Automatic date update in version.in
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
32d0add0 3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c
SS
23#include "bfd.h"
24#include "symtab.h"
25#include "symfile.h"
26#include "objfiles.h"
27#include "gdbtypes.h"
28#include "expression.h"
29#include "language.h"
30#include "target.h"
31#include "value.h"
32#include "demangle.h"
33#include "complaints.h"
34#include "gdbcmd.h"
015a42b4 35#include "cp-abi.h"
ae5a43e0 36#include "hashtab.h"
8de20a37 37#include "cp-support.h"
ca092b61
DE
38#include "bcache.h"
39#include "dwarf2loc.h"
80180f79 40#include "gdbcore.h"
ac3aafc7 41
6403aeea
SW
42/* Initialize BADNESS constants. */
43
a9d5ef47 44const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 45
a9d5ef47
SW
46const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 48
a9d5ef47 49const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 50
a9d5ef47
SW
51const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 58const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
59const struct rank BASE_CONVERSION_BADNESS = {2,0};
60const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
da096638 61const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 62const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 63const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 64
8da61cc4 65/* Floatformat pairs. */
f9e9243a
UW
66const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
69};
8da61cc4
DJ
70const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
73};
74const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
77};
78const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
81};
82const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
84 &floatformat_i387_ext
85};
86const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
89};
90const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
93};
94const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
97};
98const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
101};
102const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_vax_f,
104 &floatformat_vax_f
105};
106const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_d,
108 &floatformat_vax_d
109};
b14d30e1 110const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
f5aee5ee
AM
111 &floatformat_ibm_long_double_big,
112 &floatformat_ibm_long_double_little
b14d30e1 113};
8da61cc4 114
2873700e
KS
115/* Should opaque types be resolved? */
116
117static int opaque_type_resolution = 1;
118
119/* A flag to enable printing of debugging information of C++
120 overloading. */
121
122unsigned int overload_debug = 0;
123
a451cb65
KS
124/* A flag to enable strict type checking. */
125
126static int strict_type_checking = 1;
127
2873700e 128/* A function to show whether opaque types are resolved. */
5212577a 129
920d2a44
AC
130static void
131show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
132 struct cmd_list_element *c,
133 const char *value)
920d2a44 134{
3e43a32a
MS
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
137 value);
138}
139
2873700e 140/* A function to show whether C++ overload debugging is enabled. */
5212577a 141
920d2a44
AC
142static void
143show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145{
7ba81444
MS
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
147 value);
920d2a44 148}
c906108c 149
a451cb65
KS
150/* A function to show the status of strict type checking. */
151
152static void
153show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155{
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
157}
158
5212577a 159\f
e9bb382b
UW
160/* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
c906108c
SS
163
164struct type *
fba45db2 165alloc_type (struct objfile *objfile)
c906108c 166{
52f0bd74 167 struct type *type;
c906108c 168
e9bb382b
UW
169 gdb_assert (objfile != NULL);
170
7ba81444 171 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
174 struct main_type);
175 OBJSTAT (objfile, n_types++);
c906108c 176
e9bb382b
UW
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
c906108c 179
7ba81444 180 /* Initialize the fields that might not be zero. */
c906108c
SS
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
2fdde8f8 183 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 184
c16abbde 185 return type;
c906108c
SS
186}
187
e9bb382b
UW
188/* Allocate a new GDBARCH-associated type structure and fill it
189 with some defaults. Space for the type structure is allocated
8f57eec2 190 on the obstack associated with GDBARCH. */
e9bb382b
UW
191
192struct type *
193alloc_type_arch (struct gdbarch *gdbarch)
194{
195 struct type *type;
196
197 gdb_assert (gdbarch != NULL);
198
199 /* Alloc the structure and start off with all fields zeroed. */
200
8f57eec2
PP
201 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
202 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
e9bb382b
UW
203
204 TYPE_OBJFILE_OWNED (type) = 0;
205 TYPE_OWNER (type).gdbarch = gdbarch;
206
207 /* Initialize the fields that might not be zero. */
208
209 TYPE_CODE (type) = TYPE_CODE_UNDEF;
e9bb382b
UW
210 TYPE_CHAIN (type) = type; /* Chain back to itself. */
211
212 return type;
213}
214
215/* If TYPE is objfile-associated, allocate a new type structure
216 associated with the same objfile. If TYPE is gdbarch-associated,
217 allocate a new type structure associated with the same gdbarch. */
218
219struct type *
220alloc_type_copy (const struct type *type)
221{
222 if (TYPE_OBJFILE_OWNED (type))
223 return alloc_type (TYPE_OWNER (type).objfile);
224 else
225 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
226}
227
228/* If TYPE is gdbarch-associated, return that architecture.
229 If TYPE is objfile-associated, return that objfile's architecture. */
230
231struct gdbarch *
232get_type_arch (const struct type *type)
233{
234 if (TYPE_OBJFILE_OWNED (type))
235 return get_objfile_arch (TYPE_OWNER (type).objfile);
236 else
237 return TYPE_OWNER (type).gdbarch;
238}
239
99ad9427
YQ
240/* See gdbtypes.h. */
241
242struct type *
243get_target_type (struct type *type)
244{
245 if (type != NULL)
246 {
247 type = TYPE_TARGET_TYPE (type);
248 if (type != NULL)
249 type = check_typedef (type);
250 }
251
252 return type;
253}
254
2e056931
SM
255/* See gdbtypes.h. */
256
257unsigned int
258type_length_units (struct type *type)
259{
260 struct gdbarch *arch = get_type_arch (type);
261 int unit_size = gdbarch_addressable_memory_unit_size (arch);
262
263 return TYPE_LENGTH (type) / unit_size;
264}
265
2fdde8f8
DJ
266/* Alloc a new type instance structure, fill it with some defaults,
267 and point it at OLDTYPE. Allocate the new type instance from the
268 same place as OLDTYPE. */
269
270static struct type *
271alloc_type_instance (struct type *oldtype)
272{
273 struct type *type;
274
275 /* Allocate the structure. */
276
e9bb382b 277 if (! TYPE_OBJFILE_OWNED (oldtype))
41bf6aca 278 type = XCNEW (struct type);
2fdde8f8 279 else
1deafd4e
PA
280 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
281 struct type);
282
2fdde8f8
DJ
283 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
284
285 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
286
c16abbde 287 return type;
2fdde8f8
DJ
288}
289
290/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 291 replacing it with something else. Preserve owner information. */
5212577a 292
2fdde8f8
DJ
293static void
294smash_type (struct type *type)
295{
e9bb382b
UW
296 int objfile_owned = TYPE_OBJFILE_OWNED (type);
297 union type_owner owner = TYPE_OWNER (type);
298
2fdde8f8
DJ
299 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
300
e9bb382b
UW
301 /* Restore owner information. */
302 TYPE_OBJFILE_OWNED (type) = objfile_owned;
303 TYPE_OWNER (type) = owner;
304
2fdde8f8
DJ
305 /* For now, delete the rings. */
306 TYPE_CHAIN (type) = type;
307
308 /* For now, leave the pointer/reference types alone. */
309}
310
c906108c
SS
311/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
312 to a pointer to memory where the pointer type should be stored.
313 If *TYPEPTR is zero, update it to point to the pointer type we return.
314 We allocate new memory if needed. */
315
316struct type *
fba45db2 317make_pointer_type (struct type *type, struct type **typeptr)
c906108c 318{
52f0bd74 319 struct type *ntype; /* New type */
053cb41b 320 struct type *chain;
c906108c
SS
321
322 ntype = TYPE_POINTER_TYPE (type);
323
c5aa993b 324 if (ntype)
c906108c 325 {
c5aa993b 326 if (typeptr == 0)
7ba81444
MS
327 return ntype; /* Don't care about alloc,
328 and have new type. */
c906108c 329 else if (*typeptr == 0)
c5aa993b 330 {
7ba81444 331 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 332 return ntype;
c5aa993b 333 }
c906108c
SS
334 }
335
336 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
337 {
e9bb382b 338 ntype = alloc_type_copy (type);
c906108c
SS
339 if (typeptr)
340 *typeptr = ntype;
341 }
7ba81444 342 else /* We have storage, but need to reset it. */
c906108c
SS
343 {
344 ntype = *typeptr;
053cb41b 345 chain = TYPE_CHAIN (ntype);
2fdde8f8 346 smash_type (ntype);
053cb41b 347 TYPE_CHAIN (ntype) = chain;
c906108c
SS
348 }
349
350 TYPE_TARGET_TYPE (ntype) = type;
351 TYPE_POINTER_TYPE (type) = ntype;
352
5212577a 353 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 354
50810684
UW
355 TYPE_LENGTH (ntype)
356 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
357 TYPE_CODE (ntype) = TYPE_CODE_PTR;
358
67b2adb2 359 /* Mark pointers as unsigned. The target converts between pointers
76e71323 360 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 361 gdbarch_address_to_pointer. */
876cecd0 362 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 363
053cb41b
JB
364 /* Update the length of all the other variants of this type. */
365 chain = TYPE_CHAIN (ntype);
366 while (chain != ntype)
367 {
368 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
369 chain = TYPE_CHAIN (chain);
370 }
371
c906108c
SS
372 return ntype;
373}
374
375/* Given a type TYPE, return a type of pointers to that type.
376 May need to construct such a type if this is the first use. */
377
378struct type *
fba45db2 379lookup_pointer_type (struct type *type)
c906108c 380{
c5aa993b 381 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
382}
383
7ba81444
MS
384/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
385 points to a pointer to memory where the reference type should be
386 stored. If *TYPEPTR is zero, update it to point to the reference
387 type we return. We allocate new memory if needed. */
c906108c
SS
388
389struct type *
fba45db2 390make_reference_type (struct type *type, struct type **typeptr)
c906108c 391{
52f0bd74 392 struct type *ntype; /* New type */
1e98b326 393 struct type *chain;
c906108c
SS
394
395 ntype = TYPE_REFERENCE_TYPE (type);
396
c5aa993b 397 if (ntype)
c906108c 398 {
c5aa993b 399 if (typeptr == 0)
7ba81444
MS
400 return ntype; /* Don't care about alloc,
401 and have new type. */
c906108c 402 else if (*typeptr == 0)
c5aa993b 403 {
7ba81444 404 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 405 return ntype;
c5aa993b 406 }
c906108c
SS
407 }
408
409 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
410 {
e9bb382b 411 ntype = alloc_type_copy (type);
c906108c
SS
412 if (typeptr)
413 *typeptr = ntype;
414 }
7ba81444 415 else /* We have storage, but need to reset it. */
c906108c
SS
416 {
417 ntype = *typeptr;
1e98b326 418 chain = TYPE_CHAIN (ntype);
2fdde8f8 419 smash_type (ntype);
1e98b326 420 TYPE_CHAIN (ntype) = chain;
c906108c
SS
421 }
422
423 TYPE_TARGET_TYPE (ntype) = type;
424 TYPE_REFERENCE_TYPE (type) = ntype;
425
7ba81444
MS
426 /* FIXME! Assume the machine has only one representation for
427 references, and that it matches the (only) representation for
428 pointers! */
c906108c 429
50810684
UW
430 TYPE_LENGTH (ntype) =
431 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c 432 TYPE_CODE (ntype) = TYPE_CODE_REF;
c5aa993b 433
c906108c
SS
434 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
435 TYPE_REFERENCE_TYPE (type) = ntype;
436
1e98b326
JB
437 /* Update the length of all the other variants of this type. */
438 chain = TYPE_CHAIN (ntype);
439 while (chain != ntype)
440 {
441 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
442 chain = TYPE_CHAIN (chain);
443 }
444
c906108c
SS
445 return ntype;
446}
447
7ba81444
MS
448/* Same as above, but caller doesn't care about memory allocation
449 details. */
c906108c
SS
450
451struct type *
fba45db2 452lookup_reference_type (struct type *type)
c906108c 453{
c5aa993b 454 return make_reference_type (type, (struct type **) 0);
c906108c
SS
455}
456
7ba81444
MS
457/* Lookup a function type that returns type TYPE. TYPEPTR, if
458 nonzero, points to a pointer to memory where the function type
459 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 460 function type we return. We allocate new memory if needed. */
c906108c
SS
461
462struct type *
0c8b41f1 463make_function_type (struct type *type, struct type **typeptr)
c906108c 464{
52f0bd74 465 struct type *ntype; /* New type */
c906108c
SS
466
467 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
468 {
e9bb382b 469 ntype = alloc_type_copy (type);
c906108c
SS
470 if (typeptr)
471 *typeptr = ntype;
472 }
7ba81444 473 else /* We have storage, but need to reset it. */
c906108c
SS
474 {
475 ntype = *typeptr;
2fdde8f8 476 smash_type (ntype);
c906108c
SS
477 }
478
479 TYPE_TARGET_TYPE (ntype) = type;
480
481 TYPE_LENGTH (ntype) = 1;
482 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 483
b6cdc2c1
JK
484 INIT_FUNC_SPECIFIC (ntype);
485
c906108c
SS
486 return ntype;
487}
488
c906108c
SS
489/* Given a type TYPE, return a type of functions that return that type.
490 May need to construct such a type if this is the first use. */
491
492struct type *
fba45db2 493lookup_function_type (struct type *type)
c906108c 494{
0c8b41f1 495 return make_function_type (type, (struct type **) 0);
c906108c
SS
496}
497
71918a86 498/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
499 function type. If the final type in PARAM_TYPES is NULL, make a
500 varargs function. */
71918a86
TT
501
502struct type *
503lookup_function_type_with_arguments (struct type *type,
504 int nparams,
505 struct type **param_types)
506{
507 struct type *fn = make_function_type (type, (struct type **) 0);
508 int i;
509
e314d629 510 if (nparams > 0)
a6fb9c08 511 {
e314d629
TT
512 if (param_types[nparams - 1] == NULL)
513 {
514 --nparams;
515 TYPE_VARARGS (fn) = 1;
516 }
517 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
518 == TYPE_CODE_VOID)
519 {
520 --nparams;
521 /* Caller should have ensured this. */
522 gdb_assert (nparams == 0);
523 TYPE_PROTOTYPED (fn) = 1;
524 }
a6fb9c08
TT
525 }
526
71918a86
TT
527 TYPE_NFIELDS (fn) = nparams;
528 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
529 for (i = 0; i < nparams; ++i)
530 TYPE_FIELD_TYPE (fn, i) = param_types[i];
531
532 return fn;
533}
534
47663de5
MS
535/* Identify address space identifier by name --
536 return the integer flag defined in gdbtypes.h. */
5212577a
DE
537
538int
50810684 539address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
47663de5 540{
8b2dbe47 541 int type_flags;
d8734c88 542
7ba81444 543 /* Check for known address space delimiters. */
47663de5 544 if (!strcmp (space_identifier, "code"))
876cecd0 545 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 546 else if (!strcmp (space_identifier, "data"))
876cecd0 547 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
548 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
549 && gdbarch_address_class_name_to_type_flags (gdbarch,
550 space_identifier,
551 &type_flags))
8b2dbe47 552 return type_flags;
47663de5 553 else
8a3fe4f8 554 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
555}
556
557/* Identify address space identifier by integer flag as defined in
7ba81444 558 gdbtypes.h -- return the string version of the adress space name. */
47663de5 559
321432c0 560const char *
50810684 561address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 562{
876cecd0 563 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 564 return "code";
876cecd0 565 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 566 return "data";
876cecd0 567 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
568 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
569 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
570 else
571 return NULL;
572}
573
2fdde8f8 574/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
575
576 If STORAGE is non-NULL, create the new type instance there.
577 STORAGE must be in the same obstack as TYPE. */
47663de5 578
b9362cc7 579static struct type *
2fdde8f8
DJ
580make_qualified_type (struct type *type, int new_flags,
581 struct type *storage)
47663de5
MS
582{
583 struct type *ntype;
584
585 ntype = type;
5f61c20e
JK
586 do
587 {
588 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
589 return ntype;
590 ntype = TYPE_CHAIN (ntype);
591 }
592 while (ntype != type);
47663de5 593
2fdde8f8
DJ
594 /* Create a new type instance. */
595 if (storage == NULL)
596 ntype = alloc_type_instance (type);
597 else
598 {
7ba81444
MS
599 /* If STORAGE was provided, it had better be in the same objfile
600 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
601 if one objfile is freed and the other kept, we'd have
602 dangling pointers. */
ad766c0a
JB
603 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
604
2fdde8f8
DJ
605 ntype = storage;
606 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
607 TYPE_CHAIN (ntype) = ntype;
608 }
47663de5
MS
609
610 /* Pointers or references to the original type are not relevant to
2fdde8f8 611 the new type. */
47663de5
MS
612 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
613 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 614
2fdde8f8
DJ
615 /* Chain the new qualified type to the old type. */
616 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
617 TYPE_CHAIN (type) = ntype;
618
619 /* Now set the instance flags and return the new type. */
620 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 621
ab5d3da6
KB
622 /* Set length of new type to that of the original type. */
623 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
624
47663de5
MS
625 return ntype;
626}
627
2fdde8f8
DJ
628/* Make an address-space-delimited variant of a type -- a type that
629 is identical to the one supplied except that it has an address
630 space attribute attached to it (such as "code" or "data").
631
7ba81444
MS
632 The space attributes "code" and "data" are for Harvard
633 architectures. The address space attributes are for architectures
634 which have alternately sized pointers or pointers with alternate
635 representations. */
2fdde8f8
DJ
636
637struct type *
638make_type_with_address_space (struct type *type, int space_flag)
639{
2fdde8f8 640 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
641 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
642 | TYPE_INSTANCE_FLAG_DATA_SPACE
643 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
644 | space_flag);
645
646 return make_qualified_type (type, new_flags, NULL);
647}
c906108c
SS
648
649/* Make a "c-v" variant of a type -- a type that is identical to the
650 one supplied except that it may have const or volatile attributes
651 CNST is a flag for setting the const attribute
652 VOLTL is a flag for setting the volatile attribute
653 TYPE is the base type whose variant we are creating.
c906108c 654
ad766c0a
JB
655 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
656 storage to hold the new qualified type; *TYPEPTR and TYPE must be
657 in the same objfile. Otherwise, allocate fresh memory for the new
658 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
659 new type we construct. */
5212577a 660
c906108c 661struct type *
7ba81444
MS
662make_cv_type (int cnst, int voltl,
663 struct type *type,
664 struct type **typeptr)
c906108c 665{
52f0bd74 666 struct type *ntype; /* New type */
c906108c 667
2fdde8f8 668 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
669 & ~(TYPE_INSTANCE_FLAG_CONST
670 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 671
c906108c 672 if (cnst)
876cecd0 673 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
674
675 if (voltl)
876cecd0 676 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 677
2fdde8f8 678 if (typeptr && *typeptr != NULL)
a02fd225 679 {
ad766c0a
JB
680 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
681 a C-V variant chain that threads across objfiles: if one
682 objfile gets freed, then the other has a broken C-V chain.
683
684 This code used to try to copy over the main type from TYPE to
685 *TYPEPTR if they were in different objfiles, but that's
686 wrong, too: TYPE may have a field list or member function
687 lists, which refer to types of their own, etc. etc. The
688 whole shebang would need to be copied over recursively; you
689 can't have inter-objfile pointers. The only thing to do is
690 to leave stub types as stub types, and look them up afresh by
691 name each time you encounter them. */
692 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
693 }
694
7ba81444
MS
695 ntype = make_qualified_type (type, new_flags,
696 typeptr ? *typeptr : NULL);
c906108c 697
2fdde8f8
DJ
698 if (typeptr != NULL)
699 *typeptr = ntype;
a02fd225 700
2fdde8f8 701 return ntype;
a02fd225 702}
c906108c 703
06d66ee9
TT
704/* Make a 'restrict'-qualified version of TYPE. */
705
706struct type *
707make_restrict_type (struct type *type)
708{
709 return make_qualified_type (type,
710 (TYPE_INSTANCE_FLAGS (type)
711 | TYPE_INSTANCE_FLAG_RESTRICT),
712 NULL);
713}
714
f1660027
TT
715/* Make a type without const, volatile, or restrict. */
716
717struct type *
718make_unqualified_type (struct type *type)
719{
720 return make_qualified_type (type,
721 (TYPE_INSTANCE_FLAGS (type)
722 & ~(TYPE_INSTANCE_FLAG_CONST
723 | TYPE_INSTANCE_FLAG_VOLATILE
724 | TYPE_INSTANCE_FLAG_RESTRICT)),
725 NULL);
726}
727
a2c2acaf
MW
728/* Make a '_Atomic'-qualified version of TYPE. */
729
730struct type *
731make_atomic_type (struct type *type)
732{
733 return make_qualified_type (type,
734 (TYPE_INSTANCE_FLAGS (type)
735 | TYPE_INSTANCE_FLAG_ATOMIC),
736 NULL);
737}
738
2fdde8f8
DJ
739/* Replace the contents of ntype with the type *type. This changes the
740 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
741 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 742
cda6c68a
JB
743 In order to build recursive types, it's inevitable that we'll need
744 to update types in place --- but this sort of indiscriminate
745 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
746 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
747 clear if more steps are needed. */
5212577a 748
dd6bda65
DJ
749void
750replace_type (struct type *ntype, struct type *type)
751{
ab5d3da6 752 struct type *chain;
dd6bda65 753
ad766c0a
JB
754 /* These two types had better be in the same objfile. Otherwise,
755 the assignment of one type's main type structure to the other
756 will produce a type with references to objects (names; field
757 lists; etc.) allocated on an objfile other than its own. */
758 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
759
2fdde8f8 760 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 761
7ba81444
MS
762 /* The type length is not a part of the main type. Update it for
763 each type on the variant chain. */
ab5d3da6 764 chain = ntype;
5f61c20e
JK
765 do
766 {
767 /* Assert that this element of the chain has no address-class bits
768 set in its flags. Such type variants might have type lengths
769 which are supposed to be different from the non-address-class
770 variants. This assertion shouldn't ever be triggered because
771 symbol readers which do construct address-class variants don't
772 call replace_type(). */
773 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
774
775 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
776 chain = TYPE_CHAIN (chain);
777 }
778 while (ntype != chain);
ab5d3da6 779
2fdde8f8
DJ
780 /* Assert that the two types have equivalent instance qualifiers.
781 This should be true for at least all of our debug readers. */
782 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
783}
784
c906108c
SS
785/* Implement direct support for MEMBER_TYPE in GNU C++.
786 May need to construct such a type if this is the first use.
787 The TYPE is the type of the member. The DOMAIN is the type
788 of the aggregate that the member belongs to. */
789
790struct type *
0d5de010 791lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 792{
52f0bd74 793 struct type *mtype;
c906108c 794
e9bb382b 795 mtype = alloc_type_copy (type);
0d5de010 796 smash_to_memberptr_type (mtype, domain, type);
c16abbde 797 return mtype;
c906108c
SS
798}
799
0d5de010
DJ
800/* Return a pointer-to-method type, for a method of type TO_TYPE. */
801
802struct type *
803lookup_methodptr_type (struct type *to_type)
804{
805 struct type *mtype;
806
e9bb382b 807 mtype = alloc_type_copy (to_type);
0b92b5bb 808 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
809 return mtype;
810}
811
7ba81444
MS
812/* Allocate a stub method whose return type is TYPE. This apparently
813 happens for speed of symbol reading, since parsing out the
814 arguments to the method is cpu-intensive, the way we are doing it.
815 So, we will fill in arguments later. This always returns a fresh
816 type. */
c906108c
SS
817
818struct type *
fba45db2 819allocate_stub_method (struct type *type)
c906108c
SS
820{
821 struct type *mtype;
822
e9bb382b
UW
823 mtype = alloc_type_copy (type);
824 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
825 TYPE_LENGTH (mtype) = 1;
826 TYPE_STUB (mtype) = 1;
c906108c 827 TYPE_TARGET_TYPE (mtype) = type;
4bfb94b8 828 /* TYPE_SELF_TYPE (mtype) = unknown yet */
c16abbde 829 return mtype;
c906108c
SS
830}
831
729efb13
SA
832/* Create a range type with a dynamic range from LOW_BOUND to
833 HIGH_BOUND, inclusive. See create_range_type for further details. */
c906108c
SS
834
835struct type *
729efb13
SA
836create_range_type (struct type *result_type, struct type *index_type,
837 const struct dynamic_prop *low_bound,
838 const struct dynamic_prop *high_bound)
c906108c
SS
839{
840 if (result_type == NULL)
e9bb382b 841 result_type = alloc_type_copy (index_type);
c906108c
SS
842 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
843 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 844 if (TYPE_STUB (index_type))
876cecd0 845 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
846 else
847 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
729efb13 848
43bbcdc2
PH
849 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
850 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
729efb13
SA
851 TYPE_RANGE_DATA (result_type)->low = *low_bound;
852 TYPE_RANGE_DATA (result_type)->high = *high_bound;
c906108c 853
729efb13 854 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
876cecd0 855 TYPE_UNSIGNED (result_type) = 1;
c906108c 856
45e44d27
JB
857 /* Ada allows the declaration of range types whose upper bound is
858 less than the lower bound, so checking the lower bound is not
859 enough. Make sure we do not mark a range type whose upper bound
860 is negative as unsigned. */
861 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
862 TYPE_UNSIGNED (result_type) = 0;
863
262452ec 864 return result_type;
c906108c
SS
865}
866
729efb13
SA
867/* Create a range type using either a blank type supplied in
868 RESULT_TYPE, or creating a new type, inheriting the objfile from
869 INDEX_TYPE.
870
871 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
872 to HIGH_BOUND, inclusive.
873
874 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
875 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
876
877struct type *
878create_static_range_type (struct type *result_type, struct type *index_type,
879 LONGEST low_bound, LONGEST high_bound)
880{
881 struct dynamic_prop low, high;
882
883 low.kind = PROP_CONST;
884 low.data.const_val = low_bound;
885
886 high.kind = PROP_CONST;
887 high.data.const_val = high_bound;
888
889 result_type = create_range_type (result_type, index_type, &low, &high);
890
891 return result_type;
892}
893
80180f79
SA
894/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
895 are static, otherwise returns 0. */
896
897static int
898has_static_range (const struct range_bounds *bounds)
899{
900 return (bounds->low.kind == PROP_CONST
901 && bounds->high.kind == PROP_CONST);
902}
903
904
7ba81444
MS
905/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
906 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
907 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
908
909int
fba45db2 910get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c 911{
f168693b 912 type = check_typedef (type);
c906108c
SS
913 switch (TYPE_CODE (type))
914 {
915 case TYPE_CODE_RANGE:
916 *lowp = TYPE_LOW_BOUND (type);
917 *highp = TYPE_HIGH_BOUND (type);
918 return 1;
919 case TYPE_CODE_ENUM:
920 if (TYPE_NFIELDS (type) > 0)
921 {
922 /* The enums may not be sorted by value, so search all
0963b4bd 923 entries. */
c906108c
SS
924 int i;
925
14e75d8e 926 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
c906108c
SS
927 for (i = 0; i < TYPE_NFIELDS (type); i++)
928 {
14e75d8e
JK
929 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
930 *lowp = TYPE_FIELD_ENUMVAL (type, i);
931 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
932 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
933 }
934
7ba81444 935 /* Set unsigned indicator if warranted. */
c5aa993b 936 if (*lowp >= 0)
c906108c 937 {
876cecd0 938 TYPE_UNSIGNED (type) = 1;
c906108c
SS
939 }
940 }
941 else
942 {
943 *lowp = 0;
944 *highp = -1;
945 }
946 return 0;
947 case TYPE_CODE_BOOL:
948 *lowp = 0;
949 *highp = 1;
950 return 0;
951 case TYPE_CODE_INT:
c5aa993b 952 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
953 return -1;
954 if (!TYPE_UNSIGNED (type))
955 {
c5aa993b 956 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
957 *highp = -*lowp - 1;
958 return 0;
959 }
7ba81444 960 /* ... fall through for unsigned ints ... */
c906108c
SS
961 case TYPE_CODE_CHAR:
962 *lowp = 0;
963 /* This round-about calculation is to avoid shifting by
7b83ea04 964 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 965 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
966 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
967 *highp = (*highp - 1) | *highp;
968 return 0;
969 default:
970 return -1;
971 }
972}
973
dbc98a8b
KW
974/* Assuming TYPE is a simple, non-empty array type, compute its upper
975 and lower bound. Save the low bound into LOW_BOUND if not NULL.
976 Save the high bound into HIGH_BOUND if not NULL.
977
0963b4bd 978 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
979 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
980
981 We now simply use get_discrete_bounds call to get the values
982 of the low and high bounds.
983 get_discrete_bounds can return three values:
984 1, meaning that index is a range,
985 0, meaning that index is a discrete type,
986 or -1 for failure. */
987
988int
989get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
990{
991 struct type *index = TYPE_INDEX_TYPE (type);
992 LONGEST low = 0;
993 LONGEST high = 0;
994 int res;
995
996 if (index == NULL)
997 return 0;
998
999 res = get_discrete_bounds (index, &low, &high);
1000 if (res == -1)
1001 return 0;
1002
1003 /* Check if the array bounds are undefined. */
1004 if (res == 1
1005 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1006 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1007 return 0;
1008
1009 if (low_bound)
1010 *low_bound = low;
1011
1012 if (high_bound)
1013 *high_bound = high;
1014
1015 return 1;
1016}
1017
aa715135
JG
1018/* Assuming that TYPE is a discrete type and VAL is a valid integer
1019 representation of a value of this type, save the corresponding
1020 position number in POS.
1021
1022 Its differs from VAL only in the case of enumeration types. In
1023 this case, the position number of the value of the first listed
1024 enumeration literal is zero; the position number of the value of
1025 each subsequent enumeration literal is one more than that of its
1026 predecessor in the list.
1027
1028 Return 1 if the operation was successful. Return zero otherwise,
1029 in which case the value of POS is unmodified.
1030*/
1031
1032int
1033discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1034{
1035 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1036 {
1037 int i;
1038
1039 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1040 {
1041 if (val == TYPE_FIELD_ENUMVAL (type, i))
1042 {
1043 *pos = i;
1044 return 1;
1045 }
1046 }
1047 /* Invalid enumeration value. */
1048 return 0;
1049 }
1050 else
1051 {
1052 *pos = val;
1053 return 1;
1054 }
1055}
1056
7ba81444
MS
1057/* Create an array type using either a blank type supplied in
1058 RESULT_TYPE, or creating a new type, inheriting the objfile from
1059 RANGE_TYPE.
c906108c
SS
1060
1061 Elements will be of type ELEMENT_TYPE, the indices will be of type
1062 RANGE_TYPE.
1063
dc53a7ad
JB
1064 If BIT_STRIDE is not zero, build a packed array type whose element
1065 size is BIT_STRIDE. Otherwise, ignore this parameter.
1066
7ba81444
MS
1067 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1068 sure it is TYPE_CODE_UNDEF before we bash it into an array
1069 type? */
c906108c
SS
1070
1071struct type *
dc53a7ad
JB
1072create_array_type_with_stride (struct type *result_type,
1073 struct type *element_type,
1074 struct type *range_type,
1075 unsigned int bit_stride)
c906108c 1076{
c906108c 1077 if (result_type == NULL)
e9bb382b
UW
1078 result_type = alloc_type_copy (range_type);
1079
c906108c
SS
1080 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1081 TYPE_TARGET_TYPE (result_type) = element_type;
80180f79
SA
1082 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1083 {
1084 LONGEST low_bound, high_bound;
1085
1086 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1087 low_bound = high_bound = 0;
f168693b 1088 element_type = check_typedef (element_type);
80180f79
SA
1089 /* Be careful when setting the array length. Ada arrays can be
1090 empty arrays with the high_bound being smaller than the low_bound.
1091 In such cases, the array length should be zero. */
1092 if (high_bound < low_bound)
1093 TYPE_LENGTH (result_type) = 0;
1094 else if (bit_stride > 0)
1095 TYPE_LENGTH (result_type) =
1096 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1097 else
1098 TYPE_LENGTH (result_type) =
1099 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1100 }
ab0d6e0d 1101 else
80180f79
SA
1102 {
1103 /* This type is dynamic and its length needs to be computed
1104 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1105 undefined by setting it to zero. Although we are not expected
1106 to trust TYPE_LENGTH in this case, setting the size to zero
1107 allows us to avoid allocating objects of random sizes in case
1108 we accidently do. */
1109 TYPE_LENGTH (result_type) = 0;
1110 }
1111
c906108c
SS
1112 TYPE_NFIELDS (result_type) = 1;
1113 TYPE_FIELDS (result_type) =
1deafd4e 1114 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 1115 TYPE_INDEX_TYPE (result_type) = range_type;
dc53a7ad
JB
1116 if (bit_stride > 0)
1117 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
c906108c 1118
0963b4bd 1119 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
c906108c 1120 if (TYPE_LENGTH (result_type) == 0)
876cecd0 1121 TYPE_TARGET_STUB (result_type) = 1;
c906108c 1122
c16abbde 1123 return result_type;
c906108c
SS
1124}
1125
dc53a7ad
JB
1126/* Same as create_array_type_with_stride but with no bit_stride
1127 (BIT_STRIDE = 0), thus building an unpacked array. */
1128
1129struct type *
1130create_array_type (struct type *result_type,
1131 struct type *element_type,
1132 struct type *range_type)
1133{
1134 return create_array_type_with_stride (result_type, element_type,
1135 range_type, 0);
1136}
1137
e3506a9f
UW
1138struct type *
1139lookup_array_range_type (struct type *element_type,
63375b74 1140 LONGEST low_bound, LONGEST high_bound)
e3506a9f 1141{
50810684 1142 struct gdbarch *gdbarch = get_type_arch (element_type);
e3506a9f
UW
1143 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1144 struct type *range_type
0c9c3474 1145 = create_static_range_type (NULL, index_type, low_bound, high_bound);
d8734c88 1146
e3506a9f
UW
1147 return create_array_type (NULL, element_type, range_type);
1148}
1149
7ba81444
MS
1150/* Create a string type using either a blank type supplied in
1151 RESULT_TYPE, or creating a new type. String types are similar
1152 enough to array of char types that we can use create_array_type to
1153 build the basic type and then bash it into a string type.
c906108c
SS
1154
1155 For fixed length strings, the range type contains 0 as the lower
1156 bound and the length of the string minus one as the upper bound.
1157
7ba81444
MS
1158 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1159 sure it is TYPE_CODE_UNDEF before we bash it into a string
1160 type? */
c906108c
SS
1161
1162struct type *
3b7538c0
UW
1163create_string_type (struct type *result_type,
1164 struct type *string_char_type,
7ba81444 1165 struct type *range_type)
c906108c
SS
1166{
1167 result_type = create_array_type (result_type,
f290d38e 1168 string_char_type,
c906108c
SS
1169 range_type);
1170 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 1171 return result_type;
c906108c
SS
1172}
1173
e3506a9f
UW
1174struct type *
1175lookup_string_range_type (struct type *string_char_type,
63375b74 1176 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1177{
1178 struct type *result_type;
d8734c88 1179
e3506a9f
UW
1180 result_type = lookup_array_range_type (string_char_type,
1181 low_bound, high_bound);
1182 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1183 return result_type;
1184}
1185
c906108c 1186struct type *
fba45db2 1187create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1188{
c906108c 1189 if (result_type == NULL)
e9bb382b
UW
1190 result_type = alloc_type_copy (domain_type);
1191
c906108c
SS
1192 TYPE_CODE (result_type) = TYPE_CODE_SET;
1193 TYPE_NFIELDS (result_type) = 1;
1deafd4e 1194 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 1195
74a9bb82 1196 if (!TYPE_STUB (domain_type))
c906108c 1197 {
f9780d5b 1198 LONGEST low_bound, high_bound, bit_length;
d8734c88 1199
c906108c
SS
1200 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1201 low_bound = high_bound = 0;
1202 bit_length = high_bound - low_bound + 1;
1203 TYPE_LENGTH (result_type)
1204 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1205 if (low_bound >= 0)
876cecd0 1206 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
1207 }
1208 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1209
c16abbde 1210 return result_type;
c906108c
SS
1211}
1212
ea37ba09
DJ
1213/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1214 and any array types nested inside it. */
1215
1216void
1217make_vector_type (struct type *array_type)
1218{
1219 struct type *inner_array, *elt_type;
1220 int flags;
1221
1222 /* Find the innermost array type, in case the array is
1223 multi-dimensional. */
1224 inner_array = array_type;
1225 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1226 inner_array = TYPE_TARGET_TYPE (inner_array);
1227
1228 elt_type = TYPE_TARGET_TYPE (inner_array);
1229 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1230 {
2844d6b5 1231 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1232 elt_type = make_qualified_type (elt_type, flags, NULL);
1233 TYPE_TARGET_TYPE (inner_array) = elt_type;
1234 }
1235
876cecd0 1236 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1237}
1238
794ac428 1239struct type *
ac3aafc7
EZ
1240init_vector_type (struct type *elt_type, int n)
1241{
1242 struct type *array_type;
d8734c88 1243
e3506a9f 1244 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1245 make_vector_type (array_type);
ac3aafc7
EZ
1246 return array_type;
1247}
1248
09e2d7c7
DE
1249/* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1250 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1251 confusing. "self" is a common enough replacement for "this".
1252 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1253 TYPE_CODE_METHOD. */
1254
1255struct type *
1256internal_type_self_type (struct type *type)
1257{
1258 switch (TYPE_CODE (type))
1259 {
1260 case TYPE_CODE_METHODPTR:
1261 case TYPE_CODE_MEMBERPTR:
eaaf76ab
DE
1262 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1263 return NULL;
09e2d7c7
DE
1264 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1265 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1266 case TYPE_CODE_METHOD:
eaaf76ab
DE
1267 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1268 return NULL;
09e2d7c7
DE
1269 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1270 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1271 default:
1272 gdb_assert_not_reached ("bad type");
1273 }
1274}
1275
1276/* Set the type of the class that TYPE belongs to.
1277 In c++ this is the class of "this".
1278 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1279 TYPE_CODE_METHOD. */
1280
1281void
1282set_type_self_type (struct type *type, struct type *self_type)
1283{
1284 switch (TYPE_CODE (type))
1285 {
1286 case TYPE_CODE_METHODPTR:
1287 case TYPE_CODE_MEMBERPTR:
1288 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1289 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1290 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1291 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1292 break;
1293 case TYPE_CODE_METHOD:
1294 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1295 INIT_FUNC_SPECIFIC (type);
1296 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1297 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1298 break;
1299 default:
1300 gdb_assert_not_reached ("bad type");
1301 }
1302}
1303
1304/* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
0d5de010
DJ
1305 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1306 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1307 TYPE doesn't include the offset (that's the value of the MEMBER
1308 itself), but does include the structure type into which it points
1309 (for some reason).
c906108c 1310
7ba81444
MS
1311 When "smashing" the type, we preserve the objfile that the old type
1312 pointed to, since we aren't changing where the type is actually
c906108c
SS
1313 allocated. */
1314
1315void
09e2d7c7 1316smash_to_memberptr_type (struct type *type, struct type *self_type,
0d5de010 1317 struct type *to_type)
c906108c 1318{
2fdde8f8 1319 smash_type (type);
09e2d7c7 1320 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c 1321 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1322 set_type_self_type (type, self_type);
0d5de010
DJ
1323 /* Assume that a data member pointer is the same size as a normal
1324 pointer. */
50810684
UW
1325 TYPE_LENGTH (type)
1326 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
c906108c
SS
1327}
1328
0b92b5bb
TT
1329/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1330
1331 When "smashing" the type, we preserve the objfile that the old type
1332 pointed to, since we aren't changing where the type is actually
1333 allocated. */
1334
1335void
1336smash_to_methodptr_type (struct type *type, struct type *to_type)
1337{
1338 smash_type (type);
09e2d7c7 1339 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
0b92b5bb 1340 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1341 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
0b92b5bb 1342 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
0b92b5bb
TT
1343}
1344
09e2d7c7 1345/* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
c906108c
SS
1346 METHOD just means `function that gets an extra "this" argument'.
1347
7ba81444
MS
1348 When "smashing" the type, we preserve the objfile that the old type
1349 pointed to, since we aren't changing where the type is actually
c906108c
SS
1350 allocated. */
1351
1352void
09e2d7c7 1353smash_to_method_type (struct type *type, struct type *self_type,
ad2f7632
DJ
1354 struct type *to_type, struct field *args,
1355 int nargs, int varargs)
c906108c 1356{
2fdde8f8 1357 smash_type (type);
09e2d7c7 1358 TYPE_CODE (type) = TYPE_CODE_METHOD;
c906108c 1359 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1360 set_type_self_type (type, self_type);
ad2f7632
DJ
1361 TYPE_FIELDS (type) = args;
1362 TYPE_NFIELDS (type) = nargs;
1363 if (varargs)
876cecd0 1364 TYPE_VARARGS (type) = 1;
c906108c 1365 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
c906108c
SS
1366}
1367
1368/* Return a typename for a struct/union/enum type without "struct ",
1369 "union ", or "enum ". If the type has a NULL name, return NULL. */
1370
0d5cff50 1371const char *
aa1ee363 1372type_name_no_tag (const struct type *type)
c906108c
SS
1373{
1374 if (TYPE_TAG_NAME (type) != NULL)
1375 return TYPE_TAG_NAME (type);
1376
7ba81444
MS
1377 /* Is there code which expects this to return the name if there is
1378 no tag name? My guess is that this is mainly used for C++ in
1379 cases where the two will always be the same. */
c906108c
SS
1380 return TYPE_NAME (type);
1381}
1382
d8228535
JK
1383/* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1384 Since GCC PR debug/47510 DWARF provides associated information to detect the
1385 anonymous class linkage name from its typedef.
1386
1387 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1388 apply it itself. */
1389
1390const char *
1391type_name_no_tag_or_error (struct type *type)
1392{
1393 struct type *saved_type = type;
1394 const char *name;
1395 struct objfile *objfile;
1396
f168693b 1397 type = check_typedef (type);
d8228535
JK
1398
1399 name = type_name_no_tag (type);
1400 if (name != NULL)
1401 return name;
1402
1403 name = type_name_no_tag (saved_type);
1404 objfile = TYPE_OBJFILE (saved_type);
1405 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
4262abfb
JK
1406 name ? name : "<anonymous>",
1407 objfile ? objfile_name (objfile) : "<arch>");
d8228535
JK
1408}
1409
7ba81444
MS
1410/* Lookup a typedef or primitive type named NAME, visible in lexical
1411 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1412 suitably defined. */
c906108c
SS
1413
1414struct type *
e6c014f2 1415lookup_typename (const struct language_defn *language,
ddd49eee 1416 struct gdbarch *gdbarch, const char *name,
34eaf542 1417 const struct block *block, int noerr)
c906108c 1418{
52f0bd74 1419 struct symbol *sym;
659c9f3a 1420 struct type *type;
c906108c 1421
1994afbf 1422 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
d12307c1 1423 language->la_language, NULL).symbol;
c51fe631
DE
1424 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1425 return SYMBOL_TYPE (sym);
1426
c51fe631
DE
1427 if (noerr)
1428 return NULL;
1429 error (_("No type named %s."), name);
c906108c
SS
1430}
1431
1432struct type *
e6c014f2 1433lookup_unsigned_typename (const struct language_defn *language,
0d5cff50 1434 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1435{
1436 char *uns = alloca (strlen (name) + 10);
1437
1438 strcpy (uns, "unsigned ");
1439 strcpy (uns + 9, name);
e6c014f2 1440 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
c906108c
SS
1441}
1442
1443struct type *
e6c014f2 1444lookup_signed_typename (const struct language_defn *language,
0d5cff50 1445 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1446{
1447 struct type *t;
1448 char *uns = alloca (strlen (name) + 8);
1449
1450 strcpy (uns, "signed ");
1451 strcpy (uns + 7, name);
e6c014f2 1452 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
7ba81444 1453 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1454 if (t != NULL)
1455 return t;
e6c014f2 1456 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
c906108c
SS
1457}
1458
1459/* Lookup a structure type named "struct NAME",
1460 visible in lexical block BLOCK. */
1461
1462struct type *
270140bd 1463lookup_struct (const char *name, const struct block *block)
c906108c 1464{
52f0bd74 1465 struct symbol *sym;
c906108c 1466
d12307c1 1467 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1468
1469 if (sym == NULL)
1470 {
8a3fe4f8 1471 error (_("No struct type named %s."), name);
c906108c
SS
1472 }
1473 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1474 {
7ba81444
MS
1475 error (_("This context has class, union or enum %s, not a struct."),
1476 name);
c906108c
SS
1477 }
1478 return (SYMBOL_TYPE (sym));
1479}
1480
1481/* Lookup a union type named "union NAME",
1482 visible in lexical block BLOCK. */
1483
1484struct type *
270140bd 1485lookup_union (const char *name, const struct block *block)
c906108c 1486{
52f0bd74 1487 struct symbol *sym;
c5aa993b 1488 struct type *t;
c906108c 1489
d12307c1 1490 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1491
1492 if (sym == NULL)
8a3fe4f8 1493 error (_("No union type named %s."), name);
c906108c 1494
c5aa993b 1495 t = SYMBOL_TYPE (sym);
c906108c
SS
1496
1497 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1498 return t;
c906108c 1499
7ba81444
MS
1500 /* If we get here, it's not a union. */
1501 error (_("This context has class, struct or enum %s, not a union."),
1502 name);
c906108c
SS
1503}
1504
c906108c
SS
1505/* Lookup an enum type named "enum NAME",
1506 visible in lexical block BLOCK. */
1507
1508struct type *
270140bd 1509lookup_enum (const char *name, const struct block *block)
c906108c 1510{
52f0bd74 1511 struct symbol *sym;
c906108c 1512
d12307c1 1513 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1514 if (sym == NULL)
1515 {
8a3fe4f8 1516 error (_("No enum type named %s."), name);
c906108c
SS
1517 }
1518 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1519 {
7ba81444
MS
1520 error (_("This context has class, struct or union %s, not an enum."),
1521 name);
c906108c
SS
1522 }
1523 return (SYMBOL_TYPE (sym));
1524}
1525
1526/* Lookup a template type named "template NAME<TYPE>",
1527 visible in lexical block BLOCK. */
1528
1529struct type *
7ba81444 1530lookup_template_type (char *name, struct type *type,
270140bd 1531 const struct block *block)
c906108c
SS
1532{
1533 struct symbol *sym;
7ba81444
MS
1534 char *nam = (char *)
1535 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1536
c906108c
SS
1537 strcpy (nam, name);
1538 strcat (nam, "<");
0004e5a2 1539 strcat (nam, TYPE_NAME (type));
0963b4bd 1540 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1541
d12307c1 1542 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
c906108c
SS
1543
1544 if (sym == NULL)
1545 {
8a3fe4f8 1546 error (_("No template type named %s."), name);
c906108c
SS
1547 }
1548 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1549 {
7ba81444
MS
1550 error (_("This context has class, union or enum %s, not a struct."),
1551 name);
c906108c
SS
1552 }
1553 return (SYMBOL_TYPE (sym));
1554}
1555
7ba81444
MS
1556/* Given a type TYPE, lookup the type of the component of type named
1557 NAME.
c906108c 1558
7ba81444
MS
1559 TYPE can be either a struct or union, or a pointer or reference to
1560 a struct or union. If it is a pointer or reference, its target
1561 type is automatically used. Thus '.' and '->' are interchangable,
1562 as specified for the definitions of the expression element types
1563 STRUCTOP_STRUCT and STRUCTOP_PTR.
c906108c
SS
1564
1565 If NOERR is nonzero, return zero if NAME is not suitably defined.
1566 If NAME is the name of a baseclass type, return that type. */
1567
1568struct type *
d7561cbb 1569lookup_struct_elt_type (struct type *type, const char *name, int noerr)
c906108c
SS
1570{
1571 int i;
fe978cb0 1572 char *type_name;
c906108c
SS
1573
1574 for (;;)
1575 {
f168693b 1576 type = check_typedef (type);
c906108c
SS
1577 if (TYPE_CODE (type) != TYPE_CODE_PTR
1578 && TYPE_CODE (type) != TYPE_CODE_REF)
1579 break;
1580 type = TYPE_TARGET_TYPE (type);
1581 }
1582
687d6395
MS
1583 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1584 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1585 {
fe978cb0
PA
1586 type_name = type_to_string (type);
1587 make_cleanup (xfree, type_name);
1588 error (_("Type %s is not a structure or union type."), type_name);
c906108c
SS
1589 }
1590
1591#if 0
7ba81444
MS
1592 /* FIXME: This change put in by Michael seems incorrect for the case
1593 where the structure tag name is the same as the member name.
0963b4bd 1594 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
7ba81444 1595 foo; } bell;" Disabled by fnf. */
c906108c 1596 {
fe978cb0 1597 char *type_name;
c906108c 1598
fe978cb0
PA
1599 type_name = type_name_no_tag (type);
1600 if (type_name != NULL && strcmp (type_name, name) == 0)
c906108c
SS
1601 return type;
1602 }
1603#endif
1604
1605 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1606 {
0d5cff50 1607 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1608
db577aea 1609 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1610 {
1611 return TYPE_FIELD_TYPE (type, i);
1612 }
f5a010c0
PM
1613 else if (!t_field_name || *t_field_name == '\0')
1614 {
d8734c88
MS
1615 struct type *subtype
1616 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1617
f5a010c0
PM
1618 if (subtype != NULL)
1619 return subtype;
1620 }
c906108c
SS
1621 }
1622
1623 /* OK, it's not in this class. Recursively check the baseclasses. */
1624 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1625 {
1626 struct type *t;
1627
9733fc94 1628 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
c906108c
SS
1629 if (t != NULL)
1630 {
1631 return t;
1632 }
1633 }
1634
1635 if (noerr)
1636 {
1637 return NULL;
1638 }
c5aa993b 1639
fe978cb0
PA
1640 type_name = type_to_string (type);
1641 make_cleanup (xfree, type_name);
1642 error (_("Type %s has no component named %s."), type_name, name);
c906108c
SS
1643}
1644
ed3ef339
DE
1645/* Store in *MAX the largest number representable by unsigned integer type
1646 TYPE. */
1647
1648void
1649get_unsigned_type_max (struct type *type, ULONGEST *max)
1650{
1651 unsigned int n;
1652
f168693b 1653 type = check_typedef (type);
ed3ef339
DE
1654 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1655 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1656
1657 /* Written this way to avoid overflow. */
1658 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1659 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1660}
1661
1662/* Store in *MIN, *MAX the smallest and largest numbers representable by
1663 signed integer type TYPE. */
1664
1665void
1666get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1667{
1668 unsigned int n;
1669
f168693b 1670 type = check_typedef (type);
ed3ef339
DE
1671 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1672 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1673
1674 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1675 *min = -((ULONGEST) 1 << (n - 1));
1676 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1677}
1678
ae6ae975
DE
1679/* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1680 cplus_stuff.vptr_fieldno.
1681
1682 cplus_stuff is initialized to cplus_struct_default which does not
1683 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1684 designated initializers). We cope with that here. */
1685
1686int
1687internal_type_vptr_fieldno (struct type *type)
1688{
f168693b 1689 type = check_typedef (type);
ae6ae975
DE
1690 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1691 || TYPE_CODE (type) == TYPE_CODE_UNION);
1692 if (!HAVE_CPLUS_STRUCT (type))
1693 return -1;
1694 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1695}
1696
1697/* Set the value of cplus_stuff.vptr_fieldno. */
1698
1699void
1700set_type_vptr_fieldno (struct type *type, int fieldno)
1701{
f168693b 1702 type = check_typedef (type);
ae6ae975
DE
1703 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1704 || TYPE_CODE (type) == TYPE_CODE_UNION);
1705 if (!HAVE_CPLUS_STRUCT (type))
1706 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1707 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1708}
1709
1710/* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1711 cplus_stuff.vptr_basetype. */
1712
1713struct type *
1714internal_type_vptr_basetype (struct type *type)
1715{
f168693b 1716 type = check_typedef (type);
ae6ae975
DE
1717 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1718 || TYPE_CODE (type) == TYPE_CODE_UNION);
1719 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1720 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1721}
1722
1723/* Set the value of cplus_stuff.vptr_basetype. */
1724
1725void
1726set_type_vptr_basetype (struct type *type, struct type *basetype)
1727{
f168693b 1728 type = check_typedef (type);
ae6ae975
DE
1729 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1730 || TYPE_CODE (type) == TYPE_CODE_UNION);
1731 if (!HAVE_CPLUS_STRUCT (type))
1732 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1733 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1734}
1735
81fe8080
DE
1736/* Lookup the vptr basetype/fieldno values for TYPE.
1737 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1738 vptr_fieldno. Also, if found and basetype is from the same objfile,
1739 cache the results.
1740 If not found, return -1 and ignore BASETYPEP.
1741 Callers should be aware that in some cases (for example,
c906108c 1742 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1743 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1744 this function will not be able to find the
7ba81444 1745 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1746 vptr_basetype will remain NULL or incomplete. */
c906108c 1747
81fe8080
DE
1748int
1749get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c 1750{
f168693b 1751 type = check_typedef (type);
c906108c
SS
1752
1753 if (TYPE_VPTR_FIELDNO (type) < 0)
1754 {
1755 int i;
1756
7ba81444
MS
1757 /* We must start at zero in case the first (and only) baseclass
1758 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1759 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1760 {
81fe8080
DE
1761 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1762 int fieldno;
1763 struct type *basetype;
1764
1765 fieldno = get_vptr_fieldno (baseclass, &basetype);
1766 if (fieldno >= 0)
c906108c 1767 {
81fe8080 1768 /* If the type comes from a different objfile we can't cache
0963b4bd 1769 it, it may have a different lifetime. PR 2384 */
5ef73790 1770 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080 1771 {
ae6ae975
DE
1772 set_type_vptr_fieldno (type, fieldno);
1773 set_type_vptr_basetype (type, basetype);
81fe8080
DE
1774 }
1775 if (basetypep)
1776 *basetypep = basetype;
1777 return fieldno;
c906108c
SS
1778 }
1779 }
81fe8080
DE
1780
1781 /* Not found. */
1782 return -1;
1783 }
1784 else
1785 {
1786 if (basetypep)
1787 *basetypep = TYPE_VPTR_BASETYPE (type);
1788 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1789 }
1790}
1791
44e1a9eb
DJ
1792static void
1793stub_noname_complaint (void)
1794{
e2e0b3e5 1795 complaint (&symfile_complaints, _("stub type has NULL name"));
44e1a9eb
DJ
1796}
1797
d98b7a16 1798/* Worker for is_dynamic_type. */
80180f79 1799
d98b7a16 1800static int
ee715b5a 1801is_dynamic_type_internal (struct type *type, int top_level)
80180f79
SA
1802{
1803 type = check_typedef (type);
1804
e771e4be
PMR
1805 /* We only want to recognize references at the outermost level. */
1806 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1807 type = check_typedef (TYPE_TARGET_TYPE (type));
1808
3cdcd0ce
JB
1809 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1810 dynamic, even if the type itself is statically defined.
1811 From a user's point of view, this may appear counter-intuitive;
1812 but it makes sense in this context, because the point is to determine
1813 whether any part of the type needs to be resolved before it can
1814 be exploited. */
1815 if (TYPE_DATA_LOCATION (type) != NULL
1816 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1817 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1818 return 1;
1819
80180f79
SA
1820 switch (TYPE_CODE (type))
1821 {
6f8a3220 1822 case TYPE_CODE_RANGE:
ddb87a81
JB
1823 {
1824 /* A range type is obviously dynamic if it has at least one
1825 dynamic bound. But also consider the range type to be
1826 dynamic when its subtype is dynamic, even if the bounds
1827 of the range type are static. It allows us to assume that
1828 the subtype of a static range type is also static. */
1829 return (!has_static_range (TYPE_RANGE_DATA (type))
ee715b5a 1830 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
ddb87a81 1831 }
6f8a3220 1832
80180f79
SA
1833 case TYPE_CODE_ARRAY:
1834 {
80180f79 1835 gdb_assert (TYPE_NFIELDS (type) == 1);
6f8a3220
JB
1836
1837 /* The array is dynamic if either the bounds are dynamic,
1838 or the elements it contains have a dynamic contents. */
ee715b5a 1839 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
80180f79 1840 return 1;
ee715b5a 1841 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
80180f79 1842 }
012370f6
TT
1843
1844 case TYPE_CODE_STRUCT:
1845 case TYPE_CODE_UNION:
1846 {
1847 int i;
1848
1849 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1850 if (!field_is_static (&TYPE_FIELD (type, i))
ee715b5a 1851 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
012370f6
TT
1852 return 1;
1853 }
1854 break;
80180f79 1855 }
92e2a17f
TT
1856
1857 return 0;
80180f79
SA
1858}
1859
d98b7a16
TT
1860/* See gdbtypes.h. */
1861
1862int
1863is_dynamic_type (struct type *type)
1864{
ee715b5a 1865 return is_dynamic_type_internal (type, 1);
d98b7a16
TT
1866}
1867
df25ebbd 1868static struct type *resolve_dynamic_type_internal
ee715b5a 1869 (struct type *type, struct property_addr_info *addr_stack, int top_level);
d98b7a16 1870
df25ebbd
JB
1871/* Given a dynamic range type (dyn_range_type) and a stack of
1872 struct property_addr_info elements, return a static version
1873 of that type. */
d190df30 1874
80180f79 1875static struct type *
df25ebbd
JB
1876resolve_dynamic_range (struct type *dyn_range_type,
1877 struct property_addr_info *addr_stack)
80180f79
SA
1878{
1879 CORE_ADDR value;
ddb87a81 1880 struct type *static_range_type, *static_target_type;
80180f79
SA
1881 const struct dynamic_prop *prop;
1882 const struct dwarf2_locexpr_baton *baton;
1883 struct dynamic_prop low_bound, high_bound;
1884
6f8a3220 1885 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
80180f79 1886
6f8a3220 1887 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
63e43d3a 1888 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
1889 {
1890 low_bound.kind = PROP_CONST;
1891 low_bound.data.const_val = value;
1892 }
1893 else
1894 {
1895 low_bound.kind = PROP_UNDEFINED;
1896 low_bound.data.const_val = 0;
1897 }
1898
6f8a3220 1899 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
63e43d3a 1900 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
1901 {
1902 high_bound.kind = PROP_CONST;
1903 high_bound.data.const_val = value;
c451ebe5 1904
6f8a3220 1905 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
c451ebe5
SA
1906 high_bound.data.const_val
1907 = low_bound.data.const_val + high_bound.data.const_val - 1;
80180f79
SA
1908 }
1909 else
1910 {
1911 high_bound.kind = PROP_UNDEFINED;
1912 high_bound.data.const_val = 0;
1913 }
1914
ddb87a81
JB
1915 static_target_type
1916 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
ee715b5a 1917 addr_stack, 0);
6f8a3220 1918 static_range_type = create_range_type (copy_type (dyn_range_type),
ddb87a81 1919 static_target_type,
6f8a3220
JB
1920 &low_bound, &high_bound);
1921 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1922 return static_range_type;
1923}
1924
1925/* Resolves dynamic bound values of an array type TYPE to static ones.
df25ebbd
JB
1926 ADDR_STACK is a stack of struct property_addr_info to be used
1927 if needed during the dynamic resolution. */
6f8a3220
JB
1928
1929static struct type *
df25ebbd
JB
1930resolve_dynamic_array (struct type *type,
1931 struct property_addr_info *addr_stack)
6f8a3220
JB
1932{
1933 CORE_ADDR value;
1934 struct type *elt_type;
1935 struct type *range_type;
1936 struct type *ary_dim;
1937
1938 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1939
1940 elt_type = type;
1941 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
df25ebbd 1942 range_type = resolve_dynamic_range (range_type, addr_stack);
6f8a3220 1943
80180f79
SA
1944 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1945
1946 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
d0d84780 1947 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
80180f79
SA
1948 else
1949 elt_type = TYPE_TARGET_TYPE (type);
1950
75ea5859
JB
1951 return create_array_type_with_stride (copy_type (type),
1952 elt_type, range_type,
1953 TYPE_FIELD_BITSIZE (type, 0));
80180f79
SA
1954}
1955
012370f6 1956/* Resolve dynamic bounds of members of the union TYPE to static
df25ebbd
JB
1957 bounds. ADDR_STACK is a stack of struct property_addr_info
1958 to be used if needed during the dynamic resolution. */
012370f6
TT
1959
1960static struct type *
df25ebbd
JB
1961resolve_dynamic_union (struct type *type,
1962 struct property_addr_info *addr_stack)
012370f6
TT
1963{
1964 struct type *resolved_type;
1965 int i;
1966 unsigned int max_len = 0;
1967
1968 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1969
1970 resolved_type = copy_type (type);
1971 TYPE_FIELDS (resolved_type)
1972 = TYPE_ALLOC (resolved_type,
1973 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1974 memcpy (TYPE_FIELDS (resolved_type),
1975 TYPE_FIELDS (type),
1976 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1977 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1978 {
1979 struct type *t;
1980
1981 if (field_is_static (&TYPE_FIELD (type, i)))
1982 continue;
1983
d98b7a16 1984 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 1985 addr_stack, 0);
012370f6
TT
1986 TYPE_FIELD_TYPE (resolved_type, i) = t;
1987 if (TYPE_LENGTH (t) > max_len)
1988 max_len = TYPE_LENGTH (t);
1989 }
1990
1991 TYPE_LENGTH (resolved_type) = max_len;
1992 return resolved_type;
1993}
1994
1995/* Resolve dynamic bounds of members of the struct TYPE to static
df25ebbd
JB
1996 bounds. ADDR_STACK is a stack of struct property_addr_info to
1997 be used if needed during the dynamic resolution. */
012370f6
TT
1998
1999static struct type *
df25ebbd
JB
2000resolve_dynamic_struct (struct type *type,
2001 struct property_addr_info *addr_stack)
012370f6
TT
2002{
2003 struct type *resolved_type;
2004 int i;
6908c509 2005 unsigned resolved_type_bit_length = 0;
012370f6
TT
2006
2007 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2008 gdb_assert (TYPE_NFIELDS (type) > 0);
2009
2010 resolved_type = copy_type (type);
2011 TYPE_FIELDS (resolved_type)
2012 = TYPE_ALLOC (resolved_type,
2013 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2014 memcpy (TYPE_FIELDS (resolved_type),
2015 TYPE_FIELDS (type),
2016 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2017 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2018 {
6908c509 2019 unsigned new_bit_length;
df25ebbd 2020 struct property_addr_info pinfo;
012370f6
TT
2021
2022 if (field_is_static (&TYPE_FIELD (type, i)))
2023 continue;
2024
6908c509
JB
2025 /* As we know this field is not a static field, the field's
2026 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2027 this is the case, but only trigger a simple error rather
2028 than an internal error if that fails. While failing
2029 that verification indicates a bug in our code, the error
2030 is not severe enough to suggest to the user he stops
2031 his debugging session because of it. */
df25ebbd 2032 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
6908c509
JB
2033 error (_("Cannot determine struct field location"
2034 " (invalid location kind)"));
df25ebbd
JB
2035
2036 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
c3345124 2037 pinfo.valaddr = addr_stack->valaddr;
df25ebbd
JB
2038 pinfo.addr = addr_stack->addr;
2039 pinfo.next = addr_stack;
2040
2041 TYPE_FIELD_TYPE (resolved_type, i)
2042 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2043 &pinfo, 0);
df25ebbd
JB
2044 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2045 == FIELD_LOC_KIND_BITPOS);
2046
6908c509
JB
2047 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2048 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2049 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2050 else
2051 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2052 * TARGET_CHAR_BIT);
2053
2054 /* Normally, we would use the position and size of the last field
2055 to determine the size of the enclosing structure. But GCC seems
2056 to be encoding the position of some fields incorrectly when
2057 the struct contains a dynamic field that is not placed last.
2058 So we compute the struct size based on the field that has
2059 the highest position + size - probably the best we can do. */
2060 if (new_bit_length > resolved_type_bit_length)
2061 resolved_type_bit_length = new_bit_length;
012370f6
TT
2062 }
2063
012370f6 2064 TYPE_LENGTH (resolved_type)
6908c509
JB
2065 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2066
9e195661
PMR
2067 /* The Ada language uses this field as a cache for static fixed types: reset
2068 it as RESOLVED_TYPE must have its own static fixed type. */
2069 TYPE_TARGET_TYPE (resolved_type) = NULL;
2070
012370f6
TT
2071 return resolved_type;
2072}
2073
d98b7a16 2074/* Worker for resolved_dynamic_type. */
80180f79 2075
d98b7a16 2076static struct type *
df25ebbd 2077resolve_dynamic_type_internal (struct type *type,
ee715b5a
PMR
2078 struct property_addr_info *addr_stack,
2079 int top_level)
80180f79
SA
2080{
2081 struct type *real_type = check_typedef (type);
6f8a3220 2082 struct type *resolved_type = type;
d9823cbb 2083 struct dynamic_prop *prop;
3cdcd0ce 2084 CORE_ADDR value;
80180f79 2085
ee715b5a 2086 if (!is_dynamic_type_internal (real_type, top_level))
80180f79
SA
2087 return type;
2088
5537b577 2089 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
6f8a3220 2090 {
cac9b138
JK
2091 resolved_type = copy_type (type);
2092 TYPE_TARGET_TYPE (resolved_type)
ee715b5a
PMR
2093 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2094 top_level);
5537b577
JK
2095 }
2096 else
2097 {
2098 /* Before trying to resolve TYPE, make sure it is not a stub. */
2099 type = real_type;
012370f6 2100
5537b577
JK
2101 switch (TYPE_CODE (type))
2102 {
e771e4be
PMR
2103 case TYPE_CODE_REF:
2104 {
2105 struct property_addr_info pinfo;
2106
2107 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
c3345124
JB
2108 pinfo.valaddr = NULL;
2109 if (addr_stack->valaddr != NULL)
2110 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2111 else
2112 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
e771e4be
PMR
2113 pinfo.next = addr_stack;
2114
2115 resolved_type = copy_type (type);
2116 TYPE_TARGET_TYPE (resolved_type)
2117 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2118 &pinfo, top_level);
2119 break;
2120 }
2121
5537b577 2122 case TYPE_CODE_ARRAY:
df25ebbd 2123 resolved_type = resolve_dynamic_array (type, addr_stack);
5537b577
JK
2124 break;
2125
2126 case TYPE_CODE_RANGE:
df25ebbd 2127 resolved_type = resolve_dynamic_range (type, addr_stack);
5537b577
JK
2128 break;
2129
2130 case TYPE_CODE_UNION:
df25ebbd 2131 resolved_type = resolve_dynamic_union (type, addr_stack);
5537b577
JK
2132 break;
2133
2134 case TYPE_CODE_STRUCT:
df25ebbd 2135 resolved_type = resolve_dynamic_struct (type, addr_stack);
5537b577
JK
2136 break;
2137 }
6f8a3220 2138 }
80180f79 2139
3cdcd0ce
JB
2140 /* Resolve data_location attribute. */
2141 prop = TYPE_DATA_LOCATION (resolved_type);
63e43d3a
PMR
2142 if (prop != NULL
2143 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
3cdcd0ce 2144 {
d9823cbb
KB
2145 TYPE_DYN_PROP_ADDR (prop) = value;
2146 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
3cdcd0ce 2147 }
3cdcd0ce 2148
80180f79
SA
2149 return resolved_type;
2150}
2151
d98b7a16
TT
2152/* See gdbtypes.h */
2153
2154struct type *
c3345124
JB
2155resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2156 CORE_ADDR addr)
d98b7a16 2157{
c3345124
JB
2158 struct property_addr_info pinfo
2159 = {check_typedef (type), valaddr, addr, NULL};
df25ebbd 2160
ee715b5a 2161 return resolve_dynamic_type_internal (type, &pinfo, 1);
d98b7a16
TT
2162}
2163
d9823cbb
KB
2164/* See gdbtypes.h */
2165
2166struct dynamic_prop *
2167get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2168{
2169 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2170
2171 while (node != NULL)
2172 {
2173 if (node->prop_kind == prop_kind)
283a9958 2174 return &node->prop;
d9823cbb
KB
2175 node = node->next;
2176 }
2177 return NULL;
2178}
2179
2180/* See gdbtypes.h */
2181
2182void
2183add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2184 struct type *type, struct objfile *objfile)
2185{
2186 struct dynamic_prop_list *temp;
2187
2188 gdb_assert (TYPE_OBJFILE_OWNED (type));
2189
2190 temp = obstack_alloc (&objfile->objfile_obstack,
2191 sizeof (struct dynamic_prop_list));
2192 temp->prop_kind = prop_kind;
283a9958 2193 temp->prop = prop;
d9823cbb
KB
2194 temp->next = TYPE_DYN_PROP_LIST (type);
2195
2196 TYPE_DYN_PROP_LIST (type) = temp;
2197}
2198
2199
92163a10
JK
2200/* Find the real type of TYPE. This function returns the real type,
2201 after removing all layers of typedefs, and completing opaque or stub
2202 types. Completion changes the TYPE argument, but stripping of
2203 typedefs does not.
2204
2205 Instance flags (e.g. const/volatile) are preserved as typedefs are
2206 stripped. If necessary a new qualified form of the underlying type
2207 is created.
2208
2209 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2210 not been computed and we're either in the middle of reading symbols, or
2211 there was no name for the typedef in the debug info.
2212
9bc118a5
DE
2213 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2214 QUITs in the symbol reading code can also throw.
2215 Thus this function can throw an exception.
2216
92163a10
JK
2217 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2218 the target type.
c906108c
SS
2219
2220 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 2221 we can find a full definition in some other file. If so, copy this
7ba81444
MS
2222 definition, so we can use it in future. There used to be a comment
2223 (but not any code) that if we don't find a full definition, we'd
2224 set a flag so we don't spend time in the future checking the same
2225 type. That would be a mistake, though--we might load in more
92163a10 2226 symbols which contain a full definition for the type. */
c906108c
SS
2227
2228struct type *
a02fd225 2229check_typedef (struct type *type)
c906108c
SS
2230{
2231 struct type *orig_type = type;
92163a10
JK
2232 /* While we're removing typedefs, we don't want to lose qualifiers.
2233 E.g., const/volatile. */
2234 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 2235
423c0af8
MS
2236 gdb_assert (type);
2237
c906108c
SS
2238 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2239 {
2240 if (!TYPE_TARGET_TYPE (type))
2241 {
0d5cff50 2242 const char *name;
c906108c
SS
2243 struct symbol *sym;
2244
2245 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 2246 reading a symtab. Infinite recursion is one danger. */
c906108c 2247 if (currently_reading_symtab)
92163a10 2248 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2249
2250 name = type_name_no_tag (type);
7ba81444
MS
2251 /* FIXME: shouldn't we separately check the TYPE_NAME and
2252 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2253 VAR_DOMAIN as appropriate? (this code was written before
2254 TYPE_NAME and TYPE_TAG_NAME were separate). */
c906108c
SS
2255 if (name == NULL)
2256 {
23136709 2257 stub_noname_complaint ();
92163a10 2258 return make_qualified_type (type, instance_flags, NULL);
c906108c 2259 }
d12307c1 2260 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
2261 if (sym)
2262 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 2263 else /* TYPE_CODE_UNDEF */
e9bb382b 2264 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
2265 }
2266 type = TYPE_TARGET_TYPE (type);
c906108c 2267
92163a10
JK
2268 /* Preserve the instance flags as we traverse down the typedef chain.
2269
2270 Handling address spaces/classes is nasty, what do we do if there's a
2271 conflict?
2272 E.g., what if an outer typedef marks the type as class_1 and an inner
2273 typedef marks the type as class_2?
2274 This is the wrong place to do such error checking. We leave it to
2275 the code that created the typedef in the first place to flag the
2276 error. We just pick the outer address space (akin to letting the
2277 outer cast in a chain of casting win), instead of assuming
2278 "it can't happen". */
2279 {
2280 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2281 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2282 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2283 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2284
2285 /* Treat code vs data spaces and address classes separately. */
2286 if ((instance_flags & ALL_SPACES) != 0)
2287 new_instance_flags &= ~ALL_SPACES;
2288 if ((instance_flags & ALL_CLASSES) != 0)
2289 new_instance_flags &= ~ALL_CLASSES;
2290
2291 instance_flags |= new_instance_flags;
2292 }
2293 }
a02fd225 2294
7ba81444
MS
2295 /* If this is a struct/class/union with no fields, then check
2296 whether a full definition exists somewhere else. This is for
2297 systems where a type definition with no fields is issued for such
2298 types, instead of identifying them as stub types in the first
2299 place. */
c5aa993b 2300
7ba81444
MS
2301 if (TYPE_IS_OPAQUE (type)
2302 && opaque_type_resolution
2303 && !currently_reading_symtab)
c906108c 2304 {
0d5cff50 2305 const char *name = type_name_no_tag (type);
c5aa993b 2306 struct type *newtype;
d8734c88 2307
c906108c
SS
2308 if (name == NULL)
2309 {
23136709 2310 stub_noname_complaint ();
92163a10 2311 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2312 }
2313 newtype = lookup_transparent_type (name);
ad766c0a 2314
c906108c 2315 if (newtype)
ad766c0a 2316 {
7ba81444
MS
2317 /* If the resolved type and the stub are in the same
2318 objfile, then replace the stub type with the real deal.
2319 But if they're in separate objfiles, leave the stub
2320 alone; we'll just look up the transparent type every time
2321 we call check_typedef. We can't create pointers between
2322 types allocated to different objfiles, since they may
2323 have different lifetimes. Trying to copy NEWTYPE over to
2324 TYPE's objfile is pointless, too, since you'll have to
2325 move over any other types NEWTYPE refers to, which could
2326 be an unbounded amount of stuff. */
ad766c0a 2327 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
2328 type = make_qualified_type (newtype,
2329 TYPE_INSTANCE_FLAGS (type),
2330 type);
ad766c0a
JB
2331 else
2332 type = newtype;
2333 }
c906108c 2334 }
7ba81444
MS
2335 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2336 types. */
74a9bb82 2337 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 2338 {
0d5cff50 2339 const char *name = type_name_no_tag (type);
c906108c 2340 /* FIXME: shouldn't we separately check the TYPE_NAME and the
176620f1 2341 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
7b83ea04
AC
2342 as appropriate? (this code was written before TYPE_NAME and
2343 TYPE_TAG_NAME were separate). */
c906108c 2344 struct symbol *sym;
d8734c88 2345
c906108c
SS
2346 if (name == NULL)
2347 {
23136709 2348 stub_noname_complaint ();
92163a10 2349 return make_qualified_type (type, instance_flags, NULL);
c906108c 2350 }
d12307c1 2351 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c 2352 if (sym)
c26f2453
JB
2353 {
2354 /* Same as above for opaque types, we can replace the stub
92163a10 2355 with the complete type only if they are in the same
c26f2453
JB
2356 objfile. */
2357 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
2358 type = make_qualified_type (SYMBOL_TYPE (sym),
2359 TYPE_INSTANCE_FLAGS (type),
2360 type);
c26f2453
JB
2361 else
2362 type = SYMBOL_TYPE (sym);
2363 }
c906108c
SS
2364 }
2365
74a9bb82 2366 if (TYPE_TARGET_STUB (type))
c906108c
SS
2367 {
2368 struct type *range_type;
2369 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2370
74a9bb82 2371 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 2372 {
73e2eb35 2373 /* Nothing we can do. */
c5aa993b 2374 }
c906108c
SS
2375 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2376 {
2377 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 2378 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
2379 }
2380 }
92163a10
JK
2381
2382 type = make_qualified_type (type, instance_flags, NULL);
2383
7ba81444 2384 /* Cache TYPE_LENGTH for future use. */
c906108c 2385 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 2386
c906108c
SS
2387 return type;
2388}
2389
7ba81444 2390/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 2391 occurs, silently return a void type. */
c91ecb25 2392
b9362cc7 2393static struct type *
48319d1f 2394safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
2395{
2396 struct ui_file *saved_gdb_stderr;
34365054 2397 struct type *type = NULL; /* Initialize to keep gcc happy. */
c91ecb25 2398
7ba81444 2399 /* Suppress error messages. */
c91ecb25
ND
2400 saved_gdb_stderr = gdb_stderr;
2401 gdb_stderr = ui_file_new ();
2402
7ba81444 2403 /* Call parse_and_eval_type() without fear of longjmp()s. */
492d29ea 2404 TRY
8e7b59a5
KS
2405 {
2406 type = parse_and_eval_type (p, length);
2407 }
492d29ea
PA
2408 CATCH (except, RETURN_MASK_ERROR)
2409 {
2410 type = builtin_type (gdbarch)->builtin_void;
2411 }
2412 END_CATCH
c91ecb25 2413
7ba81444 2414 /* Stop suppressing error messages. */
c91ecb25
ND
2415 ui_file_delete (gdb_stderr);
2416 gdb_stderr = saved_gdb_stderr;
2417
2418 return type;
2419}
2420
c906108c
SS
2421/* Ugly hack to convert method stubs into method types.
2422
7ba81444
MS
2423 He ain't kiddin'. This demangles the name of the method into a
2424 string including argument types, parses out each argument type,
2425 generates a string casting a zero to that type, evaluates the
2426 string, and stuffs the resulting type into an argtype vector!!!
2427 Then it knows the type of the whole function (including argument
2428 types for overloading), which info used to be in the stab's but was
2429 removed to hack back the space required for them. */
c906108c 2430
de17c821 2431static void
fba45db2 2432check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 2433{
50810684 2434 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
2435 struct fn_field *f;
2436 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
8de20a37
TT
2437 char *demangled_name = gdb_demangle (mangled_name,
2438 DMGL_PARAMS | DMGL_ANSI);
c906108c
SS
2439 char *argtypetext, *p;
2440 int depth = 0, argcount = 1;
ad2f7632 2441 struct field *argtypes;
c906108c
SS
2442 struct type *mtype;
2443
2444 /* Make sure we got back a function string that we can use. */
2445 if (demangled_name)
2446 p = strchr (demangled_name, '(');
502dcf4e
AC
2447 else
2448 p = NULL;
c906108c
SS
2449
2450 if (demangled_name == NULL || p == NULL)
7ba81444
MS
2451 error (_("Internal: Cannot demangle mangled name `%s'."),
2452 mangled_name);
c906108c
SS
2453
2454 /* Now, read in the parameters that define this type. */
2455 p += 1;
2456 argtypetext = p;
2457 while (*p)
2458 {
070ad9f0 2459 if (*p == '(' || *p == '<')
c906108c
SS
2460 {
2461 depth += 1;
2462 }
070ad9f0 2463 else if (*p == ')' || *p == '>')
c906108c
SS
2464 {
2465 depth -= 1;
2466 }
2467 else if (*p == ',' && depth == 0)
2468 {
2469 argcount += 1;
2470 }
2471
2472 p += 1;
2473 }
2474
ad2f7632 2475 /* If we read one argument and it was ``void'', don't count it. */
61012eef 2476 if (startswith (argtypetext, "(void)"))
ad2f7632 2477 argcount -= 1;
c906108c 2478
ad2f7632
DJ
2479 /* We need one extra slot, for the THIS pointer. */
2480
2481 argtypes = (struct field *)
2482 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 2483 p = argtypetext;
4a1970e4
DJ
2484
2485 /* Add THIS pointer for non-static methods. */
2486 f = TYPE_FN_FIELDLIST1 (type, method_id);
2487 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2488 argcount = 0;
2489 else
2490 {
ad2f7632 2491 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
2492 argcount = 1;
2493 }
c906108c 2494
0963b4bd 2495 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
2496 {
2497 depth = 0;
2498 while (*p)
2499 {
2500 if (depth <= 0 && (*p == ',' || *p == ')'))
2501 {
ad2f7632
DJ
2502 /* Avoid parsing of ellipsis, they will be handled below.
2503 Also avoid ``void'' as above. */
2504 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2505 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 2506 {
ad2f7632 2507 argtypes[argcount].type =
48319d1f 2508 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
2509 argcount += 1;
2510 }
2511 argtypetext = p + 1;
2512 }
2513
070ad9f0 2514 if (*p == '(' || *p == '<')
c906108c
SS
2515 {
2516 depth += 1;
2517 }
070ad9f0 2518 else if (*p == ')' || *p == '>')
c906108c
SS
2519 {
2520 depth -= 1;
2521 }
2522
2523 p += 1;
2524 }
2525 }
2526
c906108c
SS
2527 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2528
2529 /* Now update the old "stub" type into a real type. */
2530 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
09e2d7c7
DE
2531 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2532 We want a method (TYPE_CODE_METHOD). */
2533 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2534 argtypes, argcount, p[-2] == '.');
876cecd0 2535 TYPE_STUB (mtype) = 0;
c906108c 2536 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632
DJ
2537
2538 xfree (demangled_name);
c906108c
SS
2539}
2540
7ba81444
MS
2541/* This is the external interface to check_stub_method, above. This
2542 function unstubs all of the signatures for TYPE's METHOD_ID method
2543 name. After calling this function TYPE_FN_FIELD_STUB will be
2544 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2545 correct.
de17c821
DJ
2546
2547 This function unfortunately can not die until stabs do. */
2548
2549void
2550check_stub_method_group (struct type *type, int method_id)
2551{
2552 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2553 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
f710f4fc 2554 int j, found_stub = 0;
de17c821
DJ
2555
2556 for (j = 0; j < len; j++)
2557 if (TYPE_FN_FIELD_STUB (f, j))
2558 {
2559 found_stub = 1;
2560 check_stub_method (type, method_id, j);
2561 }
2562
7ba81444
MS
2563 /* GNU v3 methods with incorrect names were corrected when we read
2564 in type information, because it was cheaper to do it then. The
2565 only GNU v2 methods with incorrect method names are operators and
2566 destructors; destructors were also corrected when we read in type
2567 information.
de17c821
DJ
2568
2569 Therefore the only thing we need to handle here are v2 operator
2570 names. */
61012eef 2571 if (found_stub && !startswith (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z"))
de17c821
DJ
2572 {
2573 int ret;
2574 char dem_opname[256];
2575
7ba81444
MS
2576 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2577 method_id),
de17c821
DJ
2578 dem_opname, DMGL_ANSI);
2579 if (!ret)
7ba81444
MS
2580 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2581 method_id),
de17c821
DJ
2582 dem_opname, 0);
2583 if (ret)
2584 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2585 }
2586}
2587
9655fd1a
JK
2588/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2589const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
2590
2591void
fba45db2 2592allocate_cplus_struct_type (struct type *type)
c906108c 2593{
b4ba55a1
JB
2594 if (HAVE_CPLUS_STRUCT (type))
2595 /* Structure was already allocated. Nothing more to do. */
2596 return;
2597
2598 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2599 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2600 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2601 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
ae6ae975 2602 set_type_vptr_fieldno (type, -1);
c906108c
SS
2603}
2604
b4ba55a1
JB
2605const struct gnat_aux_type gnat_aux_default =
2606 { NULL };
2607
2608/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2609 and allocate the associated gnat-specific data. The gnat-specific
2610 data is also initialized to gnat_aux_default. */
5212577a 2611
b4ba55a1
JB
2612void
2613allocate_gnat_aux_type (struct type *type)
2614{
2615 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2616 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2617 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2618 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2619}
2620
c906108c
SS
2621/* Helper function to initialize the standard scalar types.
2622
86f62fd7
TT
2623 If NAME is non-NULL, then it is used to initialize the type name.
2624 Note that NAME is not copied; it is required to have a lifetime at
2625 least as long as OBJFILE. */
c906108c
SS
2626
2627struct type *
7ba81444 2628init_type (enum type_code code, int length, int flags,
748e18ae 2629 const char *name, struct objfile *objfile)
c906108c 2630{
52f0bd74 2631 struct type *type;
c906108c
SS
2632
2633 type = alloc_type (objfile);
2634 TYPE_CODE (type) = code;
2635 TYPE_LENGTH (type) = length;
876cecd0
TT
2636
2637 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2638 if (flags & TYPE_FLAG_UNSIGNED)
2639 TYPE_UNSIGNED (type) = 1;
2640 if (flags & TYPE_FLAG_NOSIGN)
2641 TYPE_NOSIGN (type) = 1;
2642 if (flags & TYPE_FLAG_STUB)
2643 TYPE_STUB (type) = 1;
2644 if (flags & TYPE_FLAG_TARGET_STUB)
2645 TYPE_TARGET_STUB (type) = 1;
2646 if (flags & TYPE_FLAG_STATIC)
2647 TYPE_STATIC (type) = 1;
2648 if (flags & TYPE_FLAG_PROTOTYPED)
2649 TYPE_PROTOTYPED (type) = 1;
2650 if (flags & TYPE_FLAG_INCOMPLETE)
2651 TYPE_INCOMPLETE (type) = 1;
2652 if (flags & TYPE_FLAG_VARARGS)
2653 TYPE_VARARGS (type) = 1;
2654 if (flags & TYPE_FLAG_VECTOR)
2655 TYPE_VECTOR (type) = 1;
2656 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2657 TYPE_STUB_SUPPORTED (type) = 1;
876cecd0
TT
2658 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2659 TYPE_FIXED_INSTANCE (type) = 1;
0875794a
JK
2660 if (flags & TYPE_FLAG_GNU_IFUNC)
2661 TYPE_GNU_IFUNC (type) = 1;
876cecd0 2662
86f62fd7 2663 TYPE_NAME (type) = name;
c906108c
SS
2664
2665 /* C++ fancies. */
2666
973ccf8b 2667 if (name && strcmp (name, "char") == 0)
876cecd0 2668 TYPE_NOSIGN (type) = 1;
973ccf8b 2669
b4ba55a1 2670 switch (code)
c906108c 2671 {
b4ba55a1
JB
2672 case TYPE_CODE_STRUCT:
2673 case TYPE_CODE_UNION:
2674 case TYPE_CODE_NAMESPACE:
2675 INIT_CPLUS_SPECIFIC (type);
2676 break;
2677 case TYPE_CODE_FLT:
2678 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2679 break;
2680 case TYPE_CODE_FUNC:
b6cdc2c1 2681 INIT_FUNC_SPECIFIC (type);
b4ba55a1 2682 break;
c906108c 2683 }
c16abbde 2684 return type;
c906108c 2685}
5212577a
DE
2686\f
2687/* Queries on types. */
c906108c 2688
c906108c 2689int
fba45db2 2690can_dereference (struct type *t)
c906108c 2691{
7ba81444
MS
2692 /* FIXME: Should we return true for references as well as
2693 pointers? */
f168693b 2694 t = check_typedef (t);
c906108c
SS
2695 return
2696 (t != NULL
2697 && TYPE_CODE (t) == TYPE_CODE_PTR
2698 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2699}
2700
adf40b2e 2701int
fba45db2 2702is_integral_type (struct type *t)
adf40b2e 2703{
f168693b 2704 t = check_typedef (t);
adf40b2e
JM
2705 return
2706 ((t != NULL)
d4f3574e
SS
2707 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2708 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 2709 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
2710 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2711 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2712 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
2713}
2714
e09342b5
TJB
2715/* Return true if TYPE is scalar. */
2716
2717static int
2718is_scalar_type (struct type *type)
2719{
f168693b 2720 type = check_typedef (type);
e09342b5
TJB
2721
2722 switch (TYPE_CODE (type))
2723 {
2724 case TYPE_CODE_ARRAY:
2725 case TYPE_CODE_STRUCT:
2726 case TYPE_CODE_UNION:
2727 case TYPE_CODE_SET:
2728 case TYPE_CODE_STRING:
e09342b5
TJB
2729 return 0;
2730 default:
2731 return 1;
2732 }
2733}
2734
2735/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
2736 the memory layout of a scalar type. E.g., an array or struct with only
2737 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
2738
2739int
2740is_scalar_type_recursive (struct type *t)
2741{
f168693b 2742 t = check_typedef (t);
e09342b5
TJB
2743
2744 if (is_scalar_type (t))
2745 return 1;
2746 /* Are we dealing with an array or string of known dimensions? */
2747 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2748 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2749 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2750 {
2751 LONGEST low_bound, high_bound;
2752 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2753
2754 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2755
2756 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2757 }
2758 /* Are we dealing with a struct with one element? */
2759 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2760 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2761 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2762 {
2763 int i, n = TYPE_NFIELDS (t);
2764
2765 /* If all elements of the union are scalar, then the union is scalar. */
2766 for (i = 0; i < n; i++)
2767 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2768 return 0;
2769
2770 return 1;
2771 }
2772
2773 return 0;
2774}
2775
6c659fc2
SC
2776/* Return true is T is a class or a union. False otherwise. */
2777
2778int
2779class_or_union_p (const struct type *t)
2780{
2781 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
2782 || TYPE_CODE (t) == TYPE_CODE_UNION);
2783}
2784
4e8f195d
TT
2785/* A helper function which returns true if types A and B represent the
2786 "same" class type. This is true if the types have the same main
2787 type, or the same name. */
2788
2789int
2790class_types_same_p (const struct type *a, const struct type *b)
2791{
2792 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2793 || (TYPE_NAME (a) && TYPE_NAME (b)
2794 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2795}
2796
a9d5ef47
SW
2797/* If BASE is an ancestor of DCLASS return the distance between them.
2798 otherwise return -1;
2799 eg:
2800
2801 class A {};
2802 class B: public A {};
2803 class C: public B {};
2804 class D: C {};
2805
2806 distance_to_ancestor (A, A, 0) = 0
2807 distance_to_ancestor (A, B, 0) = 1
2808 distance_to_ancestor (A, C, 0) = 2
2809 distance_to_ancestor (A, D, 0) = 3
2810
2811 If PUBLIC is 1 then only public ancestors are considered,
2812 and the function returns the distance only if BASE is a public ancestor
2813 of DCLASS.
2814 Eg:
2815
0963b4bd 2816 distance_to_ancestor (A, D, 1) = -1. */
c906108c 2817
0526b37a 2818static int
fe978cb0 2819distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
c906108c
SS
2820{
2821 int i;
a9d5ef47 2822 int d;
c5aa993b 2823
f168693b
SM
2824 base = check_typedef (base);
2825 dclass = check_typedef (dclass);
c906108c 2826
4e8f195d 2827 if (class_types_same_p (base, dclass))
a9d5ef47 2828 return 0;
c906108c
SS
2829
2830 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 2831 {
fe978cb0 2832 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
0526b37a
SW
2833 continue;
2834
fe978cb0 2835 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
a9d5ef47
SW
2836 if (d >= 0)
2837 return 1 + d;
4e8f195d 2838 }
c906108c 2839
a9d5ef47 2840 return -1;
c906108c 2841}
4e8f195d 2842
0526b37a
SW
2843/* Check whether BASE is an ancestor or base class or DCLASS
2844 Return 1 if so, and 0 if not.
2845 Note: If BASE and DCLASS are of the same type, this function
2846 will return 1. So for some class A, is_ancestor (A, A) will
2847 return 1. */
2848
2849int
2850is_ancestor (struct type *base, struct type *dclass)
2851{
a9d5ef47 2852 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
2853}
2854
4e8f195d
TT
2855/* Like is_ancestor, but only returns true when BASE is a public
2856 ancestor of DCLASS. */
2857
2858int
2859is_public_ancestor (struct type *base, struct type *dclass)
2860{
a9d5ef47 2861 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
2862}
2863
2864/* A helper function for is_unique_ancestor. */
2865
2866static int
2867is_unique_ancestor_worker (struct type *base, struct type *dclass,
2868 int *offset,
8af8e3bc
PA
2869 const gdb_byte *valaddr, int embedded_offset,
2870 CORE_ADDR address, struct value *val)
4e8f195d
TT
2871{
2872 int i, count = 0;
2873
f168693b
SM
2874 base = check_typedef (base);
2875 dclass = check_typedef (dclass);
4e8f195d
TT
2876
2877 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2878 {
8af8e3bc
PA
2879 struct type *iter;
2880 int this_offset;
4e8f195d 2881
8af8e3bc
PA
2882 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2883
2884 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2885 address, val);
4e8f195d
TT
2886
2887 if (class_types_same_p (base, iter))
2888 {
2889 /* If this is the first subclass, set *OFFSET and set count
2890 to 1. Otherwise, if this is at the same offset as
2891 previous instances, do nothing. Otherwise, increment
2892 count. */
2893 if (*offset == -1)
2894 {
2895 *offset = this_offset;
2896 count = 1;
2897 }
2898 else if (this_offset == *offset)
2899 {
2900 /* Nothing. */
2901 }
2902 else
2903 ++count;
2904 }
2905 else
2906 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
2907 valaddr,
2908 embedded_offset + this_offset,
2909 address, val);
4e8f195d
TT
2910 }
2911
2912 return count;
2913}
2914
2915/* Like is_ancestor, but only returns true if BASE is a unique base
2916 class of the type of VAL. */
2917
2918int
2919is_unique_ancestor (struct type *base, struct value *val)
2920{
2921 int offset = -1;
2922
2923 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
2924 value_contents_for_printing (val),
2925 value_embedded_offset (val),
2926 value_address (val), val) == 1;
4e8f195d
TT
2927}
2928
c906108c 2929\f
5212577a 2930/* Overload resolution. */
c906108c 2931
6403aeea
SW
2932/* Return the sum of the rank of A with the rank of B. */
2933
2934struct rank
2935sum_ranks (struct rank a, struct rank b)
2936{
2937 struct rank c;
2938 c.rank = a.rank + b.rank;
a9d5ef47 2939 c.subrank = a.subrank + b.subrank;
6403aeea
SW
2940 return c;
2941}
2942
2943/* Compare rank A and B and return:
2944 0 if a = b
2945 1 if a is better than b
2946 -1 if b is better than a. */
2947
2948int
2949compare_ranks (struct rank a, struct rank b)
2950{
2951 if (a.rank == b.rank)
a9d5ef47
SW
2952 {
2953 if (a.subrank == b.subrank)
2954 return 0;
2955 if (a.subrank < b.subrank)
2956 return 1;
2957 if (a.subrank > b.subrank)
2958 return -1;
2959 }
6403aeea
SW
2960
2961 if (a.rank < b.rank)
2962 return 1;
2963
0963b4bd 2964 /* a.rank > b.rank */
6403aeea
SW
2965 return -1;
2966}
c5aa993b 2967
0963b4bd 2968/* Functions for overload resolution begin here. */
c906108c
SS
2969
2970/* Compare two badness vectors A and B and return the result.
7ba81444
MS
2971 0 => A and B are identical
2972 1 => A and B are incomparable
2973 2 => A is better than B
2974 3 => A is worse than B */
c906108c
SS
2975
2976int
fba45db2 2977compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
2978{
2979 int i;
2980 int tmp;
c5aa993b
JM
2981 short found_pos = 0; /* any positives in c? */
2982 short found_neg = 0; /* any negatives in c? */
2983
2984 /* differing lengths => incomparable */
c906108c
SS
2985 if (a->length != b->length)
2986 return 1;
2987
c5aa993b
JM
2988 /* Subtract b from a */
2989 for (i = 0; i < a->length; i++)
c906108c 2990 {
6403aeea 2991 tmp = compare_ranks (b->rank[i], a->rank[i]);
c906108c 2992 if (tmp > 0)
c5aa993b 2993 found_pos = 1;
c906108c 2994 else if (tmp < 0)
c5aa993b 2995 found_neg = 1;
c906108c
SS
2996 }
2997
2998 if (found_pos)
2999 {
3000 if (found_neg)
c5aa993b 3001 return 1; /* incomparable */
c906108c 3002 else
c5aa993b 3003 return 3; /* A > B */
c906108c 3004 }
c5aa993b
JM
3005 else
3006 /* no positives */
c906108c
SS
3007 {
3008 if (found_neg)
c5aa993b 3009 return 2; /* A < B */
c906108c 3010 else
c5aa993b 3011 return 0; /* A == B */
c906108c
SS
3012 }
3013}
3014
7ba81444
MS
3015/* Rank a function by comparing its parameter types (PARMS, length
3016 NPARMS), to the types of an argument list (ARGS, length NARGS).
3017 Return a pointer to a badness vector. This has NARGS + 1
3018 entries. */
c906108c
SS
3019
3020struct badness_vector *
7ba81444 3021rank_function (struct type **parms, int nparms,
da096638 3022 struct value **args, int nargs)
c906108c
SS
3023{
3024 int i;
8d749320 3025 struct badness_vector *bv = XNEW (struct badness_vector);
c906108c
SS
3026 int min_len = nparms < nargs ? nparms : nargs;
3027
0963b4bd 3028 bv->length = nargs + 1; /* add 1 for the length-match rank. */
c4e54771 3029 bv->rank = XNEWVEC (struct rank, nargs + 1);
c906108c
SS
3030
3031 /* First compare the lengths of the supplied lists.
7ba81444 3032 If there is a mismatch, set it to a high value. */
c5aa993b 3033
c906108c 3034 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
3035 arguments and ellipsis parameter lists, we should consider those
3036 and rank the length-match more finely. */
c906108c 3037
6403aeea
SW
3038 LENGTH_MATCH (bv) = (nargs != nparms)
3039 ? LENGTH_MISMATCH_BADNESS
3040 : EXACT_MATCH_BADNESS;
c906108c 3041
0963b4bd 3042 /* Now rank all the parameters of the candidate function. */
74cc24b0 3043 for (i = 1; i <= min_len; i++)
da096638
KS
3044 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
3045 args[i - 1]);
c906108c 3046
0963b4bd 3047 /* If more arguments than parameters, add dummy entries. */
c5aa993b 3048 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
3049 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
3050
3051 return bv;
3052}
3053
973ccf8b
DJ
3054/* Compare the names of two integer types, assuming that any sign
3055 qualifiers have been checked already. We do it this way because
3056 there may be an "int" in the name of one of the types. */
3057
3058static int
3059integer_types_same_name_p (const char *first, const char *second)
3060{
3061 int first_p, second_p;
3062
7ba81444
MS
3063 /* If both are shorts, return 1; if neither is a short, keep
3064 checking. */
973ccf8b
DJ
3065 first_p = (strstr (first, "short") != NULL);
3066 second_p = (strstr (second, "short") != NULL);
3067 if (first_p && second_p)
3068 return 1;
3069 if (first_p || second_p)
3070 return 0;
3071
3072 /* Likewise for long. */
3073 first_p = (strstr (first, "long") != NULL);
3074 second_p = (strstr (second, "long") != NULL);
3075 if (first_p && second_p)
3076 return 1;
3077 if (first_p || second_p)
3078 return 0;
3079
3080 /* Likewise for char. */
3081 first_p = (strstr (first, "char") != NULL);
3082 second_p = (strstr (second, "char") != NULL);
3083 if (first_p && second_p)
3084 return 1;
3085 if (first_p || second_p)
3086 return 0;
3087
3088 /* They must both be ints. */
3089 return 1;
3090}
3091
7062b0a0
SW
3092/* Compares type A to type B returns 1 if the represent the same type
3093 0 otherwise. */
3094
bd69fc68 3095int
7062b0a0
SW
3096types_equal (struct type *a, struct type *b)
3097{
3098 /* Identical type pointers. */
3099 /* However, this still doesn't catch all cases of same type for b
3100 and a. The reason is that builtin types are different from
3101 the same ones constructed from the object. */
3102 if (a == b)
3103 return 1;
3104
3105 /* Resolve typedefs */
3106 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3107 a = check_typedef (a);
3108 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3109 b = check_typedef (b);
3110
3111 /* If after resolving typedefs a and b are not of the same type
3112 code then they are not equal. */
3113 if (TYPE_CODE (a) != TYPE_CODE (b))
3114 return 0;
3115
3116 /* If a and b are both pointers types or both reference types then
3117 they are equal of the same type iff the objects they refer to are
3118 of the same type. */
3119 if (TYPE_CODE (a) == TYPE_CODE_PTR
3120 || TYPE_CODE (a) == TYPE_CODE_REF)
3121 return types_equal (TYPE_TARGET_TYPE (a),
3122 TYPE_TARGET_TYPE (b));
3123
0963b4bd 3124 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
3125 are exactly the same. This happens when we generate method
3126 stubs. The types won't point to the same address, but they
0963b4bd 3127 really are the same. */
7062b0a0
SW
3128
3129 if (TYPE_NAME (a) && TYPE_NAME (b)
3130 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3131 return 1;
3132
3133 /* Check if identical after resolving typedefs. */
3134 if (a == b)
3135 return 1;
3136
9ce98649
TT
3137 /* Two function types are equal if their argument and return types
3138 are equal. */
3139 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3140 {
3141 int i;
3142
3143 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3144 return 0;
3145
3146 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3147 return 0;
3148
3149 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3150 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3151 return 0;
3152
3153 return 1;
3154 }
3155
7062b0a0
SW
3156 return 0;
3157}
ca092b61
DE
3158\f
3159/* Deep comparison of types. */
3160
3161/* An entry in the type-equality bcache. */
3162
3163typedef struct type_equality_entry
3164{
3165 struct type *type1, *type2;
3166} type_equality_entry_d;
3167
3168DEF_VEC_O (type_equality_entry_d);
3169
3170/* A helper function to compare two strings. Returns 1 if they are
3171 the same, 0 otherwise. Handles NULLs properly. */
3172
3173static int
3174compare_maybe_null_strings (const char *s, const char *t)
3175{
3176 if (s == NULL && t != NULL)
3177 return 0;
3178 else if (s != NULL && t == NULL)
3179 return 0;
3180 else if (s == NULL && t== NULL)
3181 return 1;
3182 return strcmp (s, t) == 0;
3183}
3184
3185/* A helper function for check_types_worklist that checks two types for
3186 "deep" equality. Returns non-zero if the types are considered the
3187 same, zero otherwise. */
3188
3189static int
3190check_types_equal (struct type *type1, struct type *type2,
3191 VEC (type_equality_entry_d) **worklist)
3192{
f168693b
SM
3193 type1 = check_typedef (type1);
3194 type2 = check_typedef (type2);
ca092b61
DE
3195
3196 if (type1 == type2)
3197 return 1;
3198
3199 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3200 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3201 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3202 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3203 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3204 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3205 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3206 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3207 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3208 return 0;
3209
3210 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3211 TYPE_TAG_NAME (type2)))
3212 return 0;
3213 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3214 return 0;
3215
3216 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3217 {
3218 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
3219 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
3220 return 0;
3221 }
3222 else
3223 {
3224 int i;
3225
3226 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3227 {
3228 const struct field *field1 = &TYPE_FIELD (type1, i);
3229 const struct field *field2 = &TYPE_FIELD (type2, i);
3230 struct type_equality_entry entry;
3231
3232 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3233 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3234 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3235 return 0;
3236 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3237 FIELD_NAME (*field2)))
3238 return 0;
3239 switch (FIELD_LOC_KIND (*field1))
3240 {
3241 case FIELD_LOC_KIND_BITPOS:
3242 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3243 return 0;
3244 break;
3245 case FIELD_LOC_KIND_ENUMVAL:
3246 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3247 return 0;
3248 break;
3249 case FIELD_LOC_KIND_PHYSADDR:
3250 if (FIELD_STATIC_PHYSADDR (*field1)
3251 != FIELD_STATIC_PHYSADDR (*field2))
3252 return 0;
3253 break;
3254 case FIELD_LOC_KIND_PHYSNAME:
3255 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3256 FIELD_STATIC_PHYSNAME (*field2)))
3257 return 0;
3258 break;
3259 case FIELD_LOC_KIND_DWARF_BLOCK:
3260 {
3261 struct dwarf2_locexpr_baton *block1, *block2;
3262
3263 block1 = FIELD_DWARF_BLOCK (*field1);
3264 block2 = FIELD_DWARF_BLOCK (*field2);
3265 if (block1->per_cu != block2->per_cu
3266 || block1->size != block2->size
3267 || memcmp (block1->data, block2->data, block1->size) != 0)
3268 return 0;
3269 }
3270 break;
3271 default:
3272 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3273 "%d by check_types_equal"),
3274 FIELD_LOC_KIND (*field1));
3275 }
3276
3277 entry.type1 = FIELD_TYPE (*field1);
3278 entry.type2 = FIELD_TYPE (*field2);
3279 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3280 }
3281 }
3282
3283 if (TYPE_TARGET_TYPE (type1) != NULL)
3284 {
3285 struct type_equality_entry entry;
3286
3287 if (TYPE_TARGET_TYPE (type2) == NULL)
3288 return 0;
3289
3290 entry.type1 = TYPE_TARGET_TYPE (type1);
3291 entry.type2 = TYPE_TARGET_TYPE (type2);
3292 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3293 }
3294 else if (TYPE_TARGET_TYPE (type2) != NULL)
3295 return 0;
3296
3297 return 1;
3298}
3299
3300/* Check types on a worklist for equality. Returns zero if any pair
3301 is not equal, non-zero if they are all considered equal. */
3302
3303static int
3304check_types_worklist (VEC (type_equality_entry_d) **worklist,
3305 struct bcache *cache)
3306{
3307 while (!VEC_empty (type_equality_entry_d, *worklist))
3308 {
3309 struct type_equality_entry entry;
3310 int added;
3311
3312 entry = *VEC_last (type_equality_entry_d, *worklist);
3313 VEC_pop (type_equality_entry_d, *worklist);
3314
3315 /* If the type pair has already been visited, we know it is
3316 ok. */
3317 bcache_full (&entry, sizeof (entry), cache, &added);
3318 if (!added)
3319 continue;
3320
3321 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3322 return 0;
3323 }
7062b0a0 3324
ca092b61
DE
3325 return 1;
3326}
3327
3328/* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3329 "deep comparison". Otherwise return zero. */
3330
3331int
3332types_deeply_equal (struct type *type1, struct type *type2)
3333{
6c63c96a 3334 struct gdb_exception except = exception_none;
ca092b61
DE
3335 int result = 0;
3336 struct bcache *cache;
3337 VEC (type_equality_entry_d) *worklist = NULL;
3338 struct type_equality_entry entry;
3339
3340 gdb_assert (type1 != NULL && type2 != NULL);
3341
3342 /* Early exit for the simple case. */
3343 if (type1 == type2)
3344 return 1;
3345
3346 cache = bcache_xmalloc (NULL, NULL);
3347
3348 entry.type1 = type1;
3349 entry.type2 = type2;
3350 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3351
6c63c96a
PA
3352 /* check_types_worklist calls several nested helper functions, some
3353 of which can raise a GDB exception, so we just check and rethrow
3354 here. If there is a GDB exception, a comparison is not capable
3355 (or trusted), so exit. */
492d29ea 3356 TRY
ca092b61
DE
3357 {
3358 result = check_types_worklist (&worklist, cache);
3359 }
6c63c96a 3360 CATCH (ex, RETURN_MASK_ALL)
492d29ea 3361 {
6c63c96a 3362 except = ex;
492d29ea
PA
3363 }
3364 END_CATCH
ca092b61 3365
6c63c96a
PA
3366 bcache_xfree (cache);
3367 VEC_free (type_equality_entry_d, worklist);
3368
3369 /* Rethrow if there was a problem. */
3370 if (except.reason < 0)
3371 throw_exception (except);
3372
ca092b61
DE
3373 return result;
3374}
3375\f
c906108c
SS
3376/* Compare one type (PARM) for compatibility with another (ARG).
3377 * PARM is intended to be the parameter type of a function; and
3378 * ARG is the supplied argument's type. This function tests if
3379 * the latter can be converted to the former.
da096638 3380 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
3381 *
3382 * Return 0 if they are identical types;
3383 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
3384 * PARM is to ARG. The higher the return value, the worse the match.
3385 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 3386
6403aeea 3387struct rank
da096638 3388rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 3389{
a9d5ef47 3390 struct rank rank = {0,0};
7062b0a0
SW
3391
3392 if (types_equal (parm, arg))
6403aeea 3393 return EXACT_MATCH_BADNESS;
c906108c
SS
3394
3395 /* Resolve typedefs */
3396 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3397 parm = check_typedef (parm);
3398 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3399 arg = check_typedef (arg);
3400
db577aea 3401 /* See through references, since we can almost make non-references
7ba81444 3402 references. */
db577aea 3403 if (TYPE_CODE (arg) == TYPE_CODE_REF)
da096638 3404 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
6403aeea 3405 REFERENCE_CONVERSION_BADNESS));
db577aea 3406 if (TYPE_CODE (parm) == TYPE_CODE_REF)
da096638 3407 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
6403aeea 3408 REFERENCE_CONVERSION_BADNESS));
5d161b24 3409 if (overload_debug)
7ba81444
MS
3410 /* Debugging only. */
3411 fprintf_filtered (gdb_stderr,
3412 "------ Arg is %s [%d], parm is %s [%d]\n",
3413 TYPE_NAME (arg), TYPE_CODE (arg),
3414 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 3415
0963b4bd 3416 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
3417
3418 switch (TYPE_CODE (parm))
3419 {
c5aa993b
JM
3420 case TYPE_CODE_PTR:
3421 switch (TYPE_CODE (arg))
3422 {
3423 case TYPE_CODE_PTR:
7062b0a0
SW
3424
3425 /* Allowed pointer conversions are:
3426 (a) pointer to void-pointer conversion. */
3427 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
c5aa993b 3428 return VOID_PTR_CONVERSION_BADNESS;
7062b0a0
SW
3429
3430 /* (b) pointer to ancestor-pointer conversion. */
a9d5ef47
SW
3431 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3432 TYPE_TARGET_TYPE (arg),
3433 0);
3434 if (rank.subrank >= 0)
3435 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
7062b0a0
SW
3436
3437 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3438 case TYPE_CODE_ARRAY:
7062b0a0
SW
3439 if (types_equal (TYPE_TARGET_TYPE (parm),
3440 TYPE_TARGET_TYPE (arg)))
6403aeea 3441 return EXACT_MATCH_BADNESS;
7062b0a0 3442 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3443 case TYPE_CODE_FUNC:
da096638 3444 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
c5aa993b 3445 case TYPE_CODE_INT:
a451cb65 3446 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
da096638 3447 {
a451cb65
KS
3448 if (value_as_long (value) == 0)
3449 {
3450 /* Null pointer conversion: allow it to be cast to a pointer.
3451 [4.10.1 of C++ standard draft n3290] */
3452 return NULL_POINTER_CONVERSION_BADNESS;
3453 }
3454 else
3455 {
3456 /* If type checking is disabled, allow the conversion. */
3457 if (!strict_type_checking)
3458 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3459 }
da096638
KS
3460 }
3461 /* fall through */
c5aa993b 3462 case TYPE_CODE_ENUM:
4f2aea11 3463 case TYPE_CODE_FLAGS:
c5aa993b
JM
3464 case TYPE_CODE_CHAR:
3465 case TYPE_CODE_RANGE:
3466 case TYPE_CODE_BOOL:
c5aa993b
JM
3467 default:
3468 return INCOMPATIBLE_TYPE_BADNESS;
3469 }
3470 case TYPE_CODE_ARRAY:
3471 switch (TYPE_CODE (arg))
3472 {
3473 case TYPE_CODE_PTR:
3474 case TYPE_CODE_ARRAY:
7ba81444 3475 return rank_one_type (TYPE_TARGET_TYPE (parm),
da096638 3476 TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3477 default:
3478 return INCOMPATIBLE_TYPE_BADNESS;
3479 }
3480 case TYPE_CODE_FUNC:
3481 switch (TYPE_CODE (arg))
3482 {
3483 case TYPE_CODE_PTR: /* funcptr -> func */
da096638 3484 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3485 default:
3486 return INCOMPATIBLE_TYPE_BADNESS;
3487 }
3488 case TYPE_CODE_INT:
3489 switch (TYPE_CODE (arg))
3490 {
3491 case TYPE_CODE_INT:
3492 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3493 {
3494 /* Deal with signed, unsigned, and plain chars and
7ba81444 3495 signed and unsigned ints. */
c5aa993b
JM
3496 if (TYPE_NOSIGN (parm))
3497 {
0963b4bd 3498 /* This case only for character types. */
7ba81444 3499 if (TYPE_NOSIGN (arg))
6403aeea 3500 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
7ba81444
MS
3501 else /* signed/unsigned char -> plain char */
3502 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3503 }
3504 else if (TYPE_UNSIGNED (parm))
3505 {
3506 if (TYPE_UNSIGNED (arg))
3507 {
7ba81444
MS
3508 /* unsigned int -> unsigned int, or
3509 unsigned long -> unsigned long */
3510 if (integer_types_same_name_p (TYPE_NAME (parm),
3511 TYPE_NAME (arg)))
6403aeea 3512 return EXACT_MATCH_BADNESS;
7ba81444
MS
3513 else if (integer_types_same_name_p (TYPE_NAME (arg),
3514 "int")
3515 && integer_types_same_name_p (TYPE_NAME (parm),
3516 "long"))
3e43a32a
MS
3517 /* unsigned int -> unsigned long */
3518 return INTEGER_PROMOTION_BADNESS;
c5aa993b 3519 else
3e43a32a
MS
3520 /* unsigned long -> unsigned int */
3521 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3522 }
3523 else
3524 {
7ba81444
MS
3525 if (integer_types_same_name_p (TYPE_NAME (arg),
3526 "long")
3527 && integer_types_same_name_p (TYPE_NAME (parm),
3528 "int"))
3e43a32a
MS
3529 /* signed long -> unsigned int */
3530 return INTEGER_CONVERSION_BADNESS;
c5aa993b 3531 else
3e43a32a
MS
3532 /* signed int/long -> unsigned int/long */
3533 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3534 }
3535 }
3536 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3537 {
7ba81444
MS
3538 if (integer_types_same_name_p (TYPE_NAME (parm),
3539 TYPE_NAME (arg)))
6403aeea 3540 return EXACT_MATCH_BADNESS;
7ba81444
MS
3541 else if (integer_types_same_name_p (TYPE_NAME (arg),
3542 "int")
3543 && integer_types_same_name_p (TYPE_NAME (parm),
3544 "long"))
c5aa993b
JM
3545 return INTEGER_PROMOTION_BADNESS;
3546 else
1c5cb38e 3547 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3548 }
3549 else
1c5cb38e 3550 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3551 }
3552 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3553 return INTEGER_PROMOTION_BADNESS;
3554 else
1c5cb38e 3555 return INTEGER_CONVERSION_BADNESS;
c5aa993b 3556 case TYPE_CODE_ENUM:
4f2aea11 3557 case TYPE_CODE_FLAGS:
c5aa993b
JM
3558 case TYPE_CODE_CHAR:
3559 case TYPE_CODE_RANGE:
3560 case TYPE_CODE_BOOL:
3d567982
TT
3561 if (TYPE_DECLARED_CLASS (arg))
3562 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b
JM
3563 return INTEGER_PROMOTION_BADNESS;
3564 case TYPE_CODE_FLT:
3565 return INT_FLOAT_CONVERSION_BADNESS;
3566 case TYPE_CODE_PTR:
3567 return NS_POINTER_CONVERSION_BADNESS;
3568 default:
3569 return INCOMPATIBLE_TYPE_BADNESS;
3570 }
3571 break;
3572 case TYPE_CODE_ENUM:
3573 switch (TYPE_CODE (arg))
3574 {
3575 case TYPE_CODE_INT:
3576 case TYPE_CODE_CHAR:
3577 case TYPE_CODE_RANGE:
3578 case TYPE_CODE_BOOL:
3579 case TYPE_CODE_ENUM:
3d567982
TT
3580 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3581 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 3582 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3583 case TYPE_CODE_FLT:
3584 return INT_FLOAT_CONVERSION_BADNESS;
3585 default:
3586 return INCOMPATIBLE_TYPE_BADNESS;
3587 }
3588 break;
3589 case TYPE_CODE_CHAR:
3590 switch (TYPE_CODE (arg))
3591 {
3592 case TYPE_CODE_RANGE:
3593 case TYPE_CODE_BOOL:
3594 case TYPE_CODE_ENUM:
3d567982
TT
3595 if (TYPE_DECLARED_CLASS (arg))
3596 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 3597 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3598 case TYPE_CODE_FLT:
3599 return INT_FLOAT_CONVERSION_BADNESS;
3600 case TYPE_CODE_INT:
3601 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
1c5cb38e 3602 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3603 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3604 return INTEGER_PROMOTION_BADNESS;
3605 /* >>> !! else fall through !! <<< */
3606 case TYPE_CODE_CHAR:
7ba81444
MS
3607 /* Deal with signed, unsigned, and plain chars for C++ and
3608 with int cases falling through from previous case. */
c5aa993b
JM
3609 if (TYPE_NOSIGN (parm))
3610 {
3611 if (TYPE_NOSIGN (arg))
6403aeea 3612 return EXACT_MATCH_BADNESS;
c5aa993b 3613 else
1c5cb38e 3614 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3615 }
3616 else if (TYPE_UNSIGNED (parm))
3617 {
3618 if (TYPE_UNSIGNED (arg))
6403aeea 3619 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3620 else
3621 return INTEGER_PROMOTION_BADNESS;
3622 }
3623 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
6403aeea 3624 return EXACT_MATCH_BADNESS;
c5aa993b 3625 else
1c5cb38e 3626 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3627 default:
3628 return INCOMPATIBLE_TYPE_BADNESS;
3629 }
3630 break;
3631 case TYPE_CODE_RANGE:
3632 switch (TYPE_CODE (arg))
3633 {
3634 case TYPE_CODE_INT:
3635 case TYPE_CODE_CHAR:
3636 case TYPE_CODE_RANGE:
3637 case TYPE_CODE_BOOL:
3638 case TYPE_CODE_ENUM:
1c5cb38e 3639 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3640 case TYPE_CODE_FLT:
3641 return INT_FLOAT_CONVERSION_BADNESS;
3642 default:
3643 return INCOMPATIBLE_TYPE_BADNESS;
3644 }
3645 break;
3646 case TYPE_CODE_BOOL:
3647 switch (TYPE_CODE (arg))
3648 {
5b4f6e25
KS
3649 /* n3290 draft, section 4.12.1 (conv.bool):
3650
3651 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3652 pointer to member type can be converted to a prvalue of type
3653 bool. A zero value, null pointer value, or null member pointer
3654 value is converted to false; any other value is converted to
3655 true. A prvalue of type std::nullptr_t can be converted to a
3656 prvalue of type bool; the resulting value is false." */
c5aa993b
JM
3657 case TYPE_CODE_INT:
3658 case TYPE_CODE_CHAR:
c5aa993b
JM
3659 case TYPE_CODE_ENUM:
3660 case TYPE_CODE_FLT:
5b4f6e25 3661 case TYPE_CODE_MEMBERPTR:
c5aa993b 3662 case TYPE_CODE_PTR:
5b4f6e25
KS
3663 return BOOL_CONVERSION_BADNESS;
3664 case TYPE_CODE_RANGE:
3665 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3666 case TYPE_CODE_BOOL:
6403aeea 3667 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3668 default:
3669 return INCOMPATIBLE_TYPE_BADNESS;
3670 }
3671 break;
3672 case TYPE_CODE_FLT:
3673 switch (TYPE_CODE (arg))
3674 {
3675 case TYPE_CODE_FLT:
3676 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3677 return FLOAT_PROMOTION_BADNESS;
3678 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
6403aeea 3679 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3680 else
3681 return FLOAT_CONVERSION_BADNESS;
3682 case TYPE_CODE_INT:
3683 case TYPE_CODE_BOOL:
3684 case TYPE_CODE_ENUM:
3685 case TYPE_CODE_RANGE:
3686 case TYPE_CODE_CHAR:
3687 return INT_FLOAT_CONVERSION_BADNESS;
3688 default:
3689 return INCOMPATIBLE_TYPE_BADNESS;
3690 }
3691 break;
3692 case TYPE_CODE_COMPLEX:
3693 switch (TYPE_CODE (arg))
7ba81444 3694 { /* Strictly not needed for C++, but... */
c5aa993b
JM
3695 case TYPE_CODE_FLT:
3696 return FLOAT_PROMOTION_BADNESS;
3697 case TYPE_CODE_COMPLEX:
6403aeea 3698 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3699 default:
3700 return INCOMPATIBLE_TYPE_BADNESS;
3701 }
3702 break;
3703 case TYPE_CODE_STRUCT:
c5aa993b
JM
3704 switch (TYPE_CODE (arg))
3705 {
3706 case TYPE_CODE_STRUCT:
3707 /* Check for derivation */
a9d5ef47
SW
3708 rank.subrank = distance_to_ancestor (parm, arg, 0);
3709 if (rank.subrank >= 0)
3710 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
c5aa993b
JM
3711 /* else fall through */
3712 default:
3713 return INCOMPATIBLE_TYPE_BADNESS;
3714 }
3715 break;
3716 case TYPE_CODE_UNION:
3717 switch (TYPE_CODE (arg))
3718 {
3719 case TYPE_CODE_UNION:
3720 default:
3721 return INCOMPATIBLE_TYPE_BADNESS;
3722 }
3723 break;
0d5de010 3724 case TYPE_CODE_MEMBERPTR:
c5aa993b
JM
3725 switch (TYPE_CODE (arg))
3726 {
3727 default:
3728 return INCOMPATIBLE_TYPE_BADNESS;
3729 }
3730 break;
3731 case TYPE_CODE_METHOD:
3732 switch (TYPE_CODE (arg))
3733 {
3734
3735 default:
3736 return INCOMPATIBLE_TYPE_BADNESS;
3737 }
3738 break;
3739 case TYPE_CODE_REF:
3740 switch (TYPE_CODE (arg))
3741 {
3742
3743 default:
3744 return INCOMPATIBLE_TYPE_BADNESS;
3745 }
3746
3747 break;
3748 case TYPE_CODE_SET:
3749 switch (TYPE_CODE (arg))
3750 {
3751 /* Not in C++ */
3752 case TYPE_CODE_SET:
7ba81444 3753 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
da096638 3754 TYPE_FIELD_TYPE (arg, 0), NULL);
c5aa993b
JM
3755 default:
3756 return INCOMPATIBLE_TYPE_BADNESS;
3757 }
3758 break;
3759 case TYPE_CODE_VOID:
3760 default:
3761 return INCOMPATIBLE_TYPE_BADNESS;
3762 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
3763}
3764
0963b4bd 3765/* End of functions for overload resolution. */
5212577a
DE
3766\f
3767/* Routines to pretty-print types. */
c906108c 3768
c906108c 3769static void
fba45db2 3770print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
3771{
3772 int bitno;
3773
3774 for (bitno = 0; bitno < nbits; bitno++)
3775 {
3776 if ((bitno % 8) == 0)
3777 {
3778 puts_filtered (" ");
3779 }
3780 if (B_TST (bits, bitno))
a3f17187 3781 printf_filtered (("1"));
c906108c 3782 else
a3f17187 3783 printf_filtered (("0"));
c906108c
SS
3784 }
3785}
3786
ad2f7632 3787/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
3788 include it since we may get into a infinitely recursive
3789 situation. */
c906108c
SS
3790
3791static void
4c9e8482 3792print_args (struct field *args, int nargs, int spaces)
c906108c
SS
3793{
3794 if (args != NULL)
3795 {
ad2f7632
DJ
3796 int i;
3797
3798 for (i = 0; i < nargs; i++)
4c9e8482
DE
3799 {
3800 printfi_filtered (spaces, "[%d] name '%s'\n", i,
3801 args[i].name != NULL ? args[i].name : "<NULL>");
3802 recursive_dump_type (args[i].type, spaces + 2);
3803 }
c906108c
SS
3804 }
3805}
3806
d6a843b5
JK
3807int
3808field_is_static (struct field *f)
3809{
3810 /* "static" fields are the fields whose location is not relative
3811 to the address of the enclosing struct. It would be nice to
3812 have a dedicated flag that would be set for static fields when
3813 the type is being created. But in practice, checking the field
254e6b9e 3814 loc_kind should give us an accurate answer. */
d6a843b5
JK
3815 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3816 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3817}
3818
c906108c 3819static void
fba45db2 3820dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
3821{
3822 int method_idx;
3823 int overload_idx;
3824 struct fn_field *f;
3825
3826 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 3827 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
3828 printf_filtered ("\n");
3829 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3830 {
3831 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3832 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3833 method_idx,
3834 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
3835 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3836 gdb_stdout);
a3f17187 3837 printf_filtered (_(") length %d\n"),
c906108c
SS
3838 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3839 for (overload_idx = 0;
3840 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3841 overload_idx++)
3842 {
3843 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3844 overload_idx,
3845 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
3846 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3847 gdb_stdout);
c906108c
SS
3848 printf_filtered (")\n");
3849 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
3850 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3851 gdb_stdout);
c906108c
SS
3852 printf_filtered ("\n");
3853
3854 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3855 spaces + 8 + 2);
3856
3857 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
3858 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3859 gdb_stdout);
c906108c 3860 printf_filtered ("\n");
4c9e8482
DE
3861 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
3862 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
3863 spaces + 8 + 2);
c906108c 3864 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
3865 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3866 gdb_stdout);
c906108c
SS
3867 printf_filtered ("\n");
3868
3869 printfi_filtered (spaces + 8, "is_const %d\n",
3870 TYPE_FN_FIELD_CONST (f, overload_idx));
3871 printfi_filtered (spaces + 8, "is_volatile %d\n",
3872 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3873 printfi_filtered (spaces + 8, "is_private %d\n",
3874 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3875 printfi_filtered (spaces + 8, "is_protected %d\n",
3876 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3877 printfi_filtered (spaces + 8, "is_stub %d\n",
3878 TYPE_FN_FIELD_STUB (f, overload_idx));
3879 printfi_filtered (spaces + 8, "voffset %u\n",
3880 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3881 }
3882 }
3883}
3884
3885static void
fba45db2 3886print_cplus_stuff (struct type *type, int spaces)
c906108c 3887{
ae6ae975
DE
3888 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
3889 printfi_filtered (spaces, "vptr_basetype ");
3890 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3891 puts_filtered ("\n");
3892 if (TYPE_VPTR_BASETYPE (type) != NULL)
3893 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3894
c906108c
SS
3895 printfi_filtered (spaces, "n_baseclasses %d\n",
3896 TYPE_N_BASECLASSES (type));
3897 printfi_filtered (spaces, "nfn_fields %d\n",
3898 TYPE_NFN_FIELDS (type));
c906108c
SS
3899 if (TYPE_N_BASECLASSES (type) > 0)
3900 {
3901 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3902 TYPE_N_BASECLASSES (type));
7ba81444
MS
3903 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3904 gdb_stdout);
c906108c
SS
3905 printf_filtered (")");
3906
3907 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3908 TYPE_N_BASECLASSES (type));
3909 puts_filtered ("\n");
3910 }
3911 if (TYPE_NFIELDS (type) > 0)
3912 {
3913 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3914 {
7ba81444
MS
3915 printfi_filtered (spaces,
3916 "private_field_bits (%d bits at *",
c906108c 3917 TYPE_NFIELDS (type));
7ba81444
MS
3918 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3919 gdb_stdout);
c906108c
SS
3920 printf_filtered (")");
3921 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3922 TYPE_NFIELDS (type));
3923 puts_filtered ("\n");
3924 }
3925 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3926 {
7ba81444
MS
3927 printfi_filtered (spaces,
3928 "protected_field_bits (%d bits at *",
c906108c 3929 TYPE_NFIELDS (type));
7ba81444
MS
3930 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3931 gdb_stdout);
c906108c
SS
3932 printf_filtered (")");
3933 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3934 TYPE_NFIELDS (type));
3935 puts_filtered ("\n");
3936 }
3937 }
3938 if (TYPE_NFN_FIELDS (type) > 0)
3939 {
3940 dump_fn_fieldlists (type, spaces);
3941 }
3942}
3943
b4ba55a1
JB
3944/* Print the contents of the TYPE's type_specific union, assuming that
3945 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3946
3947static void
3948print_gnat_stuff (struct type *type, int spaces)
3949{
3950 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3951
8cd00c59
PMR
3952 if (descriptive_type == NULL)
3953 printfi_filtered (spaces + 2, "no descriptive type\n");
3954 else
3955 {
3956 printfi_filtered (spaces + 2, "descriptive type\n");
3957 recursive_dump_type (descriptive_type, spaces + 4);
3958 }
b4ba55a1
JB
3959}
3960
c906108c
SS
3961static struct obstack dont_print_type_obstack;
3962
3963void
fba45db2 3964recursive_dump_type (struct type *type, int spaces)
c906108c
SS
3965{
3966 int idx;
3967
3968 if (spaces == 0)
3969 obstack_begin (&dont_print_type_obstack, 0);
3970
3971 if (TYPE_NFIELDS (type) > 0
b4ba55a1 3972 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
3973 {
3974 struct type **first_dont_print
7ba81444 3975 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 3976
7ba81444
MS
3977 int i = (struct type **)
3978 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
3979
3980 while (--i >= 0)
3981 {
3982 if (type == first_dont_print[i])
3983 {
3984 printfi_filtered (spaces, "type node ");
d4f3574e 3985 gdb_print_host_address (type, gdb_stdout);
a3f17187 3986 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
3987 return;
3988 }
3989 }
3990
3991 obstack_ptr_grow (&dont_print_type_obstack, type);
3992 }
3993
3994 printfi_filtered (spaces, "type node ");
d4f3574e 3995 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
3996 printf_filtered ("\n");
3997 printfi_filtered (spaces, "name '%s' (",
3998 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 3999 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 4000 printf_filtered (")\n");
e9e79dd9
FF
4001 printfi_filtered (spaces, "tagname '%s' (",
4002 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
4003 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
4004 printf_filtered (")\n");
c906108c
SS
4005 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4006 switch (TYPE_CODE (type))
4007 {
c5aa993b
JM
4008 case TYPE_CODE_UNDEF:
4009 printf_filtered ("(TYPE_CODE_UNDEF)");
4010 break;
4011 case TYPE_CODE_PTR:
4012 printf_filtered ("(TYPE_CODE_PTR)");
4013 break;
4014 case TYPE_CODE_ARRAY:
4015 printf_filtered ("(TYPE_CODE_ARRAY)");
4016 break;
4017 case TYPE_CODE_STRUCT:
4018 printf_filtered ("(TYPE_CODE_STRUCT)");
4019 break;
4020 case TYPE_CODE_UNION:
4021 printf_filtered ("(TYPE_CODE_UNION)");
4022 break;
4023 case TYPE_CODE_ENUM:
4024 printf_filtered ("(TYPE_CODE_ENUM)");
4025 break;
4f2aea11
MK
4026 case TYPE_CODE_FLAGS:
4027 printf_filtered ("(TYPE_CODE_FLAGS)");
4028 break;
c5aa993b
JM
4029 case TYPE_CODE_FUNC:
4030 printf_filtered ("(TYPE_CODE_FUNC)");
4031 break;
4032 case TYPE_CODE_INT:
4033 printf_filtered ("(TYPE_CODE_INT)");
4034 break;
4035 case TYPE_CODE_FLT:
4036 printf_filtered ("(TYPE_CODE_FLT)");
4037 break;
4038 case TYPE_CODE_VOID:
4039 printf_filtered ("(TYPE_CODE_VOID)");
4040 break;
4041 case TYPE_CODE_SET:
4042 printf_filtered ("(TYPE_CODE_SET)");
4043 break;
4044 case TYPE_CODE_RANGE:
4045 printf_filtered ("(TYPE_CODE_RANGE)");
4046 break;
4047 case TYPE_CODE_STRING:
4048 printf_filtered ("(TYPE_CODE_STRING)");
4049 break;
4050 case TYPE_CODE_ERROR:
4051 printf_filtered ("(TYPE_CODE_ERROR)");
4052 break;
0d5de010
DJ
4053 case TYPE_CODE_MEMBERPTR:
4054 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4055 break;
4056 case TYPE_CODE_METHODPTR:
4057 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
4058 break;
4059 case TYPE_CODE_METHOD:
4060 printf_filtered ("(TYPE_CODE_METHOD)");
4061 break;
4062 case TYPE_CODE_REF:
4063 printf_filtered ("(TYPE_CODE_REF)");
4064 break;
4065 case TYPE_CODE_CHAR:
4066 printf_filtered ("(TYPE_CODE_CHAR)");
4067 break;
4068 case TYPE_CODE_BOOL:
4069 printf_filtered ("(TYPE_CODE_BOOL)");
4070 break;
e9e79dd9
FF
4071 case TYPE_CODE_COMPLEX:
4072 printf_filtered ("(TYPE_CODE_COMPLEX)");
4073 break;
c5aa993b
JM
4074 case TYPE_CODE_TYPEDEF:
4075 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4076 break;
5c4e30ca
DC
4077 case TYPE_CODE_NAMESPACE:
4078 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4079 break;
c5aa993b
JM
4080 default:
4081 printf_filtered ("(UNKNOWN TYPE CODE)");
4082 break;
c906108c
SS
4083 }
4084 puts_filtered ("\n");
4085 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9bb382b
UW
4086 if (TYPE_OBJFILE_OWNED (type))
4087 {
4088 printfi_filtered (spaces, "objfile ");
4089 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4090 }
4091 else
4092 {
4093 printfi_filtered (spaces, "gdbarch ");
4094 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4095 }
c906108c
SS
4096 printf_filtered ("\n");
4097 printfi_filtered (spaces, "target_type ");
d4f3574e 4098 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
4099 printf_filtered ("\n");
4100 if (TYPE_TARGET_TYPE (type) != NULL)
4101 {
4102 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4103 }
4104 printfi_filtered (spaces, "pointer_type ");
d4f3574e 4105 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
4106 printf_filtered ("\n");
4107 printfi_filtered (spaces, "reference_type ");
d4f3574e 4108 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 4109 printf_filtered ("\n");
2fdde8f8
DJ
4110 printfi_filtered (spaces, "type_chain ");
4111 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 4112 printf_filtered ("\n");
7ba81444
MS
4113 printfi_filtered (spaces, "instance_flags 0x%x",
4114 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
4115 if (TYPE_CONST (type))
4116 {
4117 puts_filtered (" TYPE_FLAG_CONST");
4118 }
4119 if (TYPE_VOLATILE (type))
4120 {
4121 puts_filtered (" TYPE_FLAG_VOLATILE");
4122 }
4123 if (TYPE_CODE_SPACE (type))
4124 {
4125 puts_filtered (" TYPE_FLAG_CODE_SPACE");
4126 }
4127 if (TYPE_DATA_SPACE (type))
4128 {
4129 puts_filtered (" TYPE_FLAG_DATA_SPACE");
4130 }
8b2dbe47
KB
4131 if (TYPE_ADDRESS_CLASS_1 (type))
4132 {
4133 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
4134 }
4135 if (TYPE_ADDRESS_CLASS_2 (type))
4136 {
4137 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
4138 }
06d66ee9
TT
4139 if (TYPE_RESTRICT (type))
4140 {
4141 puts_filtered (" TYPE_FLAG_RESTRICT");
4142 }
a2c2acaf
MW
4143 if (TYPE_ATOMIC (type))
4144 {
4145 puts_filtered (" TYPE_FLAG_ATOMIC");
4146 }
2fdde8f8 4147 puts_filtered ("\n");
876cecd0
TT
4148
4149 printfi_filtered (spaces, "flags");
762a036f 4150 if (TYPE_UNSIGNED (type))
c906108c
SS
4151 {
4152 puts_filtered (" TYPE_FLAG_UNSIGNED");
4153 }
762a036f
FF
4154 if (TYPE_NOSIGN (type))
4155 {
4156 puts_filtered (" TYPE_FLAG_NOSIGN");
4157 }
4158 if (TYPE_STUB (type))
c906108c
SS
4159 {
4160 puts_filtered (" TYPE_FLAG_STUB");
4161 }
762a036f
FF
4162 if (TYPE_TARGET_STUB (type))
4163 {
4164 puts_filtered (" TYPE_FLAG_TARGET_STUB");
4165 }
4166 if (TYPE_STATIC (type))
4167 {
4168 puts_filtered (" TYPE_FLAG_STATIC");
4169 }
762a036f
FF
4170 if (TYPE_PROTOTYPED (type))
4171 {
4172 puts_filtered (" TYPE_FLAG_PROTOTYPED");
4173 }
4174 if (TYPE_INCOMPLETE (type))
4175 {
4176 puts_filtered (" TYPE_FLAG_INCOMPLETE");
4177 }
762a036f
FF
4178 if (TYPE_VARARGS (type))
4179 {
4180 puts_filtered (" TYPE_FLAG_VARARGS");
4181 }
f5f8a009
EZ
4182 /* This is used for things like AltiVec registers on ppc. Gcc emits
4183 an attribute for the array type, which tells whether or not we
4184 have a vector, instead of a regular array. */
4185 if (TYPE_VECTOR (type))
4186 {
4187 puts_filtered (" TYPE_FLAG_VECTOR");
4188 }
876cecd0
TT
4189 if (TYPE_FIXED_INSTANCE (type))
4190 {
4191 puts_filtered (" TYPE_FIXED_INSTANCE");
4192 }
4193 if (TYPE_STUB_SUPPORTED (type))
4194 {
4195 puts_filtered (" TYPE_STUB_SUPPORTED");
4196 }
4197 if (TYPE_NOTTEXT (type))
4198 {
4199 puts_filtered (" TYPE_NOTTEXT");
4200 }
c906108c
SS
4201 puts_filtered ("\n");
4202 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 4203 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
4204 puts_filtered ("\n");
4205 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4206 {
14e75d8e
JK
4207 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4208 printfi_filtered (spaces + 2,
4209 "[%d] enumval %s type ",
4210 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4211 else
4212 printfi_filtered (spaces + 2,
4213 "[%d] bitpos %d bitsize %d type ",
4214 idx, TYPE_FIELD_BITPOS (type, idx),
4215 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 4216 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
4217 printf_filtered (" name '%s' (",
4218 TYPE_FIELD_NAME (type, idx) != NULL
4219 ? TYPE_FIELD_NAME (type, idx)
4220 : "<NULL>");
d4f3574e 4221 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
4222 printf_filtered (")\n");
4223 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4224 {
4225 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4226 }
4227 }
43bbcdc2
PH
4228 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4229 {
4230 printfi_filtered (spaces, "low %s%s high %s%s\n",
4231 plongest (TYPE_LOW_BOUND (type)),
4232 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4233 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
4234 TYPE_HIGH_BOUND_UNDEFINED (type)
4235 ? " (undefined)" : "");
43bbcdc2 4236 }
c906108c 4237
b4ba55a1
JB
4238 switch (TYPE_SPECIFIC_FIELD (type))
4239 {
4240 case TYPE_SPECIFIC_CPLUS_STUFF:
4241 printfi_filtered (spaces, "cplus_stuff ");
4242 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4243 gdb_stdout);
4244 puts_filtered ("\n");
4245 print_cplus_stuff (type, spaces);
4246 break;
8da61cc4 4247
b4ba55a1
JB
4248 case TYPE_SPECIFIC_GNAT_STUFF:
4249 printfi_filtered (spaces, "gnat_stuff ");
4250 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4251 puts_filtered ("\n");
4252 print_gnat_stuff (type, spaces);
4253 break;
701c159d 4254
b4ba55a1
JB
4255 case TYPE_SPECIFIC_FLOATFORMAT:
4256 printfi_filtered (spaces, "floatformat ");
4257 if (TYPE_FLOATFORMAT (type) == NULL)
4258 puts_filtered ("(null)");
4259 else
4260 {
4261 puts_filtered ("{ ");
4262 if (TYPE_FLOATFORMAT (type)[0] == NULL
4263 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
4264 puts_filtered ("(null)");
4265 else
4266 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
4267
4268 puts_filtered (", ");
4269 if (TYPE_FLOATFORMAT (type)[1] == NULL
4270 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
4271 puts_filtered ("(null)");
4272 else
4273 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
4274
4275 puts_filtered (" }");
4276 }
4277 puts_filtered ("\n");
4278 break;
c906108c 4279
b6cdc2c1 4280 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
4281 printfi_filtered (spaces, "calling_convention %d\n",
4282 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 4283 /* tail_call_list is not printed. */
b4ba55a1 4284 break;
09e2d7c7
DE
4285
4286 case TYPE_SPECIFIC_SELF_TYPE:
4287 printfi_filtered (spaces, "self_type ");
4288 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4289 puts_filtered ("\n");
4290 break;
c906108c 4291 }
b4ba55a1 4292
c906108c
SS
4293 if (spaces == 0)
4294 obstack_free (&dont_print_type_obstack, NULL);
4295}
5212577a 4296\f
ae5a43e0
DJ
4297/* Trivial helpers for the libiberty hash table, for mapping one
4298 type to another. */
4299
4300struct type_pair
4301{
fe978cb0 4302 struct type *old, *newobj;
ae5a43e0
DJ
4303};
4304
4305static hashval_t
4306type_pair_hash (const void *item)
4307{
4308 const struct type_pair *pair = item;
d8734c88 4309
ae5a43e0
DJ
4310 return htab_hash_pointer (pair->old);
4311}
4312
4313static int
4314type_pair_eq (const void *item_lhs, const void *item_rhs)
4315{
4316 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
d8734c88 4317
ae5a43e0
DJ
4318 return lhs->old == rhs->old;
4319}
4320
4321/* Allocate the hash table used by copy_type_recursive to walk
4322 types without duplicates. We use OBJFILE's obstack, because
4323 OBJFILE is about to be deleted. */
4324
4325htab_t
4326create_copied_types_hash (struct objfile *objfile)
4327{
4328 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4329 NULL, &objfile->objfile_obstack,
4330 hashtab_obstack_allocate,
4331 dummy_obstack_deallocate);
4332}
4333
d9823cbb
KB
4334/* Recursively copy (deep copy) a dynamic attribute list of a type. */
4335
4336static struct dynamic_prop_list *
4337copy_dynamic_prop_list (struct obstack *objfile_obstack,
4338 struct dynamic_prop_list *list)
4339{
4340 struct dynamic_prop_list *copy = list;
4341 struct dynamic_prop_list **node_ptr = &copy;
4342
4343 while (*node_ptr != NULL)
4344 {
4345 struct dynamic_prop_list *node_copy;
4346
4347 node_copy = obstack_copy (objfile_obstack, *node_ptr,
4348 sizeof (struct dynamic_prop_list));
283a9958 4349 node_copy->prop = (*node_ptr)->prop;
d9823cbb
KB
4350 *node_ptr = node_copy;
4351
4352 node_ptr = &node_copy->next;
4353 }
4354
4355 return copy;
4356}
4357
7ba81444
MS
4358/* Recursively copy (deep copy) TYPE, if it is associated with
4359 OBJFILE. Return a new type allocated using malloc, a saved type if
4360 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
4361 not associated with OBJFILE. */
ae5a43e0
DJ
4362
4363struct type *
7ba81444
MS
4364copy_type_recursive (struct objfile *objfile,
4365 struct type *type,
ae5a43e0
DJ
4366 htab_t copied_types)
4367{
4368 struct type_pair *stored, pair;
4369 void **slot;
4370 struct type *new_type;
4371
e9bb382b 4372 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
4373 return type;
4374
7ba81444
MS
4375 /* This type shouldn't be pointing to any types in other objfiles;
4376 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
4377 gdb_assert (TYPE_OBJFILE (type) == objfile);
4378
4379 pair.old = type;
4380 slot = htab_find_slot (copied_types, &pair, INSERT);
4381 if (*slot != NULL)
fe978cb0 4382 return ((struct type_pair *) *slot)->newobj;
ae5a43e0 4383
e9bb382b 4384 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
4385
4386 /* We must add the new type to the hash table immediately, in case
4387 we encounter this type again during a recursive call below. */
8d749320 4388 stored = XOBNEW (&objfile->objfile_obstack, struct type_pair);
ae5a43e0 4389 stored->old = type;
fe978cb0 4390 stored->newobj = new_type;
ae5a43e0
DJ
4391 *slot = stored;
4392
876cecd0
TT
4393 /* Copy the common fields of types. For the main type, we simply
4394 copy the entire thing and then update specific fields as needed. */
4395 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
4396 TYPE_OBJFILE_OWNED (new_type) = 0;
4397 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 4398
ae5a43e0
DJ
4399 if (TYPE_NAME (type))
4400 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4401 if (TYPE_TAG_NAME (type))
4402 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
ae5a43e0
DJ
4403
4404 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4405 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4406
4407 /* Copy the fields. */
ae5a43e0
DJ
4408 if (TYPE_NFIELDS (type))
4409 {
4410 int i, nfields;
4411
4412 nfields = TYPE_NFIELDS (type);
fc270c35 4413 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
ae5a43e0
DJ
4414 for (i = 0; i < nfields; i++)
4415 {
7ba81444
MS
4416 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4417 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
4418 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4419 if (TYPE_FIELD_TYPE (type, i))
4420 TYPE_FIELD_TYPE (new_type, i)
4421 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4422 copied_types);
4423 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
4424 TYPE_FIELD_NAME (new_type, i) =
4425 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 4426 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 4427 {
d6a843b5
JK
4428 case FIELD_LOC_KIND_BITPOS:
4429 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4430 TYPE_FIELD_BITPOS (type, i));
4431 break;
14e75d8e
JK
4432 case FIELD_LOC_KIND_ENUMVAL:
4433 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4434 TYPE_FIELD_ENUMVAL (type, i));
4435 break;
d6a843b5
JK
4436 case FIELD_LOC_KIND_PHYSADDR:
4437 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4438 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4439 break;
4440 case FIELD_LOC_KIND_PHYSNAME:
4441 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4442 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4443 i)));
4444 break;
4445 default:
4446 internal_error (__FILE__, __LINE__,
4447 _("Unexpected type field location kind: %d"),
4448 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
4449 }
4450 }
4451 }
4452
0963b4bd 4453 /* For range types, copy the bounds information. */
43bbcdc2
PH
4454 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4455 {
8d749320 4456 TYPE_RANGE_DATA (new_type) = XNEW (struct range_bounds);
43bbcdc2
PH
4457 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4458 }
4459
d9823cbb
KB
4460 if (TYPE_DYN_PROP_LIST (type) != NULL)
4461 TYPE_DYN_PROP_LIST (new_type)
4462 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4463 TYPE_DYN_PROP_LIST (type));
4464
3cdcd0ce 4465
ae5a43e0
DJ
4466 /* Copy pointers to other types. */
4467 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
4468 TYPE_TARGET_TYPE (new_type) =
4469 copy_type_recursive (objfile,
4470 TYPE_TARGET_TYPE (type),
4471 copied_types);
f6b3afbf 4472
ae5a43e0
DJ
4473 /* Maybe copy the type_specific bits.
4474
4475 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4476 base classes and methods. There's no fundamental reason why we
4477 can't, but at the moment it is not needed. */
4478
f6b3afbf
DE
4479 switch (TYPE_SPECIFIC_FIELD (type))
4480 {
4481 case TYPE_SPECIFIC_NONE:
4482 break;
4483 case TYPE_SPECIFIC_FUNC:
4484 INIT_FUNC_SPECIFIC (new_type);
4485 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4486 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4487 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4488 break;
4489 case TYPE_SPECIFIC_FLOATFORMAT:
4490 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4491 break;
4492 case TYPE_SPECIFIC_CPLUS_STUFF:
4493 INIT_CPLUS_SPECIFIC (new_type);
4494 break;
4495 case TYPE_SPECIFIC_GNAT_STUFF:
4496 INIT_GNAT_SPECIFIC (new_type);
4497 break;
09e2d7c7
DE
4498 case TYPE_SPECIFIC_SELF_TYPE:
4499 set_type_self_type (new_type,
4500 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4501 copied_types));
4502 break;
f6b3afbf
DE
4503 default:
4504 gdb_assert_not_reached ("bad type_specific_kind");
4505 }
ae5a43e0
DJ
4506
4507 return new_type;
4508}
4509
4af88198
JB
4510/* Make a copy of the given TYPE, except that the pointer & reference
4511 types are not preserved.
4512
4513 This function assumes that the given type has an associated objfile.
4514 This objfile is used to allocate the new type. */
4515
4516struct type *
4517copy_type (const struct type *type)
4518{
4519 struct type *new_type;
4520
e9bb382b 4521 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 4522
e9bb382b 4523 new_type = alloc_type_copy (type);
4af88198
JB
4524 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4525 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4526 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4527 sizeof (struct main_type));
d9823cbb
KB
4528 if (TYPE_DYN_PROP_LIST (type) != NULL)
4529 TYPE_DYN_PROP_LIST (new_type)
4530 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
4531 TYPE_DYN_PROP_LIST (type));
4af88198
JB
4532
4533 return new_type;
4534}
5212577a 4535\f
e9bb382b
UW
4536/* Helper functions to initialize architecture-specific types. */
4537
4538/* Allocate a type structure associated with GDBARCH and set its
4539 CODE, LENGTH, and NAME fields. */
5212577a 4540
e9bb382b
UW
4541struct type *
4542arch_type (struct gdbarch *gdbarch,
4543 enum type_code code, int length, char *name)
4544{
4545 struct type *type;
4546
4547 type = alloc_type_arch (gdbarch);
4548 TYPE_CODE (type) = code;
4549 TYPE_LENGTH (type) = length;
4550
4551 if (name)
2fee7708 4552 TYPE_NAME (type) = xstrdup (name);
e9bb382b
UW
4553
4554 return type;
4555}
4556
4557/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4558 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4559 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4560
e9bb382b
UW
4561struct type *
4562arch_integer_type (struct gdbarch *gdbarch,
4563 int bit, int unsigned_p, char *name)
4564{
4565 struct type *t;
4566
4567 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4568 if (unsigned_p)
4569 TYPE_UNSIGNED (t) = 1;
4570 if (name && strcmp (name, "char") == 0)
4571 TYPE_NOSIGN (t) = 1;
4572
4573 return t;
4574}
4575
4576/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4577 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4578 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4579
e9bb382b
UW
4580struct type *
4581arch_character_type (struct gdbarch *gdbarch,
4582 int bit, int unsigned_p, char *name)
4583{
4584 struct type *t;
4585
4586 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4587 if (unsigned_p)
4588 TYPE_UNSIGNED (t) = 1;
4589
4590 return t;
4591}
4592
4593/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4594 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4595 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4596
e9bb382b
UW
4597struct type *
4598arch_boolean_type (struct gdbarch *gdbarch,
4599 int bit, int unsigned_p, char *name)
4600{
4601 struct type *t;
4602
4603 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4604 if (unsigned_p)
4605 TYPE_UNSIGNED (t) = 1;
4606
4607 return t;
4608}
4609
4610/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4611 BIT is the type size in bits; if BIT equals -1, the size is
4612 determined by the floatformat. NAME is the type name. Set the
4613 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 4614
27067745 4615struct type *
e9bb382b
UW
4616arch_float_type (struct gdbarch *gdbarch,
4617 int bit, char *name, const struct floatformat **floatformats)
8da61cc4
DJ
4618{
4619 struct type *t;
4620
4621 if (bit == -1)
4622 {
4623 gdb_assert (floatformats != NULL);
4624 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4625 bit = floatformats[0]->totalsize;
4626 }
4627 gdb_assert (bit >= 0);
4628
e9bb382b 4629 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
8da61cc4
DJ
4630 TYPE_FLOATFORMAT (t) = floatformats;
4631 return t;
4632}
4633
e9bb382b
UW
4634/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4635 NAME is the type name. TARGET_TYPE is the component float type. */
5212577a 4636
27067745 4637struct type *
e9bb382b
UW
4638arch_complex_type (struct gdbarch *gdbarch,
4639 char *name, struct type *target_type)
27067745
UW
4640{
4641 struct type *t;
d8734c88 4642
e9bb382b
UW
4643 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4644 2 * TYPE_LENGTH (target_type), name);
27067745
UW
4645 TYPE_TARGET_TYPE (t) = target_type;
4646 return t;
4647}
4648
e9bb382b 4649/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
eb90ce83 4650 NAME is the type name. LENGTH is the size of the flag word in bytes. */
5212577a 4651
e9bb382b
UW
4652struct type *
4653arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4654{
4655 int nfields = length * TARGET_CHAR_BIT;
4656 struct type *type;
4657
4658 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4659 TYPE_UNSIGNED (type) = 1;
4660 TYPE_NFIELDS (type) = nfields;
4661 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4662
4663 return type;
4664}
4665
4666/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4667 position BITPOS is called NAME. */
5212577a 4668
e9bb382b
UW
4669void
4670append_flags_type_flag (struct type *type, int bitpos, char *name)
4671{
4672 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4673 gdb_assert (bitpos < TYPE_NFIELDS (type));
4674 gdb_assert (bitpos >= 0);
4675
4676 if (name)
4677 {
4678 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
945b3a32 4679 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
e9bb382b
UW
4680 }
4681 else
4682 {
4683 /* Don't show this field to the user. */
945b3a32 4684 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
e9bb382b
UW
4685 }
4686}
4687
4688/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4689 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 4690
e9bb382b
UW
4691struct type *
4692arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4693{
4694 struct type *t;
d8734c88 4695
e9bb382b
UW
4696 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4697 t = arch_type (gdbarch, code, 0, NULL);
4698 TYPE_TAG_NAME (t) = name;
4699 INIT_CPLUS_SPECIFIC (t);
4700 return t;
4701}
4702
4703/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
4704 Do not set the field's position or adjust the type's length;
4705 the caller should do so. Return the new field. */
5212577a 4706
f5dff777
DJ
4707struct field *
4708append_composite_type_field_raw (struct type *t, char *name,
4709 struct type *field)
e9bb382b
UW
4710{
4711 struct field *f;
d8734c88 4712
e9bb382b
UW
4713 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4714 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4715 sizeof (struct field) * TYPE_NFIELDS (t));
4716 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4717 memset (f, 0, sizeof f[0]);
4718 FIELD_TYPE (f[0]) = field;
4719 FIELD_NAME (f[0]) = name;
f5dff777
DJ
4720 return f;
4721}
4722
4723/* Add new field with name NAME and type FIELD to composite type T.
4724 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 4725
f5dff777
DJ
4726void
4727append_composite_type_field_aligned (struct type *t, char *name,
4728 struct type *field, int alignment)
4729{
4730 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 4731
e9bb382b
UW
4732 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4733 {
4734 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4735 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4736 }
4737 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4738 {
4739 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4740 if (TYPE_NFIELDS (t) > 1)
4741 {
f41f5e61
PA
4742 SET_FIELD_BITPOS (f[0],
4743 (FIELD_BITPOS (f[-1])
4744 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4745 * TARGET_CHAR_BIT)));
e9bb382b
UW
4746
4747 if (alignment)
4748 {
86c3c1fc
AB
4749 int left;
4750
4751 alignment *= TARGET_CHAR_BIT;
4752 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 4753
e9bb382b
UW
4754 if (left)
4755 {
f41f5e61 4756 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 4757 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
4758 }
4759 }
4760 }
4761 }
4762}
4763
4764/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 4765
e9bb382b
UW
4766void
4767append_composite_type_field (struct type *t, char *name,
4768 struct type *field)
4769{
4770 append_composite_type_field_aligned (t, name, field, 0);
4771}
4772
000177f0
AC
4773static struct gdbarch_data *gdbtypes_data;
4774
4775const struct builtin_type *
4776builtin_type (struct gdbarch *gdbarch)
4777{
4778 return gdbarch_data (gdbarch, gdbtypes_data);
4779}
4780
4781static void *
4782gdbtypes_post_init (struct gdbarch *gdbarch)
4783{
4784 struct builtin_type *builtin_type
4785 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4786
46bf5051 4787 /* Basic types. */
e9bb382b
UW
4788 builtin_type->builtin_void
4789 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4790 builtin_type->builtin_char
4791 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4792 !gdbarch_char_signed (gdbarch), "char");
4793 builtin_type->builtin_signed_char
4794 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4795 0, "signed char");
4796 builtin_type->builtin_unsigned_char
4797 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4798 1, "unsigned char");
4799 builtin_type->builtin_short
4800 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4801 0, "short");
4802 builtin_type->builtin_unsigned_short
4803 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4804 1, "unsigned short");
4805 builtin_type->builtin_int
4806 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4807 0, "int");
4808 builtin_type->builtin_unsigned_int
4809 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4810 1, "unsigned int");
4811 builtin_type->builtin_long
4812 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4813 0, "long");
4814 builtin_type->builtin_unsigned_long
4815 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4816 1, "unsigned long");
4817 builtin_type->builtin_long_long
4818 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4819 0, "long long");
4820 builtin_type->builtin_unsigned_long_long
4821 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4822 1, "unsigned long long");
70bd8e24 4823 builtin_type->builtin_float
e9bb382b 4824 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 4825 "float", gdbarch_float_format (gdbarch));
70bd8e24 4826 builtin_type->builtin_double
e9bb382b 4827 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 4828 "double", gdbarch_double_format (gdbarch));
70bd8e24 4829 builtin_type->builtin_long_double
e9bb382b 4830 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 4831 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 4832 builtin_type->builtin_complex
e9bb382b
UW
4833 = arch_complex_type (gdbarch, "complex",
4834 builtin_type->builtin_float);
70bd8e24 4835 builtin_type->builtin_double_complex
e9bb382b
UW
4836 = arch_complex_type (gdbarch, "double complex",
4837 builtin_type->builtin_double);
4838 builtin_type->builtin_string
4839 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4840 builtin_type->builtin_bool
4841 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
000177f0 4842
7678ef8f
TJB
4843 /* The following three are about decimal floating point types, which
4844 are 32-bits, 64-bits and 128-bits respectively. */
4845 builtin_type->builtin_decfloat
e9bb382b 4846 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
7678ef8f 4847 builtin_type->builtin_decdouble
e9bb382b 4848 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
7678ef8f 4849 builtin_type->builtin_declong
e9bb382b 4850 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
7678ef8f 4851
69feb676 4852 /* "True" character types. */
e9bb382b
UW
4853 builtin_type->builtin_true_char
4854 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4855 builtin_type->builtin_true_unsigned_char
4856 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 4857
df4df182 4858 /* Fixed-size integer types. */
e9bb382b
UW
4859 builtin_type->builtin_int0
4860 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4861 builtin_type->builtin_int8
4862 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4863 builtin_type->builtin_uint8
4864 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4865 builtin_type->builtin_int16
4866 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4867 builtin_type->builtin_uint16
4868 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4869 builtin_type->builtin_int32
4870 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4871 builtin_type->builtin_uint32
4872 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4873 builtin_type->builtin_int64
4874 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4875 builtin_type->builtin_uint64
4876 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4877 builtin_type->builtin_int128
4878 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4879 builtin_type->builtin_uint128
4880 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
4881 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4882 TYPE_INSTANCE_FLAG_NOTTEXT;
4883 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4884 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 4885
9a22f0d0
PM
4886 /* Wide character types. */
4887 builtin_type->builtin_char16
4888 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4889 builtin_type->builtin_char32
4890 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4891
4892
46bf5051 4893 /* Default data/code pointer types. */
e9bb382b
UW
4894 builtin_type->builtin_data_ptr
4895 = lookup_pointer_type (builtin_type->builtin_void);
4896 builtin_type->builtin_func_ptr
4897 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
4898 builtin_type->builtin_func_func
4899 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 4900
78267919 4901 /* This type represents a GDB internal function. */
e9bb382b
UW
4902 builtin_type->internal_fn
4903 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4904 "<internal function>");
78267919 4905
e81e7f5e
SC
4906 /* This type represents an xmethod. */
4907 builtin_type->xmethod
4908 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
4909
46bf5051
UW
4910 return builtin_type;
4911}
4912
46bf5051
UW
4913/* This set of objfile-based types is intended to be used by symbol
4914 readers as basic types. */
4915
4916static const struct objfile_data *objfile_type_data;
4917
4918const struct objfile_type *
4919objfile_type (struct objfile *objfile)
4920{
4921 struct gdbarch *gdbarch;
4922 struct objfile_type *objfile_type
4923 = objfile_data (objfile, objfile_type_data);
4924
4925 if (objfile_type)
4926 return objfile_type;
4927
4928 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4929 1, struct objfile_type);
4930
4931 /* Use the objfile architecture to determine basic type properties. */
4932 gdbarch = get_objfile_arch (objfile);
4933
4934 /* Basic types. */
4935 objfile_type->builtin_void
4936 = init_type (TYPE_CODE_VOID, 1,
4937 0,
4938 "void", objfile);
4939
4940 objfile_type->builtin_char
4941 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4942 (TYPE_FLAG_NOSIGN
4943 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4944 "char", objfile);
4945 objfile_type->builtin_signed_char
4946 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4947 0,
4948 "signed char", objfile);
4949 objfile_type->builtin_unsigned_char
4950 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4951 TYPE_FLAG_UNSIGNED,
4952 "unsigned char", objfile);
4953 objfile_type->builtin_short
4954 = init_type (TYPE_CODE_INT,
4955 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4956 0, "short", objfile);
4957 objfile_type->builtin_unsigned_short
4958 = init_type (TYPE_CODE_INT,
4959 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4960 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4961 objfile_type->builtin_int
4962 = init_type (TYPE_CODE_INT,
4963 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4964 0, "int", objfile);
4965 objfile_type->builtin_unsigned_int
4966 = init_type (TYPE_CODE_INT,
4967 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4968 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4969 objfile_type->builtin_long
4970 = init_type (TYPE_CODE_INT,
4971 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4972 0, "long", objfile);
4973 objfile_type->builtin_unsigned_long
4974 = init_type (TYPE_CODE_INT,
4975 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4976 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4977 objfile_type->builtin_long_long
4978 = init_type (TYPE_CODE_INT,
4979 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4980 0, "long long", objfile);
4981 objfile_type->builtin_unsigned_long_long
4982 = init_type (TYPE_CODE_INT,
4983 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4984 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4985
4986 objfile_type->builtin_float
4987 = init_type (TYPE_CODE_FLT,
4988 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4989 0, "float", objfile);
4990 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4991 = gdbarch_float_format (gdbarch);
4992 objfile_type->builtin_double
4993 = init_type (TYPE_CODE_FLT,
4994 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4995 0, "double", objfile);
4996 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4997 = gdbarch_double_format (gdbarch);
4998 objfile_type->builtin_long_double
4999 = init_type (TYPE_CODE_FLT,
5000 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
5001 0, "long double", objfile);
5002 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
5003 = gdbarch_long_double_format (gdbarch);
5004
5005 /* This type represents a type that was unrecognized in symbol read-in. */
5006 objfile_type->builtin_error
5007 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
5008
5009 /* The following set of types is used for symbols with no
5010 debug information. */
5011 objfile_type->nodebug_text_symbol
5012 = init_type (TYPE_CODE_FUNC, 1, 0,
5013 "<text variable, no debug info>", objfile);
5014 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
5015 = objfile_type->builtin_int;
0875794a
JK
5016 objfile_type->nodebug_text_gnu_ifunc_symbol
5017 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
5018 "<text gnu-indirect-function variable, no debug info>",
5019 objfile);
5020 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
5021 = objfile_type->nodebug_text_symbol;
5022 objfile_type->nodebug_got_plt_symbol
5023 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
5024 "<text from jump slot in .got.plt, no debug info>",
5025 objfile);
5026 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
5027 = objfile_type->nodebug_text_symbol;
46bf5051
UW
5028 objfile_type->nodebug_data_symbol
5029 = init_type (TYPE_CODE_INT,
5030 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
5031 "<data variable, no debug info>", objfile);
5032 objfile_type->nodebug_unknown_symbol
5033 = init_type (TYPE_CODE_INT, 1, 0,
5034 "<variable (not text or data), no debug info>", objfile);
5035 objfile_type->nodebug_tls_symbol
5036 = init_type (TYPE_CODE_INT,
5037 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
5038 "<thread local variable, no debug info>", objfile);
000177f0
AC
5039
5040 /* NOTE: on some targets, addresses and pointers are not necessarily
0a7cfe2c 5041 the same.
000177f0
AC
5042
5043 The upshot is:
5044 - gdb's `struct type' always describes the target's
5045 representation.
5046 - gdb's `struct value' objects should always hold values in
5047 target form.
5048 - gdb's CORE_ADDR values are addresses in the unified virtual
5049 address space that the assembler and linker work with. Thus,
5050 since target_read_memory takes a CORE_ADDR as an argument, it
5051 can access any memory on the target, even if the processor has
5052 separate code and data address spaces.
5053
46bf5051
UW
5054 In this context, objfile_type->builtin_core_addr is a bit odd:
5055 it's a target type for a value the target will never see. It's
5056 only used to hold the values of (typeless) linker symbols, which
5057 are indeed in the unified virtual address space. */
000177f0 5058
46bf5051
UW
5059 objfile_type->builtin_core_addr
5060 = init_type (TYPE_CODE_INT,
5061 gdbarch_addr_bit (gdbarch) / 8,
5062 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
64c50499 5063
46bf5051
UW
5064 set_objfile_data (objfile, objfile_type_data, objfile_type);
5065 return objfile_type;
000177f0
AC
5066}
5067
5212577a 5068extern initialize_file_ftype _initialize_gdbtypes;
46bf5051 5069
c906108c 5070void
fba45db2 5071_initialize_gdbtypes (void)
c906108c 5072{
5674de60 5073 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
46bf5051 5074 objfile_type_data = register_objfile_data ();
5674de60 5075
ccce17b0
YQ
5076 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5077 _("Set debugging of C++ overloading."),
5078 _("Show debugging of C++ overloading."),
5079 _("When enabled, ranking of the "
5080 "functions is displayed."),
5081 NULL,
5082 show_overload_debug,
5083 &setdebuglist, &showdebuglist);
5674de60 5084
7ba81444 5085 /* Add user knob for controlling resolution of opaque types. */
5674de60 5086 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
5087 &opaque_type_resolution,
5088 _("Set resolution of opaque struct/class/union"
5089 " types (if set before loading symbols)."),
5090 _("Show resolution of opaque struct/class/union"
5091 " types (if set before loading symbols)."),
5092 NULL, NULL,
5674de60
UW
5093 show_opaque_type_resolution,
5094 &setlist, &showlist);
a451cb65
KS
5095
5096 /* Add an option to permit non-strict type checking. */
5097 add_setshow_boolean_cmd ("type", class_support,
5098 &strict_type_checking,
5099 _("Set strict type checking."),
5100 _("Show strict type checking."),
5101 NULL, NULL,
5102 show_strict_type_checking,
5103 &setchecklist, &showchecklist);
c906108c 5104}
This page took 1.871122 seconds and 4 git commands to generate.