {
3144 /* Don't pretend we know something we don't. */
3145 align = 0;
3146 break;
3147 }
3148 if (f_align > align)
3149 align = f_align;
2b4424c3 3150 }
2b4424c3 3151 }
41077b66
AB
3152 /* A struct with no fields, or with only static fields has an
3153 alignment of 1. */
3154 if (number_of_non_static_fields == 0)
3155 align = 1;
2b4424c3
TT
3156 }
3157 break;
3158
3159 case TYPE_CODE_SET:
2b4424c3
TT
3160 case TYPE_CODE_STRING:
3161 /* Not sure what to do here, and these can't appear in C or C++
3162 anyway. */
3163 break;
3164
2b4424c3
TT
3165 case TYPE_CODE_VOID:
3166 align = 1;
3167 break;
3168
3169 case TYPE_CODE_ERROR:
3170 case TYPE_CODE_METHOD:
3171 default:
3172 break;
3173 }
3174
3175 if ((align & (align - 1)) != 0)
3176 {
3177 /* Not a power of 2, so pass. */
3178 align = 0;
3179 }
3180
3181 return align;
3182}
3183
3184/* See gdbtypes.h. */
3185
3186bool
3187set_type_align (struct type *type, ULONGEST align)
3188{
3189 /* Must be a power of 2. Zero is ok. */
3190 gdb_assert ((align & (align - 1)) == 0);
3191
3192 unsigned result = 0;
3193 while (align != 0)
3194 {
3195 ++result;
3196 align >>= 1;
3197 }
3198
3199 if (result >= (1 << TYPE_ALIGN_BITS))
3200 return false;
3201
3202 type->align_log2 = result;
3203 return true;
3204}
3205
5212577a
DE
3206\f
3207/* Queries on types. */
c906108c 3208
c906108c 3209int
fba45db2 3210can_dereference (struct type *t)
c906108c 3211{
7ba81444
MS
3212 /* FIXME: Should we return true for references as well as
3213 pointers? */
f168693b 3214 t = check_typedef (t);
c906108c
SS
3215 return
3216 (t != NULL
3217 && TYPE_CODE (t) == TYPE_CODE_PTR
3218 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3219}
3220
adf40b2e 3221int
fba45db2 3222is_integral_type (struct type *t)
adf40b2e 3223{
f168693b 3224 t = check_typedef (t);
adf40b2e
JM
3225 return
3226 ((t != NULL)
d4f3574e
SS
3227 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3228 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 3229 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
3230 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3231 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3232 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
3233}
3234
70100014
UW
3235int
3236is_floating_type (struct type *t)
3237{
3238 t = check_typedef (t);
3239 return
3240 ((t != NULL)
3241 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3242 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3243}
3244
e09342b5
TJB
3245/* Return true if TYPE is scalar. */
3246
220475ed 3247int
e09342b5
TJB
3248is_scalar_type (struct type *type)
3249{
f168693b 3250 type = check_typedef (type);
e09342b5
TJB
3251
3252 switch (TYPE_CODE (type))
3253 {
3254 case TYPE_CODE_ARRAY:
3255 case TYPE_CODE_STRUCT:
3256 case TYPE_CODE_UNION:
3257 case TYPE_CODE_SET:
3258 case TYPE_CODE_STRING:
e09342b5
TJB
3259 return 0;
3260 default:
3261 return 1;
3262 }
3263}
3264
3265/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
3266 the memory layout of a scalar type. E.g., an array or struct with only
3267 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
3268
3269int
3270is_scalar_type_recursive (struct type *t)
3271{
f168693b 3272 t = check_typedef (t);
e09342b5
TJB
3273
3274 if (is_scalar_type (t))
3275 return 1;
3276 /* Are we dealing with an array or string of known dimensions? */
3277 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3278 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3279 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3280 {
3281 LONGEST low_bound, high_bound;
3282 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3283
3284 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3285
3286 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3287 }
3288 /* Are we dealing with a struct with one element? */
3289 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3290 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3291 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3292 {
3293 int i, n = TYPE_NFIELDS (t);
3294
3295 /* If all elements of the union are scalar, then the union is scalar. */
3296 for (i = 0; i < n; i++)
3297 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3298 return 0;
3299
3300 return 1;
3301 }
3302
3303 return 0;
3304}
3305
6c659fc2
SC
3306/* Return true is T is a class or a union. False otherwise. */
3307
3308int
3309class_or_union_p (const struct type *t)
3310{
3311 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3312 || TYPE_CODE (t) == TYPE_CODE_UNION);
3313}
3314
4e8f195d
TT
3315/* A helper function which returns true if types A and B represent the
3316 "same" class type. This is true if the types have the same main
3317 type, or the same name. */
3318
3319int
3320class_types_same_p (const struct type *a, const struct type *b)
3321{
3322 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3323 || (TYPE_NAME (a) && TYPE_NAME (b)
3324 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3325}
3326
a9d5ef47
SW
3327/* If BASE is an ancestor of DCLASS return the distance between them.
3328 otherwise return -1;
3329 eg:
3330
3331 class A {};
3332 class B: public A {};
3333 class C: public B {};
3334 class D: C {};
3335
3336 distance_to_ancestor (A, A, 0) = 0
3337 distance_to_ancestor (A, B, 0) = 1
3338 distance_to_ancestor (A, C, 0) = 2
3339 distance_to_ancestor (A, D, 0) = 3
3340
3341 If PUBLIC is 1 then only public ancestors are considered,
3342 and the function returns the distance only if BASE is a public ancestor
3343 of DCLASS.
3344 Eg:
3345
0963b4bd 3346 distance_to_ancestor (A, D, 1) = -1. */
c906108c 3347
0526b37a 3348static int
fe978cb0 3349distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
c906108c
SS
3350{
3351 int i;
a9d5ef47 3352 int d;
c5aa993b 3353
f168693b
SM
3354 base = check_typedef (base);
3355 dclass = check_typedef (dclass);
c906108c 3356
4e8f195d 3357 if (class_types_same_p (base, dclass))
a9d5ef47 3358 return 0;
c906108c
SS
3359
3360 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 3361 {
fe978cb0 3362 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
0526b37a
SW
3363 continue;
3364
fe978cb0 3365 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
a9d5ef47
SW
3366 if (d >= 0)
3367 return 1 + d;
4e8f195d 3368 }
c906108c 3369
a9d5ef47 3370 return -1;
c906108c 3371}
4e8f195d 3372
0526b37a
SW
3373/* Check whether BASE is an ancestor or base class or DCLASS
3374 Return 1 if so, and 0 if not.
3375 Note: If BASE and DCLASS are of the same type, this function
3376 will return 1. So for some class A, is_ancestor (A, A) will
3377 return 1. */
3378
3379int
3380is_ancestor (struct type *base, struct type *dclass)
3381{
a9d5ef47 3382 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
3383}
3384
4e8f195d
TT
3385/* Like is_ancestor, but only returns true when BASE is a public
3386 ancestor of DCLASS. */
3387
3388int
3389is_public_ancestor (struct type *base, struct type *dclass)
3390{
a9d5ef47 3391 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
3392}
3393
3394/* A helper function for is_unique_ancestor. */
3395
3396static int
3397is_unique_ancestor_worker (struct type *base, struct type *dclass,
3398 int *offset,
8af8e3bc
PA
3399 const gdb_byte *valaddr, int embedded_offset,
3400 CORE_ADDR address, struct value *val)
4e8f195d
TT
3401{
3402 int i, count = 0;
3403
f168693b
SM
3404 base = check_typedef (base);
3405 dclass = check_typedef (dclass);
4e8f195d
TT
3406
3407 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3408 {
8af8e3bc
PA
3409 struct type *iter;
3410 int this_offset;
4e8f195d 3411
8af8e3bc
PA
3412 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3413
3414 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3415 address, val);
4e8f195d
TT
3416
3417 if (class_types_same_p (base, iter))
3418 {
3419 /* If this is the first subclass, set *OFFSET and set count
3420 to 1. Otherwise, if this is at the same offset as
3421 previous instances, do nothing. Otherwise, increment
3422 count. */
3423 if (*offset == -1)
3424 {
3425 *offset = this_offset;
3426 count = 1;
3427 }
3428 else if (this_offset == *offset)
3429 {
3430 /* Nothing. */
3431 }
3432 else
3433 ++count;
3434 }
3435 else
3436 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
3437 valaddr,
3438 embedded_offset + this_offset,
3439 address, val);
4e8f195d
TT
3440 }
3441
3442 return count;
3443}
3444
3445/* Like is_ancestor, but only returns true if BASE is a unique base
3446 class of the type of VAL. */
3447
3448int
3449is_unique_ancestor (struct type *base, struct value *val)
3450{
3451 int offset = -1;
3452
3453 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
3454 value_contents_for_printing (val),
3455 value_embedded_offset (val),
3456 value_address (val), val) == 1;
4e8f195d
TT
3457}
3458
7ab4a236
TT
3459/* See gdbtypes.h. */
3460
3461enum bfd_endian
3462type_byte_order (const struct type *type)
3463{
3464 bfd_endian byteorder = gdbarch_byte_order (get_type_arch (type));
3465 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
3466 {
3467 if (byteorder == BFD_ENDIAN_BIG)
3468 return BFD_ENDIAN_LITTLE;
3469 else
3470 {
3471 gdb_assert (byteorder == BFD_ENDIAN_LITTLE);
3472 return BFD_ENDIAN_BIG;
3473 }
3474 }
3475
3476 return byteorder;
3477}
3478
c906108c 3479\f
5212577a 3480/* Overload resolution. */
c906108c 3481
6403aeea
SW
3482/* Return the sum of the rank of A with the rank of B. */
3483
3484struct rank
3485sum_ranks (struct rank a, struct rank b)
3486{
3487 struct rank c;
3488 c.rank = a.rank + b.rank;
a9d5ef47 3489 c.subrank = a.subrank + b.subrank;
6403aeea
SW
3490 return c;
3491}
3492
3493/* Compare rank A and B and return:
3494 0 if a = b
3495 1 if a is better than b
3496 -1 if b is better than a. */
3497
3498int
3499compare_ranks (struct rank a, struct rank b)
3500{
3501 if (a.rank == b.rank)
a9d5ef47
SW
3502 {
3503 if (a.subrank == b.subrank)
3504 return 0;
3505 if (a.subrank < b.subrank)
3506 return 1;
3507 if (a.subrank > b.subrank)
3508 return -1;
3509 }
6403aeea
SW
3510
3511 if (a.rank < b.rank)
3512 return 1;
3513
0963b4bd 3514 /* a.rank > b.rank */
6403aeea
SW
3515 return -1;
3516}
c5aa993b 3517
0963b4bd 3518/* Functions for overload resolution begin here. */
c906108c
SS
3519
3520/* Compare two badness vectors A and B and return the result.
7ba81444
MS
3521 0 => A and B are identical
3522 1 => A and B are incomparable
3523 2 => A is better than B
3524 3 => A is worse than B */
c906108c
SS
3525
3526int
82ceee50 3527compare_badness (const badness_vector &a, const badness_vector &b)
c906108c
SS
3528{
3529 int i;
3530 int tmp;
c5aa993b
JM
3531 short found_pos = 0; /* any positives in c? */
3532 short found_neg = 0; /* any negatives in c? */
3533
82ceee50
PA
3534 /* differing sizes => incomparable */
3535 if (a.size () != b.size ())
c906108c
SS
3536 return 1;
3537
c5aa993b 3538 /* Subtract b from a */
82ceee50 3539 for (i = 0; i < a.size (); i++)
c906108c 3540 {
82ceee50 3541 tmp = compare_ranks (b[i], a[i]);
c906108c 3542 if (tmp > 0)
c5aa993b 3543 found_pos = 1;
c906108c 3544 else if (tmp < 0)
c5aa993b 3545 found_neg = 1;
c906108c
SS
3546 }
3547
3548 if (found_pos)
3549 {
3550 if (found_neg)
c5aa993b 3551 return 1; /* incomparable */
c906108c 3552 else
c5aa993b 3553 return 3; /* A > B */
c906108c 3554 }
c5aa993b
JM
3555 else
3556 /* no positives */
c906108c
SS
3557 {
3558 if (found_neg)
c5aa993b 3559 return 2; /* A < B */
c906108c 3560 else
c5aa993b 3561 return 0; /* A == B */
c906108c
SS
3562 }
3563}
3564
6b1747cd 3565/* Rank a function by comparing its parameter types (PARMS), to the
82ceee50
PA
3566 types of an argument list (ARGS). Return the badness vector. This
3567 has ARGS.size() + 1 entries. */
c906108c 3568
82ceee50 3569badness_vector
6b1747cd
PA
3570rank_function (gdb::array_view<type *> parms,
3571 gdb::array_view<value *> args)
c906108c 3572{
82ceee50
PA
3573 /* add 1 for the length-match rank. */
3574 badness_vector bv;
3575 bv.reserve (1 + args.size ());
c906108c
SS
3576
3577 /* First compare the lengths of the supplied lists.
7ba81444 3578 If there is a mismatch, set it to a high value. */
c5aa993b 3579
c906108c 3580 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
3581 arguments and ellipsis parameter lists, we should consider those
3582 and rank the length-match more finely. */
c906108c 3583
82ceee50
PA
3584 bv.push_back ((args.size () != parms.size ())
3585 ? LENGTH_MISMATCH_BADNESS
3586 : EXACT_MATCH_BADNESS);
c906108c 3587
0963b4bd 3588 /* Now rank all the parameters of the candidate function. */
82ceee50
PA
3589 size_t min_len = std::min (parms.size (), args.size ());
3590
3591 for (size_t i = 0; i < min_len; i++)
3592 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3593 args[i]));
c906108c 3594
0963b4bd 3595 /* If more arguments than parameters, add dummy entries. */
82ceee50
PA
3596 for (size_t i = min_len; i < args.size (); i++)
3597 bv.push_back (TOO_FEW_PARAMS_BADNESS);
c906108c
SS
3598
3599 return bv;
3600}
3601
973ccf8b
DJ
3602/* Compare the names of two integer types, assuming that any sign
3603 qualifiers have been checked already. We do it this way because
3604 there may be an "int" in the name of one of the types. */
3605
3606static int
3607integer_types_same_name_p (const char *first, const char *second)
3608{
3609 int first_p, second_p;
3610
7ba81444
MS
3611 /* If both are shorts, return 1; if neither is a short, keep
3612 checking. */
973ccf8b
DJ
3613 first_p = (strstr (first, "short") != NULL);
3614 second_p = (strstr (second, "short") != NULL);
3615 if (first_p && second_p)
3616 return 1;
3617 if (first_p || second_p)
3618 return 0;
3619
3620 /* Likewise for long. */
3621 first_p = (strstr (first, "long") != NULL);
3622 second_p = (strstr (second, "long") != NULL);
3623 if (first_p && second_p)
3624 return 1;
3625 if (first_p || second_p)
3626 return 0;
3627
3628 /* Likewise for char. */
3629 first_p = (strstr (first, "char") != NULL);
3630 second_p = (strstr (second, "char") != NULL);
3631 if (first_p && second_p)
3632 return 1;
3633 if (first_p || second_p)
3634 return 0;
3635
3636 /* They must both be ints. */
3637 return 1;
3638}
3639
894882e3
TT
3640/* Compares type A to type B. Returns true if they represent the same
3641 type, false otherwise. */
7062b0a0 3642
894882e3 3643bool
7062b0a0
SW
3644types_equal (struct type *a, struct type *b)
3645{
3646 /* Identical type pointers. */
3647 /* However, this still doesn't catch all cases of same type for b
3648 and a. The reason is that builtin types are different from
3649 the same ones constructed from the object. */
3650 if (a == b)
894882e3 3651 return true;
7062b0a0
SW
3652
3653 /* Resolve typedefs */
3654 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3655 a = check_typedef (a);
3656 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3657 b = check_typedef (b);
3658
3659 /* If after resolving typedefs a and b are not of the same type
3660 code then they are not equal. */
3661 if (TYPE_CODE (a) != TYPE_CODE (b))
894882e3 3662 return false;
7062b0a0
SW
3663
3664 /* If a and b are both pointers types or both reference types then
3665 they are equal of the same type iff the objects they refer to are
3666 of the same type. */
3667 if (TYPE_CODE (a) == TYPE_CODE_PTR
3668 || TYPE_CODE (a) == TYPE_CODE_REF)
3669 return types_equal (TYPE_TARGET_TYPE (a),
3670 TYPE_TARGET_TYPE (b));
3671
0963b4bd 3672 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
3673 are exactly the same. This happens when we generate method
3674 stubs. The types won't point to the same address, but they
0963b4bd 3675 really are the same. */
7062b0a0
SW
3676
3677 if (TYPE_NAME (a) && TYPE_NAME (b)
3678 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
894882e3 3679 return true;
7062b0a0
SW
3680
3681 /* Check if identical after resolving typedefs. */
3682 if (a == b)
894882e3 3683 return true;
7062b0a0 3684
9ce98649
TT
3685 /* Two function types are equal if their argument and return types
3686 are equal. */
3687 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3688 {
3689 int i;
3690
3691 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
894882e3 3692 return false;
9ce98649
TT
3693
3694 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
894882e3 3695 return false;
9ce98649
TT
3696
3697 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3698 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
894882e3 3699 return false;
9ce98649 3700
894882e3 3701 return true;
9ce98649
TT
3702 }
3703
894882e3 3704 return false;
7062b0a0 3705}
ca092b61
DE
3706\f
3707/* Deep comparison of types. */
3708
3709/* An entry in the type-equality bcache. */
3710
894882e3 3711struct type_equality_entry
ca092b61 3712{
894882e3
TT
3713 type_equality_entry (struct type *t1, struct type *t2)
3714 : type1 (t1),
3715 type2 (t2)
3716 {
3717 }
ca092b61 3718
894882e3
TT
3719 struct type *type1, *type2;
3720};
ca092b61 3721
894882e3
TT
3722/* A helper function to compare two strings. Returns true if they are
3723 the same, false otherwise. Handles NULLs properly. */
ca092b61 3724
894882e3 3725static bool
ca092b61
DE
3726compare_maybe_null_strings (const char *s, const char *t)
3727{
894882e3
TT
3728 if (s == NULL || t == NULL)
3729 return s == t;
ca092b61
DE
3730 return strcmp (s, t) == 0;
3731}
3732
3733/* A helper function for check_types_worklist that checks two types for
894882e3
TT
3734 "deep" equality. Returns true if the types are considered the
3735 same, false otherwise. */
ca092b61 3736
894882e3 3737static bool
ca092b61 3738check_types_equal (struct type *type1, struct type *type2,
894882e3 3739 std::vector<type_equality_entry> *worklist)
ca092b61 3740{
f168693b
SM
3741 type1 = check_typedef (type1);
3742 type2 = check_typedef (type2);
ca092b61
DE
3743
3744 if (type1 == type2)
894882e3 3745 return true;
ca092b61
DE
3746
3747 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3748 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3749 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3750 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
34877895 3751 || TYPE_ENDIANITY_NOT_DEFAULT (type1) != TYPE_ENDIANITY_NOT_DEFAULT (type2)
ca092b61
DE
3752 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3753 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3754 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3755 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3756 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
894882e3 3757 return false;
ca092b61 3758
e86ca25f 3759 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
894882e3 3760 return false;
ca092b61 3761 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
894882e3 3762 return false;
ca092b61
DE
3763
3764 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3765 {
0f59d5fc 3766 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
894882e3 3767 return false;
ca092b61
DE
3768 }
3769 else
3770 {
3771 int i;
3772
3773 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3774 {
3775 const struct field *field1 = &TYPE_FIELD (type1, i);
3776 const struct field *field2 = &TYPE_FIELD (type2, i);
ca092b61
DE
3777
3778 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3779 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3780 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
894882e3 3781 return false;
ca092b61
DE
3782 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3783 FIELD_NAME (*field2)))
894882e3 3784 return false;
ca092b61
DE
3785 switch (FIELD_LOC_KIND (*field1))
3786 {
3787 case FIELD_LOC_KIND_BITPOS:
3788 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
894882e3 3789 return false;
ca092b61
DE
3790 break;
3791 case FIELD_LOC_KIND_ENUMVAL:
3792 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
894882e3 3793 return false;
ca092b61
DE
3794 break;
3795 case FIELD_LOC_KIND_PHYSADDR:
3796 if (FIELD_STATIC_PHYSADDR (*field1)
3797 != FIELD_STATIC_PHYSADDR (*field2))
894882e3 3798 return false;
ca092b61
DE
3799 break;
3800 case FIELD_LOC_KIND_PHYSNAME:
3801 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3802 FIELD_STATIC_PHYSNAME (*field2)))
894882e3 3803 return false;
ca092b61
DE
3804 break;
3805 case FIELD_LOC_KIND_DWARF_BLOCK:
3806 {
3807 struct dwarf2_locexpr_baton *block1, *block2;
3808
3809 block1 = FIELD_DWARF_BLOCK (*field1);
3810 block2 = FIELD_DWARF_BLOCK (*field2);
3811 if (block1->per_cu != block2->per_cu
3812 || block1->size != block2->size
3813 || memcmp (block1->data, block2->data, block1->size) != 0)
894882e3 3814 return false;
ca092b61
DE
3815 }
3816 break;
3817 default:
3818 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3819 "%d by check_types_equal"),
3820 FIELD_LOC_KIND (*field1));
3821 }
3822
894882e3 3823 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
ca092b61
DE
3824 }
3825 }
3826
3827 if (TYPE_TARGET_TYPE (type1) != NULL)
3828 {
ca092b61 3829 if (TYPE_TARGET_TYPE (type2) == NULL)
894882e3 3830 return false;
ca092b61 3831
894882e3
TT
3832 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
3833 TYPE_TARGET_TYPE (type2));
ca092b61
DE
3834 }
3835 else if (TYPE_TARGET_TYPE (type2) != NULL)
894882e3 3836 return false;
ca092b61 3837
894882e3 3838 return true;
ca092b61
DE
3839}
3840
894882e3
TT
3841/* Check types on a worklist for equality. Returns false if any pair
3842 is not equal, true if they are all considered equal. */
ca092b61 3843
894882e3
TT
3844static bool
3845check_types_worklist (std::vector<type_equality_entry> *worklist,
dfb65191 3846 gdb::bcache *cache)
ca092b61 3847{
894882e3 3848 while (!worklist->empty ())
ca092b61 3849 {
ca092b61
DE
3850 int added;
3851
894882e3
TT
3852 struct type_equality_entry entry = std::move (worklist->back ());
3853 worklist->pop_back ();
ca092b61
DE
3854
3855 /* If the type pair has already been visited, we know it is
3856 ok. */
25629dfd 3857 cache->insert (&entry, sizeof (entry), &added);
ca092b61
DE
3858 if (!added)
3859 continue;
3860
894882e3
TT
3861 if (!check_types_equal (entry.type1, entry.type2, worklist))
3862 return false;
ca092b61 3863 }
7062b0a0 3864
894882e3 3865 return true;
ca092b61
DE
3866}
3867
894882e3
TT
3868/* Return true if types TYPE1 and TYPE2 are equal, as determined by a
3869 "deep comparison". Otherwise return false. */
ca092b61 3870
894882e3 3871bool
ca092b61
DE
3872types_deeply_equal (struct type *type1, struct type *type2)
3873{
894882e3 3874 std::vector<type_equality_entry> worklist;
ca092b61
DE
3875
3876 gdb_assert (type1 != NULL && type2 != NULL);
3877
3878 /* Early exit for the simple case. */
3879 if (type1 == type2)
894882e3 3880 return true;
ca092b61 3881
dfb65191 3882 gdb::bcache cache (nullptr, nullptr);
894882e3 3883 worklist.emplace_back (type1, type2);
25629dfd 3884 return check_types_worklist (&worklist, &cache);
ca092b61 3885}
3f2f83dd
KB
3886
3887/* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3888 Otherwise return one. */
3889
3890int
3891type_not_allocated (const struct type *type)
3892{
3893 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3894
3895 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3896 && !TYPE_DYN_PROP_ADDR (prop));
3897}
3898
3899/* Associated status of type TYPE. Return zero if type TYPE is associated.
3900 Otherwise return one. */
3901
3902int
3903type_not_associated (const struct type *type)
3904{
3905 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3906
3907 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3908 && !TYPE_DYN_PROP_ADDR (prop));
3909}
9293fc63
SM
3910
3911/* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
3912
3913static struct rank
3914rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
3915{
3916 struct rank rank = {0,0};
3917
3918 switch (TYPE_CODE (arg))
3919 {
3920 case TYPE_CODE_PTR:
3921
3922 /* Allowed pointer conversions are:
3923 (a) pointer to void-pointer conversion. */
3924 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3925 return VOID_PTR_CONVERSION_BADNESS;
3926
3927 /* (b) pointer to ancestor-pointer conversion. */
3928 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3929 TYPE_TARGET_TYPE (arg),
3930 0);
3931 if (rank.subrank >= 0)
3932 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3933
3934 return INCOMPATIBLE_TYPE_BADNESS;
3935 case TYPE_CODE_ARRAY:
3936 {
3937 struct type *t1 = TYPE_TARGET_TYPE (parm);
3938 struct type *t2 = TYPE_TARGET_TYPE (arg);
3939
3940 if (types_equal (t1, t2))
3941 {
3942 /* Make sure they are CV equal. */
3943 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3944 rank.subrank |= CV_CONVERSION_CONST;
3945 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3946 rank.subrank |= CV_CONVERSION_VOLATILE;
3947 if (rank.subrank != 0)
3948 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3949 return EXACT_MATCH_BADNESS;
3950 }
3951 return INCOMPATIBLE_TYPE_BADNESS;
3952 }
3953 case TYPE_CODE_FUNC:
3954 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3955 case TYPE_CODE_INT:
3956 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3957 {
3958 if (value_as_long (value) == 0)
3959 {
3960 /* Null pointer conversion: allow it to be cast to a pointer.
3961 [4.10.1 of C++ standard draft n3290] */
3962 return NULL_POINTER_CONVERSION_BADNESS;
3963 }
3964 else
3965 {
3966 /* If type checking is disabled, allow the conversion. */
3967 if (!strict_type_checking)
3968 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3969 }
3970 }
3971 /* fall through */
3972 case TYPE_CODE_ENUM:
3973 case TYPE_CODE_FLAGS:
3974 case TYPE_CODE_CHAR:
3975 case TYPE_CODE_RANGE:
3976 case TYPE_CODE_BOOL:
3977 default:
3978 return INCOMPATIBLE_TYPE_BADNESS;
3979 }
3980}
3981
b9f4512f
SM
3982/* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
3983
3984static struct rank
3985rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
3986{
3987 switch (TYPE_CODE (arg))
3988 {
3989 case TYPE_CODE_PTR:
3990 case TYPE_CODE_ARRAY:
3991 return rank_one_type (TYPE_TARGET_TYPE (parm),
3992 TYPE_TARGET_TYPE (arg), NULL);
3993 default:
3994 return INCOMPATIBLE_TYPE_BADNESS;
3995 }
3996}
3997
f1f832d6
SM
3998/* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
3999
4000static struct rank
4001rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
4002{
4003 switch (TYPE_CODE (arg))
4004 {
4005 case TYPE_CODE_PTR: /* funcptr -> func */
4006 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
4007 default:
4008 return INCOMPATIBLE_TYPE_BADNESS;
4009 }
4010}
4011
34910087
SM
4012/* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
4013
4014static struct rank
4015rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
4016{
4017 switch (TYPE_CODE (arg))
4018 {
4019 case TYPE_CODE_INT:
4020 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4021 {
4022 /* Deal with signed, unsigned, and plain chars and
4023 signed and unsigned ints. */
4024 if (TYPE_NOSIGN (parm))
4025 {
4026 /* This case only for character types. */
4027 if (TYPE_NOSIGN (arg))
4028 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
4029 else /* signed/unsigned char -> plain char */
4030 return INTEGER_CONVERSION_BADNESS;
4031 }
4032 else if (TYPE_UNSIGNED (parm))
4033 {
4034 if (TYPE_UNSIGNED (arg))
4035 {
4036 /* unsigned int -> unsigned int, or
4037 unsigned long -> unsigned long */
4038 if (integer_types_same_name_p (TYPE_NAME (parm),
4039 TYPE_NAME (arg)))
4040 return EXACT_MATCH_BADNESS;
4041 else if (integer_types_same_name_p (TYPE_NAME (arg),
4042 "int")
4043 && integer_types_same_name_p (TYPE_NAME (parm),
4044 "long"))
4045 /* unsigned int -> unsigned long */
4046 return INTEGER_PROMOTION_BADNESS;
4047 else
4048 /* unsigned long -> unsigned int */
4049 return INTEGER_CONVERSION_BADNESS;
4050 }
4051 else
4052 {
4053 if (integer_types_same_name_p (TYPE_NAME (arg),
4054 "long")
4055 && integer_types_same_name_p (TYPE_NAME (parm),
4056 "int"))
4057 /* signed long -> unsigned int */
4058 return INTEGER_CONVERSION_BADNESS;
4059 else
4060 /* signed int/long -> unsigned int/long */
4061 return INTEGER_CONVERSION_BADNESS;
4062 }
4063 }
4064 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4065 {
4066 if (integer_types_same_name_p (TYPE_NAME (parm),
4067 TYPE_NAME (arg)))
4068 return EXACT_MATCH_BADNESS;
4069 else if (integer_types_same_name_p (TYPE_NAME (arg),
4070 "int")
4071 && integer_types_same_name_p (TYPE_NAME (parm),
4072 "long"))
4073 return INTEGER_PROMOTION_BADNESS;
4074 else
4075 return INTEGER_CONVERSION_BADNESS;
4076 }
4077 else
4078 return INTEGER_CONVERSION_BADNESS;
4079 }
4080 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4081 return INTEGER_PROMOTION_BADNESS;
4082 else
4083 return INTEGER_CONVERSION_BADNESS;
4084 case TYPE_CODE_ENUM:
4085 case TYPE_CODE_FLAGS:
4086 case TYPE_CODE_CHAR:
4087 case TYPE_CODE_RANGE:
4088 case TYPE_CODE_BOOL:
4089 if (TYPE_DECLARED_CLASS (arg))
4090 return INCOMPATIBLE_TYPE_BADNESS;
4091 return INTEGER_PROMOTION_BADNESS;
4092 case TYPE_CODE_FLT:
4093 return INT_FLOAT_CONVERSION_BADNESS;
4094 case TYPE_CODE_PTR:
4095 return NS_POINTER_CONVERSION_BADNESS;
4096 default:
4097 return INCOMPATIBLE_TYPE_BADNESS;
4098 }
4099}
4100
793cd1d2
SM
4101/* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
4102
4103static struct rank
4104rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
4105{
4106 switch (TYPE_CODE (arg))
4107 {
4108 case TYPE_CODE_INT:
4109 case TYPE_CODE_CHAR:
4110 case TYPE_CODE_RANGE:
4111 case TYPE_CODE_BOOL:
4112 case TYPE_CODE_ENUM:
4113 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4114 return INCOMPATIBLE_TYPE_BADNESS;
4115 return INTEGER_CONVERSION_BADNESS;
4116 case TYPE_CODE_FLT:
4117 return INT_FLOAT_CONVERSION_BADNESS;
4118 default:
4119 return INCOMPATIBLE_TYPE_BADNESS;
4120 }
4121}
4122
41ea4728
SM
4123/* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
4124
4125static struct rank
4126rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
4127{
4128 switch (TYPE_CODE (arg))
4129 {
4130 case TYPE_CODE_RANGE:
4131 case TYPE_CODE_BOOL:
4132 case TYPE_CODE_ENUM:
4133 if (TYPE_DECLARED_CLASS (arg))
4134 return INCOMPATIBLE_TYPE_BADNESS;
4135 return INTEGER_CONVERSION_BADNESS;
4136 case TYPE_CODE_FLT:
4137 return INT_FLOAT_CONVERSION_BADNESS;
4138 case TYPE_CODE_INT:
4139 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4140 return INTEGER_CONVERSION_BADNESS;
4141 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4142 return INTEGER_PROMOTION_BADNESS;
4143 /* fall through */
4144 case TYPE_CODE_CHAR:
4145 /* Deal with signed, unsigned, and plain chars for C++ and
4146 with int cases falling through from previous case. */
4147 if (TYPE_NOSIGN (parm))
4148 {
4149 if (TYPE_NOSIGN (arg))
4150 return EXACT_MATCH_BADNESS;
4151 else
4152 return INTEGER_CONVERSION_BADNESS;
4153 }
4154 else if (TYPE_UNSIGNED (parm))
4155 {
4156 if (TYPE_UNSIGNED (arg))
4157 return EXACT_MATCH_BADNESS;
4158 else
4159 return INTEGER_PROMOTION_BADNESS;
4160 }
4161 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4162 return EXACT_MATCH_BADNESS;
4163 else
4164 return INTEGER_CONVERSION_BADNESS;
4165 default:
4166 return INCOMPATIBLE_TYPE_BADNESS;
4167 }
4168}
4169
0dd322dc
SM
4170/* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4171
4172static struct rank
4173rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4174{
4175 switch (TYPE_CODE (arg))
4176 {
4177 case TYPE_CODE_INT:
4178 case TYPE_CODE_CHAR:
4179 case TYPE_CODE_RANGE:
4180 case TYPE_CODE_BOOL:
4181 case TYPE_CODE_ENUM:
4182 return INTEGER_CONVERSION_BADNESS;
4183 case TYPE_CODE_FLT:
4184 return INT_FLOAT_CONVERSION_BADNESS;
4185 default:
4186 return INCOMPATIBLE_TYPE_BADNESS;
4187 }
4188}
4189
2c509035
SM
4190/* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4191
4192static struct rank
4193rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4194{
4195 switch (TYPE_CODE (arg))
4196 {
4197 /* n3290 draft, section 4.12.1 (conv.bool):
4198
4199 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4200 pointer to member type can be converted to a prvalue of type
4201 bool. A zero value, null pointer value, or null member pointer
4202 value is converted to false; any other value is converted to
4203 true. A prvalue of type std::nullptr_t can be converted to a
4204 prvalue of type bool; the resulting value is false." */
4205 case TYPE_CODE_INT:
4206 case TYPE_CODE_CHAR:
4207 case TYPE_CODE_ENUM:
4208 case TYPE_CODE_FLT:
4209 case TYPE_CODE_MEMBERPTR:
4210 case TYPE_CODE_PTR:
4211 return BOOL_CONVERSION_BADNESS;
4212 case TYPE_CODE_RANGE:
4213 return INCOMPATIBLE_TYPE_BADNESS;
4214 case TYPE_CODE_BOOL:
4215 return EXACT_MATCH_BADNESS;
4216 default:
4217 return INCOMPATIBLE_TYPE_BADNESS;
4218 }
4219}
4220
7f17b20d
SM
4221/* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4222
4223static struct rank
4224rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4225{
4226 switch (TYPE_CODE (arg))
4227 {
4228 case TYPE_CODE_FLT:
4229 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4230 return FLOAT_PROMOTION_BADNESS;
4231 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4232 return EXACT_MATCH_BADNESS;
4233 else
4234 return FLOAT_CONVERSION_BADNESS;
4235 case TYPE_CODE_INT:
4236 case TYPE_CODE_BOOL:
4237 case TYPE_CODE_ENUM:
4238 case TYPE_CODE_RANGE:
4239 case TYPE_CODE_CHAR:
4240 return INT_FLOAT_CONVERSION_BADNESS;
4241 default:
4242 return INCOMPATIBLE_TYPE_BADNESS;
4243 }
4244}
4245
2598a94b
SM
4246/* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4247
4248static struct rank
4249rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4250{
4251 switch (TYPE_CODE (arg))
4252 { /* Strictly not needed for C++, but... */
4253 case TYPE_CODE_FLT:
4254 return FLOAT_PROMOTION_BADNESS;
4255 case TYPE_CODE_COMPLEX:
4256 return EXACT_MATCH_BADNESS;
4257 default:
4258 return INCOMPATIBLE_TYPE_BADNESS;
4259 }
4260}
4261
595f96a9
SM
4262/* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4263
4264static struct rank
4265rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4266{
4267 struct rank rank = {0, 0};
4268
4269 switch (TYPE_CODE (arg))
4270 {
4271 case TYPE_CODE_STRUCT:
4272 /* Check for derivation */
4273 rank.subrank = distance_to_ancestor (parm, arg, 0);
4274 if (rank.subrank >= 0)
4275 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4276 /* fall through */
4277 default:
4278 return INCOMPATIBLE_TYPE_BADNESS;
4279 }
4280}
4281
f09ce22d
SM
4282/* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4283
4284static struct rank
4285rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4286{
4287 switch (TYPE_CODE (arg))
4288 {
4289 /* Not in C++ */
4290 case TYPE_CODE_SET:
4291 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4292 TYPE_FIELD_TYPE (arg, 0), NULL);
4293 default:
4294 return INCOMPATIBLE_TYPE_BADNESS;
4295 }
4296}
4297
c906108c
SS
4298/* Compare one type (PARM) for compatibility with another (ARG).
4299 * PARM is intended to be the parameter type of a function; and
4300 * ARG is the supplied argument's type. This function tests if
4301 * the latter can be converted to the former.
da096638 4302 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
4303 *
4304 * Return 0 if they are identical types;
4305 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
4306 * PARM is to ARG. The higher the return value, the worse the match.
4307 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 4308
6403aeea 4309struct rank
da096638 4310rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 4311{
a9d5ef47 4312 struct rank rank = {0,0};
7062b0a0 4313
c906108c
SS
4314 /* Resolve typedefs */
4315 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
4316 parm = check_typedef (parm);
4317 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
4318 arg = check_typedef (arg);
4319
e15c3eb4 4320 if (TYPE_IS_REFERENCE (parm) && value != NULL)
15c0a2a9 4321 {
e15c3eb4
KS
4322 if (VALUE_LVAL (value) == not_lval)
4323 {
4324 /* Rvalues should preferably bind to rvalue references or const
4325 lvalue references. */
4326 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4327 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4328 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4329 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4330 else
4331 return INCOMPATIBLE_TYPE_BADNESS;
4332 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4333 }
4334 else
4335 {
330f1d38 4336 /* It's illegal to pass an lvalue as an rvalue. */
e15c3eb4 4337 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
330f1d38 4338 return INCOMPATIBLE_TYPE_BADNESS;
e15c3eb4 4339 }
15c0a2a9
AV
4340 }
4341
4342 if (types_equal (parm, arg))
15c0a2a9 4343 {
e15c3eb4
KS
4344 struct type *t1 = parm;
4345 struct type *t2 = arg;
15c0a2a9 4346
e15c3eb4
KS
4347 /* For pointers and references, compare target type. */
4348 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4349 {
4350 t1 = TYPE_TARGET_TYPE (parm);
4351 t2 = TYPE_TARGET_TYPE (arg);
4352 }
15c0a2a9 4353
e15c3eb4
KS
4354 /* Make sure they are CV equal, too. */
4355 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4356 rank.subrank |= CV_CONVERSION_CONST;
4357 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4358 rank.subrank |= CV_CONVERSION_VOLATILE;
4359 if (rank.subrank != 0)
4360 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4361 return EXACT_MATCH_BADNESS;
15c0a2a9
AV
4362 }
4363
db577aea 4364 /* See through references, since we can almost make non-references
7ba81444 4365 references. */
aa006118
AV
4366
4367 if (TYPE_IS_REFERENCE (arg))
da096638 4368 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
06acc08f 4369 REFERENCE_SEE_THROUGH_BADNESS));
aa006118 4370 if (TYPE_IS_REFERENCE (parm))
da096638 4371 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
06acc08f 4372 REFERENCE_SEE_THROUGH_BADNESS));
5d161b24 4373 if (overload_debug)
7ba81444
MS
4374 /* Debugging only. */
4375 fprintf_filtered (gdb_stderr,
4376 "------ Arg is %s [%d], parm is %s [%d]\n",
4377 TYPE_NAME (arg), TYPE_CODE (arg),
4378 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 4379
0963b4bd 4380 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
4381
4382 switch (TYPE_CODE (parm))
4383 {
c5aa993b 4384 case TYPE_CODE_PTR:
9293fc63 4385 return rank_one_type_parm_ptr (parm, arg, value);
c5aa993b 4386 case TYPE_CODE_ARRAY:
b9f4512f 4387 return rank_one_type_parm_array (parm, arg, value);
c5aa993b 4388 case TYPE_CODE_FUNC:
f1f832d6 4389 return rank_one_type_parm_func (parm, arg, value);
c5aa993b 4390 case TYPE_CODE_INT:
34910087 4391 return rank_one_type_parm_int (parm, arg, value);
c5aa993b 4392 case TYPE_CODE_ENUM:
793cd1d2 4393 return rank_one_type_parm_enum (parm, arg, value);
c5aa993b 4394 case TYPE_CODE_CHAR:
41ea4728 4395 return rank_one_type_parm_char (parm, arg, value);
c5aa993b 4396 case TYPE_CODE_RANGE:
0dd322dc 4397 return rank_one_type_parm_range (parm, arg, value);
c5aa993b 4398 case TYPE_CODE_BOOL:
2c509035 4399 return rank_one_type_parm_bool (parm, arg, value);
c5aa993b 4400 case TYPE_CODE_FLT:
7f17b20d 4401 return rank_one_type_parm_float (parm, arg, value);
c5aa993b 4402 case TYPE_CODE_COMPLEX:
2598a94b 4403 return rank_one_type_parm_complex (parm, arg, value);
c5aa993b 4404 case TYPE_CODE_STRUCT:
595f96a9 4405 return rank_one_type_parm_struct (parm, arg, value);
c5aa993b 4406 case TYPE_CODE_SET:
f09ce22d 4407 return rank_one_type_parm_set (parm, arg, value);
c5aa993b
JM
4408 default:
4409 return INCOMPATIBLE_TYPE_BADNESS;
4410 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
4411}
4412
0963b4bd 4413/* End of functions for overload resolution. */
5212577a
DE
4414\f
4415/* Routines to pretty-print types. */
c906108c 4416
c906108c 4417static void
fba45db2 4418print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
4419{
4420 int bitno;
4421
4422 for (bitno = 0; bitno < nbits; bitno++)
4423 {
4424 if ((bitno % 8) == 0)
4425 {
4426 puts_filtered (" ");
4427 }
4428 if (B_TST (bits, bitno))
a3f17187 4429 printf_filtered (("1"));
c906108c 4430 else
a3f17187 4431 printf_filtered (("0"));
c906108c
SS
4432 }
4433}
4434
ad2f7632 4435/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
4436 include it since we may get into a infinitely recursive
4437 situation. */
c906108c
SS
4438
4439static void
4c9e8482 4440print_args (struct field *args, int nargs, int spaces)
c906108c
SS
4441{
4442 if (args != NULL)
4443 {
ad2f7632
DJ
4444 int i;
4445
4446 for (i = 0; i < nargs; i++)
4c9e8482
DE
4447 {
4448 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4449 args[i].name != NULL ? args[i].name : "<NULL>");
4450 recursive_dump_type (args[i].type, spaces + 2);
4451 }
c906108c
SS
4452 }
4453}
4454
d6a843b5
JK
4455int
4456field_is_static (struct field *f)
4457{
4458 /* "static" fields are the fields whose location is not relative
4459 to the address of the enclosing struct. It would be nice to
4460 have a dedicated flag that would be set for static fields when
4461 the type is being created. But in practice, checking the field
254e6b9e 4462 loc_kind should give us an accurate answer. */
d6a843b5
JK
4463 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4464 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4465}
4466
c906108c 4467static void
fba45db2 4468dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
4469{
4470 int method_idx;
4471 int overload_idx;
4472 struct fn_field *f;
4473
4474 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 4475 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
4476 printf_filtered ("\n");
4477 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4478 {
4479 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4480 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4481 method_idx,
4482 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
4483 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4484 gdb_stdout);
a3f17187 4485 printf_filtered (_(") length %d\n"),
c906108c
SS
4486 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4487 for (overload_idx = 0;
4488 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4489 overload_idx++)
4490 {
4491 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4492 overload_idx,
4493 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
4494 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4495 gdb_stdout);
c906108c
SS
4496 printf_filtered (")\n");
4497 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
4498 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4499 gdb_stdout);
c906108c
SS
4500 printf_filtered ("\n");
4501
4502 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4503 spaces + 8 + 2);
4504
4505 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
4506 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4507 gdb_stdout);
c906108c 4508 printf_filtered ("\n");
4c9e8482
DE
4509 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4510 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4511 spaces + 8 + 2);
c906108c 4512 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
4513 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4514 gdb_stdout);
c906108c
SS
4515 printf_filtered ("\n");
4516
4517 printfi_filtered (spaces + 8, "is_const %d\n",
4518 TYPE_FN_FIELD_CONST (f, overload_idx));
4519 printfi_filtered (spaces + 8, "is_volatile %d\n",
4520 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4521 printfi_filtered (spaces + 8, "is_private %d\n",
4522 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4523 printfi_filtered (spaces + 8, "is_protected %d\n",
4524 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4525 printfi_filtered (spaces + 8, "is_stub %d\n",
4526 TYPE_FN_FIELD_STUB (f, overload_idx));
e35000a7
TBA
4527 printfi_filtered (spaces + 8, "defaulted %d\n",
4528 TYPE_FN_FIELD_DEFAULTED (f, overload_idx));
4529 printfi_filtered (spaces + 8, "is_deleted %d\n",
4530 TYPE_FN_FIELD_DELETED (f, overload_idx));
c906108c
SS
4531 printfi_filtered (spaces + 8, "voffset %u\n",
4532 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4533 }
4534 }
4535}
4536
4537static void
fba45db2 4538print_cplus_stuff (struct type *type, int spaces)
c906108c 4539{
ae6ae975
DE
4540 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4541 printfi_filtered (spaces, "vptr_basetype ");
4542 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4543 puts_filtered ("\n");
4544 if (TYPE_VPTR_BASETYPE (type) != NULL)
4545 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4546
c906108c
SS
4547 printfi_filtered (spaces, "n_baseclasses %d\n",
4548 TYPE_N_BASECLASSES (type));
4549 printfi_filtered (spaces, "nfn_fields %d\n",
4550 TYPE_NFN_FIELDS (type));
c906108c
SS
4551 if (TYPE_N_BASECLASSES (type) > 0)
4552 {
4553 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4554 TYPE_N_BASECLASSES (type));
7ba81444
MS
4555 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4556 gdb_stdout);
c906108c
SS
4557 printf_filtered (")");
4558
4559 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4560 TYPE_N_BASECLASSES (type));
4561 puts_filtered ("\n");
4562 }
4563 if (TYPE_NFIELDS (type) > 0)
4564 {
4565 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4566 {
7ba81444
MS
4567 printfi_filtered (spaces,
4568 "private_field_bits (%d bits at *",
c906108c 4569 TYPE_NFIELDS (type));
7ba81444
MS
4570 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4571 gdb_stdout);
c906108c
SS
4572 printf_filtered (")");
4573 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4574 TYPE_NFIELDS (type));
4575 puts_filtered ("\n");
4576 }
4577 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4578 {
7ba81444
MS
4579 printfi_filtered (spaces,
4580 "protected_field_bits (%d bits at *",
c906108c 4581 TYPE_NFIELDS (type));
7ba81444
MS
4582 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4583 gdb_stdout);
c906108c
SS
4584 printf_filtered (")");
4585 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4586 TYPE_NFIELDS (type));
4587 puts_filtered ("\n");
4588 }
4589 }
4590 if (TYPE_NFN_FIELDS (type) > 0)
4591 {
4592 dump_fn_fieldlists (type, spaces);
4593 }
e35000a7
TBA
4594
4595 printfi_filtered (spaces, "calling_convention %d\n",
4596 TYPE_CPLUS_CALLING_CONVENTION (type));
c906108c
SS
4597}
4598
b4ba55a1
JB
4599/* Print the contents of the TYPE's type_specific union, assuming that
4600 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4601
4602static void
4603print_gnat_stuff (struct type *type, int spaces)
4604{
4605 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4606
8cd00c59
PMR
4607 if (descriptive_type == NULL)
4608 printfi_filtered (spaces + 2, "no descriptive type\n");
4609 else
4610 {
4611 printfi_filtered (spaces + 2, "descriptive type\n");
4612 recursive_dump_type (descriptive_type, spaces + 4);
4613 }
b4ba55a1
JB
4614}
4615
c906108c
SS
4616static struct obstack dont_print_type_obstack;
4617
4618void
fba45db2 4619recursive_dump_type (struct type *type, int spaces)
c906108c
SS
4620{
4621 int idx;
4622
4623 if (spaces == 0)
4624 obstack_begin (&dont_print_type_obstack, 0);
4625
4626 if (TYPE_NFIELDS (type) > 0
b4ba55a1 4627 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
4628 {
4629 struct type **first_dont_print
7ba81444 4630 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 4631
7ba81444
MS
4632 int i = (struct type **)
4633 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
4634
4635 while (--i >= 0)
4636 {
4637 if (type == first_dont_print[i])
4638 {
4639 printfi_filtered (spaces, "type node ");
d4f3574e 4640 gdb_print_host_address (type, gdb_stdout);
a3f17187 4641 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
4642 return;
4643 }
4644 }
4645
4646 obstack_ptr_grow (&dont_print_type_obstack, type);
4647 }
4648
4649 printfi_filtered (spaces, "type node ");
d4f3574e 4650 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
4651 printf_filtered ("\n");
4652 printfi_filtered (spaces, "name '%s' (",
4653 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 4654 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 4655 printf_filtered (")\n");
c906108c
SS
4656 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4657 switch (TYPE_CODE (type))
4658 {
c5aa993b
JM
4659 case TYPE_CODE_UNDEF:
4660 printf_filtered ("(TYPE_CODE_UNDEF)");
4661 break;
4662 case TYPE_CODE_PTR:
4663 printf_filtered ("(TYPE_CODE_PTR)");
4664 break;
4665 case TYPE_CODE_ARRAY:
4666 printf_filtered ("(TYPE_CODE_ARRAY)");
4667 break;
4668 case TYPE_CODE_STRUCT:
4669 printf_filtered ("(TYPE_CODE_STRUCT)");
4670 break;
4671 case TYPE_CODE_UNION:
4672 printf_filtered ("(TYPE_CODE_UNION)");
4673 break;
4674 case TYPE_CODE_ENUM:
4675 printf_filtered ("(TYPE_CODE_ENUM)");
4676 break;
4f2aea11
MK
4677 case TYPE_CODE_FLAGS:
4678 printf_filtered ("(TYPE_CODE_FLAGS)");
4679 break;
c5aa993b
JM
4680 case TYPE_CODE_FUNC:
4681 printf_filtered ("(TYPE_CODE_FUNC)");
4682 break;
4683 case TYPE_CODE_INT:
4684 printf_filtered ("(TYPE_CODE_INT)");
4685 break;
4686 case TYPE_CODE_FLT:
4687 printf_filtered ("(TYPE_CODE_FLT)");
4688 break;
4689 case TYPE_CODE_VOID:
4690 printf_filtered ("(TYPE_CODE_VOID)");
4691 break;
4692 case TYPE_CODE_SET:
4693 printf_filtered ("(TYPE_CODE_SET)");
4694 break;
4695 case TYPE_CODE_RANGE:
4696 printf_filtered ("(TYPE_CODE_RANGE)");
4697 break;
4698 case TYPE_CODE_STRING:
4699 printf_filtered ("(TYPE_CODE_STRING)");
4700 break;
4701 case TYPE_CODE_ERROR:
4702 printf_filtered ("(TYPE_CODE_ERROR)");
4703 break;
0d5de010
DJ
4704 case TYPE_CODE_MEMBERPTR:
4705 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4706 break;
4707 case TYPE_CODE_METHODPTR:
4708 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
4709 break;
4710 case TYPE_CODE_METHOD:
4711 printf_filtered ("(TYPE_CODE_METHOD)");
4712 break;
4713 case TYPE_CODE_REF:
4714 printf_filtered ("(TYPE_CODE_REF)");
4715 break;
4716 case TYPE_CODE_CHAR:
4717 printf_filtered ("(TYPE_CODE_CHAR)");
4718 break;
4719 case TYPE_CODE_BOOL:
4720 printf_filtered ("(TYPE_CODE_BOOL)");
4721 break;
e9e79dd9
FF
4722 case TYPE_CODE_COMPLEX:
4723 printf_filtered ("(TYPE_CODE_COMPLEX)");
4724 break;
c5aa993b
JM
4725 case TYPE_CODE_TYPEDEF:
4726 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4727 break;
5c4e30ca
DC
4728 case TYPE_CODE_NAMESPACE:
4729 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4730 break;
c5aa993b
JM
4731 default:
4732 printf_filtered ("(UNKNOWN TYPE CODE)");
4733 break;
c906108c
SS
4734 }
4735 puts_filtered ("\n");
cc1defb1 4736 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
e9bb382b
UW
4737 if (TYPE_OBJFILE_OWNED (type))
4738 {
4739 printfi_filtered (spaces, "objfile ");
4740 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4741 }
4742 else
4743 {
4744 printfi_filtered (spaces, "gdbarch ");
4745 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4746 }
c906108c
SS
4747 printf_filtered ("\n");
4748 printfi_filtered (spaces, "target_type ");
d4f3574e 4749 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
4750 printf_filtered ("\n");
4751 if (TYPE_TARGET_TYPE (type) != NULL)
4752 {
4753 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4754 }
4755 printfi_filtered (spaces, "pointer_type ");
d4f3574e 4756 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
4757 printf_filtered ("\n");
4758 printfi_filtered (spaces, "reference_type ");
d4f3574e 4759 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 4760 printf_filtered ("\n");
2fdde8f8
DJ
4761 printfi_filtered (spaces, "type_chain ");
4762 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 4763 printf_filtered ("\n");
7ba81444
MS
4764 printfi_filtered (spaces, "instance_flags 0x%x",
4765 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
4766 if (TYPE_CONST (type))
4767 {
a9ff5f12 4768 puts_filtered (" TYPE_CONST");
2fdde8f8
DJ
4769 }
4770 if (TYPE_VOLATILE (type))
4771 {
a9ff5f12 4772 puts_filtered (" TYPE_VOLATILE");
2fdde8f8
DJ
4773 }
4774 if (TYPE_CODE_SPACE (type))
4775 {
a9ff5f12 4776 puts_filtered (" TYPE_CODE_SPACE");
2fdde8f8
DJ
4777 }
4778 if (TYPE_DATA_SPACE (type))
4779 {
a9ff5f12 4780 puts_filtered (" TYPE_DATA_SPACE");
2fdde8f8 4781 }
8b2dbe47
KB
4782 if (TYPE_ADDRESS_CLASS_1 (type))
4783 {
a9ff5f12 4784 puts_filtered (" TYPE_ADDRESS_CLASS_1");
8b2dbe47
KB
4785 }
4786 if (TYPE_ADDRESS_CLASS_2 (type))
4787 {
a9ff5f12 4788 puts_filtered (" TYPE_ADDRESS_CLASS_2");
8b2dbe47 4789 }
06d66ee9
TT
4790 if (TYPE_RESTRICT (type))
4791 {
a9ff5f12 4792 puts_filtered (" TYPE_RESTRICT");
06d66ee9 4793 }
a2c2acaf
MW
4794 if (TYPE_ATOMIC (type))
4795 {
a9ff5f12 4796 puts_filtered (" TYPE_ATOMIC");
a2c2acaf 4797 }
2fdde8f8 4798 puts_filtered ("\n");
876cecd0
TT
4799
4800 printfi_filtered (spaces, "flags");
762a036f 4801 if (TYPE_UNSIGNED (type))
c906108c 4802 {
a9ff5f12 4803 puts_filtered (" TYPE_UNSIGNED");
c906108c 4804 }
762a036f
FF
4805 if (TYPE_NOSIGN (type))
4806 {
a9ff5f12 4807 puts_filtered (" TYPE_NOSIGN");
762a036f 4808 }
34877895
PJ
4809 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
4810 {
4811 puts_filtered (" TYPE_ENDIANITY_NOT_DEFAULT");
4812 }
762a036f 4813 if (TYPE_STUB (type))
c906108c 4814 {
a9ff5f12 4815 puts_filtered (" TYPE_STUB");
c906108c 4816 }
762a036f
FF
4817 if (TYPE_TARGET_STUB (type))
4818 {
a9ff5f12 4819 puts_filtered (" TYPE_TARGET_STUB");
762a036f 4820 }
762a036f
FF
4821 if (TYPE_PROTOTYPED (type))
4822 {
a9ff5f12 4823 puts_filtered (" TYPE_PROTOTYPED");
762a036f
FF
4824 }
4825 if (TYPE_INCOMPLETE (type))
4826 {
a9ff5f12 4827 puts_filtered (" TYPE_INCOMPLETE");
762a036f 4828 }
762a036f
FF
4829 if (TYPE_VARARGS (type))
4830 {
a9ff5f12 4831 puts_filtered (" TYPE_VARARGS");
762a036f 4832 }
f5f8a009
EZ
4833 /* This is used for things like AltiVec registers on ppc. Gcc emits
4834 an attribute for the array type, which tells whether or not we
4835 have a vector, instead of a regular array. */
4836 if (TYPE_VECTOR (type))
4837 {
a9ff5f12 4838 puts_filtered (" TYPE_VECTOR");
f5f8a009 4839 }
876cecd0
TT
4840 if (TYPE_FIXED_INSTANCE (type))
4841 {
4842 puts_filtered (" TYPE_FIXED_INSTANCE");
4843 }
4844 if (TYPE_STUB_SUPPORTED (type))
4845 {
4846 puts_filtered (" TYPE_STUB_SUPPORTED");
4847 }
4848 if (TYPE_NOTTEXT (type))
4849 {
4850 puts_filtered (" TYPE_NOTTEXT");
4851 }
c906108c
SS
4852 puts_filtered ("\n");
4853 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 4854 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
4855 puts_filtered ("\n");
4856 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4857 {
14e75d8e
JK
4858 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4859 printfi_filtered (spaces + 2,
4860 "[%d] enumval %s type ",
4861 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4862 else
4863 printfi_filtered (spaces + 2,
6b850546
DT
4864 "[%d] bitpos %s bitsize %d type ",
4865 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
14e75d8e 4866 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 4867 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
4868 printf_filtered (" name '%s' (",
4869 TYPE_FIELD_NAME (type, idx) != NULL
4870 ? TYPE_FIELD_NAME (type, idx)
4871 : "<NULL>");
d4f3574e 4872 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
4873 printf_filtered (")\n");
4874 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4875 {
4876 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4877 }
4878 }
43bbcdc2
PH
4879 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4880 {
4881 printfi_filtered (spaces, "low %s%s high %s%s\n",
4882 plongest (TYPE_LOW_BOUND (type)),
4883 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4884 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
4885 TYPE_HIGH_BOUND_UNDEFINED (type)
4886 ? " (undefined)" : "");
43bbcdc2 4887 }
c906108c 4888
b4ba55a1
JB
4889 switch (TYPE_SPECIFIC_FIELD (type))
4890 {
4891 case TYPE_SPECIFIC_CPLUS_STUFF:
4892 printfi_filtered (spaces, "cplus_stuff ");
4893 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4894 gdb_stdout);
4895 puts_filtered ("\n");
4896 print_cplus_stuff (type, spaces);
4897 break;
8da61cc4 4898
b4ba55a1
JB
4899 case TYPE_SPECIFIC_GNAT_STUFF:
4900 printfi_filtered (spaces, "gnat_stuff ");
4901 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4902 puts_filtered ("\n");
4903 print_gnat_stuff (type, spaces);
4904 break;
701c159d 4905
b4ba55a1
JB
4906 case TYPE_SPECIFIC_FLOATFORMAT:
4907 printfi_filtered (spaces, "floatformat ");
0db7851f
UW
4908 if (TYPE_FLOATFORMAT (type) == NULL
4909 || TYPE_FLOATFORMAT (type)->name == NULL)
b4ba55a1
JB
4910 puts_filtered ("(null)");
4911 else
0db7851f 4912 puts_filtered (TYPE_FLOATFORMAT (type)->name);
b4ba55a1
JB
4913 puts_filtered ("\n");
4914 break;
c906108c 4915
b6cdc2c1 4916 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
4917 printfi_filtered (spaces, "calling_convention %d\n",
4918 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 4919 /* tail_call_list is not printed. */
b4ba55a1 4920 break;
09e2d7c7
DE
4921
4922 case TYPE_SPECIFIC_SELF_TYPE:
4923 printfi_filtered (spaces, "self_type ");
4924 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4925 puts_filtered ("\n");
4926 break;
c906108c 4927 }
b4ba55a1 4928
c906108c
SS
4929 if (spaces == 0)
4930 obstack_free (&dont_print_type_obstack, NULL);
4931}
5212577a 4932\f
ae5a43e0
DJ
4933/* Trivial helpers for the libiberty hash table, for mapping one
4934 type to another. */
4935
fd90ace4 4936struct type_pair : public allocate_on_obstack
ae5a43e0 4937{
fd90ace4
YQ
4938 type_pair (struct type *old_, struct type *newobj_)
4939 : old (old_), newobj (newobj_)
4940 {}
4941
4942 struct type * const old, * const newobj;
ae5a43e0
DJ
4943};
4944
4945static hashval_t
4946type_pair_hash (const void *item)
4947{
9a3c8263 4948 const struct type_pair *pair = (const struct type_pair *) item;
d8734c88 4949
ae5a43e0
DJ
4950 return htab_hash_pointer (pair->old);
4951}
4952
4953static int
4954type_pair_eq (const void *item_lhs, const void *item_rhs)
4955{
9a3c8263
SM
4956 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4957 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
d8734c88 4958
ae5a43e0
DJ
4959 return lhs->old == rhs->old;
4960}
4961
4962/* Allocate the hash table used by copy_type_recursive to walk
4963 types without duplicates. We use OBJFILE's obstack, because
4964 OBJFILE is about to be deleted. */
4965
4966htab_t
4967create_copied_types_hash (struct objfile *objfile)
4968{
4969 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4970 NULL, &objfile->objfile_obstack,
4971 hashtab_obstack_allocate,
4972 dummy_obstack_deallocate);
4973}
4974
d9823cbb
KB
4975/* Recursively copy (deep copy) a dynamic attribute list of a type. */
4976
4977static struct dynamic_prop_list *
4978copy_dynamic_prop_list (struct obstack *objfile_obstack,
4979 struct dynamic_prop_list *list)
4980{
4981 struct dynamic_prop_list *copy = list;
4982 struct dynamic_prop_list **node_ptr = &copy;
4983
4984 while (*node_ptr != NULL)
4985 {
4986 struct dynamic_prop_list *node_copy;
4987
224c3ddb
SM
4988 node_copy = ((struct dynamic_prop_list *)
4989 obstack_copy (objfile_obstack, *node_ptr,
4990 sizeof (struct dynamic_prop_list)));
283a9958 4991 node_copy->prop = (*node_ptr)->prop;
d9823cbb
KB
4992 *node_ptr = node_copy;
4993
4994 node_ptr = &node_copy->next;
4995 }
4996
4997 return copy;
4998}
4999
7ba81444 5000/* Recursively copy (deep copy) TYPE, if it is associated with
eed8b28a
PP
5001 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
5002 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
5003 it is not associated with OBJFILE. */
ae5a43e0
DJ
5004
5005struct type *
7ba81444
MS
5006copy_type_recursive (struct objfile *objfile,
5007 struct type *type,
ae5a43e0
DJ
5008 htab_t copied_types)
5009{
ae5a43e0
DJ
5010 void **slot;
5011 struct type *new_type;
5012
e9bb382b 5013 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
5014 return type;
5015
7ba81444
MS
5016 /* This type shouldn't be pointing to any types in other objfiles;
5017 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
5018 gdb_assert (TYPE_OBJFILE (type) == objfile);
5019
fd90ace4
YQ
5020 struct type_pair pair (type, nullptr);
5021
ae5a43e0
DJ
5022 slot = htab_find_slot (copied_types, &pair, INSERT);
5023 if (*slot != NULL)
fe978cb0 5024 return ((struct type_pair *) *slot)->newobj;
ae5a43e0 5025
e9bb382b 5026 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
5027
5028 /* We must add the new type to the hash table immediately, in case
5029 we encounter this type again during a recursive call below. */
fd90ace4
YQ
5030 struct type_pair *stored
5031 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
5032
ae5a43e0
DJ
5033 *slot = stored;
5034
876cecd0
TT
5035 /* Copy the common fields of types. For the main type, we simply
5036 copy the entire thing and then update specific fields as needed. */
5037 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
5038 TYPE_OBJFILE_OWNED (new_type) = 0;
5039 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 5040
ae5a43e0
DJ
5041 if (TYPE_NAME (type))
5042 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
ae5a43e0
DJ
5043
5044 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5045 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5046
5047 /* Copy the fields. */
ae5a43e0
DJ
5048 if (TYPE_NFIELDS (type))
5049 {
5050 int i, nfields;
5051
5052 nfields = TYPE_NFIELDS (type);
2fabdf33
AB
5053 TYPE_FIELDS (new_type) = (struct field *)
5054 TYPE_ZALLOC (new_type, nfields * sizeof (struct field));
ae5a43e0
DJ
5055 for (i = 0; i < nfields; i++)
5056 {
7ba81444
MS
5057 TYPE_FIELD_ARTIFICIAL (new_type, i) =
5058 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
5059 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
5060 if (TYPE_FIELD_TYPE (type, i))
5061 TYPE_FIELD_TYPE (new_type, i)
5062 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
5063 copied_types);
5064 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
5065 TYPE_FIELD_NAME (new_type, i) =
5066 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 5067 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 5068 {
d6a843b5
JK
5069 case FIELD_LOC_KIND_BITPOS:
5070 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
5071 TYPE_FIELD_BITPOS (type, i));
5072 break;
14e75d8e
JK
5073 case FIELD_LOC_KIND_ENUMVAL:
5074 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
5075 TYPE_FIELD_ENUMVAL (type, i));
5076 break;
d6a843b5
JK
5077 case FIELD_LOC_KIND_PHYSADDR:
5078 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
5079 TYPE_FIELD_STATIC_PHYSADDR (type, i));
5080 break;
5081 case FIELD_LOC_KIND_PHYSNAME:
5082 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
5083 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
5084 i)));
5085 break;
5086 default:
5087 internal_error (__FILE__, __LINE__,
5088 _("Unexpected type field location kind: %d"),
5089 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
5090 }
5091 }
5092 }
5093
0963b4bd 5094 /* For range types, copy the bounds information. */
43bbcdc2
PH
5095 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
5096 {
2fabdf33
AB
5097 TYPE_RANGE_DATA (new_type) = (struct range_bounds *)
5098 TYPE_ALLOC (new_type, sizeof (struct range_bounds));
43bbcdc2
PH
5099 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
5100 }
5101
d9823cbb
KB
5102 if (TYPE_DYN_PROP_LIST (type) != NULL)
5103 TYPE_DYN_PROP_LIST (new_type)
5104 = copy_dynamic_prop_list (&objfile->objfile_obstack,
5105 TYPE_DYN_PROP_LIST (type));
5106
3cdcd0ce 5107
ae5a43e0
DJ
5108 /* Copy pointers to other types. */
5109 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
5110 TYPE_TARGET_TYPE (new_type) =
5111 copy_type_recursive (objfile,
5112 TYPE_TARGET_TYPE (type),
5113 copied_types);
f6b3afbf 5114
ae5a43e0
DJ
5115 /* Maybe copy the type_specific bits.
5116
5117 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
5118 base classes and methods. There's no fundamental reason why we
5119 can't, but at the moment it is not needed. */
5120
f6b3afbf
DE
5121 switch (TYPE_SPECIFIC_FIELD (type))
5122 {
5123 case TYPE_SPECIFIC_NONE:
5124 break;
5125 case TYPE_SPECIFIC_FUNC:
5126 INIT_FUNC_SPECIFIC (new_type);
5127 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
5128 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
5129 TYPE_TAIL_CALL_LIST (new_type) = NULL;
5130 break;
5131 case TYPE_SPECIFIC_FLOATFORMAT:
5132 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
5133 break;
5134 case TYPE_SPECIFIC_CPLUS_STUFF:
5135 INIT_CPLUS_SPECIFIC (new_type);
5136 break;
5137 case TYPE_SPECIFIC_GNAT_STUFF:
5138 INIT_GNAT_SPECIFIC (new_type);
5139 break;
09e2d7c7
DE
5140 case TYPE_SPECIFIC_SELF_TYPE:
5141 set_type_self_type (new_type,
5142 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5143 copied_types));
5144 break;
f6b3afbf
DE
5145 default:
5146 gdb_assert_not_reached ("bad type_specific_kind");
5147 }
ae5a43e0
DJ
5148
5149 return new_type;
5150}
5151
4af88198
JB
5152/* Make a copy of the given TYPE, except that the pointer & reference
5153 types are not preserved.
5154
5155 This function assumes that the given type has an associated objfile.
5156 This objfile is used to allocate the new type. */
5157
5158struct type *
5159copy_type (const struct type *type)
5160{
5161 struct type *new_type;
5162
e9bb382b 5163 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 5164
e9bb382b 5165 new_type = alloc_type_copy (type);
4af88198
JB
5166 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5167 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5168 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5169 sizeof (struct main_type));
d9823cbb
KB
5170 if (TYPE_DYN_PROP_LIST (type) != NULL)
5171 TYPE_DYN_PROP_LIST (new_type)
5172 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5173 TYPE_DYN_PROP_LIST (type));
4af88198
JB
5174
5175 return new_type;
5176}
5212577a 5177\f
e9bb382b
UW
5178/* Helper functions to initialize architecture-specific types. */
5179
5180/* Allocate a type structure associated with GDBARCH and set its
5181 CODE, LENGTH, and NAME fields. */
5212577a 5182
e9bb382b
UW
5183struct type *
5184arch_type (struct gdbarch *gdbarch,
77b7c781 5185 enum type_code code, int bit, const char *name)
e9bb382b
UW
5186{
5187 struct type *type;
5188
5189 type = alloc_type_arch (gdbarch);
ae438bc5 5190 set_type_code (type, code);
77b7c781
UW
5191 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5192 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
e9bb382b
UW
5193
5194 if (name)
6c214e7c 5195 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
e9bb382b
UW
5196
5197 return type;
5198}
5199
5200/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5201 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5202 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5203
e9bb382b
UW
5204struct type *
5205arch_integer_type (struct gdbarch *gdbarch,
695bfa52 5206 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5207{
5208 struct type *t;
5209
77b7c781 5210 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
e9bb382b
UW
5211 if (unsigned_p)
5212 TYPE_UNSIGNED (t) = 1;
e9bb382b
UW
5213
5214 return t;
5215}
5216
5217/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5218 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5219 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5220
e9bb382b
UW
5221struct type *
5222arch_character_type (struct gdbarch *gdbarch,
695bfa52 5223 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5224{
5225 struct type *t;
5226
77b7c781 5227 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
e9bb382b
UW
5228 if (unsigned_p)
5229 TYPE_UNSIGNED (t) = 1;
5230
5231 return t;
5232}
5233
5234/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5235 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5236 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5237
e9bb382b
UW
5238struct type *
5239arch_boolean_type (struct gdbarch *gdbarch,
695bfa52 5240 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5241{
5242 struct type *t;
5243
77b7c781 5244 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
e9bb382b
UW
5245 if (unsigned_p)
5246 TYPE_UNSIGNED (t) = 1;
5247
5248 return t;
5249}
5250
5251/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5252 BIT is the type size in bits; if BIT equals -1, the size is
5253 determined by the floatformat. NAME is the type name. Set the
5254 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 5255
27067745 5256struct type *
e9bb382b 5257arch_float_type (struct gdbarch *gdbarch,
695bfa52
TT
5258 int bit, const char *name,
5259 const struct floatformat **floatformats)
8da61cc4 5260{
0db7851f 5261 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
8da61cc4
DJ
5262 struct type *t;
5263
0db7851f 5264 bit = verify_floatformat (bit, fmt);
77b7c781 5265 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
0db7851f 5266 TYPE_FLOATFORMAT (t) = fmt;
b79497cb 5267
8da61cc4
DJ
5268 return t;
5269}
5270
88dfca6c
UW
5271/* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5272 BIT is the type size in bits. NAME is the type name. */
5273
5274struct type *
5275arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5276{
5277 struct type *t;
5278
77b7c781 5279 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
88dfca6c
UW
5280 return t;
5281}
5282
88dfca6c
UW
5283/* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5284 BIT is the pointer type size in bits. NAME is the type name.
5285 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5286 TYPE_UNSIGNED flag. */
5287
5288struct type *
5289arch_pointer_type (struct gdbarch *gdbarch,
5290 int bit, const char *name, struct type *target_type)
5291{
5292 struct type *t;
5293
77b7c781 5294 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
88dfca6c
UW
5295 TYPE_TARGET_TYPE (t) = target_type;
5296 TYPE_UNSIGNED (t) = 1;
5297 return t;
5298}
5299
e9bb382b 5300/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
77b7c781 5301 NAME is the type name. BIT is the size of the flag word in bits. */
5212577a 5302
e9bb382b 5303struct type *
77b7c781 5304arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
e9bb382b 5305{
e9bb382b
UW
5306 struct type *type;
5307
77b7c781 5308 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
e9bb382b 5309 TYPE_UNSIGNED (type) = 1;
81516450
DE
5310 TYPE_NFIELDS (type) = 0;
5311 /* Pre-allocate enough space assuming every field is one bit. */
224c3ddb 5312 TYPE_FIELDS (type)
77b7c781 5313 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
e9bb382b
UW
5314
5315 return type;
5316}
5317
5318/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
81516450
DE
5319 position BITPOS is called NAME. Pass NAME as "" for fields that
5320 should not be printed. */
5321
5322void
5323append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
695bfa52 5324 struct type *field_type, const char *name)
81516450
DE
5325{
5326 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5327 int field_nr = TYPE_NFIELDS (type);
5328
5329 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5330 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5331 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5332 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5333 gdb_assert (name != NULL);
5334
5335 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5336 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5337 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5338 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5339 ++TYPE_NFIELDS (type);
5340}
5341
5342/* Special version of append_flags_type_field to add a flag field.
5343 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
e9bb382b 5344 position BITPOS is called NAME. */
5212577a 5345
e9bb382b 5346void
695bfa52 5347append_flags_type_flag (struct type *type, int bitpos, const char *name)
e9bb382b 5348{
81516450 5349 struct gdbarch *gdbarch = get_type_arch (type);
e9bb382b 5350
81516450
DE
5351 append_flags_type_field (type, bitpos, 1,
5352 builtin_type (gdbarch)->builtin_bool,
5353 name);
e9bb382b
UW
5354}
5355
5356/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5357 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 5358
e9bb382b 5359struct type *
695bfa52
TT
5360arch_composite_type (struct gdbarch *gdbarch, const char *name,
5361 enum type_code code)
e9bb382b
UW
5362{
5363 struct type *t;
d8734c88 5364
e9bb382b
UW
5365 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5366 t = arch_type (gdbarch, code, 0, NULL);
e86ca25f 5367 TYPE_NAME (t) = name;
e9bb382b
UW
5368 INIT_CPLUS_SPECIFIC (t);
5369 return t;
5370}
5371
5372/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
5373 Do not set the field's position or adjust the type's length;
5374 the caller should do so. Return the new field. */
5212577a 5375
f5dff777 5376struct field *
695bfa52 5377append_composite_type_field_raw (struct type *t, const char *name,
f5dff777 5378 struct type *field)
e9bb382b
UW
5379{
5380 struct field *f;
d8734c88 5381
e9bb382b 5382 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
224c3ddb
SM
5383 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5384 TYPE_NFIELDS (t));
e9bb382b
UW
5385 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5386 memset (f, 0, sizeof f[0]);
5387 FIELD_TYPE (f[0]) = field;
5388 FIELD_NAME (f[0]) = name;
f5dff777
DJ
5389 return f;
5390}
5391
5392/* Add new field with name NAME and type FIELD to composite type T.
5393 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 5394
f5dff777 5395void
695bfa52 5396append_composite_type_field_aligned (struct type *t, const char *name,
f5dff777
DJ
5397 struct type *field, int alignment)
5398{
5399 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 5400
e9bb382b
UW
5401 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5402 {
5403 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5404 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5405 }
5406 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5407 {
5408 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5409 if (TYPE_NFIELDS (t) > 1)
5410 {
f41f5e61
PA
5411 SET_FIELD_BITPOS (f[0],
5412 (FIELD_BITPOS (f[-1])
5413 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5414 * TARGET_CHAR_BIT)));
e9bb382b
UW
5415
5416 if (alignment)
5417 {
86c3c1fc
AB
5418 int left;
5419
5420 alignment *= TARGET_CHAR_BIT;
5421 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 5422
e9bb382b
UW
5423 if (left)
5424 {
f41f5e61 5425 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 5426 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
5427 }
5428 }
5429 }
5430 }
5431}
5432
5433/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 5434
e9bb382b 5435void
695bfa52 5436append_composite_type_field (struct type *t, const char *name,
e9bb382b
UW
5437 struct type *field)
5438{
5439 append_composite_type_field_aligned (t, name, field, 0);
5440}
5441
000177f0
AC
5442static struct gdbarch_data *gdbtypes_data;
5443
5444const struct builtin_type *
5445builtin_type (struct gdbarch *gdbarch)
5446{
9a3c8263 5447 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
000177f0
AC
5448}
5449
5450static void *
5451gdbtypes_post_init (struct gdbarch *gdbarch)
5452{
5453 struct builtin_type *builtin_type
5454 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5455
46bf5051 5456 /* Basic types. */
e9bb382b 5457 builtin_type->builtin_void
77b7c781 5458 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
e9bb382b
UW
5459 builtin_type->builtin_char
5460 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5461 !gdbarch_char_signed (gdbarch), "char");
c413c448 5462 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
e9bb382b
UW
5463 builtin_type->builtin_signed_char
5464 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5465 0, "signed char");
5466 builtin_type->builtin_unsigned_char
5467 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5468 1, "unsigned char");
5469 builtin_type->builtin_short
5470 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5471 0, "short");
5472 builtin_type->builtin_unsigned_short
5473 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5474 1, "unsigned short");
5475 builtin_type->builtin_int
5476 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5477 0, "int");
5478 builtin_type->builtin_unsigned_int
5479 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5480 1, "unsigned int");
5481 builtin_type->builtin_long
5482 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5483 0, "long");
5484 builtin_type->builtin_unsigned_long
5485 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5486 1, "unsigned long");
5487 builtin_type->builtin_long_long
5488 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5489 0, "long long");
5490 builtin_type->builtin_unsigned_long_long
5491 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5492 1, "unsigned long long");
a6d0f249
AH
5493 builtin_type->builtin_half
5494 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5495 "half", gdbarch_half_format (gdbarch));
70bd8e24 5496 builtin_type->builtin_float
e9bb382b 5497 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 5498 "float", gdbarch_float_format (gdbarch));
70bd8e24 5499 builtin_type->builtin_double
e9bb382b 5500 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 5501 "double", gdbarch_double_format (gdbarch));
70bd8e24 5502 builtin_type->builtin_long_double
e9bb382b 5503 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 5504 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 5505 builtin_type->builtin_complex
5b930b45 5506 = init_complex_type ("complex", builtin_type->builtin_float);
70bd8e24 5507 builtin_type->builtin_double_complex
5b930b45 5508 = init_complex_type ("double complex", builtin_type->builtin_double);
e9bb382b 5509 builtin_type->builtin_string
77b7c781 5510 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
e9bb382b 5511 builtin_type->builtin_bool
77b7c781 5512 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
000177f0 5513
7678ef8f
TJB
5514 /* The following three are about decimal floating point types, which
5515 are 32-bits, 64-bits and 128-bits respectively. */
5516 builtin_type->builtin_decfloat
88dfca6c 5517 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
7678ef8f 5518 builtin_type->builtin_decdouble
88dfca6c 5519 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
7678ef8f 5520 builtin_type->builtin_declong
88dfca6c 5521 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
7678ef8f 5522
69feb676 5523 /* "True" character types. */
e9bb382b
UW
5524 builtin_type->builtin_true_char
5525 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5526 builtin_type->builtin_true_unsigned_char
5527 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 5528
df4df182 5529 /* Fixed-size integer types. */
e9bb382b
UW
5530 builtin_type->builtin_int0
5531 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5532 builtin_type->builtin_int8
5533 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5534 builtin_type->builtin_uint8
5535 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5536 builtin_type->builtin_int16
5537 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5538 builtin_type->builtin_uint16
5539 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
d1908f2d
JD
5540 builtin_type->builtin_int24
5541 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5542 builtin_type->builtin_uint24
5543 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
e9bb382b
UW
5544 builtin_type->builtin_int32
5545 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5546 builtin_type->builtin_uint32
5547 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5548 builtin_type->builtin_int64
5549 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5550 builtin_type->builtin_uint64
5551 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5552 builtin_type->builtin_int128
5553 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5554 builtin_type->builtin_uint128
5555 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
5556 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5557 TYPE_INSTANCE_FLAG_NOTTEXT;
5558 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5559 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 5560
9a22f0d0
PM
5561 /* Wide character types. */
5562 builtin_type->builtin_char16
53e710ac 5563 = arch_integer_type (gdbarch, 16, 1, "char16_t");
9a22f0d0 5564 builtin_type->builtin_char32
53e710ac 5565 = arch_integer_type (gdbarch, 32, 1, "char32_t");
53375380
PA
5566 builtin_type->builtin_wchar
5567 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5568 !gdbarch_wchar_signed (gdbarch), "wchar_t");
9a22f0d0 5569
46bf5051 5570 /* Default data/code pointer types. */
e9bb382b
UW
5571 builtin_type->builtin_data_ptr
5572 = lookup_pointer_type (builtin_type->builtin_void);
5573 builtin_type->builtin_func_ptr
5574 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
5575 builtin_type->builtin_func_func
5576 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 5577
78267919 5578 /* This type represents a GDB internal function. */
e9bb382b
UW
5579 builtin_type->internal_fn
5580 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5581 "<internal function>");
78267919 5582
e81e7f5e
SC
5583 /* This type represents an xmethod. */
5584 builtin_type->xmethod
5585 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5586
46bf5051
UW
5587 return builtin_type;
5588}
5589
46bf5051
UW
5590/* This set of objfile-based types is intended to be used by symbol
5591 readers as basic types. */
5592
7a102139
TT
5593static const struct objfile_key<struct objfile_type,
5594 gdb::noop_deleter<struct objfile_type>>
5595 objfile_type_data;
46bf5051
UW
5596
5597const struct objfile_type *
5598objfile_type (struct objfile *objfile)
5599{
5600 struct gdbarch *gdbarch;
7a102139 5601 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
46bf5051
UW
5602
5603 if (objfile_type)
5604 return objfile_type;
5605
5606 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5607 1, struct objfile_type);
5608
5609 /* Use the objfile architecture to determine basic type properties. */
08feed99 5610 gdbarch = objfile->arch ();
46bf5051
UW
5611
5612 /* Basic types. */
5613 objfile_type->builtin_void
77b7c781 5614 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
46bf5051 5615 objfile_type->builtin_char
19f392bc
UW
5616 = init_integer_type (objfile, TARGET_CHAR_BIT,
5617 !gdbarch_char_signed (gdbarch), "char");
c413c448 5618 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
46bf5051 5619 objfile_type->builtin_signed_char
19f392bc
UW
5620 = init_integer_type (objfile, TARGET_CHAR_BIT,
5621 0, "signed char");
46bf5051 5622 objfile_type->builtin_unsigned_char
19f392bc
UW
5623 = init_integer_type (objfile, TARGET_CHAR_BIT,
5624 1, "unsigned char");
46bf5051 5625 objfile_type->builtin_short
19f392bc
UW
5626 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5627 0, "short");
46bf5051 5628 objfile_type->builtin_unsigned_short
19f392bc
UW
5629 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5630 1, "unsigned short");
46bf5051 5631 objfile_type->builtin_int
19f392bc
UW
5632 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5633 0, "int");
46bf5051 5634 objfile_type->builtin_unsigned_int
19f392bc
UW
5635 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5636 1, "unsigned int");
46bf5051 5637 objfile_type->builtin_long
19f392bc
UW
5638 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5639 0, "long");
46bf5051 5640 objfile_type->builtin_unsigned_long
19f392bc
UW
5641 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5642 1, "unsigned long");
46bf5051 5643 objfile_type->builtin_long_long
19f392bc
UW
5644 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5645 0, "long long");
46bf5051 5646 objfile_type->builtin_unsigned_long_long
19f392bc
UW
5647 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5648 1, "unsigned long long");
46bf5051 5649 objfile_type->builtin_float
19f392bc
UW
5650 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5651 "float", gdbarch_float_format (gdbarch));
46bf5051 5652 objfile_type->builtin_double
19f392bc
UW
5653 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5654 "double", gdbarch_double_format (gdbarch));
46bf5051 5655 objfile_type->builtin_long_double
19f392bc
UW
5656 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5657 "long double", gdbarch_long_double_format (gdbarch));
46bf5051
UW
5658
5659 /* This type represents a type that was unrecognized in symbol read-in. */
5660 objfile_type->builtin_error
19f392bc 5661 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
46bf5051
UW
5662
5663 /* The following set of types is used for symbols with no
5664 debug information. */
5665 objfile_type->nodebug_text_symbol
77b7c781 5666 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5667 "<text variable, no debug info>");
0875794a 5668 objfile_type->nodebug_text_gnu_ifunc_symbol
77b7c781 5669 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5670 "<text gnu-indirect-function variable, no debug info>");
19f392bc 5671 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
0875794a 5672 objfile_type->nodebug_got_plt_symbol
19f392bc
UW
5673 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5674 "<text from jump slot in .got.plt, no debug info>",
5675 objfile_type->nodebug_text_symbol);
46bf5051 5676 objfile_type->nodebug_data_symbol
46a4882b 5677 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
46bf5051 5678 objfile_type->nodebug_unknown_symbol
46a4882b 5679 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
46bf5051 5680 objfile_type->nodebug_tls_symbol
46a4882b 5681 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
000177f0
AC
5682
5683 /* NOTE: on some targets, addresses and pointers are not necessarily
0a7cfe2c 5684 the same.
000177f0
AC
5685
5686 The upshot is:
5687 - gdb's `struct type' always describes the target's
5688 representation.
5689 - gdb's `struct value' objects should always hold values in
5690 target form.
5691 - gdb's CORE_ADDR values are addresses in the unified virtual
5692 address space that the assembler and linker work with. Thus,
5693 since target_read_memory takes a CORE_ADDR as an argument, it
5694 can access any memory on the target, even if the processor has
5695 separate code and data address spaces.
5696
46bf5051
UW
5697 In this context, objfile_type->builtin_core_addr is a bit odd:
5698 it's a target type for a value the target will never see. It's
5699 only used to hold the values of (typeless) linker symbols, which
5700 are indeed in the unified virtual address space. */
000177f0 5701
46bf5051 5702 objfile_type->builtin_core_addr
19f392bc
UW
5703 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5704 "__CORE_ADDR");
64c50499 5705
7a102139 5706 objfile_type_data.set (objfile, objfile_type);
46bf5051 5707 return objfile_type;
000177f0
AC
5708}
5709
6c265988 5710void _initialize_gdbtypes ();
c906108c 5711void
6c265988 5712_initialize_gdbtypes ()
c906108c 5713{
5674de60
UW
5714 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5715
ccce17b0
YQ
5716 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5717 _("Set debugging of C++ overloading."),
5718 _("Show debugging of C++ overloading."),
5719 _("When enabled, ranking of the "
5720 "functions is displayed."),
5721 NULL,
5722 show_overload_debug,
5723 &setdebuglist, &showdebuglist);
5674de60 5724
7ba81444 5725 /* Add user knob for controlling resolution of opaque types. */
5674de60 5726 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
5727 &opaque_type_resolution,
5728 _("Set resolution of opaque struct/class/union"
5729 " types (if set before loading symbols)."),
5730 _("Show resolution of opaque struct/class/union"
5731 " types (if set before loading symbols)."),
5732 NULL, NULL,
5674de60
UW
5733 show_opaque_type_resolution,
5734 &setlist, &showlist);
a451cb65
KS
5735
5736 /* Add an option to permit non-strict type checking. */
5737 add_setshow_boolean_cmd ("type", class_support,
5738 &strict_type_checking,
5739 _("Set strict type checking."),
5740 _("Show strict type checking."),
5741 NULL, NULL,
5742 show_strict_type_checking,
5743 &setchecklist, &showchecklist);
c906108c 5744}
This page took 2.267398 seconds and 4 git commands to generate.