Add support for the new names of the RISC-V fmv.x.s and fmv.s.x instructions, vis...
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
61baf725 3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c
SS
23#include "bfd.h"
24#include "symtab.h"
25#include "symfile.h"
26#include "objfiles.h"
27#include "gdbtypes.h"
28#include "expression.h"
29#include "language.h"
30#include "target.h"
31#include "value.h"
32#include "demangle.h"
33#include "complaints.h"
34#include "gdbcmd.h"
015a42b4 35#include "cp-abi.h"
ae5a43e0 36#include "hashtab.h"
8de20a37 37#include "cp-support.h"
ca092b61
DE
38#include "bcache.h"
39#include "dwarf2loc.h"
80180f79 40#include "gdbcore.h"
ac3aafc7 41
6403aeea
SW
42/* Initialize BADNESS constants. */
43
a9d5ef47 44const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 45
a9d5ef47
SW
46const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 48
a9d5ef47 49const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 50
a9d5ef47
SW
51const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
e15c3eb4 54const struct rank CV_CONVERSION_BADNESS = {1, 0};
a9d5ef47
SW
55const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
56const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
57const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
58const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 59const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
60const struct rank BASE_CONVERSION_BADNESS = {2,0};
61const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
da096638 62const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 63const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 64const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 65
8da61cc4 66/* Floatformat pairs. */
f9e9243a
UW
67const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
68 &floatformat_ieee_half_big,
69 &floatformat_ieee_half_little
70};
8da61cc4
DJ
71const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
72 &floatformat_ieee_single_big,
73 &floatformat_ieee_single_little
74};
75const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
76 &floatformat_ieee_double_big,
77 &floatformat_ieee_double_little
78};
79const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
80 &floatformat_ieee_double_big,
81 &floatformat_ieee_double_littlebyte_bigword
82};
83const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
84 &floatformat_i387_ext,
85 &floatformat_i387_ext
86};
87const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
88 &floatformat_m68881_ext,
89 &floatformat_m68881_ext
90};
91const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
92 &floatformat_arm_ext_big,
93 &floatformat_arm_ext_littlebyte_bigword
94};
95const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
96 &floatformat_ia64_spill_big,
97 &floatformat_ia64_spill_little
98};
99const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
100 &floatformat_ia64_quad_big,
101 &floatformat_ia64_quad_little
102};
103const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
104 &floatformat_vax_f,
105 &floatformat_vax_f
106};
107const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
108 &floatformat_vax_d,
109 &floatformat_vax_d
110};
b14d30e1 111const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
f5aee5ee
AM
112 &floatformat_ibm_long_double_big,
113 &floatformat_ibm_long_double_little
b14d30e1 114};
8da61cc4 115
2873700e
KS
116/* Should opaque types be resolved? */
117
118static int opaque_type_resolution = 1;
119
120/* A flag to enable printing of debugging information of C++
121 overloading. */
122
123unsigned int overload_debug = 0;
124
a451cb65
KS
125/* A flag to enable strict type checking. */
126
127static int strict_type_checking = 1;
128
2873700e 129/* A function to show whether opaque types are resolved. */
5212577a 130
920d2a44
AC
131static void
132show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
133 struct cmd_list_element *c,
134 const char *value)
920d2a44 135{
3e43a32a
MS
136 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
137 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
138 value);
139}
140
2873700e 141/* A function to show whether C++ overload debugging is enabled. */
5212577a 142
920d2a44
AC
143static void
144show_overload_debug (struct ui_file *file, int from_tty,
145 struct cmd_list_element *c, const char *value)
146{
7ba81444
MS
147 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
148 value);
920d2a44 149}
c906108c 150
a451cb65
KS
151/* A function to show the status of strict type checking. */
152
153static void
154show_strict_type_checking (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156{
157 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
158}
159
5212577a 160\f
e9bb382b
UW
161/* Allocate a new OBJFILE-associated type structure and fill it
162 with some defaults. Space for the type structure is allocated
163 on the objfile's objfile_obstack. */
c906108c
SS
164
165struct type *
fba45db2 166alloc_type (struct objfile *objfile)
c906108c 167{
52f0bd74 168 struct type *type;
c906108c 169
e9bb382b
UW
170 gdb_assert (objfile != NULL);
171
7ba81444 172 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
173 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
174 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
175 struct main_type);
176 OBJSTAT (objfile, n_types++);
c906108c 177
e9bb382b
UW
178 TYPE_OBJFILE_OWNED (type) = 1;
179 TYPE_OWNER (type).objfile = objfile;
c906108c 180
7ba81444 181 /* Initialize the fields that might not be zero. */
c906108c
SS
182
183 TYPE_CODE (type) = TYPE_CODE_UNDEF;
2fdde8f8 184 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 185
c16abbde 186 return type;
c906108c
SS
187}
188
e9bb382b
UW
189/* Allocate a new GDBARCH-associated type structure and fill it
190 with some defaults. Space for the type structure is allocated
8f57eec2 191 on the obstack associated with GDBARCH. */
e9bb382b
UW
192
193struct type *
194alloc_type_arch (struct gdbarch *gdbarch)
195{
196 struct type *type;
197
198 gdb_assert (gdbarch != NULL);
199
200 /* Alloc the structure and start off with all fields zeroed. */
201
8f57eec2
PP
202 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
203 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
e9bb382b
UW
204
205 TYPE_OBJFILE_OWNED (type) = 0;
206 TYPE_OWNER (type).gdbarch = gdbarch;
207
208 /* Initialize the fields that might not be zero. */
209
210 TYPE_CODE (type) = TYPE_CODE_UNDEF;
e9bb382b
UW
211 TYPE_CHAIN (type) = type; /* Chain back to itself. */
212
213 return type;
214}
215
216/* If TYPE is objfile-associated, allocate a new type structure
217 associated with the same objfile. If TYPE is gdbarch-associated,
218 allocate a new type structure associated with the same gdbarch. */
219
220struct type *
221alloc_type_copy (const struct type *type)
222{
223 if (TYPE_OBJFILE_OWNED (type))
224 return alloc_type (TYPE_OWNER (type).objfile);
225 else
226 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
227}
228
229/* If TYPE is gdbarch-associated, return that architecture.
230 If TYPE is objfile-associated, return that objfile's architecture. */
231
232struct gdbarch *
233get_type_arch (const struct type *type)
234{
235 if (TYPE_OBJFILE_OWNED (type))
236 return get_objfile_arch (TYPE_OWNER (type).objfile);
237 else
238 return TYPE_OWNER (type).gdbarch;
239}
240
99ad9427
YQ
241/* See gdbtypes.h. */
242
243struct type *
244get_target_type (struct type *type)
245{
246 if (type != NULL)
247 {
248 type = TYPE_TARGET_TYPE (type);
249 if (type != NULL)
250 type = check_typedef (type);
251 }
252
253 return type;
254}
255
2e056931
SM
256/* See gdbtypes.h. */
257
258unsigned int
259type_length_units (struct type *type)
260{
261 struct gdbarch *arch = get_type_arch (type);
262 int unit_size = gdbarch_addressable_memory_unit_size (arch);
263
264 return TYPE_LENGTH (type) / unit_size;
265}
266
2fdde8f8
DJ
267/* Alloc a new type instance structure, fill it with some defaults,
268 and point it at OLDTYPE. Allocate the new type instance from the
269 same place as OLDTYPE. */
270
271static struct type *
272alloc_type_instance (struct type *oldtype)
273{
274 struct type *type;
275
276 /* Allocate the structure. */
277
e9bb382b 278 if (! TYPE_OBJFILE_OWNED (oldtype))
41bf6aca 279 type = XCNEW (struct type);
2fdde8f8 280 else
1deafd4e
PA
281 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
282 struct type);
283
2fdde8f8
DJ
284 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
285
286 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
287
c16abbde 288 return type;
2fdde8f8
DJ
289}
290
291/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 292 replacing it with something else. Preserve owner information. */
5212577a 293
2fdde8f8
DJ
294static void
295smash_type (struct type *type)
296{
e9bb382b
UW
297 int objfile_owned = TYPE_OBJFILE_OWNED (type);
298 union type_owner owner = TYPE_OWNER (type);
299
2fdde8f8
DJ
300 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
301
e9bb382b
UW
302 /* Restore owner information. */
303 TYPE_OBJFILE_OWNED (type) = objfile_owned;
304 TYPE_OWNER (type) = owner;
305
2fdde8f8
DJ
306 /* For now, delete the rings. */
307 TYPE_CHAIN (type) = type;
308
309 /* For now, leave the pointer/reference types alone. */
310}
311
c906108c
SS
312/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
313 to a pointer to memory where the pointer type should be stored.
314 If *TYPEPTR is zero, update it to point to the pointer type we return.
315 We allocate new memory if needed. */
316
317struct type *
fba45db2 318make_pointer_type (struct type *type, struct type **typeptr)
c906108c 319{
52f0bd74 320 struct type *ntype; /* New type */
053cb41b 321 struct type *chain;
c906108c
SS
322
323 ntype = TYPE_POINTER_TYPE (type);
324
c5aa993b 325 if (ntype)
c906108c 326 {
c5aa993b 327 if (typeptr == 0)
7ba81444
MS
328 return ntype; /* Don't care about alloc,
329 and have new type. */
c906108c 330 else if (*typeptr == 0)
c5aa993b 331 {
7ba81444 332 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 333 return ntype;
c5aa993b 334 }
c906108c
SS
335 }
336
337 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
338 {
e9bb382b 339 ntype = alloc_type_copy (type);
c906108c
SS
340 if (typeptr)
341 *typeptr = ntype;
342 }
7ba81444 343 else /* We have storage, but need to reset it. */
c906108c
SS
344 {
345 ntype = *typeptr;
053cb41b 346 chain = TYPE_CHAIN (ntype);
2fdde8f8 347 smash_type (ntype);
053cb41b 348 TYPE_CHAIN (ntype) = chain;
c906108c
SS
349 }
350
351 TYPE_TARGET_TYPE (ntype) = type;
352 TYPE_POINTER_TYPE (type) = ntype;
353
5212577a 354 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 355
50810684
UW
356 TYPE_LENGTH (ntype)
357 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
358 TYPE_CODE (ntype) = TYPE_CODE_PTR;
359
67b2adb2 360 /* Mark pointers as unsigned. The target converts between pointers
76e71323 361 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 362 gdbarch_address_to_pointer. */
876cecd0 363 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 364
053cb41b
JB
365 /* Update the length of all the other variants of this type. */
366 chain = TYPE_CHAIN (ntype);
367 while (chain != ntype)
368 {
369 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
370 chain = TYPE_CHAIN (chain);
371 }
372
c906108c
SS
373 return ntype;
374}
375
376/* Given a type TYPE, return a type of pointers to that type.
377 May need to construct such a type if this is the first use. */
378
379struct type *
fba45db2 380lookup_pointer_type (struct type *type)
c906108c 381{
c5aa993b 382 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
383}
384
7ba81444
MS
385/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
386 points to a pointer to memory where the reference type should be
387 stored. If *TYPEPTR is zero, update it to point to the reference
3b224330
AV
388 type we return. We allocate new memory if needed. REFCODE denotes
389 the kind of reference type to lookup (lvalue or rvalue reference). */
c906108c
SS
390
391struct type *
3b224330
AV
392make_reference_type (struct type *type, struct type **typeptr,
393 enum type_code refcode)
c906108c 394{
52f0bd74 395 struct type *ntype; /* New type */
3b224330 396 struct type **reftype;
1e98b326 397 struct type *chain;
c906108c 398
3b224330
AV
399 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
400
401 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
402 : TYPE_RVALUE_REFERENCE_TYPE (type));
c906108c 403
c5aa993b 404 if (ntype)
c906108c 405 {
c5aa993b 406 if (typeptr == 0)
7ba81444
MS
407 return ntype; /* Don't care about alloc,
408 and have new type. */
c906108c 409 else if (*typeptr == 0)
c5aa993b 410 {
7ba81444 411 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 412 return ntype;
c5aa993b 413 }
c906108c
SS
414 }
415
416 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
417 {
e9bb382b 418 ntype = alloc_type_copy (type);
c906108c
SS
419 if (typeptr)
420 *typeptr = ntype;
421 }
7ba81444 422 else /* We have storage, but need to reset it. */
c906108c
SS
423 {
424 ntype = *typeptr;
1e98b326 425 chain = TYPE_CHAIN (ntype);
2fdde8f8 426 smash_type (ntype);
1e98b326 427 TYPE_CHAIN (ntype) = chain;
c906108c
SS
428 }
429
430 TYPE_TARGET_TYPE (ntype) = type;
3b224330
AV
431 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
432 : &TYPE_RVALUE_REFERENCE_TYPE (type));
433
434 *reftype = ntype;
c906108c 435
7ba81444
MS
436 /* FIXME! Assume the machine has only one representation for
437 references, and that it matches the (only) representation for
438 pointers! */
c906108c 439
50810684
UW
440 TYPE_LENGTH (ntype) =
441 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
3b224330 442 TYPE_CODE (ntype) = refcode;
c5aa993b 443
3b224330 444 *reftype = ntype;
c906108c 445
1e98b326
JB
446 /* Update the length of all the other variants of this type. */
447 chain = TYPE_CHAIN (ntype);
448 while (chain != ntype)
449 {
450 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
451 chain = TYPE_CHAIN (chain);
452 }
453
c906108c
SS
454 return ntype;
455}
456
7ba81444
MS
457/* Same as above, but caller doesn't care about memory allocation
458 details. */
c906108c
SS
459
460struct type *
3b224330
AV
461lookup_reference_type (struct type *type, enum type_code refcode)
462{
463 return make_reference_type (type, (struct type **) 0, refcode);
464}
465
466/* Lookup the lvalue reference type for the type TYPE. */
467
468struct type *
469lookup_lvalue_reference_type (struct type *type)
470{
471 return lookup_reference_type (type, TYPE_CODE_REF);
472}
473
474/* Lookup the rvalue reference type for the type TYPE. */
475
476struct type *
477lookup_rvalue_reference_type (struct type *type)
c906108c 478{
3b224330 479 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
c906108c
SS
480}
481
7ba81444
MS
482/* Lookup a function type that returns type TYPE. TYPEPTR, if
483 nonzero, points to a pointer to memory where the function type
484 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 485 function type we return. We allocate new memory if needed. */
c906108c
SS
486
487struct type *
0c8b41f1 488make_function_type (struct type *type, struct type **typeptr)
c906108c 489{
52f0bd74 490 struct type *ntype; /* New type */
c906108c
SS
491
492 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
493 {
e9bb382b 494 ntype = alloc_type_copy (type);
c906108c
SS
495 if (typeptr)
496 *typeptr = ntype;
497 }
7ba81444 498 else /* We have storage, but need to reset it. */
c906108c
SS
499 {
500 ntype = *typeptr;
2fdde8f8 501 smash_type (ntype);
c906108c
SS
502 }
503
504 TYPE_TARGET_TYPE (ntype) = type;
505
506 TYPE_LENGTH (ntype) = 1;
507 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 508
b6cdc2c1
JK
509 INIT_FUNC_SPECIFIC (ntype);
510
c906108c
SS
511 return ntype;
512}
513
c906108c
SS
514/* Given a type TYPE, return a type of functions that return that type.
515 May need to construct such a type if this is the first use. */
516
517struct type *
fba45db2 518lookup_function_type (struct type *type)
c906108c 519{
0c8b41f1 520 return make_function_type (type, (struct type **) 0);
c906108c
SS
521}
522
71918a86 523/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
524 function type. If the final type in PARAM_TYPES is NULL, make a
525 varargs function. */
71918a86
TT
526
527struct type *
528lookup_function_type_with_arguments (struct type *type,
529 int nparams,
530 struct type **param_types)
531{
532 struct type *fn = make_function_type (type, (struct type **) 0);
533 int i;
534
e314d629 535 if (nparams > 0)
a6fb9c08 536 {
e314d629
TT
537 if (param_types[nparams - 1] == NULL)
538 {
539 --nparams;
540 TYPE_VARARGS (fn) = 1;
541 }
542 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
543 == TYPE_CODE_VOID)
544 {
545 --nparams;
546 /* Caller should have ensured this. */
547 gdb_assert (nparams == 0);
548 TYPE_PROTOTYPED (fn) = 1;
549 }
54990598
PA
550 else
551 TYPE_PROTOTYPED (fn) = 1;
a6fb9c08
TT
552 }
553
71918a86 554 TYPE_NFIELDS (fn) = nparams;
224c3ddb
SM
555 TYPE_FIELDS (fn)
556 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
71918a86
TT
557 for (i = 0; i < nparams; ++i)
558 TYPE_FIELD_TYPE (fn, i) = param_types[i];
559
560 return fn;
561}
562
47663de5
MS
563/* Identify address space identifier by name --
564 return the integer flag defined in gdbtypes.h. */
5212577a
DE
565
566int
50810684 567address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
47663de5 568{
8b2dbe47 569 int type_flags;
d8734c88 570
7ba81444 571 /* Check for known address space delimiters. */
47663de5 572 if (!strcmp (space_identifier, "code"))
876cecd0 573 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 574 else if (!strcmp (space_identifier, "data"))
876cecd0 575 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
576 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
577 && gdbarch_address_class_name_to_type_flags (gdbarch,
578 space_identifier,
579 &type_flags))
8b2dbe47 580 return type_flags;
47663de5 581 else
8a3fe4f8 582 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
583}
584
585/* Identify address space identifier by integer flag as defined in
7ba81444 586 gdbtypes.h -- return the string version of the adress space name. */
47663de5 587
321432c0 588const char *
50810684 589address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 590{
876cecd0 591 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 592 return "code";
876cecd0 593 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 594 return "data";
876cecd0 595 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
596 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
597 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
598 else
599 return NULL;
600}
601
2fdde8f8 602/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
603
604 If STORAGE is non-NULL, create the new type instance there.
605 STORAGE must be in the same obstack as TYPE. */
47663de5 606
b9362cc7 607static struct type *
2fdde8f8
DJ
608make_qualified_type (struct type *type, int new_flags,
609 struct type *storage)
47663de5
MS
610{
611 struct type *ntype;
612
613 ntype = type;
5f61c20e
JK
614 do
615 {
616 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
617 return ntype;
618 ntype = TYPE_CHAIN (ntype);
619 }
620 while (ntype != type);
47663de5 621
2fdde8f8
DJ
622 /* Create a new type instance. */
623 if (storage == NULL)
624 ntype = alloc_type_instance (type);
625 else
626 {
7ba81444
MS
627 /* If STORAGE was provided, it had better be in the same objfile
628 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
629 if one objfile is freed and the other kept, we'd have
630 dangling pointers. */
ad766c0a
JB
631 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
632
2fdde8f8
DJ
633 ntype = storage;
634 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
635 TYPE_CHAIN (ntype) = ntype;
636 }
47663de5
MS
637
638 /* Pointers or references to the original type are not relevant to
2fdde8f8 639 the new type. */
47663de5
MS
640 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
641 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 642
2fdde8f8
DJ
643 /* Chain the new qualified type to the old type. */
644 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
645 TYPE_CHAIN (type) = ntype;
646
647 /* Now set the instance flags and return the new type. */
648 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 649
ab5d3da6
KB
650 /* Set length of new type to that of the original type. */
651 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
652
47663de5
MS
653 return ntype;
654}
655
2fdde8f8
DJ
656/* Make an address-space-delimited variant of a type -- a type that
657 is identical to the one supplied except that it has an address
658 space attribute attached to it (such as "code" or "data").
659
7ba81444
MS
660 The space attributes "code" and "data" are for Harvard
661 architectures. The address space attributes are for architectures
662 which have alternately sized pointers or pointers with alternate
663 representations. */
2fdde8f8
DJ
664
665struct type *
666make_type_with_address_space (struct type *type, int space_flag)
667{
2fdde8f8 668 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
669 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
670 | TYPE_INSTANCE_FLAG_DATA_SPACE
671 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
672 | space_flag);
673
674 return make_qualified_type (type, new_flags, NULL);
675}
c906108c
SS
676
677/* Make a "c-v" variant of a type -- a type that is identical to the
678 one supplied except that it may have const or volatile attributes
679 CNST is a flag for setting the const attribute
680 VOLTL is a flag for setting the volatile attribute
681 TYPE is the base type whose variant we are creating.
c906108c 682
ad766c0a
JB
683 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
684 storage to hold the new qualified type; *TYPEPTR and TYPE must be
685 in the same objfile. Otherwise, allocate fresh memory for the new
686 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
687 new type we construct. */
5212577a 688
c906108c 689struct type *
7ba81444
MS
690make_cv_type (int cnst, int voltl,
691 struct type *type,
692 struct type **typeptr)
c906108c 693{
52f0bd74 694 struct type *ntype; /* New type */
c906108c 695
2fdde8f8 696 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
697 & ~(TYPE_INSTANCE_FLAG_CONST
698 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 699
c906108c 700 if (cnst)
876cecd0 701 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
702
703 if (voltl)
876cecd0 704 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 705
2fdde8f8 706 if (typeptr && *typeptr != NULL)
a02fd225 707 {
ad766c0a
JB
708 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
709 a C-V variant chain that threads across objfiles: if one
710 objfile gets freed, then the other has a broken C-V chain.
711
712 This code used to try to copy over the main type from TYPE to
713 *TYPEPTR if they were in different objfiles, but that's
714 wrong, too: TYPE may have a field list or member function
715 lists, which refer to types of their own, etc. etc. The
716 whole shebang would need to be copied over recursively; you
717 can't have inter-objfile pointers. The only thing to do is
718 to leave stub types as stub types, and look them up afresh by
719 name each time you encounter them. */
720 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
721 }
722
7ba81444
MS
723 ntype = make_qualified_type (type, new_flags,
724 typeptr ? *typeptr : NULL);
c906108c 725
2fdde8f8
DJ
726 if (typeptr != NULL)
727 *typeptr = ntype;
a02fd225 728
2fdde8f8 729 return ntype;
a02fd225 730}
c906108c 731
06d66ee9
TT
732/* Make a 'restrict'-qualified version of TYPE. */
733
734struct type *
735make_restrict_type (struct type *type)
736{
737 return make_qualified_type (type,
738 (TYPE_INSTANCE_FLAGS (type)
739 | TYPE_INSTANCE_FLAG_RESTRICT),
740 NULL);
741}
742
f1660027
TT
743/* Make a type without const, volatile, or restrict. */
744
745struct type *
746make_unqualified_type (struct type *type)
747{
748 return make_qualified_type (type,
749 (TYPE_INSTANCE_FLAGS (type)
750 & ~(TYPE_INSTANCE_FLAG_CONST
751 | TYPE_INSTANCE_FLAG_VOLATILE
752 | TYPE_INSTANCE_FLAG_RESTRICT)),
753 NULL);
754}
755
a2c2acaf
MW
756/* Make a '_Atomic'-qualified version of TYPE. */
757
758struct type *
759make_atomic_type (struct type *type)
760{
761 return make_qualified_type (type,
762 (TYPE_INSTANCE_FLAGS (type)
763 | TYPE_INSTANCE_FLAG_ATOMIC),
764 NULL);
765}
766
2fdde8f8
DJ
767/* Replace the contents of ntype with the type *type. This changes the
768 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
769 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 770
cda6c68a
JB
771 In order to build recursive types, it's inevitable that we'll need
772 to update types in place --- but this sort of indiscriminate
773 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
774 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
775 clear if more steps are needed. */
5212577a 776
dd6bda65
DJ
777void
778replace_type (struct type *ntype, struct type *type)
779{
ab5d3da6 780 struct type *chain;
dd6bda65 781
ad766c0a
JB
782 /* These two types had better be in the same objfile. Otherwise,
783 the assignment of one type's main type structure to the other
784 will produce a type with references to objects (names; field
785 lists; etc.) allocated on an objfile other than its own. */
e46dd0f4 786 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
ad766c0a 787
2fdde8f8 788 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 789
7ba81444
MS
790 /* The type length is not a part of the main type. Update it for
791 each type on the variant chain. */
ab5d3da6 792 chain = ntype;
5f61c20e
JK
793 do
794 {
795 /* Assert that this element of the chain has no address-class bits
796 set in its flags. Such type variants might have type lengths
797 which are supposed to be different from the non-address-class
798 variants. This assertion shouldn't ever be triggered because
799 symbol readers which do construct address-class variants don't
800 call replace_type(). */
801 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
802
803 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
804 chain = TYPE_CHAIN (chain);
805 }
806 while (ntype != chain);
ab5d3da6 807
2fdde8f8
DJ
808 /* Assert that the two types have equivalent instance qualifiers.
809 This should be true for at least all of our debug readers. */
810 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
811}
812
c906108c
SS
813/* Implement direct support for MEMBER_TYPE in GNU C++.
814 May need to construct such a type if this is the first use.
815 The TYPE is the type of the member. The DOMAIN is the type
816 of the aggregate that the member belongs to. */
817
818struct type *
0d5de010 819lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 820{
52f0bd74 821 struct type *mtype;
c906108c 822
e9bb382b 823 mtype = alloc_type_copy (type);
0d5de010 824 smash_to_memberptr_type (mtype, domain, type);
c16abbde 825 return mtype;
c906108c
SS
826}
827
0d5de010
DJ
828/* Return a pointer-to-method type, for a method of type TO_TYPE. */
829
830struct type *
831lookup_methodptr_type (struct type *to_type)
832{
833 struct type *mtype;
834
e9bb382b 835 mtype = alloc_type_copy (to_type);
0b92b5bb 836 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
837 return mtype;
838}
839
7ba81444
MS
840/* Allocate a stub method whose return type is TYPE. This apparently
841 happens for speed of symbol reading, since parsing out the
842 arguments to the method is cpu-intensive, the way we are doing it.
843 So, we will fill in arguments later. This always returns a fresh
844 type. */
c906108c
SS
845
846struct type *
fba45db2 847allocate_stub_method (struct type *type)
c906108c
SS
848{
849 struct type *mtype;
850
e9bb382b
UW
851 mtype = alloc_type_copy (type);
852 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
853 TYPE_LENGTH (mtype) = 1;
854 TYPE_STUB (mtype) = 1;
c906108c 855 TYPE_TARGET_TYPE (mtype) = type;
4bfb94b8 856 /* TYPE_SELF_TYPE (mtype) = unknown yet */
c16abbde 857 return mtype;
c906108c
SS
858}
859
729efb13
SA
860/* Create a range type with a dynamic range from LOW_BOUND to
861 HIGH_BOUND, inclusive. See create_range_type for further details. */
c906108c
SS
862
863struct type *
729efb13
SA
864create_range_type (struct type *result_type, struct type *index_type,
865 const struct dynamic_prop *low_bound,
866 const struct dynamic_prop *high_bound)
c906108c
SS
867{
868 if (result_type == NULL)
e9bb382b 869 result_type = alloc_type_copy (index_type);
c906108c
SS
870 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
871 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 872 if (TYPE_STUB (index_type))
876cecd0 873 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
874 else
875 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
729efb13 876
43bbcdc2
PH
877 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
878 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
729efb13
SA
879 TYPE_RANGE_DATA (result_type)->low = *low_bound;
880 TYPE_RANGE_DATA (result_type)->high = *high_bound;
c906108c 881
729efb13 882 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
876cecd0 883 TYPE_UNSIGNED (result_type) = 1;
c906108c 884
45e44d27
JB
885 /* Ada allows the declaration of range types whose upper bound is
886 less than the lower bound, so checking the lower bound is not
887 enough. Make sure we do not mark a range type whose upper bound
888 is negative as unsigned. */
889 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
890 TYPE_UNSIGNED (result_type) = 0;
891
262452ec 892 return result_type;
c906108c
SS
893}
894
729efb13
SA
895/* Create a range type using either a blank type supplied in
896 RESULT_TYPE, or creating a new type, inheriting the objfile from
897 INDEX_TYPE.
898
899 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
900 to HIGH_BOUND, inclusive.
901
902 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
903 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
904
905struct type *
906create_static_range_type (struct type *result_type, struct type *index_type,
907 LONGEST low_bound, LONGEST high_bound)
908{
909 struct dynamic_prop low, high;
910
911 low.kind = PROP_CONST;
912 low.data.const_val = low_bound;
913
914 high.kind = PROP_CONST;
915 high.data.const_val = high_bound;
916
917 result_type = create_range_type (result_type, index_type, &low, &high);
918
919 return result_type;
920}
921
80180f79
SA
922/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
923 are static, otherwise returns 0. */
924
925static int
926has_static_range (const struct range_bounds *bounds)
927{
928 return (bounds->low.kind == PROP_CONST
929 && bounds->high.kind == PROP_CONST);
930}
931
932
7ba81444
MS
933/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
934 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
935 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
936
937int
fba45db2 938get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c 939{
f168693b 940 type = check_typedef (type);
c906108c
SS
941 switch (TYPE_CODE (type))
942 {
943 case TYPE_CODE_RANGE:
944 *lowp = TYPE_LOW_BOUND (type);
945 *highp = TYPE_HIGH_BOUND (type);
946 return 1;
947 case TYPE_CODE_ENUM:
948 if (TYPE_NFIELDS (type) > 0)
949 {
950 /* The enums may not be sorted by value, so search all
0963b4bd 951 entries. */
c906108c
SS
952 int i;
953
14e75d8e 954 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
c906108c
SS
955 for (i = 0; i < TYPE_NFIELDS (type); i++)
956 {
14e75d8e
JK
957 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
958 *lowp = TYPE_FIELD_ENUMVAL (type, i);
959 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
960 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
961 }
962
7ba81444 963 /* Set unsigned indicator if warranted. */
c5aa993b 964 if (*lowp >= 0)
c906108c 965 {
876cecd0 966 TYPE_UNSIGNED (type) = 1;
c906108c
SS
967 }
968 }
969 else
970 {
971 *lowp = 0;
972 *highp = -1;
973 }
974 return 0;
975 case TYPE_CODE_BOOL:
976 *lowp = 0;
977 *highp = 1;
978 return 0;
979 case TYPE_CODE_INT:
c5aa993b 980 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
981 return -1;
982 if (!TYPE_UNSIGNED (type))
983 {
c5aa993b 984 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
985 *highp = -*lowp - 1;
986 return 0;
987 }
7ba81444 988 /* ... fall through for unsigned ints ... */
c906108c
SS
989 case TYPE_CODE_CHAR:
990 *lowp = 0;
991 /* This round-about calculation is to avoid shifting by
7b83ea04 992 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 993 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
994 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
995 *highp = (*highp - 1) | *highp;
996 return 0;
997 default:
998 return -1;
999 }
1000}
1001
dbc98a8b
KW
1002/* Assuming TYPE is a simple, non-empty array type, compute its upper
1003 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1004 Save the high bound into HIGH_BOUND if not NULL.
1005
0963b4bd 1006 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
1007 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1008
1009 We now simply use get_discrete_bounds call to get the values
1010 of the low and high bounds.
1011 get_discrete_bounds can return three values:
1012 1, meaning that index is a range,
1013 0, meaning that index is a discrete type,
1014 or -1 for failure. */
1015
1016int
1017get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1018{
1019 struct type *index = TYPE_INDEX_TYPE (type);
1020 LONGEST low = 0;
1021 LONGEST high = 0;
1022 int res;
1023
1024 if (index == NULL)
1025 return 0;
1026
1027 res = get_discrete_bounds (index, &low, &high);
1028 if (res == -1)
1029 return 0;
1030
1031 /* Check if the array bounds are undefined. */
1032 if (res == 1
1033 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1034 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1035 return 0;
1036
1037 if (low_bound)
1038 *low_bound = low;
1039
1040 if (high_bound)
1041 *high_bound = high;
1042
1043 return 1;
1044}
1045
aa715135
JG
1046/* Assuming that TYPE is a discrete type and VAL is a valid integer
1047 representation of a value of this type, save the corresponding
1048 position number in POS.
1049
1050 Its differs from VAL only in the case of enumeration types. In
1051 this case, the position number of the value of the first listed
1052 enumeration literal is zero; the position number of the value of
1053 each subsequent enumeration literal is one more than that of its
1054 predecessor in the list.
1055
1056 Return 1 if the operation was successful. Return zero otherwise,
1057 in which case the value of POS is unmodified.
1058*/
1059
1060int
1061discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1062{
1063 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1064 {
1065 int i;
1066
1067 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1068 {
1069 if (val == TYPE_FIELD_ENUMVAL (type, i))
1070 {
1071 *pos = i;
1072 return 1;
1073 }
1074 }
1075 /* Invalid enumeration value. */
1076 return 0;
1077 }
1078 else
1079 {
1080 *pos = val;
1081 return 1;
1082 }
1083}
1084
7ba81444
MS
1085/* Create an array type using either a blank type supplied in
1086 RESULT_TYPE, or creating a new type, inheriting the objfile from
1087 RANGE_TYPE.
c906108c
SS
1088
1089 Elements will be of type ELEMENT_TYPE, the indices will be of type
1090 RANGE_TYPE.
1091
dc53a7ad
JB
1092 If BIT_STRIDE is not zero, build a packed array type whose element
1093 size is BIT_STRIDE. Otherwise, ignore this parameter.
1094
7ba81444
MS
1095 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1096 sure it is TYPE_CODE_UNDEF before we bash it into an array
1097 type? */
c906108c
SS
1098
1099struct type *
dc53a7ad
JB
1100create_array_type_with_stride (struct type *result_type,
1101 struct type *element_type,
1102 struct type *range_type,
1103 unsigned int bit_stride)
c906108c 1104{
c906108c 1105 if (result_type == NULL)
e9bb382b
UW
1106 result_type = alloc_type_copy (range_type);
1107
c906108c
SS
1108 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1109 TYPE_TARGET_TYPE (result_type) = element_type;
3f2f83dd 1110 if (has_static_range (TYPE_RANGE_DATA (range_type))
b4a7fcab
JB
1111 && (!type_not_associated (result_type)
1112 && !type_not_allocated (result_type)))
80180f79
SA
1113 {
1114 LONGEST low_bound, high_bound;
1115
1116 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1117 low_bound = high_bound = 0;
f168693b 1118 element_type = check_typedef (element_type);
80180f79
SA
1119 /* Be careful when setting the array length. Ada arrays can be
1120 empty arrays with the high_bound being smaller than the low_bound.
1121 In such cases, the array length should be zero. */
1122 if (high_bound < low_bound)
1123 TYPE_LENGTH (result_type) = 0;
1124 else if (bit_stride > 0)
1125 TYPE_LENGTH (result_type) =
1126 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1127 else
1128 TYPE_LENGTH (result_type) =
1129 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1130 }
ab0d6e0d 1131 else
80180f79
SA
1132 {
1133 /* This type is dynamic and its length needs to be computed
1134 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1135 undefined by setting it to zero. Although we are not expected
1136 to trust TYPE_LENGTH in this case, setting the size to zero
1137 allows us to avoid allocating objects of random sizes in case
1138 we accidently do. */
1139 TYPE_LENGTH (result_type) = 0;
1140 }
1141
c906108c
SS
1142 TYPE_NFIELDS (result_type) = 1;
1143 TYPE_FIELDS (result_type) =
1deafd4e 1144 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 1145 TYPE_INDEX_TYPE (result_type) = range_type;
dc53a7ad
JB
1146 if (bit_stride > 0)
1147 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
c906108c 1148
a9ff5f12 1149 /* TYPE_TARGET_STUB will take care of zero length arrays. */
c906108c 1150 if (TYPE_LENGTH (result_type) == 0)
876cecd0 1151 TYPE_TARGET_STUB (result_type) = 1;
c906108c 1152
c16abbde 1153 return result_type;
c906108c
SS
1154}
1155
dc53a7ad
JB
1156/* Same as create_array_type_with_stride but with no bit_stride
1157 (BIT_STRIDE = 0), thus building an unpacked array. */
1158
1159struct type *
1160create_array_type (struct type *result_type,
1161 struct type *element_type,
1162 struct type *range_type)
1163{
1164 return create_array_type_with_stride (result_type, element_type,
1165 range_type, 0);
1166}
1167
e3506a9f
UW
1168struct type *
1169lookup_array_range_type (struct type *element_type,
63375b74 1170 LONGEST low_bound, LONGEST high_bound)
e3506a9f 1171{
50810684 1172 struct gdbarch *gdbarch = get_type_arch (element_type);
e3506a9f
UW
1173 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1174 struct type *range_type
0c9c3474 1175 = create_static_range_type (NULL, index_type, low_bound, high_bound);
d8734c88 1176
e3506a9f
UW
1177 return create_array_type (NULL, element_type, range_type);
1178}
1179
7ba81444
MS
1180/* Create a string type using either a blank type supplied in
1181 RESULT_TYPE, or creating a new type. String types are similar
1182 enough to array of char types that we can use create_array_type to
1183 build the basic type and then bash it into a string type.
c906108c
SS
1184
1185 For fixed length strings, the range type contains 0 as the lower
1186 bound and the length of the string minus one as the upper bound.
1187
7ba81444
MS
1188 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1189 sure it is TYPE_CODE_UNDEF before we bash it into a string
1190 type? */
c906108c
SS
1191
1192struct type *
3b7538c0
UW
1193create_string_type (struct type *result_type,
1194 struct type *string_char_type,
7ba81444 1195 struct type *range_type)
c906108c
SS
1196{
1197 result_type = create_array_type (result_type,
f290d38e 1198 string_char_type,
c906108c
SS
1199 range_type);
1200 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 1201 return result_type;
c906108c
SS
1202}
1203
e3506a9f
UW
1204struct type *
1205lookup_string_range_type (struct type *string_char_type,
63375b74 1206 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1207{
1208 struct type *result_type;
d8734c88 1209
e3506a9f
UW
1210 result_type = lookup_array_range_type (string_char_type,
1211 low_bound, high_bound);
1212 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1213 return result_type;
1214}
1215
c906108c 1216struct type *
fba45db2 1217create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1218{
c906108c 1219 if (result_type == NULL)
e9bb382b
UW
1220 result_type = alloc_type_copy (domain_type);
1221
c906108c
SS
1222 TYPE_CODE (result_type) = TYPE_CODE_SET;
1223 TYPE_NFIELDS (result_type) = 1;
224c3ddb
SM
1224 TYPE_FIELDS (result_type)
1225 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 1226
74a9bb82 1227 if (!TYPE_STUB (domain_type))
c906108c 1228 {
f9780d5b 1229 LONGEST low_bound, high_bound, bit_length;
d8734c88 1230
c906108c
SS
1231 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1232 low_bound = high_bound = 0;
1233 bit_length = high_bound - low_bound + 1;
1234 TYPE_LENGTH (result_type)
1235 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1236 if (low_bound >= 0)
876cecd0 1237 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
1238 }
1239 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1240
c16abbde 1241 return result_type;
c906108c
SS
1242}
1243
ea37ba09
DJ
1244/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1245 and any array types nested inside it. */
1246
1247void
1248make_vector_type (struct type *array_type)
1249{
1250 struct type *inner_array, *elt_type;
1251 int flags;
1252
1253 /* Find the innermost array type, in case the array is
1254 multi-dimensional. */
1255 inner_array = array_type;
1256 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1257 inner_array = TYPE_TARGET_TYPE (inner_array);
1258
1259 elt_type = TYPE_TARGET_TYPE (inner_array);
1260 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1261 {
2844d6b5 1262 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1263 elt_type = make_qualified_type (elt_type, flags, NULL);
1264 TYPE_TARGET_TYPE (inner_array) = elt_type;
1265 }
1266
876cecd0 1267 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1268}
1269
794ac428 1270struct type *
ac3aafc7
EZ
1271init_vector_type (struct type *elt_type, int n)
1272{
1273 struct type *array_type;
d8734c88 1274
e3506a9f 1275 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1276 make_vector_type (array_type);
ac3aafc7
EZ
1277 return array_type;
1278}
1279
09e2d7c7
DE
1280/* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1281 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1282 confusing. "self" is a common enough replacement for "this".
1283 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1284 TYPE_CODE_METHOD. */
1285
1286struct type *
1287internal_type_self_type (struct type *type)
1288{
1289 switch (TYPE_CODE (type))
1290 {
1291 case TYPE_CODE_METHODPTR:
1292 case TYPE_CODE_MEMBERPTR:
eaaf76ab
DE
1293 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1294 return NULL;
09e2d7c7
DE
1295 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1296 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1297 case TYPE_CODE_METHOD:
eaaf76ab
DE
1298 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1299 return NULL;
09e2d7c7
DE
1300 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1301 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1302 default:
1303 gdb_assert_not_reached ("bad type");
1304 }
1305}
1306
1307/* Set the type of the class that TYPE belongs to.
1308 In c++ this is the class of "this".
1309 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1310 TYPE_CODE_METHOD. */
1311
1312void
1313set_type_self_type (struct type *type, struct type *self_type)
1314{
1315 switch (TYPE_CODE (type))
1316 {
1317 case TYPE_CODE_METHODPTR:
1318 case TYPE_CODE_MEMBERPTR:
1319 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1320 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1321 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1322 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1323 break;
1324 case TYPE_CODE_METHOD:
1325 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1326 INIT_FUNC_SPECIFIC (type);
1327 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1328 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1329 break;
1330 default:
1331 gdb_assert_not_reached ("bad type");
1332 }
1333}
1334
1335/* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
0d5de010
DJ
1336 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1337 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1338 TYPE doesn't include the offset (that's the value of the MEMBER
1339 itself), but does include the structure type into which it points
1340 (for some reason).
c906108c 1341
7ba81444
MS
1342 When "smashing" the type, we preserve the objfile that the old type
1343 pointed to, since we aren't changing where the type is actually
c906108c
SS
1344 allocated. */
1345
1346void
09e2d7c7 1347smash_to_memberptr_type (struct type *type, struct type *self_type,
0d5de010 1348 struct type *to_type)
c906108c 1349{
2fdde8f8 1350 smash_type (type);
09e2d7c7 1351 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c 1352 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1353 set_type_self_type (type, self_type);
0d5de010
DJ
1354 /* Assume that a data member pointer is the same size as a normal
1355 pointer. */
50810684
UW
1356 TYPE_LENGTH (type)
1357 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
c906108c
SS
1358}
1359
0b92b5bb
TT
1360/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1361
1362 When "smashing" the type, we preserve the objfile that the old type
1363 pointed to, since we aren't changing where the type is actually
1364 allocated. */
1365
1366void
1367smash_to_methodptr_type (struct type *type, struct type *to_type)
1368{
1369 smash_type (type);
09e2d7c7 1370 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
0b92b5bb 1371 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1372 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
0b92b5bb 1373 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
0b92b5bb
TT
1374}
1375
09e2d7c7 1376/* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
c906108c
SS
1377 METHOD just means `function that gets an extra "this" argument'.
1378
7ba81444
MS
1379 When "smashing" the type, we preserve the objfile that the old type
1380 pointed to, since we aren't changing where the type is actually
c906108c
SS
1381 allocated. */
1382
1383void
09e2d7c7 1384smash_to_method_type (struct type *type, struct type *self_type,
ad2f7632
DJ
1385 struct type *to_type, struct field *args,
1386 int nargs, int varargs)
c906108c 1387{
2fdde8f8 1388 smash_type (type);
09e2d7c7 1389 TYPE_CODE (type) = TYPE_CODE_METHOD;
c906108c 1390 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1391 set_type_self_type (type, self_type);
ad2f7632
DJ
1392 TYPE_FIELDS (type) = args;
1393 TYPE_NFIELDS (type) = nargs;
1394 if (varargs)
876cecd0 1395 TYPE_VARARGS (type) = 1;
c906108c 1396 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
c906108c
SS
1397}
1398
1399/* Return a typename for a struct/union/enum type without "struct ",
1400 "union ", or "enum ". If the type has a NULL name, return NULL. */
1401
0d5cff50 1402const char *
aa1ee363 1403type_name_no_tag (const struct type *type)
c906108c
SS
1404{
1405 if (TYPE_TAG_NAME (type) != NULL)
1406 return TYPE_TAG_NAME (type);
1407
7ba81444
MS
1408 /* Is there code which expects this to return the name if there is
1409 no tag name? My guess is that this is mainly used for C++ in
1410 cases where the two will always be the same. */
c906108c
SS
1411 return TYPE_NAME (type);
1412}
1413
d8228535
JK
1414/* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1415 Since GCC PR debug/47510 DWARF provides associated information to detect the
1416 anonymous class linkage name from its typedef.
1417
1418 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1419 apply it itself. */
1420
1421const char *
1422type_name_no_tag_or_error (struct type *type)
1423{
1424 struct type *saved_type = type;
1425 const char *name;
1426 struct objfile *objfile;
1427
f168693b 1428 type = check_typedef (type);
d8228535
JK
1429
1430 name = type_name_no_tag (type);
1431 if (name != NULL)
1432 return name;
1433
1434 name = type_name_no_tag (saved_type);
1435 objfile = TYPE_OBJFILE (saved_type);
1436 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
4262abfb
JK
1437 name ? name : "<anonymous>",
1438 objfile ? objfile_name (objfile) : "<arch>");
d8228535
JK
1439}
1440
7ba81444
MS
1441/* Lookup a typedef or primitive type named NAME, visible in lexical
1442 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1443 suitably defined. */
c906108c
SS
1444
1445struct type *
e6c014f2 1446lookup_typename (const struct language_defn *language,
ddd49eee 1447 struct gdbarch *gdbarch, const char *name,
34eaf542 1448 const struct block *block, int noerr)
c906108c 1449{
52f0bd74 1450 struct symbol *sym;
c906108c 1451
1994afbf 1452 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
d12307c1 1453 language->la_language, NULL).symbol;
c51fe631
DE
1454 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1455 return SYMBOL_TYPE (sym);
1456
c51fe631
DE
1457 if (noerr)
1458 return NULL;
1459 error (_("No type named %s."), name);
c906108c
SS
1460}
1461
1462struct type *
e6c014f2 1463lookup_unsigned_typename (const struct language_defn *language,
0d5cff50 1464 struct gdbarch *gdbarch, const char *name)
c906108c 1465{
224c3ddb 1466 char *uns = (char *) alloca (strlen (name) + 10);
c906108c
SS
1467
1468 strcpy (uns, "unsigned ");
1469 strcpy (uns + 9, name);
e6c014f2 1470 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
c906108c
SS
1471}
1472
1473struct type *
e6c014f2 1474lookup_signed_typename (const struct language_defn *language,
0d5cff50 1475 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1476{
1477 struct type *t;
224c3ddb 1478 char *uns = (char *) alloca (strlen (name) + 8);
c906108c
SS
1479
1480 strcpy (uns, "signed ");
1481 strcpy (uns + 7, name);
e6c014f2 1482 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
7ba81444 1483 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1484 if (t != NULL)
1485 return t;
e6c014f2 1486 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
c906108c
SS
1487}
1488
1489/* Lookup a structure type named "struct NAME",
1490 visible in lexical block BLOCK. */
1491
1492struct type *
270140bd 1493lookup_struct (const char *name, const struct block *block)
c906108c 1494{
52f0bd74 1495 struct symbol *sym;
c906108c 1496
d12307c1 1497 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1498
1499 if (sym == NULL)
1500 {
8a3fe4f8 1501 error (_("No struct type named %s."), name);
c906108c
SS
1502 }
1503 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1504 {
7ba81444
MS
1505 error (_("This context has class, union or enum %s, not a struct."),
1506 name);
c906108c
SS
1507 }
1508 return (SYMBOL_TYPE (sym));
1509}
1510
1511/* Lookup a union type named "union NAME",
1512 visible in lexical block BLOCK. */
1513
1514struct type *
270140bd 1515lookup_union (const char *name, const struct block *block)
c906108c 1516{
52f0bd74 1517 struct symbol *sym;
c5aa993b 1518 struct type *t;
c906108c 1519
d12307c1 1520 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1521
1522 if (sym == NULL)
8a3fe4f8 1523 error (_("No union type named %s."), name);
c906108c 1524
c5aa993b 1525 t = SYMBOL_TYPE (sym);
c906108c
SS
1526
1527 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1528 return t;
c906108c 1529
7ba81444
MS
1530 /* If we get here, it's not a union. */
1531 error (_("This context has class, struct or enum %s, not a union."),
1532 name);
c906108c
SS
1533}
1534
c906108c
SS
1535/* Lookup an enum type named "enum NAME",
1536 visible in lexical block BLOCK. */
1537
1538struct type *
270140bd 1539lookup_enum (const char *name, const struct block *block)
c906108c 1540{
52f0bd74 1541 struct symbol *sym;
c906108c 1542
d12307c1 1543 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1544 if (sym == NULL)
1545 {
8a3fe4f8 1546 error (_("No enum type named %s."), name);
c906108c
SS
1547 }
1548 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1549 {
7ba81444
MS
1550 error (_("This context has class, struct or union %s, not an enum."),
1551 name);
c906108c
SS
1552 }
1553 return (SYMBOL_TYPE (sym));
1554}
1555
1556/* Lookup a template type named "template NAME<TYPE>",
1557 visible in lexical block BLOCK. */
1558
1559struct type *
7ba81444 1560lookup_template_type (char *name, struct type *type,
270140bd 1561 const struct block *block)
c906108c
SS
1562{
1563 struct symbol *sym;
7ba81444
MS
1564 char *nam = (char *)
1565 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1566
c906108c
SS
1567 strcpy (nam, name);
1568 strcat (nam, "<");
0004e5a2 1569 strcat (nam, TYPE_NAME (type));
0963b4bd 1570 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1571
d12307c1 1572 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
c906108c
SS
1573
1574 if (sym == NULL)
1575 {
8a3fe4f8 1576 error (_("No template type named %s."), name);
c906108c
SS
1577 }
1578 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1579 {
7ba81444
MS
1580 error (_("This context has class, union or enum %s, not a struct."),
1581 name);
c906108c
SS
1582 }
1583 return (SYMBOL_TYPE (sym));
1584}
1585
7ba81444
MS
1586/* Given a type TYPE, lookup the type of the component of type named
1587 NAME.
c906108c 1588
7ba81444
MS
1589 TYPE can be either a struct or union, or a pointer or reference to
1590 a struct or union. If it is a pointer or reference, its target
1591 type is automatically used. Thus '.' and '->' are interchangable,
1592 as specified for the definitions of the expression element types
1593 STRUCTOP_STRUCT and STRUCTOP_PTR.
c906108c
SS
1594
1595 If NOERR is nonzero, return zero if NAME is not suitably defined.
1596 If NAME is the name of a baseclass type, return that type. */
1597
1598struct type *
d7561cbb 1599lookup_struct_elt_type (struct type *type, const char *name, int noerr)
c906108c
SS
1600{
1601 int i;
1602
1603 for (;;)
1604 {
f168693b 1605 type = check_typedef (type);
c906108c
SS
1606 if (TYPE_CODE (type) != TYPE_CODE_PTR
1607 && TYPE_CODE (type) != TYPE_CODE_REF)
1608 break;
1609 type = TYPE_TARGET_TYPE (type);
1610 }
1611
687d6395
MS
1612 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1613 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1614 {
2f408ecb
PA
1615 std::string type_name = type_to_string (type);
1616 error (_("Type %s is not a structure or union type."),
1617 type_name.c_str ());
c906108c
SS
1618 }
1619
1620#if 0
7ba81444
MS
1621 /* FIXME: This change put in by Michael seems incorrect for the case
1622 where the structure tag name is the same as the member name.
0963b4bd 1623 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
7ba81444 1624 foo; } bell;" Disabled by fnf. */
c906108c 1625 {
fe978cb0 1626 char *type_name;
c906108c 1627
fe978cb0
PA
1628 type_name = type_name_no_tag (type);
1629 if (type_name != NULL && strcmp (type_name, name) == 0)
c906108c
SS
1630 return type;
1631 }
1632#endif
1633
1634 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1635 {
0d5cff50 1636 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1637
db577aea 1638 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1639 {
1640 return TYPE_FIELD_TYPE (type, i);
1641 }
f5a010c0
PM
1642 else if (!t_field_name || *t_field_name == '\0')
1643 {
d8734c88
MS
1644 struct type *subtype
1645 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1646
f5a010c0
PM
1647 if (subtype != NULL)
1648 return subtype;
1649 }
c906108c
SS
1650 }
1651
1652 /* OK, it's not in this class. Recursively check the baseclasses. */
1653 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1654 {
1655 struct type *t;
1656
9733fc94 1657 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
c906108c
SS
1658 if (t != NULL)
1659 {
1660 return t;
1661 }
1662 }
1663
1664 if (noerr)
1665 {
1666 return NULL;
1667 }
c5aa993b 1668
2f408ecb
PA
1669 std::string type_name = type_to_string (type);
1670 error (_("Type %s has no component named %s."), type_name.c_str (), name);
c906108c
SS
1671}
1672
ed3ef339
DE
1673/* Store in *MAX the largest number representable by unsigned integer type
1674 TYPE. */
1675
1676void
1677get_unsigned_type_max (struct type *type, ULONGEST *max)
1678{
1679 unsigned int n;
1680
f168693b 1681 type = check_typedef (type);
ed3ef339
DE
1682 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1683 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1684
1685 /* Written this way to avoid overflow. */
1686 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1687 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1688}
1689
1690/* Store in *MIN, *MAX the smallest and largest numbers representable by
1691 signed integer type TYPE. */
1692
1693void
1694get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1695{
1696 unsigned int n;
1697
f168693b 1698 type = check_typedef (type);
ed3ef339
DE
1699 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1700 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1701
1702 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1703 *min = -((ULONGEST) 1 << (n - 1));
1704 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1705}
1706
ae6ae975
DE
1707/* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1708 cplus_stuff.vptr_fieldno.
1709
1710 cplus_stuff is initialized to cplus_struct_default which does not
1711 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1712 designated initializers). We cope with that here. */
1713
1714int
1715internal_type_vptr_fieldno (struct type *type)
1716{
f168693b 1717 type = check_typedef (type);
ae6ae975
DE
1718 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1719 || TYPE_CODE (type) == TYPE_CODE_UNION);
1720 if (!HAVE_CPLUS_STRUCT (type))
1721 return -1;
1722 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1723}
1724
1725/* Set the value of cplus_stuff.vptr_fieldno. */
1726
1727void
1728set_type_vptr_fieldno (struct type *type, int fieldno)
1729{
f168693b 1730 type = check_typedef (type);
ae6ae975
DE
1731 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1732 || TYPE_CODE (type) == TYPE_CODE_UNION);
1733 if (!HAVE_CPLUS_STRUCT (type))
1734 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1735 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1736}
1737
1738/* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1739 cplus_stuff.vptr_basetype. */
1740
1741struct type *
1742internal_type_vptr_basetype (struct type *type)
1743{
f168693b 1744 type = check_typedef (type);
ae6ae975
DE
1745 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1746 || TYPE_CODE (type) == TYPE_CODE_UNION);
1747 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1748 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1749}
1750
1751/* Set the value of cplus_stuff.vptr_basetype. */
1752
1753void
1754set_type_vptr_basetype (struct type *type, struct type *basetype)
1755{
f168693b 1756 type = check_typedef (type);
ae6ae975
DE
1757 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1758 || TYPE_CODE (type) == TYPE_CODE_UNION);
1759 if (!HAVE_CPLUS_STRUCT (type))
1760 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1761 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1762}
1763
81fe8080
DE
1764/* Lookup the vptr basetype/fieldno values for TYPE.
1765 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1766 vptr_fieldno. Also, if found and basetype is from the same objfile,
1767 cache the results.
1768 If not found, return -1 and ignore BASETYPEP.
1769 Callers should be aware that in some cases (for example,
c906108c 1770 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1771 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1772 this function will not be able to find the
7ba81444 1773 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1774 vptr_basetype will remain NULL or incomplete. */
c906108c 1775
81fe8080
DE
1776int
1777get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c 1778{
f168693b 1779 type = check_typedef (type);
c906108c
SS
1780
1781 if (TYPE_VPTR_FIELDNO (type) < 0)
1782 {
1783 int i;
1784
7ba81444
MS
1785 /* We must start at zero in case the first (and only) baseclass
1786 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1787 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1788 {
81fe8080
DE
1789 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1790 int fieldno;
1791 struct type *basetype;
1792
1793 fieldno = get_vptr_fieldno (baseclass, &basetype);
1794 if (fieldno >= 0)
c906108c 1795 {
81fe8080 1796 /* If the type comes from a different objfile we can't cache
0963b4bd 1797 it, it may have a different lifetime. PR 2384 */
5ef73790 1798 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080 1799 {
ae6ae975
DE
1800 set_type_vptr_fieldno (type, fieldno);
1801 set_type_vptr_basetype (type, basetype);
81fe8080
DE
1802 }
1803 if (basetypep)
1804 *basetypep = basetype;
1805 return fieldno;
c906108c
SS
1806 }
1807 }
81fe8080
DE
1808
1809 /* Not found. */
1810 return -1;
1811 }
1812 else
1813 {
1814 if (basetypep)
1815 *basetypep = TYPE_VPTR_BASETYPE (type);
1816 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1817 }
1818}
1819
44e1a9eb
DJ
1820static void
1821stub_noname_complaint (void)
1822{
e2e0b3e5 1823 complaint (&symfile_complaints, _("stub type has NULL name"));
44e1a9eb
DJ
1824}
1825
d98b7a16 1826/* Worker for is_dynamic_type. */
80180f79 1827
d98b7a16 1828static int
ee715b5a 1829is_dynamic_type_internal (struct type *type, int top_level)
80180f79
SA
1830{
1831 type = check_typedef (type);
1832
e771e4be
PMR
1833 /* We only want to recognize references at the outermost level. */
1834 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1835 type = check_typedef (TYPE_TARGET_TYPE (type));
1836
3cdcd0ce
JB
1837 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1838 dynamic, even if the type itself is statically defined.
1839 From a user's point of view, this may appear counter-intuitive;
1840 but it makes sense in this context, because the point is to determine
1841 whether any part of the type needs to be resolved before it can
1842 be exploited. */
1843 if (TYPE_DATA_LOCATION (type) != NULL
1844 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1845 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1846 return 1;
1847
3f2f83dd
KB
1848 if (TYPE_ASSOCIATED_PROP (type))
1849 return 1;
1850
1851 if (TYPE_ALLOCATED_PROP (type))
1852 return 1;
1853
80180f79
SA
1854 switch (TYPE_CODE (type))
1855 {
6f8a3220 1856 case TYPE_CODE_RANGE:
ddb87a81
JB
1857 {
1858 /* A range type is obviously dynamic if it has at least one
1859 dynamic bound. But also consider the range type to be
1860 dynamic when its subtype is dynamic, even if the bounds
1861 of the range type are static. It allows us to assume that
1862 the subtype of a static range type is also static. */
1863 return (!has_static_range (TYPE_RANGE_DATA (type))
ee715b5a 1864 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
ddb87a81 1865 }
6f8a3220 1866
80180f79
SA
1867 case TYPE_CODE_ARRAY:
1868 {
80180f79 1869 gdb_assert (TYPE_NFIELDS (type) == 1);
6f8a3220
JB
1870
1871 /* The array is dynamic if either the bounds are dynamic,
1872 or the elements it contains have a dynamic contents. */
ee715b5a 1873 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
80180f79 1874 return 1;
ee715b5a 1875 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
80180f79 1876 }
012370f6
TT
1877
1878 case TYPE_CODE_STRUCT:
1879 case TYPE_CODE_UNION:
1880 {
1881 int i;
1882
1883 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1884 if (!field_is_static (&TYPE_FIELD (type, i))
ee715b5a 1885 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
012370f6
TT
1886 return 1;
1887 }
1888 break;
80180f79 1889 }
92e2a17f
TT
1890
1891 return 0;
80180f79
SA
1892}
1893
d98b7a16
TT
1894/* See gdbtypes.h. */
1895
1896int
1897is_dynamic_type (struct type *type)
1898{
ee715b5a 1899 return is_dynamic_type_internal (type, 1);
d98b7a16
TT
1900}
1901
df25ebbd 1902static struct type *resolve_dynamic_type_internal
ee715b5a 1903 (struct type *type, struct property_addr_info *addr_stack, int top_level);
d98b7a16 1904
df25ebbd
JB
1905/* Given a dynamic range type (dyn_range_type) and a stack of
1906 struct property_addr_info elements, return a static version
1907 of that type. */
d190df30 1908
80180f79 1909static struct type *
df25ebbd
JB
1910resolve_dynamic_range (struct type *dyn_range_type,
1911 struct property_addr_info *addr_stack)
80180f79
SA
1912{
1913 CORE_ADDR value;
ddb87a81 1914 struct type *static_range_type, *static_target_type;
80180f79 1915 const struct dynamic_prop *prop;
80180f79
SA
1916 struct dynamic_prop low_bound, high_bound;
1917
6f8a3220 1918 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
80180f79 1919
6f8a3220 1920 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
63e43d3a 1921 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
1922 {
1923 low_bound.kind = PROP_CONST;
1924 low_bound.data.const_val = value;
1925 }
1926 else
1927 {
1928 low_bound.kind = PROP_UNDEFINED;
1929 low_bound.data.const_val = 0;
1930 }
1931
6f8a3220 1932 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
63e43d3a 1933 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
1934 {
1935 high_bound.kind = PROP_CONST;
1936 high_bound.data.const_val = value;
c451ebe5 1937
6f8a3220 1938 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
c451ebe5
SA
1939 high_bound.data.const_val
1940 = low_bound.data.const_val + high_bound.data.const_val - 1;
80180f79
SA
1941 }
1942 else
1943 {
1944 high_bound.kind = PROP_UNDEFINED;
1945 high_bound.data.const_val = 0;
1946 }
1947
ddb87a81
JB
1948 static_target_type
1949 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
ee715b5a 1950 addr_stack, 0);
6f8a3220 1951 static_range_type = create_range_type (copy_type (dyn_range_type),
ddb87a81 1952 static_target_type,
6f8a3220
JB
1953 &low_bound, &high_bound);
1954 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1955 return static_range_type;
1956}
1957
1958/* Resolves dynamic bound values of an array type TYPE to static ones.
df25ebbd
JB
1959 ADDR_STACK is a stack of struct property_addr_info to be used
1960 if needed during the dynamic resolution. */
6f8a3220
JB
1961
1962static struct type *
df25ebbd
JB
1963resolve_dynamic_array (struct type *type,
1964 struct property_addr_info *addr_stack)
6f8a3220
JB
1965{
1966 CORE_ADDR value;
1967 struct type *elt_type;
1968 struct type *range_type;
1969 struct type *ary_dim;
3f2f83dd 1970 struct dynamic_prop *prop;
6f8a3220
JB
1971
1972 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1973
3f2f83dd
KB
1974 type = copy_type (type);
1975
6f8a3220
JB
1976 elt_type = type;
1977 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
df25ebbd 1978 range_type = resolve_dynamic_range (range_type, addr_stack);
6f8a3220 1979
3f2f83dd
KB
1980 /* Resolve allocated/associated here before creating a new array type, which
1981 will update the length of the array accordingly. */
1982 prop = TYPE_ALLOCATED_PROP (type);
1983 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1984 {
1985 TYPE_DYN_PROP_ADDR (prop) = value;
1986 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
1987 }
1988 prop = TYPE_ASSOCIATED_PROP (type);
1989 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1990 {
1991 TYPE_DYN_PROP_ADDR (prop) = value;
1992 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
1993 }
1994
80180f79
SA
1995 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1996
1997 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
d0d84780 1998 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
80180f79
SA
1999 else
2000 elt_type = TYPE_TARGET_TYPE (type);
2001
3f2f83dd
KB
2002 return create_array_type_with_stride (type, elt_type, range_type,
2003 TYPE_FIELD_BITSIZE (type, 0));
80180f79
SA
2004}
2005
012370f6 2006/* Resolve dynamic bounds of members of the union TYPE to static
df25ebbd
JB
2007 bounds. ADDR_STACK is a stack of struct property_addr_info
2008 to be used if needed during the dynamic resolution. */
012370f6
TT
2009
2010static struct type *
df25ebbd
JB
2011resolve_dynamic_union (struct type *type,
2012 struct property_addr_info *addr_stack)
012370f6
TT
2013{
2014 struct type *resolved_type;
2015 int i;
2016 unsigned int max_len = 0;
2017
2018 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2019
2020 resolved_type = copy_type (type);
2021 TYPE_FIELDS (resolved_type)
224c3ddb
SM
2022 = (struct field *) TYPE_ALLOC (resolved_type,
2023 TYPE_NFIELDS (resolved_type)
2024 * sizeof (struct field));
012370f6
TT
2025 memcpy (TYPE_FIELDS (resolved_type),
2026 TYPE_FIELDS (type),
2027 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2028 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2029 {
2030 struct type *t;
2031
2032 if (field_is_static (&TYPE_FIELD (type, i)))
2033 continue;
2034
d98b7a16 2035 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2036 addr_stack, 0);
012370f6
TT
2037 TYPE_FIELD_TYPE (resolved_type, i) = t;
2038 if (TYPE_LENGTH (t) > max_len)
2039 max_len = TYPE_LENGTH (t);
2040 }
2041
2042 TYPE_LENGTH (resolved_type) = max_len;
2043 return resolved_type;
2044}
2045
2046/* Resolve dynamic bounds of members of the struct TYPE to static
df25ebbd
JB
2047 bounds. ADDR_STACK is a stack of struct property_addr_info to
2048 be used if needed during the dynamic resolution. */
012370f6
TT
2049
2050static struct type *
df25ebbd
JB
2051resolve_dynamic_struct (struct type *type,
2052 struct property_addr_info *addr_stack)
012370f6
TT
2053{
2054 struct type *resolved_type;
2055 int i;
6908c509 2056 unsigned resolved_type_bit_length = 0;
012370f6
TT
2057
2058 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2059 gdb_assert (TYPE_NFIELDS (type) > 0);
2060
2061 resolved_type = copy_type (type);
2062 TYPE_FIELDS (resolved_type)
224c3ddb
SM
2063 = (struct field *) TYPE_ALLOC (resolved_type,
2064 TYPE_NFIELDS (resolved_type)
2065 * sizeof (struct field));
012370f6
TT
2066 memcpy (TYPE_FIELDS (resolved_type),
2067 TYPE_FIELDS (type),
2068 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2069 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2070 {
6908c509 2071 unsigned new_bit_length;
df25ebbd 2072 struct property_addr_info pinfo;
012370f6
TT
2073
2074 if (field_is_static (&TYPE_FIELD (type, i)))
2075 continue;
2076
6908c509
JB
2077 /* As we know this field is not a static field, the field's
2078 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2079 this is the case, but only trigger a simple error rather
2080 than an internal error if that fails. While failing
2081 that verification indicates a bug in our code, the error
2082 is not severe enough to suggest to the user he stops
2083 his debugging session because of it. */
df25ebbd 2084 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
6908c509
JB
2085 error (_("Cannot determine struct field location"
2086 " (invalid location kind)"));
df25ebbd
JB
2087
2088 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
c3345124 2089 pinfo.valaddr = addr_stack->valaddr;
9920b434
BH
2090 pinfo.addr
2091 = (addr_stack->addr
2092 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
df25ebbd
JB
2093 pinfo.next = addr_stack;
2094
2095 TYPE_FIELD_TYPE (resolved_type, i)
2096 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2097 &pinfo, 0);
df25ebbd
JB
2098 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2099 == FIELD_LOC_KIND_BITPOS);
2100
6908c509
JB
2101 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2102 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2103 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2104 else
2105 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2106 * TARGET_CHAR_BIT);
2107
2108 /* Normally, we would use the position and size of the last field
2109 to determine the size of the enclosing structure. But GCC seems
2110 to be encoding the position of some fields incorrectly when
2111 the struct contains a dynamic field that is not placed last.
2112 So we compute the struct size based on the field that has
2113 the highest position + size - probably the best we can do. */
2114 if (new_bit_length > resolved_type_bit_length)
2115 resolved_type_bit_length = new_bit_length;
012370f6
TT
2116 }
2117
9920b434
BH
2118 /* The length of a type won't change for fortran, but it does for C and Ada.
2119 For fortran the size of dynamic fields might change over time but not the
2120 type length of the structure. If we adapt it, we run into problems
2121 when calculating the element offset for arrays of structs. */
2122 if (current_language->la_language != language_fortran)
2123 TYPE_LENGTH (resolved_type)
2124 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
6908c509 2125
9e195661
PMR
2126 /* The Ada language uses this field as a cache for static fixed types: reset
2127 it as RESOLVED_TYPE must have its own static fixed type. */
2128 TYPE_TARGET_TYPE (resolved_type) = NULL;
2129
012370f6
TT
2130 return resolved_type;
2131}
2132
d98b7a16 2133/* Worker for resolved_dynamic_type. */
80180f79 2134
d98b7a16 2135static struct type *
df25ebbd 2136resolve_dynamic_type_internal (struct type *type,
ee715b5a
PMR
2137 struct property_addr_info *addr_stack,
2138 int top_level)
80180f79
SA
2139{
2140 struct type *real_type = check_typedef (type);
6f8a3220 2141 struct type *resolved_type = type;
d9823cbb 2142 struct dynamic_prop *prop;
3cdcd0ce 2143 CORE_ADDR value;
80180f79 2144
ee715b5a 2145 if (!is_dynamic_type_internal (real_type, top_level))
80180f79
SA
2146 return type;
2147
5537b577 2148 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
6f8a3220 2149 {
cac9b138
JK
2150 resolved_type = copy_type (type);
2151 TYPE_TARGET_TYPE (resolved_type)
ee715b5a
PMR
2152 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2153 top_level);
5537b577
JK
2154 }
2155 else
2156 {
2157 /* Before trying to resolve TYPE, make sure it is not a stub. */
2158 type = real_type;
012370f6 2159
5537b577
JK
2160 switch (TYPE_CODE (type))
2161 {
e771e4be
PMR
2162 case TYPE_CODE_REF:
2163 {
2164 struct property_addr_info pinfo;
2165
2166 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
c3345124
JB
2167 pinfo.valaddr = NULL;
2168 if (addr_stack->valaddr != NULL)
2169 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2170 else
2171 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
e771e4be
PMR
2172 pinfo.next = addr_stack;
2173
2174 resolved_type = copy_type (type);
2175 TYPE_TARGET_TYPE (resolved_type)
2176 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2177 &pinfo, top_level);
2178 break;
2179 }
2180
5537b577 2181 case TYPE_CODE_ARRAY:
df25ebbd 2182 resolved_type = resolve_dynamic_array (type, addr_stack);
5537b577
JK
2183 break;
2184
2185 case TYPE_CODE_RANGE:
df25ebbd 2186 resolved_type = resolve_dynamic_range (type, addr_stack);
5537b577
JK
2187 break;
2188
2189 case TYPE_CODE_UNION:
df25ebbd 2190 resolved_type = resolve_dynamic_union (type, addr_stack);
5537b577
JK
2191 break;
2192
2193 case TYPE_CODE_STRUCT:
df25ebbd 2194 resolved_type = resolve_dynamic_struct (type, addr_stack);
5537b577
JK
2195 break;
2196 }
6f8a3220 2197 }
80180f79 2198
3cdcd0ce
JB
2199 /* Resolve data_location attribute. */
2200 prop = TYPE_DATA_LOCATION (resolved_type);
63e43d3a
PMR
2201 if (prop != NULL
2202 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
3cdcd0ce 2203 {
d9823cbb
KB
2204 TYPE_DYN_PROP_ADDR (prop) = value;
2205 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
3cdcd0ce 2206 }
3cdcd0ce 2207
80180f79
SA
2208 return resolved_type;
2209}
2210
d98b7a16
TT
2211/* See gdbtypes.h */
2212
2213struct type *
c3345124
JB
2214resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2215 CORE_ADDR addr)
d98b7a16 2216{
c3345124
JB
2217 struct property_addr_info pinfo
2218 = {check_typedef (type), valaddr, addr, NULL};
df25ebbd 2219
ee715b5a 2220 return resolve_dynamic_type_internal (type, &pinfo, 1);
d98b7a16
TT
2221}
2222
d9823cbb
KB
2223/* See gdbtypes.h */
2224
2225struct dynamic_prop *
2226get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2227{
2228 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2229
2230 while (node != NULL)
2231 {
2232 if (node->prop_kind == prop_kind)
283a9958 2233 return &node->prop;
d9823cbb
KB
2234 node = node->next;
2235 }
2236 return NULL;
2237}
2238
2239/* See gdbtypes.h */
2240
2241void
2242add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2243 struct type *type, struct objfile *objfile)
2244{
2245 struct dynamic_prop_list *temp;
2246
2247 gdb_assert (TYPE_OBJFILE_OWNED (type));
2248
224c3ddb 2249 temp = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop_list);
d9823cbb 2250 temp->prop_kind = prop_kind;
283a9958 2251 temp->prop = prop;
d9823cbb
KB
2252 temp->next = TYPE_DYN_PROP_LIST (type);
2253
2254 TYPE_DYN_PROP_LIST (type) = temp;
2255}
2256
9920b434
BH
2257/* Remove dynamic property from TYPE in case it exists. */
2258
2259void
2260remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2261 struct type *type)
2262{
2263 struct dynamic_prop_list *prev_node, *curr_node;
2264
2265 curr_node = TYPE_DYN_PROP_LIST (type);
2266 prev_node = NULL;
2267
2268 while (NULL != curr_node)
2269 {
2270 if (curr_node->prop_kind == prop_kind)
2271 {
2272 /* Update the linked list but don't free anything.
2273 The property was allocated on objstack and it is not known
2274 if we are on top of it. Nevertheless, everything is released
2275 when the complete objstack is freed. */
2276 if (NULL == prev_node)
2277 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2278 else
2279 prev_node->next = curr_node->next;
2280
2281 return;
2282 }
2283
2284 prev_node = curr_node;
2285 curr_node = curr_node->next;
2286 }
2287}
d9823cbb 2288
92163a10
JK
2289/* Find the real type of TYPE. This function returns the real type,
2290 after removing all layers of typedefs, and completing opaque or stub
2291 types. Completion changes the TYPE argument, but stripping of
2292 typedefs does not.
2293
2294 Instance flags (e.g. const/volatile) are preserved as typedefs are
2295 stripped. If necessary a new qualified form of the underlying type
2296 is created.
2297
2298 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2299 not been computed and we're either in the middle of reading symbols, or
2300 there was no name for the typedef in the debug info.
2301
9bc118a5
DE
2302 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2303 QUITs in the symbol reading code can also throw.
2304 Thus this function can throw an exception.
2305
92163a10
JK
2306 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2307 the target type.
c906108c
SS
2308
2309 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 2310 we can find a full definition in some other file. If so, copy this
7ba81444
MS
2311 definition, so we can use it in future. There used to be a comment
2312 (but not any code) that if we don't find a full definition, we'd
2313 set a flag so we don't spend time in the future checking the same
2314 type. That would be a mistake, though--we might load in more
92163a10 2315 symbols which contain a full definition for the type. */
c906108c
SS
2316
2317struct type *
a02fd225 2318check_typedef (struct type *type)
c906108c
SS
2319{
2320 struct type *orig_type = type;
92163a10
JK
2321 /* While we're removing typedefs, we don't want to lose qualifiers.
2322 E.g., const/volatile. */
2323 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 2324
423c0af8
MS
2325 gdb_assert (type);
2326
c906108c
SS
2327 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2328 {
2329 if (!TYPE_TARGET_TYPE (type))
2330 {
0d5cff50 2331 const char *name;
c906108c
SS
2332 struct symbol *sym;
2333
2334 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 2335 reading a symtab. Infinite recursion is one danger. */
c906108c 2336 if (currently_reading_symtab)
92163a10 2337 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2338
2339 name = type_name_no_tag (type);
7ba81444
MS
2340 /* FIXME: shouldn't we separately check the TYPE_NAME and
2341 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2342 VAR_DOMAIN as appropriate? (this code was written before
2343 TYPE_NAME and TYPE_TAG_NAME were separate). */
c906108c
SS
2344 if (name == NULL)
2345 {
23136709 2346 stub_noname_complaint ();
92163a10 2347 return make_qualified_type (type, instance_flags, NULL);
c906108c 2348 }
d12307c1 2349 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
2350 if (sym)
2351 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 2352 else /* TYPE_CODE_UNDEF */
e9bb382b 2353 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
2354 }
2355 type = TYPE_TARGET_TYPE (type);
c906108c 2356
92163a10
JK
2357 /* Preserve the instance flags as we traverse down the typedef chain.
2358
2359 Handling address spaces/classes is nasty, what do we do if there's a
2360 conflict?
2361 E.g., what if an outer typedef marks the type as class_1 and an inner
2362 typedef marks the type as class_2?
2363 This is the wrong place to do such error checking. We leave it to
2364 the code that created the typedef in the first place to flag the
2365 error. We just pick the outer address space (akin to letting the
2366 outer cast in a chain of casting win), instead of assuming
2367 "it can't happen". */
2368 {
2369 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2370 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2371 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2372 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2373
2374 /* Treat code vs data spaces and address classes separately. */
2375 if ((instance_flags & ALL_SPACES) != 0)
2376 new_instance_flags &= ~ALL_SPACES;
2377 if ((instance_flags & ALL_CLASSES) != 0)
2378 new_instance_flags &= ~ALL_CLASSES;
2379
2380 instance_flags |= new_instance_flags;
2381 }
2382 }
a02fd225 2383
7ba81444
MS
2384 /* If this is a struct/class/union with no fields, then check
2385 whether a full definition exists somewhere else. This is for
2386 systems where a type definition with no fields is issued for such
2387 types, instead of identifying them as stub types in the first
2388 place. */
c5aa993b 2389
7ba81444
MS
2390 if (TYPE_IS_OPAQUE (type)
2391 && opaque_type_resolution
2392 && !currently_reading_symtab)
c906108c 2393 {
0d5cff50 2394 const char *name = type_name_no_tag (type);
c5aa993b 2395 struct type *newtype;
d8734c88 2396
c906108c
SS
2397 if (name == NULL)
2398 {
23136709 2399 stub_noname_complaint ();
92163a10 2400 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2401 }
2402 newtype = lookup_transparent_type (name);
ad766c0a 2403
c906108c 2404 if (newtype)
ad766c0a 2405 {
7ba81444
MS
2406 /* If the resolved type and the stub are in the same
2407 objfile, then replace the stub type with the real deal.
2408 But if they're in separate objfiles, leave the stub
2409 alone; we'll just look up the transparent type every time
2410 we call check_typedef. We can't create pointers between
2411 types allocated to different objfiles, since they may
2412 have different lifetimes. Trying to copy NEWTYPE over to
2413 TYPE's objfile is pointless, too, since you'll have to
2414 move over any other types NEWTYPE refers to, which could
2415 be an unbounded amount of stuff. */
ad766c0a 2416 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
2417 type = make_qualified_type (newtype,
2418 TYPE_INSTANCE_FLAGS (type),
2419 type);
ad766c0a
JB
2420 else
2421 type = newtype;
2422 }
c906108c 2423 }
7ba81444
MS
2424 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2425 types. */
74a9bb82 2426 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 2427 {
0d5cff50 2428 const char *name = type_name_no_tag (type);
c906108c 2429 /* FIXME: shouldn't we separately check the TYPE_NAME and the
176620f1 2430 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
7b83ea04
AC
2431 as appropriate? (this code was written before TYPE_NAME and
2432 TYPE_TAG_NAME were separate). */
c906108c 2433 struct symbol *sym;
d8734c88 2434
c906108c
SS
2435 if (name == NULL)
2436 {
23136709 2437 stub_noname_complaint ();
92163a10 2438 return make_qualified_type (type, instance_flags, NULL);
c906108c 2439 }
d12307c1 2440 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c 2441 if (sym)
c26f2453
JB
2442 {
2443 /* Same as above for opaque types, we can replace the stub
92163a10 2444 with the complete type only if they are in the same
c26f2453
JB
2445 objfile. */
2446 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
2447 type = make_qualified_type (SYMBOL_TYPE (sym),
2448 TYPE_INSTANCE_FLAGS (type),
2449 type);
c26f2453
JB
2450 else
2451 type = SYMBOL_TYPE (sym);
2452 }
c906108c
SS
2453 }
2454
74a9bb82 2455 if (TYPE_TARGET_STUB (type))
c906108c 2456 {
c906108c
SS
2457 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2458
74a9bb82 2459 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 2460 {
73e2eb35 2461 /* Nothing we can do. */
c5aa993b 2462 }
c906108c
SS
2463 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2464 {
2465 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 2466 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
2467 }
2468 }
92163a10
JK
2469
2470 type = make_qualified_type (type, instance_flags, NULL);
2471
7ba81444 2472 /* Cache TYPE_LENGTH for future use. */
c906108c 2473 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 2474
c906108c
SS
2475 return type;
2476}
2477
7ba81444 2478/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 2479 occurs, silently return a void type. */
c91ecb25 2480
b9362cc7 2481static struct type *
48319d1f 2482safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
2483{
2484 struct ui_file *saved_gdb_stderr;
34365054 2485 struct type *type = NULL; /* Initialize to keep gcc happy. */
c91ecb25 2486
7ba81444 2487 /* Suppress error messages. */
c91ecb25 2488 saved_gdb_stderr = gdb_stderr;
d7e74731 2489 gdb_stderr = &null_stream;
c91ecb25 2490
7ba81444 2491 /* Call parse_and_eval_type() without fear of longjmp()s. */
492d29ea 2492 TRY
8e7b59a5
KS
2493 {
2494 type = parse_and_eval_type (p, length);
2495 }
492d29ea
PA
2496 CATCH (except, RETURN_MASK_ERROR)
2497 {
2498 type = builtin_type (gdbarch)->builtin_void;
2499 }
2500 END_CATCH
c91ecb25 2501
7ba81444 2502 /* Stop suppressing error messages. */
c91ecb25
ND
2503 gdb_stderr = saved_gdb_stderr;
2504
2505 return type;
2506}
2507
c906108c
SS
2508/* Ugly hack to convert method stubs into method types.
2509
7ba81444
MS
2510 He ain't kiddin'. This demangles the name of the method into a
2511 string including argument types, parses out each argument type,
2512 generates a string casting a zero to that type, evaluates the
2513 string, and stuffs the resulting type into an argtype vector!!!
2514 Then it knows the type of the whole function (including argument
2515 types for overloading), which info used to be in the stab's but was
2516 removed to hack back the space required for them. */
c906108c 2517
de17c821 2518static void
fba45db2 2519check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 2520{
50810684 2521 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
2522 struct fn_field *f;
2523 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
8de20a37
TT
2524 char *demangled_name = gdb_demangle (mangled_name,
2525 DMGL_PARAMS | DMGL_ANSI);
c906108c
SS
2526 char *argtypetext, *p;
2527 int depth = 0, argcount = 1;
ad2f7632 2528 struct field *argtypes;
c906108c
SS
2529 struct type *mtype;
2530
2531 /* Make sure we got back a function string that we can use. */
2532 if (demangled_name)
2533 p = strchr (demangled_name, '(');
502dcf4e
AC
2534 else
2535 p = NULL;
c906108c
SS
2536
2537 if (demangled_name == NULL || p == NULL)
7ba81444
MS
2538 error (_("Internal: Cannot demangle mangled name `%s'."),
2539 mangled_name);
c906108c
SS
2540
2541 /* Now, read in the parameters that define this type. */
2542 p += 1;
2543 argtypetext = p;
2544 while (*p)
2545 {
070ad9f0 2546 if (*p == '(' || *p == '<')
c906108c
SS
2547 {
2548 depth += 1;
2549 }
070ad9f0 2550 else if (*p == ')' || *p == '>')
c906108c
SS
2551 {
2552 depth -= 1;
2553 }
2554 else if (*p == ',' && depth == 0)
2555 {
2556 argcount += 1;
2557 }
2558
2559 p += 1;
2560 }
2561
ad2f7632 2562 /* If we read one argument and it was ``void'', don't count it. */
61012eef 2563 if (startswith (argtypetext, "(void)"))
ad2f7632 2564 argcount -= 1;
c906108c 2565
ad2f7632
DJ
2566 /* We need one extra slot, for the THIS pointer. */
2567
2568 argtypes = (struct field *)
2569 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 2570 p = argtypetext;
4a1970e4
DJ
2571
2572 /* Add THIS pointer for non-static methods. */
2573 f = TYPE_FN_FIELDLIST1 (type, method_id);
2574 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2575 argcount = 0;
2576 else
2577 {
ad2f7632 2578 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
2579 argcount = 1;
2580 }
c906108c 2581
0963b4bd 2582 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
2583 {
2584 depth = 0;
2585 while (*p)
2586 {
2587 if (depth <= 0 && (*p == ',' || *p == ')'))
2588 {
ad2f7632
DJ
2589 /* Avoid parsing of ellipsis, they will be handled below.
2590 Also avoid ``void'' as above. */
2591 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2592 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 2593 {
ad2f7632 2594 argtypes[argcount].type =
48319d1f 2595 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
2596 argcount += 1;
2597 }
2598 argtypetext = p + 1;
2599 }
2600
070ad9f0 2601 if (*p == '(' || *p == '<')
c906108c
SS
2602 {
2603 depth += 1;
2604 }
070ad9f0 2605 else if (*p == ')' || *p == '>')
c906108c
SS
2606 {
2607 depth -= 1;
2608 }
2609
2610 p += 1;
2611 }
2612 }
2613
c906108c
SS
2614 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2615
2616 /* Now update the old "stub" type into a real type. */
2617 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
09e2d7c7
DE
2618 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2619 We want a method (TYPE_CODE_METHOD). */
2620 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2621 argtypes, argcount, p[-2] == '.');
876cecd0 2622 TYPE_STUB (mtype) = 0;
c906108c 2623 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632
DJ
2624
2625 xfree (demangled_name);
c906108c
SS
2626}
2627
7ba81444
MS
2628/* This is the external interface to check_stub_method, above. This
2629 function unstubs all of the signatures for TYPE's METHOD_ID method
2630 name. After calling this function TYPE_FN_FIELD_STUB will be
2631 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2632 correct.
de17c821
DJ
2633
2634 This function unfortunately can not die until stabs do. */
2635
2636void
2637check_stub_method_group (struct type *type, int method_id)
2638{
2639 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2640 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
f710f4fc 2641 int j, found_stub = 0;
de17c821
DJ
2642
2643 for (j = 0; j < len; j++)
2644 if (TYPE_FN_FIELD_STUB (f, j))
2645 {
2646 found_stub = 1;
2647 check_stub_method (type, method_id, j);
2648 }
2649
7ba81444
MS
2650 /* GNU v3 methods with incorrect names were corrected when we read
2651 in type information, because it was cheaper to do it then. The
2652 only GNU v2 methods with incorrect method names are operators and
2653 destructors; destructors were also corrected when we read in type
2654 information.
de17c821
DJ
2655
2656 Therefore the only thing we need to handle here are v2 operator
2657 names. */
61012eef 2658 if (found_stub && !startswith (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z"))
de17c821
DJ
2659 {
2660 int ret;
2661 char dem_opname[256];
2662
7ba81444
MS
2663 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2664 method_id),
de17c821
DJ
2665 dem_opname, DMGL_ANSI);
2666 if (!ret)
7ba81444
MS
2667 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2668 method_id),
de17c821
DJ
2669 dem_opname, 0);
2670 if (ret)
2671 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2672 }
2673}
2674
9655fd1a
JK
2675/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2676const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
2677
2678void
fba45db2 2679allocate_cplus_struct_type (struct type *type)
c906108c 2680{
b4ba55a1
JB
2681 if (HAVE_CPLUS_STRUCT (type))
2682 /* Structure was already allocated. Nothing more to do. */
2683 return;
2684
2685 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2686 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2687 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2688 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
ae6ae975 2689 set_type_vptr_fieldno (type, -1);
c906108c
SS
2690}
2691
b4ba55a1
JB
2692const struct gnat_aux_type gnat_aux_default =
2693 { NULL };
2694
2695/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2696 and allocate the associated gnat-specific data. The gnat-specific
2697 data is also initialized to gnat_aux_default. */
5212577a 2698
b4ba55a1
JB
2699void
2700allocate_gnat_aux_type (struct type *type)
2701{
2702 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2703 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2704 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2705 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2706}
2707
ae438bc5
UW
2708/* Helper function to initialize a newly allocated type. Set type code
2709 to CODE and initialize the type-specific fields accordingly. */
2710
2711static void
2712set_type_code (struct type *type, enum type_code code)
2713{
2714 TYPE_CODE (type) = code;
2715
2716 switch (code)
2717 {
2718 case TYPE_CODE_STRUCT:
2719 case TYPE_CODE_UNION:
2720 case TYPE_CODE_NAMESPACE:
2721 INIT_CPLUS_SPECIFIC (type);
2722 break;
2723 case TYPE_CODE_FLT:
2724 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2725 break;
2726 case TYPE_CODE_FUNC:
2727 INIT_FUNC_SPECIFIC (type);
2728 break;
2729 }
2730}
2731
19f392bc
UW
2732/* Helper function to verify floating-point format and size.
2733 BIT is the type size in bits; if BIT equals -1, the size is
2734 determined by the floatformat. Returns size to be used. */
2735
2736static int
2737verify_floatformat (int bit, const struct floatformat **floatformats)
2738{
9b790ce7
UW
2739 gdb_assert (floatformats != NULL);
2740 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
2741
19f392bc 2742 if (bit == -1)
9b790ce7 2743 bit = floatformats[0]->totalsize;
19f392bc
UW
2744 gdb_assert (bit >= 0);
2745
9b790ce7
UW
2746 size_t len = bit / TARGET_CHAR_BIT;
2747 gdb_assert (len >= floatformat_totalsize_bytes (floatformats[0]));
2748 gdb_assert (len >= floatformat_totalsize_bytes (floatformats[1]));
19f392bc
UW
2749
2750 return bit;
2751}
2752
c906108c
SS
2753/* Helper function to initialize the standard scalar types.
2754
86f62fd7
TT
2755 If NAME is non-NULL, then it is used to initialize the type name.
2756 Note that NAME is not copied; it is required to have a lifetime at
2757 least as long as OBJFILE. */
c906108c
SS
2758
2759struct type *
19f392bc
UW
2760init_type (struct objfile *objfile, enum type_code code, int length,
2761 const char *name)
c906108c 2762{
52f0bd74 2763 struct type *type;
c906108c
SS
2764
2765 type = alloc_type (objfile);
ae438bc5 2766 set_type_code (type, code);
c906108c 2767 TYPE_LENGTH (type) = length;
86f62fd7 2768 TYPE_NAME (type) = name;
c906108c 2769
c16abbde 2770 return type;
c906108c 2771}
19f392bc 2772
46a4882b
PA
2773/* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2774 to use with variables that have no debug info. NAME is the type
2775 name. */
2776
2777static struct type *
2778init_nodebug_var_type (struct objfile *objfile, const char *name)
2779{
2780 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2781}
2782
19f392bc
UW
2783/* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2784 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2785 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2786
2787struct type *
2788init_integer_type (struct objfile *objfile,
2789 int bit, int unsigned_p, const char *name)
2790{
2791 struct type *t;
2792
2793 t = init_type (objfile, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
2794 if (unsigned_p)
2795 TYPE_UNSIGNED (t) = 1;
2796
2797 return t;
2798}
2799
2800/* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2801 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2802 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2803
2804struct type *
2805init_character_type (struct objfile *objfile,
2806 int bit, int unsigned_p, const char *name)
2807{
2808 struct type *t;
2809
2810 t = init_type (objfile, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
2811 if (unsigned_p)
2812 TYPE_UNSIGNED (t) = 1;
2813
2814 return t;
2815}
2816
2817/* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2818 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2819 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2820
2821struct type *
2822init_boolean_type (struct objfile *objfile,
2823 int bit, int unsigned_p, const char *name)
2824{
2825 struct type *t;
2826
2827 t = init_type (objfile, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
2828 if (unsigned_p)
2829 TYPE_UNSIGNED (t) = 1;
2830
2831 return t;
2832}
2833
2834/* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2835 BIT is the type size in bits; if BIT equals -1, the size is
2836 determined by the floatformat. NAME is the type name. Set the
2837 TYPE_FLOATFORMAT from FLOATFORMATS. */
2838
2839struct type *
2840init_float_type (struct objfile *objfile,
2841 int bit, const char *name,
2842 const struct floatformat **floatformats)
2843{
2844 struct type *t;
2845
2846 bit = verify_floatformat (bit, floatformats);
2847 t = init_type (objfile, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
2848 TYPE_FLOATFORMAT (t) = floatformats;
2849
2850 return t;
2851}
2852
2853/* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2854 BIT is the type size in bits. NAME is the type name. */
2855
2856struct type *
2857init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2858{
2859 struct type *t;
2860
2861 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit / TARGET_CHAR_BIT, name);
2862 return t;
2863}
2864
2865/* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2866 NAME is the type name. TARGET_TYPE is the component float type. */
2867
2868struct type *
2869init_complex_type (struct objfile *objfile,
2870 const char *name, struct type *target_type)
2871{
2872 struct type *t;
2873
2874 t = init_type (objfile, TYPE_CODE_COMPLEX,
2875 2 * TYPE_LENGTH (target_type), name);
2876 TYPE_TARGET_TYPE (t) = target_type;
2877 return t;
2878}
2879
2880/* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
2881 BIT is the pointer type size in bits. NAME is the type name.
2882 TARGET_TYPE is the pointer target type. Always sets the pointer type's
2883 TYPE_UNSIGNED flag. */
2884
2885struct type *
2886init_pointer_type (struct objfile *objfile,
2887 int bit, const char *name, struct type *target_type)
2888{
2889 struct type *t;
2890
2891 t = init_type (objfile, TYPE_CODE_PTR, bit / TARGET_CHAR_BIT, name);
2892 TYPE_TARGET_TYPE (t) = target_type;
2893 TYPE_UNSIGNED (t) = 1;
2894 return t;
2895}
2896
5212577a
DE
2897\f
2898/* Queries on types. */
c906108c 2899
c906108c 2900int
fba45db2 2901can_dereference (struct type *t)
c906108c 2902{
7ba81444
MS
2903 /* FIXME: Should we return true for references as well as
2904 pointers? */
f168693b 2905 t = check_typedef (t);
c906108c
SS
2906 return
2907 (t != NULL
2908 && TYPE_CODE (t) == TYPE_CODE_PTR
2909 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2910}
2911
adf40b2e 2912int
fba45db2 2913is_integral_type (struct type *t)
adf40b2e 2914{
f168693b 2915 t = check_typedef (t);
adf40b2e
JM
2916 return
2917 ((t != NULL)
d4f3574e
SS
2918 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2919 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 2920 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
2921 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2922 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2923 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
2924}
2925
e09342b5
TJB
2926/* Return true if TYPE is scalar. */
2927
220475ed 2928int
e09342b5
TJB
2929is_scalar_type (struct type *type)
2930{
f168693b 2931 type = check_typedef (type);
e09342b5
TJB
2932
2933 switch (TYPE_CODE (type))
2934 {
2935 case TYPE_CODE_ARRAY:
2936 case TYPE_CODE_STRUCT:
2937 case TYPE_CODE_UNION:
2938 case TYPE_CODE_SET:
2939 case TYPE_CODE_STRING:
e09342b5
TJB
2940 return 0;
2941 default:
2942 return 1;
2943 }
2944}
2945
2946/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
2947 the memory layout of a scalar type. E.g., an array or struct with only
2948 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
2949
2950int
2951is_scalar_type_recursive (struct type *t)
2952{
f168693b 2953 t = check_typedef (t);
e09342b5
TJB
2954
2955 if (is_scalar_type (t))
2956 return 1;
2957 /* Are we dealing with an array or string of known dimensions? */
2958 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2959 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2960 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2961 {
2962 LONGEST low_bound, high_bound;
2963 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2964
2965 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2966
2967 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2968 }
2969 /* Are we dealing with a struct with one element? */
2970 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2971 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2972 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2973 {
2974 int i, n = TYPE_NFIELDS (t);
2975
2976 /* If all elements of the union are scalar, then the union is scalar. */
2977 for (i = 0; i < n; i++)
2978 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2979 return 0;
2980
2981 return 1;
2982 }
2983
2984 return 0;
2985}
2986
6c659fc2
SC
2987/* Return true is T is a class or a union. False otherwise. */
2988
2989int
2990class_or_union_p (const struct type *t)
2991{
2992 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
2993 || TYPE_CODE (t) == TYPE_CODE_UNION);
2994}
2995
4e8f195d
TT
2996/* A helper function which returns true if types A and B represent the
2997 "same" class type. This is true if the types have the same main
2998 type, or the same name. */
2999
3000int
3001class_types_same_p (const struct type *a, const struct type *b)
3002{
3003 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3004 || (TYPE_NAME (a) && TYPE_NAME (b)
3005 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3006}
3007
a9d5ef47
SW
3008/* If BASE is an ancestor of DCLASS return the distance between them.
3009 otherwise return -1;
3010 eg:
3011
3012 class A {};
3013 class B: public A {};
3014 class C: public B {};
3015 class D: C {};
3016
3017 distance_to_ancestor (A, A, 0) = 0
3018 distance_to_ancestor (A, B, 0) = 1
3019 distance_to_ancestor (A, C, 0) = 2
3020 distance_to_ancestor (A, D, 0) = 3
3021
3022 If PUBLIC is 1 then only public ancestors are considered,
3023 and the function returns the distance only if BASE is a public ancestor
3024 of DCLASS.
3025 Eg:
3026
0963b4bd 3027 distance_to_ancestor (A, D, 1) = -1. */
c906108c 3028
0526b37a 3029static int
fe978cb0 3030distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
c906108c
SS
3031{
3032 int i;
a9d5ef47 3033 int d;
c5aa993b 3034
f168693b
SM
3035 base = check_typedef (base);
3036 dclass = check_typedef (dclass);
c906108c 3037
4e8f195d 3038 if (class_types_same_p (base, dclass))
a9d5ef47 3039 return 0;
c906108c
SS
3040
3041 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 3042 {
fe978cb0 3043 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
0526b37a
SW
3044 continue;
3045
fe978cb0 3046 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
a9d5ef47
SW
3047 if (d >= 0)
3048 return 1 + d;
4e8f195d 3049 }
c906108c 3050
a9d5ef47 3051 return -1;
c906108c 3052}
4e8f195d 3053
0526b37a
SW
3054/* Check whether BASE is an ancestor or base class or DCLASS
3055 Return 1 if so, and 0 if not.
3056 Note: If BASE and DCLASS are of the same type, this function
3057 will return 1. So for some class A, is_ancestor (A, A) will
3058 return 1. */
3059
3060int
3061is_ancestor (struct type *base, struct type *dclass)
3062{
a9d5ef47 3063 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
3064}
3065
4e8f195d
TT
3066/* Like is_ancestor, but only returns true when BASE is a public
3067 ancestor of DCLASS. */
3068
3069int
3070is_public_ancestor (struct type *base, struct type *dclass)
3071{
a9d5ef47 3072 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
3073}
3074
3075/* A helper function for is_unique_ancestor. */
3076
3077static int
3078is_unique_ancestor_worker (struct type *base, struct type *dclass,
3079 int *offset,
8af8e3bc
PA
3080 const gdb_byte *valaddr, int embedded_offset,
3081 CORE_ADDR address, struct value *val)
4e8f195d
TT
3082{
3083 int i, count = 0;
3084
f168693b
SM
3085 base = check_typedef (base);
3086 dclass = check_typedef (dclass);
4e8f195d
TT
3087
3088 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3089 {
8af8e3bc
PA
3090 struct type *iter;
3091 int this_offset;
4e8f195d 3092
8af8e3bc
PA
3093 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3094
3095 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3096 address, val);
4e8f195d
TT
3097
3098 if (class_types_same_p (base, iter))
3099 {
3100 /* If this is the first subclass, set *OFFSET and set count
3101 to 1. Otherwise, if this is at the same offset as
3102 previous instances, do nothing. Otherwise, increment
3103 count. */
3104 if (*offset == -1)
3105 {
3106 *offset = this_offset;
3107 count = 1;
3108 }
3109 else if (this_offset == *offset)
3110 {
3111 /* Nothing. */
3112 }
3113 else
3114 ++count;
3115 }
3116 else
3117 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
3118 valaddr,
3119 embedded_offset + this_offset,
3120 address, val);
4e8f195d
TT
3121 }
3122
3123 return count;
3124}
3125
3126/* Like is_ancestor, but only returns true if BASE is a unique base
3127 class of the type of VAL. */
3128
3129int
3130is_unique_ancestor (struct type *base, struct value *val)
3131{
3132 int offset = -1;
3133
3134 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
3135 value_contents_for_printing (val),
3136 value_embedded_offset (val),
3137 value_address (val), val) == 1;
4e8f195d
TT
3138}
3139
c906108c 3140\f
5212577a 3141/* Overload resolution. */
c906108c 3142
6403aeea
SW
3143/* Return the sum of the rank of A with the rank of B. */
3144
3145struct rank
3146sum_ranks (struct rank a, struct rank b)
3147{
3148 struct rank c;
3149 c.rank = a.rank + b.rank;
a9d5ef47 3150 c.subrank = a.subrank + b.subrank;
6403aeea
SW
3151 return c;
3152}
3153
3154/* Compare rank A and B and return:
3155 0 if a = b
3156 1 if a is better than b
3157 -1 if b is better than a. */
3158
3159int
3160compare_ranks (struct rank a, struct rank b)
3161{
3162 if (a.rank == b.rank)
a9d5ef47
SW
3163 {
3164 if (a.subrank == b.subrank)
3165 return 0;
3166 if (a.subrank < b.subrank)
3167 return 1;
3168 if (a.subrank > b.subrank)
3169 return -1;
3170 }
6403aeea
SW
3171
3172 if (a.rank < b.rank)
3173 return 1;
3174
0963b4bd 3175 /* a.rank > b.rank */
6403aeea
SW
3176 return -1;
3177}
c5aa993b 3178
0963b4bd 3179/* Functions for overload resolution begin here. */
c906108c
SS
3180
3181/* Compare two badness vectors A and B and return the result.
7ba81444
MS
3182 0 => A and B are identical
3183 1 => A and B are incomparable
3184 2 => A is better than B
3185 3 => A is worse than B */
c906108c
SS
3186
3187int
fba45db2 3188compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
3189{
3190 int i;
3191 int tmp;
c5aa993b
JM
3192 short found_pos = 0; /* any positives in c? */
3193 short found_neg = 0; /* any negatives in c? */
3194
3195 /* differing lengths => incomparable */
c906108c
SS
3196 if (a->length != b->length)
3197 return 1;
3198
c5aa993b
JM
3199 /* Subtract b from a */
3200 for (i = 0; i < a->length; i++)
c906108c 3201 {
6403aeea 3202 tmp = compare_ranks (b->rank[i], a->rank[i]);
c906108c 3203 if (tmp > 0)
c5aa993b 3204 found_pos = 1;
c906108c 3205 else if (tmp < 0)
c5aa993b 3206 found_neg = 1;
c906108c
SS
3207 }
3208
3209 if (found_pos)
3210 {
3211 if (found_neg)
c5aa993b 3212 return 1; /* incomparable */
c906108c 3213 else
c5aa993b 3214 return 3; /* A > B */
c906108c 3215 }
c5aa993b
JM
3216 else
3217 /* no positives */
c906108c
SS
3218 {
3219 if (found_neg)
c5aa993b 3220 return 2; /* A < B */
c906108c 3221 else
c5aa993b 3222 return 0; /* A == B */
c906108c
SS
3223 }
3224}
3225
7ba81444
MS
3226/* Rank a function by comparing its parameter types (PARMS, length
3227 NPARMS), to the types of an argument list (ARGS, length NARGS).
3228 Return a pointer to a badness vector. This has NARGS + 1
3229 entries. */
c906108c
SS
3230
3231struct badness_vector *
7ba81444 3232rank_function (struct type **parms, int nparms,
da096638 3233 struct value **args, int nargs)
c906108c
SS
3234{
3235 int i;
8d749320 3236 struct badness_vector *bv = XNEW (struct badness_vector);
c906108c
SS
3237 int min_len = nparms < nargs ? nparms : nargs;
3238
0963b4bd 3239 bv->length = nargs + 1; /* add 1 for the length-match rank. */
c4e54771 3240 bv->rank = XNEWVEC (struct rank, nargs + 1);
c906108c
SS
3241
3242 /* First compare the lengths of the supplied lists.
7ba81444 3243 If there is a mismatch, set it to a high value. */
c5aa993b 3244
c906108c 3245 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
3246 arguments and ellipsis parameter lists, we should consider those
3247 and rank the length-match more finely. */
c906108c 3248
6403aeea
SW
3249 LENGTH_MATCH (bv) = (nargs != nparms)
3250 ? LENGTH_MISMATCH_BADNESS
3251 : EXACT_MATCH_BADNESS;
c906108c 3252
0963b4bd 3253 /* Now rank all the parameters of the candidate function. */
74cc24b0 3254 for (i = 1; i <= min_len; i++)
da096638
KS
3255 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
3256 args[i - 1]);
c906108c 3257
0963b4bd 3258 /* If more arguments than parameters, add dummy entries. */
c5aa993b 3259 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
3260 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
3261
3262 return bv;
3263}
3264
973ccf8b
DJ
3265/* Compare the names of two integer types, assuming that any sign
3266 qualifiers have been checked already. We do it this way because
3267 there may be an "int" in the name of one of the types. */
3268
3269static int
3270integer_types_same_name_p (const char *first, const char *second)
3271{
3272 int first_p, second_p;
3273
7ba81444
MS
3274 /* If both are shorts, return 1; if neither is a short, keep
3275 checking. */
973ccf8b
DJ
3276 first_p = (strstr (first, "short") != NULL);
3277 second_p = (strstr (second, "short") != NULL);
3278 if (first_p && second_p)
3279 return 1;
3280 if (first_p || second_p)
3281 return 0;
3282
3283 /* Likewise for long. */
3284 first_p = (strstr (first, "long") != NULL);
3285 second_p = (strstr (second, "long") != NULL);
3286 if (first_p && second_p)
3287 return 1;
3288 if (first_p || second_p)
3289 return 0;
3290
3291 /* Likewise for char. */
3292 first_p = (strstr (first, "char") != NULL);
3293 second_p = (strstr (second, "char") != NULL);
3294 if (first_p && second_p)
3295 return 1;
3296 if (first_p || second_p)
3297 return 0;
3298
3299 /* They must both be ints. */
3300 return 1;
3301}
3302
7062b0a0
SW
3303/* Compares type A to type B returns 1 if the represent the same type
3304 0 otherwise. */
3305
bd69fc68 3306int
7062b0a0
SW
3307types_equal (struct type *a, struct type *b)
3308{
3309 /* Identical type pointers. */
3310 /* However, this still doesn't catch all cases of same type for b
3311 and a. The reason is that builtin types are different from
3312 the same ones constructed from the object. */
3313 if (a == b)
3314 return 1;
3315
3316 /* Resolve typedefs */
3317 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3318 a = check_typedef (a);
3319 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3320 b = check_typedef (b);
3321
3322 /* If after resolving typedefs a and b are not of the same type
3323 code then they are not equal. */
3324 if (TYPE_CODE (a) != TYPE_CODE (b))
3325 return 0;
3326
3327 /* If a and b are both pointers types or both reference types then
3328 they are equal of the same type iff the objects they refer to are
3329 of the same type. */
3330 if (TYPE_CODE (a) == TYPE_CODE_PTR
3331 || TYPE_CODE (a) == TYPE_CODE_REF)
3332 return types_equal (TYPE_TARGET_TYPE (a),
3333 TYPE_TARGET_TYPE (b));
3334
0963b4bd 3335 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
3336 are exactly the same. This happens when we generate method
3337 stubs. The types won't point to the same address, but they
0963b4bd 3338 really are the same. */
7062b0a0
SW
3339
3340 if (TYPE_NAME (a) && TYPE_NAME (b)
3341 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3342 return 1;
3343
3344 /* Check if identical after resolving typedefs. */
3345 if (a == b)
3346 return 1;
3347
9ce98649
TT
3348 /* Two function types are equal if their argument and return types
3349 are equal. */
3350 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3351 {
3352 int i;
3353
3354 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3355 return 0;
3356
3357 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3358 return 0;
3359
3360 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3361 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3362 return 0;
3363
3364 return 1;
3365 }
3366
7062b0a0
SW
3367 return 0;
3368}
ca092b61
DE
3369\f
3370/* Deep comparison of types. */
3371
3372/* An entry in the type-equality bcache. */
3373
3374typedef struct type_equality_entry
3375{
3376 struct type *type1, *type2;
3377} type_equality_entry_d;
3378
3379DEF_VEC_O (type_equality_entry_d);
3380
3381/* A helper function to compare two strings. Returns 1 if they are
3382 the same, 0 otherwise. Handles NULLs properly. */
3383
3384static int
3385compare_maybe_null_strings (const char *s, const char *t)
3386{
3387 if (s == NULL && t != NULL)
3388 return 0;
3389 else if (s != NULL && t == NULL)
3390 return 0;
3391 else if (s == NULL && t== NULL)
3392 return 1;
3393 return strcmp (s, t) == 0;
3394}
3395
3396/* A helper function for check_types_worklist that checks two types for
3397 "deep" equality. Returns non-zero if the types are considered the
3398 same, zero otherwise. */
3399
3400static int
3401check_types_equal (struct type *type1, struct type *type2,
3402 VEC (type_equality_entry_d) **worklist)
3403{
f168693b
SM
3404 type1 = check_typedef (type1);
3405 type2 = check_typedef (type2);
ca092b61
DE
3406
3407 if (type1 == type2)
3408 return 1;
3409
3410 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3411 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3412 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3413 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3414 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3415 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3416 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3417 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3418 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3419 return 0;
3420
3421 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3422 TYPE_TAG_NAME (type2)))
3423 return 0;
3424 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3425 return 0;
3426
3427 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3428 {
3429 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
3430 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
3431 return 0;
3432 }
3433 else
3434 {
3435 int i;
3436
3437 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3438 {
3439 const struct field *field1 = &TYPE_FIELD (type1, i);
3440 const struct field *field2 = &TYPE_FIELD (type2, i);
3441 struct type_equality_entry entry;
3442
3443 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3444 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3445 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3446 return 0;
3447 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3448 FIELD_NAME (*field2)))
3449 return 0;
3450 switch (FIELD_LOC_KIND (*field1))
3451 {
3452 case FIELD_LOC_KIND_BITPOS:
3453 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3454 return 0;
3455 break;
3456 case FIELD_LOC_KIND_ENUMVAL:
3457 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3458 return 0;
3459 break;
3460 case FIELD_LOC_KIND_PHYSADDR:
3461 if (FIELD_STATIC_PHYSADDR (*field1)
3462 != FIELD_STATIC_PHYSADDR (*field2))
3463 return 0;
3464 break;
3465 case FIELD_LOC_KIND_PHYSNAME:
3466 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3467 FIELD_STATIC_PHYSNAME (*field2)))
3468 return 0;
3469 break;
3470 case FIELD_LOC_KIND_DWARF_BLOCK:
3471 {
3472 struct dwarf2_locexpr_baton *block1, *block2;
3473
3474 block1 = FIELD_DWARF_BLOCK (*field1);
3475 block2 = FIELD_DWARF_BLOCK (*field2);
3476 if (block1->per_cu != block2->per_cu
3477 || block1->size != block2->size
3478 || memcmp (block1->data, block2->data, block1->size) != 0)
3479 return 0;
3480 }
3481 break;
3482 default:
3483 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3484 "%d by check_types_equal"),
3485 FIELD_LOC_KIND (*field1));
3486 }
3487
3488 entry.type1 = FIELD_TYPE (*field1);
3489 entry.type2 = FIELD_TYPE (*field2);
3490 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3491 }
3492 }
3493
3494 if (TYPE_TARGET_TYPE (type1) != NULL)
3495 {
3496 struct type_equality_entry entry;
3497
3498 if (TYPE_TARGET_TYPE (type2) == NULL)
3499 return 0;
3500
3501 entry.type1 = TYPE_TARGET_TYPE (type1);
3502 entry.type2 = TYPE_TARGET_TYPE (type2);
3503 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3504 }
3505 else if (TYPE_TARGET_TYPE (type2) != NULL)
3506 return 0;
3507
3508 return 1;
3509}
3510
3511/* Check types on a worklist for equality. Returns zero if any pair
3512 is not equal, non-zero if they are all considered equal. */
3513
3514static int
3515check_types_worklist (VEC (type_equality_entry_d) **worklist,
3516 struct bcache *cache)
3517{
3518 while (!VEC_empty (type_equality_entry_d, *worklist))
3519 {
3520 struct type_equality_entry entry;
3521 int added;
3522
3523 entry = *VEC_last (type_equality_entry_d, *worklist);
3524 VEC_pop (type_equality_entry_d, *worklist);
3525
3526 /* If the type pair has already been visited, we know it is
3527 ok. */
3528 bcache_full (&entry, sizeof (entry), cache, &added);
3529 if (!added)
3530 continue;
3531
3532 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3533 return 0;
3534 }
7062b0a0 3535
ca092b61
DE
3536 return 1;
3537}
3538
3539/* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3540 "deep comparison". Otherwise return zero. */
3541
3542int
3543types_deeply_equal (struct type *type1, struct type *type2)
3544{
6c63c96a 3545 struct gdb_exception except = exception_none;
ca092b61
DE
3546 int result = 0;
3547 struct bcache *cache;
3548 VEC (type_equality_entry_d) *worklist = NULL;
3549 struct type_equality_entry entry;
3550
3551 gdb_assert (type1 != NULL && type2 != NULL);
3552
3553 /* Early exit for the simple case. */
3554 if (type1 == type2)
3555 return 1;
3556
3557 cache = bcache_xmalloc (NULL, NULL);
3558
3559 entry.type1 = type1;
3560 entry.type2 = type2;
3561 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3562
6c63c96a
PA
3563 /* check_types_worklist calls several nested helper functions, some
3564 of which can raise a GDB exception, so we just check and rethrow
3565 here. If there is a GDB exception, a comparison is not capable
3566 (or trusted), so exit. */
492d29ea 3567 TRY
ca092b61
DE
3568 {
3569 result = check_types_worklist (&worklist, cache);
3570 }
6c63c96a 3571 CATCH (ex, RETURN_MASK_ALL)
492d29ea 3572 {
6c63c96a 3573 except = ex;
492d29ea
PA
3574 }
3575 END_CATCH
ca092b61 3576
6c63c96a
PA
3577 bcache_xfree (cache);
3578 VEC_free (type_equality_entry_d, worklist);
3579
3580 /* Rethrow if there was a problem. */
3581 if (except.reason < 0)
3582 throw_exception (except);
3583
ca092b61
DE
3584 return result;
3585}
3f2f83dd
KB
3586
3587/* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3588 Otherwise return one. */
3589
3590int
3591type_not_allocated (const struct type *type)
3592{
3593 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3594
3595 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3596 && !TYPE_DYN_PROP_ADDR (prop));
3597}
3598
3599/* Associated status of type TYPE. Return zero if type TYPE is associated.
3600 Otherwise return one. */
3601
3602int
3603type_not_associated (const struct type *type)
3604{
3605 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3606
3607 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3608 && !TYPE_DYN_PROP_ADDR (prop));
3609}
ca092b61 3610\f
c906108c
SS
3611/* Compare one type (PARM) for compatibility with another (ARG).
3612 * PARM is intended to be the parameter type of a function; and
3613 * ARG is the supplied argument's type. This function tests if
3614 * the latter can be converted to the former.
da096638 3615 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
3616 *
3617 * Return 0 if they are identical types;
3618 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
3619 * PARM is to ARG. The higher the return value, the worse the match.
3620 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 3621
6403aeea 3622struct rank
da096638 3623rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 3624{
a9d5ef47 3625 struct rank rank = {0,0};
7062b0a0 3626
c906108c
SS
3627 /* Resolve typedefs */
3628 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3629 parm = check_typedef (parm);
3630 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3631 arg = check_typedef (arg);
3632
e15c3eb4 3633 if (TYPE_IS_REFERENCE (parm) && value != NULL)
15c0a2a9 3634 {
e15c3eb4
KS
3635 if (VALUE_LVAL (value) == not_lval)
3636 {
3637 /* Rvalues should preferably bind to rvalue references or const
3638 lvalue references. */
3639 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
3640 rank.subrank = REFERENCE_CONVERSION_RVALUE;
3641 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
3642 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
3643 else
3644 return INCOMPATIBLE_TYPE_BADNESS;
3645 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
3646 }
3647 else
3648 {
3649 /* Lvalues should prefer lvalue overloads. */
3650 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
3651 {
3652 rank.subrank = REFERENCE_CONVERSION_RVALUE;
3653 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
3654 }
3655 }
15c0a2a9
AV
3656 }
3657
3658 if (types_equal (parm, arg))
15c0a2a9 3659 {
e15c3eb4
KS
3660 struct type *t1 = parm;
3661 struct type *t2 = arg;
15c0a2a9 3662
e15c3eb4
KS
3663 /* For pointers and references, compare target type. */
3664 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
3665 {
3666 t1 = TYPE_TARGET_TYPE (parm);
3667 t2 = TYPE_TARGET_TYPE (arg);
3668 }
15c0a2a9 3669
e15c3eb4
KS
3670 /* Make sure they are CV equal, too. */
3671 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3672 rank.subrank |= CV_CONVERSION_CONST;
3673 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3674 rank.subrank |= CV_CONVERSION_VOLATILE;
3675 if (rank.subrank != 0)
3676 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3677 return EXACT_MATCH_BADNESS;
15c0a2a9
AV
3678 }
3679
db577aea 3680 /* See through references, since we can almost make non-references
7ba81444 3681 references. */
aa006118
AV
3682
3683 if (TYPE_IS_REFERENCE (arg))
da096638 3684 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
6403aeea 3685 REFERENCE_CONVERSION_BADNESS));
aa006118 3686 if (TYPE_IS_REFERENCE (parm))
da096638 3687 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
6403aeea 3688 REFERENCE_CONVERSION_BADNESS));
5d161b24 3689 if (overload_debug)
7ba81444
MS
3690 /* Debugging only. */
3691 fprintf_filtered (gdb_stderr,
3692 "------ Arg is %s [%d], parm is %s [%d]\n",
3693 TYPE_NAME (arg), TYPE_CODE (arg),
3694 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 3695
0963b4bd 3696 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
3697
3698 switch (TYPE_CODE (parm))
3699 {
c5aa993b
JM
3700 case TYPE_CODE_PTR:
3701 switch (TYPE_CODE (arg))
3702 {
3703 case TYPE_CODE_PTR:
7062b0a0
SW
3704
3705 /* Allowed pointer conversions are:
3706 (a) pointer to void-pointer conversion. */
3707 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
c5aa993b 3708 return VOID_PTR_CONVERSION_BADNESS;
7062b0a0
SW
3709
3710 /* (b) pointer to ancestor-pointer conversion. */
a9d5ef47
SW
3711 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3712 TYPE_TARGET_TYPE (arg),
3713 0);
3714 if (rank.subrank >= 0)
3715 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
7062b0a0
SW
3716
3717 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3718 case TYPE_CODE_ARRAY:
e15c3eb4
KS
3719 {
3720 struct type *t1 = TYPE_TARGET_TYPE (parm);
3721 struct type *t2 = TYPE_TARGET_TYPE (arg);
3722
3723 if (types_equal (t1, t2))
3724 {
3725 /* Make sure they are CV equal. */
3726 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3727 rank.subrank |= CV_CONVERSION_CONST;
3728 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3729 rank.subrank |= CV_CONVERSION_VOLATILE;
3730 if (rank.subrank != 0)
3731 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3732 return EXACT_MATCH_BADNESS;
3733 }
3734 return INCOMPATIBLE_TYPE_BADNESS;
3735 }
c5aa993b 3736 case TYPE_CODE_FUNC:
da096638 3737 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
c5aa993b 3738 case TYPE_CODE_INT:
a451cb65 3739 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
da096638 3740 {
a451cb65
KS
3741 if (value_as_long (value) == 0)
3742 {
3743 /* Null pointer conversion: allow it to be cast to a pointer.
3744 [4.10.1 of C++ standard draft n3290] */
3745 return NULL_POINTER_CONVERSION_BADNESS;
3746 }
3747 else
3748 {
3749 /* If type checking is disabled, allow the conversion. */
3750 if (!strict_type_checking)
3751 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3752 }
da096638
KS
3753 }
3754 /* fall through */
c5aa993b 3755 case TYPE_CODE_ENUM:
4f2aea11 3756 case TYPE_CODE_FLAGS:
c5aa993b
JM
3757 case TYPE_CODE_CHAR:
3758 case TYPE_CODE_RANGE:
3759 case TYPE_CODE_BOOL:
c5aa993b
JM
3760 default:
3761 return INCOMPATIBLE_TYPE_BADNESS;
3762 }
3763 case TYPE_CODE_ARRAY:
3764 switch (TYPE_CODE (arg))
3765 {
3766 case TYPE_CODE_PTR:
3767 case TYPE_CODE_ARRAY:
7ba81444 3768 return rank_one_type (TYPE_TARGET_TYPE (parm),
da096638 3769 TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3770 default:
3771 return INCOMPATIBLE_TYPE_BADNESS;
3772 }
3773 case TYPE_CODE_FUNC:
3774 switch (TYPE_CODE (arg))
3775 {
3776 case TYPE_CODE_PTR: /* funcptr -> func */
da096638 3777 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3778 default:
3779 return INCOMPATIBLE_TYPE_BADNESS;
3780 }
3781 case TYPE_CODE_INT:
3782 switch (TYPE_CODE (arg))
3783 {
3784 case TYPE_CODE_INT:
3785 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3786 {
3787 /* Deal with signed, unsigned, and plain chars and
7ba81444 3788 signed and unsigned ints. */
c5aa993b
JM
3789 if (TYPE_NOSIGN (parm))
3790 {
0963b4bd 3791 /* This case only for character types. */
7ba81444 3792 if (TYPE_NOSIGN (arg))
6403aeea 3793 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
7ba81444
MS
3794 else /* signed/unsigned char -> plain char */
3795 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3796 }
3797 else if (TYPE_UNSIGNED (parm))
3798 {
3799 if (TYPE_UNSIGNED (arg))
3800 {
7ba81444
MS
3801 /* unsigned int -> unsigned int, or
3802 unsigned long -> unsigned long */
3803 if (integer_types_same_name_p (TYPE_NAME (parm),
3804 TYPE_NAME (arg)))
6403aeea 3805 return EXACT_MATCH_BADNESS;
7ba81444
MS
3806 else if (integer_types_same_name_p (TYPE_NAME (arg),
3807 "int")
3808 && integer_types_same_name_p (TYPE_NAME (parm),
3809 "long"))
3e43a32a
MS
3810 /* unsigned int -> unsigned long */
3811 return INTEGER_PROMOTION_BADNESS;
c5aa993b 3812 else
3e43a32a
MS
3813 /* unsigned long -> unsigned int */
3814 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3815 }
3816 else
3817 {
7ba81444
MS
3818 if (integer_types_same_name_p (TYPE_NAME (arg),
3819 "long")
3820 && integer_types_same_name_p (TYPE_NAME (parm),
3821 "int"))
3e43a32a
MS
3822 /* signed long -> unsigned int */
3823 return INTEGER_CONVERSION_BADNESS;
c5aa993b 3824 else
3e43a32a
MS
3825 /* signed int/long -> unsigned int/long */
3826 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3827 }
3828 }
3829 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3830 {
7ba81444
MS
3831 if (integer_types_same_name_p (TYPE_NAME (parm),
3832 TYPE_NAME (arg)))
6403aeea 3833 return EXACT_MATCH_BADNESS;
7ba81444
MS
3834 else if (integer_types_same_name_p (TYPE_NAME (arg),
3835 "int")
3836 && integer_types_same_name_p (TYPE_NAME (parm),
3837 "long"))
c5aa993b
JM
3838 return INTEGER_PROMOTION_BADNESS;
3839 else
1c5cb38e 3840 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3841 }
3842 else
1c5cb38e 3843 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3844 }
3845 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3846 return INTEGER_PROMOTION_BADNESS;
3847 else
1c5cb38e 3848 return INTEGER_CONVERSION_BADNESS;
c5aa993b 3849 case TYPE_CODE_ENUM:
4f2aea11 3850 case TYPE_CODE_FLAGS:
c5aa993b
JM
3851 case TYPE_CODE_CHAR:
3852 case TYPE_CODE_RANGE:
3853 case TYPE_CODE_BOOL:
3d567982
TT
3854 if (TYPE_DECLARED_CLASS (arg))
3855 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b
JM
3856 return INTEGER_PROMOTION_BADNESS;
3857 case TYPE_CODE_FLT:
3858 return INT_FLOAT_CONVERSION_BADNESS;
3859 case TYPE_CODE_PTR:
3860 return NS_POINTER_CONVERSION_BADNESS;
3861 default:
3862 return INCOMPATIBLE_TYPE_BADNESS;
3863 }
3864 break;
3865 case TYPE_CODE_ENUM:
3866 switch (TYPE_CODE (arg))
3867 {
3868 case TYPE_CODE_INT:
3869 case TYPE_CODE_CHAR:
3870 case TYPE_CODE_RANGE:
3871 case TYPE_CODE_BOOL:
3872 case TYPE_CODE_ENUM:
3d567982
TT
3873 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3874 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 3875 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3876 case TYPE_CODE_FLT:
3877 return INT_FLOAT_CONVERSION_BADNESS;
3878 default:
3879 return INCOMPATIBLE_TYPE_BADNESS;
3880 }
3881 break;
3882 case TYPE_CODE_CHAR:
3883 switch (TYPE_CODE (arg))
3884 {
3885 case TYPE_CODE_RANGE:
3886 case TYPE_CODE_BOOL:
3887 case TYPE_CODE_ENUM:
3d567982
TT
3888 if (TYPE_DECLARED_CLASS (arg))
3889 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 3890 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3891 case TYPE_CODE_FLT:
3892 return INT_FLOAT_CONVERSION_BADNESS;
3893 case TYPE_CODE_INT:
3894 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
1c5cb38e 3895 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3896 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3897 return INTEGER_PROMOTION_BADNESS;
3898 /* >>> !! else fall through !! <<< */
3899 case TYPE_CODE_CHAR:
7ba81444
MS
3900 /* Deal with signed, unsigned, and plain chars for C++ and
3901 with int cases falling through from previous case. */
c5aa993b
JM
3902 if (TYPE_NOSIGN (parm))
3903 {
3904 if (TYPE_NOSIGN (arg))
6403aeea 3905 return EXACT_MATCH_BADNESS;
c5aa993b 3906 else
1c5cb38e 3907 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3908 }
3909 else if (TYPE_UNSIGNED (parm))
3910 {
3911 if (TYPE_UNSIGNED (arg))
6403aeea 3912 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3913 else
3914 return INTEGER_PROMOTION_BADNESS;
3915 }
3916 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
6403aeea 3917 return EXACT_MATCH_BADNESS;
c5aa993b 3918 else
1c5cb38e 3919 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3920 default:
3921 return INCOMPATIBLE_TYPE_BADNESS;
3922 }
3923 break;
3924 case TYPE_CODE_RANGE:
3925 switch (TYPE_CODE (arg))
3926 {
3927 case TYPE_CODE_INT:
3928 case TYPE_CODE_CHAR:
3929 case TYPE_CODE_RANGE:
3930 case TYPE_CODE_BOOL:
3931 case TYPE_CODE_ENUM:
1c5cb38e 3932 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3933 case TYPE_CODE_FLT:
3934 return INT_FLOAT_CONVERSION_BADNESS;
3935 default:
3936 return INCOMPATIBLE_TYPE_BADNESS;
3937 }
3938 break;
3939 case TYPE_CODE_BOOL:
3940 switch (TYPE_CODE (arg))
3941 {
5b4f6e25
KS
3942 /* n3290 draft, section 4.12.1 (conv.bool):
3943
3944 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3945 pointer to member type can be converted to a prvalue of type
3946 bool. A zero value, null pointer value, or null member pointer
3947 value is converted to false; any other value is converted to
3948 true. A prvalue of type std::nullptr_t can be converted to a
3949 prvalue of type bool; the resulting value is false." */
c5aa993b
JM
3950 case TYPE_CODE_INT:
3951 case TYPE_CODE_CHAR:
c5aa993b
JM
3952 case TYPE_CODE_ENUM:
3953 case TYPE_CODE_FLT:
5b4f6e25 3954 case TYPE_CODE_MEMBERPTR:
c5aa993b 3955 case TYPE_CODE_PTR:
5b4f6e25
KS
3956 return BOOL_CONVERSION_BADNESS;
3957 case TYPE_CODE_RANGE:
3958 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3959 case TYPE_CODE_BOOL:
6403aeea 3960 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3961 default:
3962 return INCOMPATIBLE_TYPE_BADNESS;
3963 }
3964 break;
3965 case TYPE_CODE_FLT:
3966 switch (TYPE_CODE (arg))
3967 {
3968 case TYPE_CODE_FLT:
3969 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3970 return FLOAT_PROMOTION_BADNESS;
3971 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
6403aeea 3972 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3973 else
3974 return FLOAT_CONVERSION_BADNESS;
3975 case TYPE_CODE_INT:
3976 case TYPE_CODE_BOOL:
3977 case TYPE_CODE_ENUM:
3978 case TYPE_CODE_RANGE:
3979 case TYPE_CODE_CHAR:
3980 return INT_FLOAT_CONVERSION_BADNESS;
3981 default:
3982 return INCOMPATIBLE_TYPE_BADNESS;
3983 }
3984 break;
3985 case TYPE_CODE_COMPLEX:
3986 switch (TYPE_CODE (arg))
7ba81444 3987 { /* Strictly not needed for C++, but... */
c5aa993b
JM
3988 case TYPE_CODE_FLT:
3989 return FLOAT_PROMOTION_BADNESS;
3990 case TYPE_CODE_COMPLEX:
6403aeea 3991 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3992 default:
3993 return INCOMPATIBLE_TYPE_BADNESS;
3994 }
3995 break;
3996 case TYPE_CODE_STRUCT:
c5aa993b
JM
3997 switch (TYPE_CODE (arg))
3998 {
3999 case TYPE_CODE_STRUCT:
4000 /* Check for derivation */
a9d5ef47
SW
4001 rank.subrank = distance_to_ancestor (parm, arg, 0);
4002 if (rank.subrank >= 0)
4003 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
c5aa993b
JM
4004 /* else fall through */
4005 default:
4006 return INCOMPATIBLE_TYPE_BADNESS;
4007 }
4008 break;
4009 case TYPE_CODE_UNION:
4010 switch (TYPE_CODE (arg))
4011 {
4012 case TYPE_CODE_UNION:
4013 default:
4014 return INCOMPATIBLE_TYPE_BADNESS;
4015 }
4016 break;
0d5de010 4017 case TYPE_CODE_MEMBERPTR:
c5aa993b
JM
4018 switch (TYPE_CODE (arg))
4019 {
4020 default:
4021 return INCOMPATIBLE_TYPE_BADNESS;
4022 }
4023 break;
4024 case TYPE_CODE_METHOD:
4025 switch (TYPE_CODE (arg))
4026 {
4027
4028 default:
4029 return INCOMPATIBLE_TYPE_BADNESS;
4030 }
4031 break;
4032 case TYPE_CODE_REF:
4033 switch (TYPE_CODE (arg))
4034 {
4035
4036 default:
4037 return INCOMPATIBLE_TYPE_BADNESS;
4038 }
4039
4040 break;
4041 case TYPE_CODE_SET:
4042 switch (TYPE_CODE (arg))
4043 {
4044 /* Not in C++ */
4045 case TYPE_CODE_SET:
7ba81444 4046 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
da096638 4047 TYPE_FIELD_TYPE (arg, 0), NULL);
c5aa993b
JM
4048 default:
4049 return INCOMPATIBLE_TYPE_BADNESS;
4050 }
4051 break;
4052 case TYPE_CODE_VOID:
4053 default:
4054 return INCOMPATIBLE_TYPE_BADNESS;
4055 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
4056}
4057
0963b4bd 4058/* End of functions for overload resolution. */
5212577a
DE
4059\f
4060/* Routines to pretty-print types. */
c906108c 4061
c906108c 4062static void
fba45db2 4063print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
4064{
4065 int bitno;
4066
4067 for (bitno = 0; bitno < nbits; bitno++)
4068 {
4069 if ((bitno % 8) == 0)
4070 {
4071 puts_filtered (" ");
4072 }
4073 if (B_TST (bits, bitno))
a3f17187 4074 printf_filtered (("1"));
c906108c 4075 else
a3f17187 4076 printf_filtered (("0"));
c906108c
SS
4077 }
4078}
4079
ad2f7632 4080/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
4081 include it since we may get into a infinitely recursive
4082 situation. */
c906108c
SS
4083
4084static void
4c9e8482 4085print_args (struct field *args, int nargs, int spaces)
c906108c
SS
4086{
4087 if (args != NULL)
4088 {
ad2f7632
DJ
4089 int i;
4090
4091 for (i = 0; i < nargs; i++)
4c9e8482
DE
4092 {
4093 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4094 args[i].name != NULL ? args[i].name : "<NULL>");
4095 recursive_dump_type (args[i].type, spaces + 2);
4096 }
c906108c
SS
4097 }
4098}
4099
d6a843b5
JK
4100int
4101field_is_static (struct field *f)
4102{
4103 /* "static" fields are the fields whose location is not relative
4104 to the address of the enclosing struct. It would be nice to
4105 have a dedicated flag that would be set for static fields when
4106 the type is being created. But in practice, checking the field
254e6b9e 4107 loc_kind should give us an accurate answer. */
d6a843b5
JK
4108 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4109 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4110}
4111
c906108c 4112static void
fba45db2 4113dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
4114{
4115 int method_idx;
4116 int overload_idx;
4117 struct fn_field *f;
4118
4119 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 4120 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
4121 printf_filtered ("\n");
4122 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4123 {
4124 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4125 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4126 method_idx,
4127 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
4128 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4129 gdb_stdout);
a3f17187 4130 printf_filtered (_(") length %d\n"),
c906108c
SS
4131 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4132 for (overload_idx = 0;
4133 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4134 overload_idx++)
4135 {
4136 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4137 overload_idx,
4138 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
4139 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4140 gdb_stdout);
c906108c
SS
4141 printf_filtered (")\n");
4142 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
4143 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4144 gdb_stdout);
c906108c
SS
4145 printf_filtered ("\n");
4146
4147 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4148 spaces + 8 + 2);
4149
4150 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
4151 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4152 gdb_stdout);
c906108c 4153 printf_filtered ("\n");
4c9e8482
DE
4154 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4155 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4156 spaces + 8 + 2);
c906108c 4157 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
4158 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4159 gdb_stdout);
c906108c
SS
4160 printf_filtered ("\n");
4161
4162 printfi_filtered (spaces + 8, "is_const %d\n",
4163 TYPE_FN_FIELD_CONST (f, overload_idx));
4164 printfi_filtered (spaces + 8, "is_volatile %d\n",
4165 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4166 printfi_filtered (spaces + 8, "is_private %d\n",
4167 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4168 printfi_filtered (spaces + 8, "is_protected %d\n",
4169 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4170 printfi_filtered (spaces + 8, "is_stub %d\n",
4171 TYPE_FN_FIELD_STUB (f, overload_idx));
4172 printfi_filtered (spaces + 8, "voffset %u\n",
4173 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4174 }
4175 }
4176}
4177
4178static void
fba45db2 4179print_cplus_stuff (struct type *type, int spaces)
c906108c 4180{
ae6ae975
DE
4181 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4182 printfi_filtered (spaces, "vptr_basetype ");
4183 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4184 puts_filtered ("\n");
4185 if (TYPE_VPTR_BASETYPE (type) != NULL)
4186 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4187
c906108c
SS
4188 printfi_filtered (spaces, "n_baseclasses %d\n",
4189 TYPE_N_BASECLASSES (type));
4190 printfi_filtered (spaces, "nfn_fields %d\n",
4191 TYPE_NFN_FIELDS (type));
c906108c
SS
4192 if (TYPE_N_BASECLASSES (type) > 0)
4193 {
4194 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4195 TYPE_N_BASECLASSES (type));
7ba81444
MS
4196 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4197 gdb_stdout);
c906108c
SS
4198 printf_filtered (")");
4199
4200 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4201 TYPE_N_BASECLASSES (type));
4202 puts_filtered ("\n");
4203 }
4204 if (TYPE_NFIELDS (type) > 0)
4205 {
4206 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4207 {
7ba81444
MS
4208 printfi_filtered (spaces,
4209 "private_field_bits (%d bits at *",
c906108c 4210 TYPE_NFIELDS (type));
7ba81444
MS
4211 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4212 gdb_stdout);
c906108c
SS
4213 printf_filtered (")");
4214 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4215 TYPE_NFIELDS (type));
4216 puts_filtered ("\n");
4217 }
4218 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4219 {
7ba81444
MS
4220 printfi_filtered (spaces,
4221 "protected_field_bits (%d bits at *",
c906108c 4222 TYPE_NFIELDS (type));
7ba81444
MS
4223 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4224 gdb_stdout);
c906108c
SS
4225 printf_filtered (")");
4226 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4227 TYPE_NFIELDS (type));
4228 puts_filtered ("\n");
4229 }
4230 }
4231 if (TYPE_NFN_FIELDS (type) > 0)
4232 {
4233 dump_fn_fieldlists (type, spaces);
4234 }
4235}
4236
b4ba55a1
JB
4237/* Print the contents of the TYPE's type_specific union, assuming that
4238 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4239
4240static void
4241print_gnat_stuff (struct type *type, int spaces)
4242{
4243 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4244
8cd00c59
PMR
4245 if (descriptive_type == NULL)
4246 printfi_filtered (spaces + 2, "no descriptive type\n");
4247 else
4248 {
4249 printfi_filtered (spaces + 2, "descriptive type\n");
4250 recursive_dump_type (descriptive_type, spaces + 4);
4251 }
b4ba55a1
JB
4252}
4253
c906108c
SS
4254static struct obstack dont_print_type_obstack;
4255
4256void
fba45db2 4257recursive_dump_type (struct type *type, int spaces)
c906108c
SS
4258{
4259 int idx;
4260
4261 if (spaces == 0)
4262 obstack_begin (&dont_print_type_obstack, 0);
4263
4264 if (TYPE_NFIELDS (type) > 0
b4ba55a1 4265 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
4266 {
4267 struct type **first_dont_print
7ba81444 4268 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 4269
7ba81444
MS
4270 int i = (struct type **)
4271 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
4272
4273 while (--i >= 0)
4274 {
4275 if (type == first_dont_print[i])
4276 {
4277 printfi_filtered (spaces, "type node ");
d4f3574e 4278 gdb_print_host_address (type, gdb_stdout);
a3f17187 4279 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
4280 return;
4281 }
4282 }
4283
4284 obstack_ptr_grow (&dont_print_type_obstack, type);
4285 }
4286
4287 printfi_filtered (spaces, "type node ");
d4f3574e 4288 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
4289 printf_filtered ("\n");
4290 printfi_filtered (spaces, "name '%s' (",
4291 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 4292 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 4293 printf_filtered (")\n");
e9e79dd9
FF
4294 printfi_filtered (spaces, "tagname '%s' (",
4295 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
4296 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
4297 printf_filtered (")\n");
c906108c
SS
4298 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4299 switch (TYPE_CODE (type))
4300 {
c5aa993b
JM
4301 case TYPE_CODE_UNDEF:
4302 printf_filtered ("(TYPE_CODE_UNDEF)");
4303 break;
4304 case TYPE_CODE_PTR:
4305 printf_filtered ("(TYPE_CODE_PTR)");
4306 break;
4307 case TYPE_CODE_ARRAY:
4308 printf_filtered ("(TYPE_CODE_ARRAY)");
4309 break;
4310 case TYPE_CODE_STRUCT:
4311 printf_filtered ("(TYPE_CODE_STRUCT)");
4312 break;
4313 case TYPE_CODE_UNION:
4314 printf_filtered ("(TYPE_CODE_UNION)");
4315 break;
4316 case TYPE_CODE_ENUM:
4317 printf_filtered ("(TYPE_CODE_ENUM)");
4318 break;
4f2aea11
MK
4319 case TYPE_CODE_FLAGS:
4320 printf_filtered ("(TYPE_CODE_FLAGS)");
4321 break;
c5aa993b
JM
4322 case TYPE_CODE_FUNC:
4323 printf_filtered ("(TYPE_CODE_FUNC)");
4324 break;
4325 case TYPE_CODE_INT:
4326 printf_filtered ("(TYPE_CODE_INT)");
4327 break;
4328 case TYPE_CODE_FLT:
4329 printf_filtered ("(TYPE_CODE_FLT)");
4330 break;
4331 case TYPE_CODE_VOID:
4332 printf_filtered ("(TYPE_CODE_VOID)");
4333 break;
4334 case TYPE_CODE_SET:
4335 printf_filtered ("(TYPE_CODE_SET)");
4336 break;
4337 case TYPE_CODE_RANGE:
4338 printf_filtered ("(TYPE_CODE_RANGE)");
4339 break;
4340 case TYPE_CODE_STRING:
4341 printf_filtered ("(TYPE_CODE_STRING)");
4342 break;
4343 case TYPE_CODE_ERROR:
4344 printf_filtered ("(TYPE_CODE_ERROR)");
4345 break;
0d5de010
DJ
4346 case TYPE_CODE_MEMBERPTR:
4347 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4348 break;
4349 case TYPE_CODE_METHODPTR:
4350 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
4351 break;
4352 case TYPE_CODE_METHOD:
4353 printf_filtered ("(TYPE_CODE_METHOD)");
4354 break;
4355 case TYPE_CODE_REF:
4356 printf_filtered ("(TYPE_CODE_REF)");
4357 break;
4358 case TYPE_CODE_CHAR:
4359 printf_filtered ("(TYPE_CODE_CHAR)");
4360 break;
4361 case TYPE_CODE_BOOL:
4362 printf_filtered ("(TYPE_CODE_BOOL)");
4363 break;
e9e79dd9
FF
4364 case TYPE_CODE_COMPLEX:
4365 printf_filtered ("(TYPE_CODE_COMPLEX)");
4366 break;
c5aa993b
JM
4367 case TYPE_CODE_TYPEDEF:
4368 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4369 break;
5c4e30ca
DC
4370 case TYPE_CODE_NAMESPACE:
4371 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4372 break;
c5aa993b
JM
4373 default:
4374 printf_filtered ("(UNKNOWN TYPE CODE)");
4375 break;
c906108c
SS
4376 }
4377 puts_filtered ("\n");
4378 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9bb382b
UW
4379 if (TYPE_OBJFILE_OWNED (type))
4380 {
4381 printfi_filtered (spaces, "objfile ");
4382 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4383 }
4384 else
4385 {
4386 printfi_filtered (spaces, "gdbarch ");
4387 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4388 }
c906108c
SS
4389 printf_filtered ("\n");
4390 printfi_filtered (spaces, "target_type ");
d4f3574e 4391 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
4392 printf_filtered ("\n");
4393 if (TYPE_TARGET_TYPE (type) != NULL)
4394 {
4395 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4396 }
4397 printfi_filtered (spaces, "pointer_type ");
d4f3574e 4398 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
4399 printf_filtered ("\n");
4400 printfi_filtered (spaces, "reference_type ");
d4f3574e 4401 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 4402 printf_filtered ("\n");
2fdde8f8
DJ
4403 printfi_filtered (spaces, "type_chain ");
4404 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 4405 printf_filtered ("\n");
7ba81444
MS
4406 printfi_filtered (spaces, "instance_flags 0x%x",
4407 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
4408 if (TYPE_CONST (type))
4409 {
a9ff5f12 4410 puts_filtered (" TYPE_CONST");
2fdde8f8
DJ
4411 }
4412 if (TYPE_VOLATILE (type))
4413 {
a9ff5f12 4414 puts_filtered (" TYPE_VOLATILE");
2fdde8f8
DJ
4415 }
4416 if (TYPE_CODE_SPACE (type))
4417 {
a9ff5f12 4418 puts_filtered (" TYPE_CODE_SPACE");
2fdde8f8
DJ
4419 }
4420 if (TYPE_DATA_SPACE (type))
4421 {
a9ff5f12 4422 puts_filtered (" TYPE_DATA_SPACE");
2fdde8f8 4423 }
8b2dbe47
KB
4424 if (TYPE_ADDRESS_CLASS_1 (type))
4425 {
a9ff5f12 4426 puts_filtered (" TYPE_ADDRESS_CLASS_1");
8b2dbe47
KB
4427 }
4428 if (TYPE_ADDRESS_CLASS_2 (type))
4429 {
a9ff5f12 4430 puts_filtered (" TYPE_ADDRESS_CLASS_2");
8b2dbe47 4431 }
06d66ee9
TT
4432 if (TYPE_RESTRICT (type))
4433 {
a9ff5f12 4434 puts_filtered (" TYPE_RESTRICT");
06d66ee9 4435 }
a2c2acaf
MW
4436 if (TYPE_ATOMIC (type))
4437 {
a9ff5f12 4438 puts_filtered (" TYPE_ATOMIC");
a2c2acaf 4439 }
2fdde8f8 4440 puts_filtered ("\n");
876cecd0
TT
4441
4442 printfi_filtered (spaces, "flags");
762a036f 4443 if (TYPE_UNSIGNED (type))
c906108c 4444 {
a9ff5f12 4445 puts_filtered (" TYPE_UNSIGNED");
c906108c 4446 }
762a036f
FF
4447 if (TYPE_NOSIGN (type))
4448 {
a9ff5f12 4449 puts_filtered (" TYPE_NOSIGN");
762a036f
FF
4450 }
4451 if (TYPE_STUB (type))
c906108c 4452 {
a9ff5f12 4453 puts_filtered (" TYPE_STUB");
c906108c 4454 }
762a036f
FF
4455 if (TYPE_TARGET_STUB (type))
4456 {
a9ff5f12 4457 puts_filtered (" TYPE_TARGET_STUB");
762a036f 4458 }
762a036f
FF
4459 if (TYPE_PROTOTYPED (type))
4460 {
a9ff5f12 4461 puts_filtered (" TYPE_PROTOTYPED");
762a036f
FF
4462 }
4463 if (TYPE_INCOMPLETE (type))
4464 {
a9ff5f12 4465 puts_filtered (" TYPE_INCOMPLETE");
762a036f 4466 }
762a036f
FF
4467 if (TYPE_VARARGS (type))
4468 {
a9ff5f12 4469 puts_filtered (" TYPE_VARARGS");
762a036f 4470 }
f5f8a009
EZ
4471 /* This is used for things like AltiVec registers on ppc. Gcc emits
4472 an attribute for the array type, which tells whether or not we
4473 have a vector, instead of a regular array. */
4474 if (TYPE_VECTOR (type))
4475 {
a9ff5f12 4476 puts_filtered (" TYPE_VECTOR");
f5f8a009 4477 }
876cecd0
TT
4478 if (TYPE_FIXED_INSTANCE (type))
4479 {
4480 puts_filtered (" TYPE_FIXED_INSTANCE");
4481 }
4482 if (TYPE_STUB_SUPPORTED (type))
4483 {
4484 puts_filtered (" TYPE_STUB_SUPPORTED");
4485 }
4486 if (TYPE_NOTTEXT (type))
4487 {
4488 puts_filtered (" TYPE_NOTTEXT");
4489 }
c906108c
SS
4490 puts_filtered ("\n");
4491 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 4492 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
4493 puts_filtered ("\n");
4494 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4495 {
14e75d8e
JK
4496 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4497 printfi_filtered (spaces + 2,
4498 "[%d] enumval %s type ",
4499 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4500 else
4501 printfi_filtered (spaces + 2,
6b850546
DT
4502 "[%d] bitpos %s bitsize %d type ",
4503 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
14e75d8e 4504 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 4505 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
4506 printf_filtered (" name '%s' (",
4507 TYPE_FIELD_NAME (type, idx) != NULL
4508 ? TYPE_FIELD_NAME (type, idx)
4509 : "<NULL>");
d4f3574e 4510 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
4511 printf_filtered (")\n");
4512 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4513 {
4514 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4515 }
4516 }
43bbcdc2
PH
4517 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4518 {
4519 printfi_filtered (spaces, "low %s%s high %s%s\n",
4520 plongest (TYPE_LOW_BOUND (type)),
4521 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4522 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
4523 TYPE_HIGH_BOUND_UNDEFINED (type)
4524 ? " (undefined)" : "");
43bbcdc2 4525 }
c906108c 4526
b4ba55a1
JB
4527 switch (TYPE_SPECIFIC_FIELD (type))
4528 {
4529 case TYPE_SPECIFIC_CPLUS_STUFF:
4530 printfi_filtered (spaces, "cplus_stuff ");
4531 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4532 gdb_stdout);
4533 puts_filtered ("\n");
4534 print_cplus_stuff (type, spaces);
4535 break;
8da61cc4 4536
b4ba55a1
JB
4537 case TYPE_SPECIFIC_GNAT_STUFF:
4538 printfi_filtered (spaces, "gnat_stuff ");
4539 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4540 puts_filtered ("\n");
4541 print_gnat_stuff (type, spaces);
4542 break;
701c159d 4543
b4ba55a1
JB
4544 case TYPE_SPECIFIC_FLOATFORMAT:
4545 printfi_filtered (spaces, "floatformat ");
4546 if (TYPE_FLOATFORMAT (type) == NULL)
4547 puts_filtered ("(null)");
4548 else
4549 {
4550 puts_filtered ("{ ");
4551 if (TYPE_FLOATFORMAT (type)[0] == NULL
4552 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
4553 puts_filtered ("(null)");
4554 else
4555 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
4556
4557 puts_filtered (", ");
4558 if (TYPE_FLOATFORMAT (type)[1] == NULL
4559 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
4560 puts_filtered ("(null)");
4561 else
4562 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
4563
4564 puts_filtered (" }");
4565 }
4566 puts_filtered ("\n");
4567 break;
c906108c 4568
b6cdc2c1 4569 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
4570 printfi_filtered (spaces, "calling_convention %d\n",
4571 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 4572 /* tail_call_list is not printed. */
b4ba55a1 4573 break;
09e2d7c7
DE
4574
4575 case TYPE_SPECIFIC_SELF_TYPE:
4576 printfi_filtered (spaces, "self_type ");
4577 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4578 puts_filtered ("\n");
4579 break;
c906108c 4580 }
b4ba55a1 4581
c906108c
SS
4582 if (spaces == 0)
4583 obstack_free (&dont_print_type_obstack, NULL);
4584}
5212577a 4585\f
ae5a43e0
DJ
4586/* Trivial helpers for the libiberty hash table, for mapping one
4587 type to another. */
4588
4589struct type_pair
4590{
fe978cb0 4591 struct type *old, *newobj;
ae5a43e0
DJ
4592};
4593
4594static hashval_t
4595type_pair_hash (const void *item)
4596{
9a3c8263 4597 const struct type_pair *pair = (const struct type_pair *) item;
d8734c88 4598
ae5a43e0
DJ
4599 return htab_hash_pointer (pair->old);
4600}
4601
4602static int
4603type_pair_eq (const void *item_lhs, const void *item_rhs)
4604{
9a3c8263
SM
4605 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4606 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
d8734c88 4607
ae5a43e0
DJ
4608 return lhs->old == rhs->old;
4609}
4610
4611/* Allocate the hash table used by copy_type_recursive to walk
4612 types without duplicates. We use OBJFILE's obstack, because
4613 OBJFILE is about to be deleted. */
4614
4615htab_t
4616create_copied_types_hash (struct objfile *objfile)
4617{
4618 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4619 NULL, &objfile->objfile_obstack,
4620 hashtab_obstack_allocate,
4621 dummy_obstack_deallocate);
4622}
4623
d9823cbb
KB
4624/* Recursively copy (deep copy) a dynamic attribute list of a type. */
4625
4626static struct dynamic_prop_list *
4627copy_dynamic_prop_list (struct obstack *objfile_obstack,
4628 struct dynamic_prop_list *list)
4629{
4630 struct dynamic_prop_list *copy = list;
4631 struct dynamic_prop_list **node_ptr = &copy;
4632
4633 while (*node_ptr != NULL)
4634 {
4635 struct dynamic_prop_list *node_copy;
4636
224c3ddb
SM
4637 node_copy = ((struct dynamic_prop_list *)
4638 obstack_copy (objfile_obstack, *node_ptr,
4639 sizeof (struct dynamic_prop_list)));
283a9958 4640 node_copy->prop = (*node_ptr)->prop;
d9823cbb
KB
4641 *node_ptr = node_copy;
4642
4643 node_ptr = &node_copy->next;
4644 }
4645
4646 return copy;
4647}
4648
7ba81444 4649/* Recursively copy (deep copy) TYPE, if it is associated with
eed8b28a
PP
4650 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4651 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4652 it is not associated with OBJFILE. */
ae5a43e0
DJ
4653
4654struct type *
7ba81444
MS
4655copy_type_recursive (struct objfile *objfile,
4656 struct type *type,
ae5a43e0
DJ
4657 htab_t copied_types)
4658{
4659 struct type_pair *stored, pair;
4660 void **slot;
4661 struct type *new_type;
4662
e9bb382b 4663 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
4664 return type;
4665
7ba81444
MS
4666 /* This type shouldn't be pointing to any types in other objfiles;
4667 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
4668 gdb_assert (TYPE_OBJFILE (type) == objfile);
4669
4670 pair.old = type;
4671 slot = htab_find_slot (copied_types, &pair, INSERT);
4672 if (*slot != NULL)
fe978cb0 4673 return ((struct type_pair *) *slot)->newobj;
ae5a43e0 4674
e9bb382b 4675 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
4676
4677 /* We must add the new type to the hash table immediately, in case
4678 we encounter this type again during a recursive call below. */
8d749320 4679 stored = XOBNEW (&objfile->objfile_obstack, struct type_pair);
ae5a43e0 4680 stored->old = type;
fe978cb0 4681 stored->newobj = new_type;
ae5a43e0
DJ
4682 *slot = stored;
4683
876cecd0
TT
4684 /* Copy the common fields of types. For the main type, we simply
4685 copy the entire thing and then update specific fields as needed. */
4686 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
4687 TYPE_OBJFILE_OWNED (new_type) = 0;
4688 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 4689
ae5a43e0
DJ
4690 if (TYPE_NAME (type))
4691 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4692 if (TYPE_TAG_NAME (type))
4693 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
ae5a43e0
DJ
4694
4695 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4696 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4697
4698 /* Copy the fields. */
ae5a43e0
DJ
4699 if (TYPE_NFIELDS (type))
4700 {
4701 int i, nfields;
4702
4703 nfields = TYPE_NFIELDS (type);
fc270c35 4704 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
ae5a43e0
DJ
4705 for (i = 0; i < nfields; i++)
4706 {
7ba81444
MS
4707 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4708 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
4709 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4710 if (TYPE_FIELD_TYPE (type, i))
4711 TYPE_FIELD_TYPE (new_type, i)
4712 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4713 copied_types);
4714 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
4715 TYPE_FIELD_NAME (new_type, i) =
4716 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 4717 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 4718 {
d6a843b5
JK
4719 case FIELD_LOC_KIND_BITPOS:
4720 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4721 TYPE_FIELD_BITPOS (type, i));
4722 break;
14e75d8e
JK
4723 case FIELD_LOC_KIND_ENUMVAL:
4724 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4725 TYPE_FIELD_ENUMVAL (type, i));
4726 break;
d6a843b5
JK
4727 case FIELD_LOC_KIND_PHYSADDR:
4728 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4729 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4730 break;
4731 case FIELD_LOC_KIND_PHYSNAME:
4732 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4733 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4734 i)));
4735 break;
4736 default:
4737 internal_error (__FILE__, __LINE__,
4738 _("Unexpected type field location kind: %d"),
4739 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
4740 }
4741 }
4742 }
4743
0963b4bd 4744 /* For range types, copy the bounds information. */
43bbcdc2
PH
4745 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4746 {
8d749320 4747 TYPE_RANGE_DATA (new_type) = XNEW (struct range_bounds);
43bbcdc2
PH
4748 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4749 }
4750
d9823cbb
KB
4751 if (TYPE_DYN_PROP_LIST (type) != NULL)
4752 TYPE_DYN_PROP_LIST (new_type)
4753 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4754 TYPE_DYN_PROP_LIST (type));
4755
3cdcd0ce 4756
ae5a43e0
DJ
4757 /* Copy pointers to other types. */
4758 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
4759 TYPE_TARGET_TYPE (new_type) =
4760 copy_type_recursive (objfile,
4761 TYPE_TARGET_TYPE (type),
4762 copied_types);
f6b3afbf 4763
ae5a43e0
DJ
4764 /* Maybe copy the type_specific bits.
4765
4766 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4767 base classes and methods. There's no fundamental reason why we
4768 can't, but at the moment it is not needed. */
4769
f6b3afbf
DE
4770 switch (TYPE_SPECIFIC_FIELD (type))
4771 {
4772 case TYPE_SPECIFIC_NONE:
4773 break;
4774 case TYPE_SPECIFIC_FUNC:
4775 INIT_FUNC_SPECIFIC (new_type);
4776 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4777 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4778 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4779 break;
4780 case TYPE_SPECIFIC_FLOATFORMAT:
4781 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4782 break;
4783 case TYPE_SPECIFIC_CPLUS_STUFF:
4784 INIT_CPLUS_SPECIFIC (new_type);
4785 break;
4786 case TYPE_SPECIFIC_GNAT_STUFF:
4787 INIT_GNAT_SPECIFIC (new_type);
4788 break;
09e2d7c7
DE
4789 case TYPE_SPECIFIC_SELF_TYPE:
4790 set_type_self_type (new_type,
4791 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4792 copied_types));
4793 break;
f6b3afbf
DE
4794 default:
4795 gdb_assert_not_reached ("bad type_specific_kind");
4796 }
ae5a43e0
DJ
4797
4798 return new_type;
4799}
4800
4af88198
JB
4801/* Make a copy of the given TYPE, except that the pointer & reference
4802 types are not preserved.
4803
4804 This function assumes that the given type has an associated objfile.
4805 This objfile is used to allocate the new type. */
4806
4807struct type *
4808copy_type (const struct type *type)
4809{
4810 struct type *new_type;
4811
e9bb382b 4812 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 4813
e9bb382b 4814 new_type = alloc_type_copy (type);
4af88198
JB
4815 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4816 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4817 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4818 sizeof (struct main_type));
d9823cbb
KB
4819 if (TYPE_DYN_PROP_LIST (type) != NULL)
4820 TYPE_DYN_PROP_LIST (new_type)
4821 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
4822 TYPE_DYN_PROP_LIST (type));
4af88198
JB
4823
4824 return new_type;
4825}
5212577a 4826\f
e9bb382b
UW
4827/* Helper functions to initialize architecture-specific types. */
4828
4829/* Allocate a type structure associated with GDBARCH and set its
4830 CODE, LENGTH, and NAME fields. */
5212577a 4831
e9bb382b
UW
4832struct type *
4833arch_type (struct gdbarch *gdbarch,
695bfa52 4834 enum type_code code, int length, const char *name)
e9bb382b
UW
4835{
4836 struct type *type;
4837
4838 type = alloc_type_arch (gdbarch);
ae438bc5 4839 set_type_code (type, code);
e9bb382b
UW
4840 TYPE_LENGTH (type) = length;
4841
4842 if (name)
6c214e7c 4843 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
e9bb382b
UW
4844
4845 return type;
4846}
4847
4848/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4849 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4850 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4851
e9bb382b
UW
4852struct type *
4853arch_integer_type (struct gdbarch *gdbarch,
695bfa52 4854 int bit, int unsigned_p, const char *name)
e9bb382b
UW
4855{
4856 struct type *t;
4857
4858 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4859 if (unsigned_p)
4860 TYPE_UNSIGNED (t) = 1;
e9bb382b
UW
4861
4862 return t;
4863}
4864
4865/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4866 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4867 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4868
e9bb382b
UW
4869struct type *
4870arch_character_type (struct gdbarch *gdbarch,
695bfa52 4871 int bit, int unsigned_p, const char *name)
e9bb382b
UW
4872{
4873 struct type *t;
4874
4875 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4876 if (unsigned_p)
4877 TYPE_UNSIGNED (t) = 1;
4878
4879 return t;
4880}
4881
4882/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4883 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4884 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4885
e9bb382b
UW
4886struct type *
4887arch_boolean_type (struct gdbarch *gdbarch,
695bfa52 4888 int bit, int unsigned_p, const char *name)
e9bb382b
UW
4889{
4890 struct type *t;
4891
4892 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4893 if (unsigned_p)
4894 TYPE_UNSIGNED (t) = 1;
4895
4896 return t;
4897}
4898
4899/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4900 BIT is the type size in bits; if BIT equals -1, the size is
4901 determined by the floatformat. NAME is the type name. Set the
4902 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 4903
27067745 4904struct type *
e9bb382b 4905arch_float_type (struct gdbarch *gdbarch,
695bfa52
TT
4906 int bit, const char *name,
4907 const struct floatformat **floatformats)
8da61cc4
DJ
4908{
4909 struct type *t;
4910
19f392bc 4911 bit = verify_floatformat (bit, floatformats);
e9bb382b 4912 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
8da61cc4 4913 TYPE_FLOATFORMAT (t) = floatformats;
b79497cb 4914
8da61cc4
DJ
4915 return t;
4916}
4917
88dfca6c
UW
4918/* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
4919 BIT is the type size in bits. NAME is the type name. */
4920
4921struct type *
4922arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
4923{
4924 struct type *t;
4925
4926 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit / TARGET_CHAR_BIT, name);
4927 return t;
4928}
4929
e9bb382b
UW
4930/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4931 NAME is the type name. TARGET_TYPE is the component float type. */
5212577a 4932
27067745 4933struct type *
e9bb382b 4934arch_complex_type (struct gdbarch *gdbarch,
695bfa52 4935 const char *name, struct type *target_type)
27067745
UW
4936{
4937 struct type *t;
d8734c88 4938
e9bb382b
UW
4939 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4940 2 * TYPE_LENGTH (target_type), name);
27067745
UW
4941 TYPE_TARGET_TYPE (t) = target_type;
4942 return t;
4943}
4944
88dfca6c
UW
4945/* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
4946 BIT is the pointer type size in bits. NAME is the type name.
4947 TARGET_TYPE is the pointer target type. Always sets the pointer type's
4948 TYPE_UNSIGNED flag. */
4949
4950struct type *
4951arch_pointer_type (struct gdbarch *gdbarch,
4952 int bit, const char *name, struct type *target_type)
4953{
4954 struct type *t;
4955
4956 t = arch_type (gdbarch, TYPE_CODE_PTR, bit / TARGET_CHAR_BIT, name);
4957 TYPE_TARGET_TYPE (t) = target_type;
4958 TYPE_UNSIGNED (t) = 1;
4959 return t;
4960}
4961
e9bb382b 4962/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
eb90ce83 4963 NAME is the type name. LENGTH is the size of the flag word in bytes. */
5212577a 4964
e9bb382b 4965struct type *
695bfa52 4966arch_flags_type (struct gdbarch *gdbarch, const char *name, int length)
e9bb382b 4967{
81516450 4968 int max_nfields = length * TARGET_CHAR_BIT;
e9bb382b
UW
4969 struct type *type;
4970
4971 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4972 TYPE_UNSIGNED (type) = 1;
81516450
DE
4973 TYPE_NFIELDS (type) = 0;
4974 /* Pre-allocate enough space assuming every field is one bit. */
224c3ddb 4975 TYPE_FIELDS (type)
81516450 4976 = (struct field *) TYPE_ZALLOC (type, max_nfields * sizeof (struct field));
e9bb382b
UW
4977
4978 return type;
4979}
4980
4981/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
81516450
DE
4982 position BITPOS is called NAME. Pass NAME as "" for fields that
4983 should not be printed. */
4984
4985void
4986append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
695bfa52 4987 struct type *field_type, const char *name)
81516450
DE
4988{
4989 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
4990 int field_nr = TYPE_NFIELDS (type);
4991
4992 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4993 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
4994 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
4995 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
4996 gdb_assert (name != NULL);
4997
4998 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
4999 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5000 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5001 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5002 ++TYPE_NFIELDS (type);
5003}
5004
5005/* Special version of append_flags_type_field to add a flag field.
5006 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
e9bb382b 5007 position BITPOS is called NAME. */
5212577a 5008
e9bb382b 5009void
695bfa52 5010append_flags_type_flag (struct type *type, int bitpos, const char *name)
e9bb382b 5011{
81516450 5012 struct gdbarch *gdbarch = get_type_arch (type);
e9bb382b 5013
81516450
DE
5014 append_flags_type_field (type, bitpos, 1,
5015 builtin_type (gdbarch)->builtin_bool,
5016 name);
e9bb382b
UW
5017}
5018
5019/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5020 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 5021
e9bb382b 5022struct type *
695bfa52
TT
5023arch_composite_type (struct gdbarch *gdbarch, const char *name,
5024 enum type_code code)
e9bb382b
UW
5025{
5026 struct type *t;
d8734c88 5027
e9bb382b
UW
5028 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5029 t = arch_type (gdbarch, code, 0, NULL);
5030 TYPE_TAG_NAME (t) = name;
5031 INIT_CPLUS_SPECIFIC (t);
5032 return t;
5033}
5034
5035/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
5036 Do not set the field's position or adjust the type's length;
5037 the caller should do so. Return the new field. */
5212577a 5038
f5dff777 5039struct field *
695bfa52 5040append_composite_type_field_raw (struct type *t, const char *name,
f5dff777 5041 struct type *field)
e9bb382b
UW
5042{
5043 struct field *f;
d8734c88 5044
e9bb382b 5045 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
224c3ddb
SM
5046 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5047 TYPE_NFIELDS (t));
e9bb382b
UW
5048 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5049 memset (f, 0, sizeof f[0]);
5050 FIELD_TYPE (f[0]) = field;
5051 FIELD_NAME (f[0]) = name;
f5dff777
DJ
5052 return f;
5053}
5054
5055/* Add new field with name NAME and type FIELD to composite type T.
5056 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 5057
f5dff777 5058void
695bfa52 5059append_composite_type_field_aligned (struct type *t, const char *name,
f5dff777
DJ
5060 struct type *field, int alignment)
5061{
5062 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 5063
e9bb382b
UW
5064 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5065 {
5066 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5067 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5068 }
5069 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5070 {
5071 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5072 if (TYPE_NFIELDS (t) > 1)
5073 {
f41f5e61
PA
5074 SET_FIELD_BITPOS (f[0],
5075 (FIELD_BITPOS (f[-1])
5076 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5077 * TARGET_CHAR_BIT)));
e9bb382b
UW
5078
5079 if (alignment)
5080 {
86c3c1fc
AB
5081 int left;
5082
5083 alignment *= TARGET_CHAR_BIT;
5084 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 5085
e9bb382b
UW
5086 if (left)
5087 {
f41f5e61 5088 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 5089 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
5090 }
5091 }
5092 }
5093 }
5094}
5095
5096/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 5097
e9bb382b 5098void
695bfa52 5099append_composite_type_field (struct type *t, const char *name,
e9bb382b
UW
5100 struct type *field)
5101{
5102 append_composite_type_field_aligned (t, name, field, 0);
5103}
5104
000177f0
AC
5105static struct gdbarch_data *gdbtypes_data;
5106
5107const struct builtin_type *
5108builtin_type (struct gdbarch *gdbarch)
5109{
9a3c8263 5110 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
000177f0
AC
5111}
5112
5113static void *
5114gdbtypes_post_init (struct gdbarch *gdbarch)
5115{
5116 struct builtin_type *builtin_type
5117 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5118
46bf5051 5119 /* Basic types. */
e9bb382b
UW
5120 builtin_type->builtin_void
5121 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
5122 builtin_type->builtin_char
5123 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5124 !gdbarch_char_signed (gdbarch), "char");
c413c448 5125 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
e9bb382b
UW
5126 builtin_type->builtin_signed_char
5127 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5128 0, "signed char");
5129 builtin_type->builtin_unsigned_char
5130 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5131 1, "unsigned char");
5132 builtin_type->builtin_short
5133 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5134 0, "short");
5135 builtin_type->builtin_unsigned_short
5136 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5137 1, "unsigned short");
5138 builtin_type->builtin_int
5139 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5140 0, "int");
5141 builtin_type->builtin_unsigned_int
5142 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5143 1, "unsigned int");
5144 builtin_type->builtin_long
5145 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5146 0, "long");
5147 builtin_type->builtin_unsigned_long
5148 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5149 1, "unsigned long");
5150 builtin_type->builtin_long_long
5151 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5152 0, "long long");
5153 builtin_type->builtin_unsigned_long_long
5154 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5155 1, "unsigned long long");
70bd8e24 5156 builtin_type->builtin_float
e9bb382b 5157 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 5158 "float", gdbarch_float_format (gdbarch));
70bd8e24 5159 builtin_type->builtin_double
e9bb382b 5160 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 5161 "double", gdbarch_double_format (gdbarch));
70bd8e24 5162 builtin_type->builtin_long_double
e9bb382b 5163 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 5164 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 5165 builtin_type->builtin_complex
e9bb382b
UW
5166 = arch_complex_type (gdbarch, "complex",
5167 builtin_type->builtin_float);
70bd8e24 5168 builtin_type->builtin_double_complex
e9bb382b
UW
5169 = arch_complex_type (gdbarch, "double complex",
5170 builtin_type->builtin_double);
5171 builtin_type->builtin_string
5172 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
5173 builtin_type->builtin_bool
5174 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
000177f0 5175
7678ef8f
TJB
5176 /* The following three are about decimal floating point types, which
5177 are 32-bits, 64-bits and 128-bits respectively. */
5178 builtin_type->builtin_decfloat
88dfca6c 5179 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
7678ef8f 5180 builtin_type->builtin_decdouble
88dfca6c 5181 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
7678ef8f 5182 builtin_type->builtin_declong
88dfca6c 5183 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
7678ef8f 5184
69feb676 5185 /* "True" character types. */
e9bb382b
UW
5186 builtin_type->builtin_true_char
5187 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5188 builtin_type->builtin_true_unsigned_char
5189 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 5190
df4df182 5191 /* Fixed-size integer types. */
e9bb382b
UW
5192 builtin_type->builtin_int0
5193 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5194 builtin_type->builtin_int8
5195 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5196 builtin_type->builtin_uint8
5197 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5198 builtin_type->builtin_int16
5199 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5200 builtin_type->builtin_uint16
5201 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5202 builtin_type->builtin_int32
5203 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5204 builtin_type->builtin_uint32
5205 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5206 builtin_type->builtin_int64
5207 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5208 builtin_type->builtin_uint64
5209 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5210 builtin_type->builtin_int128
5211 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5212 builtin_type->builtin_uint128
5213 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
5214 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5215 TYPE_INSTANCE_FLAG_NOTTEXT;
5216 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5217 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 5218
9a22f0d0
PM
5219 /* Wide character types. */
5220 builtin_type->builtin_char16
53e710ac 5221 = arch_integer_type (gdbarch, 16, 1, "char16_t");
9a22f0d0 5222 builtin_type->builtin_char32
53e710ac 5223 = arch_integer_type (gdbarch, 32, 1, "char32_t");
53375380
PA
5224 builtin_type->builtin_wchar
5225 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5226 !gdbarch_wchar_signed (gdbarch), "wchar_t");
9a22f0d0 5227
46bf5051 5228 /* Default data/code pointer types. */
e9bb382b
UW
5229 builtin_type->builtin_data_ptr
5230 = lookup_pointer_type (builtin_type->builtin_void);
5231 builtin_type->builtin_func_ptr
5232 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
5233 builtin_type->builtin_func_func
5234 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 5235
78267919 5236 /* This type represents a GDB internal function. */
e9bb382b
UW
5237 builtin_type->internal_fn
5238 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5239 "<internal function>");
78267919 5240
e81e7f5e
SC
5241 /* This type represents an xmethod. */
5242 builtin_type->xmethod
5243 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5244
46bf5051
UW
5245 return builtin_type;
5246}
5247
46bf5051
UW
5248/* This set of objfile-based types is intended to be used by symbol
5249 readers as basic types. */
5250
5251static const struct objfile_data *objfile_type_data;
5252
5253const struct objfile_type *
5254objfile_type (struct objfile *objfile)
5255{
5256 struct gdbarch *gdbarch;
5257 struct objfile_type *objfile_type
9a3c8263 5258 = (struct objfile_type *) objfile_data (objfile, objfile_type_data);
46bf5051
UW
5259
5260 if (objfile_type)
5261 return objfile_type;
5262
5263 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5264 1, struct objfile_type);
5265
5266 /* Use the objfile architecture to determine basic type properties. */
5267 gdbarch = get_objfile_arch (objfile);
5268
5269 /* Basic types. */
5270 objfile_type->builtin_void
19f392bc 5271 = init_type (objfile, TYPE_CODE_VOID, 1, "void");
46bf5051 5272 objfile_type->builtin_char
19f392bc
UW
5273 = init_integer_type (objfile, TARGET_CHAR_BIT,
5274 !gdbarch_char_signed (gdbarch), "char");
c413c448 5275 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
46bf5051 5276 objfile_type->builtin_signed_char
19f392bc
UW
5277 = init_integer_type (objfile, TARGET_CHAR_BIT,
5278 0, "signed char");
46bf5051 5279 objfile_type->builtin_unsigned_char
19f392bc
UW
5280 = init_integer_type (objfile, TARGET_CHAR_BIT,
5281 1, "unsigned char");
46bf5051 5282 objfile_type->builtin_short
19f392bc
UW
5283 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5284 0, "short");
46bf5051 5285 objfile_type->builtin_unsigned_short
19f392bc
UW
5286 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5287 1, "unsigned short");
46bf5051 5288 objfile_type->builtin_int
19f392bc
UW
5289 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5290 0, "int");
46bf5051 5291 objfile_type->builtin_unsigned_int
19f392bc
UW
5292 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5293 1, "unsigned int");
46bf5051 5294 objfile_type->builtin_long
19f392bc
UW
5295 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5296 0, "long");
46bf5051 5297 objfile_type->builtin_unsigned_long
19f392bc
UW
5298 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5299 1, "unsigned long");
46bf5051 5300 objfile_type->builtin_long_long
19f392bc
UW
5301 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5302 0, "long long");
46bf5051 5303 objfile_type->builtin_unsigned_long_long
19f392bc
UW
5304 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5305 1, "unsigned long long");
46bf5051 5306 objfile_type->builtin_float
19f392bc
UW
5307 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5308 "float", gdbarch_float_format (gdbarch));
46bf5051 5309 objfile_type->builtin_double
19f392bc
UW
5310 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5311 "double", gdbarch_double_format (gdbarch));
46bf5051 5312 objfile_type->builtin_long_double
19f392bc
UW
5313 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5314 "long double", gdbarch_long_double_format (gdbarch));
46bf5051
UW
5315
5316 /* This type represents a type that was unrecognized in symbol read-in. */
5317 objfile_type->builtin_error
19f392bc 5318 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
46bf5051
UW
5319
5320 /* The following set of types is used for symbols with no
5321 debug information. */
5322 objfile_type->nodebug_text_symbol
19f392bc
UW
5323 = init_type (objfile, TYPE_CODE_FUNC, 1,
5324 "<text variable, no debug info>");
0875794a 5325 objfile_type->nodebug_text_gnu_ifunc_symbol
19f392bc
UW
5326 = init_type (objfile, TYPE_CODE_FUNC, 1,
5327 "<text gnu-indirect-function variable, no debug info>");
7022349d 5328 /* Ifunc resolvers return a function address. */
0875794a 5329 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
7022349d
PA
5330 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5331 "__IFUNC_RESOLVER_RET");
19f392bc 5332 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
0875794a 5333 objfile_type->nodebug_got_plt_symbol
19f392bc
UW
5334 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5335 "<text from jump slot in .got.plt, no debug info>",
5336 objfile_type->nodebug_text_symbol);
46bf5051 5337 objfile_type->nodebug_data_symbol
46a4882b 5338 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
46bf5051 5339 objfile_type->nodebug_unknown_symbol
46a4882b 5340 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
46bf5051 5341 objfile_type->nodebug_tls_symbol
46a4882b 5342 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
000177f0
AC
5343
5344 /* NOTE: on some targets, addresses and pointers are not necessarily
0a7cfe2c 5345 the same.
000177f0
AC
5346
5347 The upshot is:
5348 - gdb's `struct type' always describes the target's
5349 representation.
5350 - gdb's `struct value' objects should always hold values in
5351 target form.
5352 - gdb's CORE_ADDR values are addresses in the unified virtual
5353 address space that the assembler and linker work with. Thus,
5354 since target_read_memory takes a CORE_ADDR as an argument, it
5355 can access any memory on the target, even if the processor has
5356 separate code and data address spaces.
5357
46bf5051
UW
5358 In this context, objfile_type->builtin_core_addr is a bit odd:
5359 it's a target type for a value the target will never see. It's
5360 only used to hold the values of (typeless) linker symbols, which
5361 are indeed in the unified virtual address space. */
000177f0 5362
46bf5051 5363 objfile_type->builtin_core_addr
19f392bc
UW
5364 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5365 "__CORE_ADDR");
64c50499 5366
46bf5051
UW
5367 set_objfile_data (objfile, objfile_type_data, objfile_type);
5368 return objfile_type;
000177f0
AC
5369}
5370
c906108c 5371void
fba45db2 5372_initialize_gdbtypes (void)
c906108c 5373{
5674de60 5374 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
46bf5051 5375 objfile_type_data = register_objfile_data ();
5674de60 5376
ccce17b0
YQ
5377 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5378 _("Set debugging of C++ overloading."),
5379 _("Show debugging of C++ overloading."),
5380 _("When enabled, ranking of the "
5381 "functions is displayed."),
5382 NULL,
5383 show_overload_debug,
5384 &setdebuglist, &showdebuglist);
5674de60 5385
7ba81444 5386 /* Add user knob for controlling resolution of opaque types. */
5674de60 5387 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
5388 &opaque_type_resolution,
5389 _("Set resolution of opaque struct/class/union"
5390 " types (if set before loading symbols)."),
5391 _("Show resolution of opaque struct/class/union"
5392 " types (if set before loading symbols)."),
5393 NULL, NULL,
5674de60
UW
5394 show_opaque_type_resolution,
5395 &setlist, &showlist);
a451cb65
KS
5396
5397 /* Add an option to permit non-strict type checking. */
5398 add_setshow_boolean_cmd ("type", class_support,
5399 &strict_type_checking,
5400 _("Set strict type checking."),
5401 _("Show strict type checking."),
5402 NULL, NULL,
5403 show_strict_type_checking,
5404 &setchecklist, &showchecklist);
c906108c 5405}
This page took 1.806822 seconds and 4 git commands to generate.