gdb/testsuite/
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
9b254dd1 3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002,
4c38e0a4
JB
4 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
4f2aea11 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#include "defs.h"
25#include "gdb_string.h"
26#include "bfd.h"
27#include "symtab.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "gdbtypes.h"
31#include "expression.h"
32#include "language.h"
33#include "target.h"
34#include "value.h"
35#include "demangle.h"
36#include "complaints.h"
37#include "gdbcmd.h"
c91ecb25 38#include "wrapper.h"
015a42b4 39#include "cp-abi.h"
a02fd225 40#include "gdb_assert.h"
ae5a43e0 41#include "hashtab.h"
c906108c 42
ac3aafc7 43
8da61cc4
DJ
44/* Floatformat pairs. */
45const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
46 &floatformat_ieee_single_big,
47 &floatformat_ieee_single_little
48};
49const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
50 &floatformat_ieee_double_big,
51 &floatformat_ieee_double_little
52};
53const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
54 &floatformat_ieee_double_big,
55 &floatformat_ieee_double_littlebyte_bigword
56};
57const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
58 &floatformat_i387_ext,
59 &floatformat_i387_ext
60};
61const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
62 &floatformat_m68881_ext,
63 &floatformat_m68881_ext
64};
65const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
66 &floatformat_arm_ext_big,
67 &floatformat_arm_ext_littlebyte_bigword
68};
69const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
70 &floatformat_ia64_spill_big,
71 &floatformat_ia64_spill_little
72};
73const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
74 &floatformat_ia64_quad_big,
75 &floatformat_ia64_quad_little
76};
77const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
78 &floatformat_vax_f,
79 &floatformat_vax_f
80};
81const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
82 &floatformat_vax_d,
83 &floatformat_vax_d
84};
b14d30e1
JM
85const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
86 &floatformat_ibm_long_double,
87 &floatformat_ibm_long_double
88};
8da61cc4 89
8da61cc4 90
c906108c 91int opaque_type_resolution = 1;
920d2a44
AC
92static void
93show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
94 struct cmd_list_element *c,
95 const char *value)
920d2a44
AC
96{
97 fprintf_filtered (file, _("\
98Resolution of opaque struct/class/union types (if set before loading symbols) is %s.\n"),
99 value);
100}
101
5d161b24 102int overload_debug = 0;
920d2a44
AC
103static void
104show_overload_debug (struct ui_file *file, int from_tty,
105 struct cmd_list_element *c, const char *value)
106{
7ba81444
MS
107 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
108 value);
920d2a44 109}
c906108c 110
c5aa993b
JM
111struct extra
112 {
113 char str[128];
114 int len;
7ba81444 115 }; /* Maximum extension is 128! FIXME */
c906108c 116
a14ed312 117static void print_bit_vector (B_TYPE *, int);
ad2f7632 118static void print_arg_types (struct field *, int, int);
a14ed312
KB
119static void dump_fn_fieldlists (struct type *, int);
120static void print_cplus_stuff (struct type *, int);
7a292a7a 121
c906108c 122
e9bb382b
UW
123/* Allocate a new OBJFILE-associated type structure and fill it
124 with some defaults. Space for the type structure is allocated
125 on the objfile's objfile_obstack. */
c906108c
SS
126
127struct type *
fba45db2 128alloc_type (struct objfile *objfile)
c906108c 129{
52f0bd74 130 struct type *type;
c906108c 131
e9bb382b
UW
132 gdb_assert (objfile != NULL);
133
7ba81444 134 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
135 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
136 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
137 struct main_type);
138 OBJSTAT (objfile, n_types++);
c906108c 139
e9bb382b
UW
140 TYPE_OBJFILE_OWNED (type) = 1;
141 TYPE_OWNER (type).objfile = objfile;
c906108c 142
7ba81444 143 /* Initialize the fields that might not be zero. */
c906108c
SS
144
145 TYPE_CODE (type) = TYPE_CODE_UNDEF;
c906108c 146 TYPE_VPTR_FIELDNO (type) = -1;
2fdde8f8 147 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 148
c16abbde 149 return type;
c906108c
SS
150}
151
e9bb382b
UW
152/* Allocate a new GDBARCH-associated type structure and fill it
153 with some defaults. Space for the type structure is allocated
154 on the heap. */
155
156struct type *
157alloc_type_arch (struct gdbarch *gdbarch)
158{
159 struct type *type;
160
161 gdb_assert (gdbarch != NULL);
162
163 /* Alloc the structure and start off with all fields zeroed. */
164
165 type = XZALLOC (struct type);
166 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
167
168 TYPE_OBJFILE_OWNED (type) = 0;
169 TYPE_OWNER (type).gdbarch = gdbarch;
170
171 /* Initialize the fields that might not be zero. */
172
173 TYPE_CODE (type) = TYPE_CODE_UNDEF;
174 TYPE_VPTR_FIELDNO (type) = -1;
175 TYPE_CHAIN (type) = type; /* Chain back to itself. */
176
177 return type;
178}
179
180/* If TYPE is objfile-associated, allocate a new type structure
181 associated with the same objfile. If TYPE is gdbarch-associated,
182 allocate a new type structure associated with the same gdbarch. */
183
184struct type *
185alloc_type_copy (const struct type *type)
186{
187 if (TYPE_OBJFILE_OWNED (type))
188 return alloc_type (TYPE_OWNER (type).objfile);
189 else
190 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
191}
192
193/* If TYPE is gdbarch-associated, return that architecture.
194 If TYPE is objfile-associated, return that objfile's architecture. */
195
196struct gdbarch *
197get_type_arch (const struct type *type)
198{
199 if (TYPE_OBJFILE_OWNED (type))
200 return get_objfile_arch (TYPE_OWNER (type).objfile);
201 else
202 return TYPE_OWNER (type).gdbarch;
203}
204
205
2fdde8f8
DJ
206/* Alloc a new type instance structure, fill it with some defaults,
207 and point it at OLDTYPE. Allocate the new type instance from the
208 same place as OLDTYPE. */
209
210static struct type *
211alloc_type_instance (struct type *oldtype)
212{
213 struct type *type;
214
215 /* Allocate the structure. */
216
e9bb382b 217 if (! TYPE_OBJFILE_OWNED (oldtype))
1deafd4e 218 type = XZALLOC (struct type);
2fdde8f8 219 else
1deafd4e
PA
220 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
221 struct type);
222
2fdde8f8
DJ
223 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
224
225 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
226
c16abbde 227 return type;
2fdde8f8
DJ
228}
229
230/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 231 replacing it with something else. Preserve owner information. */
2fdde8f8
DJ
232static void
233smash_type (struct type *type)
234{
e9bb382b
UW
235 int objfile_owned = TYPE_OBJFILE_OWNED (type);
236 union type_owner owner = TYPE_OWNER (type);
237
2fdde8f8
DJ
238 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
239
e9bb382b
UW
240 /* Restore owner information. */
241 TYPE_OBJFILE_OWNED (type) = objfile_owned;
242 TYPE_OWNER (type) = owner;
243
2fdde8f8
DJ
244 /* For now, delete the rings. */
245 TYPE_CHAIN (type) = type;
246
247 /* For now, leave the pointer/reference types alone. */
248}
249
c906108c
SS
250/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
251 to a pointer to memory where the pointer type should be stored.
252 If *TYPEPTR is zero, update it to point to the pointer type we return.
253 We allocate new memory if needed. */
254
255struct type *
fba45db2 256make_pointer_type (struct type *type, struct type **typeptr)
c906108c 257{
52f0bd74 258 struct type *ntype; /* New type */
053cb41b 259 struct type *chain;
c906108c
SS
260
261 ntype = TYPE_POINTER_TYPE (type);
262
c5aa993b 263 if (ntype)
c906108c 264 {
c5aa993b 265 if (typeptr == 0)
7ba81444
MS
266 return ntype; /* Don't care about alloc,
267 and have new type. */
c906108c 268 else if (*typeptr == 0)
c5aa993b 269 {
7ba81444 270 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 271 return ntype;
c5aa993b 272 }
c906108c
SS
273 }
274
275 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
276 {
e9bb382b 277 ntype = alloc_type_copy (type);
c906108c
SS
278 if (typeptr)
279 *typeptr = ntype;
280 }
7ba81444 281 else /* We have storage, but need to reset it. */
c906108c
SS
282 {
283 ntype = *typeptr;
053cb41b 284 chain = TYPE_CHAIN (ntype);
2fdde8f8 285 smash_type (ntype);
053cb41b 286 TYPE_CHAIN (ntype) = chain;
c906108c
SS
287 }
288
289 TYPE_TARGET_TYPE (ntype) = type;
290 TYPE_POINTER_TYPE (type) = ntype;
291
7ba81444
MS
292 /* FIXME! Assume the machine has only one representation for
293 pointers! */
c906108c 294
50810684
UW
295 TYPE_LENGTH (ntype)
296 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
297 TYPE_CODE (ntype) = TYPE_CODE_PTR;
298
67b2adb2 299 /* Mark pointers as unsigned. The target converts between pointers
76e71323 300 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 301 gdbarch_address_to_pointer. */
876cecd0 302 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 303
c906108c
SS
304 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
305 TYPE_POINTER_TYPE (type) = ntype;
306
053cb41b
JB
307 /* Update the length of all the other variants of this type. */
308 chain = TYPE_CHAIN (ntype);
309 while (chain != ntype)
310 {
311 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
312 chain = TYPE_CHAIN (chain);
313 }
314
c906108c
SS
315 return ntype;
316}
317
318/* Given a type TYPE, return a type of pointers to that type.
319 May need to construct such a type if this is the first use. */
320
321struct type *
fba45db2 322lookup_pointer_type (struct type *type)
c906108c 323{
c5aa993b 324 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
325}
326
7ba81444
MS
327/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
328 points to a pointer to memory where the reference type should be
329 stored. If *TYPEPTR is zero, update it to point to the reference
330 type we return. We allocate new memory if needed. */
c906108c
SS
331
332struct type *
fba45db2 333make_reference_type (struct type *type, struct type **typeptr)
c906108c 334{
52f0bd74 335 struct type *ntype; /* New type */
1e98b326 336 struct type *chain;
c906108c
SS
337
338 ntype = TYPE_REFERENCE_TYPE (type);
339
c5aa993b 340 if (ntype)
c906108c 341 {
c5aa993b 342 if (typeptr == 0)
7ba81444
MS
343 return ntype; /* Don't care about alloc,
344 and have new type. */
c906108c 345 else if (*typeptr == 0)
c5aa993b 346 {
7ba81444 347 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 348 return ntype;
c5aa993b 349 }
c906108c
SS
350 }
351
352 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
353 {
e9bb382b 354 ntype = alloc_type_copy (type);
c906108c
SS
355 if (typeptr)
356 *typeptr = ntype;
357 }
7ba81444 358 else /* We have storage, but need to reset it. */
c906108c
SS
359 {
360 ntype = *typeptr;
1e98b326 361 chain = TYPE_CHAIN (ntype);
2fdde8f8 362 smash_type (ntype);
1e98b326 363 TYPE_CHAIN (ntype) = chain;
c906108c
SS
364 }
365
366 TYPE_TARGET_TYPE (ntype) = type;
367 TYPE_REFERENCE_TYPE (type) = ntype;
368
7ba81444
MS
369 /* FIXME! Assume the machine has only one representation for
370 references, and that it matches the (only) representation for
371 pointers! */
c906108c 372
50810684
UW
373 TYPE_LENGTH (ntype) =
374 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c 375 TYPE_CODE (ntype) = TYPE_CODE_REF;
c5aa993b 376
c906108c
SS
377 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
378 TYPE_REFERENCE_TYPE (type) = ntype;
379
1e98b326
JB
380 /* Update the length of all the other variants of this type. */
381 chain = TYPE_CHAIN (ntype);
382 while (chain != ntype)
383 {
384 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
385 chain = TYPE_CHAIN (chain);
386 }
387
c906108c
SS
388 return ntype;
389}
390
7ba81444
MS
391/* Same as above, but caller doesn't care about memory allocation
392 details. */
c906108c
SS
393
394struct type *
fba45db2 395lookup_reference_type (struct type *type)
c906108c 396{
c5aa993b 397 return make_reference_type (type, (struct type **) 0);
c906108c
SS
398}
399
7ba81444
MS
400/* Lookup a function type that returns type TYPE. TYPEPTR, if
401 nonzero, points to a pointer to memory where the function type
402 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 403 function type we return. We allocate new memory if needed. */
c906108c
SS
404
405struct type *
0c8b41f1 406make_function_type (struct type *type, struct type **typeptr)
c906108c 407{
52f0bd74 408 struct type *ntype; /* New type */
c906108c
SS
409
410 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
411 {
e9bb382b 412 ntype = alloc_type_copy (type);
c906108c
SS
413 if (typeptr)
414 *typeptr = ntype;
415 }
7ba81444 416 else /* We have storage, but need to reset it. */
c906108c
SS
417 {
418 ntype = *typeptr;
2fdde8f8 419 smash_type (ntype);
c906108c
SS
420 }
421
422 TYPE_TARGET_TYPE (ntype) = type;
423
424 TYPE_LENGTH (ntype) = 1;
425 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 426
c906108c
SS
427 return ntype;
428}
429
430
431/* Given a type TYPE, return a type of functions that return that type.
432 May need to construct such a type if this is the first use. */
433
434struct type *
fba45db2 435lookup_function_type (struct type *type)
c906108c 436{
0c8b41f1 437 return make_function_type (type, (struct type **) 0);
c906108c
SS
438}
439
47663de5
MS
440/* Identify address space identifier by name --
441 return the integer flag defined in gdbtypes.h. */
442extern int
50810684 443address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
47663de5 444{
8b2dbe47 445 int type_flags;
d8734c88 446
7ba81444 447 /* Check for known address space delimiters. */
47663de5 448 if (!strcmp (space_identifier, "code"))
876cecd0 449 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 450 else if (!strcmp (space_identifier, "data"))
876cecd0 451 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
452 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
453 && gdbarch_address_class_name_to_type_flags (gdbarch,
454 space_identifier,
455 &type_flags))
8b2dbe47 456 return type_flags;
47663de5 457 else
8a3fe4f8 458 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
459}
460
461/* Identify address space identifier by integer flag as defined in
7ba81444 462 gdbtypes.h -- return the string version of the adress space name. */
47663de5 463
321432c0 464const char *
50810684 465address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 466{
876cecd0 467 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 468 return "code";
876cecd0 469 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 470 return "data";
876cecd0 471 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
472 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
473 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
474 else
475 return NULL;
476}
477
2fdde8f8 478/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
479
480 If STORAGE is non-NULL, create the new type instance there.
481 STORAGE must be in the same obstack as TYPE. */
47663de5 482
b9362cc7 483static struct type *
2fdde8f8
DJ
484make_qualified_type (struct type *type, int new_flags,
485 struct type *storage)
47663de5
MS
486{
487 struct type *ntype;
488
489 ntype = type;
5f61c20e
JK
490 do
491 {
492 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
493 return ntype;
494 ntype = TYPE_CHAIN (ntype);
495 }
496 while (ntype != type);
47663de5 497
2fdde8f8
DJ
498 /* Create a new type instance. */
499 if (storage == NULL)
500 ntype = alloc_type_instance (type);
501 else
502 {
7ba81444
MS
503 /* If STORAGE was provided, it had better be in the same objfile
504 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
505 if one objfile is freed and the other kept, we'd have
506 dangling pointers. */
ad766c0a
JB
507 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
508
2fdde8f8
DJ
509 ntype = storage;
510 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
511 TYPE_CHAIN (ntype) = ntype;
512 }
47663de5
MS
513
514 /* Pointers or references to the original type are not relevant to
2fdde8f8 515 the new type. */
47663de5
MS
516 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
517 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 518
2fdde8f8
DJ
519 /* Chain the new qualified type to the old type. */
520 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
521 TYPE_CHAIN (type) = ntype;
522
523 /* Now set the instance flags and return the new type. */
524 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 525
ab5d3da6
KB
526 /* Set length of new type to that of the original type. */
527 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
528
47663de5
MS
529 return ntype;
530}
531
2fdde8f8
DJ
532/* Make an address-space-delimited variant of a type -- a type that
533 is identical to the one supplied except that it has an address
534 space attribute attached to it (such as "code" or "data").
535
7ba81444
MS
536 The space attributes "code" and "data" are for Harvard
537 architectures. The address space attributes are for architectures
538 which have alternately sized pointers or pointers with alternate
539 representations. */
2fdde8f8
DJ
540
541struct type *
542make_type_with_address_space (struct type *type, int space_flag)
543{
2fdde8f8 544 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
545 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
546 | TYPE_INSTANCE_FLAG_DATA_SPACE
547 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
548 | space_flag);
549
550 return make_qualified_type (type, new_flags, NULL);
551}
c906108c
SS
552
553/* Make a "c-v" variant of a type -- a type that is identical to the
554 one supplied except that it may have const or volatile attributes
555 CNST is a flag for setting the const attribute
556 VOLTL is a flag for setting the volatile attribute
557 TYPE is the base type whose variant we are creating.
c906108c 558
ad766c0a
JB
559 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
560 storage to hold the new qualified type; *TYPEPTR and TYPE must be
561 in the same objfile. Otherwise, allocate fresh memory for the new
562 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
563 new type we construct. */
c906108c 564struct type *
7ba81444
MS
565make_cv_type (int cnst, int voltl,
566 struct type *type,
567 struct type **typeptr)
c906108c 568{
52f0bd74 569 struct type *ntype; /* New type */
c906108c 570
2fdde8f8 571 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
572 & ~(TYPE_INSTANCE_FLAG_CONST
573 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 574
c906108c 575 if (cnst)
876cecd0 576 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
577
578 if (voltl)
876cecd0 579 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 580
2fdde8f8 581 if (typeptr && *typeptr != NULL)
a02fd225 582 {
ad766c0a
JB
583 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
584 a C-V variant chain that threads across objfiles: if one
585 objfile gets freed, then the other has a broken C-V chain.
586
587 This code used to try to copy over the main type from TYPE to
588 *TYPEPTR if they were in different objfiles, but that's
589 wrong, too: TYPE may have a field list or member function
590 lists, which refer to types of their own, etc. etc. The
591 whole shebang would need to be copied over recursively; you
592 can't have inter-objfile pointers. The only thing to do is
593 to leave stub types as stub types, and look them up afresh by
594 name each time you encounter them. */
595 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
596 }
597
7ba81444
MS
598 ntype = make_qualified_type (type, new_flags,
599 typeptr ? *typeptr : NULL);
c906108c 600
2fdde8f8
DJ
601 if (typeptr != NULL)
602 *typeptr = ntype;
a02fd225 603
2fdde8f8 604 return ntype;
a02fd225 605}
c906108c 606
2fdde8f8
DJ
607/* Replace the contents of ntype with the type *type. This changes the
608 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
609 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 610
cda6c68a
JB
611 In order to build recursive types, it's inevitable that we'll need
612 to update types in place --- but this sort of indiscriminate
613 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
614 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
615 clear if more steps are needed. */
dd6bda65
DJ
616void
617replace_type (struct type *ntype, struct type *type)
618{
ab5d3da6 619 struct type *chain;
dd6bda65 620
ad766c0a
JB
621 /* These two types had better be in the same objfile. Otherwise,
622 the assignment of one type's main type structure to the other
623 will produce a type with references to objects (names; field
624 lists; etc.) allocated on an objfile other than its own. */
625 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
626
2fdde8f8 627 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 628
7ba81444
MS
629 /* The type length is not a part of the main type. Update it for
630 each type on the variant chain. */
ab5d3da6 631 chain = ntype;
5f61c20e
JK
632 do
633 {
634 /* Assert that this element of the chain has no address-class bits
635 set in its flags. Such type variants might have type lengths
636 which are supposed to be different from the non-address-class
637 variants. This assertion shouldn't ever be triggered because
638 symbol readers which do construct address-class variants don't
639 call replace_type(). */
640 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
641
642 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
643 chain = TYPE_CHAIN (chain);
644 }
645 while (ntype != chain);
ab5d3da6 646
2fdde8f8
DJ
647 /* Assert that the two types have equivalent instance qualifiers.
648 This should be true for at least all of our debug readers. */
649 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
650}
651
c906108c
SS
652/* Implement direct support for MEMBER_TYPE in GNU C++.
653 May need to construct such a type if this is the first use.
654 The TYPE is the type of the member. The DOMAIN is the type
655 of the aggregate that the member belongs to. */
656
657struct type *
0d5de010 658lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 659{
52f0bd74 660 struct type *mtype;
c906108c 661
e9bb382b 662 mtype = alloc_type_copy (type);
0d5de010 663 smash_to_memberptr_type (mtype, domain, type);
c16abbde 664 return mtype;
c906108c
SS
665}
666
0d5de010
DJ
667/* Return a pointer-to-method type, for a method of type TO_TYPE. */
668
669struct type *
670lookup_methodptr_type (struct type *to_type)
671{
672 struct type *mtype;
673
e9bb382b 674 mtype = alloc_type_copy (to_type);
0b92b5bb 675 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
676 return mtype;
677}
678
7ba81444
MS
679/* Allocate a stub method whose return type is TYPE. This apparently
680 happens for speed of symbol reading, since parsing out the
681 arguments to the method is cpu-intensive, the way we are doing it.
682 So, we will fill in arguments later. This always returns a fresh
683 type. */
c906108c
SS
684
685struct type *
fba45db2 686allocate_stub_method (struct type *type)
c906108c
SS
687{
688 struct type *mtype;
689
e9bb382b
UW
690 mtype = alloc_type_copy (type);
691 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
692 TYPE_LENGTH (mtype) = 1;
693 TYPE_STUB (mtype) = 1;
c906108c
SS
694 TYPE_TARGET_TYPE (mtype) = type;
695 /* _DOMAIN_TYPE (mtype) = unknown yet */
c16abbde 696 return mtype;
c906108c
SS
697}
698
7ba81444
MS
699/* Create a range type using either a blank type supplied in
700 RESULT_TYPE, or creating a new type, inheriting the objfile from
701 INDEX_TYPE.
c906108c 702
7ba81444
MS
703 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
704 to HIGH_BOUND, inclusive.
c906108c 705
7ba81444
MS
706 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
707 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
c906108c
SS
708
709struct type *
fba45db2 710create_range_type (struct type *result_type, struct type *index_type,
43bbcdc2 711 LONGEST low_bound, LONGEST high_bound)
c906108c
SS
712{
713 if (result_type == NULL)
e9bb382b 714 result_type = alloc_type_copy (index_type);
c906108c
SS
715 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
716 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 717 if (TYPE_STUB (index_type))
876cecd0 718 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
719 else
720 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
43bbcdc2
PH
721 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
722 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
262452ec
JK
723 TYPE_LOW_BOUND (result_type) = low_bound;
724 TYPE_HIGH_BOUND (result_type) = high_bound;
c906108c 725
c5aa993b 726 if (low_bound >= 0)
876cecd0 727 TYPE_UNSIGNED (result_type) = 1;
c906108c 728
262452ec 729 return result_type;
c906108c
SS
730}
731
7ba81444
MS
732/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
733 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
734 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
735
736int
fba45db2 737get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c
SS
738{
739 CHECK_TYPEDEF (type);
740 switch (TYPE_CODE (type))
741 {
742 case TYPE_CODE_RANGE:
743 *lowp = TYPE_LOW_BOUND (type);
744 *highp = TYPE_HIGH_BOUND (type);
745 return 1;
746 case TYPE_CODE_ENUM:
747 if (TYPE_NFIELDS (type) > 0)
748 {
749 /* The enums may not be sorted by value, so search all
750 entries */
751 int i;
752
753 *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
754 for (i = 0; i < TYPE_NFIELDS (type); i++)
755 {
756 if (TYPE_FIELD_BITPOS (type, i) < *lowp)
757 *lowp = TYPE_FIELD_BITPOS (type, i);
758 if (TYPE_FIELD_BITPOS (type, i) > *highp)
759 *highp = TYPE_FIELD_BITPOS (type, i);
760 }
761
7ba81444 762 /* Set unsigned indicator if warranted. */
c5aa993b 763 if (*lowp >= 0)
c906108c 764 {
876cecd0 765 TYPE_UNSIGNED (type) = 1;
c906108c
SS
766 }
767 }
768 else
769 {
770 *lowp = 0;
771 *highp = -1;
772 }
773 return 0;
774 case TYPE_CODE_BOOL:
775 *lowp = 0;
776 *highp = 1;
777 return 0;
778 case TYPE_CODE_INT:
c5aa993b 779 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
780 return -1;
781 if (!TYPE_UNSIGNED (type))
782 {
c5aa993b 783 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
784 *highp = -*lowp - 1;
785 return 0;
786 }
7ba81444 787 /* ... fall through for unsigned ints ... */
c906108c
SS
788 case TYPE_CODE_CHAR:
789 *lowp = 0;
790 /* This round-about calculation is to avoid shifting by
7b83ea04 791 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 792 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
793 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
794 *highp = (*highp - 1) | *highp;
795 return 0;
796 default:
797 return -1;
798 }
799}
800
7ba81444
MS
801/* Create an array type using either a blank type supplied in
802 RESULT_TYPE, or creating a new type, inheriting the objfile from
803 RANGE_TYPE.
c906108c
SS
804
805 Elements will be of type ELEMENT_TYPE, the indices will be of type
806 RANGE_TYPE.
807
7ba81444
MS
808 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
809 sure it is TYPE_CODE_UNDEF before we bash it into an array
810 type? */
c906108c
SS
811
812struct type *
7ba81444
MS
813create_array_type (struct type *result_type,
814 struct type *element_type,
fba45db2 815 struct type *range_type)
c906108c
SS
816{
817 LONGEST low_bound, high_bound;
818
819 if (result_type == NULL)
e9bb382b
UW
820 result_type = alloc_type_copy (range_type);
821
c906108c
SS
822 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
823 TYPE_TARGET_TYPE (result_type) = element_type;
824 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
825 low_bound = high_bound = 0;
826 CHECK_TYPEDEF (element_type);
ab0d6e0d
JB
827 /* Be careful when setting the array length. Ada arrays can be
828 empty arrays with the high_bound being smaller than the low_bound.
829 In such cases, the array length should be zero. */
830 if (high_bound < low_bound)
831 TYPE_LENGTH (result_type) = 0;
832 else
833 TYPE_LENGTH (result_type) =
834 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
c906108c
SS
835 TYPE_NFIELDS (result_type) = 1;
836 TYPE_FIELDS (result_type) =
1deafd4e 837 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 838 TYPE_INDEX_TYPE (result_type) = range_type;
c906108c
SS
839 TYPE_VPTR_FIELDNO (result_type) = -1;
840
841 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays */
842 if (TYPE_LENGTH (result_type) == 0)
876cecd0 843 TYPE_TARGET_STUB (result_type) = 1;
c906108c 844
c16abbde 845 return result_type;
c906108c
SS
846}
847
e3506a9f
UW
848struct type *
849lookup_array_range_type (struct type *element_type,
850 int low_bound, int high_bound)
851{
50810684 852 struct gdbarch *gdbarch = get_type_arch (element_type);
e3506a9f
UW
853 struct type *index_type = builtin_type (gdbarch)->builtin_int;
854 struct type *range_type
855 = create_range_type (NULL, index_type, low_bound, high_bound);
d8734c88 856
e3506a9f
UW
857 return create_array_type (NULL, element_type, range_type);
858}
859
7ba81444
MS
860/* Create a string type using either a blank type supplied in
861 RESULT_TYPE, or creating a new type. String types are similar
862 enough to array of char types that we can use create_array_type to
863 build the basic type and then bash it into a string type.
c906108c
SS
864
865 For fixed length strings, the range type contains 0 as the lower
866 bound and the length of the string minus one as the upper bound.
867
7ba81444
MS
868 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
869 sure it is TYPE_CODE_UNDEF before we bash it into a string
870 type? */
c906108c
SS
871
872struct type *
3b7538c0
UW
873create_string_type (struct type *result_type,
874 struct type *string_char_type,
7ba81444 875 struct type *range_type)
c906108c
SS
876{
877 result_type = create_array_type (result_type,
f290d38e 878 string_char_type,
c906108c
SS
879 range_type);
880 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 881 return result_type;
c906108c
SS
882}
883
e3506a9f
UW
884struct type *
885lookup_string_range_type (struct type *string_char_type,
886 int low_bound, int high_bound)
887{
888 struct type *result_type;
d8734c88 889
e3506a9f
UW
890 result_type = lookup_array_range_type (string_char_type,
891 low_bound, high_bound);
892 TYPE_CODE (result_type) = TYPE_CODE_STRING;
893 return result_type;
894}
895
c906108c 896struct type *
fba45db2 897create_set_type (struct type *result_type, struct type *domain_type)
c906108c 898{
c906108c 899 if (result_type == NULL)
e9bb382b
UW
900 result_type = alloc_type_copy (domain_type);
901
c906108c
SS
902 TYPE_CODE (result_type) = TYPE_CODE_SET;
903 TYPE_NFIELDS (result_type) = 1;
1deafd4e 904 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 905
74a9bb82 906 if (!TYPE_STUB (domain_type))
c906108c 907 {
f9780d5b 908 LONGEST low_bound, high_bound, bit_length;
d8734c88 909
c906108c
SS
910 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
911 low_bound = high_bound = 0;
912 bit_length = high_bound - low_bound + 1;
913 TYPE_LENGTH (result_type)
914 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 915 if (low_bound >= 0)
876cecd0 916 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
917 }
918 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
919
c16abbde 920 return result_type;
c906108c
SS
921}
922
ea37ba09
DJ
923/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
924 and any array types nested inside it. */
925
926void
927make_vector_type (struct type *array_type)
928{
929 struct type *inner_array, *elt_type;
930 int flags;
931
932 /* Find the innermost array type, in case the array is
933 multi-dimensional. */
934 inner_array = array_type;
935 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
936 inner_array = TYPE_TARGET_TYPE (inner_array);
937
938 elt_type = TYPE_TARGET_TYPE (inner_array);
939 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
940 {
941 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_FLAG_NOTTEXT;
942 elt_type = make_qualified_type (elt_type, flags, NULL);
943 TYPE_TARGET_TYPE (inner_array) = elt_type;
944 }
945
876cecd0 946 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
947}
948
794ac428 949struct type *
ac3aafc7
EZ
950init_vector_type (struct type *elt_type, int n)
951{
952 struct type *array_type;
d8734c88 953
e3506a9f 954 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 955 make_vector_type (array_type);
ac3aafc7
EZ
956 return array_type;
957}
958
0d5de010
DJ
959/* Smash TYPE to be a type of pointers to members of DOMAIN with type
960 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
961 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
962 TYPE doesn't include the offset (that's the value of the MEMBER
963 itself), but does include the structure type into which it points
964 (for some reason).
c906108c 965
7ba81444
MS
966 When "smashing" the type, we preserve the objfile that the old type
967 pointed to, since we aren't changing where the type is actually
c906108c
SS
968 allocated. */
969
970void
0d5de010
DJ
971smash_to_memberptr_type (struct type *type, struct type *domain,
972 struct type *to_type)
c906108c 973{
2fdde8f8 974 smash_type (type);
c906108c
SS
975 TYPE_TARGET_TYPE (type) = to_type;
976 TYPE_DOMAIN_TYPE (type) = domain;
0d5de010
DJ
977 /* Assume that a data member pointer is the same size as a normal
978 pointer. */
50810684
UW
979 TYPE_LENGTH (type)
980 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
0d5de010 981 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c
SS
982}
983
0b92b5bb
TT
984/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
985
986 When "smashing" the type, we preserve the objfile that the old type
987 pointed to, since we aren't changing where the type is actually
988 allocated. */
989
990void
991smash_to_methodptr_type (struct type *type, struct type *to_type)
992{
993 smash_type (type);
994 TYPE_TARGET_TYPE (type) = to_type;
995 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
996 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
997 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
998}
999
c906108c
SS
1000/* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1001 METHOD just means `function that gets an extra "this" argument'.
1002
7ba81444
MS
1003 When "smashing" the type, we preserve the objfile that the old type
1004 pointed to, since we aren't changing where the type is actually
c906108c
SS
1005 allocated. */
1006
1007void
fba45db2 1008smash_to_method_type (struct type *type, struct type *domain,
ad2f7632
DJ
1009 struct type *to_type, struct field *args,
1010 int nargs, int varargs)
c906108c 1011{
2fdde8f8 1012 smash_type (type);
c906108c
SS
1013 TYPE_TARGET_TYPE (type) = to_type;
1014 TYPE_DOMAIN_TYPE (type) = domain;
ad2f7632
DJ
1015 TYPE_FIELDS (type) = args;
1016 TYPE_NFIELDS (type) = nargs;
1017 if (varargs)
876cecd0 1018 TYPE_VARARGS (type) = 1;
c906108c
SS
1019 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1020 TYPE_CODE (type) = TYPE_CODE_METHOD;
1021}
1022
1023/* Return a typename for a struct/union/enum type without "struct ",
1024 "union ", or "enum ". If the type has a NULL name, return NULL. */
1025
1026char *
aa1ee363 1027type_name_no_tag (const struct type *type)
c906108c
SS
1028{
1029 if (TYPE_TAG_NAME (type) != NULL)
1030 return TYPE_TAG_NAME (type);
1031
7ba81444
MS
1032 /* Is there code which expects this to return the name if there is
1033 no tag name? My guess is that this is mainly used for C++ in
1034 cases where the two will always be the same. */
c906108c
SS
1035 return TYPE_NAME (type);
1036}
1037
7ba81444
MS
1038/* Lookup a typedef or primitive type named NAME, visible in lexical
1039 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1040 suitably defined. */
c906108c
SS
1041
1042struct type *
e6c014f2
UW
1043lookup_typename (const struct language_defn *language,
1044 struct gdbarch *gdbarch, char *name,
1045 struct block *block, int noerr)
c906108c 1046{
52f0bd74
AC
1047 struct symbol *sym;
1048 struct type *tmp;
c906108c 1049
2570f2b7 1050 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
c906108c
SS
1051 if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
1052 {
e6c014f2 1053 tmp = language_lookup_primitive_type_by_name (language, gdbarch, name);
c906108c
SS
1054 if (tmp)
1055 {
c16abbde 1056 return tmp;
c906108c
SS
1057 }
1058 else if (!tmp && noerr)
1059 {
c16abbde 1060 return NULL;
c906108c
SS
1061 }
1062 else
1063 {
8a3fe4f8 1064 error (_("No type named %s."), name);
c906108c
SS
1065 }
1066 }
1067 return (SYMBOL_TYPE (sym));
1068}
1069
1070struct type *
e6c014f2
UW
1071lookup_unsigned_typename (const struct language_defn *language,
1072 struct gdbarch *gdbarch, char *name)
c906108c
SS
1073{
1074 char *uns = alloca (strlen (name) + 10);
1075
1076 strcpy (uns, "unsigned ");
1077 strcpy (uns + 9, name);
e6c014f2 1078 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
c906108c
SS
1079}
1080
1081struct type *
e6c014f2
UW
1082lookup_signed_typename (const struct language_defn *language,
1083 struct gdbarch *gdbarch, char *name)
c906108c
SS
1084{
1085 struct type *t;
1086 char *uns = alloca (strlen (name) + 8);
1087
1088 strcpy (uns, "signed ");
1089 strcpy (uns + 7, name);
e6c014f2 1090 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
7ba81444 1091 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1092 if (t != NULL)
1093 return t;
e6c014f2 1094 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
c906108c
SS
1095}
1096
1097/* Lookup a structure type named "struct NAME",
1098 visible in lexical block BLOCK. */
1099
1100struct type *
fba45db2 1101lookup_struct (char *name, struct block *block)
c906108c 1102{
52f0bd74 1103 struct symbol *sym;
c906108c 1104
2570f2b7 1105 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1106
1107 if (sym == NULL)
1108 {
8a3fe4f8 1109 error (_("No struct type named %s."), name);
c906108c
SS
1110 }
1111 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1112 {
7ba81444
MS
1113 error (_("This context has class, union or enum %s, not a struct."),
1114 name);
c906108c
SS
1115 }
1116 return (SYMBOL_TYPE (sym));
1117}
1118
1119/* Lookup a union type named "union NAME",
1120 visible in lexical block BLOCK. */
1121
1122struct type *
fba45db2 1123lookup_union (char *name, struct block *block)
c906108c 1124{
52f0bd74 1125 struct symbol *sym;
c5aa993b 1126 struct type *t;
c906108c 1127
2570f2b7 1128 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1129
1130 if (sym == NULL)
8a3fe4f8 1131 error (_("No union type named %s."), name);
c906108c 1132
c5aa993b 1133 t = SYMBOL_TYPE (sym);
c906108c
SS
1134
1135 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1136 return t;
c906108c 1137
7ba81444
MS
1138 /* If we get here, it's not a union. */
1139 error (_("This context has class, struct or enum %s, not a union."),
1140 name);
c906108c
SS
1141}
1142
1143
1144/* Lookup an enum type named "enum NAME",
1145 visible in lexical block BLOCK. */
1146
1147struct type *
fba45db2 1148lookup_enum (char *name, struct block *block)
c906108c 1149{
52f0bd74 1150 struct symbol *sym;
c906108c 1151
2570f2b7 1152 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1153 if (sym == NULL)
1154 {
8a3fe4f8 1155 error (_("No enum type named %s."), name);
c906108c
SS
1156 }
1157 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1158 {
7ba81444
MS
1159 error (_("This context has class, struct or union %s, not an enum."),
1160 name);
c906108c
SS
1161 }
1162 return (SYMBOL_TYPE (sym));
1163}
1164
1165/* Lookup a template type named "template NAME<TYPE>",
1166 visible in lexical block BLOCK. */
1167
1168struct type *
7ba81444
MS
1169lookup_template_type (char *name, struct type *type,
1170 struct block *block)
c906108c
SS
1171{
1172 struct symbol *sym;
7ba81444
MS
1173 char *nam = (char *)
1174 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1175
c906108c
SS
1176 strcpy (nam, name);
1177 strcat (nam, "<");
0004e5a2 1178 strcat (nam, TYPE_NAME (type));
7ba81444 1179 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1180
2570f2b7 1181 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
c906108c
SS
1182
1183 if (sym == NULL)
1184 {
8a3fe4f8 1185 error (_("No template type named %s."), name);
c906108c
SS
1186 }
1187 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1188 {
7ba81444
MS
1189 error (_("This context has class, union or enum %s, not a struct."),
1190 name);
c906108c
SS
1191 }
1192 return (SYMBOL_TYPE (sym));
1193}
1194
7ba81444
MS
1195/* Given a type TYPE, lookup the type of the component of type named
1196 NAME.
c906108c 1197
7ba81444
MS
1198 TYPE can be either a struct or union, or a pointer or reference to
1199 a struct or union. If it is a pointer or reference, its target
1200 type is automatically used. Thus '.' and '->' are interchangable,
1201 as specified for the definitions of the expression element types
1202 STRUCTOP_STRUCT and STRUCTOP_PTR.
c906108c
SS
1203
1204 If NOERR is nonzero, return zero if NAME is not suitably defined.
1205 If NAME is the name of a baseclass type, return that type. */
1206
1207struct type *
fba45db2 1208lookup_struct_elt_type (struct type *type, char *name, int noerr)
c906108c
SS
1209{
1210 int i;
1211
1212 for (;;)
1213 {
1214 CHECK_TYPEDEF (type);
1215 if (TYPE_CODE (type) != TYPE_CODE_PTR
1216 && TYPE_CODE (type) != TYPE_CODE_REF)
1217 break;
1218 type = TYPE_TARGET_TYPE (type);
1219 }
1220
687d6395
MS
1221 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1222 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c
SS
1223 {
1224 target_terminal_ours ();
1225 gdb_flush (gdb_stdout);
1226 fprintf_unfiltered (gdb_stderr, "Type ");
1227 type_print (type, "", gdb_stderr, -1);
8a3fe4f8 1228 error (_(" is not a structure or union type."));
c906108c
SS
1229 }
1230
1231#if 0
7ba81444
MS
1232 /* FIXME: This change put in by Michael seems incorrect for the case
1233 where the structure tag name is the same as the member name.
1234 I.E. when doing "ptype bell->bar" for "struct foo { int bar; int
1235 foo; } bell;" Disabled by fnf. */
c906108c
SS
1236 {
1237 char *typename;
1238
1239 typename = type_name_no_tag (type);
762f08a3 1240 if (typename != NULL && strcmp (typename, name) == 0)
c906108c
SS
1241 return type;
1242 }
1243#endif
1244
1245 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1246 {
1247 char *t_field_name = TYPE_FIELD_NAME (type, i);
1248
db577aea 1249 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1250 {
1251 return TYPE_FIELD_TYPE (type, i);
1252 }
f5a010c0
PM
1253 else if (!t_field_name || *t_field_name == '\0')
1254 {
d8734c88
MS
1255 struct type *subtype
1256 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1257
f5a010c0
PM
1258 if (subtype != NULL)
1259 return subtype;
1260 }
c906108c
SS
1261 }
1262
1263 /* OK, it's not in this class. Recursively check the baseclasses. */
1264 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1265 {
1266 struct type *t;
1267
9733fc94 1268 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
c906108c
SS
1269 if (t != NULL)
1270 {
1271 return t;
1272 }
1273 }
1274
1275 if (noerr)
1276 {
1277 return NULL;
1278 }
c5aa993b 1279
c906108c
SS
1280 target_terminal_ours ();
1281 gdb_flush (gdb_stdout);
1282 fprintf_unfiltered (gdb_stderr, "Type ");
1283 type_print (type, "", gdb_stderr, -1);
1284 fprintf_unfiltered (gdb_stderr, " has no component named ");
1285 fputs_filtered (name, gdb_stderr);
8a3fe4f8 1286 error (("."));
c5aa993b 1287 return (struct type *) -1; /* For lint */
c906108c
SS
1288}
1289
81fe8080
DE
1290/* Lookup the vptr basetype/fieldno values for TYPE.
1291 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1292 vptr_fieldno. Also, if found and basetype is from the same objfile,
1293 cache the results.
1294 If not found, return -1 and ignore BASETYPEP.
1295 Callers should be aware that in some cases (for example,
c906108c 1296 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1297 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1298 this function will not be able to find the
7ba81444 1299 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1300 vptr_basetype will remain NULL or incomplete. */
c906108c 1301
81fe8080
DE
1302int
1303get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c
SS
1304{
1305 CHECK_TYPEDEF (type);
1306
1307 if (TYPE_VPTR_FIELDNO (type) < 0)
1308 {
1309 int i;
1310
7ba81444
MS
1311 /* We must start at zero in case the first (and only) baseclass
1312 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1313 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1314 {
81fe8080
DE
1315 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1316 int fieldno;
1317 struct type *basetype;
1318
1319 fieldno = get_vptr_fieldno (baseclass, &basetype);
1320 if (fieldno >= 0)
c906108c 1321 {
81fe8080
DE
1322 /* If the type comes from a different objfile we can't cache
1323 it, it may have a different lifetime. PR 2384 */
5ef73790 1324 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080
DE
1325 {
1326 TYPE_VPTR_FIELDNO (type) = fieldno;
1327 TYPE_VPTR_BASETYPE (type) = basetype;
1328 }
1329 if (basetypep)
1330 *basetypep = basetype;
1331 return fieldno;
c906108c
SS
1332 }
1333 }
81fe8080
DE
1334
1335 /* Not found. */
1336 return -1;
1337 }
1338 else
1339 {
1340 if (basetypep)
1341 *basetypep = TYPE_VPTR_BASETYPE (type);
1342 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1343 }
1344}
1345
44e1a9eb
DJ
1346static void
1347stub_noname_complaint (void)
1348{
e2e0b3e5 1349 complaint (&symfile_complaints, _("stub type has NULL name"));
44e1a9eb
DJ
1350}
1351
c906108c
SS
1352/* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989.
1353
1354 If this is a stubbed struct (i.e. declared as struct foo *), see if
1355 we can find a full definition in some other file. If so, copy this
7ba81444
MS
1356 definition, so we can use it in future. There used to be a comment
1357 (but not any code) that if we don't find a full definition, we'd
1358 set a flag so we don't spend time in the future checking the same
1359 type. That would be a mistake, though--we might load in more
1360 symbols which contain a full definition for the type.
c906108c 1361
7b83ea04 1362 This used to be coded as a macro, but I don't think it is called
c54eabfa 1363 often enough to merit such treatment.
c906108c 1364
c54eabfa 1365 Find the real type of TYPE. This function returns the real type,
7ba81444
MS
1366 after removing all layers of typedefs and completing opaque or stub
1367 types. Completion changes the TYPE argument, but stripping of
c54eabfa
JK
1368 typedefs does not.
1369
1370 If TYPE is a TYPE_CODE_TYPEDEF, its length is (also) set to the length of
1371 the target type instead of zero. However, in the case of TYPE_CODE_TYPEDEF
1372 check_typedef can still return different type than the original TYPE
1373 pointer. */
c906108c
SS
1374
1375struct type *
a02fd225 1376check_typedef (struct type *type)
c906108c
SS
1377{
1378 struct type *orig_type = type;
a02fd225
DJ
1379 int is_const, is_volatile;
1380
423c0af8
MS
1381 gdb_assert (type);
1382
c906108c
SS
1383 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1384 {
1385 if (!TYPE_TARGET_TYPE (type))
1386 {
c5aa993b 1387 char *name;
c906108c
SS
1388 struct symbol *sym;
1389
1390 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 1391 reading a symtab. Infinite recursion is one danger. */
c906108c
SS
1392 if (currently_reading_symtab)
1393 return type;
1394
1395 name = type_name_no_tag (type);
7ba81444
MS
1396 /* FIXME: shouldn't we separately check the TYPE_NAME and
1397 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1398 VAR_DOMAIN as appropriate? (this code was written before
1399 TYPE_NAME and TYPE_TAG_NAME were separate). */
c906108c
SS
1400 if (name == NULL)
1401 {
23136709 1402 stub_noname_complaint ();
c906108c
SS
1403 return type;
1404 }
2570f2b7 1405 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c
SS
1406 if (sym)
1407 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 1408 else /* TYPE_CODE_UNDEF */
e9bb382b 1409 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
1410 }
1411 type = TYPE_TARGET_TYPE (type);
1412 }
1413
a02fd225
DJ
1414 is_const = TYPE_CONST (type);
1415 is_volatile = TYPE_VOLATILE (type);
1416
7ba81444
MS
1417 /* If this is a struct/class/union with no fields, then check
1418 whether a full definition exists somewhere else. This is for
1419 systems where a type definition with no fields is issued for such
1420 types, instead of identifying them as stub types in the first
1421 place. */
c5aa993b 1422
7ba81444
MS
1423 if (TYPE_IS_OPAQUE (type)
1424 && opaque_type_resolution
1425 && !currently_reading_symtab)
c906108c 1426 {
c5aa993b
JM
1427 char *name = type_name_no_tag (type);
1428 struct type *newtype;
d8734c88 1429
c906108c
SS
1430 if (name == NULL)
1431 {
23136709 1432 stub_noname_complaint ();
c906108c
SS
1433 return type;
1434 }
1435 newtype = lookup_transparent_type (name);
ad766c0a 1436
c906108c 1437 if (newtype)
ad766c0a 1438 {
7ba81444
MS
1439 /* If the resolved type and the stub are in the same
1440 objfile, then replace the stub type with the real deal.
1441 But if they're in separate objfiles, leave the stub
1442 alone; we'll just look up the transparent type every time
1443 we call check_typedef. We can't create pointers between
1444 types allocated to different objfiles, since they may
1445 have different lifetimes. Trying to copy NEWTYPE over to
1446 TYPE's objfile is pointless, too, since you'll have to
1447 move over any other types NEWTYPE refers to, which could
1448 be an unbounded amount of stuff. */
ad766c0a
JB
1449 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1450 make_cv_type (is_const, is_volatile, newtype, &type);
1451 else
1452 type = newtype;
1453 }
c906108c 1454 }
7ba81444
MS
1455 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1456 types. */
74a9bb82 1457 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 1458 {
c5aa993b 1459 char *name = type_name_no_tag (type);
c906108c 1460 /* FIXME: shouldn't we separately check the TYPE_NAME and the
176620f1 1461 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
7b83ea04
AC
1462 as appropriate? (this code was written before TYPE_NAME and
1463 TYPE_TAG_NAME were separate). */
c906108c 1464 struct symbol *sym;
d8734c88 1465
c906108c
SS
1466 if (name == NULL)
1467 {
23136709 1468 stub_noname_complaint ();
c906108c
SS
1469 return type;
1470 }
2570f2b7 1471 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c 1472 if (sym)
c26f2453
JB
1473 {
1474 /* Same as above for opaque types, we can replace the stub
1475 with the complete type only if they are int the same
1476 objfile. */
1477 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
7ba81444
MS
1478 make_cv_type (is_const, is_volatile,
1479 SYMBOL_TYPE (sym), &type);
c26f2453
JB
1480 else
1481 type = SYMBOL_TYPE (sym);
1482 }
c906108c
SS
1483 }
1484
74a9bb82 1485 if (TYPE_TARGET_STUB (type))
c906108c
SS
1486 {
1487 struct type *range_type;
1488 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1489
74a9bb82 1490 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 1491 {
7ba81444 1492 /* Empty. */
c5aa993b 1493 }
c906108c
SS
1494 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1495 && TYPE_NFIELDS (type) == 1
262452ec 1496 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
c906108c
SS
1497 == TYPE_CODE_RANGE))
1498 {
1499 /* Now recompute the length of the array type, based on its
ab0d6e0d
JB
1500 number of elements and the target type's length.
1501 Watch out for Ada null Ada arrays where the high bound
43bbcdc2
PH
1502 is smaller than the low bound. */
1503 const LONGEST low_bound = TYPE_LOW_BOUND (range_type);
1504 const LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
1505 ULONGEST len;
1506
ab0d6e0d 1507 if (high_bound < low_bound)
43bbcdc2 1508 len = 0;
d8734c88
MS
1509 else
1510 {
1511 /* For now, we conservatively take the array length to be 0
1512 if its length exceeds UINT_MAX. The code below assumes
1513 that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1,
1514 which is technically not guaranteed by C, but is usually true
1515 (because it would be true if x were unsigned with its
1516 high-order bit on). It uses the fact that
1517 high_bound-low_bound is always representable in
1518 ULONGEST and that if high_bound-low_bound+1 overflows,
1519 it overflows to 0. We must change these tests if we
1520 decide to increase the representation of TYPE_LENGTH
1521 from unsigned int to ULONGEST. */
1522 ULONGEST ulow = low_bound, uhigh = high_bound;
1523 ULONGEST tlen = TYPE_LENGTH (target_type);
1524
1525 len = tlen * (uhigh - ulow + 1);
1526 if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh
1527 || len > UINT_MAX)
1528 len = 0;
1529 }
43bbcdc2 1530 TYPE_LENGTH (type) = len;
876cecd0 1531 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
1532 }
1533 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1534 {
1535 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 1536 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
1537 }
1538 }
7ba81444 1539 /* Cache TYPE_LENGTH for future use. */
c906108c
SS
1540 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1541 return type;
1542}
1543
7ba81444 1544/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 1545 occurs, silently return a void type. */
c91ecb25 1546
b9362cc7 1547static struct type *
48319d1f 1548safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
1549{
1550 struct ui_file *saved_gdb_stderr;
1551 struct type *type;
1552
7ba81444 1553 /* Suppress error messages. */
c91ecb25
ND
1554 saved_gdb_stderr = gdb_stderr;
1555 gdb_stderr = ui_file_new ();
1556
7ba81444 1557 /* Call parse_and_eval_type() without fear of longjmp()s. */
c91ecb25 1558 if (!gdb_parse_and_eval_type (p, length, &type))
48319d1f 1559 type = builtin_type (gdbarch)->builtin_void;
c91ecb25 1560
7ba81444 1561 /* Stop suppressing error messages. */
c91ecb25
ND
1562 ui_file_delete (gdb_stderr);
1563 gdb_stderr = saved_gdb_stderr;
1564
1565 return type;
1566}
1567
c906108c
SS
1568/* Ugly hack to convert method stubs into method types.
1569
7ba81444
MS
1570 He ain't kiddin'. This demangles the name of the method into a
1571 string including argument types, parses out each argument type,
1572 generates a string casting a zero to that type, evaluates the
1573 string, and stuffs the resulting type into an argtype vector!!!
1574 Then it knows the type of the whole function (including argument
1575 types for overloading), which info used to be in the stab's but was
1576 removed to hack back the space required for them. */
c906108c 1577
de17c821 1578static void
fba45db2 1579check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 1580{
50810684 1581 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
1582 struct fn_field *f;
1583 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1584 char *demangled_name = cplus_demangle (mangled_name,
1585 DMGL_PARAMS | DMGL_ANSI);
1586 char *argtypetext, *p;
1587 int depth = 0, argcount = 1;
ad2f7632 1588 struct field *argtypes;
c906108c
SS
1589 struct type *mtype;
1590
1591 /* Make sure we got back a function string that we can use. */
1592 if (demangled_name)
1593 p = strchr (demangled_name, '(');
502dcf4e
AC
1594 else
1595 p = NULL;
c906108c
SS
1596
1597 if (demangled_name == NULL || p == NULL)
7ba81444
MS
1598 error (_("Internal: Cannot demangle mangled name `%s'."),
1599 mangled_name);
c906108c
SS
1600
1601 /* Now, read in the parameters that define this type. */
1602 p += 1;
1603 argtypetext = p;
1604 while (*p)
1605 {
070ad9f0 1606 if (*p == '(' || *p == '<')
c906108c
SS
1607 {
1608 depth += 1;
1609 }
070ad9f0 1610 else if (*p == ')' || *p == '>')
c906108c
SS
1611 {
1612 depth -= 1;
1613 }
1614 else if (*p == ',' && depth == 0)
1615 {
1616 argcount += 1;
1617 }
1618
1619 p += 1;
1620 }
1621
ad2f7632
DJ
1622 /* If we read one argument and it was ``void'', don't count it. */
1623 if (strncmp (argtypetext, "(void)", 6) == 0)
1624 argcount -= 1;
c906108c 1625
ad2f7632
DJ
1626 /* We need one extra slot, for the THIS pointer. */
1627
1628 argtypes = (struct field *)
1629 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 1630 p = argtypetext;
4a1970e4
DJ
1631
1632 /* Add THIS pointer for non-static methods. */
1633 f = TYPE_FN_FIELDLIST1 (type, method_id);
1634 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1635 argcount = 0;
1636 else
1637 {
ad2f7632 1638 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
1639 argcount = 1;
1640 }
c906108c 1641
c5aa993b 1642 if (*p != ')') /* () means no args, skip while */
c906108c
SS
1643 {
1644 depth = 0;
1645 while (*p)
1646 {
1647 if (depth <= 0 && (*p == ',' || *p == ')'))
1648 {
ad2f7632
DJ
1649 /* Avoid parsing of ellipsis, they will be handled below.
1650 Also avoid ``void'' as above. */
1651 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1652 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 1653 {
ad2f7632 1654 argtypes[argcount].type =
48319d1f 1655 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
1656 argcount += 1;
1657 }
1658 argtypetext = p + 1;
1659 }
1660
070ad9f0 1661 if (*p == '(' || *p == '<')
c906108c
SS
1662 {
1663 depth += 1;
1664 }
070ad9f0 1665 else if (*p == ')' || *p == '>')
c906108c
SS
1666 {
1667 depth -= 1;
1668 }
1669
1670 p += 1;
1671 }
1672 }
1673
c906108c
SS
1674 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1675
1676 /* Now update the old "stub" type into a real type. */
1677 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1678 TYPE_DOMAIN_TYPE (mtype) = type;
ad2f7632
DJ
1679 TYPE_FIELDS (mtype) = argtypes;
1680 TYPE_NFIELDS (mtype) = argcount;
876cecd0 1681 TYPE_STUB (mtype) = 0;
c906108c 1682 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632 1683 if (p[-2] == '.')
876cecd0 1684 TYPE_VARARGS (mtype) = 1;
ad2f7632
DJ
1685
1686 xfree (demangled_name);
c906108c
SS
1687}
1688
7ba81444
MS
1689/* This is the external interface to check_stub_method, above. This
1690 function unstubs all of the signatures for TYPE's METHOD_ID method
1691 name. After calling this function TYPE_FN_FIELD_STUB will be
1692 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1693 correct.
de17c821
DJ
1694
1695 This function unfortunately can not die until stabs do. */
1696
1697void
1698check_stub_method_group (struct type *type, int method_id)
1699{
1700 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1701 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
f710f4fc 1702 int j, found_stub = 0;
de17c821
DJ
1703
1704 for (j = 0; j < len; j++)
1705 if (TYPE_FN_FIELD_STUB (f, j))
1706 {
1707 found_stub = 1;
1708 check_stub_method (type, method_id, j);
1709 }
1710
7ba81444
MS
1711 /* GNU v3 methods with incorrect names were corrected when we read
1712 in type information, because it was cheaper to do it then. The
1713 only GNU v2 methods with incorrect method names are operators and
1714 destructors; destructors were also corrected when we read in type
1715 information.
de17c821
DJ
1716
1717 Therefore the only thing we need to handle here are v2 operator
1718 names. */
1719 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1720 {
1721 int ret;
1722 char dem_opname[256];
1723
7ba81444
MS
1724 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1725 method_id),
de17c821
DJ
1726 dem_opname, DMGL_ANSI);
1727 if (!ret)
7ba81444
MS
1728 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1729 method_id),
de17c821
DJ
1730 dem_opname, 0);
1731 if (ret)
1732 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1733 }
1734}
1735
c906108c
SS
1736const struct cplus_struct_type cplus_struct_default;
1737
1738void
fba45db2 1739allocate_cplus_struct_type (struct type *type)
c906108c 1740{
b4ba55a1
JB
1741 if (HAVE_CPLUS_STRUCT (type))
1742 /* Structure was already allocated. Nothing more to do. */
1743 return;
1744
1745 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
1746 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1747 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1748 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
c906108c
SS
1749}
1750
b4ba55a1
JB
1751const struct gnat_aux_type gnat_aux_default =
1752 { NULL };
1753
1754/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
1755 and allocate the associated gnat-specific data. The gnat-specific
1756 data is also initialized to gnat_aux_default. */
1757void
1758allocate_gnat_aux_type (struct type *type)
1759{
1760 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
1761 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
1762 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
1763 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
1764}
1765
1766
c906108c
SS
1767/* Helper function to initialize the standard scalar types.
1768
e9bb382b
UW
1769 If NAME is non-NULL, then we make a copy of the string pointed
1770 to by name in the objfile_obstack for that objfile, and initialize
1771 the type name to that copy. There are places (mipsread.c in particular),
1772 where init_type is called with a NULL value for NAME). */
c906108c
SS
1773
1774struct type *
7ba81444
MS
1775init_type (enum type_code code, int length, int flags,
1776 char *name, struct objfile *objfile)
c906108c 1777{
52f0bd74 1778 struct type *type;
c906108c
SS
1779
1780 type = alloc_type (objfile);
1781 TYPE_CODE (type) = code;
1782 TYPE_LENGTH (type) = length;
876cecd0
TT
1783
1784 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1785 if (flags & TYPE_FLAG_UNSIGNED)
1786 TYPE_UNSIGNED (type) = 1;
1787 if (flags & TYPE_FLAG_NOSIGN)
1788 TYPE_NOSIGN (type) = 1;
1789 if (flags & TYPE_FLAG_STUB)
1790 TYPE_STUB (type) = 1;
1791 if (flags & TYPE_FLAG_TARGET_STUB)
1792 TYPE_TARGET_STUB (type) = 1;
1793 if (flags & TYPE_FLAG_STATIC)
1794 TYPE_STATIC (type) = 1;
1795 if (flags & TYPE_FLAG_PROTOTYPED)
1796 TYPE_PROTOTYPED (type) = 1;
1797 if (flags & TYPE_FLAG_INCOMPLETE)
1798 TYPE_INCOMPLETE (type) = 1;
1799 if (flags & TYPE_FLAG_VARARGS)
1800 TYPE_VARARGS (type) = 1;
1801 if (flags & TYPE_FLAG_VECTOR)
1802 TYPE_VECTOR (type) = 1;
1803 if (flags & TYPE_FLAG_STUB_SUPPORTED)
1804 TYPE_STUB_SUPPORTED (type) = 1;
1805 if (flags & TYPE_FLAG_NOTTEXT)
1806 TYPE_NOTTEXT (type) = 1;
1807 if (flags & TYPE_FLAG_FIXED_INSTANCE)
1808 TYPE_FIXED_INSTANCE (type) = 1;
1809
e9bb382b
UW
1810 if (name)
1811 TYPE_NAME (type) = obsavestring (name, strlen (name),
1812 &objfile->objfile_obstack);
c906108c
SS
1813
1814 /* C++ fancies. */
1815
973ccf8b 1816 if (name && strcmp (name, "char") == 0)
876cecd0 1817 TYPE_NOSIGN (type) = 1;
973ccf8b 1818
b4ba55a1 1819 switch (code)
c906108c 1820 {
b4ba55a1
JB
1821 case TYPE_CODE_STRUCT:
1822 case TYPE_CODE_UNION:
1823 case TYPE_CODE_NAMESPACE:
1824 INIT_CPLUS_SPECIFIC (type);
1825 break;
1826 case TYPE_CODE_FLT:
1827 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
1828 break;
1829 case TYPE_CODE_FUNC:
1830 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CALLING_CONVENTION;
1831 break;
c906108c 1832 }
c16abbde 1833 return type;
c906108c
SS
1834}
1835
c906108c 1836int
fba45db2 1837can_dereference (struct type *t)
c906108c 1838{
7ba81444
MS
1839 /* FIXME: Should we return true for references as well as
1840 pointers? */
c906108c
SS
1841 CHECK_TYPEDEF (t);
1842 return
1843 (t != NULL
1844 && TYPE_CODE (t) == TYPE_CODE_PTR
1845 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1846}
1847
adf40b2e 1848int
fba45db2 1849is_integral_type (struct type *t)
adf40b2e
JM
1850{
1851 CHECK_TYPEDEF (t);
1852 return
1853 ((t != NULL)
d4f3574e
SS
1854 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1855 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 1856 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
1857 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1858 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1859 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
1860}
1861
4e8f195d
TT
1862/* A helper function which returns true if types A and B represent the
1863 "same" class type. This is true if the types have the same main
1864 type, or the same name. */
1865
1866int
1867class_types_same_p (const struct type *a, const struct type *b)
1868{
1869 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
1870 || (TYPE_NAME (a) && TYPE_NAME (b)
1871 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
1872}
1873
7b83ea04 1874/* Check whether BASE is an ancestor or base class or DCLASS
c906108c
SS
1875 Return 1 if so, and 0 if not.
1876 Note: callers may want to check for identity of the types before
1877 calling this function -- identical types are considered to satisfy
7ba81444 1878 the ancestor relationship even if they're identical. */
c906108c
SS
1879
1880int
fba45db2 1881is_ancestor (struct type *base, struct type *dclass)
c906108c
SS
1882{
1883 int i;
c5aa993b 1884
c906108c
SS
1885 CHECK_TYPEDEF (base);
1886 CHECK_TYPEDEF (dclass);
1887
4e8f195d 1888 if (class_types_same_p (base, dclass))
6b1ba9a0 1889 return 1;
c906108c
SS
1890
1891 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d
TT
1892 {
1893 if (is_ancestor (base, TYPE_BASECLASS (dclass, i)))
1894 return 1;
1895 }
c906108c
SS
1896
1897 return 0;
1898}
4e8f195d
TT
1899
1900/* Like is_ancestor, but only returns true when BASE is a public
1901 ancestor of DCLASS. */
1902
1903int
1904is_public_ancestor (struct type *base, struct type *dclass)
1905{
1906 int i;
1907
1908 CHECK_TYPEDEF (base);
1909 CHECK_TYPEDEF (dclass);
1910
1911 if (class_types_same_p (base, dclass))
1912 return 1;
1913
1914 for (i = 0; i < TYPE_N_BASECLASSES (dclass); ++i)
1915 {
1916 if (! BASETYPE_VIA_PUBLIC (dclass, i))
1917 continue;
1918 if (is_public_ancestor (base, TYPE_BASECLASS (dclass, i)))
1919 return 1;
1920 }
1921
1922 return 0;
1923}
1924
1925/* A helper function for is_unique_ancestor. */
1926
1927static int
1928is_unique_ancestor_worker (struct type *base, struct type *dclass,
1929 int *offset,
1930 const bfd_byte *contents, CORE_ADDR address)
1931{
1932 int i, count = 0;
1933
1934 CHECK_TYPEDEF (base);
1935 CHECK_TYPEDEF (dclass);
1936
1937 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
1938 {
1939 struct type *iter = check_typedef (TYPE_BASECLASS (dclass, i));
1940 int this_offset = baseclass_offset (dclass, i, contents, address);
1941
1942 if (this_offset == -1)
1943 error (_("virtual baseclass botch"));
1944
1945 if (class_types_same_p (base, iter))
1946 {
1947 /* If this is the first subclass, set *OFFSET and set count
1948 to 1. Otherwise, if this is at the same offset as
1949 previous instances, do nothing. Otherwise, increment
1950 count. */
1951 if (*offset == -1)
1952 {
1953 *offset = this_offset;
1954 count = 1;
1955 }
1956 else if (this_offset == *offset)
1957 {
1958 /* Nothing. */
1959 }
1960 else
1961 ++count;
1962 }
1963 else
1964 count += is_unique_ancestor_worker (base, iter, offset,
1965 contents + this_offset,
1966 address + this_offset);
1967 }
1968
1969 return count;
1970}
1971
1972/* Like is_ancestor, but only returns true if BASE is a unique base
1973 class of the type of VAL. */
1974
1975int
1976is_unique_ancestor (struct type *base, struct value *val)
1977{
1978 int offset = -1;
1979
1980 return is_unique_ancestor_worker (base, value_type (val), &offset,
1981 value_contents (val),
1982 value_address (val)) == 1;
1983}
1984
c906108c
SS
1985\f
1986
c5aa993b 1987
c906108c
SS
1988/* Functions for overload resolution begin here */
1989
1990/* Compare two badness vectors A and B and return the result.
7ba81444
MS
1991 0 => A and B are identical
1992 1 => A and B are incomparable
1993 2 => A is better than B
1994 3 => A is worse than B */
c906108c
SS
1995
1996int
fba45db2 1997compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
1998{
1999 int i;
2000 int tmp;
c5aa993b
JM
2001 short found_pos = 0; /* any positives in c? */
2002 short found_neg = 0; /* any negatives in c? */
2003
2004 /* differing lengths => incomparable */
c906108c
SS
2005 if (a->length != b->length)
2006 return 1;
2007
c5aa993b
JM
2008 /* Subtract b from a */
2009 for (i = 0; i < a->length; i++)
c906108c
SS
2010 {
2011 tmp = a->rank[i] - b->rank[i];
2012 if (tmp > 0)
c5aa993b 2013 found_pos = 1;
c906108c 2014 else if (tmp < 0)
c5aa993b 2015 found_neg = 1;
c906108c
SS
2016 }
2017
2018 if (found_pos)
2019 {
2020 if (found_neg)
c5aa993b 2021 return 1; /* incomparable */
c906108c 2022 else
c5aa993b 2023 return 3; /* A > B */
c906108c 2024 }
c5aa993b
JM
2025 else
2026 /* no positives */
c906108c
SS
2027 {
2028 if (found_neg)
c5aa993b 2029 return 2; /* A < B */
c906108c 2030 else
c5aa993b 2031 return 0; /* A == B */
c906108c
SS
2032 }
2033}
2034
7ba81444
MS
2035/* Rank a function by comparing its parameter types (PARMS, length
2036 NPARMS), to the types of an argument list (ARGS, length NARGS).
2037 Return a pointer to a badness vector. This has NARGS + 1
2038 entries. */
c906108c
SS
2039
2040struct badness_vector *
7ba81444
MS
2041rank_function (struct type **parms, int nparms,
2042 struct type **args, int nargs)
c906108c
SS
2043{
2044 int i;
c5aa993b 2045 struct badness_vector *bv;
c906108c
SS
2046 int min_len = nparms < nargs ? nparms : nargs;
2047
2048 bv = xmalloc (sizeof (struct badness_vector));
c5aa993b 2049 bv->length = nargs + 1; /* add 1 for the length-match rank */
c906108c
SS
2050 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2051
2052 /* First compare the lengths of the supplied lists.
7ba81444 2053 If there is a mismatch, set it to a high value. */
c5aa993b 2054
c906108c 2055 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
2056 arguments and ellipsis parameter lists, we should consider those
2057 and rank the length-match more finely. */
c906108c
SS
2058
2059 LENGTH_MATCH (bv) = (nargs != nparms) ? LENGTH_MISMATCH_BADNESS : 0;
2060
2061 /* Now rank all the parameters of the candidate function */
74cc24b0
DB
2062 for (i = 1; i <= min_len; i++)
2063 bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
c906108c 2064
c5aa993b
JM
2065 /* If more arguments than parameters, add dummy entries */
2066 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
2067 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2068
2069 return bv;
2070}
2071
973ccf8b
DJ
2072/* Compare the names of two integer types, assuming that any sign
2073 qualifiers have been checked already. We do it this way because
2074 there may be an "int" in the name of one of the types. */
2075
2076static int
2077integer_types_same_name_p (const char *first, const char *second)
2078{
2079 int first_p, second_p;
2080
7ba81444
MS
2081 /* If both are shorts, return 1; if neither is a short, keep
2082 checking. */
973ccf8b
DJ
2083 first_p = (strstr (first, "short") != NULL);
2084 second_p = (strstr (second, "short") != NULL);
2085 if (first_p && second_p)
2086 return 1;
2087 if (first_p || second_p)
2088 return 0;
2089
2090 /* Likewise for long. */
2091 first_p = (strstr (first, "long") != NULL);
2092 second_p = (strstr (second, "long") != NULL);
2093 if (first_p && second_p)
2094 return 1;
2095 if (first_p || second_p)
2096 return 0;
2097
2098 /* Likewise for char. */
2099 first_p = (strstr (first, "char") != NULL);
2100 second_p = (strstr (second, "char") != NULL);
2101 if (first_p && second_p)
2102 return 1;
2103 if (first_p || second_p)
2104 return 0;
2105
2106 /* They must both be ints. */
2107 return 1;
2108}
2109
c906108c
SS
2110/* Compare one type (PARM) for compatibility with another (ARG).
2111 * PARM is intended to be the parameter type of a function; and
2112 * ARG is the supplied argument's type. This function tests if
2113 * the latter can be converted to the former.
2114 *
2115 * Return 0 if they are identical types;
2116 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
2117 * PARM is to ARG. The higher the return value, the worse the match.
2118 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c
SS
2119
2120int
fba45db2 2121rank_one_type (struct type *parm, struct type *arg)
c906108c 2122{
7ba81444 2123 /* Identical type pointers. */
c906108c 2124 /* However, this still doesn't catch all cases of same type for arg
7ba81444
MS
2125 and param. The reason is that builtin types are different from
2126 the same ones constructed from the object. */
c906108c
SS
2127 if (parm == arg)
2128 return 0;
2129
2130 /* Resolve typedefs */
2131 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2132 parm = check_typedef (parm);
2133 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2134 arg = check_typedef (arg);
2135
070ad9f0 2136 /*
7ba81444
MS
2137 Well, damnit, if the names are exactly the same, I'll say they
2138 are exactly the same. This happens when we generate method
2139 stubs. The types won't point to the same address, but they
070ad9f0
DB
2140 really are the same.
2141 */
2142
687d6395
MS
2143 if (TYPE_NAME (parm) && TYPE_NAME (arg)
2144 && !strcmp (TYPE_NAME (parm), TYPE_NAME (arg)))
7ba81444 2145 return 0;
070ad9f0 2146
7ba81444 2147 /* Check if identical after resolving typedefs. */
c906108c
SS
2148 if (parm == arg)
2149 return 0;
2150
db577aea 2151 /* See through references, since we can almost make non-references
7ba81444 2152 references. */
db577aea 2153 if (TYPE_CODE (arg) == TYPE_CODE_REF)
6b1ba9a0 2154 return (rank_one_type (parm, TYPE_TARGET_TYPE (arg))
db577aea
AC
2155 + REFERENCE_CONVERSION_BADNESS);
2156 if (TYPE_CODE (parm) == TYPE_CODE_REF)
6b1ba9a0 2157 return (rank_one_type (TYPE_TARGET_TYPE (parm), arg)
db577aea 2158 + REFERENCE_CONVERSION_BADNESS);
5d161b24 2159 if (overload_debug)
7ba81444
MS
2160 /* Debugging only. */
2161 fprintf_filtered (gdb_stderr,
2162 "------ Arg is %s [%d], parm is %s [%d]\n",
2163 TYPE_NAME (arg), TYPE_CODE (arg),
2164 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c
SS
2165
2166 /* x -> y means arg of type x being supplied for parameter of type y */
2167
2168 switch (TYPE_CODE (parm))
2169 {
c5aa993b
JM
2170 case TYPE_CODE_PTR:
2171 switch (TYPE_CODE (arg))
2172 {
2173 case TYPE_CODE_PTR:
66c53f2b
KS
2174 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID
2175 && TYPE_CODE (TYPE_TARGET_TYPE (arg)) != TYPE_CODE_VOID)
c5aa993b
JM
2176 return VOID_PTR_CONVERSION_BADNESS;
2177 else
7ba81444
MS
2178 return rank_one_type (TYPE_TARGET_TYPE (parm),
2179 TYPE_TARGET_TYPE (arg));
c5aa993b 2180 case TYPE_CODE_ARRAY:
7ba81444
MS
2181 return rank_one_type (TYPE_TARGET_TYPE (parm),
2182 TYPE_TARGET_TYPE (arg));
c5aa993b
JM
2183 case TYPE_CODE_FUNC:
2184 return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
2185 case TYPE_CODE_INT:
2186 case TYPE_CODE_ENUM:
4f2aea11 2187 case TYPE_CODE_FLAGS:
c5aa993b
JM
2188 case TYPE_CODE_CHAR:
2189 case TYPE_CODE_RANGE:
2190 case TYPE_CODE_BOOL:
2191 return POINTER_CONVERSION_BADNESS;
2192 default:
2193 return INCOMPATIBLE_TYPE_BADNESS;
2194 }
2195 case TYPE_CODE_ARRAY:
2196 switch (TYPE_CODE (arg))
2197 {
2198 case TYPE_CODE_PTR:
2199 case TYPE_CODE_ARRAY:
7ba81444
MS
2200 return rank_one_type (TYPE_TARGET_TYPE (parm),
2201 TYPE_TARGET_TYPE (arg));
c5aa993b
JM
2202 default:
2203 return INCOMPATIBLE_TYPE_BADNESS;
2204 }
2205 case TYPE_CODE_FUNC:
2206 switch (TYPE_CODE (arg))
2207 {
2208 case TYPE_CODE_PTR: /* funcptr -> func */
2209 return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
2210 default:
2211 return INCOMPATIBLE_TYPE_BADNESS;
2212 }
2213 case TYPE_CODE_INT:
2214 switch (TYPE_CODE (arg))
2215 {
2216 case TYPE_CODE_INT:
2217 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2218 {
2219 /* Deal with signed, unsigned, and plain chars and
7ba81444 2220 signed and unsigned ints. */
c5aa993b
JM
2221 if (TYPE_NOSIGN (parm))
2222 {
2223 /* This case only for character types */
7ba81444
MS
2224 if (TYPE_NOSIGN (arg))
2225 return 0; /* plain char -> plain char */
2226 else /* signed/unsigned char -> plain char */
2227 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2228 }
2229 else if (TYPE_UNSIGNED (parm))
2230 {
2231 if (TYPE_UNSIGNED (arg))
2232 {
7ba81444
MS
2233 /* unsigned int -> unsigned int, or
2234 unsigned long -> unsigned long */
2235 if (integer_types_same_name_p (TYPE_NAME (parm),
2236 TYPE_NAME (arg)))
973ccf8b 2237 return 0;
7ba81444
MS
2238 else if (integer_types_same_name_p (TYPE_NAME (arg),
2239 "int")
2240 && integer_types_same_name_p (TYPE_NAME (parm),
2241 "long"))
c5aa993b
JM
2242 return INTEGER_PROMOTION_BADNESS; /* unsigned int -> unsigned long */
2243 else
1c5cb38e 2244 return INTEGER_CONVERSION_BADNESS; /* unsigned long -> unsigned int */
c5aa993b
JM
2245 }
2246 else
2247 {
7ba81444
MS
2248 if (integer_types_same_name_p (TYPE_NAME (arg),
2249 "long")
2250 && integer_types_same_name_p (TYPE_NAME (parm),
2251 "int"))
1c5cb38e 2252 return INTEGER_CONVERSION_BADNESS; /* signed long -> unsigned int */
c5aa993b
JM
2253 else
2254 return INTEGER_CONVERSION_BADNESS; /* signed int/long -> unsigned int/long */
2255 }
2256 }
2257 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2258 {
7ba81444
MS
2259 if (integer_types_same_name_p (TYPE_NAME (parm),
2260 TYPE_NAME (arg)))
c5aa993b 2261 return 0;
7ba81444
MS
2262 else if (integer_types_same_name_p (TYPE_NAME (arg),
2263 "int")
2264 && integer_types_same_name_p (TYPE_NAME (parm),
2265 "long"))
c5aa993b
JM
2266 return INTEGER_PROMOTION_BADNESS;
2267 else
1c5cb38e 2268 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2269 }
2270 else
1c5cb38e 2271 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2272 }
2273 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2274 return INTEGER_PROMOTION_BADNESS;
2275 else
1c5cb38e 2276 return INTEGER_CONVERSION_BADNESS;
c5aa993b 2277 case TYPE_CODE_ENUM:
4f2aea11 2278 case TYPE_CODE_FLAGS:
c5aa993b
JM
2279 case TYPE_CODE_CHAR:
2280 case TYPE_CODE_RANGE:
2281 case TYPE_CODE_BOOL:
2282 return INTEGER_PROMOTION_BADNESS;
2283 case TYPE_CODE_FLT:
2284 return INT_FLOAT_CONVERSION_BADNESS;
2285 case TYPE_CODE_PTR:
2286 return NS_POINTER_CONVERSION_BADNESS;
2287 default:
2288 return INCOMPATIBLE_TYPE_BADNESS;
2289 }
2290 break;
2291 case TYPE_CODE_ENUM:
2292 switch (TYPE_CODE (arg))
2293 {
2294 case TYPE_CODE_INT:
2295 case TYPE_CODE_CHAR:
2296 case TYPE_CODE_RANGE:
2297 case TYPE_CODE_BOOL:
2298 case TYPE_CODE_ENUM:
1c5cb38e 2299 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2300 case TYPE_CODE_FLT:
2301 return INT_FLOAT_CONVERSION_BADNESS;
2302 default:
2303 return INCOMPATIBLE_TYPE_BADNESS;
2304 }
2305 break;
2306 case TYPE_CODE_CHAR:
2307 switch (TYPE_CODE (arg))
2308 {
2309 case TYPE_CODE_RANGE:
2310 case TYPE_CODE_BOOL:
2311 case TYPE_CODE_ENUM:
1c5cb38e 2312 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2313 case TYPE_CODE_FLT:
2314 return INT_FLOAT_CONVERSION_BADNESS;
2315 case TYPE_CODE_INT:
2316 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
1c5cb38e 2317 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2318 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2319 return INTEGER_PROMOTION_BADNESS;
2320 /* >>> !! else fall through !! <<< */
2321 case TYPE_CODE_CHAR:
7ba81444
MS
2322 /* Deal with signed, unsigned, and plain chars for C++ and
2323 with int cases falling through from previous case. */
c5aa993b
JM
2324 if (TYPE_NOSIGN (parm))
2325 {
2326 if (TYPE_NOSIGN (arg))
2327 return 0;
2328 else
1c5cb38e 2329 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2330 }
2331 else if (TYPE_UNSIGNED (parm))
2332 {
2333 if (TYPE_UNSIGNED (arg))
2334 return 0;
2335 else
2336 return INTEGER_PROMOTION_BADNESS;
2337 }
2338 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2339 return 0;
2340 else
1c5cb38e 2341 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2342 default:
2343 return INCOMPATIBLE_TYPE_BADNESS;
2344 }
2345 break;
2346 case TYPE_CODE_RANGE:
2347 switch (TYPE_CODE (arg))
2348 {
2349 case TYPE_CODE_INT:
2350 case TYPE_CODE_CHAR:
2351 case TYPE_CODE_RANGE:
2352 case TYPE_CODE_BOOL:
2353 case TYPE_CODE_ENUM:
1c5cb38e 2354 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2355 case TYPE_CODE_FLT:
2356 return INT_FLOAT_CONVERSION_BADNESS;
2357 default:
2358 return INCOMPATIBLE_TYPE_BADNESS;
2359 }
2360 break;
2361 case TYPE_CODE_BOOL:
2362 switch (TYPE_CODE (arg))
2363 {
2364 case TYPE_CODE_INT:
2365 case TYPE_CODE_CHAR:
2366 case TYPE_CODE_RANGE:
2367 case TYPE_CODE_ENUM:
2368 case TYPE_CODE_FLT:
2369 case TYPE_CODE_PTR:
2370 return BOOLEAN_CONVERSION_BADNESS;
2371 case TYPE_CODE_BOOL:
2372 return 0;
2373 default:
2374 return INCOMPATIBLE_TYPE_BADNESS;
2375 }
2376 break;
2377 case TYPE_CODE_FLT:
2378 switch (TYPE_CODE (arg))
2379 {
2380 case TYPE_CODE_FLT:
2381 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2382 return FLOAT_PROMOTION_BADNESS;
2383 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2384 return 0;
2385 else
2386 return FLOAT_CONVERSION_BADNESS;
2387 case TYPE_CODE_INT:
2388 case TYPE_CODE_BOOL:
2389 case TYPE_CODE_ENUM:
2390 case TYPE_CODE_RANGE:
2391 case TYPE_CODE_CHAR:
2392 return INT_FLOAT_CONVERSION_BADNESS;
2393 default:
2394 return INCOMPATIBLE_TYPE_BADNESS;
2395 }
2396 break;
2397 case TYPE_CODE_COMPLEX:
2398 switch (TYPE_CODE (arg))
7ba81444 2399 { /* Strictly not needed for C++, but... */
c5aa993b
JM
2400 case TYPE_CODE_FLT:
2401 return FLOAT_PROMOTION_BADNESS;
2402 case TYPE_CODE_COMPLEX:
2403 return 0;
2404 default:
2405 return INCOMPATIBLE_TYPE_BADNESS;
2406 }
2407 break;
2408 case TYPE_CODE_STRUCT:
c906108c 2409 /* currently same as TYPE_CODE_CLASS */
c5aa993b
JM
2410 switch (TYPE_CODE (arg))
2411 {
2412 case TYPE_CODE_STRUCT:
2413 /* Check for derivation */
2414 if (is_ancestor (parm, arg))
2415 return BASE_CONVERSION_BADNESS;
2416 /* else fall through */
2417 default:
2418 return INCOMPATIBLE_TYPE_BADNESS;
2419 }
2420 break;
2421 case TYPE_CODE_UNION:
2422 switch (TYPE_CODE (arg))
2423 {
2424 case TYPE_CODE_UNION:
2425 default:
2426 return INCOMPATIBLE_TYPE_BADNESS;
2427 }
2428 break;
0d5de010 2429 case TYPE_CODE_MEMBERPTR:
c5aa993b
JM
2430 switch (TYPE_CODE (arg))
2431 {
2432 default:
2433 return INCOMPATIBLE_TYPE_BADNESS;
2434 }
2435 break;
2436 case TYPE_CODE_METHOD:
2437 switch (TYPE_CODE (arg))
2438 {
2439
2440 default:
2441 return INCOMPATIBLE_TYPE_BADNESS;
2442 }
2443 break;
2444 case TYPE_CODE_REF:
2445 switch (TYPE_CODE (arg))
2446 {
2447
2448 default:
2449 return INCOMPATIBLE_TYPE_BADNESS;
2450 }
2451
2452 break;
2453 case TYPE_CODE_SET:
2454 switch (TYPE_CODE (arg))
2455 {
2456 /* Not in C++ */
2457 case TYPE_CODE_SET:
7ba81444
MS
2458 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
2459 TYPE_FIELD_TYPE (arg, 0));
c5aa993b
JM
2460 default:
2461 return INCOMPATIBLE_TYPE_BADNESS;
2462 }
2463 break;
2464 case TYPE_CODE_VOID:
2465 default:
2466 return INCOMPATIBLE_TYPE_BADNESS;
2467 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
2468}
2469
c5aa993b
JM
2470
2471/* End of functions for overload resolution */
c906108c 2472
c906108c 2473static void
fba45db2 2474print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
2475{
2476 int bitno;
2477
2478 for (bitno = 0; bitno < nbits; bitno++)
2479 {
2480 if ((bitno % 8) == 0)
2481 {
2482 puts_filtered (" ");
2483 }
2484 if (B_TST (bits, bitno))
a3f17187 2485 printf_filtered (("1"));
c906108c 2486 else
a3f17187 2487 printf_filtered (("0"));
c906108c
SS
2488 }
2489}
2490
ad2f7632 2491/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
2492 include it since we may get into a infinitely recursive
2493 situation. */
c906108c
SS
2494
2495static void
ad2f7632 2496print_arg_types (struct field *args, int nargs, int spaces)
c906108c
SS
2497{
2498 if (args != NULL)
2499 {
ad2f7632
DJ
2500 int i;
2501
2502 for (i = 0; i < nargs; i++)
2503 recursive_dump_type (args[i].type, spaces + 2);
c906108c
SS
2504 }
2505}
2506
d6a843b5
JK
2507int
2508field_is_static (struct field *f)
2509{
2510 /* "static" fields are the fields whose location is not relative
2511 to the address of the enclosing struct. It would be nice to
2512 have a dedicated flag that would be set for static fields when
2513 the type is being created. But in practice, checking the field
2514 loc_kind should give us an accurate answer (at least as long as
2515 we assume that DWARF block locations are not going to be used
2516 for static fields). FIXME? */
2517 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
2518 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
2519}
2520
c906108c 2521static void
fba45db2 2522dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
2523{
2524 int method_idx;
2525 int overload_idx;
2526 struct fn_field *f;
2527
2528 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 2529 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
2530 printf_filtered ("\n");
2531 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2532 {
2533 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2534 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2535 method_idx,
2536 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
2537 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2538 gdb_stdout);
a3f17187 2539 printf_filtered (_(") length %d\n"),
c906108c
SS
2540 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2541 for (overload_idx = 0;
2542 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2543 overload_idx++)
2544 {
2545 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2546 overload_idx,
2547 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
2548 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2549 gdb_stdout);
c906108c
SS
2550 printf_filtered (")\n");
2551 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
2552 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2553 gdb_stdout);
c906108c
SS
2554 printf_filtered ("\n");
2555
2556 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2557 spaces + 8 + 2);
2558
2559 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
2560 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2561 gdb_stdout);
c906108c
SS
2562 printf_filtered ("\n");
2563
ad2f7632 2564 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
7ba81444
MS
2565 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2566 overload_idx)),
ad2f7632 2567 spaces);
c906108c 2568 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
2569 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2570 gdb_stdout);
c906108c
SS
2571 printf_filtered ("\n");
2572
2573 printfi_filtered (spaces + 8, "is_const %d\n",
2574 TYPE_FN_FIELD_CONST (f, overload_idx));
2575 printfi_filtered (spaces + 8, "is_volatile %d\n",
2576 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2577 printfi_filtered (spaces + 8, "is_private %d\n",
2578 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2579 printfi_filtered (spaces + 8, "is_protected %d\n",
2580 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2581 printfi_filtered (spaces + 8, "is_stub %d\n",
2582 TYPE_FN_FIELD_STUB (f, overload_idx));
2583 printfi_filtered (spaces + 8, "voffset %u\n",
2584 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2585 }
2586 }
2587}
2588
2589static void
fba45db2 2590print_cplus_stuff (struct type *type, int spaces)
c906108c
SS
2591{
2592 printfi_filtered (spaces, "n_baseclasses %d\n",
2593 TYPE_N_BASECLASSES (type));
2594 printfi_filtered (spaces, "nfn_fields %d\n",
2595 TYPE_NFN_FIELDS (type));
2596 printfi_filtered (spaces, "nfn_fields_total %d\n",
2597 TYPE_NFN_FIELDS_TOTAL (type));
2598 if (TYPE_N_BASECLASSES (type) > 0)
2599 {
2600 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2601 TYPE_N_BASECLASSES (type));
7ba81444
MS
2602 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2603 gdb_stdout);
c906108c
SS
2604 printf_filtered (")");
2605
2606 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2607 TYPE_N_BASECLASSES (type));
2608 puts_filtered ("\n");
2609 }
2610 if (TYPE_NFIELDS (type) > 0)
2611 {
2612 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2613 {
7ba81444
MS
2614 printfi_filtered (spaces,
2615 "private_field_bits (%d bits at *",
c906108c 2616 TYPE_NFIELDS (type));
7ba81444
MS
2617 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2618 gdb_stdout);
c906108c
SS
2619 printf_filtered (")");
2620 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2621 TYPE_NFIELDS (type));
2622 puts_filtered ("\n");
2623 }
2624 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2625 {
7ba81444
MS
2626 printfi_filtered (spaces,
2627 "protected_field_bits (%d bits at *",
c906108c 2628 TYPE_NFIELDS (type));
7ba81444
MS
2629 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2630 gdb_stdout);
c906108c
SS
2631 printf_filtered (")");
2632 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2633 TYPE_NFIELDS (type));
2634 puts_filtered ("\n");
2635 }
2636 }
2637 if (TYPE_NFN_FIELDS (type) > 0)
2638 {
2639 dump_fn_fieldlists (type, spaces);
2640 }
2641}
2642
b4ba55a1
JB
2643/* Print the contents of the TYPE's type_specific union, assuming that
2644 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
2645
2646static void
2647print_gnat_stuff (struct type *type, int spaces)
2648{
2649 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
2650
2651 recursive_dump_type (descriptive_type, spaces + 2);
2652}
2653
c906108c
SS
2654static struct obstack dont_print_type_obstack;
2655
2656void
fba45db2 2657recursive_dump_type (struct type *type, int spaces)
c906108c
SS
2658{
2659 int idx;
2660
2661 if (spaces == 0)
2662 obstack_begin (&dont_print_type_obstack, 0);
2663
2664 if (TYPE_NFIELDS (type) > 0
b4ba55a1 2665 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
2666 {
2667 struct type **first_dont_print
7ba81444 2668 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 2669
7ba81444
MS
2670 int i = (struct type **)
2671 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
2672
2673 while (--i >= 0)
2674 {
2675 if (type == first_dont_print[i])
2676 {
2677 printfi_filtered (spaces, "type node ");
d4f3574e 2678 gdb_print_host_address (type, gdb_stdout);
a3f17187 2679 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
2680 return;
2681 }
2682 }
2683
2684 obstack_ptr_grow (&dont_print_type_obstack, type);
2685 }
2686
2687 printfi_filtered (spaces, "type node ");
d4f3574e 2688 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
2689 printf_filtered ("\n");
2690 printfi_filtered (spaces, "name '%s' (",
2691 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 2692 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 2693 printf_filtered (")\n");
e9e79dd9
FF
2694 printfi_filtered (spaces, "tagname '%s' (",
2695 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2696 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2697 printf_filtered (")\n");
c906108c
SS
2698 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2699 switch (TYPE_CODE (type))
2700 {
c5aa993b
JM
2701 case TYPE_CODE_UNDEF:
2702 printf_filtered ("(TYPE_CODE_UNDEF)");
2703 break;
2704 case TYPE_CODE_PTR:
2705 printf_filtered ("(TYPE_CODE_PTR)");
2706 break;
2707 case TYPE_CODE_ARRAY:
2708 printf_filtered ("(TYPE_CODE_ARRAY)");
2709 break;
2710 case TYPE_CODE_STRUCT:
2711 printf_filtered ("(TYPE_CODE_STRUCT)");
2712 break;
2713 case TYPE_CODE_UNION:
2714 printf_filtered ("(TYPE_CODE_UNION)");
2715 break;
2716 case TYPE_CODE_ENUM:
2717 printf_filtered ("(TYPE_CODE_ENUM)");
2718 break;
4f2aea11
MK
2719 case TYPE_CODE_FLAGS:
2720 printf_filtered ("(TYPE_CODE_FLAGS)");
2721 break;
c5aa993b
JM
2722 case TYPE_CODE_FUNC:
2723 printf_filtered ("(TYPE_CODE_FUNC)");
2724 break;
2725 case TYPE_CODE_INT:
2726 printf_filtered ("(TYPE_CODE_INT)");
2727 break;
2728 case TYPE_CODE_FLT:
2729 printf_filtered ("(TYPE_CODE_FLT)");
2730 break;
2731 case TYPE_CODE_VOID:
2732 printf_filtered ("(TYPE_CODE_VOID)");
2733 break;
2734 case TYPE_CODE_SET:
2735 printf_filtered ("(TYPE_CODE_SET)");
2736 break;
2737 case TYPE_CODE_RANGE:
2738 printf_filtered ("(TYPE_CODE_RANGE)");
2739 break;
2740 case TYPE_CODE_STRING:
2741 printf_filtered ("(TYPE_CODE_STRING)");
2742 break;
e9e79dd9
FF
2743 case TYPE_CODE_BITSTRING:
2744 printf_filtered ("(TYPE_CODE_BITSTRING)");
2745 break;
c5aa993b
JM
2746 case TYPE_CODE_ERROR:
2747 printf_filtered ("(TYPE_CODE_ERROR)");
2748 break;
0d5de010
DJ
2749 case TYPE_CODE_MEMBERPTR:
2750 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
2751 break;
2752 case TYPE_CODE_METHODPTR:
2753 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
2754 break;
2755 case TYPE_CODE_METHOD:
2756 printf_filtered ("(TYPE_CODE_METHOD)");
2757 break;
2758 case TYPE_CODE_REF:
2759 printf_filtered ("(TYPE_CODE_REF)");
2760 break;
2761 case TYPE_CODE_CHAR:
2762 printf_filtered ("(TYPE_CODE_CHAR)");
2763 break;
2764 case TYPE_CODE_BOOL:
2765 printf_filtered ("(TYPE_CODE_BOOL)");
2766 break;
e9e79dd9
FF
2767 case TYPE_CODE_COMPLEX:
2768 printf_filtered ("(TYPE_CODE_COMPLEX)");
2769 break;
c5aa993b
JM
2770 case TYPE_CODE_TYPEDEF:
2771 printf_filtered ("(TYPE_CODE_TYPEDEF)");
2772 break;
5c4e30ca
DC
2773 case TYPE_CODE_NAMESPACE:
2774 printf_filtered ("(TYPE_CODE_NAMESPACE)");
2775 break;
c5aa993b
JM
2776 default:
2777 printf_filtered ("(UNKNOWN TYPE CODE)");
2778 break;
c906108c
SS
2779 }
2780 puts_filtered ("\n");
2781 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9bb382b
UW
2782 if (TYPE_OBJFILE_OWNED (type))
2783 {
2784 printfi_filtered (spaces, "objfile ");
2785 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
2786 }
2787 else
2788 {
2789 printfi_filtered (spaces, "gdbarch ");
2790 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
2791 }
c906108c
SS
2792 printf_filtered ("\n");
2793 printfi_filtered (spaces, "target_type ");
d4f3574e 2794 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
2795 printf_filtered ("\n");
2796 if (TYPE_TARGET_TYPE (type) != NULL)
2797 {
2798 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
2799 }
2800 printfi_filtered (spaces, "pointer_type ");
d4f3574e 2801 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
2802 printf_filtered ("\n");
2803 printfi_filtered (spaces, "reference_type ");
d4f3574e 2804 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 2805 printf_filtered ("\n");
2fdde8f8
DJ
2806 printfi_filtered (spaces, "type_chain ");
2807 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 2808 printf_filtered ("\n");
7ba81444
MS
2809 printfi_filtered (spaces, "instance_flags 0x%x",
2810 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
2811 if (TYPE_CONST (type))
2812 {
2813 puts_filtered (" TYPE_FLAG_CONST");
2814 }
2815 if (TYPE_VOLATILE (type))
2816 {
2817 puts_filtered (" TYPE_FLAG_VOLATILE");
2818 }
2819 if (TYPE_CODE_SPACE (type))
2820 {
2821 puts_filtered (" TYPE_FLAG_CODE_SPACE");
2822 }
2823 if (TYPE_DATA_SPACE (type))
2824 {
2825 puts_filtered (" TYPE_FLAG_DATA_SPACE");
2826 }
8b2dbe47
KB
2827 if (TYPE_ADDRESS_CLASS_1 (type))
2828 {
2829 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
2830 }
2831 if (TYPE_ADDRESS_CLASS_2 (type))
2832 {
2833 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
2834 }
2fdde8f8 2835 puts_filtered ("\n");
876cecd0
TT
2836
2837 printfi_filtered (spaces, "flags");
762a036f 2838 if (TYPE_UNSIGNED (type))
c906108c
SS
2839 {
2840 puts_filtered (" TYPE_FLAG_UNSIGNED");
2841 }
762a036f
FF
2842 if (TYPE_NOSIGN (type))
2843 {
2844 puts_filtered (" TYPE_FLAG_NOSIGN");
2845 }
2846 if (TYPE_STUB (type))
c906108c
SS
2847 {
2848 puts_filtered (" TYPE_FLAG_STUB");
2849 }
762a036f
FF
2850 if (TYPE_TARGET_STUB (type))
2851 {
2852 puts_filtered (" TYPE_FLAG_TARGET_STUB");
2853 }
2854 if (TYPE_STATIC (type))
2855 {
2856 puts_filtered (" TYPE_FLAG_STATIC");
2857 }
762a036f
FF
2858 if (TYPE_PROTOTYPED (type))
2859 {
2860 puts_filtered (" TYPE_FLAG_PROTOTYPED");
2861 }
2862 if (TYPE_INCOMPLETE (type))
2863 {
2864 puts_filtered (" TYPE_FLAG_INCOMPLETE");
2865 }
762a036f
FF
2866 if (TYPE_VARARGS (type))
2867 {
2868 puts_filtered (" TYPE_FLAG_VARARGS");
2869 }
f5f8a009
EZ
2870 /* This is used for things like AltiVec registers on ppc. Gcc emits
2871 an attribute for the array type, which tells whether or not we
2872 have a vector, instead of a regular array. */
2873 if (TYPE_VECTOR (type))
2874 {
2875 puts_filtered (" TYPE_FLAG_VECTOR");
2876 }
876cecd0
TT
2877 if (TYPE_FIXED_INSTANCE (type))
2878 {
2879 puts_filtered (" TYPE_FIXED_INSTANCE");
2880 }
2881 if (TYPE_STUB_SUPPORTED (type))
2882 {
2883 puts_filtered (" TYPE_STUB_SUPPORTED");
2884 }
2885 if (TYPE_NOTTEXT (type))
2886 {
2887 puts_filtered (" TYPE_NOTTEXT");
2888 }
c906108c
SS
2889 puts_filtered ("\n");
2890 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 2891 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
2892 puts_filtered ("\n");
2893 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
2894 {
2895 printfi_filtered (spaces + 2,
2896 "[%d] bitpos %d bitsize %d type ",
2897 idx, TYPE_FIELD_BITPOS (type, idx),
2898 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 2899 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
2900 printf_filtered (" name '%s' (",
2901 TYPE_FIELD_NAME (type, idx) != NULL
2902 ? TYPE_FIELD_NAME (type, idx)
2903 : "<NULL>");
d4f3574e 2904 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
2905 printf_filtered (")\n");
2906 if (TYPE_FIELD_TYPE (type, idx) != NULL)
2907 {
2908 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
2909 }
2910 }
43bbcdc2
PH
2911 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2912 {
2913 printfi_filtered (spaces, "low %s%s high %s%s\n",
2914 plongest (TYPE_LOW_BOUND (type)),
2915 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
2916 plongest (TYPE_HIGH_BOUND (type)),
2917 TYPE_HIGH_BOUND_UNDEFINED (type) ? " (undefined)" : "");
2918 }
c906108c 2919 printfi_filtered (spaces, "vptr_basetype ");
d4f3574e 2920 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
c906108c
SS
2921 puts_filtered ("\n");
2922 if (TYPE_VPTR_BASETYPE (type) != NULL)
2923 {
2924 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
2925 }
7ba81444
MS
2926 printfi_filtered (spaces, "vptr_fieldno %d\n",
2927 TYPE_VPTR_FIELDNO (type));
c906108c 2928
b4ba55a1
JB
2929 switch (TYPE_SPECIFIC_FIELD (type))
2930 {
2931 case TYPE_SPECIFIC_CPLUS_STUFF:
2932 printfi_filtered (spaces, "cplus_stuff ");
2933 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
2934 gdb_stdout);
2935 puts_filtered ("\n");
2936 print_cplus_stuff (type, spaces);
2937 break;
8da61cc4 2938
b4ba55a1
JB
2939 case TYPE_SPECIFIC_GNAT_STUFF:
2940 printfi_filtered (spaces, "gnat_stuff ");
2941 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
2942 puts_filtered ("\n");
2943 print_gnat_stuff (type, spaces);
2944 break;
701c159d 2945
b4ba55a1
JB
2946 case TYPE_SPECIFIC_FLOATFORMAT:
2947 printfi_filtered (spaces, "floatformat ");
2948 if (TYPE_FLOATFORMAT (type) == NULL)
2949 puts_filtered ("(null)");
2950 else
2951 {
2952 puts_filtered ("{ ");
2953 if (TYPE_FLOATFORMAT (type)[0] == NULL
2954 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
2955 puts_filtered ("(null)");
2956 else
2957 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
2958
2959 puts_filtered (", ");
2960 if (TYPE_FLOATFORMAT (type)[1] == NULL
2961 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
2962 puts_filtered ("(null)");
2963 else
2964 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
2965
2966 puts_filtered (" }");
2967 }
2968 puts_filtered ("\n");
2969 break;
c906108c 2970
b4ba55a1
JB
2971 case TYPE_SPECIFIC_CALLING_CONVENTION:
2972 printfi_filtered (spaces, "calling_convention %d\n",
2973 TYPE_CALLING_CONVENTION (type));
2974 break;
c906108c 2975 }
b4ba55a1 2976
c906108c
SS
2977 if (spaces == 0)
2978 obstack_free (&dont_print_type_obstack, NULL);
2979}
2980
ae5a43e0
DJ
2981/* Trivial helpers for the libiberty hash table, for mapping one
2982 type to another. */
2983
2984struct type_pair
2985{
2986 struct type *old, *new;
2987};
2988
2989static hashval_t
2990type_pair_hash (const void *item)
2991{
2992 const struct type_pair *pair = item;
d8734c88 2993
ae5a43e0
DJ
2994 return htab_hash_pointer (pair->old);
2995}
2996
2997static int
2998type_pair_eq (const void *item_lhs, const void *item_rhs)
2999{
3000 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
d8734c88 3001
ae5a43e0
DJ
3002 return lhs->old == rhs->old;
3003}
3004
3005/* Allocate the hash table used by copy_type_recursive to walk
3006 types without duplicates. We use OBJFILE's obstack, because
3007 OBJFILE is about to be deleted. */
3008
3009htab_t
3010create_copied_types_hash (struct objfile *objfile)
3011{
3012 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3013 NULL, &objfile->objfile_obstack,
3014 hashtab_obstack_allocate,
3015 dummy_obstack_deallocate);
3016}
3017
7ba81444
MS
3018/* Recursively copy (deep copy) TYPE, if it is associated with
3019 OBJFILE. Return a new type allocated using malloc, a saved type if
3020 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3021 not associated with OBJFILE. */
ae5a43e0
DJ
3022
3023struct type *
7ba81444
MS
3024copy_type_recursive (struct objfile *objfile,
3025 struct type *type,
ae5a43e0
DJ
3026 htab_t copied_types)
3027{
3028 struct type_pair *stored, pair;
3029 void **slot;
3030 struct type *new_type;
3031
e9bb382b 3032 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
3033 return type;
3034
7ba81444
MS
3035 /* This type shouldn't be pointing to any types in other objfiles;
3036 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
3037 gdb_assert (TYPE_OBJFILE (type) == objfile);
3038
3039 pair.old = type;
3040 slot = htab_find_slot (copied_types, &pair, INSERT);
3041 if (*slot != NULL)
3042 return ((struct type_pair *) *slot)->new;
3043
e9bb382b 3044 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
3045
3046 /* We must add the new type to the hash table immediately, in case
3047 we encounter this type again during a recursive call below. */
d87ecdfb 3048 stored = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
ae5a43e0
DJ
3049 stored->old = type;
3050 stored->new = new_type;
3051 *slot = stored;
3052
876cecd0
TT
3053 /* Copy the common fields of types. For the main type, we simply
3054 copy the entire thing and then update specific fields as needed. */
3055 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
3056 TYPE_OBJFILE_OWNED (new_type) = 0;
3057 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 3058
ae5a43e0
DJ
3059 if (TYPE_NAME (type))
3060 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3061 if (TYPE_TAG_NAME (type))
3062 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
ae5a43e0
DJ
3063
3064 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3065 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3066
3067 /* Copy the fields. */
ae5a43e0
DJ
3068 if (TYPE_NFIELDS (type))
3069 {
3070 int i, nfields;
3071
3072 nfields = TYPE_NFIELDS (type);
1deafd4e 3073 TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
ae5a43e0
DJ
3074 for (i = 0; i < nfields; i++)
3075 {
7ba81444
MS
3076 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3077 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
3078 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3079 if (TYPE_FIELD_TYPE (type, i))
3080 TYPE_FIELD_TYPE (new_type, i)
3081 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3082 copied_types);
3083 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
3084 TYPE_FIELD_NAME (new_type, i) =
3085 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 3086 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 3087 {
d6a843b5
JK
3088 case FIELD_LOC_KIND_BITPOS:
3089 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3090 TYPE_FIELD_BITPOS (type, i));
3091 break;
3092 case FIELD_LOC_KIND_PHYSADDR:
3093 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3094 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3095 break;
3096 case FIELD_LOC_KIND_PHYSNAME:
3097 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3098 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3099 i)));
3100 break;
3101 default:
3102 internal_error (__FILE__, __LINE__,
3103 _("Unexpected type field location kind: %d"),
3104 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
3105 }
3106 }
3107 }
3108
43bbcdc2
PH
3109 /* For range types, copy the bounds information. */
3110 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3111 {
3112 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3113 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3114 }
3115
ae5a43e0
DJ
3116 /* Copy pointers to other types. */
3117 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
3118 TYPE_TARGET_TYPE (new_type) =
3119 copy_type_recursive (objfile,
3120 TYPE_TARGET_TYPE (type),
3121 copied_types);
ae5a43e0 3122 if (TYPE_VPTR_BASETYPE (type))
7ba81444
MS
3123 TYPE_VPTR_BASETYPE (new_type) =
3124 copy_type_recursive (objfile,
3125 TYPE_VPTR_BASETYPE (type),
3126 copied_types);
ae5a43e0
DJ
3127 /* Maybe copy the type_specific bits.
3128
3129 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3130 base classes and methods. There's no fundamental reason why we
3131 can't, but at the moment it is not needed. */
3132
3133 if (TYPE_CODE (type) == TYPE_CODE_FLT)
d5d6fca5 3134 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
ae5a43e0
DJ
3135 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3136 || TYPE_CODE (type) == TYPE_CODE_UNION
ae5a43e0
DJ
3137 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3138 INIT_CPLUS_SPECIFIC (new_type);
3139
3140 return new_type;
3141}
3142
4af88198
JB
3143/* Make a copy of the given TYPE, except that the pointer & reference
3144 types are not preserved.
3145
3146 This function assumes that the given type has an associated objfile.
3147 This objfile is used to allocate the new type. */
3148
3149struct type *
3150copy_type (const struct type *type)
3151{
3152 struct type *new_type;
3153
e9bb382b 3154 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 3155
e9bb382b 3156 new_type = alloc_type_copy (type);
4af88198
JB
3157 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3158 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3159 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3160 sizeof (struct main_type));
3161
3162 return new_type;
3163}
3164
e9bb382b
UW
3165
3166/* Helper functions to initialize architecture-specific types. */
3167
3168/* Allocate a type structure associated with GDBARCH and set its
3169 CODE, LENGTH, and NAME fields. */
3170struct type *
3171arch_type (struct gdbarch *gdbarch,
3172 enum type_code code, int length, char *name)
3173{
3174 struct type *type;
3175
3176 type = alloc_type_arch (gdbarch);
3177 TYPE_CODE (type) = code;
3178 TYPE_LENGTH (type) = length;
3179
3180 if (name)
3181 TYPE_NAME (type) = xstrdup (name);
3182
3183 return type;
3184}
3185
3186/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
3187 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3188 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3189struct type *
3190arch_integer_type (struct gdbarch *gdbarch,
3191 int bit, int unsigned_p, char *name)
3192{
3193 struct type *t;
3194
3195 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
3196 if (unsigned_p)
3197 TYPE_UNSIGNED (t) = 1;
3198 if (name && strcmp (name, "char") == 0)
3199 TYPE_NOSIGN (t) = 1;
3200
3201 return t;
3202}
3203
3204/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
3205 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3206 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3207struct type *
3208arch_character_type (struct gdbarch *gdbarch,
3209 int bit, int unsigned_p, char *name)
3210{
3211 struct type *t;
3212
3213 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
3214 if (unsigned_p)
3215 TYPE_UNSIGNED (t) = 1;
3216
3217 return t;
3218}
3219
3220/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
3221 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3222 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3223struct type *
3224arch_boolean_type (struct gdbarch *gdbarch,
3225 int bit, int unsigned_p, char *name)
3226{
3227 struct type *t;
3228
3229 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
3230 if (unsigned_p)
3231 TYPE_UNSIGNED (t) = 1;
3232
3233 return t;
3234}
3235
3236/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
3237 BIT is the type size in bits; if BIT equals -1, the size is
3238 determined by the floatformat. NAME is the type name. Set the
3239 TYPE_FLOATFORMAT from FLOATFORMATS. */
27067745 3240struct type *
e9bb382b
UW
3241arch_float_type (struct gdbarch *gdbarch,
3242 int bit, char *name, const struct floatformat **floatformats)
8da61cc4
DJ
3243{
3244 struct type *t;
3245
3246 if (bit == -1)
3247 {
3248 gdb_assert (floatformats != NULL);
3249 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3250 bit = floatformats[0]->totalsize;
3251 }
3252 gdb_assert (bit >= 0);
3253
e9bb382b 3254 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
8da61cc4
DJ
3255 TYPE_FLOATFORMAT (t) = floatformats;
3256 return t;
3257}
3258
e9bb382b
UW
3259/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
3260 NAME is the type name. TARGET_TYPE is the component float type. */
27067745 3261struct type *
e9bb382b
UW
3262arch_complex_type (struct gdbarch *gdbarch,
3263 char *name, struct type *target_type)
27067745
UW
3264{
3265 struct type *t;
d8734c88 3266
e9bb382b
UW
3267 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
3268 2 * TYPE_LENGTH (target_type), name);
27067745
UW
3269 TYPE_TARGET_TYPE (t) = target_type;
3270 return t;
3271}
3272
e9bb382b 3273/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
eb90ce83 3274 NAME is the type name. LENGTH is the size of the flag word in bytes. */
e9bb382b
UW
3275struct type *
3276arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
3277{
3278 int nfields = length * TARGET_CHAR_BIT;
3279 struct type *type;
3280
3281 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
3282 TYPE_UNSIGNED (type) = 1;
3283 TYPE_NFIELDS (type) = nfields;
3284 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
3285
3286 return type;
3287}
3288
3289/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
3290 position BITPOS is called NAME. */
3291void
3292append_flags_type_flag (struct type *type, int bitpos, char *name)
3293{
3294 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
3295 gdb_assert (bitpos < TYPE_NFIELDS (type));
3296 gdb_assert (bitpos >= 0);
3297
3298 if (name)
3299 {
3300 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
3301 TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
3302 }
3303 else
3304 {
3305 /* Don't show this field to the user. */
3306 TYPE_FIELD_BITPOS (type, bitpos) = -1;
3307 }
3308}
3309
3310/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
3311 specified by CODE) associated with GDBARCH. NAME is the type name. */
3312struct type *
3313arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
3314{
3315 struct type *t;
d8734c88 3316
e9bb382b
UW
3317 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
3318 t = arch_type (gdbarch, code, 0, NULL);
3319 TYPE_TAG_NAME (t) = name;
3320 INIT_CPLUS_SPECIFIC (t);
3321 return t;
3322}
3323
3324/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
3325 Do not set the field's position or adjust the type's length;
3326 the caller should do so. Return the new field. */
3327struct field *
3328append_composite_type_field_raw (struct type *t, char *name,
3329 struct type *field)
e9bb382b
UW
3330{
3331 struct field *f;
d8734c88 3332
e9bb382b
UW
3333 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
3334 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
3335 sizeof (struct field) * TYPE_NFIELDS (t));
3336 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
3337 memset (f, 0, sizeof f[0]);
3338 FIELD_TYPE (f[0]) = field;
3339 FIELD_NAME (f[0]) = name;
f5dff777
DJ
3340 return f;
3341}
3342
3343/* Add new field with name NAME and type FIELD to composite type T.
3344 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
3345void
3346append_composite_type_field_aligned (struct type *t, char *name,
3347 struct type *field, int alignment)
3348{
3349 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 3350
e9bb382b
UW
3351 if (TYPE_CODE (t) == TYPE_CODE_UNION)
3352 {
3353 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
3354 TYPE_LENGTH (t) = TYPE_LENGTH (field);
3355 }
3356 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
3357 {
3358 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
3359 if (TYPE_NFIELDS (t) > 1)
3360 {
3361 FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
3362 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
3363 * TARGET_CHAR_BIT));
3364
3365 if (alignment)
3366 {
3367 int left = FIELD_BITPOS (f[0]) % (alignment * TARGET_CHAR_BIT);
d8734c88 3368
e9bb382b
UW
3369 if (left)
3370 {
3371 FIELD_BITPOS (f[0]) += left;
3372 TYPE_LENGTH (t) += left / TARGET_CHAR_BIT;
3373 }
3374 }
3375 }
3376 }
3377}
3378
3379/* Add new field with name NAME and type FIELD to composite type T. */
3380void
3381append_composite_type_field (struct type *t, char *name,
3382 struct type *field)
3383{
3384 append_composite_type_field_aligned (t, name, field, 0);
3385}
3386
3387
000177f0
AC
3388static struct gdbarch_data *gdbtypes_data;
3389
3390const struct builtin_type *
3391builtin_type (struct gdbarch *gdbarch)
3392{
3393 return gdbarch_data (gdbarch, gdbtypes_data);
3394}
3395
3396static void *
3397gdbtypes_post_init (struct gdbarch *gdbarch)
3398{
3399 struct builtin_type *builtin_type
3400 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3401
46bf5051 3402 /* Basic types. */
e9bb382b
UW
3403 builtin_type->builtin_void
3404 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
3405 builtin_type->builtin_char
3406 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3407 !gdbarch_char_signed (gdbarch), "char");
3408 builtin_type->builtin_signed_char
3409 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3410 0, "signed char");
3411 builtin_type->builtin_unsigned_char
3412 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3413 1, "unsigned char");
3414 builtin_type->builtin_short
3415 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3416 0, "short");
3417 builtin_type->builtin_unsigned_short
3418 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3419 1, "unsigned short");
3420 builtin_type->builtin_int
3421 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3422 0, "int");
3423 builtin_type->builtin_unsigned_int
3424 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3425 1, "unsigned int");
3426 builtin_type->builtin_long
3427 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3428 0, "long");
3429 builtin_type->builtin_unsigned_long
3430 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3431 1, "unsigned long");
3432 builtin_type->builtin_long_long
3433 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3434 0, "long long");
3435 builtin_type->builtin_unsigned_long_long
3436 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3437 1, "unsigned long long");
70bd8e24 3438 builtin_type->builtin_float
e9bb382b 3439 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 3440 "float", gdbarch_float_format (gdbarch));
70bd8e24 3441 builtin_type->builtin_double
e9bb382b 3442 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 3443 "double", gdbarch_double_format (gdbarch));
70bd8e24 3444 builtin_type->builtin_long_double
e9bb382b 3445 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 3446 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 3447 builtin_type->builtin_complex
e9bb382b
UW
3448 = arch_complex_type (gdbarch, "complex",
3449 builtin_type->builtin_float);
70bd8e24 3450 builtin_type->builtin_double_complex
e9bb382b
UW
3451 = arch_complex_type (gdbarch, "double complex",
3452 builtin_type->builtin_double);
3453 builtin_type->builtin_string
3454 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
3455 builtin_type->builtin_bool
3456 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
000177f0 3457
7678ef8f
TJB
3458 /* The following three are about decimal floating point types, which
3459 are 32-bits, 64-bits and 128-bits respectively. */
3460 builtin_type->builtin_decfloat
e9bb382b 3461 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
7678ef8f 3462 builtin_type->builtin_decdouble
e9bb382b 3463 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
7678ef8f 3464 builtin_type->builtin_declong
e9bb382b 3465 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
7678ef8f 3466
69feb676 3467 /* "True" character types. */
e9bb382b
UW
3468 builtin_type->builtin_true_char
3469 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
3470 builtin_type->builtin_true_unsigned_char
3471 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 3472
df4df182 3473 /* Fixed-size integer types. */
e9bb382b
UW
3474 builtin_type->builtin_int0
3475 = arch_integer_type (gdbarch, 0, 0, "int0_t");
3476 builtin_type->builtin_int8
3477 = arch_integer_type (gdbarch, 8, 0, "int8_t");
3478 builtin_type->builtin_uint8
3479 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
3480 builtin_type->builtin_int16
3481 = arch_integer_type (gdbarch, 16, 0, "int16_t");
3482 builtin_type->builtin_uint16
3483 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
3484 builtin_type->builtin_int32
3485 = arch_integer_type (gdbarch, 32, 0, "int32_t");
3486 builtin_type->builtin_uint32
3487 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
3488 builtin_type->builtin_int64
3489 = arch_integer_type (gdbarch, 64, 0, "int64_t");
3490 builtin_type->builtin_uint64
3491 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
3492 builtin_type->builtin_int128
3493 = arch_integer_type (gdbarch, 128, 0, "int128_t");
3494 builtin_type->builtin_uint128
3495 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
3496 TYPE_NOTTEXT (builtin_type->builtin_int8) = 1;
3497 TYPE_NOTTEXT (builtin_type->builtin_uint8) = 1;
df4df182 3498
9a22f0d0
PM
3499 /* Wide character types. */
3500 builtin_type->builtin_char16
3501 = arch_integer_type (gdbarch, 16, 0, "char16_t");
3502 builtin_type->builtin_char32
3503 = arch_integer_type (gdbarch, 32, 0, "char32_t");
3504
3505
46bf5051 3506 /* Default data/code pointer types. */
e9bb382b
UW
3507 builtin_type->builtin_data_ptr
3508 = lookup_pointer_type (builtin_type->builtin_void);
3509 builtin_type->builtin_func_ptr
3510 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
46bf5051 3511
78267919 3512 /* This type represents a GDB internal function. */
e9bb382b
UW
3513 builtin_type->internal_fn
3514 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
3515 "<internal function>");
78267919 3516
46bf5051
UW
3517 return builtin_type;
3518}
3519
3520
3521/* This set of objfile-based types is intended to be used by symbol
3522 readers as basic types. */
3523
3524static const struct objfile_data *objfile_type_data;
3525
3526const struct objfile_type *
3527objfile_type (struct objfile *objfile)
3528{
3529 struct gdbarch *gdbarch;
3530 struct objfile_type *objfile_type
3531 = objfile_data (objfile, objfile_type_data);
3532
3533 if (objfile_type)
3534 return objfile_type;
3535
3536 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
3537 1, struct objfile_type);
3538
3539 /* Use the objfile architecture to determine basic type properties. */
3540 gdbarch = get_objfile_arch (objfile);
3541
3542 /* Basic types. */
3543 objfile_type->builtin_void
3544 = init_type (TYPE_CODE_VOID, 1,
3545 0,
3546 "void", objfile);
3547
3548 objfile_type->builtin_char
3549 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3550 (TYPE_FLAG_NOSIGN
3551 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3552 "char", objfile);
3553 objfile_type->builtin_signed_char
3554 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3555 0,
3556 "signed char", objfile);
3557 objfile_type->builtin_unsigned_char
3558 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3559 TYPE_FLAG_UNSIGNED,
3560 "unsigned char", objfile);
3561 objfile_type->builtin_short
3562 = init_type (TYPE_CODE_INT,
3563 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3564 0, "short", objfile);
3565 objfile_type->builtin_unsigned_short
3566 = init_type (TYPE_CODE_INT,
3567 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3568 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
3569 objfile_type->builtin_int
3570 = init_type (TYPE_CODE_INT,
3571 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3572 0, "int", objfile);
3573 objfile_type->builtin_unsigned_int
3574 = init_type (TYPE_CODE_INT,
3575 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3576 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
3577 objfile_type->builtin_long
3578 = init_type (TYPE_CODE_INT,
3579 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3580 0, "long", objfile);
3581 objfile_type->builtin_unsigned_long
3582 = init_type (TYPE_CODE_INT,
3583 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3584 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
3585 objfile_type->builtin_long_long
3586 = init_type (TYPE_CODE_INT,
3587 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3588 0, "long long", objfile);
3589 objfile_type->builtin_unsigned_long_long
3590 = init_type (TYPE_CODE_INT,
3591 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3592 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
3593
3594 objfile_type->builtin_float
3595 = init_type (TYPE_CODE_FLT,
3596 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
3597 0, "float", objfile);
3598 TYPE_FLOATFORMAT (objfile_type->builtin_float)
3599 = gdbarch_float_format (gdbarch);
3600 objfile_type->builtin_double
3601 = init_type (TYPE_CODE_FLT,
3602 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
3603 0, "double", objfile);
3604 TYPE_FLOATFORMAT (objfile_type->builtin_double)
3605 = gdbarch_double_format (gdbarch);
3606 objfile_type->builtin_long_double
3607 = init_type (TYPE_CODE_FLT,
3608 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
3609 0, "long double", objfile);
3610 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
3611 = gdbarch_long_double_format (gdbarch);
3612
3613 /* This type represents a type that was unrecognized in symbol read-in. */
3614 objfile_type->builtin_error
3615 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
3616
3617 /* The following set of types is used for symbols with no
3618 debug information. */
3619 objfile_type->nodebug_text_symbol
3620 = init_type (TYPE_CODE_FUNC, 1, 0,
3621 "<text variable, no debug info>", objfile);
3622 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
3623 = objfile_type->builtin_int;
3624 objfile_type->nodebug_data_symbol
3625 = init_type (TYPE_CODE_INT,
3626 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3627 "<data variable, no debug info>", objfile);
3628 objfile_type->nodebug_unknown_symbol
3629 = init_type (TYPE_CODE_INT, 1, 0,
3630 "<variable (not text or data), no debug info>", objfile);
3631 objfile_type->nodebug_tls_symbol
3632 = init_type (TYPE_CODE_INT,
3633 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3634 "<thread local variable, no debug info>", objfile);
000177f0
AC
3635
3636 /* NOTE: on some targets, addresses and pointers are not necessarily
3637 the same --- for example, on the D10V, pointers are 16 bits long,
3638 but addresses are 32 bits long. See doc/gdbint.texinfo,
3639 ``Pointers Are Not Always Addresses''.
3640
3641 The upshot is:
3642 - gdb's `struct type' always describes the target's
3643 representation.
3644 - gdb's `struct value' objects should always hold values in
3645 target form.
3646 - gdb's CORE_ADDR values are addresses in the unified virtual
3647 address space that the assembler and linker work with. Thus,
3648 since target_read_memory takes a CORE_ADDR as an argument, it
3649 can access any memory on the target, even if the processor has
3650 separate code and data address spaces.
3651
3652 So, for example:
3653 - If v is a value holding a D10V code pointer, its contents are
3654 in target form: a big-endian address left-shifted two bits.
3655 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3656 sizeof (void *) == 2 on the target.
3657
46bf5051
UW
3658 In this context, objfile_type->builtin_core_addr is a bit odd:
3659 it's a target type for a value the target will never see. It's
3660 only used to hold the values of (typeless) linker symbols, which
3661 are indeed in the unified virtual address space. */
000177f0 3662
46bf5051
UW
3663 objfile_type->builtin_core_addr
3664 = init_type (TYPE_CODE_INT,
3665 gdbarch_addr_bit (gdbarch) / 8,
3666 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
64c50499 3667
46bf5051
UW
3668 set_objfile_data (objfile, objfile_type_data, objfile_type);
3669 return objfile_type;
000177f0
AC
3670}
3671
46bf5051 3672
a14ed312 3673extern void _initialize_gdbtypes (void);
c906108c 3674void
fba45db2 3675_initialize_gdbtypes (void)
c906108c 3676{
5674de60 3677 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
46bf5051 3678 objfile_type_data = register_objfile_data ();
5674de60 3679
85c07804
AC
3680 add_setshow_zinteger_cmd ("overload", no_class, &overload_debug, _("\
3681Set debugging of C++ overloading."), _("\
3682Show debugging of C++ overloading."), _("\
3683When enabled, ranking of the functions is displayed."),
3684 NULL,
920d2a44 3685 show_overload_debug,
85c07804 3686 &setdebuglist, &showdebuglist);
5674de60 3687
7ba81444 3688 /* Add user knob for controlling resolution of opaque types. */
5674de60
UW
3689 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3690 &opaque_type_resolution, _("\
3691Set resolution of opaque struct/class/union types (if set before loading symbols)."), _("\
3692Show resolution of opaque struct/class/union types (if set before loading symbols)."), NULL,
3693 NULL,
3694 show_opaque_type_resolution,
3695 &setlist, &showlist);
c906108c 3696}
This page took 1.018419 seconds and 4 git commands to generate.